EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests
Energy Technology Data Exchange (ETDEWEB)
Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.
2009-08-14
concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic. The work described in this report addresses the kinetics of caustic leach under WTP conditions, based on tests performed with a Hanford waste simulant. The tests were completed at the lab-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. The purpose of this report is to summarize the results from both scales that are related to caustic leach chemistry to support a scale-up factor for the submodels to be used in the G2 model, which predicts WTP operating performance. The scale-up factor will take the form of an adjustment factor for the rate constant in the boehmite leach kinetic equation in the G2 model.
EFRT M-12 Issue Resolution: Caustic-Leach Rate Constants from PEP and Laboratory-Scale Tests
Energy Technology Data Exchange (ETDEWEB)
Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.
2010-01-01
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. The work described in this report addresses caustic leaching under WTP conditions, based on tests performed with a Hanford waste simulant. Because gibbsite leaching kinetics are rapid (gibbsite is expected to be dissolved by the time the final leach temperature is reached), boehmite leach kinetics are the main focus of the caustic-leach tests. The tests were completed at the laboratory-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. Two laboratory-scale caustic-leach tests were performed for each of the PEP runs. For each PEP run, unleached slurry was taken from the PEP caustic-leach vessel for one batch and used as feed for both of the corresponding laboratory-scale tests.
Caustic Leaching of Hanford Tank S-110 Sludge
Energy Technology Data Exchange (ETDEWEB)
Lumetta, Gregg J.; Carson, Katharine J.; Darnell, Lori P.; Greenwood, Lawrence R.; Hoopes, Francis V.; Sell, Richard L.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Urie, Michael W.; Wagner, John J.
2001-10-31
This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM50).
International Nuclear Information System (INIS)
The Hanford Waste Treatment Plant (WTP) flowsheet includes an optional caustic leach step to remove gibbsite (Al(OH)3) from high-level waste sludge prior to vitrification. Aluminum leaching minimizes the mass that must be vitrified as high-level waste. The steady-state (time averaged) WTP flowsheet uses thermodynamic models that minimize Gibbs free energy to predict aluminum dissolution in the caustic leaching process, but these models are too computationally intensive to be solved in dynamic flowsheets. A gibbsite solubility model that is both accurate and rapidly solved by the.computer was needed and developed for a dynamic flowsheet. Available literature data on the solubility of gibbsite in aqueous sodium hydroxide solutions was compiled and the apparent equilibrium constant (Q) was calculated from the experimental data for each data point. The Q value is defined as the true equilibrium constant times the activity coefficients for the aluminate (Al(OH)4-) and hydroxide (OH-) ions in the reaction: Al(OH)4↔ Al(OH)3(s) + OH- The WTP dynamic flowsheet uses Q to determine the concentration of dissolved aluminate at equilibrium with gibbsite for a given hydroxide concentration. An empirical model to predict Q was developed by multi-linear regression of the experimentally determined Q values from the literature. Four statistically significant model coefficients (all P statistics were less than 10-25) were identified: temperature, solution ionic strength, ionic strength squared, and a regression constant. This model was found to fit a large database of aluminum solubility data with an R2 of 0.98, which is comparable to the accuracy of more computationally intensive thermodynamic models for this data set. (authors)
The chemistry of sludge washing and caustic leaching processes for selected Hanford tank wastes
International Nuclear Information System (INIS)
A broad-based study on washing and caustic leaching of Hanford tank sludges was performed in FY 1995 to gain a better understanding of the basic chemical processes that underlie this process. This approach involved testing of the baseline sludge washing and caustic leaching method on several Hanford tank sludges, and characterization of the solids both before and after testing by electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. A thermodynamically based model was employed to help understand the factors involved in individual specie distribution in the various stages of the sludge washing and caustic leaching treatment. The behavior of the important chemical and radiochemical components throughout the testing is summarized and reviewed in this report
Washing and Caustic Leaching of Hanford Tank Sludge: Results of FY 1998 Studies
Energy Technology Data Exchange (ETDEWEB)
GJ Lumetta; BM Rapko; J Liu; DJ Temer; RD Hunt
1998-12-11
Sludge washing and parametric caustic leaching tests were performed on sludge samples tiom five Hanford tanks: B-101, BX-1 10, BX-112, C-102, and S-101. These studies examined the effects of both dilute hydroxide washing and caustic leaching on the composition of the residual sludge solids. ` Dilute hydroxide washing removed from <1 to 25% of the Al, -20 to 45% of the Cr, -25 to 97% of the P, and 63 to 99% of the Na from the Hdord tank sludge samples examined. The partial removal of these elements was likely due to the presence of water-soluble sodium salts of aluminate, chromate, hydroxide, nitrate, nitrite, and phosphate, either in the interstitial liquid or as dried salts.
Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies
International Nuclear Information System (INIS)
The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na3PO4. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111
Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching
Energy Technology Data Exchange (ETDEWEB)
Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2008-03-05
Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi, Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.
Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision
International Nuclear Information System (INIS)
During the past few years, the primary mission at the US Department of Energy's Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet
Caustic Leaching of SRS Tank 12H Sludge With and Without Chelating Agents
International Nuclear Information System (INIS)
The primary objective of this study was to measure the effect of adding triethanolamine (TEA) to caustic leaching solutions to improve the solubility of aluminum in actual tank-waste sludge. High-level radioactive waste sludge that had a high aluminum assay was used for the tests. This waste, which originated with the processing of aluminum-clad/aluminum-alloy fuels, generates high levels of heat because of the high 90Sr concentration and contains hard-to-dissolve boehmite phases. In concept, a chelating agent, such as TEA, can both improve the dissolution rate and increase the concentration in the liquid phase. For this reason, TEA could also increase the solubility of other sludge components that are potentially problematic to downstream processing. Tests were conducted to determine if this were the case. Because of its relatively high vapor pressure, process design should include methods to minimize losses of the TEA. Sludge was retrieved from tank 12H at the Savannah River Site by on-site personnel, and then shipped to Oak Ridge National Laboratory for the study. The sludge contained a small quantity of rocky debris. One slate-like flat piece, which had approximate dimensions of 1 1/4 x 1/2 x 1/8 in., was recovered. Additional gravel-like fragments with approximate diameters ranging from 1/8 to 1/4 in. were also recovered by sieving the sludge slurry through a 1.4-mm square-pitch stainless steel mesh. These particles ranged from a yellow quartz-like material to grey-colored gravel. Of the 32.50 g of sludge received, the mass of the debris was only 0.89 g, and the finely divided sludge comprised ∼97% of the mass. The sludge was successfully subdivided into uniform aliquots during hot-cell operations. Analytical measurements confirmed the uniformity of the samples. The smaller sludge samples were then used as needed for leaching experiments conducted in a glove box. Six tests were performed with leachate concentrations ranging from 0.1 to 3.0 m NaOH, 0 to 3.0 m
Washing and caustic leaching of Hanford tank sludges: Results of FY 1995 studies
International Nuclear Information System (INIS)
During the past few years, the primary mission at the US Department of Energy's Hanford Site has changed from producing plutonium to environmental restoration. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW immobilization and disposal, pretreatment processes will be implemented to reduce the volume of borosilicate glass produced in processing the tank wastes. This document describes sludge washing and caustic leaching tests conducted in FY 1995 at the Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. These tests were performed using sludges from seven Hanford waste tanks -- B-111, BX-107, C-103, S-104, SY-103, T-104, and T-111. The primary and secondary types of waste stored in each of these tanks are given in Table 1. 1. The data collected in this effort will be used to support the March 1998 Tri-Party Agreement decision on the extent of pretreatment to be performed on the Hanford tank sludges (Ecology, EPA, and DOE 1994)
International Nuclear Information System (INIS)
In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both 137Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report
FLOTATION RATE CONSTANT MODEL FOR FINE COAL
Institute of Scientific and Technical Information of China (English)
LuMaixi; CaiZhang; TaoYoujun; KuangYali
1996-01-01
The density of fine coal has a major effect on the value of its floxation rate constant. The collector dose can increase the flotation rate of fine coal, especially for low ash coal, but the effect for gangue is not notable. The flotation rate of gangue is mainly governed by the water entrainment. A coal flotation rate constant model has been developed.
Energy Technology Data Exchange (ETDEWEB)
Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.; Daniel, Richard C.; Su, Yin-Fong; Geeting, John GH; Golovich, Elizabeth C.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Smith, Dennese M.; Valdez, Patrick LJ; Yokuda, Satoru T.; Young, Joan K.
2009-12-04
Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.
International Nuclear Information System (INIS)
Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, 'Undemonstrated Leaching Processes.'(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.
Theophylline: constant-rate infusion predictions.
Mesquita, C A; Sahebjami, H; Imhoff, T; Thomas, J P; Myre, S A
1984-01-01
This study was undertaken to evaluate a method of prospectively estimating appropriate aminophylline infusion rates in acutely ill, hospitalized patients with bronchospasm. Steady-state serum theophylline concentrations (Css), clearances (Cl), and half-lives (t1/2) were estimated by the Chiou method using serum concetrantions obtained 1 and 6 h after the start of a constant-rate intravenous aminophylline infusion in 10 male patients averaging 57 years of age. Using an enzyme-multiplied immunoassay (EMIT) system for theophylline analysis, pharmacokinetic estimations were excellent for Css (r = 0.9103, p less than 0.01) and Cl (r = 0.9750, p less than 0.01). The mean estimation errors were 9.4% (range 0.8-21.5) for Css and 12.3% (range 1.3-28.0) for Cl. There was no correlation between patient age and Cl. This method is useful for rapidly individualizing aminophylline therapy in patients with acute bronchospasm. PMID:6740734
ADSORPTION RATE CONSTANTS OF EOSIN IN HUMIN
Anshar, Andi Muhammad
2015-01-01
Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1
Phototransformation Rate Constants of PAHs Associated with Soot Particles
Kim, Daekyun; Young, Thomas M.; Anastasio, Cort
2012-01-01
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were ...
Autoionization rate constants of zero electron kinetic energy Rydberg states
International Nuclear Information System (INIS)
Highlights: ► Rovibrational autoionization rate constants for diatomic molecules. ► Density matrix formulation based on the model of IBOA. ► Quantum number and energy dependences are studied. - Abstract: We have calculated the vibrational and rotational autoionization rate constants for diatomic molecules H2, N2, and HCl in high Rydberg states by employing the density matrix formulation with the inverse Born–Oppenheimer approximation basis set. The purpose is to simulate the main radiationless processes occurring in zero electron kinetic energy (ZEKE) spectroscopy. The quantum numbers and the energy dependences of the calculated autoionization rate constants are represented as the scaling laws via nonlinear regression. These data provide a suitable starting point for quantitative study of the intricate dynamics involved in ZEKE Rydberg states.
Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand.
Antosiewicz, J; Gilson, M K; Lee, I H; McCammon, J A
1995-01-01
For some enzymes, virtually every substrate molecule that encounters the entrance to the active site proceeds to reaction, at low substrate concentrations. Such diffusion-limited enzymes display high apparent bimolecular rate constants ((kcat/KM)), which depend strongly upon solvent viscosity. Some experimental studies provide evidence that acetylcholinesterase falls into this category. Interestingly, the asymmetric charge distribution of acetylcholinesterase, apparent from the crystallograph...
Li, Xiaogai; von Holst, Hans; Kleiven, Svein
2013-01-01
A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion. PMID:22452461
High-temperature rate constant measurements for OH+xylenes
Elwardani, Ahmed Elsaid
2015-06-01
The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.
Reaction Rate Constant for Radiative Association of CF$^+$
Öström, Jonatan; Nyman, Gunnar; Gustafsson, Magnus
2015-01-01
Reaction rate constants and cross sections are computed for the radiative association of carbon cations ($\\text{C}^+$) and fluorine atoms ($\\text{F}$) in their ground states. We consider reactions through the electronic transition $1^1\\Pi \\rightarrow X^1\\Sigma^+$ and rovibrational transitions on the $X^1\\Sigma^+$ and $a^3\\Pi$ potentials. Semiclassical and classical methods are used for the direct contribution and Breit--Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius--Kooij formula in five temperature intervals with a relative difference of $<3\\:\\%$. The fit parameters will be added to the online database KIDA. For a temperature of $10$ to $250\\:\\text{K}$, the rate constant is about $10^{-21}\\:\\text{cm}^3\\text{s}^{-1}$, rising toward $10^{-16}\\:\\text{cm}^3\\text{s}^{-1}$ fo...
Reaction rate constant for radiative association of CF{sup +}
Energy Technology Data Exchange (ETDEWEB)
Öström, Jonatan, E-mail: jonatan.ostrom@gmail.com; Gustafsson, Magnus, E-mail: magnus.gustafsson@ltu.se [Applied Physics, Division of Materials Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 97187 Luleå (Sweden); Bezrukov, Dmitry S. [Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Nyman, Gunnar [Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)
2016-01-28
Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C{sup +}) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1{sup 1}Π → X{sup 1}Σ{sup +} and rovibrational transitions on the X{sup 1}Σ{sup +} and a{sup 3}Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit–Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius–Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10–250 K, the rate constant is about 10{sup −21} cm{sup 3} s{sup −1}, rising toward 10{sup −16} cm{sup 3} s{sup −1} for a temperature of 30 000 K.
Reaction rate constant for radiative association of CF+
International Nuclear Information System (INIS)
Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C+) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 11Π → X1Σ+ and rovibrational transitions on the X1Σ+ and a3Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit–Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius–Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10–250 K, the rate constant is about 10−21 cm3 s−1, rising toward 10−16 cm3 s−1 for a temperature of 30 000 K
Uniaxial tension test on Rubber at constant true strain rate
Directory of Open Access Journals (Sweden)
Sourne H.L.
2012-08-01
Full Text Available Elastomers are widely used for damping parts in different industrial contexts because of their remarkable dissipation properties. Indeed, they can undergo severe mechanical loading conditions, i.e., high strain rates and large strains. Nevertheless, the mechanical response of these materials can vary from purely rubber-like to glassy depending on the strain rate undergone. Classically, uniaxial tension tests are made in order to find a relation between the stress and the strain in the material at various strain rates. However, even if the strain rate is searched to be constant, it is the nominal strain rate that is considered. Here we develop a test at constant true strain rate, i.e. the strain rate that is experienced by the material. In order to do such a test, the displacement imposed by the machine is an exponential function of time. This test has been performed with a high speed hydraulic machine for strain rates between 0.01/s and 100/s. A specific specimen has been designed, yielding a uniform strain field (and so a uniform stress field. Furthermore, an instrumented aluminum bar has been used to take into account dynamic effects in the measurement of the applied force. A high speed camera enables the determination of strain in the sample using point tracking technique. Using this method, the stress-strain curve of a rubber-like material during a loading-unloading cycle has been determined, up to a stretch ratio λ = 2.5. The influence of the true strain rate both on stiffness and on dissipation of the material is then discussed.
Recent developments in semiclassical mechanics: eigenvalues and reaction rate constants
Energy Technology Data Exchange (ETDEWEB)
Miller, W.H.
1976-04-01
A semiclassical treatment of eigenvalues for a multidimensional non-separable potential function and of the rate constant for a chemical reaction with an activation barrier is presented. Both phenomena are seen to be described by essentially the same semiclassical formalism, which is based on a construction of the total Hamiltonian in terms of the complete set of ''good'' action variables (or adiabatic invariants) associated with the minimum in the potential energy surface for the eigenvalue case, or the saddle point in the potential energy surface for the case of chemical reaction.
Balanced anesthesia and constant-rate infusions in horses.
Valverde, Alexander
2013-04-01
Balanced anesthetic techniques are commonly used in equine patients, and include the combination of a volatile anesthetic with at least one injectable anesthetic throughout the maintenance period. Injectable anesthetics used in balanced anesthesia include the α2-agonists, lidocaine, ketamine, and opioids, and those with muscle-relaxant properties such as benzodiazepines and guaifenesin. Administration of these injectable anesthetics is best using constant-rate infusions based on the pharmacokinetics of the drug, which allows steady-state concentrations and predictable pharmacodynamic actions. This review summarizes the different drug combinations used in horses, and provides calculated recommended doses based on the pharmacokinetics of individual drugs. PMID:23498047
Rate Constant Calculation for Thermal Reactions Methods and Applications
DaCosta, Herbert
2011-01-01
Providing an overview of the latest computational approaches to estimate rate constants for thermal reactions, this book addresses the theories behind various first-principle and approximation methods that have emerged in the last twenty years with validation examples. It presents in-depth applications of those theories to a wide range of basic and applied research areas. When doing modeling and simulation of chemical reactions (as in many other cases), one often has to compromise between higher-accuracy/higher-precision approaches (which are usually time-consuming) and approximate/lower-preci
Absolute rate constants of alkoxyl radical reactions in aqueous solution
International Nuclear Information System (INIS)
The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 106 s-1. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA) was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent
Interpretation of the temperature dependence of equilibrium and rate constants.
Winzor, Donald J; Jackson, Craig M
2006-01-01
The objective of this review is to draw attention to potential pitfalls in attempts to glean mechanistic information from the magnitudes of standard enthalpies and entropies derived from the temperature dependence of equilibrium and rate constants for protein interactions. Problems arise because the minimalist model that suffices to describe the energy differences between initial and final states usually comprises a set of linked equilibria, each of which is characterized by its own energetics. For example, because the overall standard enthalpy is a composite of those individual values, a positive magnitude for DeltaH(o) can still arise despite all reactions within the subset being characterized by negative enthalpy changes: designation of the reaction as being entropy driven is thus equivocal. An experimenter must always bear in mind the fact that any mechanistic interpretation of the magnitudes of thermodynamic parameters refers to the reaction model rather than the experimental system. For the same reason there is little point in subjecting the temperature dependence of rate constants for protein interactions to transition-state analysis. If comparisons with reported values of standard enthalpy and entropy of activation are needed, they are readily calculated from the empirical Arrhenius parameters. PMID:16897812
Phototransformation rate constants of PAHs associated with soot particles
International Nuclear Information System (INIS)
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (kp0), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the kp0 value. As the thickness of the soot layer increases, the z0.5 values increase, but the kp0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between kp0 and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow photodegradation and slow
DILATANCY BEHAVIOR IN CONSTANT STRAIN RATE CONSOLIDATION TEST
Directory of Open Access Journals (Sweden)
Berty Sompie
2006-01-01
Full Text Available Subjected to remolded young clay, this paper shows that a lot of time dependent behavior in the standard consolidation (SC and constant strain rate consolidation (CSRC tests is represented systematically by a simple assumption concerning the time dependency of dilatancy. In the SC test, at the first stage of each loading step little dilatancy takes place and dilatancy begins to occur several minutes after step loading. In CSRC test, some time period after the stress state has entered the normally consolidated region, dilatancy tends to occur rapidly with the increase in stress ratio. Since most of dilatancy has taken place at the earlier stage of consolidation, little dilatancy occurs at the latter stage of CSRC process. This tendency makes the specimen stiffer with the passage of time, and makes the vertical pressure and pore pressure increase substantially at the last stage of CSRC process. Consideration to such behavior may be effective to correctly interpret the result of CSRC test.
The air-kerma rate constant of 192Ir.
Ninković, M M; Raiĉevìć, J J
1993-01-01
The air-kerma rate constant gamma delta (and its precursors), as one of the basic radiation characteristics of 192Ir, was determined by many authors. Analysis of accessible data on this quantity led us to the conclusion that published data strongly disagree. That is the reason we calculated this quantity on the basis of our and many other authors' gamma-ray spectral data and the latest data for mass energy-transfer coefficients for air. In this way, a value was obtained for gamma delta of 30.0 +/- 0.9 a Gy m2 s-1 Bq-1 for an unshielded 192Ir source and 27.8 +/- 0.9 a Gy m2s -1Bq-1 for a standard packaged radioactive source taking into account attenuation of gamma rays in the platinum source wall. PMID:8416220
A Novel Rate Control Scheme for Constant Bit Rate Video Streaming
Directory of Open Access Journals (Sweden)
Venkata Phani Kumar M
2015-08-01
Full Text Available In this paper, a novel rate control mechanism is proposed for constant bit rate video streaming. The initial quantization parameter used for encoding a video sequence is determined using the average spatio-temporal complexity of the sequence, its resolution and the target bit rate. Simple linear estimation models are then used to predict the number of bits that would be necessary to encode a frame for a given complexity and quantization parameter. The experimental results demonstrate that our proposed rate control mechanism significantly outperforms the existing rate control scheme in the Joint Model (JM reference software in terms of Peak Signal to Noise Ratio (PSNR and consistent perceptual visual quality while achieving the target bit rate. Furthermore, the proposed scheme is validated through implementation on a miniature test-bed.
Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.
2007-01-01
In recent years the ground-water demand of the population of the island of Maui, Hawaii, has significantly increased. To ensure prudent management of the ground-water resources, an improved understanding of ground-water flow systems is needed. At present, large-scale estimations of aquifer properties are lacking for Maui. Seven analytical methods using constant-rate and variable-rate withdrawals for single wells provide an estimate of hydraulic conductivity and transmissivity for 103 wells in central Maui. Methods based on constant-rate tests, although not widely used on Maui, offer reasonable estimates. Step-drawdown tests, which are more abundantly used than other tests, provide similar estimates as constant-rate tests. A numerical model validates the suitability of analytical solutions for step-drawdown tests and additionally provides an estimate of storage parameters. The results show that hydraulic conductivity is log-normally distributed and that for dike-free volcanic rocks it ranges over several orders of magnitude from 1 to 2,500 m/d. The arithmetic mean, geometric mean, and median values of hydraulic conductivity are respectively 520, 280, and 370 m/d for basalt and 80, 50, and 30 m/d for sediment. A geostatistical approach using ordinary kriging yields a prediction of hydraulic conductivity on a larger scale. Overall, the results are in agreement with values published for other Hawaiian islands. ?? 2007 American Water Resources Association.
DEFF Research Database (Denmark)
Jongberg, Sisse; Lund, Marianne Nissen; Pattison, David I.;
2016-01-01
. This approach allows determination of apparent rate constants for the oxidation of proteins by haem proteins of relevance to food oxidation and should be applicable to other systems. A similar approach has provided approximate apparent rate constants for the reduction of MbFe(IV)=O by catechin and...
Neural estimation of kinetic rate constants from dynamic PET-scans
DEFF Research Database (Denmark)
Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai;
1994-01-01
A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster...... than direct fitting of rate constants using the parametrized transients of the compartment model...
International Nuclear Information System (INIS)
The complex formation and redox decomposition of several hydroxo complexes that form in the Ce4+ - SO42- - R(OH)m systems, where R(OH)m (m = 3, 5, 6) is glycerol, xylitol, and sorbitol, respectively, were studied spectrophotometrically, pH metrically, and kinetically at the ionic strength I = 2 with the pH of the sulfate background in the range of 1.7-3.4 and temperatures of 20.0-23.0 deg C. The stability constants of the [CeOHHxL]3-x (L = R(OH)m) complexes, the ligand speciation, and the rate constants of the intramolecular redox decomposition of the complexes were determined in the sulfate background. The apparent stabilization of the +4 oxidation state of cerium in the specified complexes is demonstrated
Energy Technology Data Exchange (ETDEWEB)
Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu [University of Georgia, Department of Chemistry, 101 Cedar St., Athens, Georgia 30602 (United States)
2014-01-21
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.
On the estimate of the rate constant in the homogeneous dissolution model
Czech Academy of Sciences Publication Activity Database
Čupera, Jakub; Lánský, Petr
2013-01-01
Roč. 39, č. 10 (2013), s. 1555-1561. ISSN 0363-9045 Institutional support: RVO:67985823 Keywords : dissolution * estimation * rate constant Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.006, year: 2013
Ion-quadrupole effects in thermal energy ion-molecule collision rate constants
Kosmas, A.M.
1985-01-01
A simplified version of the Averaged Quadrupole Orientation (AQO) theory is attempted, by taking into account the adiabatic invariance approximation, to investigate the effect of the ionquadrupolar molecule interaction on thermal energy reaction rate constant. The theory is formulated in terms of an orientation averaged potential energy function and predicts a significant increase in the capture rate constant over the Langevin value for molecules with large quadrupole moments and small polari...
Selected hydraulic test analysis techniques for constant-rate discharge tests
International Nuclear Information System (INIS)
The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions
Systematic Angle Random Walk Estimation of the Constant Rate Biased Ring Laser Gyro
Directory of Open Access Journals (Sweden)
Guohu Feng
2013-02-01
Full Text Available An actual account of the angle random walk (ARW coefficients of gyros in the constant rate biased rate ring laser gyro (RLG inertial navigation system (INS is very important in practical engineering applications. However, no reported experimental work has dealt with the issue of characterizing the ARW of the constant rate biased RLG in the INS. To avoid the need for high cost precise calibration tables and complex measuring set-ups, the objective of this study is to present a cost-effective experimental approach to characterize the ARW of the gyros in the constant rate biased RLG INS. In the system, turntable dynamics and other external noises would inevitably contaminate the measured RLG data, leading to the question of isolation of such disturbances. A practical observation model of the gyros in the constant rate biased RLG INS was discussed, and an experimental method based on the fast orthogonal search (FOS for the practical observation model to separate ARW error from the RLG measured data was proposed. Validity of the FOS-based method was checked by estimating the ARW coefficients of the mechanically dithered RLG under stationary and turntable rotation conditions. By utilizing the FOS-based method, the average ARW coefficient of the constant rate biased RLG in the postulate system is estimated. The experimental results show that the FOS-based method can achieve high denoising ability. This method estimate the ARW coefficients of the constant rate biased RLG in the postulate system accurately. The FOS-based method does not need precise calibration table with high cost and complex measuring set-up, and Statistical results of the tests will provide us references in engineering application of the constant rate biased RLG INS.
Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate
International Nuclear Information System (INIS)
The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm
Directory of Open Access Journals (Sweden)
Dániel Kozma
2012-01-01
Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.
Extraction of elementary rate constants from global network analysis of E. coli central metabolism
Directory of Open Access Journals (Sweden)
Broderick Gordon
2008-05-01
Full Text Available Abstract Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL. There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local
K. Föller; B. Stelbrink; Hauffe, T.; Albrecht, C.; Wilke, T.
2015-01-01
Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four modes are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher ...
K. Föller; B. Stelbrink; Hauffe, T.; Albrecht, C.; Wilke, T.
2015-01-01
Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four types are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial ph...
A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle
Energy Technology Data Exchange (ETDEWEB)
Lee, Sak; Lee, Dong Won; Kwon, Soon Bum [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Byung Ji [Catholic Sangji College, Andong (Korea, Republic of)
2005-07-01
Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small.
A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle
International Nuclear Information System (INIS)
Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small
Prediction and dissection of widely-varying association rate constants of actin-binding proteins.
Directory of Open Access Journals (Sweden)
Xiaodong Pang
Full Text Available Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a = k(a0 e(-ΔG(el*/k(BT, where k(a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.
Ion-quadrupole effects in thermal energy ion-molecule collision rate constants
International Nuclear Information System (INIS)
A simplified version of the Average Quadrupole Orientation (AQO) theory is attempted, by taking into account the adiabatic invariance approximation, to investigate the effect of the ion-quadrupolar molecule interaction on thermal energy reaction rate constant. The theory is formulated in terms of an orientation averaged potential energy function and predicts a significant increase in the capture rate constant over the Langevin value for molecules with large quadrupole moments and small polarizabilities. The results of the theory are compared to various experimental data and predictions of other theories
An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries
Directory of Open Access Journals (Sweden)
Srivatsan Ramesh
2015-01-01
Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.
Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation
Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.
2004-09-01
A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be
International Nuclear Information System (INIS)
With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)
Estimation of the reaction rate constant of HOCl by SMILES observation
Kuribayashi, Kouta; Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo
2012-07-01
Hypochlorous acid, HOCl plays an important role to link the odd ClOx and the odd HOx in the atmospheric chemistry with the reaction: {ClO} + {HO_{2}} \\longrightarrow {HOCl} + {O_{2}} Quantitative understanding of the rate constant of the reaction (1.1) is essential for understanding the ozone loss in the mid-latitude region because of a view point of its rate controlling role in the ozone depletion chemistry. Reassessment of the reaction rate constant was pointed out from MIPAS/Envisat observations (von Clarmann et al., 2011) and balloon-borne observations (Kovalenko et al., 2007). Several laboratory studies had been reported, although the reaction rate constants have large uncertainties, as k{_{HOCl}} = (1.75 ± 0.52) × 10^{-12} exp[(368 ± 78)/T] (Hickson et al., 2007), and large discrepancies (Hickson et al., 2007;Stimpfle et al., 1979). Moreover, theoretical ab initio studies pointed out the pressure dependence of the reaction (1.1) (Xu et al., 2003). A new high-sensitive remote sensing technology named Superconducting SubMillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS) had observed diurnal variations of HOCl in the upper stratosphere/lower mesosphere (US/LM) region for the first time. ClO and HO_{2} were slso observed simultaneously with HOCl. SMILES performed the observations between 12^{{th}} October 2009 and 21^{{th}} April 2010. The latitude coverage of SMILES observation is normally 38°S-65°N. The altitude region of HOCl observation is about 28-70 km. We estimated the time period in which the reaction (1.1) becomes dominant in the ClO_{y} diurnal chemistry in US/LM. The reaction rate constant was directly estimated by decay of [ClO] and [HO_{2}] amounts in that period. The derived reaction rate constant represented well the increase of [HOCl] amount.
Wang, P-H; De Sancho, D; Best, R B; Blumberger, J
2016-01-01
The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates. PMID:27497172
Jongberg, Sisse; Lund, Marianne N; Pattison, David I; Skibsted, Leif H; Davies, Michael J
2016-05-15
Competitive kinetics were applied as a tool to determine apparent rate constants for the reduction of hypervalent haem pigment ferrylmyoglobin (MbFe(IV)O) by proteins and phenols in aqueous solution of pH 7.4 and I=1.0 at 25°C. Reduction of MbFe(IV)O by a myofibrillar protein isolate (MPI) from pork resulted in kMPI=2.2 ± 0.1 × 10(4)M(-1)s(-1). Blocking of the protein thiol groups on the MPI by N-ethylmaleimide (NEM) markedly reduced this rate constant to kMPI-NEM=1.3 ± 0.4 × 10(3)M(-1)s(-1) consistent with a key role for the Cys residues on MPI as targets for haem protein-mediated oxidation. This approach allows determination of apparent rate constants for the oxidation of proteins by haem proteins of relevance to food oxidation and should be applicable to other systems. A similar approach has provided approximate apparent rate constants for the reduction of MbFe(IV)O by catechin and green tea extracts, though possible confounding reactions need to be considered. These kinetic data suggest that small molar excesses of some plant extracts relative to the MPI thiol concentration should afford significant protection against MbFe(IV)O-mediated oxidation. PMID:26775941
Some chaotic behaviors in a MCA learning algorithm with a constant learning rate
International Nuclear Information System (INIS)
Douglas's minor component analysis algorithm with a constant learning rate has both stability and chaotic dynamical behavior under some conditions. The paper explores such dynamical behavior of this algorithm. Certain stability and chaos of this algorithm are derived. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior
Directory of Open Access Journals (Sweden)
S.L. Butarbutar
2013-08-01
Full Text Available It has been a longstanding issue in the radiation chemistry of water that, even though H2 is a molecular product, its “escape” yield g(H2 increases with increasing temperature. A main source of H2 is the bimolecular reaction of two hydrated electrons (eaq. The temperature dependence of the rate constant of this reaction (k1, measured under alkaline conditions, reveals that the rate constant drops abruptly above ~150°C. Recently, it has been suggested that this temperature dependence should be regarded as being independent of pH and used in high-temperature modeling of near-neutral water radiolysis. However, when this drop in the eaq self-reaction rate constant is included in low (isolated spurs and high (cylindrical tracks linear energy transfer (LET modeling calculations, g(H2 shows a marked downward discontinuity at ~150°C which is not observed experimentally. The consequences of the presence of this discontinuity in g(H2 for both low and high LET radiation are briefly discussed in this communication. It is concluded that the applicability of the sudden drop in k1 observed at ~150°C in alkaline water to near-neutral water is questionable and that further measurements of the rate constant in pure water are highly desirable.
Mechanism and thermal rate constant for the gas-phase ozonolysis of acenaphthylene in the atmosphere
International Nuclear Information System (INIS)
Due to its prevalent presence, it is critical to clarify the atmospheric fate of acenaphthylene (Ary). In this paper, the reaction mechanism of the gas-phase ozonolysis of Ary was investigated by using quantum chemistry methods. Possible reaction pathways were discussed, and the theoretical results were compared with the available experimental data. The rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The main products include secondary ozonide, naphthalene-1,8-dicarbaldehyde, 1,8-naphthalic anhydride, oxaacenaphthylene-2-one, 1-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, and α-hydroxyhydroperoxide. The reaction of the unsaturated cyclo-pentafused ring with O3 is the dominant pathway. The overall rate constant of the O3 addition reaction is 5.31 × 10−16 cm3 molecule−1 s−1 at 298 K and 1 atm. The atmospheric lifetime of Ary determined by O3 is about 0.75 h. This work provides a comprehensive investigation of the ozonolysis of Ary and should help to understand its atmospheric fate. - Highlights: • We studied a comprehensive mechanism of O3-initiated oxidation of Ary. • The overall rate constant of O3 addition reactions is 5.31 × 10−16 cm3 molecule−1 s−1. • The atmospheric lifetime of Ary determined by O3 is about 0.75 h. • The rate constants of the crucial elementary steps were evaluated
Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall
Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...
Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation
DEFF Research Database (Denmark)
Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi;
For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...
The rate constants of the H + FO reaction and its isotope variant on two electronic states
International Nuclear Information System (INIS)
Graphical abstract: The calculated integral cross sections as a function of collision energy for the reaction of H + FO (v = 0, j = 0) on two electronic state PES have been presented. Also, the rate constants have been calculated. Display Omitted Research highlights: → We calculated the rate constants of the H + FO reaction using QCT method. → Results on its isotope variant on two electronic states were also obtained. → The preference of reaction with H to D atom is presented in most cases. - Abstract: The investigations for reaction dynamics of the H + FO reaction have been carried out for initial state j = 0 and v = 0 of reagent FO on two high quality potential energy surfaces (PESs) of the 3A' and 3A' energy states developed by Go'mez-Carrasco et al. [Chem. Phys. Lett. 383 (2004) 25] using quasi-classical trajectory (QCT) calculations. The integral cross section and its dependence on collision energy for the title reaction are presented. The temperature-dependent rate constants are calculated over the temperature range 200-4000 K, fitted using the Arrhenius equation for the title reaction. Isotope effects, the different product channels OH(D) + F, H(D)F + O and their reaction mechanisms on different electronic states of 13A'', 13A' are investigated by calculating the ratios of corresponding rate constants and then discussing the varying trends and differences. Comparisons and analogies between our calculations and other theoretical results are made to get a deep understanding of the phenomena.
Institute of Scientific and Technical Information of China (English)
TAO Wen-liang; WEI Tao
2006-01-01
This research is carried out on the basis of Constant Strain Rate(CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.
Calculating the Thermal Rate Constant with Exponential Speed-Up on a Quantum Computer
Lidar, D A; Lidar, Daniel A.; Wang, Haobin
1999-01-01
It is shown how to formulate the ubiquitous quantum chemistry problem of calculating the thermal rate constant on a quantum computer. The resulting exact algorithm scales exponentially faster with the dimensionality of the system than all known ``classical'' algorithms for this problem.
A battery model for constant-power discharge including rate effects
International Nuclear Information System (INIS)
Highlights: • An empirical model of cell potential and current under constant-power discharge. • Model allows for improved initial engineering estimates and comparisons. • Capacity de-rating as a function of rate is incorporated using a Peukert effect. • A simple battery pack model is developed as an application of this battery model. • A battery pack is designed using the model for performance prediction. - Abstract: A battery discharge model is developed to predict terminal voltage and current for a constant-power discharge. The model accounts for the impact of discharge rate on the effective capacity. The model utilizes empirically-determined coefficients, easily obtainable from product data sheets. The model is intended to provide estimates for initial predictions and system sizing; total computational and engineering costs to develop the inputs and obtain results are low. Comparison of model predictions with experimental data in the development and testing of alkaline primary cell battery packs shows good agreement
DEFF Research Database (Denmark)
Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert;
2002-01-01
constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1...
A model for turbulent dissipation rate in a constant pressure boundary layer
Indian Academy of Sciences (India)
J DEY; P PHANI KUMAR
2016-04-01
Estimation of the turbulent dissipation rate in a boundary layer is a very involved process.Experimental determination of either the dissipation rate or the Taylor microscale, even in isotropic turbulence,which may occur in a portion of the turbulent boundary layer, is known to be a difficult task. For constant pressure boundary layers, a model for the turbulent dissipation rate is proposed here in terms of the local mean flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data in the logarithmic region suggests usefulness of this model in obtaining these quantitiesexperimentally
Effect of Beetroot Juice on Moderate-Intensity Exercise at a Constant Rating of Perceived Exertion
RIENKS, JORDYN N.; VANDERWOUDE, ANDREA A.; MAAS, ELIZABETH; BLEA, ZACHARY M.; Subudhi, Andrew W.
2015-01-01
Dietary nitrate supplementation has been shown to reduce oxygen consumption at a fixed work rate. We questioned whether a similar effect would be observed during variable work rate exercise at a specific rating of perceived exertion (RPE), as is commonly prescribed for aerobic training sessions. Using a double-blind, placebo controlled, crossover design, ten females (25 ± 3 years; VO2peak 37.1 ± 5.3 ml/kg/min) performed two 20-min cycle ergometer trials at a constant RPE of 13 (somewhat hard)...
Likelihood inference of non-constant diversification rates with incomplete taxon sampling.
Directory of Open Access Journals (Sweden)
Sebastian Höhna
Full Text Available Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family and thus to maximize diversity (diversified sampling. So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa. The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa. Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model. Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species. All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear
Sintering of Ni-Zn ferrite nanopowders by the constant heating rate (CHR method
Directory of Open Access Journals (Sweden)
Ana Cristina Figueiredo de Melo Costa
2004-12-01
Full Text Available The constant heating rate method employed in sintering studies offers several advantages over the isothermal method, particularly the fact that all the parameters that describe the sintering phenomena can be obtained from a single sample. The purpose of this work is to determine the parameters of sintering kinetics of nanosized Ni-Zn ferrite powders synthesized by combustion reaction. The nonisothermal sintering method was studied using a constant heating rate (CHR. The Ni-Zn ferrite powders, with average particle size varying from 18 nm to 29 nm, were uniaxially pressed and sintered in an horizontal dilatometer at a constant heating rate of 5.0 °C/min from 600 °C up to complete densification, which was reached at 1200 °C. The compacts were characterized by scanning electron microscopy (SEM. Experimental results revealed three different sintering stages, which were identified through the Bannister Theory. The shrinkage and the shrinkage rate analyzed showed a viscous contribution in the initial sintering stage, which was attributed to the mechanism of structural nanoparticle rearrangement.
Directory of Open Access Journals (Sweden)
Jan Moestedt
2015-01-01
Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.
Badra, Jihad
2014-01-01
Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.
Temperature dependence of rate constants of the reactions Br(Br*)+IBr → Br2+I
International Nuclear Information System (INIS)
Rate constant and their temperature dependence in the range from -25 to +50 deg C for reactions Br(2P3/2)+IBr → Br2+I(2P2/3) and Br*(2P1/2)+IBr → Br2+I(2P3/2) have been measured by the method of laser atomic-resonance spectroscopy using radiation of iodine and bromine lasers. It has been detected that at 300 K the values of k1 and k2 agree with the known ones, meanwhile with the temperature growth both constants increase, moreover, for k2 the temperature dependence is much stronger. It is shown that the value of deceleration of the rate of reaction between Br atom and IBr in case of its spin-orbital excitation is the function of the temperature, decreasing with the temperature increase. 14 refs.; 3 figs.; 2 tabs
The rate constant for the CO + H2O2 reaction
DEFF Research Database (Denmark)
Glarborg, Peter; Marshall, Paul
2009-01-01
The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10......(2) cm(3) mol(-1) s(-1), is consistent with spin-unrestricted density functional theory. Extrapolation to a wider temperature range through ab initio calculations yields the rate constant k(1) = 3.6 x 10(4)T(2.5) exp(-14425[K]/T) cm(3) mol(-1) s(-1). The reaction is probably of minor importance in...... combustion. The present analysis reconciles the batch reactor data of Baldwin et al. with recent high-level theoretical work on the CO + HO2 reaction....
Determination of surfaces of constant inelastic strain rate at elevated temperature
Battiste, R. L.; Ball, S. J.
1986-01-01
An experimental effort to perform special exploratory multiaxial deformation tests on tubular specimens of type 316 stainless steel at 650 C (1200 F) is described. One test specimen was subjected to a time-independent torsional shear strain test history, and surfaces of constant inelastic strain rate (SCISRs) in an axial/torsional stress space were measured at various predetermined points during the test. A second specimen was subjected to a 14-week time-dependent (creep-recovery-creep periods) torsional shear stress histogram SCISRs determinations made at 17 points during the test. The tests were conducted in a high temperature, computer controlled axial/torsional test facility using high-temperature multiaxial extensometer. The effort was successful, and for the first time the existence of surfaces of constant inelastic strain rate was experimentally demonstrated.
Jesudason, Christopher G
2011-01-01
The primary emphasis of this work on kinetics is to illustrate the a posteriori approach to applications, where focus on data leads to novel outcomes, rather than the a priori tendencies of applied analysis which imposes constructs on the nature of the observable. The secondary intention is the development of appropriate methods consonant with experimental definitions. By focusing on gradients, it is possible to determine both the average and instantaneous rate constants that can monitor changes in the rate constant with concentration changes as suggested by this theory. Here, methods are developed and discussed utilizing nonlinear analysis which does not require exact knowledge of initial concentrations. These methods are compared with those derived from standard methodology. These gradient methods are shown to be consistent with the ones from standard methods and could readily serve as alternatives for studies where there are limits or unknowns in the initial conditions, such as in the burgeoning fields of ...
Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.
Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim
2016-04-18
The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460
High rates of deletions in the constant region segment of the immunoglobulin μ gene
International Nuclear Information System (INIS)
Spontaneous deletions at the immunoglobulin heavy-chain locus are frequently found in myelomas, hybridomas, and pre-B-cell lines. The authors have measured the rates for large and small deletions within the constant-region gene segment for μ chain in a pre-B-cell line. The large deletions, which include the entire first and second exons, occurred at a rate of 1.7 x 10-5 per cell generation. The small deletions, which span a few base pairs, occurred at a rate of 1.4 x 10-7 per cell generation. The rate for the reversion of a termination codon in the second exon is even less than that for the small deletions and is 1000 times lower than the reversion rate that had been determined for the variable-region gene segment. Therefore, the variable-region gene segment is likely to be the preferred target for hypermutation
International Nuclear Information System (INIS)
In cellular environments, two protein molecules on their way to form a specific complex encounter many bystander macromolecules. The latter molecules, or crowders, affect both the energetics of the interaction between the test molecules and the dynamics of their relative motion. In earlier work (Zhou and Szabo 1991 J. Chem. Phys. 95 5948–52), it has been shown that, in modeling the association kinetics of the test molecules, the presence of crowders can be accounted for by their energetic and dynamic effects. The recent development of the transient-complex theory for protein association in dilute solutions makes it possible to easily incorporate the energetic and dynamic effects of crowders. The transient complex refers to a late on-pathway intermediate, in which the two protein molecules have near-native relative separation and orientation, but have yet to form the many short-range specific interactions of the native complex. The transient-complex theory predicts the association rate constant as ka = ka0exp( − ΔG*el/kBT), where ka0 is the ‘basal’ rate constant for reaching the transient complex by unbiased diffusion, and the Boltzmann factors captures the influence of long-range electrostatic interactions between the protein molecules. Crowders slow down the diffusion, therefore reducing the basal rate constant (to kac0), and induce an effective interaction energy ΔGc. We show that the latter interaction energy for atomistic proteins in the presence of spherical crowders is ‘long’-ranged, allowing the association rate constant under crowding to be computed as kac = kac0exp[ − (ΔG*el + ΔG*c)/kBT]. Applications demonstrate that this computational method allows for realistic modeling of protein association kinetics under crowding. (paper)
Mechanism and thermal rate constant for the gas-phase ozonolysis of acenaphthylene in the atmosphere
Energy Technology Data Exchange (ETDEWEB)
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu, E-mail: zqz@sdu.edu.cn; Hu, Jingtian; Wang, Wenxing
2015-05-01
Due to its prevalent presence, it is critical to clarify the atmospheric fate of acenaphthylene (Ary). In this paper, the reaction mechanism of the gas-phase ozonolysis of Ary was investigated by using quantum chemistry methods. Possible reaction pathways were discussed, and the theoretical results were compared with the available experimental data. The rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The main products include secondary ozonide, naphthalene-1,8-dicarbaldehyde, 1,8-naphthalic anhydride, oxaacenaphthylene-2-one, 1-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, and α-hydroxyhydroperoxide. The reaction of the unsaturated cyclo-pentafused ring with O3 is the dominant pathway. The overall rate constant of the O{sub 3} addition reaction is 5.31 × 10{sup −16} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K and 1 atm. The atmospheric lifetime of Ary determined by O{sub 3} is about 0.75 h. This work provides a comprehensive investigation of the ozonolysis of Ary and should help to understand its atmospheric fate. - Highlights: • We studied a comprehensive mechanism of O{sub 3}-initiated oxidation of Ary. • The overall rate constant of O{sub 3} addition reactions is 5.31 × 10{sup −16} cm{sup 3} molecule{sup −1} s{sup −1}. • The atmospheric lifetime of Ary determined by O{sub 3} is about 0.75 h. • The rate constants of the crucial elementary steps were evaluated.
Regnery, J.
2015-05-29
This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.
Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate
Guziejewski, Dariusz; Mirceski, Valentin; Jadresko, Dijana
2014-01-01
Abstract: The kinetics of surface confined electrode reactions of alizarin, vitamin B12, and vitamin K2 is measured with square-wave voltammetry over a wide pH interval, by applying the recent methodology for kinetic analysis at a constant scan rate [V. Mirceski, D. Guziejewski, K. Lisichkov, Electrochim. Acta 2013, 114, 667–673]. The reliability and the simplicity of the recent methodology is confirmed. The methodology requires analysis of the peak potential separation o...
Chronic, Constant-Rate, Gastric Drug Infusion in Nontethered Rhesus Macaques (Macaca mulatta)
Strait, Karen R; Orkin, Jack L; Anderson, Daniel C.; Muly, E. Chris
2010-01-01
As part of a study of antipsychotic drug treatment in monkeys, we developed a technique to provide chronic, constant-rate, gastric drug infusion in nontethered rhesus macaques. This method allowed us to mimic the osmotic release oral delivery system currently used in humans for continuous enteral drug delivery. Rhesus macaques (n = 5) underwent gastric catheter placement by laparotomy. After the catheters were secured to the stomach, the remaining catheter length was exited through the latera...
Jesudason, Christopher G.
2011-01-01
The primary emphasis of this work on kinetics is to illustrate the a posteriori approach to applications, where focus on data leads to novel outcomes, rather than the a priori tendencies of applied analysis which imposes constructs on the nature of the observable. The secondary intention is the development of appropriate methods consonant with experimental definitions. By focusing on gradients, it is possible to determine both the average and instantaneous rate constants that can monitor chan...
International Nuclear Information System (INIS)
Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reactions were (4.97 ± 0.28) x 107 M-1 s-1 and (2.13 ± 0.03) x 1010 M-1 s-1, respectively. It appears that the OH adds to the nitro-group, while the eaq- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance of the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes
QSPR prediction of the hydroxyl radical rate constant of water contaminants.
Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun
2016-07-01
In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. PMID:27124124
Föller, K.; Stelbrink, B.; Hauffe, T.; Albrecht, C.; Wilke, T.
2015-12-01
Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four types are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or there may be a pronounced lag phase between colonization and subsequent diversification. As understanding the tempo of diversification in ancient lake environments may help reveal the underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model taxon to study changes in diversification rates over time together with the respective drivers. Based on phylogenetic, molecular-clock, lineage-through-time plot, and diversification-rate analyses we found that this potentially monophyletic group is comparatively old and that it most likely evolved with a constant diversification rate. Preliminary data of the SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) deep-drilling program do indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far there is no evidence for the occurrence of catastrophic environmental events. We therefore propose that the constant diversification rate observed in endemic gastropods has been caused by two factors: (i) a potential lack of catastrophic environmental events in Lake Ohrid and/or (ii) a probably high ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the lake's high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst hydrology. The current study not only
Shock tube measurements of the rate constants for seven large alkanes+OH
Badra, Jihad
2015-01-01
Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R
Constant-quality constrained-rate allocation for FGS video coded bitstreams
Zhang, Xi Min; Vetro, Anthony; Shi, Yun-Qing; Sun, Huifang
2002-01-01
This paper proposes an optimal rate allocation scheme for Fine-Granular Scalability (FGS) coded bitstreams that can achieve constant quality reconstruction of frames under a dynamic rate budget constraint. In doing so, we also aim to minimize the overall distortion at the same time. To achieve this, we propose a novel R-D labeling scheme to characterize the R-D relationship of the source coding process. Specifically, sets of R-D points are extracted during the encoding process and linear interpolation is used to estimate the actual R-D curve of the enhancement layer signal. The extracted R-D information is then used by an enhancement layer transcoder to determine the bits that should be allocated per frame. A sliding window based rate allocation method is proposed to realize constant quality among frames. This scheme is first considered for a single FGS coded source, then extended to operate on multiple sources. With the proposed scheme, the rate allocation can be performed in a single pass, hence the complexity is quite low. Experimental results confirm the effectiveness of the proposed scheme under static and dynamic bandwidth conditions.
Measurement of biodegradation rate constants of a water extract from petroleum-contaminated soil
International Nuclear Information System (INIS)
The study of biodegradation rate constants of petroleum products in water extract from contaminated soil presents an important component in the evaluation of bioremediation process. In this study, soil samples were gathered from an industrial site which was used for maintenance and storage of heavy equipment used in the oil and gas exploration and production industry. The petroleum contaminants were extracted from the soil using distilled water. This water extract was used as the substrate to acclimate a microbial community and also for the biological kinetic studies. Kinetic studies were carried out in batch reactors, and the biodegradation rates were monitored by a computer-controlled respirometer. The BOD data were analyzed by using the Monod equation. Experimental results give the average value of the maximum rate constant as 0.038 mg BOD/(mg VSS hr) and the average value of the substrate concentration of half rate as 746 mg BOD/l. A GC/MS analysis on the sample of the test solutions before and after 5 days of biological oxidation indicates that the hydrocarbons initially present in the solution were degraded
Directory of Open Access Journals (Sweden)
K. Föller
2015-08-01
Full Text Available Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four modes are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or there may be a pronounced lag phase between colonization and subsequent diversification. As understanding the tempo of diversification in ancient lake environments may help unrevealing the underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model taxon to study changes in diversification rates over time together with the respective drivers. Based on phylogenetic, molecular-clock, lineage-through-time plot and diversification-rate analyses we found that this monophyletic group is comparatively old and that it most likely evolved with a constant diversification rate. Preliminary data of the SCOPSCO deep-drilling program do indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far there is no evidence for the occurrence of catastrophic environmental events. We therefore propose that the rate homogeneity observed in endemic gastropods has been caused by two factors: (i a potential lack of catastrophic environmental events in Lake Ohrid and/or (ii a high ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the lake's high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst hydrology. The current study not only contributes to one of the overall goals of the SCOPSCO deep-drilling program – inferring
Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate
DEFF Research Database (Denmark)
Khegai, O.; Schulte, R. F.; Janich, M. A.;
2014-01-01
Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbonate...... the build-up of downstream metabolites from the pyruvate substrate) and (ii) an effective decay rate (summarizing signal depletion due to repetitive excitation, T1-relaxation and backward conversion). The presented spectral and kinetic quantification were experimentally verified in vitro and in vivo...... shift frequencies are automatically estimated using a matching pursuit algorithm. Second, a time-discretized formulation of the two-site exchange kinetic model is used to quantify metabolite signal dynamics by two characteristic rate constants in the form of (i) an apparent build-up rate (quantifying...
Method for estimating S(N)1 rate constants: solvolytic reactivity of benzoates.
Matić, Mirela; Denegri, Bernard; Kronja, Olga
2012-10-19
Nucleofugalities of pentafluorobenzoate (PFB) and 2,4,6-trifluorobenzoate (TFB) leaving groups have been derived from the solvolysis rate constants of X,Y-substituted benzhydryl PFBs and TFBs measured in a series of aqueous solvents, by applying the LFER equation: log k = s(f)(E(f) + N(f)). The heterolysis rate constants of dianisylmethyl PFB and TFB, and those determined for 10 more dianisylmethyl benzoates in aqueous ethanol, constitute a set of reference benzoates whose experimental ΔG(‡) have been correlated with the ΔH(‡) (calculated by PCM quantum-chemical method) of the model epoxy ring formation. Because of the excellent correlation (r = 0.997), the method for calculating the nucleofugalities of substituted benzoate LGs have been established, ultimately providing a method for determination of the S(N)1 reactivity for any benzoate in a given solvent. Using the ΔG(‡) vs ΔH(‡) correlation, and taking s(f) based on similarity, the nucleofugality parameters for about 70 benzoates have been determined in 90%, 80%, and 70% aqueous ethanol. The calculated intrinsic barriers for substituted benzoate leaving groups show that substrates producing more stabilized LGs proceed over lower intrinsic barriers. Substituents on the phenyl ring affect the solvolysis rate of benzhydryl benzoates by both field and inductive effects. PMID:22973993
Rate constants for chemical reactions in high-temperature nonequilibrium air
Jaffe, R. L.
1986-01-01
In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.
Feature analysis of the scale factor variation on a constant rate biased ring laser gyro
Institute of Scientific and Technical Information of China (English)
Shiqiao Qin; Zongsheng Huang; Xingshu Wang
2007-01-01
Scale factor of a constant rate biased ring laser gyro (RLG) is studied both theoretically and experimentally.By analyzing experimental data, we find that there are three main terms contributing to the scale factor deviation. One of them is independent of time, the second varies linearly with time and the third varies exponentially with time. Theoretical analyses show that the first term is caused by experimental setup,the second and the third are caused by un-uniform thermal expension and cavity loss variation of the RLG.
DEFF Research Database (Denmark)
Pattison, D I; Davies, Michael Jonathan
2001-01-01
, absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1....... Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study...
Power consumption analysis of constant bit rate data transmission over 3G mobile wireless networks
DEFF Research Database (Denmark)
Wang, Le; Ukhanova, Ann; Belyaev, Evgeny
2011-01-01
This paper presents the analysis of the power consumption of data transmission with constant bit rate over 3G mobile wireless networks. Our work includes the description of the transition state machine in 3G networks, followed by the detailed energy consumption analysis and measurement results of...... the radio link power consumption. Based on these description and analysis, we propose power consumption model. The power model was evaluated on the smartphone Nokia N900, which follows a 3GPP Release 5 and 6 supporting HSDPA/HSPA data bearers. Further we propose method of parameters selection for 3GPP...
Power consumption analysis of constant bit rate video transmission over 3G networks
DEFF Research Database (Denmark)
Ukhanova, Ann; Belyaev, Evgeny; Wang, Le;
2012-01-01
This paper presents an analysis of the power consumption of video data transmission with constant bit rate over 3G mobile wireless networks. The work includes the description of the radio resource control transition state machine in 3G networks, followed by a detailed power consumption analysis and...... measurements of the radio link power consumption. Based on this description and analysis, we propose our power consumption model. The power model was evaluated on a smartphone Nokia N900, which follows 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. We also propose a method for parameter selection...
DEFF Research Database (Denmark)
Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker;
2005-01-01
3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard......)/mol-s, with C6H5 + H as the dominating product channel. The estimated uncertainty in this value, a factor of 5, mainly originates from the uncertainty in the measured propargyl radical profile, although other experimental and kinetic uncertainties also contribute. (c) 2004 The Combustion Institute....... Published by Elsevier Inc. All rights reserved....
International Nuclear Information System (INIS)
Highlights: • An alternative to the commonly used first-order approach is presented. • A relationship between kh and the 1% criterion of the VDI 4630 is deduced. • Equation is proposed to directly calculate kh without the need for data fitting. • Hydrolysis constant kh can then easily be read-off from a table. - Abstract: As anaerobic batch tests are easy to conduct, they are commonly used to assess the effects of different operational factors on the anaerobic digestion process. Hydrolysis of particulate material is often assumed to be the rate limiting step in anaerobic digestion. Its velocity is often estimated by data fitting from batch tests. In this study, a Monod-type alternative to the commonly used first-order approach is presented. The approach was adapted from balancing a continuously stirred-tank reactor and better accommodates the fact that even after a long incubation time, some of the methane potential of the substrate remains untapped in the digestate. In addition, an equation is proposed to directly calculate the hydrolysis constant from the time when the daily gas production is less than 1% of the total gas production. The hydrolysis constant can then easily be read-off from a table when the batch test duration is known
Development of a piezoelectric pump for a highly-precise constant flow rate
International Nuclear Information System (INIS)
Recently, piezoelectric-driven small and micro-sized pumps have been developed for applications in microfluidics, bio-chemistry diagnostics, fuel cell systems, drug delivery, and high-power electronics cooling, etc. This paper describes a piezoelectric pump using a multilayered piezoelectric actuator for highly-precise constant flow rate. The design, fabrication, and basic characteristics of the developed piezoelectric pump are summarized. The proposed pump consists of a pump housing, a multilayered piezoelectric actuator, a valve sheet and a single check valve for an inlet port. The overall dimensions of the fabricated piezoelectric pump are 25 mm x 25 mm x 53 mm. Pumping characteristics were experimentally investigated. The fabricated pump achieved a no-load flow rate of 110 ml/min and a maximum output power of 130 mW at an applied voltage of 150 Vpp and a driving frequency of 700 Hz.
Scaling of the rupture dynamics of polymer chains pulled at one end at a constant rate.
Fugmann, S; Sokolov, I M
2009-02-01
We consider the rupture dynamics of a homopolymer chain pulled at one end at a constant loading rate r . Compared to single bond breaking, the existence of the chain introduces two aspects into rupture dynamics: The non-Markovian aspect in the barrier crossing and the slow down of the force propagation to the breakable bond. The relative impact of both these processes is investigated, and the second one was found to be the most important at moderate loading rates. The most probable rupture force is found to decrease with the number of bonds as f{max} proportional, variant-[ln(const N/r)]2/3 and finally to approach a saturation value independent on N . All of our analytical findings are confirmed by extensive numerical simulations. PMID:19391768
Basic study on relationship between estimated rate constants and noise in FDG kinetic analysis
Energy Technology Data Exchange (ETDEWEB)
Kimura, Yuichi [Tokyo Medical and Dental Univ. (Japan). Inst. for Medical and Dental Engineering; Toyama, Hinako; Senda, Michio
1996-02-01
For accurate estimation of the rate constants in {sup 18}F-FDG dynamic study, the shape of the estimation function ({Phi}) is crucial. In this investigation, the relationship between the noise level in tissue time activity curve and the shape of the least squared estimation function which is the sum of squared error between a function of model parameters and a measured data is calculated in 3 parameter model of {sup 18}F-FDG. In the first simulation, by using actual plasma time activity curve, the true tissue curve was generated from known sets of rate constants ranging 0.05{<=}k{sub 1}{<=}0.15, 0.1{<=}k{sub 2}{<=}0.2 and 0.01{<=}k{sub 3}{<=}0.1 in 0.01 step. This procedure was repeated under various noise levels in the tissue time activity curve from 1 to 8% of the maximum value in the tissue activity. In the second simulation, plasma and tissue time activity curves from clinical {sup 18}F-FDG dynamic study were used to calculate the {Phi}. In the noise-free case, because the global minima is separated from neighboring local minimums, it was easy to find out the optimum point. However, with increasing noise level, the optimum point was buried in many neighboring local minima. Making it difficult to find out the optimum point. The optimum point was found within 20% of the convergence point by standard non-linear optimization method. The shape of {Phi} for the clinical data was similar to that with the noise level of 3 or 5% in the first simulation. Therefore direct search within the area extending 20% from the result of usual non-linear curve fitting procedure is recommended for accurate estimation of the constants. (author).
Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide
Energy Technology Data Exchange (ETDEWEB)
Erben-Russ, M.; Michel, C.; Bors, W.; Saran, M.
1987-04-23
The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA) was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.
Greene, Samuel M.; Shan, Xiao; Clary, David C.
2016-06-01
Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Wang, Wenxing
2015-05-01
Due to its prevalent presence, it is critical to clarify the atmospheric fate of acenaphthylene (Ary). In this paper, the reaction mechanism of the gas-phase ozonolysis of Ary was investigated by using quantum chemistry methods. Possible reaction pathways were discussed, and the theoretical results were compared with the available experimental data. The rate constants of the crucial elementary reactions were determined by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The main products include secondary ozonide, naphthalene-1,8-dicarbaldehyde, 1,8-naphthalic anhydride, oxaacenaphthylene-2-one, 1-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, and α-hydroxyhydroperoxide. The reaction of the unsaturated cyclo-pentafused ring with O₃ is the dominant pathway. The overall rate constant of the O₃ addition reaction is 5.31×10(-16)cm(3)molecule(-1)s(-1) at 298 K and 1 atm. The atmospheric lifetime of Ary determined by O₃ is about 0.75 h. This work provides a comprehensive investigation of the ozonolysis of Ary and should help to understand its atmospheric fate. PMID:25679814
Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells.
Pydzińska, Katarzyna; Karolczak, Jerzy; Kosta, Ivet; Tena-Zaera, Ramon; Todinova, Anna; Idígoras, Jesus; Anta, Juan A; Ziółek, Marcin
2016-07-01
A simple protocol to study the dynamics of charge transfer to selective contacts in perovskite solar cells, based on time-resolved laser spectroscopy studies, in which the effect of bimolecular electron-hole recombination has been eliminated, is proposed. Through the proposed procedure, the interfacial charge-transfer rate constants from methylammonium lead iodide perovskite to different contact materials can be determined. Hole transfer is faster for CuSCN (rate constant 0.20 ns(-1) ) than that for 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD; 0.06 ns(-1) ), and electron transfer is faster for mesoporous (0.11 ns(-1) ) than that for compact (0.02 ns(-1) ) TiO2 layers. Despite more rapid charge separation, the photovoltaic performance of CuSCN cells is worse than that of spiro-OMeTAD cells; this is explained by faster charge recombination in CuSCN cells, as revealed by impedance spectroscopy. The proposed direction of studies should be one of the key strategies to explore efficient hole-selective contacts as an alternative to spiro-OMeTAD. PMID:27253726
Greene, Samuel M; Shan, Xiao; Clary, David C
2016-06-28
Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods. PMID:27369506
Directory of Open Access Journals (Sweden)
Andreas Gansäuer
2013-08-01
Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.
Yu, Lishuang; Ye, Hongzhi; Zheng, Lili; Chen, Lidian; Chu, Kedan; Liu, Xianxiang; Xu, Xueqin; Chen, Guonan
2011-01-01
A new method for separation and determination of amygdalin and its epimer (neoamygdalin) in the epimerization of amygdalin by MEEKC is proposed. For the chiral separation of amygdalin and neoamygdalin, a running buffer composed of 80 mM sodium cholate, 5.0% v/v butan-1-ol, 0.5% v/v heptane and 94.5% v/v 30 mM Na(2) B(4) O(7) buffer (pH 9.00) is proposed. Under optimum conditions, the basic separation of amygdalin and neoamygdalin can be achieved within 7 min. The calibration curve for amygdalin showed excellent linearity in the concentration range of 20-1000 μg/mL with a detection limit of 5.0 μg/mL (S/N=3). The epimerization rate constant of amygdalin in basic microemulsion was first determined by monitoring the concentration changes of amygdalin, and the epimerization rate constant of amygdalin was found to be 2×10(-3) min(-1) at 25°C under the above optimum microemulsion conditions. PMID:21254118
Protein balance and evaluation of velocity constant k (drained rate on syneresis of milk
Directory of Open Access Journals (Sweden)
Migena Hoxha
2013-12-01
Full Text Available The syneresis process is influenced by various factors such as milk pH, curd incubation temperature, fat content, heat treatment of milk, acidity, salt, curd dimension and gel firmness at cutting time. The aim of this study was to investigate balance of protein, the syneresis kinetic of whey drainage and evaluation of velocity constant k (drained rate on curd incubation temperature (25 and 30oC and heat treatment (at 70oC for 5 minutes. Milk was sampled from cow, sheep and goat breeds. The milk samples were analyzed for physical and chemical properties (pH, acidity, protein, casein, fat and lactose, coagulation parameters (R coagulation time in minutes, curd firmness measured in volt after 20 minutes (A20 or 30 minutes (A30 and the rate of firming K20 in minutes as well as for whey volume drained after 30, 50, 70, 90, 110, 130 and 150 minutes. During this study it was observed that the curd incubation temperature is the major factor affecting syneresis. Velocity constant k value (drained rate is increased with higher temperature, but can be decrease significantly at low temperature. The syneresis rate differs between breed’s milk and is influenced by their coagulation properties. Regarding balance of protein, protein recovery and curd yield results to be higher at incubation temperature of 25oC, in spite of breed. Whey protein loss result to be higher for goat’s milk on two incubation temperature (41.05–58.35%, while the whey loss on sheep’s milk result to be lower (14.01–37.61%.
Directory of Open Access Journals (Sweden)
Fernando M. Botelho
2011-08-01
Full Text Available The aim of this work was to study the infrared drying process of carrot slices and to determine coefficients related to the heat and mass transfer of the process. Fresh carrots were used, dried until constant weight in a dryer with infrared heating source. Different models were utilized to fit the experimental data of constant and falling drying rate periods. It was verified that the coefficients of heat and mass transfer, during the constant drying rate, significantly increased with temperature on rise. The Diffusion Approximation, Two Terms, Midili and Verna models satisfactory represented the falling period of drying rate of carrot slices. The effective diffusion coefficient increased with temperature and this relationship can be represented by the Arrhenius equation, obtaining activation energy to the drying process of 29.092 kJ mol-1.Com este trabalho objetivou-se estudar o processo de secagem por infravermelho das fatias de cenoura e determinar alguns coeficientes referentes à transferência de calor e massa do processo. Utilizaram-se cenouras frescas, secadas até massa constante em um secador com fonte de aquecimento por infravermelho. Aos dados experimentais se ajustaram diferentes modelos para os períodos de taxa de secagem constante e decrescentes. Verificou-se que os coeficientes transferência de calor e massa, referentes ao período de secagem constante, aumentaram significativamente com o aumento da temperatura e que os modelos Aproximação da Difusão, Dois Termos, Midili e Verna representaram satisfatoriamente o período de secagem decrescente das fatias de cenoura. O coeficiente de difusão efetivo aumentou com a temperatura e esta relação pode ser representada pela Equação de Arrhenius, obtendo-se uma energia de ativação para o processo de secagem de 29,092 kJ mol-1.
The Influence of Photolysis Rate Constants in Ozone Production for the Paso del Norte Region
Becerra, Fernando; Fitzgerald, Rosa
2012-03-01
In this research work we are focusing on understanding the relationship between photolysis rates and the photochemical ozone changes observed in the Paso del Norte region. The city of El Paso, Texas together with Ciudad Juarez, Mexico, forms the largest contiguous bi-national metropolitan area. This region suffers year-round ozone pollution events, and a better understanding is needed to mitigate them. Previous studies have found that ambient ozone concentrations tend to be higher on weekends rather than on weekdays, this phenomenon being referred to, as the ``weekend effect.'' If the ozone standard is exceeded more frequently on weekends, then this phenomenon must be considered in the design of ozone control strategies. In this work we investigate some of the most representative weekend ozone episodes at El Paso, TX, during the years 2009, 2010 and 2011 using the ozone photolysis rates. In this research the TUV radiative-transfer model is used to calculate the local photolysis rates and a UV MFRSR instrument is used to obtain experimental parameters. Seasonal variations and the weekday-weekend effect is studied. The results of this research will help to understand the underlying behavior of the photolysis rate constants when different atmospheric conditions are present.
International Nuclear Information System (INIS)
The stress corrosion cracking behaviors in 22Cr5Ni2Mo duplex stainless steel have been investigated. The SCC has been examined by means of constant strain rate and constant load methods in terms of relevant electrochemical parameters in boiling 40% MgCl2 solution. The SCC susceptibility of the steel increased reversely proportional to strain rate and the critical strain rate was about 2.4 x 10-7/sec at open circuit. The steel had threshold stress of 29kg/mm2 and the critical cracking potential(ECC) of -410mV w.r.t. Ag/AgCl electrode immune to the SCC, and possessed superior SCC resistance compared to the austenite stainless steel. Cracks were initiated and propagated transgranularly without retarding effect by the austenite phase in high stress region
International Nuclear Information System (INIS)
Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant (Λ) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant (PSTΛ) was then compared to those determined by TLD (TLDΛ) and Monte Carlo (MCΛ) techniques. A likely consensus Λ value was estimated as the arithmetic mean of the average Λ values determined by each of three different techniques. Results: The average PSTΛ value for the three Advantage sources was found to be (0.676±0.026) cGyh-1 U-1. Intersource variation in PSTΛ was less than 0.01%. The PSTΛ was within 2% of the reported MCΛ values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported TLDΛ. A likely consensus Λ value was estimated to be (0.688±0.026) cGyh-1 U-1, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686±0.033) cGyh-1 U-1, the NASI (Chatsworth, CA) Model MED3633 (0.688±0.033) cGyh-1 U-1, and the Best Medical (Springfield, VA) Model 2335 (0.685±0.033) cGyh-1 U-1103Pd sources. Conclusions: An independent Λ determination has been performed for the Advantage Pd-103 source. The PSTΛ obtained in this work provides additional information needed for establishing a more
Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.
Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar
2015-08-14
The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect. PMID:26165545
The Constant Growth Rate of the Bound-Zone Peculiar Velocity Profile
Lee, Jounghun
2016-01-01
We present a numerical evidence that the amplitude and slope of the bound-zone peculiar velocity profile grow at the constant rates in a LambdaCDM universe. Analyzing the friends-of-friends halo catalogs from the Millennium-II simulations at various redshifts, we measure the average peculiar velocity profile of the objects located in the bound zone around massive group-size halos and compare it to an analytic formula characterized by the amplitude and slope parameters. It is shown that the amplitude and slope of the bound-zone peculiar velocity profile remain constant in the dark matter dominated epoch but begin to grow linearly with redshift after the onset of the Lambda-domination. Our explanation for this phenomenon is that as the balance between the gravitational attraction of the massive groups and the repulsive force of the Hubble expansion cracks up in the Lambda-dominated epoch, the gravitational influence on the bound-zone halos diminishes more rapidly with the increment of the radial distances. Spec...
Energy Technology Data Exchange (ETDEWEB)
Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu [Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin 53705 (United States)
2015-05-15
Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in
Negative ion formation by Rydberg electron transfer: Isotope-dependent rate constants
International Nuclear Information System (INIS)
The formation of negative ions during collisions of rubidium atoms in selected ns and nd Rydberg states with carbon disulfide molecules has been studied for a range of effective principal quantum numbers (10 ≤ n* ≤ 25). For a narrow range of n* near n* = 17, rate constants for CS2- formation are found to depend upon the isotopic composition of the molecule, producing a negative ion isotope ratio (mass 78 to mass 76, amu) up to 10.5 times larger than the natural abundance ratio of CS2 isotopes in the reagent. The isotope ratio is found to depend strongly upon the initial quantum state of the Rydberg atom and perhaps upon the collision energy and CS2 temperature. 32 refs., 5 figs., 1 tab
Table 5.1. Exchange current densities and rate constants in aqueous systems
Holze, R.
This document is part of Volume 9 `Electrochemistry', Subvolume A, of Landolt-Börnstein - Group IV `Physical Chemistry'. This document lists the exchange current densities and the electrode reaction rate constants of the following metallic electrodes in aqueous systems for various electrolyte reactions: silver (Ag), aluminium (Al), gold (Au), bismuth (Bi), carbon (C), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), mercury (Hg), indium (In), iridium (Ir), potassium (K), lithium (Li), molybdenum (Mo), natrium (Na), niobium (Nb), nickel (Ni), lead (Pb), palladium (Pd), platinum (Pt), rubidium (Rb), rhodium (Rh), ruthenium (Ru), antimony (Sb), tin (Sn), tantalum (Ta), titanium (Ti), thallium (Tl), vanadium (V), tungsten (W), zinc (Zn). For each electrolyte reaction the electrolyte solution, the educt, product and concentration are specified along with the temperature of determination of the given values.
Temperature dependence of the absolute rate constant for the reaction of ozone with dimethyl sulfide
Institute of Scientific and Technical Information of China (English)
WANG Hai-tao; ZHANG Yu-jie; MU Yu-jing
2007-01-01
Absolute rate constants for the reaction of ozone with dimethyl sulfide (DMS) were measured in a 200-L Teflon chamber over the temperature range of 283-353 K. Measurements were carried out using DMS in large excess over ozone of 10 to 1 or greater. Over the indicated temperature range,the data could be fit to the simple Arrhenius expression as KDMS = (9.96±3.61)×10-11exp(-(7309.7±1098.2)/T)cm3/(molecule·s). A compared investigation of the reaction between ozone and ethene had a kc2H4 value of(1.35±0.11)×10-18 cm3/(molecule·s) at room temperature.
International Nuclear Information System (INIS)
We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics
Malavasi, Lais M; Greene, Stephen A; Gay, John M; Grubb, Tammy L
2016-01-01
Lidocaine is commonly used in ruminants but has an anecdotal history of being toxic to goats. To evaluate lidocaine's effects on selected cardiopulmonary parameters. Isoflurane-anesthetized adult goats (n = 24) undergoing abdominal surgery received a loading dose of lidocaine (2.5 mg/kg) over 20 min followed by constant-rate infusion of lidocaine (100 μg/kg/min); control animals received saline instead of lidocaine. Data collected at predetermined time points during the 60-min surgery included heart rate, mean arterial blood pressure, pO2, and pCO2. According to Welch 2-sample t tests, cardiopulmonary variables did not differ between groups. For example, after administration of the loading dose, goats in the lidocaine group had a mean heart rate of 88 ± 28 bpm, mean arterial blood pressure of 70 ± 19 mm Hg, pCO2 of 65 ± 13 mm Hg, and pO2 of 212 ± 99 mm Hg; in the saline group, these values were 90 ± 16 bpm, 76 ± 12 mm Hg, 61 ± 9 mm Hg, and 209 ± 83 mm Hg, respectively. One goat in the saline group required an additional dose of butorphanol. Overall our findings indicate that, at the dose provided, intravenous lidocaine did not cause adverse cardiopulmonary effects in adult goats undergoing abdominal surgery. Adding lidocaine infusion during general anesthesia is an option for enhancing transoperative analgesia in goats. PMID:27423150
Determination of the rate constant of hydroperoxyl radical reaction with phenol
International Nuclear Information System (INIS)
The rate constant of HO2· reaction with phenol (kHO2·+phenol) was investigated. The primary radical set produced in water γ radiolysis (·OH, eaq− and H·) was transformed to HO2·/O2·− by using dissolved oxygen and formate anion (in the form of either formic acid or sodium formate). The concentration ratio of HO2·/O2·− was affected by the pH value of the solution: under acidic conditions (using HCOOH) almost all radicals were converted to HO2·, while under alkaline conditions (using HCOONa) to O2·−. The degradation rate of phenol was significantly higher using HCOOH. From the ratio of reaction rates under the two reaction conditions kHO2·+phenol was estimated to be (2.7±1.2)×103 L mol−1 s−1. - Highlights: • Using formic acid and dissolved O2 almost all radicals are converted to HO2·. • Using sodium formate and dissolved O2 almost all radicals are converted to O2·−. • The kHO2·+phenol was estimated to be (2.7±1.2)×103 L mol−1 s−1. • HO2· is suggested to contribute significantly to the degradation of phenol
Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer
International Nuclear Information System (INIS)
To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability
Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer
Energy Technology Data Exchange (ETDEWEB)
Yang, Ruijie [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Wang, Junjie, E-mail: junjiewang47@yahoo.com [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Xu, Feng [Department of Biomedical Engineering, Peking University Third Hospital, Beijing (China); Li, Hua [Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing (China); Zhang, Xile [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China)
2013-10-01
To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.
Schroeder, T J; Myre, S A; Melvin, D B; Van der Bel-Kahn, J; Stephens, G W; Collins, J A; Wolf, R K; Brown, L L; Pesce, A J; First, M R
1989-01-01
Oral cyclosporine therapy immediately after heart transplantation is erratic and difficult to predict. The purpose of this study was to evaluate the relative efficacy and safety of cyclosporine when administered by constant-rate infusion immediately after transplantation. Nineteen patients (17 men and two women) aged 50 years (range 25 to 61 years) who weighed 71 +/- 9 kg, participated in the study and received cyclosporine, 7 to 10 mg/hr (117 +/- 15 micrograms/kg/hr). The infusions were initially maintained for 26 +/- 5 hours (range 18 to 42 hours) without adjustments in dosage. Whole blood samples were obtained at hourly intervals for the first 8 to 12 hours and then daily throughout the 7-day study period and were analyzed by high-performance liquid chromatography. Constant-rate cyclosporine infusion resulted in therapeutic blood levels (350 to 450 ng/ml) at 6 hours. These levels remained relatively steady throughout the 7-day infusion, requiring only minimal dosage adjustments. Kidney function was not altered significantly after 7 days of intravenous cyclosporine therapy as evidenced by a mean serum creatinine level of 1.3 mg/dl before therapy and 1.4 mg/dl after therapy. There, however, was a transient rise in serum creatinine level in most patients on the second or third day after transplantation that resolved without a reduction in cyclosporine dosage. The mean endomyocardial biopsy score at 1 week after transplantation was 0.1, and only four of the patients required additional immunosuppressive therapy to treat rejection during the first 6 weeks after transplantation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2647932
Directory of Open Access Journals (Sweden)
Tay C.C.
2013-06-01
research should be conducted to test the possibility and to verify the definition of such performance ratio including Takt time on those processes of which its operating time is possibly to be reduced, especially those are not constant and fixed. This piece of research is temporarily done on the process where its operating time is constant from time to time and there is no ideal cycle time possible.Practical implications: The awareness of the overproduction should be emphasized and raised in the intention of pursuing higher OEE value. As the definition proposed such, the process with constant cycle time could even be defined in different performance ratio from time to time regarding to the customer demands and corresponding production rate. These two variables can be adjusted and balanced to increase the OEE value through optimization of average cycle time. Over this, optimization of average cycle time on equipment with constant operating time can be achieved through the optimization of loading number per each processing.Originality/value: The novelty of the paper is the inclusion of customer demand in obtaining OEE value of any particular equipment. Besides that, the equipment without ideal cycle time, which means those processes carried out in constant cycle time are possibly to be evaluated with performance ratio. As consequence of that, the machine utilization and capability used could be quantified and visualized using the performance ratio data of the OEE proposed.
Sattar, Simeen
2011-01-01
Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…
Effect of Beetroot Juice on Moderate-Intensity Exercise at a Constant Rating of Perceived Exertion
RIENKS, JORDYN N.; VANDERWOUDE, ANDREA A.; MAAS, ELIZABETH; BLEA, ZACHARY M.; SUBUDHI, ANDREW W.
2015-01-01
Dietary nitrate supplementation has been shown to reduce oxygen consumption at a fixed work rate. We questioned whether a similar effect would be observed during variable work rate exercise at a specific rating of perceived exertion (RPE), as is commonly prescribed for aerobic training sessions. Using a double-blind, placebo controlled, crossover design, ten females (25 ± 3 years; VO2peak 37.1 ± 5.3 ml/kg/min) performed two 20-min cycle ergometer trials at a constant RPE of 13 (somewhat hard) 2.5 hours following ingestion of 140 ml of concentrated beetroot juice (12.9 mmol nitrate), or nitrate-depleted placebo. Performance was measured in terms of total VO2 (L) consumed and total mechanical work (kJ) accomplished across each trial. Following each experimental trial, subjects rode at 75W for an additional 5 min to determine the effect of beetroot juice on fixed work rate exercise. Coefficients of variation in total VO2 (L) and work performed (kJ) during the RPE 13 clamp trials were 8.2 and 9.5%, respectively. Consumption of beetroot juice did not affect total VO2 or work performed during RPE 13 exercise, but lowered resting systolic blood pressure by ~5 mmHg (P=0.041) and oxygen consumption at 75W by ~4% (P=0.048), relative to placebo. Since the effect of beetroot juice on oxygen consumption is small and may be masked by daily variability during self-regulated exercise, it is unlikely to have a notable effect on daily training. PMID:27182417
An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate
Directory of Open Access Journals (Sweden)
Ali Varmaghani
2012-01-01
Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.
An exclusion process on a tree with constant aggregate hopping rate
International Nuclear Information System (INIS)
We introduce a model of a totally asymmetric simple exclusion process (TASEP) on a tree network where the aggregate hopping rate is constant from level to level. With this choice for hopping rates the model shows the same phase diagram as the one-dimensional case. The potential applications of our model are in the area of distribution networks, where a single large source supplies material to a large number of small sinks via a hierarchical network. We show that mean-field theory (MFT) for our model is identical to that of the one-dimensional TASEP and that this MFT is exact for the TASEP on a tree in the limit of large branching ratio, b (or equivalently large coordination number). We then present an exact solution for the two level tree (or star network) that allows the computation of any correlation function and confirm how mean-field results are recovered as b → ∞. As an example we compute the steady-state current as a function of branching ratio. We present simulation results that confirm these results and indicate that the convergence to MFT with large branching ratio is quite rapid. (paper)
Feasibility of constant dose rate VMAT in the treatment of nasopharyngeal cancer patients
International Nuclear Information System (INIS)
To investigate the feasibility of constant dose rate volumetric modulated arc therapy (CDR-VMAT) in the treatment of nasopharyngeal cancer (NPC) patients and to introduce rotational arc radiotherapy for linacs incapable of dose rate variation. Twelve NPC patients with various stages treated previously using variable dose rate (VDR) VMAT were enrolled in this study. CDR-VMAT, VDR-VMAT and mutlicriteria optimization (MCO) VMAT plans were generated for each patient on RayStation treatment planning system with identical objective functions and the dosimetric differences among these three planning schemes were evaluated and compared. Non dosimetric parameters of optimization time, delivery time and delivery accuracy were also evaluated. The planning target volume of clinical target volume (PTV-CTV) coverage of CDR-VMAT was a bit inferior to those of VDR- and MCO-VMAT. The V93 (p = 0.01) and V95 (percent volume covered by isodose line) (p = 0.04) for CDR-VMAT, VDR-VMAT and MCO-VMAT were 98.74% ± 0.31%, 99.76% ± 0.16%, 99.38% ± 0.43%, and 98.40% ± 0.48%, 99.53% ± 0.28%, 99.07% ± 0.52%, respectively. However, the CDR-VMAT showed a better dose homogeneity index (HI) (p = 0.01) in PTV-CTV. No significant difference in other target coverage parameters was observed. There was no significant difference in OAR sparing among these three planning schemes except for a higher maximum dose (Dmax) on the brainstem for CDR-VMAT. The brainstem Dmax of CDR-VMAT, VDR-VMAT and MCO-VMAT were 54.26 ± 3.21 Gy, 52.19 ± 1.65 Gy, and 52.79 ± 4.77 Gy, respectively. The average delivery time (p < 0.01) and the average percent γ passing rates (p = 0.02) of CDR-VMAT, VDR-VMAT and MCO-VMAT were 7.01 ± 0.43 min, 4.75 ± 0.07 min, 4.01 ± 0.28 min, and 95.75% ± 2.57%, 97.65% ± 1.45%, 97.36% ± 2.45%, respectively. CDR-VMAT offers an additional option of rotational arc radiotherapy for linacs incapable of dose rate variation with a lower initial cost. Its plan quality was acceptable but
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per
A QSAR for the prediction of rate constants for the reaction of VOCs with nitrate radicals.
Schindler, Michael
2016-07-01
A QSAR for the prediction of rate constants for the degradation of volatile organic compounds by nitrate radicals is developed using the Partial Least Squares technique. The QSAR is based on experimental data published in the literature for 260 compounds. They are modeled by a set of calculated descriptors from standard descriptor generation tools and from quantum chemistry. Out of several diversity-based partitionings of the data set a diverse set of 99 compounds turned out to be the optimum choice with regard to simplicity and performance. The final QSAR model is characterized by r(2) = 0.831 (fit) and q(2) = 0.823 (prediction), and by an r(2)pred = 0.862 for the n = 155 external validation set. The QSAR needs 3 latent variables. The most important descriptors for the QSAR are the ionization potential, obtained from density functional theory, and the energy of the highest occupied molecular orbital, which are modulated by fingerprints indicating the presence of specific molecular fragments like functional groups or ring systems. The applicability domain of the new QSAR was studied for some compound classes which are important for the crop protection industry, including (di)hydroxbenzenes and heterocyclic compounds. PMID:27037771
Ren, Hongjiang; Li, Xiaojun
2015-12-01
The mechanism of H abstraction reactions for Isoflurane with the OH radical was investigated using density functional theory and G3(MP2) duel theory methods. The geometrical structures of all the species were fully optimised at B3LYP/6-311++G** level of theory. Thermochemistry data were obtained by utilising the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for the reaction channels analysis. All the reaction channels were confirmed throughout the intrinsic reaction coordinate analysis. The results show that two channels were obtained, which correspond to P(1) and P(2) with the respective activation barriers of 63.03 and 54.82 kJ/mol. The rate constants for the two channels over a wide temperature range of 298.15-2000 K were predicted and the calculated data are in agreement with the experimental one. The results show that P(2) is the dominant reaction channel under 800 K and above 800 K, it can be found that P(1) will be more preferable reaction channel.
Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.
Orkin, Vladimir; Kurylo, Michael
2015-04-01
Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.
Jin, Xiaohui; Peldszus, Sigrid; Huck, Peter M
2015-11-01
Quantitative structure-property relationship (QSPR) models which predict hydroxyl radical rate constants (kOH) for a wide range of emerging micropollutants are a cost effective approach to assess the susceptibility of these contaminants to advanced oxidation processes (AOPs). A QSPR model for the prediction of kOH of emerging micropollutants from their physico-chemical properties was developed with special attention to model validation, applicability domain and mechanistic interpretation. In this study, 118 emerging micropollutants including those experimentally determined by the author and data collected from the literature, were randomly divided into the training set (n=89) and validation set (n=29). 951 DRAGON molecular descriptors were calculated for model development. The QSPR model was calibrated by applying forward multiple linear regression to the training set. As a result, 7 DRAGON descriptors were found to be important in predicting the kOH values which related to the electronegativity, polarizability, and double bonds, etc. of the compounds. With outliers identified and removed, the final model fits the training set very well and shows good robustness and internal predictivity. The model was then externally validated with the validation set showing good predictive power. The applicability domain of the model was also assessed using the Williams plot approach. Overall, the developed QSPR model provides a valuable tool for an initial assessment of the susceptibility of micropollutants to AOPs. PMID:26005810
Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction
International Nuclear Information System (INIS)
Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded
Fei, Xiao-Liang; Ren, Kan; Qian, Wei-xian; Wang, Peng-cheng
2015-10-01
CFAR (Constant False Alarm Rate) is a key technology in Infrared dim-small target detection system. Because the traditional constant false alarm rate detection algorithm gets the probability density distribution which is based on the pixel information of each area in the whole image and calculates the target segmentation threshold of each area by formula of Constant false alarm rate, the problems including the difficulty of probability distribution statistics and large amount of algorithm calculation and long delay time are existing. In order to solve the above problems effectively, a formula of Constant false alarm rate based on target coordinates distribution is presented. Firstly, this paper proposes a new formula of Constant false alarm rate by improving the traditional formula of Constant false alarm rate based on the single grayscale distribution which objective statistical distribution features are introduced. So the control of false alarm according to the target distribution information is implemented more accurately and the problem of high false alarm that is caused of the complex background in local area as the cloud reflection and the ground clutter interference is solved. At the same time, in order to reduce the amount of algorithm calculation and improve the real-time characteristics of algorithm, this paper divides the constant false-alarm statistical area through two-dimensional probability density distribution of target number adaptively which is different from the general identifying methods of constant false-alarm statistical area. Finally, the target segmentation threshold of next frame is calculated by iteration based on the function of target distribution probability density in image sequence which can achieve the purpose of controlling the false alarm until the false alarm is down to the upper limit. The experiment results show that the proposed method can significantly improve the operation time and meet the real-time requirements on
The dissolution rate constant of magnetite in water at different temperatures and pH conditions
International Nuclear Information System (INIS)
Under the nominal conditions of power system coolants, the corrosion of components made of carbon steel is limited by the magnetite films that develop on surfaces. In some situations, the magnetite film loses much of its protective ability and corrosion and loss of iron to the system are exacerbated. Common examples of such situations occur when the system is non-isothermal so that temperature gradients cause differences in magnetite solubility around the circuit; the resulting areas of under-saturation in iron give rise to dissolution of normally protective films. Condensing steam in two-phase systems may also promote oxide dissolution. When the turbulence in the system is high, oxide degradation is aggravated and flow-accelerated corrosion (FAC) results. The subsequent increased loading of systems with iron leads to fouling of flow passages and heat transfer surfaces and in reactor primary coolants to rising radiation fields, while FAC can have disastrous results in terms of pipe wall thinning and eventual rupture. Magnetite dissolution is clearly a key contributor to these processes. Thus, the conventional mechanistic description of FAC postulates magnetite dissolution in series with mass transfer of iron from the film to the bulk coolant. In the resulting equations, if the dissolution rate constant is considerably less than the mass transfer coefficient for a particular situation, dissolution will control and flow should have no effect. This is clearly untenable for FAC, so it is often assumed that mass transfer controls and the contribution from oxide dissolution is ignored - on occasion when data on dissolution kinetics are available and sometimes when those data show that dissolution should control. In most cases, however, dissolution rate constants for magnetite are not available. At UNB Nuclear we have a research program using a high-temperature loop to measure dissolution rates of magnetite in water under various conditions of flow, temperature and
Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus
2016-07-13
If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. PMID:27237834
100 kV/2A three-phase constant-current repetitive-rate charging equipment
Tan Yu Gang; Chen Li Dong; Guo Zhi Gang; Zou Xiao Bing; Luo Min; Cao Shao Yun; Chang An Bi
2002-01-01
A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1 mu F capacitor
100 kV/2A three-phase constant-current repetitive-rate charging equipment
International Nuclear Information System (INIS)
A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1μF capacitor
van der Vaart, Hester; Murgatroyd, Scott R.; Rossiter, Harry B.; Chen, Carey; Casaburi, Richard; Porszasz, Janos
2014-01-01
Constant work rate (CWR) exercise testing is highly responsive to therapeutic interventions and reveals physiological and functional benefits. No consensus exists, however, regarding optimal methods for selecting the pre-intervention work rate. We postulate that a CWR whose tolerated duration (t(lim
International Nuclear Information System (INIS)
The constant rate of momentum change (CRMC) is a new approach towards design of supersonic ejectors. CRMC methodology was first proposed by Eames [1] in a study which was primarily based on isentropic flow inside the diffusing region of a supersonic ejector. The prime benefit that accrues from employing a CRMC ejector is that it can effectively eliminate the irreversibility associated with occurrence of thermodynamic shock process. The present study examines the supersonic flow in a CRMC ejector from the perspective of an adiabatic flow with frictional effects inside the variable cross-section of supersonic ejector, which is apparently more realistic. An analytical model has been discussed for the prediction of flow parameter variation in a space marching formulation taking into account change in localized frictional coefficient due to corresponding changes at each step. The analytical results have been validated by conducting a computational study based on 2-D axi-symmetric viscous compressible flow formulation with turbulence in FLUENT. The results are in good agreement at on-design conditions. The predictions especially for the recovered pressure made through the analytical formulation incorporating friction are found to be in significantly better agreement than the isentropic approach. The experimental validation for the approach has also been presented with the results being in close agreement with analytically predicted values. -- Highlights: • CRMC ejector eliminates the irreversibility due to occurrence of thermodynamic shock. • Frictional effect based apparently present more realistic solution for ejector. • Static pressure variation between proposed model and numerical study is nearly 2.29%. • Static pressure variation between analytical and experimental values is nearly 4%. • Experimentally observed entrainment ratio shows 3% variation w.r.t. design point value
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278
Transfer and quenching rate constants for XeF(B) and XeF(C) state in low vibrational levels
Brashears, H. C., Jr.; Setser, D. W.
1982-05-01
The relative XeF(B-X) and XeF(C-A) emission intensities from the steady-state vacuum ultraviolet photolysis of XeF2 have been used to measure the B-C transfer and quenching rate constants of XeF molecules in low vibrational levels. The rare gases N2, CF4, SF6, F2, NF3, CF3H, CF3Cl, HF, CO2, and XeF2 were investigated as buffer gases at room temperature. The transfer rate constants are much larger than the quenching rate constants for He, Ne, Ar, Kr, N2, CF4, and SF6. For Xe, NF3, CHF3, and CClF3 transfer is only 2-4 times faster than quenching and for F2, HF, and CO2 quenching is faster than B-C state transfer. Quenching for XeF(D) was studied for rare gases and for N2. No convincing evidence was found for three-body quenching by the rare gases and their quenching of the XeF(B, C) and XeF(D) states are reported as two-body processes for pressures below ˜5 atm. The XeF(D) quenching rate constants are of the same magnitude as the B-C state transfer rate constants. The photochemical and collisional (metastable rare gas atom) dissociative excitation of XeF2 and KrF2 are summarized in the Appendix.
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
International Nuclear Information System (INIS)
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
Energy Technology Data Exchange (ETDEWEB)
Tang, Grace; Earl, Matthew A; Yu, Cedric X [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States)], E-mail: cyu002@umaryland.edu
2009-11-07
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to {<=}{+-} 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was
Lurquin, Paul F.
2012-01-01
Electroporation parameters can be optimized by coupling RC constant values with the amount of electrical power dissipation in the electroporation medium. Electroporation efficiency increases more steeply with power at low power values.
Directory of Open Access Journals (Sweden)
Abdel-Latif A. Seoud
2010-01-01
Full Text Available Problem statement: For chemical reactions, the determination of the rate constants is both very difficult and a time consuming process. The aim of this research was to develop computer programs for determining the rate constants for the general form of any complex reaction at a certain temperature. The development of such program can be very helpful in the control of industrial processes as well as in the study of the reaction mechanisms. Determination of the accurate values of the rate constants would help in establishing the optimum conditions of reactor design including pressure, temperature and other parameters of the chemical reaction. Approach: From the experimental concentration-time data, initial values of rate constants were calculated. Experimental data encountered several types of errors, including temperature variation, impurities in the reactants and human errors. Simulations of a second order consecutive irreversible chemical reaction of the saponification of diethyl ester were presented as an example of the complex reactions. The rate equations (system of simultaneous differential equations of the reaction were solved to get the analytical concentration versus time profiles. The simulation results were compared with experimental results at each measured point. All deviations between experimental and calculated values were squared and summed up to form a new function. This function was fed into a minimizer routine that gave the optimal rate constants. Two optimization techniques were developed using FORTRAN and MATLAB for accurately determining the rate constants of the reaction at certain temperature from the experimental data. Results: Results showed that the two proposed programs were very efficient, fast and accurate tools to determine the true rate constants of the reaction with less 1% error. The use of the MATLAB embedded subroutines for simultaneously solving the differential equations and minimization of the error function
International Nuclear Information System (INIS)
In this paper, we report the measurement of molecular formation rate constant of Rb2 directly in a magneto-optical trap (MOT). The ground state molecules are detected by two-photon ionization, resonantly enhanced through the intermediate a3Σu+→23Πg molecular band. We have measured the rate constant as a function of atomic density to conclude that the molecules Rb2 are formed in the MOT by a photoassociation process caused by the trapping laser beams. We also measured the rate constant as a function of the trapping laser intensity. The results here presented are of importance to future experiments involving trapping of cold molecules
Energy Technology Data Exchange (ETDEWEB)
Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Kulsartov, Timur; Gordienko, Yuri [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Mukanova, Aliya [Al’ Farabi Kazakh National University, Almaty (Kazakhstan); Ponkratov, Yuri; Barsukov, Nikolay; Tulubaev, Evgeniy [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Platacis, Erik [University of Latvia (IPUL), Riga (Latvia); Kenzhin, Ergazy [Shakarim Semey State University, Semey (Kazakhstan)
2013-10-15
Highlights: • The experiments with Li CPS sample were carried out at reactor IVG-1.M. • The gas absorption technique was used to study hydrogen isotope interaction with lithium CPS. • The temperature dependence of constants of interaction rate was obtained for various power rates of the reactor. • Determination of the activation energies, and pre-exponents of Arrhenius dependence. • The effect of increase of the rate constant under reaction irradiation. -- Abstract: Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.
Dissociation and rate constants of some human liver alcohol dehydrogenase isoenzymes.
Pietruszko, R; de Zalenski, C; Theorell, H
1976-01-01
ADH from human liver forms binary complexes with NADH, associated with a blue shift of the peak of the fluorescence emission of NADH. The wavelength shift is the same for all isoenzymes but the accompanying intensification of the fluorescence is different. The fluorescence is further increased by the formation of the very tight ternary enzyme-NADH-isobutyramide complexes. These properties are similar to those for the horse liver ADH, as well as the molecular weight of E=40 000 per active site of the dimer molecule (EE). "Stopped-flow" determined velocity constants (ER in equilibrium E+R) were found to be in good agreement with ethanol activity constants previously determined by activity measurement, confirming the validity of the ordered ternary complex mechanism also for the human ADH. No single isoenzyme activity as high as that reported by Mourad and Woronick or Drum has been found. PMID:184631
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
Badra, Jihad
2015-02-01
Reaction rate constants for nine site-specific hydrogen atom (H) abstraction by hydroxyl radicals (OH) have been determined using experimental measurements of the rate constants of Alkane+OH→Products reactions. Seven secondary (S 20, S 21, S 22, S 30, S 31, S 32, and S 33) and two tertiary (T 100 and T 101) site-specific rate constants, where the subscripts refer to the number of carbon atoms (C) connected to the next-nearest-neighbor (N-N-N) C atom, were obtained for a wide temperature range (250-1450K). This was done by measuring the reaction rate constants for H abstraction by OH from a series of carefully selected large branched alkanes. The rate constant of OH with four different alkanes, namely 2,2-dimethyl-pentane, 2,4-dimethyl-pentane, 2,2,4-trimethyl-pentane (iso-octane), and 2,2,4,4-tetramethyl-pentane were measured at high temperatures (822-1367K) using a shock tube and OH absorption diagnostic. Hydroxyl radicals were detected using the narrow-line-width ring-dye laser absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a wide temperature range (250-1450. K). Similarly, literature values of the low-temperature rate constants for the reaction of OH with seven normal and branched alkanes are combined with the recently measured high-temperature rate constants from our group [1]. Subsequent to that, site-specific rate constants for abstractions from various types of secondary and tertiary H atoms by OH radicals are derived and have the following modified Arrhenius expressions:. S20=8.49×10-17T1.52exp(73.4K/T)cm3molecule-1s-1(250-1450K) S21=1.07×10-15T1.07exp(208.3K/T)cm3molecule-1s-1(296-1440K) S22=2.88×10-13T0.41exp(-291.5K/T)cm3molecule-1s-1(272-1311K) S30=3.35×10-18T1.97exp(323.1K/T)cm3molecule-1s-1(250-1366K) S31=1.60×10-18T2.0exp(500.0K/T)cm3
The muscle force component in pedaling retains constant direction across pedaling rates.
Loras, Havardn; Ettema, Gertjan; Leirdal, Stig
2009-02-01
Changes in pedaling rate during cycling have been found to alter the pedal forces. Especially, the force effectiveness is reduced when pedaling rate is elevated. However, previous findings related to the muscular force component indicate strong preferences for certain force directions. Furthermore, inertial forces (due to limb inertia) generated at the pedal increase with elevated pedaling rate. It is not known how pedaling rate alters the inertia component and subsequently force effectiveness. With this in mind, we studied the effect of pedal rate on the direction of the muscle component, quantified with force effectiveness. Cycle kinetics were recorded for ten male competitive cyclists at five cadences (60-100 rpm) during unloaded cycling (to measure inertia) and at a submaximal load (~260 W). The force effectiveness decreased as a response to increased pedaling rate, but subtracting inertia eliminated this effect. This indicates consistent direction of the muscle component of the foot force. PMID:19299833
Li, Shu-Hao; Guo, Jun-Jiang; Li, Rui; Wang, Fan; Li, Xiang-Yuan
2016-05-26
Hydrogen abstraction from toluene by OH, H, O, CH3, and HO2 radicals are important reactions in oxidation process of toluene. Geometries and corresponding harmonic frequencies of the reactants, transition states as well as products involved in these reactions are determined at the B3LYP/6-31G(2df,p) level. To achieve highly accurate thermochemical data for these stationary points on the potential energy surfaces, the Gaussian-4(G4) composite method was employed. Torsional motions are treated either as free rotors or hindered rotors in calculating partion functions to determine thermodynamic properties. The obtained standard enthalpies of formation for reactants and some prodcuts are shown to be in excellent agreement with experimental data with the largest error of 0.5 kcal mol(-1). The conventional transition state theory (TST) with tunneling effects was adopted to determine rate constants of these hydrogen abstraction reactions based on results from quantum chemistry calculations. To faciliate its application in kinetic modeling, the obtained rate constants are given in Arrhenius expression: k(T) = AT(n) exp(-EaR/T). The obtained reaction rate constants also agree reasonably well with available expermiental data and previous theoretical values. Branching ratios of these reactions have been determined. The present reaction rates for these reactions have been used in a toluene combustion mechanism, and their effects on some combustion properties are demonstrated. PMID:27164019
DYNAMIC RESPONSE OF METALS TO SINGLE AND MULTISTAGE, CONSTANT STRAIN RATE COMPRESSION
Lenard, J
1985-01-01
Single and multistage, uniaxial compression tests are conducted on Al-Mg-Si and 0.02% Nb HSLA steel alloys. Rate sensitivity, activation energy and the effect of interruption on the flow strength of the metals are determined.
The saddle-node-transcritical bifurcation in a population model with constant rate harvesting
Saputra, K V I; Quispel, G R W
2010-01-01
We study the interaction of saddle-node and transcritical bifurcations in a Lotka-Volterra model with a constant term representing harvesting or migration. Because some of the equilibria of the model lie on an invariant coordinate axis, both the saddle-node and the transcritical bifurcations are of codimension one. Their interaction can be associated with either a single or a double zero eigenvalue. We show that in the former case, the local bifurcation diagram is given by a nonversal unfolding of the cusp bifurcation whereas in the latter case it is a nonversal unfolding of a degenerate Bogdanov-Takens bifurcation. We present a simple model for each of the two cases to illustrate the possible unfoldings. We analyse the consequences of the generic phase portraits for the Lotka-Volterra system.
PEP Support: Laboratory Scale Leaching and Permeate Stability Tests
Energy Technology Data Exchange (ETDEWEB)
Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Buchmiller, William C.
2010-05-21
This report documents results from a variety of activities requested by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The activities related to caustic leaching, oxidative leaching, permeate precipitation behavior of waste as well as chromium (Cr) leaching are: • Model Input Boehmite Leaching Tests • Pretreatment Engineering Platform (PEP) Support Leaching Tests • PEP Parallel Leaching Tests • Precipitation Study Results • Cr Caustic and Oxidative Leaching Tests. Leaching test activities using the PEP simulant provided input to a boehmite dissolution model and determined the effect of temperature on mass loss during caustic leaching, the reaction rate constant for the boehmite dissolution, and the effect of aeration in enhancing the chromium dissolution during caustic leaching. Other tests were performed in parallel with the PEP tests to support the development of scaling factors for caustic and oxidative leaching. Another study determined if precipitate formed in the wash solution after the caustic leach in the PEP. Finally, the leaching characteristics of different chromium compounds under different conditions were examined to determine the best one to use in further testing.
Comments to "Analysis of constant rate period of spray drying of slurry" by Liang et al., 2001
DEFF Research Database (Denmark)
Jørgensen, Kåre; Jensen, Anker Degn; Sloth, Jakob;
2006-01-01
particle concentration gradients inside -25 mu m droplets with a primary particle size of 0.2 mu m were observed. Unfortunately, the boundary condition at the droplet surface for the parabolic second-order PDE did not conserve the solid mass in the droplet, and the plots for the primary particle...... concentration profiles in the droplets were incorrect. In this letter we derive the correct boundary condition equation. Furthermore, we show that the primary particle concentration profiles inside the droplets are flat when the primary particles have a size of 0.2 mu m. We conclude that the model presented by......In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...
Comments to ”Analysis of constant rate period of spray drying of slurry” by Liang et al
DEFF Research Database (Denmark)
Jørgensen, Kåre; Jensen, Anker; Sloth, Jakob;
2006-01-01
particle concentration gradients inside -25 mu m droplets with a primary particle size of 0.2 mu m were observed. Unfortunately, the boundary condition at the droplet surface for the parabolic second-order PDE did not conserve the solid mass in the droplet, and the plots for the primary particle...... concentration profiles in the droplets were incorrect. In this letter we derive the correct boundary condition equation. Furthermore, we show that the primary particle concentration profiles inside the droplets are flat when the primary particles have a size of 0.2 mu m. We conclude that the model presented by......In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...
Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas at 295 K
DEFF Research Database (Denmark)
Sehested, J.; Nielsen, O.J.; Wallington, T.J.
The rate constants for the reaction of NO with a series of peroxy radicals: CH3O2, C2H5O2, (CH3)3CCH2O2, (CH3)3CC(CH3)2CH2O2, CH2FO2, CH2ClO2, CH2BrO2, CHF2O2, CF2ClO2, CHF2CF2O2, CF3CF2O2, CFCl2CH2O2 and CF2ClCH2O2 were measured at 298 K and a total pressure of 1 atm. The rate constants were obt...... obtained using the absolute technique of pulse radiolysis combined with time-resolved UV-VIS spectroscopy. The results are discussed in terms of reactivity trends and the atmospheric chemistry of peroxy radicals....
Energy Technology Data Exchange (ETDEWEB)
Debreczeny, M.P.; Sauer, K. [Lawrence Berkeley Lab., CA (United States); Zhou, J.; Bryant, D.A. [Pennsylvania State Univ., University Park, PA (United States)
1995-05-18
Rate constants for excitation energy transfer in light-harvesting protein, C-phycocyanin (PC), in the monomeric aggregation state, isolated from the cyanobacterium cynechococcus sp. PCC 7002, are calculated, using Foerster theory and compared with the results of time-resolved fluorescence measurements. The assignments of the energy-transfer rate constants in PC monomers are confirmed here by time-resolved fluorescence anisotropy measurements of the PC monomers isolated from both the wild-type and a mutant strain (cpcB/C155S) whose PC is missing the {beta}{sub 155} chromophore. It is concluded that the Foerster model of resonant energy transfer in the weak coupling limit successfully describes the dominant energy-transfer processes in this protein in the monomeric state. 31 refs., 3 figs., 4 tabs.
Energy Technology Data Exchange (ETDEWEB)
Debreczeny, M.F.; Sauer, K. [Lawrence Berkeley Lab., CA (United States); Zhou, J.; Bryant, D.A. [Pennsylvania State Univ., University Park, PA (United States)
1995-05-18
Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.
Directory of Open Access Journals (Sweden)
D. Vittal
1980-04-01
Full Text Available A method for the determination of burning rates of propellants whose from function is unknown is introduced. The method consists of burning in the closed vessel, a known charge weight of the test propellant alongwith a known pressure which remains nearly constant during the burning of the test propellant whose web size is the only quantity required for the evaluation of its rate of burning. The test propellants burns at near constant pressure conditions just as in the strand burner technique. This method can be applied to any unknown propellant of any shape whose web size can be measured and very large webs also can be used. In addition, the measurement of the records and the computation are very simple.
Niland, Courtney N; Jankowsky, Eckhard; Harris, Michael E
2016-10-01
Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High-throughput sequencing kinetics (HTS-Kin) uses high-throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigated the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we found that high-throughput sequencing and experimental reproducibility contribute to error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed. PMID:27296633
International Nuclear Information System (INIS)
Photoformation rates and scavenging rate constants of hydroxyl radicals (·OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between ·OH and the benzene added to the water sample was determined to quantify the ·OH formation rate. The rate constants of ·OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected ·OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of ·OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the ·OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 x 10-13 M s-1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of ·OH in commercial drinking water and the major source and sink of ·OH were identified as nitrate and bicarbonate ions, respectively
International Nuclear Information System (INIS)
Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D2O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps
International Nuclear Information System (INIS)
The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with eaq- at neutral pH were measured. The results suggest that C4 keto group is the active site for eaq- to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C2,3 double bond, the C3-OH group and glycosylation have little effects on the eaq- scavenging activities. (author)
Takara, L.S.; Cunha, T M; Barbosa, P.; M.K. Rodrigues; Oliveira, M. F.; Nery, L E; J.A. Neder
2012-01-01
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinf...
Takara, L.S.; Cunha, T M; Barbosa, P.; M.K. Rodrigues; Oliveira, M. F.; Nery, L E; J.A. Neder
2012-01-01
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyper...
Modi, Stephanie; Stanton, Anthony W. B.; MELLOR, RUSSELL H.; MICHAEL PETERS, A.; RODNEY LEVICK, J.; Mortimer, Peter S.
2005-01-01
Background: The view that breast cancer-related lymphedema (BCRL) is a simple, direct mechanical result of axillary lymphatic obstruction (‘stopcock’ mechanism) appears incomplete, because parts of the swollen limb (e.g., hand) can remain nonswollen. The lymph drainage rate constant (k) falls in the swollen forearm but not in the spared hand, indicating regional differences in lymphatic function. Here the generality of the hypothesis that regional epifascial lymphatic failure underlies region...
Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom
2011-01-01
In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R1ρ) and transverse (R2ρ) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier....
International Nuclear Information System (INIS)
Reaction gas flow rate dependent Ar2+ and Ar+ signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH3F with Ar+ and Ar2+. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS
Energy Technology Data Exchange (ETDEWEB)
Mohajery, K.; Lister, D.H., E-mail: w77w3@unb.ca [Univ. of New Brunswick, New Brunswick (Canada)
2012-07-01
In this study, the dissolution rate constants of magnetite were measured at various water chemistry conditions and different temperatures, corresponding to several feedwater conditions of water-cooled reactors. Sintered magnetite pellets were used as the dissolving material and these were mounted in a jet-impingement apparatus in a recirculating water loop. Exposures were carried out at temperatures of 25, 55 and 140{sup o}C and pHs of neutral and 9.2 in which many FAC (Flow Accelerated Corrosion) studies have been conducted. Average dissolution rate constants were estimated by measuring the volume of lost material with a profilometry technique. The excellent correspondent between the calculated value of dissolution rate constant of 2.20 mm/s for the synthesized magnetite and 2.05 mm/s for the single crystal of magnetite at neutral condition shows that the particle removal from the synthesized pellets is not an obstruction in this technique. Also, good agreement between the values calculated in duplicated runs at neutral condition at room temperature supports the accuracy of the method. (author)
The H2 + CO ↔ H2CO Reaction: Rate Constants and Relevance to Hot and Dense Astrophysical Media
Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.
2016-07-01
A theoretical thermochemical and kinetic investigation of the thermal H2 + CO ↔ H2CO reaction was performed for a temperature range from 200 to 4000 K. Geometries and vibrational frequencies of reactants, product, and transition state (TS) were obtained at CCSD/cc-pVxZ (x = T and Q) levels and scaling factors were employed to consider anharmonicity effects on vibrational frequencies, zero-point energies, and thermal corrections provided by these methodologies. Enthalpies Gibbs energies, and rate constants for this reaction were determined by including a complete basis set extrapolation correction for the electronic properties calculated at CCSD(T)/cc-pVyZ (y = Q and 5) levels. Our study indicates that enthalpy changes for this reaction are highly dependent on temperature. Moreover, forward and reverse (high-pressure limit) rate constants were obtained from variational TS theory with quantum tunneling corrections. Thus, modified Arrhenius’ equations were fitted by means of the best forward and reverse rate constant values, which provide very reliable estimates for these quantities within the temperature range between 700 and 4000 K. To our knowledge, this is the first kinetic study done for the forward H2 + CO \\to H2CO process in a wide temperature range. Finally, these results can be used to explain the formaldehyde abundance in hot and dense interstellar media, possibly providing data about the physical conditions associated with H2CO masers close to massive star-forming regions.
Directory of Open Access Journals (Sweden)
J. F. Doussin
2013-06-01
Full Text Available In the atmosphere, one important class of reactions occurs in the aqueous phase in which organic compounds are known to undertake oxidation towards a number of radicals, among which OH radicals are the most reactive oxidants. In 2008, Monod and Doussin have proposed a new structure activity relationship (SAR to calculate OH-oxidation rate constants in the aqueous phase. This estimation method is based on the group-additivity principle and was until now limited to alkanes, alcohols, acids, bases and related polyfunctional compounds. In this work, the initial SAR is extended to carbonyl compounds, including aldehydes, ketones, dicarbonyls, hydroxy-carbonyls, acidic carbonyls, their conjugated bases, and the hydrated form of all these compounds. To do so, only five descriptors have been added and none of the previously attributed descriptors were modified. This extension leads now to a SAR which is based on a database of 102 distinct compounds for which 252 experimental kinetic rate constants have been gathered and reviewed. The efficiency of this updated SAR is such that 58% of the rate constants could be calculated within ±20% of the experimental data and 76% within ±40%.
International Nuclear Information System (INIS)
In this study, the dissolution rate constants of magnetite were measured at various water chemistry conditions and different temperatures, corresponding to several feedwater conditions of water-cooled reactors. Sintered magnetite pellets were used as the dissolving material and these were mounted in a jet-impingement apparatus in a recirculating water loop. Exposures were carried out at temperatures of 25, 55 and 140oC and pHs of neutral and 9.2 in which many FAC (Flow Accelerated Corrosion) studies have been conducted. Average dissolution rate constants were estimated by measuring the volume of lost material with a profilometry technique. The excellent correspondent between the calculated value of dissolution rate constant of 2.20 mm/s for the synthesized magnetite and 2.05 mm/s for the single crystal of magnetite at neutral condition shows that the particle removal from the synthesized pellets is not an obstruction in this technique. Also, good agreement between the values calculated in duplicated runs at neutral condition at room temperature supports the accuracy of the method. (author)
Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.
Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi
2016-04-01
To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646
A methodology to study cyclic debond growth at constant mode-mixity and energy release rate
DEFF Research Database (Denmark)
Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.
2010-01-01
structures under well controlled cyclic energy release rate and mode-mixity. The proposed methodology uses the mixed mode bending (MMB) sandwich specimen and MMB test rig. Crack length measurements are based on an analytically available compliance expression. Accurate fatigue crack growth measurements and...
Energy Technology Data Exchange (ETDEWEB)
Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-07-16
A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline of historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.
Slopes, nearly constant loss, universality, and hopping rates for dispersive ionic conduction
International Nuclear Information System (INIS)
The title topics are investigated, discussed, and new insights provided by considering isothermal frequency response data for seven different materials having quite different conductivity spans and involving different electrode polarization effects and temperatures. These data sets were fitted using several different models, including the Kohlrausch-related K0 and K1 ones derived from stretched-exponential response in the temporal domain. The quasi-universal UN model, the K1 with its shape parameter, β1, fixed at 1/3, fitted most of the data very well, and its fits of such data were used to compare its predictions for hopping rate with those derived from fitting with the conventional 'universal dynamic response' Almond-West real-part-of-conductivity model. The K1-model theoretical hopping rate, involving the mean waiting time for a hop and derived from microscopic stochastic analysis, was roughly twice as large as the empirical Almond-West rate for most of the materials considered and should be used in place of it. Its use in a generalized Nernst-Einstein equation led to comparison of estimates of the concentration of fully dissociated mobile charge carriers in superionic PbSnF4 with earlier estimates of Ahmad using an Almond-West hopping rate value. Agreement with an independent structure-derived value was relatively poor. Fitting results obtained using the K0 model, for Na2SO4 data sets for two different polycrystalline material phases, and involving severely limited conductivity variation, were far superior to those obtained using the K1 model. The estimated values of the K0 shape parameter, β0, were close to 1/3 for both phases, strongly suggesting that the charge motion was one dimensional for each phase, even though they involved different crystalline structures
Directory of Open Access Journals (Sweden)
Cenxi Yuan
2016-01-01
Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of 238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.
International Nuclear Information System (INIS)
This report, focuses on the isothermal gas phase growth from a supersaturated, slightly compressible, binary liquid in a porous medium. This is driven by mass transfer, the extent of which is controlled by the application of either a constant-rate decline of the system pressure or the withdrawal of the liquid at a constant rate. This report deals with the first process. Pressure depletion due to constant-rate liquid withdrawal is analyzed in a companion report
Dissolution rate of South African calcium-based materials at constant pH.
Siagi, Z O; Mbarawa, M
2009-04-30
One of the most important steps in the wet limestone-gypsum flue gas desulphurization (WFGD) process is limestone dissolution, which provides the dissolved alkalinity necessary for SO(2) absorption. Accurately evaluating the limestone dissolution rate is important in the design and efficient operation of WFGD plants. In the present work, the dissolution of limestone from different sources in South Africa has been studied in a pH-Stat apparatus under conditions similar to those encountered in wet FGD processes. The influence of various parameters such as the reaction temperature (30shrinking core model with surface control, i.e. 1-(1-3)(1/3)=kt. PMID:18703281
Constant proportion debt obligations: a post-mortem analysis of rating models
Michael B. Gordy; Søren Willemann
2010-01-01
In its complexity and its vulnerability to market volatility, the CPDO might be viewed as the poster child for the excesses of financial engineering in the credit market. This paper examines the CPDO as a case study in model risk in the rating of complex structured products. We demonstrate that the models used by S&P and Moody's would have assigned very low probability to the spread levels realized in the investment grade corporate credit default swap market in late 2007, even though these sp...
Gioannis, G De; Muntoni, A; Cappai, G; Milia, S
2009-03-01
Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy. PMID:18954969
Measurement of rate constant for gas-phase reaction of DDVP with OH radical by using LP-FTIR
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Pollution caused by organic pesticides has received increasing attention. Until now, studies on organic pesticides pollution are mainly focused on soil and water. For reactions of organic pesticides in gas-phase, there are very little research results reported. Using a long path quartz reactor to simulate the atmospheric reaction of dimethyl_dichloro_vinyl_phosphate(DDVP) with OH radicals, the rate constant for the reaction at room temperature is measured at (3.06±0.46)×10-11 cm3 s-1 with Fourier transform infrared spectrograph.The result indicates that DDVP degrades relatively fast in the atmosphere and is unlikely to cause persistent pollution.
Energy Technology Data Exchange (ETDEWEB)
Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab
2000-03-01
The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e{sub aq}{sup -} at neutral pH were measured. The results suggest that C{sub 4} keto group is the active site for e{sub aq}{sup -} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C{sub 2,3} double bond, the C{sub 3}-OH group and glycosylation have little effects on the e{sub aq}{sup -} scavenging activities. (author)
Olid, Carolina; Diego, David; Garcia-Orellana, Jordi; Cortizas, Antonio Martínez; Klaminder, Jonatan
2016-01-15
The vertical distribution of (210)Pb is commonly used to date peat deposits accumulated over the last 100-150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of (210)Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived (210)Pb ((210)Pbxs) in peat taking into account both incorporation of (210)Pb into the accumulating peat matrix as well as an initial flushing of (210)Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous (210)Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used (210)Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. (241)Am and (137)Cs). Our results showed that the IP-CRS can provide chronologies from peat records where (210)Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. PMID:26476062
International Nuclear Information System (INIS)
We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 m (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, Geff, that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-doteff(t0) = −1.19 ± 0.95·10−20 h2 yr−2, where h is defined via H0 = 100 h km s−1 Mpc−1, while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-doteff(t0) = −3.6 ± 6.8·10−21 h2 yr−2, both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ8 using the WiggleZ data is σ8 = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ8 = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation
Apparent activation energy for densification of -Al2O3 powder at constant heating-rate sintering
Indian Academy of Sciences (India)
W Q Shao; S O Chen; D Li; H S Cao; Y C Zhang; S S Zhang
2008-11-01
The apparent activation energy for densification is a characteristic quantity that elucidates the fundamental diffusion mechanisms during the sintering process. Based on the Arrhenius theory, the activation energy for densification of -Al2O3 at constant heating-rates sintering has been estimated. Sintering of -Al2O3 powder has been executed by the way of a push rod type dilatometer. It is shown that the apparent activation energy does not have a single value but depends directly on the relative density. The apparent activation energy corresponding to lower relative density was higher than that corresponding to higher relative density. In addition, the value of the evaluated activation energy is different at the same density level when the Arrhenius plot involves different heating rates.
van der Vaart, Hester; Murgatroyd, Scott R; Rossiter, Harry B; Chen, Carey; Casaburi, Richard; Porszasz, Janos
2014-06-01
Constant work rate (CWR) exercise testing is highly responsive to therapeutic interventions and reveals physiological and functional benefits. No consensus exists, however, regarding optimal methods for selecting the pre-intervention work rate. We postulate that a CWR whose tolerated duration (tlim) is 6 minutes (WR6) may provide a useful interventional study baseline. WR6 can be extracted from the power-duration relationship, but requires 4 CWR tests. We sought to develop prediction algorithms for easier WR6 identification using backward stepwise linear regression, one in 69 COPD patients (FEV1 45 ± 15% pred) and another in 30 healthy subjects (HLTH), in whom cycle ergometer ramp incremental (RI) and CWR tests with tlim of ∼6 minutes had been performed. Demographics, pulmonary function, and RI responses were used as predictors. We validated these algorithms against power-duration measurements in 27 COPD and 30 HLTH (critical power 43 ± 18W and 231 ± 43W; curvature constant 5.1 ± 2.7 kJ and 18.5 ± 3.1 kJ, respectively). This analysis revealed that, on average, only corrected peak work rate ( = WRpeak-1 min × WRslope) in RI was required to predict WR6 (COPD SEE = 5.0W; HLTH SEE = 5.6W; R(2) > 0.96; p COPD R(2) = 0.937; HLTH 0.978; p COPD, unlike in HLTH, there was a wide range of tlim values at predicted WR6: COPD 8.3 ± 4.1 min (range 3.6 to 22.2 min), and HLTH 5.5 ± 0.7 min (range 3.9 to 7.0 min). This analysis indicates that corrected WRpeak in an incremental test can yield an acceptable basis for calculating endurance testing work rate in HLTH, but not in COPD patients. PMID:24182350
Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G
2015-07-16
The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene. PMID:25664674
Oyama, Shiho; Sakai, Heisuke; Murata, Hideyuki
2016-03-01
We observed the quenching of tris(2-phenylpyridinato)iridium(III) [Ir(ppy)3] excitons by polarons (holes or electrons) by time-resolved photoluminescence (PL) spectroscopy to clarify the dynamics of the triplet-polaron quenching of excitons. We employed a hole-only device (HOD) and an electron-only device (EOD), where the emitting layer consists of Ir(ppy)3 doped in 4,4‧-bis(carbazol-9-yl)biphenyl. Time-resolved PL spectroscopy of the EOD and HOD were measured under a constant current density. The results showed that the excitons of Ir(ppy)3 were significantly quenched only by holes. The PL decay curves of HOD were well fitted by the biexponential function, where lifetimes (τ1 and τ2) remain unchanged but the coefficient of each exponential term depends on hole current density. From the results, we proposed a model of exciton quenching where the exciton-hole quenching area expands with increasing hole current density. On the basis of the model, the triplet-polaron quenching rate constant Kq was determined.
International Nuclear Information System (INIS)
At Chalk River Laboratories, a computer code is being developed to model the radiolysis of the heavy water in the moderator and the heat-transport system in CANDU reactors. This report collects together, for heavy water, the current knowledge regarding the rate constants, pKa's, yields and diffusion coefficients based on measurements in this laboratory and reports in the literature. The latest data available for the radiolysis of light water are generally included for comparison, which forms a partial update to the report on the radiolysis of light water (Elliot, AECL- 11073, COG-94-167, 1994). There are some reactions where little or no data are available at ambient or elevated temperatures; in these cases, an indication is given of the approach that will be taken to measure or estimate the required parameters. (author)
International Nuclear Information System (INIS)
Previous work has shown the ability of a chemical kinetic model, applied using the FACSIMILE computer code, to predict the thermal decomposition of ethane in a silica flow reactor. To optimise the performance of the model, the present report reviews the literature data on the twenty reactions which it incorporates. Critical assessment has shown some discrepancies in the previously used rate constants, especially those leading to ethyne formation. Table 2 of the report gives the kinetic data which, as a result of the present evaluation, are recommended for future work. Use of these data gives significantly improved agreement between the model and the experimental results, particularly for ethyne formation, which had previously been underestimated. (author)
Constant extension rate tensile tests on 304L stainless steel in simulated hazardous low-level waste
International Nuclear Information System (INIS)
New waste tanks which handle hazardous low-level waste were proposed to be constructed in H-area. The candidate material for the tanks is AISI Type 304L (304L) stainless steel. Constant extension rate tensile (CERT) tests were conducted to assess the susceptibility of 304L to stress-corrosion cracking (SCC) in these waste solutions. The tests demonstrated that 304L was not susceptible to SCC in simulated wastes. Based on these tests and previous pitting corrosion studies 304L is a suitable material of construction for the new tanks. Comparison tests in the same simulants were performed on A537 carbon steel (A537), a material that is similar to material of construction for the current tanks. Stress-corrosion cracking was indicated in two of the simulants. If carbon steel tanks are utilized to handle the hazardous low-level wastes, inhibitors such as nitrite or hydroxide will be necessary to prevent corrosion
Kompany-Zareh, Mohsen; Khoshkam, Maryam
2008-05-01
To determine the rate constants for the second order consecutive reactions of the form U + V -(k1)--> W -(k2)--> P, a number of chemometrics and hard modeling-based methods are described. The absorption spectroscopic data from the reaction were utilized for performing the analysis. Concentrations and extinctions of components were comparable, and all of them were absorbing species. The number of steps in the reaction was less than the number of absorbing species, which resulted in a rank-deficient response matrix. This can cause difficulties for some of the methods described in the literature. The standard MATLAB functions were used for determining the solutions of the differential equations as well as for finding the optimal rate constants to describe the kinetic profiles. The available knowledge about the system determines the approaches described in this paper. The knowledge includes the spectra of reactants and products, the initial concentrations, and the exact kinetics. Some of this information is sometimes not available or is hard to estimate. Multiple linear regression for fitting the kinetic parameters to the obtained concentration profiles, rank augmentation using multiple batch runs, a mixed spectral approach which treats the reaction using a pseudo species concept, and principal components regression are the four groups of methods discussed in this study. In one of the simulated datasets the spectra are quite different, and in the other one the spectra of one reactant and of the product share a high degree of overlap. Instrumental noise, sampling error are the sources of error considered. Our aim was the investigation of the relative merits of each method. PMID:18469471
International Nuclear Information System (INIS)
Examples of calculation of the rate constants for outersphere electron-transfer reactions with participation of transition metal (V, Ru) complexes characterized by an essential reorganization of intramolecular degree of freedom corresponding to the metal-ligand bond oscillation. Experimental and theoretical values of the rate constants, of activation energies and transemission coefficients are given, as well as thermodynamic characteristics (δH0, δS0). Five out of considered six reactions permit to obtain a satisfactory agreement between theory and experiment both with respext to the rate constants and the activation energies
International Nuclear Information System (INIS)
The rate constants for the reaction of OH radical with 3-ferrocenyl-propanoate and 2-ferrocenyl-ethanoate have been determined using competition with thiocyanate ion. However, the corrections involved in these determinations were large, ranging up to 38.5%, and we have, therefore, considered it necessary to attempt the direct measurement of these rate constants by pulse radiolysis. In this communication we report these direct measurements of the rate constants for these reactions and compare the values so obtained with those determined by competition with thiocyanate ion. We also report similar measurements for the reaction of OH with ferrocenylformate. (author)
Energy Technology Data Exchange (ETDEWEB)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton
International Nuclear Information System (INIS)
A new concept called 1 cm dose equivalent rate constant with shielding effect is introduced for estimation of radiation dose. This new concept represents an expansion of the former standard 1 cm dose equivalent rate constant (defined as μSv·m2·MBq-1·h-1) adjusted attenuation for any given thickness of shielding material (iron, lead and concrete). The 1 cm dose equivalent rate constant with shielding effect for various shielding conditions can be rapidly computed with a free-software application, KINGS-B621, which may be easily downloaded from the internet. The computed rate constants can be put out as text files which are compatible with commercially available spread-sheet software, so it is easy for users to apply the data to creation of documents concerning radiation dose. (author)
Fohlmeister, Jürgen F
2015-06-01
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741
Directory of Open Access Journals (Sweden)
L.S. Takara
2012-12-01
Full Text Available This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW = rib cage (V RC + abdomen (V AB] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05. EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI V CW (P < 0.05. In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05. Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001. However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
Energy Technology Data Exchange (ETDEWEB)
Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Neder, J.A. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen' s University, Kingston, ON (Canada)
2012-10-15
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V{sub CW}) = rib cage (V{sub RC}) + abdomen (V{sub AB})] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V{sub CW} increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V{sub CW} regulation as EEV{sub CW} increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEV{sub AB} decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) V{sub CW} (P < 0.05). In contrast, decreases in EEV{sub CW} in the “non-hyperinflators” were due to the combination of stable EEV{sub RC} with marked reductions in EEV{sub AB}. These patients showed lower EIV{sub CW} and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV{sub CW} regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
International Nuclear Information System (INIS)
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment
Energy Technology Data Exchange (ETDEWEB)
Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)
2014-06-01
Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)
International Nuclear Information System (INIS)
Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)
International Nuclear Information System (INIS)
An expanded and revised compilation on the reactivity of singlet oxygen, the lowest electronically excited singlet rate of molecular oxygen, 1O*291Δg, in fluid solution is presented, which supersedes the publication of Wilkinson and Brummer, J. Phys. Chem. Ref. Data 10, 809 (1981). Rate constants for the chemical reaction and physical deactivation of singlet oxygen available through 1993 have been critically compiled. Solvent deactivation rates kd are tabulated for 145 solvents or solvent mixtures and second-order rate constants for interaction of singlet oxygen with 1915 compounds are reported
Laporta, V; Tennyson, J
2016-01-01
Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O$_2(\\textrm{X}\\ ^3\\Sigma_g^- $) are considered. Molecular rotations are parameterized by the rotational quantum number $J$ which is considered in the range 1 to 151. The lowest four resonant states of O$_2^-$, $^2\\Pi_g$, $^2\\Pi_u$, $^4\\Sigma_u^-$ and $^2\\Sigma_u^-$, are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4~eV are investigated: the first one is characterized by sharp structures in the cross section, and the second by a broad resonance peaked at 10~eV. The computed cross sections are compared with theoretical and experimental results available in literature for both the energy regions, and are made available for use by modelers. The effect of ...
Energy Technology Data Exchange (ETDEWEB)
Li, Yimin; Miller, Wlliam H.
2006-02-22
One of the outstanding issues in the quantum instanton (QI) theory (or any transition state-type theory) for thermal rate constants of chemical reactions is the choice of an appropriate ''dividing surface'' (DS) that separates reactants and products. (In the general version of the QI theory, there are actually two dividing surfaces involved.) This paper shows one simple and general way for choosing DS's for use in QI Theory, namely using the family of (hyper) planes normal to the minimum energy path (MEP) on the potential energy surface at various distances s along it. Here the reaction coordinate is not one of the dynamical coordinates of the system (which will in general be the Cartesian coordinates of the atoms), but rather simply a parameter which specifies the DS. It is also shown how this idea can be implemented for an N-atom system in 3d space in a way that preserves overall translational and rotational invariance. Numerical application to a simple system (the colliner H + H{sub 2} reaction) is presented to illustrate the procedure.
Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom
2011-08-01
In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R(1ρ)) and transverse (R(2ρ)) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R(1ρ) and R(2ρ) values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R(1ρ) and R(2ρ) values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R(1ρ) and R(2ρ) values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R(1ρ) and R(2ρ) values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R(1ρ) and R(2ρ) values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976
Caussanel, J P; Lévi, F; Brienza, S; Misset, J L; Itzhaki, M; Adam, R; Milano, G; Hecquet, B; Mathé, G
1990-06-20
The toxic effects and tissue uptake of both cisplatin and oxaliplatin--[(1R, 2R)-1,2-cyclohexanediamine-N,N'] [oxalato(2-)-O,O']platinum--were previously shown to vary similarly according to dosing time in mice. A 4-hour infusion of cisplatin resulted in fewer side effects and allowed administration of higher doses at 16 hours than at 4 hours in patients with cancer. We hypothesized that the continuous venous infusion of oxaliplatin for 5 days would be less toxic and would deliver a higher dose to the patient if the drug were infused at a circadian rhythm-modulated rate (peak at 16 hr; schedule B) rather than at a constant rate (schedule A). We tested this hypothesis in a randomized phase I trial. We escalated the dose of oxaliplatin to the patient by 25 mg/m2 per course. Courses were repeated every 3 weeks. An external, multichannel, programmable-in-time pump was used for the infusions. Toxicity was assessable for 94 courses in 23 patients (12 patients with breast carcinoma, nine with hepatocellular carcinoma, and two with cholangiocarcinoma). The incidence of neutropenia of World Health Organization grades II-IV and the incidence of distal paresthesias were 10 or more times higher (P less than .05) with schedule A than with schedule B. In addition, vomiting was 55% higher (P = .15) with schedule A than with schedule B. Furthermore, with schedule B, the mean dose of oxaliplatin (P less than .001) and its maximum tolerated dose (P = .06) could be increased by 15% over those doses with schedule A. An objective response was achieved in two of the 12 patients with previously treated breast cancer. We recommend that the dose of oxaliplatin for phase II trials be 175 mg/m2, delivered according to the circadian rhythm-modulated rate. PMID:2348469
International Nuclear Information System (INIS)
A geochronological study of the Guanabara Bay (Rio de Janeiro, Brazil) based on 210Pb dating technique to determine sedimentation rates and using the Constant Rate of Supply model (CRS) is presented in this work. Sediment samples were collected from river-head of Estrela, Sao Joao de Meriti, Guapimirim, Guaxindiba e Imbuacu. A low energy gamma spectrometry (210Pb, samples taken from the Estrela and Sao Joao de Meriti rivers. Radiochemical method was applied to determine the amount of 210Pb in samples collected near Guapimirim, Guaxindiba and Imbuacu Rivers. Atomic absorption spectrometry with air-acetylene flame technique was used to determine the amount of copper in all these samples. Experimental data shown the following variation in the concentration levels of copper and 210Pb: (i) copper; from 2.5 μg/g to 37.1 μg/g (Imbuacu River); from 3.6 to 228.1 μg/g (Estrela River); from 11.6 to 73.4 μg/g (Guapimirim River); from 12.0 to 52.9 μg/g (Guaxindiba River) and from 90.8 to to 237.7 μg/g (Sao Joao de Meriti River), (ti) 210Pb; from 2.0 Bq/kg to 27.0 Bq/kg (Imbuacu River); from 25.2 to 136.6 Bq/kg (Estrela River); from 40.0 to 90.0 Bq/kg (Sao Joao de Meriti River); from 7.0 to 70.0 Bq/kg (Guapimirim River); from 10.0 to 48.0 Bq/kg (Guaxindiba River). The sedimentation rates ranged from 0.30 cm/y in the Imbuacu River for a depth below of 35 cm to 1.3 cm/y for 0-30 cm depth in Guaxindiba River. It was concluded that the experimental data found in this work are consistent with those published in the scientific literature and that they can be predicted by the CRS model. (author)
International Nuclear Information System (INIS)
Removal rate constants for CH3O by CH4, Ar, N2, Xe, and CF4 were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N2, Xe, and CF4) at elevated temperatures showing that the dissociation and isomerization channels for CH3O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH4 exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp[(/minus/101070 +- 350)/T]cm3molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH4 and CF4, the reaction rate constant for CH3O /plus/ CH4 is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp[(/minus/7480 +- 1100)/T]cm3molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs
Energy Technology Data Exchange (ETDEWEB)
Wang, A.Z.F.
1977-11-01
The physical and chemical properties of metastable rare gas atoms are discussed and summarized. This is followed by a detailed examination of the various possible pathways whereby the metastable's excess electronic energy can be dissipated. The phenomenon of chemi-ionization is given special emphasis, and a theoretical treatment based on the use of complex (optical) potential is presented. This is followed by a discussion on the unique advantages offered by elastic differential cross section measurements in the apprehension of the fundamental forces governing the ionization process. The methodology generally adopted to extract information about the interaction potential for scattering data is also systematically outlined. Two widely studied chemi-ionization systems are then closely examined in the light of accurate differential cross section measurements obtained in this work. The first system is He(2/sup 3/S) + Ar for which one can obtain an interaction potential which is in good harmony with the experimental results of other investigators. The validity of using the first-order semiclassical approximation for the phase shifts calculation in the presence of significant opacities is also discussed. The second reaction studied is He*+D/sub 2/ for which measurements were made on both spin states of the metastable helium. A self-consistent interaction potential is obtained for the triplet system, and reasons are given for not being able to do likewise for the singlet system. The anomalous hump proposed by a number of laboratories is analyzed. Total elastic and ionization cross sections as well as rate constants are calculated for the triplet case. Good agreement with experimental data is found. Finally, the construction and operation of a high power repetitively pulsed nitrogen laser pumped dye laser system is described in great details. Details for the construction and operation of a flashlamp pumped dye laser are likewise given.
Kim, S.; Hosseini, S. A.
2015-12-01
Operations such as CO2 geologic storage, enhanced geothermal systems, and wastewater injection are rendering fluid injection as important as fluid extraction. In particular, injecting fluid colder than the original fluid causes thermal contraction and ensuing decreases in stresses, which yield an effect opposite of what volume expansion driven by the fluid injection imposes. In this study, we conduct numerical simulations to investigate pore-pressure buildup, thermal diffusion, and stress changes for two conditions: (1) constant rate, and (2) stepwise injection of cold fluid. The numerical-simulation method—which combines fluid flow, poroelasticity, thermal diffusion, and thermal stress—is based on the single-phase flow condition to simplify a computation model and thus facilitate a focus on mechanical responses. We also examine temporal evolutions of stress states and mobilized friction angles across base, injection-zone, and caprock layers for two different stress regimes: normal-faulting and reverse-faulting. Under the normal-faulting stress regime, the maximum mobilized friction angle occurs inside of the injection zone, which may act to improve the stability of the caprock. Special attention is required, however, because the location of the maximum mobilized friction angle is close to interfaces with the caprock and base layers. The hypothetical stepwise injection of cold fluid is shown to improve the stability of the injection zone to some extent. Under the reverse-faulting stress regime, the maximum mobilized friction angle occurs near the middle of the injection zone; stability in the injection zone is enhanced while that in the caprock/base is aggravated with time. The hypothetical stepwise injection not only helps improve the stability of the injection zone but also delays the moment when the maximum friction angle is mobilized. Finally, we suggest using dimensionless parameters to determine a prevalence of the thermal-stress effect in the injection
International Nuclear Information System (INIS)
Highlights: • The nuclear-coupled effect has a distinct influence on the system dynamic behaviors and oscillation modes. • The effect of channel-to-channel interaction makes the 5-channel system more unstable than a 3-channel one. • Complex nonlinear bifurcation phenomena may appear in the present system. • The unimaginable types of complex periodic oscillations may exist in such a system. - Abstract: The present study explores the effect of nuclear-coupled feedback on the oscillation modes and nonlinear phenomena of a five nuclear-coupled boiling channel system by a nonlinear dynamic model previously developed by the authors. The results show that the combined effects of stable neutron interaction and unstable void-reactivity feedback generate distinct influence on the system stability, particularly a significant unstable effect as in the 4Cα cases. The effect of channel-to-channel interaction will drive the 5-channel system more unstable than a 3-channel one. Such a nuclear-coupled effect may affect the oscillation modes and nonlinear phenomena among the channels substantially. For the present system with a constant total flow rate, the superimposition of the dominant single-phase frictional pressure drop and strengthening void-reactivity feedback may result in the departure from the out-of-phase mode oscillations at some system states. The results demonstrate the appearance of different bifurcation phenomena in the unstable region and complex nonlinear phenomena, i.e. various periodic oscillations and complex Rossler type of chaotic oscillations, in such a system subject to certain nuclear-coupled feedbacks. A special type of complex P-3 oscillations is identified in this system. It suggests that there may be immeasurable types of the periodic nonlinear oscillations in the limited unstable space of this five nuclear-coupled boiling channel system
Energy Technology Data Exchange (ETDEWEB)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approach in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy
Energy Technology Data Exchange (ETDEWEB)
Krajnovich, D.J.; Giardini-Guidoni, A.; Sudboe, A.S.; Schulz, P.A.; Shen, Y.R.; Lee, Y.T.
1978-09-01
Rate constants for the photodissociation of C/sub 2/F/sub 5/Cl as well as the yield of C/sub 2/F/sub 4//sup +/ were measured. The dynamics of the two dissociation channels was studied by measuring the angular and velocity distributions of the products. 2 references. (JFP)
Rate constant and thermochemistry for K + O_{2} + N_{2} = KO_{2} + N_{2}
DEFF Research Database (Denmark)
Sorvajärvi, Tapio; Viljanen, Jan; Toivonen, Juha; Marshall, Paul; Glarborg, Peter
2015-01-01
line width diode laser. Experiments were carried out with O2/N2 mixtures at a total pressure of 1 bar, over 748-1323 K. At the lower temperatures single exponential decays of [K] yielded the third-order rate constant for addition, kR1, whereas at higher temperatures equilibration was observed in the...
Directory of Open Access Journals (Sweden)
S. A. Carl
2008-10-01
Full Text Available The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P. Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D that allows for higher precision determinations for both rate constants, and, particularly, O(3P yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1C2H + O(1D → CH(A + CO and (kCL2C2H + O(3P → CH(A + CO, both followed by CH(A → CH(X + hν, as kCL1(T/kCL2(T=(32.8T−3050/(6.29T+398.
Directory of Open Access Journals (Sweden)
Deep Agnani
Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the
Chaiken, J; Goodisman, J; Kornilov, O
2015-07-01
The Smoluchowski equations provide a rigorous and efficient means for including multiple kinetic pathways when modeling coalescence growth systems. Originally written for a constant temperature and volume system, the equations must be modified if temperature and pressure vary during the coalescence time. In this paper, the equations are generalized, and adaptations appropriate to the situation presented by supersonic nozzle beam expansions are described. Given rate constants for all the cluster-cluster reactions, solution of the Smoluchowski equations would yield the abundances of clusters of all sizes at all times. This is unlikely, but we show that if these rate constants scale with the sizes of the reacting partners, the asymptotic (large size and large time) form of the cluster size distribution can be predicted. Experimentally determined distributions for He fit the predicted asymptotic distribution very well. Deviations between predicted and observed distributions allow identification of special cluster sizes that is, magic numbers. Furthermore, fitting an observed distribution to the theoretical form yields the base agglomeration cross section, from which all cluster-cluster rate constants may be obtained by scaling. Comparing the base cross section to measures of size and reactivity gives information about the coalescence process. PMID:26067086
Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.
2015-06-01
The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.
International Nuclear Information System (INIS)
Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs
Caustic leaching of high-level radioactive tank sludge: A critical literature review
International Nuclear Information System (INIS)
The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as 137Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead, the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching
Zhang, Ying-Ying; Xie, Ting-Xian; Li, Ze-Rui; Shi, Ying; Jin, Ming-Xing
2015-03-01
A quasi-classical trajectory (QCT) calculation is used to investigate the vector and scalar properties of the D + BrO → DBr + O reaction based on an ab initio potential energy surface (X1A’ state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region (TFusion Project for the International Thermonuclear Experimental Reactor (ITER) (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069).
Upper limits for the rate constants of the reactions of CF3O2 and CF3O radicals with ozone at 295 K
DEFF Research Database (Denmark)
Nielsen, O.J.; Sehested, J.
1993-01-01
Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (......). The upper limits were derived as k4 ozone depletion by hydrofluorocarbons.......Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (5...
Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0
Hu Meng; Jiang-Yuan Li; Yong-Huai Tang
2009-01-01
The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. T...
International Nuclear Information System (INIS)
Absolute rate constants for reactions of the dichlorine radical anion, Cl2sm-bullet-, with unsaturated alcohols and hydrocarbons have been measured at various temperatures. The alcohol reactions were measured in aqueous solutions and the hydrocarbon reactions in 1:1 aqueous acetonitirle (ACN) solutions. The rate constants for two alcohols and one hydrocarbon were also examined as a function of solvent composition. The room temperature rate constants varied between 106 and 109 M-1 s-1. The pre-exponential factors, A, were about (1-5) x 109 M-1 s-1 for the alcohols in aqueous solutions and about (0.1-1) x 109 M-1 s-1 for the hydrocarbons in aqueous ACN solutions. The activation energies, Ea, varied considerably, between 4 and 12 kJ mol-1 for the alcohols and between 2 and 8 kJ mol-1 for the hydrocarbons. The rate constants, k298, decrease with increasing ionization potential (IP) of the unsaturated compound, in agreement with an electrophilic addition mechanism. The activation energies for the unsaturated alcohols decrease when the IP decreases from 9.7 to 9.1 eV but appear to level off at lower IP. Most alkenes studied had IP a. Upon addition of ACN to the aqueous solution, the values of log k298 decreased linearly by more than 1 order of magnitude with increasing ACN mole fraction. This decrease appears to result from a combination of changes in the activation energy and in the pre-exponential factor. The reason for these changes may lie in changes in the solvation shell of the Cl2sm-bullet- radical, which will affect the A factor, in combination with changes in solvation of Cl-, which will affect the energetics of the reactions as well. 20 refs., 7 figs., 6 tabs
Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.
2007-04-01
Cross-sections and rate constants for thermal energy charge transfer into some Ag+, I+, and Cu+ excited states are theoretically and experimentally obtained for a gas discharge in the He-CuBr, Ne-CuBr, He-AgI, and Ne-AgI mixtures. Besides the pumping process the formation of the inversion population is determined by the radiative transitions, which populate or depopulate the upper and lower laser levels.
International Nuclear Information System (INIS)
The kinetics of the reactions of CO2 + OH --> HCO3- (i) and barbituric acid -> barbiturate anion + H+ (ii) have been remeasured using as a new approach the pulse radiolysis technique with optical and conductivity detection. The rate constants obtained in the present study, ksub(j) (210C) = 6900 +- 700 M-1 s-1 and ksub(II) (190C) = 22 +- 2 s-1 agree within experimental errors with values obtained earlier by other methods. (orig.)
Upper limit on the rate constant for isotope exchange between molecular oxygen and ozone at 298 K
Anderson, S. M.; Morton, J.; Mauersberger, K.
1987-01-01
The gas phase bimolecular isotope exchange reaction between molecular oxygen and ozone has been investigated directly for the first time. Its rate coefficient is found to be less than 2 x 10 to the -25th cu cm/sec at 298 K, over six orders of magnitude below recent estimates. Much faster exchange was observed over condensed ozone at 77 K, suggesting isotopic scrambling is catalyzed under these conditions. The low rate coefficient implies that homogeneous exchange between ground state oxygen and ozone molecules cannot play a significant role in heavy ozone chemistry.
International Nuclear Information System (INIS)
This report collects together all the rate constants, pK's and g-values required for the simulation of the radiolysis of light water, at near-neutral pH, over the temperature range of room temperature to 300 deg C. As very few of the rate constants have been measured over this whole temperature range, the experimental data have been extrapolated using both the Arrhenius equation and the Noyes model. In general, each rate constant is given as a function of temperature using the Arrhenius equation. In some cases a polynomial function was used. The g-values for the radiolysis with low linear energy transfer radiation are given as linear functions of temperature. A preliminary estimate of the g-values for fast-neutron radiolysis at room temperature and at 300 deg C has been made, based on the results of the published ion-beam data and on unpublished high-temperature ion-beam studies at Chalk River Laboratories. (author). 91 refs., 14 tabs., 24 figs
Energy Technology Data Exchange (ETDEWEB)
Cordes, M. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada) Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf-Virchow, Berlin (Germany)); Snow, B.J. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada)); Morrison, S. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Sossi, V. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Ruth, T.J. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Calne, D.B. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada))
1993-01-01
Positron emission tomography (PET) studies using 18F-L-dopa were carried out in 9 patients with supranuclear palsy and 13 controls. For quantification of PET data a rate constant K[sub i] was calculated for the radiotracer using a graphical method. Corrections for nonspecific activity were performed in both arterial plasma and brain tissue. The purpose of this study was to test the hypothesis that parametric images of the rate constant K mapping can be obtained on a pixel-by-pixel basis using an appropriate mathematical algorithm. K[sub i] values from these parametric images and the graphical approach were compared. Both correlated closely, with y=0.013+0.947[sup *]x, r=0.992 and y=-0.052+1.048[sup *]x, r=0.965 in patients and controls, respectively. Contrast measurements were also performed and showed a striking increase in contrast on parametric images. K mapping offers several advantages over the graphical approach, since parametric images are time-independent, i.e. one image represents the quantitative result of the study. In addition, parmetric images of the rate constant are normalized to arterial plasma radioactivity and corrected for tissue metabolites. Thus, parametric images of K[sub i] in different individuals can be compared directly without further processing in order to assess the nigrostriatal integrity. (orig.)
Sudhakaran, Sairam
2013-03-01
Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.
McDonagh, Louis; Wallenstein, Richard; Knappe, Ralf
2006-11-15
We report on a cavity-dumped Q-switched TEM(00) Nd:YVO(4) oscillator offering a unique combination of high power, constant short pulse duration, and high repetition rate, suppressing the gain dependence of pulse duration in classical Q-switched oscillators. Its performance is compared with that of the same oscillator operated in a classical Q-switched regime, demonstrating the much higher peak powers achievable with this technique, especially at high repetition rates. Up to 31 W of 532 nm green light was generated by frequency doubling in a noncritical phase matched LBO crystal, corresponding to 70% conversion efficiency. PMID:17072404
International Nuclear Information System (INIS)
Information on the short-term plutonium urinary excretion data obtained from the 1945-1947 human injection study is examined and it is shown that chemical recovery corrections need to be made. Revised and extended data sets, excluding those data considered to be atypical of persons in normal health, are presented. On the basis of the observed data for two injection study cases, with late estimates of excretion rates, a rate constant for the long-term elimination of plutonium from the body of 4.24 x 10-5 d-1 is derived. (author)
Absolute rate constants for the reaction of NO_{3} radicals with a series of dienes at 295 K
DEFF Research Database (Denmark)
Ellermann, T.; Nielsen, O.J.; Skov, H.
The rate constants for the reaction of NO3 radicals with a series of 7 dienes, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, trans-1,3-pentadiene, cis-1,3-pentadiene, trans,trans-2,4-hexadiene, and 1,3-cyclohexadiene, were measured at 295 K and at a total pressure of 1 atm. The rate consta...... were obtained using the absolute technique of pulse radiolysis combined with kinetic UV-VIS spectroscopy. The results are discussed in terms of reactivity trends and previous literature data....
Energy Technology Data Exchange (ETDEWEB)
Castagnoli, G.C.; Bonino, G.; Caprioglio, F.; Provenzale, A.; Serio, M.; Guang-Mei, Zhu (Instituto di Comsogeofisica del C.N.R., Torino (Italy) Istituto di Fisica Generale dell' Universiat' , Torino (Italy))
1990-10-01
The authors confirm and extend the results previously reported on the carbonate profile of the GT14 Ionian Sea core (Cini Castagnoli et al., 1990). A second, much longer core (2.81 meters) named GT89/3, has been taken about 1 km apart from the previous one. The carbonate profiles of the two cores are impressively similar; the details of the CaCO{sub 3} variations in the two sediments match on the scale of the sampling interval {Delta}d = 2.5 mm used for both cores. The authors show that {Delta}d corresponds to the mud deposited in a time interval {Delta}t = 3.87 {plus minus} 0.04 years, a value which is constant throughout the entire length of the cores. This precision is achieved by the tephroanalysis of the two cores. In this approach the markers of well-known historical eruptions in the Vesuvius area are recognized (Pompei, AD 79, Pollena, AD 472, Ischia, AD 1301), providing a precise dating which accurately tunes that obtained by the radiometric method. The correlation between the carbonate profile of the GT14 core and the tree-ring radiocarbon record has been discussed in (Cini Castagnoli et al., 1990); here the authors extend these results and show that the same correlation holds at least up to 1690 BC. Due to the longer length of the GT89/3 time series, they also show that three periodic components at about 206 yr, 228 yr and 179 yr may now be resolved in the carbonate series, in close agreement with the results already found for the radiocarbon record.
Wang, Wenji; Zhao, Yi
2012-12-01
Thermal rate constants for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The results reveal that the quantum effect is remarkable for the reaction at both low and high temperatures, and the obtained rates are in good agreement with experimental measurements at high temperatures. Compared to the harmonic approximation, the torsional anharmonic effect of the internal rotation has a little influence on the rates at low temperatures, however, it enhances the rate by about 20% at 1000 K. In addition, the free energy barriers for the isotopic reactions and the temperature dependence of kinetic isotope effects are also investigated. Generally speaking, for the title reaction, the replacement of OH with OD will reduce the free energy barrier, while substituting D for H (connected to C) will increase the free energy barrier.
Damos, Petros; Soulopoulou, Polyxeni
2015-01-01
Temperature implies contrasting biological causes of demographic aging in poikilotherms. In this work, we used the reliability theory to describe the consistency of mortality with age in moth populations and to show that differentiation in hazard rates is related to extrinsic environmental causes such as temperature. Moreover, experiments that manipulate extrinsic mortality were used to distinguish temperature-related death rates and the pertinence of the Weibull aging model. The Newton-Raphson optimization method was applied to calculate parameters for small samples of ages at death by estimating the maximum likelihoods surfaces using scored gradient vectors and the Hessian matrix. The study reveals for the first time that the Weibull function is able to describe contrasting biological causes of demographic aging for moth populations maintained at different temperature regimes. We demonstrate that at favourable conditions the insect death rate accelerates as age advances, in contrast to the extreme temperatures in which each individual drifts toward death in a linear fashion and has a constant chance of passing away. Moreover, slope of hazard rates shifts towards a constant initial rate which is a pattern demonstrated by systems which are not wearing out (e.g. non-aging) since the failure, or death, is a random event independent of time. This finding may appear surprising, because, traditionally, it was mostly thought as rule that in aging population force of mortality increases exponentially until all individuals have died. Moreover, in relation to other studies, we have not observed any typical decelerating aging patterns at late life (mortality leveling-off), but rather, accelerated hazard rates at optimum temperatures and a stabilized increase at the extremes.In most cases, the increase in aging-related mortality was simulated reasonably well according to the Weibull survivorship model that is applied. Moreover, semi log- probability hazard rate model
Directory of Open Access Journals (Sweden)
Petros Damos
Full Text Available Temperature implies contrasting biological causes of demographic aging in poikilotherms. In this work, we used the reliability theory to describe the consistency of mortality with age in moth populations and to show that differentiation in hazard rates is related to extrinsic environmental causes such as temperature. Moreover, experiments that manipulate extrinsic mortality were used to distinguish temperature-related death rates and the pertinence of the Weibull aging model. The Newton-Raphson optimization method was applied to calculate parameters for small samples of ages at death by estimating the maximum likelihoods surfaces using scored gradient vectors and the Hessian matrix. The study reveals for the first time that the Weibull function is able to describe contrasting biological causes of demographic aging for moth populations maintained at different temperature regimes. We demonstrate that at favourable conditions the insect death rate accelerates as age advances, in contrast to the extreme temperatures in which each individual drifts toward death in a linear fashion and has a constant chance of passing away. Moreover, slope of hazard rates shifts towards a constant initial rate which is a pattern demonstrated by systems which are not wearing out (e.g. non-aging since the failure, or death, is a random event independent of time. This finding may appear surprising, because, traditionally, it was mostly thought as rule that in aging population force of mortality increases exponentially until all individuals have died. Moreover, in relation to other studies, we have not observed any typical decelerating aging patterns at late life (mortality leveling-off, but rather, accelerated hazard rates at optimum temperatures and a stabilized increase at the extremes.In most cases, the increase in aging-related mortality was simulated reasonably well according to the Weibull survivorship model that is applied. Moreover, semi log- probability hazard
International Nuclear Information System (INIS)
The recombination reaction H + O2 + M → HO2 + M is studied by laser flash photolysis in the bath gases M = Ar, N2, and CH4 at pressures between 1 and 200 bar. By extrapolation of the falloff curves, a limiting high-pressure rate coefficient k/sub infinity/ = 7.5 x 10-11 cm3 molecule-1 s-1 is derived at 298 K. An analysis of this result in terms of the statistical adiabatic channel model leads to a looseness parameter of a similarly ordered 0.94 A-1. The corresponding specific rate constants k(E,J) for dissociation of HO2 are constructed and compared with trajectory calculations. The results are also compared with data on the reaction HO + O → H + O2 for which a nearly temperature-independent rate constant of 2.8 x 10-11 cm3 molecule-1 s-1 is predicted. An analysis of the limiting low-pressure rate coefficients with respect to energy-transfer properties is made. The results are compared with trajectory calculations of energy transfer of excited HO2. 77 references, 8 figures, 5 tables
Sun, Xiang; Geva, Eitan
2016-01-01
The Garg-Onuchic-Ambegaokar model [J. Chem. Phys. 83, 4491 (1985)] has been used extensively for benchmarking methods aimed at calculating charge transfer rates. Within this model, the donor and acceptor diabats are described as shifted parabolas along a single primary mode, which is bilinearly coupled to a harmonic bath consisting of secondary modes, characterized by an Ohmic spectral density with exponential cutoff. Rate calculations for this model are often performed in the normal mode representation, with the corresponding effective spectral density given by an asymptotic expression derived at the limit where the Ohmic bath cutoff frequency is much larger than the primary mode frequency. We compare Fermi's golden rule rate constants obtained with the asymptotic and exact effective spectral densities. We find significant deviations between rate constants obtained from the asymptotic spectral density and those obtained from the exact one in the deep inverted region. Within the range of primary mode frequencies commonly employed, we find that the discrepancies increase with decreasing temperature and with decreasing primary mode frequency.
International Nuclear Information System (INIS)
An experiment was performed to examine the adequacy of the Randall-Wilkins theory for describing long-term thermal fading in CaF2:Mn during continuous low-level irradiation and to determine any temperature related restrictions on the use of this dosimeter for environmental monitoring. The effect was studied for glass-encapsulated E.G. and G. Model TL-015 TLDs at 52, 66, 93, 107 and 1210C. Dosimeters were annealed to remove all residual signal, immediately placed in a temperature controlled chamber in which the irradiation rate was less than 10 μR/h gamma-equivalent, removed after exposure periods ranging from two days to one month, cooled naturally to room temperature, and immediately read out. Twenty individually-calibrated dosimeters were rotated to produce at least fifty separate measurements for each temperature. The exposure rate inside the chamber was determined independently with an estimated accuracy of +-2%. The results differ significantly from the predications of the Randall-Wilkins model. An enhanced response was obtained between room temperature and 660C where the model indicates essentially no fading. An effect similar to this has been observed for relatively short-term experiments (approximately 1 hour) in which LiF was irradiated with high doses at the temperature in question. Beyond 930C the results indicate fading in excess of that predicted by the Randall-Wilkins model. These results, along with those of other investigators in which fading observed for conditions of simultaneous irradiation and storage has been found to exceed that observed for room temperature irradiation followed by storage at the temperature in question, further indicate that the Randall-Wilkins model cannot adequately represent these phenomena. The results demonstrate that for typical environmental conditions of practical interest, i.e., low exposure rates and measurement periods of several days to several weeks, the effects produced by elevated temperatures are not a
Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Seydi, Abdoulaie
2012-08-01
Syringol (2,6-dimethoxyphenol) is a potential marker compound for wood smoke emissions in the atmosphere. To investigate the atmospheric reactivity of this compound, the rate constant for its reaction with hydroxyl radicals (OH) has been determined in a simulation chamber (8 m3) at 294 ± 2 K, atmospheric pressure and low relative humidity (2-4%) using the relative rate method. The syringol and reference compound concentrations were followed by GC/FID (Gas chromatography/Flame Ionization Detection). The determined rate constant (in units of cm3 molecule-1 s-1) is ksyringol = (9.66 ± 1.11) × 10-11. The calculated atmospheric lifetime for syringol is 1.8 h, indicating that it is too reactive to be used as a tracer for wood smoke emissions. Secondary Organic Aerosol (SOA) formation from the OH reaction with syringol was also investigated. The initial mixing ratios for syringol were in the range 495-3557 μg m-3. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (M0) to the total reacted syringol concentration assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial syringol concentration increases, and leads to aerosol yields ranging from 0.10 to 0.36. Y is a strong function of M0 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. To our knowledge, this work represents the first investigation of the rate constant and SOA formation for the reaction of syringol with OH radicals. The atmospheric implications of this reaction are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Partridge, G.P. Jr.
1987-01-01
In the spray dryer, flue gas from a coal-fired boiler is contacted with an atomized lime slurry; during this contact SO/sub 2/ absorbs and reacts with dissolved Ca(OH)/sub 2/. The mathematical model developed in this activity superimposes SO/sub 2/ absorption and reaction phenomena on existing mathematical descriptions of spray dryer operation. The SO/sub 2/ removal appears to occur primarily in the constant rate period where a continuous liquid phase exists in the atomized slurry droplet. The constant rate period proceeds until evaporation has reduced the liquid phase volume to the point where the Ca(OH)/sub 2/ sorbent particles touch and the diffusion paths for reactants are restricted. The SO/sub 2/ absorption flux involves liquid phase as well as gas phase resistances. The liquid phase resistance includes mass transfer and chemical reaction phenomena associated with the absorption and reaction of SO/sub 2/ and Ca(OH)/sub 2/ and the dissolution of Ca(OH)/sub 2/. Instantaneous reaction occurs between SO/sub 2/ and Ca(OH)/sub 2/ in the liquid phase. Solid dissolution in the liquid film is unimportant and solid dissolution and reaction occur in series. A comprehensive model was developed for the constant rate period. The model is based on film theory and treats the atomized slurry droplet as a sphere of discrete sorbent particles with the fluid phase uniformly distributed around the individual sorbent particles. This concept allows prediction of the mass transfer coefficients and the enhancement due to increasing solids concentration as evaporation proceeds. Efficiency predicts using the model were compared with pilot plant data taken at different inlet flue gas temperatures, stoichiometric ratios and slurry flow rates.
Fernández-Gómez, Cristal; Drott, Andreas; Björn, Erik; Díez, Sergi; Bayona, Josep M; Tesfalidet, Solomon; Lindfors, Anders; Skyllberg, Ulf
2013-06-18
We report experimentally determined first-order rate constants of MeHg photolysis in three waters along a Boreal lake-wetland gradient covering a range of pH (3.8-6.6), concentrations of total organic carbon (TOC 17.5-81 mg L(-1)), total Fe (0.8-2.1 mg L(-1)), specific UV254 nm absorption (3.3-4.2 L mg(-1) m(-1)) and TOC/TON ratios (24-67 g g(-1)). Rate constants determined as a function of incident sunlight (measured as cumulative photon flux of photosynthetically active radiation, PAR) decreased in the order dystrophic lake > dystrophic lake/wetland > riparian wetland. After correction for light attenuation by dissolved natural organic matter (DOM), wavelength-specific (PAR: 400-700 nm, UVA: 320-400 nm and UVB: 280-320 nm) first-order photodegradation rate constants (kpd) determined at the three sites were indistinguishable, with average values (± SE) of 0.0023 ± 0.0002, 0.10 ± 0.024 and 7.2 ± 1.3 m(2) E(-1) for kpdPAR, kpdUVA, and kpdUVB, respectively. The relative ratio of kpdPAR, kpdUVA, and kpdUVB was 1:43:3100. Experiments conducted at varying MeHg/TOC ratios confirm previous suggestions that complex formation with organic thiol groups enhances the rate of MeHg photodegradation, as compared to when O and N functional groups are involved in the speciation of MeHg. We suggest that if the photon fluxes of PAR, UVA, and UVB radiation are separately determined and the wavelength-specific light attenuation is corrected for, the first-order rate constants kpdPAR, kpdUVA, and kpdUVB will be universal to waters in which DOM (possibly in concert with Fe) controls the formation of ROS, and the chemical speciation of MeHg is controlled by the complexation with DOM associated thiols. PMID:23647363
Mosher, Nathaniel; Perkins-Harbin, Emily; Aho, Brandon; Wang, Lihua; Kumon, Ronald; Rablau, Corneliu; Vaishnava, Prem; Tackett, Ronald; Therapeutic Biomaterials Group Team
2015-03-01
Colloidal suspensions of superparamagnetic nanoparticles, known as ferrofluids, are promising candidates for the mediation of magnetic fluid hyperthermia (MFH). In such materials, the dissipation of heat occurs as a result of the relaxation of the particles in an applied ac magnetic field via the Brownian and Neel mechanisms. In order to isolate and study the role of the Neel mechanism in this process, the sample can be frozen, using liquid nitrogen, in order to suppress the Brownian relaxation. In this experiment, dextran-coated Fe3O4 nanoparticles synthesized via co-precipitation and characterized via transmission electron microscopy and dc magnetization are used as MFH mediators over the temperature range between -70 °C to -10 °C (Brownian-suppressed state). Heating the nanoparticles using ac magnetic field (amplitude ~300 Oe), the frequency dependence of the specific absorption rate (SAR) is calculated between 150 kHz and 350 kHz and used to determine the magnetocrystalline anisotropy of the sample. We would like to thank Fluxtrol, Inc. for their help with this project
Nachman, G; Gotoh, T
2015-06-01
We present a general and flexible mathematical model (called SANDY) that can be used to describe many biological phenomena, including the phenology of arthropods. In this paper, we demonstrate how the model can be fitted to vital rates (i.e., rates associated with development, survival, hatching, and oviposition) of the two-spotted spider mite (Tetranychus urticae (Koch)) exposed to different constant temperatures ranging from 15°C to 37.5°C. SANDY was incorporated into an age-, stage- and sex-structured dynamic model, which was fitted to cohort life-tables of T. urticae conducted at five constant temperatures (15, 20, 25, 30, and 35°C). Age- and temperature-dependent vital rates for the three main stages (eggs, immatures, and adults) constituting the life-cycle of mites were adequately described by the SANDY model. The modeling approach allows for simulating the growth of a population in a variable environment. We compared the predicted net reproductive rate (R0) and intrinsic rate of natural increase (rm) at fluctuating temperatures with empirical values obtained from life-table experiments conducted at temperatures that changed with a daily amplitude (±0, ±3, ±6, ±9, and ±12°C) around an average of 22°C. Results show that R0 decreases with increasing amplitude, while rm is more robust to variable temperatures. An advantage of SANDY is that the same simple mathematical expression can be applied to describe all the vital rates. Besides, the approach is not confined to modeling the influence of a single factor on population growth but allows for incorporating the combined effect of several limiting factors, provided that the combined effect of the factors is multiplicative. PMID:26313989
International Nuclear Information System (INIS)
The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value (CONΛ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either 125I (14 models), 103Pd (6 models) or 131Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant (PSTΛ) for each source model. Source-dependent variations in PSTΛ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of PSTΛ for the encapsulated sources of 103Pd, 125I and 131Cs varied from 0.661 to 0.678 cGyh-1 U-1, 0.959 to 1.024 cGyh-1U-1 and 1.066 to 1.073 cGyh-1U-1, respectively. The relative variation in PSTΛ among the six 103Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in PSTΛ were observed among the 14 125I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some 125I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the PSTΛ value to vary from 0.959 to 1.019 cGyh-1U-1 depending on the amount of silver used by a given source model. For those 125I sources that contain no silver, their PSTΛ was less variable and had values within 1% of 1.024 cGyh-1U-1. For the 16 source models that currently have an AAPM recommended
International Nuclear Information System (INIS)
The systems styrene-p-methylstyrene, styrene-p-chlorostyrene, methyl methacrylate-p-methylstyrene and methyl methacrylate-p-chlorostyrene were polymerized under pseudo-stationary conditions (rotating sector or pulsed laser) at 25 degree C, 40 degree C and 50 degree C. The respective molecular weight distributions measured by GPC were analysed in order to derive directly the phenomenological rate constant of propagation, κ sub ρ. Copolymer compositions as a function of monomer feed could be described by the terminal model, whereas the kinetic results could only be interpreted in terms of the restricted penultimate model
International Nuclear Information System (INIS)
This report describes the development of an effective continuum model to describe the nucleation and subsequent growth of a gas phase from a supersaturated, slightly compressible binary liquid in a porous medium, driven by solute diffusion.This report also focuses on the processes resulting from the withdrawal of the liquid at a constant rate. As before, the model addresses two stages before the onset of bulk gas flow, nucleation and gas phase growth. Because of negligible gradients due to gravity or viscous forces, the critical gas saturation, is only a function of the nucleation fraction
Tran, Thuy Thanh; Mittal, Aditya; Aldinger, Tanya; Polli, Joseph W.; Ayrton, Andrew; Ellens, Harma; Bentz, Joe
2004-01-01
The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use i...
Energy Technology Data Exchange (ETDEWEB)
Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.
2001-08-15
This report describes the development of an effective continuum model to describe the nucleation and subsequent growth of a gas phase from a supersaturated, slightly compressible binary liquid in a porous medium, driven by solute diffusion.This report also focuses on the processes resulting from the withdrawal of the liquid at a constant rate. As before, the model addresses two stages before the onset of bulk gas flow, nucleation and gas phase growth. Because of negligible gradients due to gravity or viscous forces, the critical gas saturation, is only a function of the nucleation fraction.
Badra, Jihad
2014-07-03
Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.
Jürgens, Marion; Jacob, Fritz; Ekici, Perihan; Friess, Albrecht; Parlar, Harun
A method based on photolysis was developed for the appropriate treatment of organic pollutants in air exhausting from breweries upon wort decoction, and thereby causing smell nuisance. A continuous flow stirred photoreactor was built-up exclusively, allowing OH radicals to react with selected odorous compounds contained in exhaust vapours, such as: 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, 3-methyl-1-butanol, n-hexanal, 2-methylbutyl isobutyrate, 2-undecanone, phenyl acetaldehyde, myrcene, limonene, linalool, humulene, dimethylsulphide, and dimethyltrisulphide. These substances were quantified in brewery broth before and after UV irradiation using high-resolution gas chromatography-mass spectrometry (HRGC-MS). For odour analysis, high-resolution gas chromatography-flame ionisation detection (HRGC-FID) coupled with sensory methods was used. Determined quantum yields of about 10 -3 for phenyl acetaldehyde, myrcene, and humulene pointed out that direct photolysis contributed to their decay. Quantum yields of below 10 -4 for the other substances indicated that UV irradiation did not contribute significantly to their degradation processes. Hydroxyl radical reaction rate constants and Henry constants of organic compounds were also measured. Substances accompanied with low Henry constants converted rapidly, whereas those with higher ones, relatively slowly. Determined aroma values concluded that after UV-H 2O 2 treatment, only dimethylsulphide and myrcene remained as important odorous compounds, but in significantly reduced concentrations. The UV-H 2O 2 treatment of brewery broth has been proved effective to reduce smell-irritating substances formed upon wort decoction.
Fu, Yuwei; Rong, Mingzhe; Yang, Kang; Yang, Aijun; Wang, Xiaohua; Gao, Qingqing; Liu, Dingxin; Murphy, Anthony B.
2016-04-01
SF6 is widely used in electrical equipment as an insulating gas. In the presence of an electric arc, partial discharge (PD) or spark, SF6 dissociation products (such as SF2, SF3 and SF4) react with the unavoidable gas impurities (such as water vapor and oxygen), electrodes and surrounding solid insulation materials, forming several toxic and corrosive byproducts. The main stable decomposition products are SO2F, SO2F2 and SOF2, which have been confirmed experimentally to have a direct relationship with discharge faults, and are thus expected to be useful in the fault diagnosis of power equipment. Various studies have been performed of the main SF6 decomposition species and their concentrations under different types of faults. However, most of the experiments focused on the qualitative analysis of the relationship between the stable products and discharge faults. Although some theoretical research on the formation of main SF6 derivatives have been carried out using chemical kinetics models, the basic data (chemical reactions and their rate constants) adopted in the model are inaccurate and incomplete. The complex chemical reactions of SF6 with the impurities are ignored in most cases. The rate constants of some reactions obtained at ambient temperature or in a narrow temperature range are adopted in the models over a far greater range, for example up to 12 000 K, due to the difficulty in the experimental measurement and theoretical estimation of rate coefficients, particularly at high temperatures. Therefore, improved theoretical models require not only the consideration of additional SF6 decomposition reactions in the presence of impurities but also on improved values of rate constants. This paper is devoted to determining the rate constants of the chemical reactions relating to the main byproducts of SF6 decomposition in SF6 gas-insulated power equipment: SO2F, SOF2 and SO2F2. Quantum chemistry calculations with density functional theory, conventional
Marcus, R. A.
1962-01-01
Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)
International Nuclear Information System (INIS)
The TROSY principle has been introduced into a HNCA experiment, which is designed for measurements of the intraresidual and sequential Hα-Cα/HN-N dipole/dipole and Hα-Cα/N dipole/CSA cross-correlated relaxation rates. In addition, the new experiment provides values of the 3,4JHαHN coupling constants measured in an E.COSY manner. The conformational restraints for the ψ and φ angles are obtained through the use of the cross-correlated relaxation rates together with the Karplus-type dependencies of the coupling constants. Improved signal-to-noise is achieved through preservation of all coherence transfer pathways and application of the TROSY principle. The application of the [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY experiment to the 16 kDa apo-form of the E. coli Heme Chaperon protein CcmE is described. Overall good agreement is achieved between ψ and φ angles measured with the new experiment and the average values determined from an ensemble of 20 NMR conformers
Directory of Open Access Journals (Sweden)
Njoku Uchechukwu Njoku
2015-12-01
Full Text Available The research work was aimed at investigating physiological, biochemical, analgesic and anesthetic indices of dogs anesthetized with propofol-ketamine and maintained with repeat bolus and constant infusions of propofol. Eight dogs, assigned to two groups (n=4, were used in this study. All dogs were pre-medicated with atropine (at 0.03 mg/kg bwt and xylazine (at 2 mg/kg bwt. Anesthesia was induced by a concurrent administration of propofol (at 4 mg/kg bwt and ketamine (at 2.5 mg/kg bwt. Maintenance of anesthesia in Group 1 was done with a repeat bolus of propofol (at 2 mg/kg bwt, while in Group 2 it was done with a constant infusion of propofol (at 0.2 mg/kg bwt/min. Gastrotomy was performed in both groups, and anesthesia was maintained for 60 min. Physiological, analgesic, anesthetic parameters and plasma glucose concentration were measured. There was no significant (P>0.05 difference found in the analgesia and pedal reflex scores, durations of analgesia and recumbency, recovery time and standing time between the groups. The heart rate, respiratory rate and rectal temperature reduced significantly (P0.05 between the groups. In conclusion, both maintenance protocols are suitable for dogs, although the repeat bolus technique produces marked cardiopulmonary depression.
Barrow, J D
2005-01-01
We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that are consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying-alpha cosmologies is outlined in the light of all the observational constraints.
Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell
2016-10-01
The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. PMID:26853042
International Nuclear Information System (INIS)
Transients generated in situ by advanced oxidation technologies (AOTs) to destroy organic contaminants in ground and drinking water often give large concentrations of chemical by-products. These by-products may have adverse health effects, and can also interfere with the desired chemical removal by competing for the generated transients, thus lowering the overall efficiency of the remediation process. To allow for a quantitative evaluation of the influence of tert-butyl formate (TBF), a major by-product formed in the AOT destruction of methyl tert-butyl ether, rate constants for TBF reaction with the hydroxyl radical, the hydrated electron and the hydrogen atom in aqueous solution were measured in this study. Absolute values of (5.23±0.07)x108, (5.48±0.09)x108 and (3.58±0.07)x106 M-1 s-1, were determined at 22 deg. C, respectively
International Nuclear Information System (INIS)
The actions of tetrodotoxin (TTX) and saxitoxin (STX) in normal water and in deuterium oxide (D20) have been studied in frog myelinated nerve. Substitution of D20 for H20 in normal Ringer's solution has no effect on the potency of TTX in blocking action potentials but increases the potency of STX by approximately 50%. Under voltage clamp, the steady-state inhibition of sodium currents by 1 nM STX is doubled in D20 as a result of a halving of the rate of dissociation of STX from the sodium channel; the rate of block by STX is not measurably changed by D20. Neither steady-state inhibition nor the on- or off-rate constants of TTX are changed by D20 substitution. The isotopic effects on STX binding are observed less than 10 min after the toxin has been added to D20, thus eliminating the possibility that slow-exchange (t 1/2 greater than 10 h) hydrogen-binding sites on STX are involved. The results are consistent with a hypothesis that attributes receptor-toxin stabilization to isotopic changes of hydrogen bonding; this interpretation suggests that hydrogen bonds contribute more to the binding of STX than to that of TTX at the sodium channel
Greives, Nicholas; Zhou, Huan-Xiang
2012-10-01
A method developed by Northrup et al. [J. Chem. Phys. 80, 1517 (1984)], 10.1063/1.446900 for calculating protein-ligand binding rate constants (ka) from Brownian dynamics (BD) simulations has been widely used for rigid molecules. Application to flexible molecules is limited by the formidable computational cost to treat conformational fluctuations during the long BD simulations necessary for ka calculation. Here, we propose a new method called BDflex for ka calculation that circumvents this problem. The basic idea is to separate the whole space into an outer region and an inner region, and formulate ka as the product of kE and bar η _d, which are obtained by separately solving exterior and interior problems. kE is the diffusion-controlled rate constant for the ligand in the outer region to reach the dividing surface between the outer and inner regions; in this exterior problem conformational fluctuations can be neglected. bar η _d is the probability that the ligand, starting from the dividing surface, will react at the binding site rather than escape to infinity. The crucial step in reducing the determination of bar η _d to a problem confined to the inner region is a radiation boundary condition imposed on the dividing surface; the reactivity on this boundary is proportional to kE. By confining the ligand to the inner region and imposing the radiation boundary condition, we avoid multiple-crossing of the dividing surface before reaction at the binding site and hence dramatically cut down the total simulation time, making the treatment of conformational fluctuations affordable. BDflex is expected to have wide applications in problems where conformational fluctuations of the molecules are crucial for productive ligand binding, such as in cases where transient widening of a bottleneck allows the ligand to access the binding pocket, or the binding site is properly formed only after ligand entrance induces the closure of a lid.
Carl, S. A.; Peeters, J.; Vranckx, S.
2008-01-01
The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularl...
Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus
2016-03-01
Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than
Bergadano, Alessandra; Andersen, Ole K; Arendt-Nielsen, Lars; Theurillat, Regula; Thormann, Wolfgang; Spadavecchia, Claudia
2009-11-01
This study quantitatively investigated the analgesic action of a low-dose constant-rate-infusion (CRI) of racemic ketamine (as a 0.5 mg kg(-1) bolus and at a dose rate of 10 microg kg(-1) min(-1)) in conscious dogs using a nociceptive withdrawal reflex (NWR) and with enantioselective measurement of plasma levels of ketamine and norketamine. Withdrawal reflexes evoked by transcutaneous single and repeated electrical stimulation (10 pulses, 5 Hz) of the digital plantar nerve were recorded from the biceps femoris muscle using surface electromyography. Ketamine did not affect NWR thresholds or the recruitment curves after a single nociceptive stimulation. Temporal summation (as evaluated by repeated stimuli) and the evoked behavioural response scores were however reduced compared to baseline demonstrating the antinociceptive activity of ketamine correlated with the peak plasma concentrations. Thereafter the plasma levels at pseudo-steady-state did not modulate temporal summation. Based on these experimental findings low-dose ketamine CRI cannot be recommended for use as a sole analgesic in the dog. PMID:18706837
Rayne, Sierra; Forest, Kaya
2016-05-11
The SPARC software program was used to estimate the acid-catalyzed, neutral, and base-catalyzed hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025. Relatively rapid hydrolysis of BC-58, producing 2,4,6-tribromophenol-and ultimately tetrabromobisphenol A-as the hydrolytically stable end products from all potential hydrolysis reactions, is expected in both environmental and biological systems with starting material hydrolytic half-lives (t1/2,hydr) ranging from less than 1 h in marine systems, several hours in cellular environments, and up to several weeks in slightly acid fresh waters. Hydrolysis of FR-1025 to give 2,3,4,5,6-pentabromobenzyl alcohol is expected to be slower (t1/2,hydr less than 0.5 years in marine systems up to several years in fresh waters) than BC-58, but is also expected to occur at rates that will contribute significantly to environmental and in vivo loadings of this compound. PMID:26889790
Sparavigna, Amelia Carolina
2012-01-01
As proposed in a previous paper, the decorations of ancient objects can provide some information on the approximate evaluations of constant {\\pi}, the ratio of circumference to diameter. Here we discuss some disks found in the tomb of Hemaka, the chancellor of a king of the First Dynasty of Egypt, about 3000 BC. The discussion is based on measurements of the dimensionless ratio of lengths.
Energy Technology Data Exchange (ETDEWEB)
Robinson, H.P.; Potter, Elinor
1971-03-01
This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.
Directory of Open Access Journals (Sweden)
S. M. Tebcheran
2003-04-01
in small concentrations as densifying aids for this oxide. In the present study the sintering kinetics of tin oxide was studied considering the effect of sintering atmosphere and of the MnO2 concentration. SnO2-MnO2 systems were prepared from the polymeric precursors method and the obtained powders were characterized by surface area by the BET method. SnO2 powders with varied MnO2 concentrations were pressed in cylindrical shape, and sintered in a dilatometer furnace with constant heating rate and controlled atmospheres. Sintered samples were characterized by scanning electron microscopy. The influence of atmosphere (argon, air or CO2 as well as of the MnO2 concentrations on the sintering kinetics was determined. The kinetics data of linear shrinkage were analyzed in terms of kinetic models for the initial stage of sintering (Woolfrey and Bannister as well as for the global sintering (Su e Johnson allowing the determination of the apparent activation energy. Following the determination of the master sintering curve the apparent activation energy of all sintering process were determined as well as its dependence with the atmosphere and manganese concentrations. Based on these values and on the n exponent, determined by the classical grain growth equation, it was concluded that the most probable sintering mechanism is grain boundary diffusion with surface redistribution controlling the kinetics.
Kim, Sang-Kyu; Ito, Kazuma; Yoshihara, Daisuke; Wakisaka, Tomoyuki
For numerically predicting the combustion processes in homogeneous charge compression ignition (HCCI) engines, practical chemical kinetic models have been explored. A genetic algorithm (GA) has been applied to the optimization of the rate constants in detailed chemical kinetic models, and a detailed kinetic model (592 reactions) for gasoline reference fuels with arbitrary octane number between 60 and 100 has been obtained from the detailed reaction schemes for iso-octane and n-heptane proposed by Golovitchev. The ignition timing in a gasoline HCCI engine has been predicted reasonably well by zero-dimensional simulation using the CHEMKIN code with this detailed kinetic model. An original reduced reaction scheme (45 reactions) for dimethyl ether (DME) has been derived from Curran’s detailed scheme, and the combustion process in a DME HCCI engine has been predicted reasonably well in a practical computation time by three-dimensional simulation using the authors’ GTT code, which has been linked to the CHEMKIN subroutines with the proposed reaction scheme and also has adopted a modified eddy dissipation combustion model.
International Nuclear Information System (INIS)
The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump
Aguado, Delia; Benito, Javier; Gómez de Segura, Ignacio A
2011-07-01
The objective of this study was to determine the effects of a constant rate of infusion of lidocaine and ketamine in combination with either morphine or fentanyl on the minimum alveolar concentration of isoflurane (MAC(ISO)) during ovariohysterectomy in dogs. Female dogs (n=44) were premedicated with acepromazine and midazolam. Anaesthesia was induced with propofol and maintained with isoflurane. Dogs received ketamine (0.6 mg/kg/h) and lidocaine (3 mg/kg/h) together with morphine (0.24 mg/kg/h; MLK) or fentanyl (0.0036 mg/kg/h; FLK). The control group received Ringer's lactate solution. A skin incision was used as the noxious stimulus. The MAC(ISO) value was obtained with Dixon's up-and-down method. MAC(ISO) was 0.7±0.0 vol.% in the control group, 0.3±0.0 vol.% in the MLK group (45% MAC reduction) and 0.0±0.0 vol.% in the FLK group (97% MAC reduction). A combination of fentanyl with lidocaine and ketamine decreased the MAC(ISO) in dogs; this decrease was more pronounced than that produced by morphine, lidocaine and ketamine. PMID:20594878
International Nuclear Information System (INIS)
Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0
Directory of Open Access Journals (Sweden)
K. Kuribayashi
2013-05-01
Full Text Available Diurnal variations of ClO, HO2, and HOCl were simultaneously observed by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES between 12 October 2009 and 21 April 2010. These were the first global observations of the diurnal variation of HOCl in the upper atmosphere. A major reaction to produce HOCl is ClO + HO2 → HOCl + O2 (R1 in extra polar region. A model study suggested that in the mesosphere during night this is the only reaction influencing the amount of HOCl and ClO. The evaluation of the pure reaction period, where only reaction (R1 occurred in Cly chemical system, was performed by the consistency between two reaction rates, HOCl production and ClO loss, from SMILES observation data. It turned out that the SMILES data at the pressure level of 0.28 hPa (about 58 km during night (between local time 18:30 and 04:00 in the autumn mid-latitude region (20–40° February–April 2010 were suitable for the estimation of k1. The rate constant was obtained to be k1(245 K = 7.73 ± 0.26 (1σ [× 10–12 cm3/molecule s] from SMILES atmospheric observations. This result was consistent with that from both the laboratory experiment and the ab initio calculations for similar low-pressure conditions. The 1σ precision of k1 obtained was 2–10 times better than those of previous laboratory measurements.
International Nuclear Information System (INIS)
The reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel had been studied. U3O8 kernel was reacted with gas H2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO2 kernel. The reaction kinetic aspect between U3O8 and gas H2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{Db. Ro{(1 - (1 - Xb)⅓} / (b.t.Cg)] = -3.9406 x 103 / T + 4.044. By multiplying with the straight line slope -3.9406 x 103, the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s-1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s-1. The O/U ratios of UO2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s-1, O/U ratio of UO2 kernel of 2.01 at temperature of 750 °C and reaction time of 3 hours. The UO2 kernel produced was
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ruohui [Department of Radiotherapy, Fourth Hospital of Hebei Medical University (China); Department of Medical Physics, Medical Faculty Mannheim, Heidelberg University (Germany); Fan, Xiaomei; Bai, Wenwen; Han, Chun [Department of Radiotherapy, Fourth Hospital of Hebei Medical University (China)
2014-08-15
Objective: The purpose of this study is to propose an alternative planning approach for VMAT using constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) implementation on conventional Linac Varian 23EX and used IMRT as a benchmark to evaluate the performance. Methods and materials: Eighteen patients with thoracic esophageal carcinoma who were previously treated with IMRT on Varian 23EX were retrospectively planned for CDR-CAS-IMAT plans. Dose prescription was set to 60 Gy to PTVs in 30 fractions. The planning objectives for PTVs and OAR were corresponding with the IMRT plans. Dose to the PTVs and OAR were compared to IMRT with respect to plan quality, MU, treatment time and delivery accuracy. Results: CDR-CAS-IMAT plans led to equivalent or superior plan quality as compared to IMRT, PTV's CI relative increased 16.2%, while small deviations were observed on minimum dose for PTV. Volumes in the cord receiving 40Gy were increased from 3.6% with IMRT to 7.0%. Treatment times were reduced significantly with CDR-CAS-IMAT(mean 85.7s vs. 232.1s, p < .05), however, MU increased by a factor of 1.3 and lung V10/5/3.5/aver were relative increase 6.7%,12%,17.9%,4.2%, respectively. And increased the E-P low dose area volume decreased the hight dose area. There were no significant difference in Delta4 measurements results between both planning techniques. Conclusion: CDR-CAS-IMAT plans can be implemented smoothly and quickly into a busy cancer center, which improved PTV CI and reduces treatment time but increased the MU and low dose irradiated area. An evaluation of weight loss must be performed during treatment for CDR-CAS-IMAT patients.
Taylor, A H; Seymour, C J
2016-05-01
Horses may become hypoxaemic during anaesthesia despite a high inspired oxygen fraction (FiO2). A lower FiO2 is used commonly in human beings to minimise atelectasis and to improve lung function, and previously has been shown to be of potential benefit in horses in experimental conditions. Other studies suggest no benefit to using a FiO2 of 0.5 during clinically relevant conditions; however, low FiO2 (0.65) is commonly used in practice and in a large number of studies. The present study was performed to compare the effect of a commonly used FiO2 of 0.65 versus 0.90 on calculated respiratory indices in anaesthetised mechanically ventilated horses in a clinical setting. Eighteen healthy Thoroughbred horses anaesthetised for experimental laryngeal surgery were recruited into a prospective, non-blinded, randomised clinical study. Before anaesthesia, the horses were randomly allocated into either low (0.65) or high (0.90) FiO2 groups and arterial blood gas (ABG) analysis was performed every 30 min during anaesthesia to allow for statistical analysis of respiratory indices. As expected, PaO2 was significantly lower in horses anaesthetised with a low FiO2, but was sufficient to fully saturate haemoglobin. There were no significant improvements in any of the other respiratory indices. There is no obvious benefit to be gained from the use of a FiO2 of 0.65 compared to 0.90 for mechanically ventilated Thoroughbred horses anaesthetised in lateral recumbency with isoflurane and a medetomidine constant rate infusion. PMID:27012166
Columbano, Nicolò; Secci, Fabio; Careddu, Giovanni M; Sotgiu, Giovanni; Rossi, Gabriele; Driessen, Bernd
2012-08-01
The effects of constant rate infusion (CRI) of lidocaine on sevoflurane (SEVO) requirements, autonomic responses to noxious stimulation, and postoperative pain relief were evaluated in dogs undergoing opioid-based balanced anesthesia. Twenty-four dogs scheduled for elective ovariectomy were randomly assigned to one of four groups: BC, receiving buprenorphine without lidocaine; FC, receiving fentanyl without lidocaine; BL, receiving buprenorphine and lidocaine; FL, receiving fentanyl and lidocaine. Dogs were anesthetized with intravenous (IV) diazepam and ketamine and anesthesia maintained with SEVO in oxygen/air. Lidocaine (2mg/kg plus 50 μg/kg/min) or saline were infused in groups BL/FL and BC/FC, respectively. After initiation of lidocaine or saline CRI IV buprenorphine (0.02 mg/kg) or fentanyl (4 μg/kg plus 8 μg/kg/h CRI) were administered IV in BC/BL and FC/FL, respectively. Respiratory and hemodynamic variables, drug plasma concentrations, and end-tidal SEVO concentrations (E'SEVO) were measured. Behaviors and pain scores were subjectively assessed 1 and 2h post-extubation. Lidocaine CRI produced median drug plasma concentrations <0.4 μg/mL during peak surgical stimulation. Lidocaine produced a 14% decrease in E'SEVO in the BL (P<0.01) but none in the FL group and no change in cardio-pulmonary responses to surgery or postoperative behaviors and pain scores in any group. Thus, depending on the opioid used, supplementing opioid-based balanced anesthesia with lidocaine (50 μg/kg/min) may not have any or only a minor impact on anesthetic outcome in terms of total anesthetic dose, autonomic responses to visceral nociception, and postoperative analgesia. PMID:22261004
Kempf, M. J.; Schubert, W. W.; Beaudet, R. A.
2008-12-01
Dry heat microbial reduction is the NASA-approved sterilization method to reduce the microbial bioburden on spaceflight hardware for missions with planetary protection requirements. The method involves heating the spaceflight hardware to temperatures between 104°C and 125°C for up to 50 hours, while controlling the humidity to very low values. Collection of lethality data at temperatures above 125°C and with ambient (uncontrolled) humidity conditions would establish whether any microbial reduction credit can be offered to the flight project for processes that occur at temperatures greater than 125°C. The goal of this research is to determine the survival rates of Bacillus atrophaeus (ATCC 9372) spores subjected to temperatures higher than 125°C under both dry (controlled) and room ambient humidity (36 66% relative humidity) conditions. Spores were deposited inside thin, stainless steel thermal spore exposure vessels (TSEVs) and heated under ambient or controlled humidity conditions from 115°C to 170°C. After the exposures, the TSEVs were cooled rapidly, and the spores were recovered and plated. Survivor ratios, lethality rate constants, and D-values were calculated at each temperature. At 115°C and 125°C, the controlled humidity lethality rate constant was faster than th:e ambient humidity lethality rate constant. At 135°C, the ambient and controlled humidity lethality rate constants were statistically identical. At 150°C and 170°C, the ambient humidity lethality rate constant was slightly faster than the controlled humidity lethality rate constant. These results provide evidence for possibly modifying the NASA dry heat microbial reduction specification.
Energy Technology Data Exchange (ETDEWEB)
Debreczeny, M.P.
1994-05-01
We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.
International Nuclear Information System (INIS)
Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or
International Nuclear Information System (INIS)
Purpose: Postoperative cervical cancer patients with large target volume and the target shape is concave, treatmented with static intensity-modulated radiotherapy (IMRT) is time consuming. The purpose of this study is to investigate using constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) on conventional linear accelrator, by comparing with the IMRT technology to evaluate the performance of CDR-CAS-IMAT on postoperative cervical cancer patients. Methods: 18 cervical cancer patients treated with IMRT on Varian 23IX were replanted using CDR-CAS-IMAT. The plans were generated on Oncentra v4.1 planning system, PTV was prescribed to 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), conformity index (CI) of target volume, the dose of organs at risk, radiation delivery time and monitor units were also compared. SPSS 19.0 software paired T-test analysis was carried out on the two sets of data. Results: Compared with the IMRT plans PTV’s CI (t= 3.85, P =0.001), CTV’s CI, HI, D90, D95, D98, V95, V98, V100 (t=4.21, −3.18, 2.13, 4.65, 7.79, 2.29, 6.00, 2.13, p=0.001, 0.005, 0.049, 0.000, 0.000, 0.035, 0.000, 0.049), and cord D2 and rectum V40 (t=−2.65, −2.47, p= P =0.017, 0.025), and treatment time and MU (t=−36.0, −6.26, P =0.000, 0.000) were better than that of IMRT group. But the IMRT plans in terms of decreasing bladder V50, bowel V30 (t=2.14, 3.00, P =0.048, 0.008) and low dose irradiation volume were superior to that of CDR-CAS-IMAT plans. There were no significant differences in other statistical index. Conclusion: Cervical cancer patients with CDR-CAS-IMAT on Varian Clinical 23IX can get equivalent or superior dose distribution compared with the IMRT technology. IMAT have much less treatment time and MU can reduce the uncertainty factor and patient discomfort in treatment. This work was supported by the Medical Science Foundation of the health department of Hebei
Energy Technology Data Exchange (ETDEWEB)
Zhang, R; Bai, W; Chi, Z; Gao, C; Xiaomei, F [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China); Gao, Y [Hebei General Hospital, Shijiazhuang, Hebei (China)
2015-06-15
Purpose: Postoperative cervical cancer patients with large target volume and the target shape is concave, treatmented with static intensity-modulated radiotherapy (IMRT) is time consuming. The purpose of this study is to investigate using constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) on conventional linear accelrator, by comparing with the IMRT technology to evaluate the performance of CDR-CAS-IMAT on postoperative cervical cancer patients. Methods: 18 cervical cancer patients treated with IMRT on Varian 23IX were replanted using CDR-CAS-IMAT. The plans were generated on Oncentra v4.1 planning system, PTV was prescribed to 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), conformity index (CI) of target volume, the dose of organs at risk, radiation delivery time and monitor units were also compared. SPSS 19.0 software paired T-test analysis was carried out on the two sets of data. Results: Compared with the IMRT plans PTV’s CI (t= 3.85, P =0.001), CTV’s CI, HI, D90, D95, D98, V95, V98, V100 (t=4.21, −3.18, 2.13, 4.65, 7.79, 2.29, 6.00, 2.13, p=0.001, 0.005, 0.049, 0.000, 0.000, 0.035, 0.000, 0.049), and cord D2 and rectum V40 (t=−2.65, −2.47, p= P =0.017, 0.025), and treatment time and MU (t=−36.0, −6.26, P =0.000, 0.000) were better than that of IMRT group. But the IMRT plans in terms of decreasing bladder V50, bowel V30 (t=2.14, 3.00, P =0.048, 0.008) and low dose irradiation volume were superior to that of CDR-CAS-IMAT plans. There were no significant differences in other statistical index. Conclusion: Cervical cancer patients with CDR-CAS-IMAT on Varian Clinical 23IX can get equivalent or superior dose distribution compared with the IMRT technology. IMAT have much less treatment time and MU can reduce the uncertainty factor and patient discomfort in treatment. This work was supported by the Medical Science Foundation of the health department of Hebei
低频脉冲信号的频域恒虚警检测%Constant false alarm rate detection in frequency domain for low-frequency pulse
Institute of Scientific and Technical Information of China (English)
梁增; 马启明; 杜栓平
2016-01-01
To improve the ability of detecting a weak sonar impulse signal form low-frequency background noise, a new detection method with constant false alarm rate (CFAR) in frequency domain is proposed. In this method, the peaks in the frequency domain are taken as the potential pulse signal due to the poor stability and large fluctuation of low-frequency background noise. Then, the detection decision is made through comparing the energy of those peaks and the energy of the background noise. The way of how to get statistic of test, background noise estimation and CFAR threshold is also given. Results of computer simulation and real data processing have confirmed the satisfactory performance of the proposed method in detecting weak sonar pulse signal like CW and CW-LFM, which contain narrow-band components.%为提高低频背景噪声中弱声呐脉冲信号的检测能力,给出了一种频域恒虚警检测方法.该方法针对低频背景噪声平稳性较差、起伏较大的特点,将频域中峰值点或极值点认为是疑似脉冲信号,通过对疑似点能量与历史背景进行比对的方式完成脉冲信号的检测判决,并且给出了相应的检验统计量获取方法、背景噪声估计方法和恒虚警检测门限的计算方法.仿真分析和实际数据处理结果表明,频域恒虚警检测方法对单频脉冲、单频-线性调频组合脉冲等包含窄带成分的弱声呐脉冲信号有非常好的检测性能.
Institute of Scientific and Technical Information of China (English)
李海鹏; 朱元林; 潘卫东
2002-01-01
Uniaxial compressive strength tests were conducted on the saturated frozen Lanzhou silt (loess) at various constant strain rates and at various constant temperatures. It is concluded from the test results that: the compressive strength (σ f) is very sensitive to temperature (θ) and increases with the temperature decreasing as a power law. Compressive strength is sensitive to strain rate () and increases with strain rates increasing within a certain range of strain rates as a power law. Compressive strength decreases when time to failure (tf) increases, also following a power law. Finally, Compressive strength of frozen silt with higher dry density (γd) is higher than that of frozen silt with lower dry density. The difference between them is mainly influenced by strain rate.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, M., E-mail: manuel.rodriguez@rmp.uhn.ca [Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada)
2014-11-01
Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for {sup 125}I and {sup 103}Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f{sup rel}, for TLDs and the phantom correction, P{sub phant}, are calculated for {sup 125}I and {sup 103}Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f{sup rel}){sup −1} and P{sub phant} values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k{sub bq}{sup rel}, is determined. The new P{sub phant} values and relative absorbed-dose sensitivities, S{sub AD}{sup rel}, calculated as the product of (f{sup rel}){sup −1} and (k{sub bq}{sup rel}){sup −1}, are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f{sup rel} is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among {sup 125}I and {sup 103}Pd seed models and common TLD shapes. P{sub phant} values depend primarily on the isotope used. Deduced (k{sub bq}{sup rel}){sup −1} values are 1.074 ± 0.015 and 1.084 ± 0.026 for {sup 125}I and {sup 103}Pd seeds, respectively. For (1 mm){sup 3} chips, this implies an overall absorbed-dose sensitivity relative to {sup 60}Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for {sup 125}I and {sup 103}Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P{sub phant} calculated here have much lower statistical uncertainties than literature values, but
Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J
2014-07-17
Measurements of the rate constant for the gas-phase reactions of OH radicals with trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3) were performed using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The reaction rate constant exhibits a noticeable curvature of the temperature dependence in the Arrhenius plot, which can be represented by the following expression: kt-CFP (220-370 K) = 1.025 × 10(-13) × (T/298)(2.29) exp(+384/T) cm(3 )molecule(-1) s(-1). The room-temperature rate constant was determined to be kt-CFP (298 K) = (3.29 ± 0.10) × 10(-13) cm(3) molecule(-1) s(-1), where the uncertainty includes both two standard errors (statistical) and the estimated systematic error. For atmospheric modeling purposes, the rate constant below room temperature can be represented by the following expression: kt-CFP (220-298 K) = (7.20 ± 0.46) × 10(-13) exp[-(237 ± 16)/T] cm(3) molecule(-1) s(-1). There was no difference observed between the rate constants determined at 4 kPa (30 Torr) and 40 kPa (300 Torr) at both 298 and 370 K. The UV and IR absorption cross sections of this compound were measured at room temperature. The atmospheric lifetime, global warming potential, and ozone depletion potential of trans-CHCl═CHCF3 were estimated. PMID:24955760
International Nuclear Information System (INIS)
Using dynamic [18F]fluorodeoxyglucose (FDG) positron emission tomography with a high-resolution, seven-slice positron camera, the kinetic constants of the original three-compartment model of Sokoloff and co-workers (1977) were determined in 43 distinct topographic brain regions of seven healthy male volunteers aged 28-38 years. Regional averages of the cerebral metabolic rate for glucose (CMRglu) were calculated both from individually fitted rate constants (CMRglukinetic) and from activity maps recorded 30-40 min after FDG injection, employing a four-parameter operational equation with standard rate constants from the literature (CMRgluautoradiographic). Metabolic rates and kinetic constants varied significantly among regions and subjects, but not between hemispheres. k1 ranged between 0.0485 +/- 0.00778 min-1 in the oval center and 0.0990 +/- 0.01347 min-1 in the primary visual cortex. k2 ranged from 0.1198 +/- 0.01533 min-1 in the temporal white matter to 0.1472 +/- 0.01817 min-1 in the cerebellar dentate nucleus. k3 was lowest (0.0386 +/- 0.01482 min-1) in temporal white matter and highest (0.0823 +/- 0.02552 min-1) in the caudate nucleus. Maximum likelihood cluster analysis revealed four homogeneous groups of brain regions according to their respective kinetic constants: (1) white matter and mixed brainstem structures; (2) cerebellar gray matter and hippocampal formations; (3) basal ganglia and frontolateral and primary visual cortex; and (4) other cerebral cortex and thalamus. Across the entire brain, k1 and k2 were positively correlated (r . 0.79); k1 and k3 showed some correlation (r . 0.59); but no significant linear association was found between k2 and k3. A strong correlation with CMRglu could be demonstrated for k1 (r . 0.88) and k3 (r . 0.90), but k2 was loosely correlated (r . 0.56)
Njoku Uchechukwu Njoku
2015-01-01
The research work was aimed at investigating physiological, biochemical, analgesic and anesthetic indices of dogs anesthetized with propofol-ketamine and maintained with repeat bolus and constant infusions of propofol. Eight dogs, assigned to two groups (n=4), were used in this study. All dogs were pre-medicated with atropine (at 0.03 mg/kg bwt) and xylazine (at 2 mg/kg bwt). Anesthesia was induced by a concurrent administration of propofol (at 4 mg/kg bwt) and ketamine (at 2.5 mg/kg bwt). Ma...
Petros Damos; Polyxeni Soulopoulou
2015-01-01
Temperature implies contrasting biological causes of demographic aging in poikilotherms. In this work, we used the reliability theory to describe the consistency of mortality with age in moth populations and to show that differentiation in hazard rates is related to extrinsic environmental causes such as temperature. Moreover, experiments that manipulate extrinsic mortality were used to distinguish temperature-related death rates and the pertinence of the Weibull aging model. The Newton-Raphs...
Alajajian, S. H.; Man, K.-F.; Chutjian, A.
1991-01-01
Electron attachment cross sections are reported in the energy range 0-160 meV, and at resolutions of 6.0-6.5 meV (FWHM) for the molecules CF3SO3H (triflic acid), (CF3SO2)2O (triflic anhydride), and CF3I (methyl iodide). Use is made of the Kr photoionization method. Attachment line shapes are deconvoluted from the spectral slit (electron energy) function, and are converted to cross sections by normalization to thermal attachment rate constants at 300 K. Rate constants as a function of mean electron energy are calculated from the cross sections using a Maxwellian electron energy distribution function. Present data are compared with flowing-afterglow, Langmuir-probe results in triflic acid and anhydride, and with high-Rydberg ionization results in CF3I.
Teraji, T.; Arakaki, T.; Suzuka, T.
2012-12-01
Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.
International Nuclear Information System (INIS)
An understanding of the aqueous radiolysis-induced chemistry in nuclear reactors is an important key to the understanding of materials integrity issues in reactor systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issues. The objective of this report is to compile and review the radiolysis data now available and, where possible, correct the reported g-values and rate constants to provide a recommendation for the best values to use in high temperature modelling of light water radiolysis up to 350oC. With a few exceptions, the review has been limited to those reactions that occur in slightly acid and slightly alkaline solutions, e.g., it does not address reactions involving the oxide radical anion, O-, or ionized forms of hydrogen peroxide, HO2-, beyond their acid-base equilibria reactions. However, a few reactions have been included where the rate constant for a reaction involving O- is significantly larger than the corresponding hydroxyl radical reaction rate constant and thus can influence the chemistry below the pKA of the hydroxyl radical. (author)
Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas
2016-04-01
Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm‑3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and
Cosmological Constant, Fine Structure Constant and Beyond
Wei, Hao; Zou, Xiao-Bo; Li, Hong-Yu; Xue, Dong-Ze
2016-01-01
In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view...
Energy Technology Data Exchange (ETDEWEB)
Manna, Arun K.; Dunietz, Barry D., E-mail: bdunietz@kent.edu [Department of Chemistry, Kent State University, Kent, Ohio 44242 (United States)
2014-09-28
We investigate photoinduced charge transfer (CT) processes within dyads consisting of porphyrin derivatives in which one ring ligates a Zn metal center and where the rings vary by their degree of conjugation. Using a first-principles approach, we show that molecular-scale means can tune CT rates through stabilization affected by the polar environment. Such means of CT tuning are important for achieving high efficiency optoelectronic applications using organic semiconducting materials. Our fully quantum mechanical scheme is necessary for reliably modeling the CT process across different regimes, in contrast to the pervading semi-classical Marcus picture that grossly underestimates transfer in the far-inverted regime.
Balasubramanian, P N; Bruice, T C
1987-01-01
Ethylenediaminetetraacetato iron(III) [(EDTA)Fe(III)] has been shown to react with a series of four peroxycarboxylic acids and four alkyl hydroperoxides (YOOH; dry methanol solvent, 30 degrees C) by heterolytic O-O bond scission that accompanies the transfer of an oxygen atom to the iron(III) moiety [(EDTA)Fe(III) + YOOH----[(EDTA)(FeO)]+ + YOH]. A single linear free-energy relationship exists for both peroxycarboxylic acids and alkyl hydroperoxides when the logarithm of the second-order rate...
Jincai Wang
2007-01-01
We introduce the \\(J\\)-convexity constants on Banach spaces and give some properties of the constants. We give the relations between the \\(J\\)-convexity constants and the \\(n\\)-th von Neumann-Jordan constants. Using the quantitative indices we estimate the value of \\(J\\)-convexity constants in Orlicz spaces.
Energy Technology Data Exchange (ETDEWEB)
Santos, Cesar A.G.; Correa, Jorge E. [Para Univ., Belem (Brazil). Centro Tecnologico. Dept. de Engenharia Mecanica]. E-mails: gsantos@ufpa.br; jecorrea@amazon.com.br
2000-07-01
This work performs a comparative analysis among the constant and variable air volume multi zones acclimation systems, used for provide the thermal comfort in buildings. The work used the simulation HVAC2KIT computer program. The results of sensible and latent heats transfer rates on the cooling and dehumidification, inflating fan capacity, and heat transfer on the final heating condenser were obtained and analysed for the climate conditions of the Brazilian city of Belem from Para State, presenting hot and humid climate during all the year.
Energy Technology Data Exchange (ETDEWEB)
Debreczeny, M.P.; Sauer, K. (Lawrence Berkeley Lab., CA (United States) Univ. of California, Berkeley, CA (United States)); Zhou, J.; Bryant, D.A. (Pennsylvania State Univ., University Park, PA (United States))
1993-09-23
At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.
Exponential Decay of Expansive Constants
Sun, Peng
2011-01-01
A map $f$ on a compact metric space is expansive if and only if $f^n$ is expansive. We study the exponential rate of decay of the expansive constant of $f^n$. A major result is that this rate times box dimension bounds topological entropy.
Energy Technology Data Exchange (ETDEWEB)
Hussain, Raihan [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan)], E-mail: raihan_h@yahoo.com; Kudo, Takashi [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan)], E-mail: tkudo@u-fukui.ac.jp; Tsujikawa, Testuya; Kobayashi, Masato; Fujibayashi, Yasuhisa; Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan)
2009-11-15
Introduction: The purpose of this study was to validate the calculation of myocardial oxidative metabolism rate using a parametric clearance rate constant (k{sub mono}) image. Methods: Fifteen subjects (seven volunteers, eight patients) were studied. Dynamic PET was acquired after intravenous injection of 700 MBq of [{sup 11}C]acetate. The clearance rate constant of [{sup 11}C]acetate (k{sub mono}) was calculated pixel by pixel to generate the parametric k{sub mono} image. The k{sub mono} values from this image and those calculated from the dynamic image were compared in the same regions of interest (ROIs). Results: Two different methods showed an excellent correlation except in the very low range. Regression equations were y=0.99x+0.0034 (r{sup 2}=0.86, P<.001) and y=1.16x-0.0077 (r{sup 2}=0.87, P<.001) in normal volunteer and patient groups, respectively, and y=1.07x-0.0019 (r{sup 2}=0.87, P<.001) when combined. Conclusions: Both methods exhibited similar values of k{sub mono}. Parametric k{sub mono} image may result in better visual understanding of regional myocardial oxidative metabolism.
Energy Technology Data Exchange (ETDEWEB)
Schuchmann, M.N.; von Sonntag, C.
1982-09-01
The kinetics of the reactions of CO/sub 2/ + OH /sup -/-> HCO/sub 3//sup -/ (i) and barbituric acid -> barbiturate anion + H/sup +/ (ii) have been remeasured using as a new approach the pulse radiolysis technique with optical and conductivity detection. The rate constants obtained in the present study, ksub(j) (21/sup 0/C) = 6900 +- 700 M/sup -1/ s/sup -1/ and ksub(II) (19/sup 0/C) = 22 +- 2 s/sup -1/ agree within experimental errors with values obtained earlier by other methods.
International Nuclear Information System (INIS)
Accurate quantum total reaction probabilities for the collinear reaction X + F2 (upsilon = 0.1) → XF + F (X = Mu, H, D, T) have been used to calculate collinear rate constants and activation energies. Comparison is made with collinear quasi-classical trajectory calculations and transition state theory assuming classical motion along a separable reaction coordinate and vibrational adiabaticity. Considerable differences between the quantum and quasi-classical and transition state theory results are found only for the Mu reaction at low temperatures. 5 figures, 35 references, 6 tables
Schubert, Wayne W.; Beaudet, Robert A.
2011-04-01
Exposing flight hardware to dry heat is a NASA-approved sterilization method for reducing microbial bioburden on spacecraft. The existing NASA specification only allows heating the flight hardware between 104°C and 125°C to reduce the number of viable microbes and bacterial spores. Also, the NASA specifications only allow a four log reduction by dry heat microbial reduction because very heat-resistant spores are presumed to exist in a diverse population (0.1%). The goal of this research was to obtain data at higher temperatures than 125°C for one of the most heat-resistant microorganisms discovered in a spacecraft assembly area. These data support expanding the NASA specifications to temperatures higher than 125°C and relaxing the four log reduction specification. Small stainless steel vessels with spores of the Bacillus strain ATCC 29669 were exposed to constant temperatures between 125°C and 200°C under both dry and ambient room humidity for set time durations. After exposures, the thermal spore exposure vessels were cooled and the remaining spores recovered and plated out. Survivor ratios, lethality rate constants, and D-values were determined at each temperature. The D-values for the spores exposed under dry humidity conditions were always found to be shorter than those under ambient humidity. The temperature dependence of the lethality rate constants was obtained by assuming that they obeyed Arrhenius behavior. The results are compared to those of B. atrophaeus ATCC 9372. In all cases, the D-values of ATCC 29669 are between 20 and 50 times longer than those of B. atrophaeus ATCC 9372.
Institute of Scientific and Technical Information of China (English)
陈书鸿; 张丽莹; 乐艳; 侯健; 文强; 李廷真
2016-01-01
改进了电导法测定乙酸乙酯皂化反应速率常数实验的反应器和反应物混合方式。采用了一种改进的双层恒温烧杯作为反应器，可以准确地控制反应温度。用单通道移液器量取分析纯乙酸乙酯加入反应器，使用磁力搅拌器快速混合反应物。改进后的实验能够方便地测量κ0和κt，学生通过实验可以得到较为准确的速率常数和较好的数据拟合相关系数。%The study aims to improve the mixing mode and reactor of the experiment for determining rate constant of acetic ether saponification using electric conductant method. By using a double layer thermostatic beaker as the reactor, the reaction temperature can be efficient controlled. The analytically pure acetic ether has been poured into reactor by micro pipettes, after that the reactants have been quickly mixed with a magnetic stirrer. The κ0 and κt are measured easily with this improvement in experiment. It enables students to obtain comparatively accurate rate constant and better correlation coefficients.
Sugimoto, Yu; Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji
2016-03-31
To understand electrostatic interactions in biomolecules, the bimolecular rate constants (k) between redox enzymes and charged substrates (in this study, redox mediators in the electrode reaction) were evaluated at various ionic strengths (I) for the mediated bioelectrocatalytic reaction. The k value between bilirubin oxidase (BOD) and positively charged mediators increased with I, while that between BOD and negatively charged mediators decreased with I. The opposite trend was observed for the reaction of glucose oxidase (GOD). In the case of noncharged mediators, the k value was independent of I for both BOD and GOD. These results reflect the electrostatic interactions between the enzymes and the mediators. Furthermore, we estimated k/k° (k° being the thermodynamic rate constant) by numerical simulation (finite element method) based on the Poisson-Boltzmann (PB) equation. By considering the charges of individual atoms involved in the amino acids around the substrate binding sites in the enzymes, the simulated k/k° values well reproduced the experimental data. In conclusion, k/k° can be predicted by PB-based simulation as long as the crystal structure of the enzyme and the substrate binding site are known. PMID:26956542
DEFF Research Database (Denmark)
Nielsen, O.J.; Sehested, J.
Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (......). The upper limits were derived as k4 < 0.5 x 10(-14) cm3 molecule-1 s-1, and k5 <1 x 10(-13) cm3 molecule-1 s-1. Results are discussed in the context of the atmospheric chemistry and ozone depletion by hydrofluorocarbons.......Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (5...
Cosmological Hubble constant and nuclear Hubble constant
International Nuclear Information System (INIS)
The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
Heyne, Joshua S.
Due to growing environmental concern over the continued use of fossil fuels, methods to limit emissions and partially replace fossil fuel use with renewable biofuels are of considerable interest. Developing chemical kinetic models for the chemistry that affects combustion properties is important to understanding how new fuels affect combustion energy conversion processes in transportation devices. This thesis reports the experimental study of several important reactions (the H + O2 branching reaction, the key decomposition reactions of tertiary-butanol, the dehydration reaction of isopropanol, and the retro Diels-Alder reaction of cyclohexene) and develops robust analysis methods to estimate the absolute uncertainties of specific elementary rate constants derived from the experimental data. In the study of the above reactions, both a direct and indirect rate constant determination technique with associated uncertainty estimation methodologies are developed. In the study of the decomposition reactions, a direct determination technique is applied to experimental data gathered in preparation of this thesis. In the case of the dehydration reaction of tertiary-butanol and the retro Diels-Alder reaction of cyclohexene, both of which are used as internal standards for relative rate studies (Herzler et al. 1997) and chemical thermometry (Rosado-Reyes et al. 2013) , analysis showed an ˜20 K difference in the reaction rate between the reported results and the previous recommendations. In light of these discrepancies, an uncertainty estimation of previous recommendations illuminated an uncertainty of at least 20 K for the dehydration reaction of tertiary-butanol and the retro Diels-Alder reaction of cyclohexene, thus resolving the discrepancies. The determination of the H + O2 branching reaction and decomposition reactions of isopropanol used an indirect determination technique. The uncertainty of the H + O2 branching reaction rate is shown to be underestimated by previous
De Fazio, Dario
2014-06-21
In this work, we present a quantum mechanical scattering study of the title reaction from 1 mK to 2000 K. Total integral cross sections and thermal rate constants are compared with previous theoretical and experimental data and with simpler theoretical models to understand the range of validity of the approximations used in the previous studies. The obtained quantum reactive observables have been found to be nearly insensitive to the roto-vibrational energy of the reactants at high temperatures. More sensitive to the reactant's roto-vibrational energy are the data in the cold and ultra-cold regimes. The implications of the new data presented here in the early universe scenario are also discussed and analyzed. PMID:24810283
Hickson, Kevin M; Bourgalais, Jérémy; Capron, Michael; Picard, Sebastien D Le; Goulay, Fabien; Wakelam, Valentine
2016-01-01
A continuous supersonic flow reactor has been used to measure rate constants for the C + NH3 reaction over the temperature range 50 to 296 K. C atoms were created by the pulsed laser photolysis of CBr4. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence (VUV LIF) of C loss and through H formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of 1.8 10-10 cm3 molecule-1 s-1 at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas-grain interactions. In particular, the effect of the ortho-to-para ratio of H2 which plays a crucial role in interstellar NH3 synthesis is examined.
Institute of Scientific and Technical Information of China (English)
HE Jian-Feng; CHEN Feng; LI Jing
2006-01-01
@@ A quasiclassical trajectory study with the sixth-order explicit symplectic algorithm for the N(4S)+O2 (X3∑-g ) →NO (X2Ⅱ)+O(3P) reaction has been reported by employing a new ground potential energy surface. We have discussed the influence of the relative translational energy, the vibrational and rotational levels of O2 molecules on the total reaction cross section. Thermal rate constants at temperatures 300, 600, and 1000 K determined in this work for the reaction are 4.4 × 107, 1.8 × 1010, and 3.1 × 1011 cm3mol-1s-1, respectively. It is found that they are in better agreement with the experimental data than previous theoretical values.
Constant Proportion Debt Obligations (CPDOs)
DEFF Research Database (Denmark)
Cont, Rama; Jessen, Cathrine
2012-01-01
Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from the...
Kerma constant of gamma radiation
International Nuclear Information System (INIS)
The values are tabulated of the gamma kerma constant for 106 radionuclides and an energy threshold of δ=0, 10, 20 and 30 keV. The calculated values will be useful in gamma radiation protection for ease of calculation of the kerma rate from a point radiation source. The study was required in view of the consistent introduction of SI units. (author)
Energy Technology Data Exchange (ETDEWEB)
Zanchet, Alexandre; Bulut, Niyazi; Roncero, Octavio [Instituto de Fisica Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, E-28006 Madrid (Spain); Godard, B.; Cernicharo, Jose [Centro de Astrobilogia, CSIC-INTA, Torrejon de Ardoz, Madrid (Spain); Halvick, Philippe, E-mail: octavio.roncero@csic.es [Institut des Sciences Moleculaires, Universite de Bordeaux, CNRS UMR 5255, 351 cours de la Liberation, F-33405 Talence Cedex (France)
2013-04-01
State-to-state rate constants for the title reaction are calculated using the electronic ground state potential energy surface and an accurate quantum wave-packet method. The calculations are performed for H{sub 2} in different rovibrational states, v = 0, 1 and J = 0 and 1. The simulated reaction cross section for v = 0 shows a rather good agreement with the experimental results of Gerlich et al., both with a threshold of 0.36 eV and within the experimental error of 20%. The total reaction rate coefficients simulated for v = 1 are two times smaller than those estimated by Hierl et al. from cross sections measured at different temperatures and neglecting the contribution from v > 1 with an uncertainty factor of two. Thus, part of the disagreement is attributed to the contributions of v > 1. The computed state-to-state rate coefficients are used in our radiative transfer model code applied to the conditions of the Orion Bar photodissociation region, and leads to an increase of the line fluxes of high-J lines of CH{sup +}. This result partially explains the discrepancies previously found with measurements and demonstrates that CH{sup +} excitation is mostly driven by chemical pumping.
Sadeghi, N.; Setser, D. W.; Francis, A.; Czarnetzki, U.; Döbele, H. F.
2001-08-01
The total quenching rate constants of argon atoms in the 4p'[1/2]0, 4p[1/2]0, 4p[3/2]2, and 4p[5/2]2 states (2p1, 2p5, 2p6, and 2p8, respectively, in the Paschen numbering system) by rare gases, H2, D2, N2, CO, NO, O2, F2, Cl2, CO2, NO2, CH4, C2H2, C2H4, C2H6, CF4, CHF3, and SF6 have been determined at room temperature. These four excited states of argon (energy 13.09-13.48 eV) were selectively prepared by two-photon excitation from the ground state using VUV (184-190 nm range) laser pulses. The total quenching rates were deduced from the pressure dependence of the decay times of the excited-state atoms, measured by observing their fluorescence emission intensities in the presence of added reagents. The quenching constants increase from values of ≅0.01×10-10 cm3 atom-1 s-1 for Ne, to ≅0.1×10-10 cm3 atom-1 s-1 for He and Ar, and to very large values, (5-15)×10-10 cm3 atom-1 s-1, for most polyatomic molecules, F2, Cl2, and O2. The quenching mechanisms of the Ar(4p,4p') atoms are briefly discussed and compared to the reactions of the Ar(4s,4s') metastable and resonance state atoms, 11.55-11.83 eV, which can serve as a reference.
Cosmological Constant, Fine Structure Constant and Beyond
Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze
2016-01-01
In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...
Directory of Open Access Journals (Sweden)
Ricardo Peraça Toralles
2008-03-01
Full Text Available O ácido ascórbico, vitamina C, é usado extensivamente na indústria de alimentos, não só devido ao seu valor nutricional, mas devido a suas contribuições funcionais na qualidade do produto. Existem muitos estudos sobre a estabilidade cinética do ácido ascórbico em bebidas, mas nenhum estudo foi encontrado sobre as constantes cinéticas de degradação do ácido ascórbico adicionado em purê de pêssego. Neste trabalho, estudou-se a cinética de degradação do ácido ascórbico em purê de pêssego da cultivar Jade, em condições anaeróbicas e na faixa de 70 a 90 °C. As concentrações de purês testadas foram 12, 22 e 32 °Brix. A análise cinética dos dados sugere que a degradação foi significativamente representada pelos modelos cinéticos de zero e primeira ordem. A velocidade de degradação do ácido ascórbico foi dependente da temperatura. A energia de ativação média foi de 45 kJ.mol-1 e independente da concentração de sólidos solúveis.Ascorbic acid (vitamin C is extensively used in the food industry, not only for its nutritional value, but also for its many functional contributions to product quality. There have been many studies on the stability of ascorbic acid in different beverages, but no study was found on the reaction rate constants for ascorbic acid degradation in peach purée. In this work, the degradation of ascorbic acid in Jade peach purée was studied in anaerobic conditions and from 70-90 °C. The peach purée concentrations tested were 12, 22 and 32 °Brix. The kinetic analysis of the data suggests that the degradation was significantly represented by zero and first-order kinetic models. The rate of ascorbic acid degradation in peach purée was temperature dependent. The average activation energy was 45 kJ.mol-1 and independent of the concentration of soluble solids.
Physics without physical constants
International Nuclear Information System (INIS)
Following the general principles of both Newton's mechanics and Maxwell's electrodynamics, a new approach to basic equations of physics is presented. The new basic equations express fundamental laws of physics and are free from any physical constants. The necessary constants appear only through some kind of constitutive relations and by considering special solutions of the basic equations. The presented approach admits a new interpretation of fundamental physical constants, such as the Planck gravitational ones. 4 refs. (author)
The 1% concordance Hubble constant
International Nuclear Information System (INIS)
The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s–1 Mpc–1. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H 0/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.
Directory of Open Access Journals (Sweden)
Carroll Sean M.
2001-01-01
Full Text Available This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero vacuum energy.
Boehmite Dissolution Model Based on Simulant Data
International Nuclear Information System (INIS)
Several of the Hanford waste tanks contain significant quantities of boehmite. This boehmite will be dissolved through caustic leaching as part of the Hanford Tank Waste Treatment and Immobilization Plant currently under construction. Therefore, it is important to fully understand the nature of this dissolution process so that caustic leaching can be effectively deployed on the Hanford tank wastes. This research determined the impact of primary control parameters such as temperature, hydroxide concentration, approach to solubility, and stirring rate on the boehmite dissolution rate.
1995-08-01
about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the
Institute of Scientific and Technical Information of China (English)
杜玉林
2012-01-01
The assumption of constant risk-free interest rate in Black-Scholes formula cannot be satisfied in market. In this paper , we find the option price interval assuming the risk-free lies within a given interval. First we transform this financia/ problem to a stochastic optimal control problem, then obtain options＂ maximum and minimum price models through dynamic programming principle. We then discuss how to solve the nonlinear PDE model and how to narrow the price interval through optima/static hedging. We conclude this paper by giving its applieations in U. S. A option market through BaiDu options,comparing with Black-scholes, and giving a method how to identify arbitrage opportunity in option markets.%Black—Scholes公式中无风险利率的常数假设与现实不符。本文假设无风险利率在一个区间中变动，讨论求期权价格区间问题。首先将此问题归结为一个随机最优控制问题，然后利用动态规划原理得到期权价格区间上下限满足的模型以及模型解法，并利用最优静态对冲缩小此价格区间，最后以BaiDu股票期权为例给出了模型在期权市场上的应用，提供了一种期权市场上的套利识别方法并与Black—Scholes公式的结果做了比较。
Kim, Daekyun; Stevens, Philip S; Hites, Ronald A
2011-02-01
The rate constants for the gas-phase reactions of hydroxyl radicals and ozone with the biogenic hydrocarbons β-ocimene, β-myrcene, and α- and β-farnesene were measured using the relative rate technique over the temperature ranges 313-423 (for OH) and 298-318 K (for O₃) at about 1 atm total pressure. The OH radicals were generated by photolysis of H₂O₂, and O₃ was produced from the electrolysis of O₂. Helium was used as the diluent gas. The reactants were detected by online mass spectrometry, which resulted in high time resolution, allowing large amounts of data to be collected and used in the determination of the Arrhenius parameters. The following Arrhenius expressions have been determined for these reactions (in units of cm³ molecules⁻¹ s⁻¹): for β-ocimene + OH, k = (4.35(-0.66)(+0.78)) × 10⁻¹¹ exp[(579 ± 59)/T]; for β-ocimene + O₃, k = (3.15(-0.95)(+1.36)) × 10⁻¹⁵ exp[-(626 ± 110)/T]; for β-myrcene + O₃, k = (2.21(-0.66)(+0.94)) × 10⁻¹⁵ exp[-(520 ± 109)/T]; for α-farnesene + OH, k(OH) = (2.19 ± 0.11) × 10⁻¹⁰ for 23-413 K; for α-farnesene + O₃, k = (3.52(-2.54)(+9.09)) × 10⁻¹² exp[-(2589 ± 393)/T]; for β-farnesene + OH, k(OH) = (2.88 ± 0.15) × 10⁻¹⁰ for 323-423 K; for β-farnesene + O₃, k = (1.81(-1.19)(+3.46)) × 10⁻¹² exp[-(2347 ± 329)/T]. The Arrhenius parameters here are the first to be reported. The reactions of α- and β-farnesene with OH showed no significant temperature dependence. Atmospheric residence times due to reactions with OH and O₃ were also presented. PMID:21166436
Dielectric Constant of Suspensions
Mendelson, Kenneth S.; Ackmann, James J.
1997-03-01
We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.
The 1% concordance Hubble constant
Energy Technology Data Exchange (ETDEWEB)
Bennett, C. L.; Larson, D.; Weiland, J. L. [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Hinshaw, G., E-mail: cbennett@jhu.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)
2014-10-20
The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.
Algorithm for structure constants
Paiva, F M
2011-01-01
In a $n$-dimensional Lie algebra, random numerical values are assigned by computer to $n(n-1)$ especially selected structure constants. An algorithm is then created, which calculates without ambiguity the remaining constants, obeying the Jacobi conditions. Differently from others, this algorithm is suitable even for poor personal computer. ------------- En $n$-dimensia algebro de Lie, hazardaj numeraj valoroj estas asignitaj per komputilo al $n(n-1)$ speciale elektitaj konstantoj de strukturo. Tiam algoritmo estas kreita, kalkulante senambigue la ceterajn konstantojn, obeante kondicxojn de Jacobi. Malsimile al aliaj algoritmoj, tiu cxi tauxgas ecx por malpotenca komputilo.
DEFF Research Database (Denmark)
Nielsen, O.J.
1991-01-01
Rate constants for the reactions of OH radicals with CH3CHF2 and CHCl2CF3 have been determined over the temperature range 295-388 K and a total pressure of 1 atm. The OH rate data were obtained using the absolute rate technique of pulse radiolysis combined with kinetic spectroscopy. The data can ...... light of the important role CH3CHF2 and CHCl2CF3 play as alternatives to the fully halogenated chlorofluorocarbons....
Microscopic group constants determination
International Nuclear Information System (INIS)
The method of microscopic group constants determination for nuclear reactor calculations is described in this paper. The principle of this method is group averaging of microscopic cross sections with respect to the standard spectrum. The group cross sections obtained are used for the calculation of fast critical assembly Jezebel. (author)
Institute of Scientific and Technical Information of China (English)
赵庆孝; 常兆华; 杨鹏飞
2012-01-01
目的 验证一种定功率变流量以维持T0.2(距射频针0.2 cm处的温度)于设定值的气冷射频消融方式的可行性及有效性.方法 以土豆为实验对象,设计了针对不同T0.2预设值、氮气压力、射频功率的3组实验,通过考察射频针周围组织升温幅度及升温速度确定上述3个参数对消融效果的影响.结果 T0.2预设值越高,周围组织升温幅度越大；如能维持T0.2于预设值,则升温效果与氮气压力无关；同样时间内,升温幅度随功率增大而增大,但超过一定功率值后,由于消融时间缩短,升温幅度反而逐渐减小.结论 定功率变流量的气冷射频消融方式优于同工况下的传统气冷射频消融方式,实验结果可为气冷射频技术的优化提供参考.%Objective To verify the feasibility and efficacy of a new radiofrequency ablation ( RFA) mode with constant power and varying gas flow rate to keep T0.2(the temperature 0. 2 cm away from the RF probe) at the presetting temperature. Methods Three groups of experiments were performed according to different presetting value of T0.2, gas pressure and RF power in potatoes. The effects of the former 3 parameters mentioned above on ablation efficacy were evaluated by the degree and the rate of temperature rise of the tissue around the probe. Results The higher the presetting value of T0.2, the larger the degree of temperature rise of tissues was; If T0.2 could be kept at the preset value, the temperature rise was not related to the nitrogen pressure; In the same ablation duration, the degree of temperature rise was in direct proportion to the power. But when the power reached a certain level, the former was in contrast with the latter because of the ablation duration getting shorter. Conclusion The new RFA mode is superior to the regular one. The results provide helpful references for the optimization of gas-cooled RFA technology.
Perdomo, Oscar M
2013-01-01
In this paper we show all possible ramps where an object can move with constant speed under the effect of gravity and friction. The planar ramp are very easy to describe, just rotate a curve with velocity vector (tanh(as),sech(as)). Recall that tanh(as)^2+sech^2(as) = 1. Therefore, the solution of the planar constant speed problem is connected with easy to describe examples of curves with arc-length parameter. For ramps in the space, we show that there are as many ramps as tangent unit vector fields in the south hemisphere. A video explaining these results can be found at http://www.youtube.com/watch?v=iBrvbb0efVk
Variation of fundamental constants
Flambaum, V V
2006-01-01
We present a review of recent works devoted to the variation of the fine structure constant alpha, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra, Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feschbach resonance.
The cosmological constant puzzle
Bass, Steven D.
2011-01-01
Abstract The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of General Relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 10 56 times smaller than the value expected from quantum fields and Standard Model particle physi...
International Nuclear Information System (INIS)
Small fluctuations in the solar constant can occur on timescales much shorter than the Kelvin time. Changes in the ability of convection to transmit energy through the superadiabatic and transition regions of the convection zone cause structure adjustments which can occur on a time scale of days. The bulk of the convection zone reacts to maintain hydrostatic equilibrium (though not thermal equilibrium) and causes a luminosity change. While small radius variations will occur, most of the change will be seen in temperature
Directory of Open Access Journals (Sweden)
Neal Jackson
2015-09-01
Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
Constant conditional entropy and related hypotheses
International Nuclear Information System (INIS)
Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)
Approximations to Euler's constant
International Nuclear Information System (INIS)
We study a problem of finding good approximations to Euler's constant γ=lim→∞ Sn, where Sn = Σk=Ln (1)/k-log(n+1), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence Sn can be significantly improved if Sn is replaced by linear combinations of Sn with integer coefficients. In this paper, considering more general linear transformations of the sequence Sn we establish new accelerating convergence formulae for γ. Our estimates sharpen and generalize recent Elsner's, Rivoal's and author's results. (author)
Reactor group constants and benchmark test
International Nuclear Information System (INIS)
The evaluated nuclear data files such as JENDL, ENDF/B-VI and JEF-2 are validated by analyzing critical mock-up experiments for various type reactors and assessing applicability for nuclear characteristics such as criticality, reaction rates, reactivities, etc. This is called Benchmark Testing. In the nuclear calculations, the diffusion and transport codes use the group constant library which is generated by processing the nuclear data files. In this paper, the calculation methods of the reactor group constants and benchmark test are described. Finally, a new group constants scheme is proposed. (author)
Constant Proportion Portfolio Insurance
DEFF Research Database (Denmark)
Jessen, Cathrine
2014-01-01
Portfolio insurance, as practiced in 1987, consisted of trading between an underlying stock portfolio and cash, using option theory to place a floor on the value of the position, as if it included a protective put. Constant Proportion Portfolio Insurance (CPPI) is an option-free variation on the...... theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio...... insurance largely died with the crash of 1987, but CPPI is still going strong. In the frictionless markets of finance theory, the issuer’s strategy to hedge its liability under the contract is clear, but in the real world with transactions costs and stochastic jump risk, the optimal strategy is less obvious...
Energy Technology Data Exchange (ETDEWEB)
Beiu, V.
1997-04-01
In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.
Decay constants in geochronology
Institute of Scientific and Technical Information of China (English)
IgorM.Villa; PaulR.Renne
2005-01-01
Geologic time is fundamental to the Earth Sciences, and progress in many disciplines depends critically on our ability to measure time with increasing accuracy and precision. Isotopic geochronology makes use of the decay of radioactive nuclides as a help to quantify the histories of rock, minerals, and other materials. Both accuracy and precision of radioisotopic ages are, at present, limited by those of radioactive decay constants. Modem mass spectrometers can measure isotope ratios with a precision of 10-4 or better. On the other hand, the uncertainties associated with direct half-life determinations are, in most cases, still at the percent level. The present short note briefly summarizes progress and problems that have been encountered during the Working Group's activity.
Directory of Open Access Journals (Sweden)
Jackson Neal
2007-09-01
Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.
Ricardo Peraça Toralles; João Luiz Vendruscolo; Claire Tondo Vendruscolo; Francisco Augusto Burkert Del Pino; Pedro Luiz Antunes
2008-01-01
O ácido ascórbico, vitamina C, é usado extensivamente na indústria de alimentos, não só devido ao seu valor nutricional, mas devido a suas contribuições funcionais na qualidade do produto. Existem muitos estudos sobre a estabilidade cinética do ácido ascórbico em bebidas, mas nenhum estudo foi encontrado sobre as constantes cinéticas de degradação do ácido ascórbico adicionado em purê de pêssego. Neste trabalho, estudou-se a cinética de degradação do ácido ascórbico em purê de pêssego da cult...
International Nuclear Information System (INIS)
Maxwell-averaged reaction rates (sigma v-bar) are presented for 24 interactions between 1H, 2H, 3H, 3He, 4He, 6Li, 7Li, 10B, and 11B ions. The reactions rates are calculated by use of the evaluated data of the LLL Evaluated Nuclear Data Library (ENDL). 5 figures, 5 tables
Poole, R K; Salmon, I; Chance, B
1994-05-01
Cytochromes b and o in membrane vesicles from aerobically grown Escherichia coli were readily reduced by succinate; one cytochrome, which we propose should be called cytochrome o', reacted with CO in the Fe(II) state to give a photodissociable CO adduct. The photodissociation spectrum (photolysed minus pre-photolysis) at sub-zero temperatures had a relatively high gamma/alpha absorbance ratio, indicating a high-spin haem, which, in the reduced state, probably contributes little to the sharp alpha absorbance of the oxidase complex in membranes. Reaction with oxygen of the unliganded high-spin haem between -132 degrees C and -95 degrees C following photolytic activation gave a product that is identified as the oxygenated form, being spectrally similar to, but not identical with, the CO adduct. In membranes, the forward velocity constant at -95 degrees C was 61 M-1s-1, and the dissociation constant was 1.6 x 10(-5) M O2, as it is in intact cells. These data clearly distinguish the oxygen-trapping strategy of the cytochrome o' in this oxidase from that of cytochrome a3 and also suggest that the presence of the soluble flavohaemoglobin (Hmp) in intact cells is without effect on such measurements of the primary oxygen reaction. In view of recent findings that this oxidase complex contains predominantly one mole of haem O and one of haem B, a revised nomenclature for the oxidase complex is proposed, namely, cytochrome bo'. PMID:8025668
The interacting and non-constant cosmological constant
International Nuclear Information System (INIS)
We propose a time-varying cosmological constant with a fixed equation of state, which evolves mainly through its interaction with the background during most of the long history of the universe. However, such interaction does not exist in the very early and the late-time universe and produces the acceleration during these eras when it becomes very nearly a constant. It is found that after the initial inflationary phase, the cosmological constant, which we call as lambda parameter, rolls down from a large constant value to another but very small constant value and further dominates the present epoch showing up in the form of the dark energy driving the acceleration. (author)
Adelic Universe and Cosmological Constant
Makhaldiani, Nugzar
2003-01-01
In the quantum adelic field (string) theory models, vacuum energy -- cosmological constant vanish. The other (alternative ?) mechanism is given by supersymmetric theories. Some observations on prime numbers, zeta -- function and fine structure constant are also considered.
Dyes with high dielectric constants
Langhals, Heinz
1988-01-01
The dielectric constants of perylene dyes, perylene-3,4: 9,10-tetracarboxylic bisimides, are reported. With aromatic substituents, dielectric constants up to 110 are obtained. With polymeric dyes, the dielectric constants rise to 260. Mechanisms and applications are discussed.
Sofia de Amorim Cerejo; Ewaldo de Mattos Júnior; Lilian Toshiko Nishimura; Carolina Quarterone; Leandro Guimarães Franco
2013-01-01
Constant rate infusion (CRI) shows several advantages in balanced anesthesia, such as reduction of requirement for inhaled anesthetics and control of pain. The most commonly used drugs in these protocols are local anesthetics, dissociative, and opioids, which may be administered alone or in combinations. We evaluated the records of 200 dogs that underwent various surgical procedures with anesthetic or analgesic CRI in the perioperative period during 2011 and 2012 at the Veterinary Hospital of...
Forward recursions and normalizing constant
Guyon, Xavier; Hardouin, Cécile
2009-01-01
Maximum likelihood parameter estimation is frequently replaced by various techniques because of its intractable normalizing constant. In the same way, the literature displays various alternatives for distributions involving such unreachable constants. In this paper, we consider a Gibbs distribution $\\pi $ and present a recurrence formula allowing a recursive calculus of the marginals of $\\pi $ and in the same time its normalizing constant$.$ The numerical performance of this algorithm is eval...
Basic constant of matter world
International Nuclear Information System (INIS)
It was analysed how to gain constant 46 hidden among elementary units of matter world, which is divided into, 1, 2, 4, 8, 16, 8, 4, 2, 1. Here it shows the unity of opposites on philosophy and simple symmetric beauty of mathphysics. The constant specifically shows that scope constant 44 in nuclides layer of matter world and chromosome number of mankind is 23 pairs, which is the highest form of matter motion, the basic cause of existing constant 46 is that matter exists in space-time with 4-dimensions, and it obeys the principle of the most lower energy
International Nuclear Information System (INIS)
The objective of this research to experimentally determine the hydrogen generation rate during the beginning and subsequent stages of liquid metal (Li17Pb83) and water reaction. The experimental set-up has been built. It includes a metal sample preparation apparatus, a reaction system, a measurement system and a PC based data acquisition and control system. The most important feature of the reaction system is a pneumatic actuated quick opening and closing high temperature, all stainless steel valve used the system for reaction time control. The PC system provides remote process sequencing, acquisition and control of all the systems except the metal preparation apparatus. Due to the reactivity of the lithium, all the metal sampling, preparation and loading procedures are executed in a glove box under argon protection. The metal temperature was varied between 350 degrees C-650 degrees C and water temperature fixed at 60 degrees C during the experiments. A set of experimental procedures and two analyses methods: (1) thermodynamics method and (2) heat transfer method are discussed. All the measurements and data collections are executed under the PC system control. A data analysis program is used to calculate both the partial pressure of hydrogen and the hydrogen generation rate. The experiment results indicate that the amount of hydrogen generated is relate to the initial liquid metal temperature when the reaction surface is fixed. The mass of hydrogen generated as a function of initial liquid metal temperature and time of reaction is presented, The hydrogen generation over a time period of 240 seconds and the calculated errors are summarized in Table 1
Spectrophotometric determination of association constant
DEFF Research Database (Denmark)
Spanget-Larsen, Jens
2016-01-01
Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charg...
Formulas for determining rotational constants
Guelachvili, G.
This document is part of Subvolume B `Linear Triatomic Molecules', Part 9, of Volume 20 `Molecular Constants mostly from Infrared Spectroscopy' of Landolt-Börnstein Group II `Molecules and Radicals'. Part of the introduction, it states formulas for determining rotational constants, band center, band origin, and quadrupole coupling. Specific comments relate to BHO (HBO) and COS (OCS).
The stability of fundamental constants
International Nuclear Information System (INIS)
The tests of the constancy of fundamental constants are tests of the local position invariance and thus of the equivalence principle, at the heart of general relativity. After summarising the links between fundamental constants, gravity, cosmology and metrology, a brief overview of the observational and experimental constraints on their variation is proposed. (authors)
Bose-Einstein condensation at constant temperature
Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.
2004-09-01
We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.
Constant Communities in Complex Networks
Chakraborty, Tanmoy; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh
2013-01-01
Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been very less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core func...
Fundamental Constants and Conservation Laws
Roh, Heui-Seol
2001-01-01
This work describes underlying features of the universe such as fundamental constants and cosmological parameters, conservation laws, baryon and lepton asymmetries, etc. in the context of local gauge theories for fundamental forces under the constraint of the flat universe. Conservation laws for fundamental forces are related to gauge theories for fundamental forces, their resulting fundamental constants are quantitatively analyzed, and their possible violations at different energy scales are...
Varying Constants, Gravitation and Cosmology
Directory of Open Access Journals (Sweden)
Jean-Philippe Uzan
2011-03-01
Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
From the Rydberg constant to the fundamental constants metrology
International Nuclear Information System (INIS)
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
Effective cosmological constant induced by stochastic fluctuations of Newton's constant
de Cesare, Marco; Sakellariadou, Mairi
2016-01-01
We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.
Effective cosmological constant induced by stochastic fluctuations of Newton's constant
de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi
2016-09-01
We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.
Nonminimal coupling and the cosmological constant problem
Glavan, Dražen
2015-01-01
We consider a universe with a positive effective cosmological constant and a nonminimally coupled scalar field. When the coupling constant is negative, the scalar field exhibits linear growth at asymptotically late times, resulting in a decaying effective cosmological constant. The Hubble rate in the Jordan frame reaches a self-similar solution, $H=1/(\\epsilon t)$, where the principal slow roll parameter $\\epsilon$ depends on $\\xi$, reaching maximally $\\epsilon=2$ (radiation era scaling) in the limit when $\\xi\\rightarrow -\\infty$. Similar results are found in the Einstein frame (E), with $H_E=1/(\\epsilon_E t)$, but now $\\epsilon_E \\rightarrow 4/3$ as $\\xi\\rightarrow -\\infty$. Therefore in the presence of a nonminimally coupled scalar de Sitter is not any more an attractor, but instead (when $\\xi4/3$ at a rate $\\Gamma\\gg H$, the scaling changes to that of matter, $\\epsilon\\rightarrow \\epsilon_m$, and the energy density in the effective cosmological becomes a fixed fraction of the matter energy density, $M_{\\rm...
How fundamental are fundamental constants?
Duff, M. J.
2015-01-01
I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, ?. For example, the standard model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers or scales? they use to measure them. Dimensional constants, on the other hand, such as ?, c, G, e and k ?, are merely human constructs whose number and values differ from one choice of units to the next. In this sense, only dimensionless constants are 'fundamental'. Similarly, the possible time variation of dimensionless fundamental 'constants' of nature is operationally well defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as ? or ? on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.
How fundamental are fundamental constants?
Duff, M J
2014-01-01
I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might...
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt;
2011-01-01
known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Energy Technology Data Exchange (ETDEWEB)
Nez, F
2005-06-15
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
On constant elasticities of demand
Andrés Vázquez
1998-01-01
While the Slutsky matrix and duality theory have been used to establish that constant elasticity demand functions imply unitary income elasticities, zero cross price elasticities and own price elasticities equal to minus one, this note shows that these results can also be straightforwardly derived from the simple assumption that demand functions satisfy the budget constraint with strict equality.
WHY IS THE SOLAR CONSTANT NOT A CONSTANT?
International Nuclear Information System (INIS)
In order to probe the mechanism of variations of the solar constant on the inter-solar-cycle scale, the total solar irradiance (TSI; the so-called solar constant) in the time interval of 1978 November 7 to 2010 September 20 is decomposed into three components through empirical mode decomposition and time-frequency analyses. The first component is the rotation signal, counting up to 42.31% of the total variation of TSI, which is understood to be mainly caused by large magnetic structures, including sunspot groups. The second is an annual-variation signal, counting up to 15.17% of the total variation, the origin of which is not known at this point in time. Finally, the third is the inter-solar-cycle signal, counting up to 42.52%, which is inferred to be caused by the network magnetic elements in quiet regions, whose magnetic flux ranges from (4.27-38.01) × 1019 Mx.
Production in constant evolution; Produccion en constante evolucion
Energy Technology Data Exchange (ETDEWEB)
Lozano, T.
2009-07-01
The Cofrentes Nuclear Power Plant now has 25 years of operation behind it: a quarter century adding value and demonstrating the reasons why it is one of the most important energy producing facilities in the Spanish power market. Particularly noteworthy is the enterprising spirit of the plant, which has strived to continuously improve with the large number of modernization projects that it has undertaken over the past 25 years. The plant has constantly evolved thanks to the amount of investments made to improve safety and reliability and the perseverance to stay technologically up to date. Efficiency, training and teamwork have been key to the success of the plant over these 25 years of constant change and progress. (Author)
Maris, P; Tandy, P C
1998-01-01
Independent of assumptions about the form of the quark-antiquark scattering kernel we derive the explicit relation between the pion Bethe-Salpeter amplitude, Gamma_pi, and the quark propagator in the chiral limit; Gamma_pi necessarily involves a non-negligible gamma_5 gamma.P term (P is the pion four-momentum). We also obtain exact expressions for the pion decay constant, f_pi, and mass, both of which depend on Gamma_pi; and demonstrate the equivalence between f_pi and the pion Bethe-Salpeter normalisation constant in the chiral limit. We stress the importance of preserving the axial-vector Ward-Takahashi identity in any study of the pion itself, and in any study whose goal is a unified understanding of the properties of the pion and other hadronic bound states.
Wormholes and the cosmological constant
International Nuclear Information System (INIS)
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We show that in a minisuperspace model wormhole-connected universes dominate the path integral. We also provide evidence that the euclidean path integral over geometries with spherical topology is unstable with respect to formation of infinitely many wormhole-connected 4-spheres. Consistency is restored by summing over all topologies, which leads to Coleman's result. Coleman's argument for determination of other parameters is reviewed and applied to the mass of the pion. A discouraging result is found that the pion mass is driven to zero. We also consider qualitatively the implications of the wormhole theory for cosmology. We argue that a small number of universes containing matter and energy may exist in contact with infinitely many cold and empty universes. Contact with the cold universes insures that the cosmological constant in the warm ones is zero. (orig.)
Three pion nucleon coupling constants
Arriola, E Ruiz; Perez, R Navarro
2016-01-01
There exist four pion nucleon coupling constants, $f_{\\pi^0, pp}$, $-f_{\\pi^0, nn}$, $f_{\\pi^+, pn} /\\sqrt{2}$ and $ f_{\\pi^-, np} /\\sqrt{2}$ which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination $$f_p^2 = 0.0759(4) \\, , \\quad f_{0}^2 = 0.079(1) \\,, \\quad f_{c}^2 = 0.0763(6) \\, , $$ based on a partial wave analysis of the $3\\sigma$ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
Quaternions as astrometric plate constants
Jefferys, William H.
1987-01-01
A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.
Henry's law constants of polyols
Compernolle, S.; J.-F. Müller
2014-01-01
Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included....
Henry's law constants of polyols
Compernolle, S.; J.-F. Müller
2014-01-01
Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, infinite dilution activity coefficients (IDACs), solid state pressures or activity coefficient ratios are obtained as intermediary results. For most compounds, these are the first values reported, while others compare favourably with literature data in most ...
Planck's constant measurement for dummies
Damyanov, Desislav S; Ilieva, Simona I; Gourev, Vassil N; Yordanov, Vasil G; Mishonov, Todor M
2015-01-01
A simple experimental setup for measuring the Planck's constant, using Landauer quantization of the conductance of touching gold wires, is described. It consists of two gold wires with thickness of 500 micron and 1.5cm length, and a fast operational amplifier. The setup costs less than \\$30 and can be realized in every teaching laboratory in 10 days. The usage of oscilloscope is required.
Neutron Scattering and Elastic Constants
International Nuclear Information System (INIS)
Elastic constants of crystals obtained from neutron scattering techniques at frequencies, ω, of the order of 1012 cps, are frequently compared with those obtained with ultrasonic techniques for which ω 10 cps. If the normal modes of vibration of the crystal did not interact with each other or with other excitations in the crystal, these elastic constants would be identical. In a real crystal, however, interactions exist, and these lead to different behaviour, depending on whether the elastic wave propagates in a collision-free, ωτ >> 1, mode or a collision-dominated ωτ 3 have demonstrated this difference. In piezoelectric crystals τ is related to the time required for the electric polarization to follow the elastic wave. At frequencies so high that the electric polarization cannot follow the elastic wave, experiments on DKDP have shown that the elastic constants do not exhibit the anormaly present at low frequencies. Similar behaviour is expected to occur near many phase transitions which show anomalous elastic behaviour. Analogous, but probably smaller, effects occur through the interactions of elastic waves with conduction electrons in metals and with the spins in magnetic materials. (author)
Cosmology with New Astrophysical Constants
Alfonso-Faus, Antonio
2008-01-01
It is shown that Einstein field equations give two solutions for cosmology. The first one is the standard well known representative of the present status of cosmology. We identify it with the local point of view of a flat Universe with the values for the cosmological omega parameters (k = 0, lambda = 2/3, m = 1/3). The second one is a new one that we identify with a cosmic point of view, as given by free photons, neutrinos, tachyons and gravity quanta. We apply a wave to particle technique to find the matter propagation equation. Then we prove that all gravitational radii are constant, regardless of the possible time variations of the physical properties like the speed of light c, the gravitational constant G or the mass m of fundamental particles. We find two cosmological constants, c^3 /G and mc, with the condition that the field equations be derived from the action principle. With this result, and the integration of the Bianchi identity, we prove the existence of the two solutions for cosmology. We then va...
Maris, P.; Roberts, C. D.; Tandy, P. C.
1997-01-01
Independent of assumptions about the form of the quark-antiquark scattering kernel we derive the explicit relation between the pion Bethe-Salpeter amplitude, Gamma_pi, and the quark propagator in the chiral limit; Gamma_pi necessarily involves a non-negligible gamma_5 gamma.P term (P is the pion four-momentum). We also obtain exact expressions for the pion decay constant, f_pi, and mass, both of which depend on Gamma_pi; and demonstrate the equivalence between f_pi and the pion Bethe-Salpeter...
Hydrodynamic constants from cosmic censorship
International Nuclear Information System (INIS)
We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Markov constant and quantum instabilities
Pelantová, Edita; Starosta, Štěpán; Znojil, Miloslav
2016-04-01
For a qualitative analysis of spectra of certain two-dimensional rectangular-well quantum systems several rigorous methods of number theory are shown productive and useful. These methods (and, in particular, a generalization of the concept of Markov constant known in Diophantine approximation theory) are shown to provide a new mathematical insight in the phenomenologically relevant occurrence of anomalies in the spectra. Our results may inspire methodical innovations ranging from the description of the stability properties of metamaterials and of certain hiddenly unitary quantum evolution models up to the clarification of the mechanisms of occurrence of ghosts in quantum cosmology.
Henry's law constants of polyols
Directory of Open Access Journals (Sweden)
S. Compernolle
2014-05-01
Full Text Available Henry's law constants (HLC are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, infinite dilution activity coefficients (IDACs, solid state pressures or activity coefficient ratios are obtained as intermediary results. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014, an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.
The big constant out, the small constant in
International Nuclear Information System (INIS)
Some time ago, Tseytlin has made an original and unusual proposal for an action that eliminates an arbitrary cosmological constant. The form of the proposed action, however, is strongly modified by gravity loop effects, ruining its benefit. Here I discuss an embedding of Tseytlin's action into a broader context, that enables to control the loop effects. The broader context is another universe, with its own metric and dynamics, but only globally connected to ours. One possible Lagrangian for the other universe is that of unbroken AdS supergravity. A vacuum energy in our universe does not produce any curvature for us, but instead increases or decreases the AdS curvature in the other universe. I comment on how to introduce the accelerated expansion in this framework in a technically natural way, and consider the case where this is done by the self-accelerated solutions of massive gravity and its extensions
Kepler's Constant and WDS Orbit
Siregar, S
2012-01-01
The aim of this work are to find a Kepler's constant by using polynomial regression of the angular separation \\rho = \\rho(t) and the position angle \\theta = \\theta(t). The Kepler's constant obtained is used to derive the element of orbit. As a case study the angular separation and the position angle of the WDS 00063 +5826 and the WDS 04403-5857 were investigated. For calculating the element of orbit the Thiele-Innes van den Bos method is used. The rough data of the angular separation \\rho(t) and the position angle \\theta(t) are taken from the US Naval Observatory, Washington. This work also presents the masses and absolute bolometric magnitudes of each star.These stars include into the main-sequence stars with the spectral class G5V for WDS04403-5857and the type of spectrum G3V for WDS 00063+5826. The life time of the primary star and the secondary star of WDS 04403-5857 nearly equal to 20 Gyr. The life time of the primary star and the secondary star of WDS 00063+5826 are 20 Gyr and 19 Gyr, respectively.
Cleaning up the cosmological constant
Kimpton, Ian
2012-01-01
We present a novel idea for screening the vacuum energy contribution to the overall value of the cosmological constant, thereby enabling us to choose the bare value of the vacuum curvature empirically, without any need to worry about the zero-point energy contributions of each particle. The trick is to couple matter to a metric that is really a composite of other fields, with the property that the square-root of its determinant is the integrand of a topological invariant, and/or a total derivative. This ensures that the vacuum energy contribution to the Lagrangian is non-dynamical. We then give an explicit example of a theory with this property that is free from Ostrogradski ghosts, and is consistent with solar system physics and cosmological tests.
Coupling constant in dispersive model
Indian Academy of Sciences (India)
R Saleh-Moghaddam; M E Zomorrodian
2013-11-01
The average of the moments for event shapes in + - → hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\\langle 1 - T \\rangle, \\langle ρ \\rangle, \\langle B_{T} \\rangle$ and $\\langle B_{W} \\rangle$. We extract , the coupling constant in perturbative theory and α0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $(M_{Z^{°}})$ = 0.1171 ± 0.00229 and 0 ($_{I} = 2{\\text{GeV}}$) = 0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.
Henry's law constants of polyols
Compernolle, S.; Müller, J.-F.
2014-12-01
Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.
Yang, Hengzhao; Zhang, Ying
2016-04-01
Understanding the power and energy performance of supercapacitors connected to constant power elements is important for many applications. This paper proposes a characterization method for two supercapacitor models that are used to analyze the power and energy behavior of supercapacitors connected to constant power elements: linear capacitance model and constant capacitance model. The linear or constant capacitance is determined by conducting a constant power experiment. A set of constant power experiments is designed. The proposed method can reduce the error in estimating the constant power experiment time for a variety of supercapacitor samples with different rated capacitance and voltage. The accuracy of using the linear capacitance model and the constant capacitance model is approximately equal. Moreover, the performance evaluation results suggest that using the linear or constant capacitance fitted through a low power discharge experiment can minimize the error, which can serve as a guideline to design the constant power experiment.
Institute of Scientific and Technical Information of China (English)
任庆云; 杨晓磊; 王松涛
2014-01-01
Using Visual Basic 6.0 and a least squares straight line fit program to compile for the experimental data of measuring rate constant of saponification of ethyl acetate with electric conductivity instrument , more correct and scientific results including date and figures can be achieved and printed.This experimental method had the merits of precise experiment , simple operation and accurate result.The executable files of the software can operate independently without Visual Basic environment.%以Visual Basic 6.0为开发工具，结合最小二乘法直线拟合，对“电导法测定乙酸乙酯皂化反应速率常数”实验进行数据处理，得到更科学准确的实验结果，能够打印出计算结果和图形。此实验方法具有实验精密、操作简单、方便、测量结果准确等优点。经编译此实验数据处理程序的可执行文件能在脱离Visual Basic的环境下独立运行，程序的实用性和便利性较强。
A Variant of Davenport's Constant
Indian Academy of Sciences (India)
R Thangadurai
2007-05-01
Let be a prime number. Let be a finite abelian -group of exponent (written additively) and be a non-empty subset of $]n[:=\\{1,2,\\ldots,n\\}$ such that elements of are incongruent modulo and non-zero modulo . Let $k ≥ D(G)/|A|$ be any integer where () denotes the well-known Davenport’s constant. In this article, we prove that for any sequence $g_1,g_2,\\ldots,g_k$ (not necessarily distinct) in , one can always extract a subsequence $g_{i_1},g_{i_2},\\ldots,g_{i_l}$ with $1 ≤ l ≤ k$ such that $$\\sum\\limits_{j=1}^l a_j g_{i_j}=0 \\text{in} G,$$ where $a_j\\in A$ for all . We provide examples where this bound cannot be improved. Furthermore, for the cyclic groups, we prove some sharp results in this direction. In the last section, we explore the relation between this problem and a similar problem with prescribed length. The proof of Theorem 1 uses group-algebra techniques, while for the other theorems, we use elementary number theory techniques.
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
A theoretical model for estimating the margination constant of leukocytes
Directory of Open Access Journals (Sweden)
Chaui-Berlinck José
2002-02-01
Full Text Available Abstract Background Blood leukocytes constitute two interchangeable sub-populations, the marginated and circulating pools. These two sub-compartments are found in normal conditions and are potentially affected by non-normal situations, either pathological or physiological. The dynamics between the compartments is governed by rate constants of margination (M and return to circulation (R. Therefore, estimates of M and R may prove of great importance to a deeper understanding of many conditions. However, there has been a lack of formalism in order to approach such estimates. The few attempts to furnish an estimation of M and R neither rely on clearly stated models that precisely say which rate constant is under estimation nor recognize which factors may influence the estimation. Results The returning of the blood pools to a steady-state value after a perturbation (e.g., epinephrine injection was modeled by a second-order differential equation. This equation has two eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it possible to identify that these components are partitioned into three constants: R, M and SB; where SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked and a tentative estimation of R for mouse monocytes is presented. Conclusions This study establishes a firm theoretical basis for the estimation of the rate constants of the dynamics between the blood sub-compartments of white cells. It shows, for the first time, that the estimation must also take into account the exit to tissues rate constant, SB.
International Nuclear Information System (INIS)
If both the time course of the arterial plasma radionuclide concentration and the brain tissue radionuclide concentrations are known, it is possible to calculate the kinetic constants (k1*, k2*, k3*, k4*) of the glucose analogue. In a series of male subjects, arterial blood samples were obtained at frequent intervals immediately following the bolus administration of 18F-FDG and then at less frequent intervals for up to 5 hours after the radionuclide administration. The tissue time course was obtained by making positron emission tomographic scans every three minutes for 30 minutes and then at less frequent intervals for 5 hours. These images were used to construct the time course of 18F activity in gray and white matter structures. Using these values for the lumped constants and the kinetic constants, the values obtained for the global metabolic rate for glucose in two series of young male subjects were 4.99 +- 0.23 and 5.55 +- 0.37 mg/100 g/min when 11C-DG and 18F-FDG were used as tracers respectively
Capacitive Cells for Dielectric Constant Measurement
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco
2015-01-01
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
Surfaces of a Constant Negative Curvature
Directory of Open Access Journals (Sweden)
G. M. Gharib
2012-01-01
Full Text Available I study the geometric notion of a differential system describing surfaces of a constant negative curvature and describe a family of pseudospherical surfaces for the nonlinear partial differential equations with constant Gaussian curvature .
Vacuum energy and the cosmological constant
Bass, Steven D
2015-01-01
The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus LHC results might hint at critical phenomena near the Planck scale.
Anderegg, G
2013-01-01
Critical Survey of Stability Constants of EDTA Complexes focuses on the computations, values, and characteristics of stability constants. The book emphasizes that for a critical discussion of experimentally determined stability constants, it is important to consider the precision of the values that manifests the self-consistency of the constant, taking into consideration the random errors. The publication reviews the stability constants of metal complexes. The numerical calculations affirm the reactions and transformations of metal ions when exposed to varying conditions. The text also present
Constant global population with demographic heterogeneity
Cohen, Joel E.
2008-01-01
To understand better a possible future constant global population that is demographically heterogeneous, this paper analyzes several models. Classical theory of stationary populations generally fails to apply. However, if constant global population size P(global) is the sum of all country population sizes, and if constant global annual number of births B(global) is the sum of the annual number of births of all countries, and if constant global life expectancy at birth e(global) is the populat...
Origin of cosmological constant from Bulk manifold
International Nuclear Information System (INIS)
The problem about cosmological constant is a difficult and important problem, people even don't know what it is really originated from. In this letter, the authors show up a kind of origin of the cosmological constant from the viewpoint of some extra dimensional spaces, obtain different values of the cosmological constant under different circumstances, acquire the evolution function with time t. And we achieve a cosmological constant that may be fitted with modern astronomic observation. (authors)
The Not so Constant Gravitational "Constant" G as a Function of Quantum Vacuum
Maxmilian Caligiuri, Luigi
Gravitation is still the less understood among the fundamental forces of Nature. The ultimate physical origin of its ruling constant G could give key insights in this understanding. According to the Einstein's Theory of General Relativity, a massive body determines a gravitational potential that alters the speed of light, the clock's rate and the particle size as a function of the distance from its own center. On the other hand, it has been shown that the presence of mass determines a modification of Zero-Point Field (ZPF) energy density within its volume and in the space surrounding it. All these considerations strongly suggest that also the constant G could be expressed as a function of quantum vacuum energy density somehow depending on the distance from the mass whose presence modifies the ZPF energy structure. In this paper, starting from a constitutive medium-based picture of space, it has been formulated a model of gravitational constant G as a function of Planck's time and Quantum Vacuum energy density in turn depending on the radial distance from center of the mass originating the gravitational field, supposed as spherically symmetric. According to this model, in which gravity arises from the unbalanced physical vacuum pressure, gravitational "constant" G is not truly unchanging but slightly varying as a function of the distance from the mass source of gravitational potential itself. An approximate analytical form of such dependence has been discussed. The proposed model, apart from potentially having deep theoretical consequences on the commonly accepted picture of physical reality (from cosmology to matter stability), could also give the theoretical basis for unthinkable applications related, for example, to the field of gravity control and space propulsion.
Bao, Junwei Lucas; Sripa, Pattrawan; Truhlar, Donald G
2016-01-14
Multi-path variational transition state theory (MP-VTST) provides a conformationally complete framework for calculating gas-phase rate constants. For reactions in which the transition state has distinguishable torsional minima (which include most reactions), there are multiple possible reaction paths. In principle MP-VTST includes the contributions from all the reaction paths, and it should explicitly treat the variational and tunneling effects of each path, but in practice one may need to truncate the number of paths included in MP-VTST calculations in order to achieve a balance between computational cost and accuracy. In this work, we present calculations including all paths for two prototype combustion reactions, namely the two hydrogen abstraction reactions from tert-butanol by HO2 radical. For both reactions we included all the reaction paths. Since abstraction at C has 46 paths, it provided a good opportunity to carry out a case study in which we investigated the errors introduced by truncating the number of paths. For the reaction studied, we found that the variational and multidimensional tunneling transmission coefficients are very different for different reaction paths, which provides new evidence that MP-VTST is necessary for treating path-dependent variational effects and multidimensional tunneling. We found that tunneling transmission coefficients can be much larger for higher-energy paths than for lower-energy ones. Interestingly, the simple hypothesis that higher barriers are narrower does not explain this finding in the present case; we found instead that the effect is due to higher-energy barriers having the possibility of tunneling at energies farther below the barrier top. We also show that a previously applied criterion for judging convergence with respect to the number of paths may not be reliable at low temperature. PMID:26658549
Local Experiments See Cosmologically Varying Constants
Shaw, D J; Barrow, John D.; Shaw, Douglas J.
2006-01-01
We describe a rigorous construction, using matched asymptotic expansions, which establishes under very general conditions that local terrestrial and solar-system experiments will measure the effects of varying `constants' of Nature occurring on cosmological scales to computable precision. In particular, `constants' driven by scalar fields will still be found to evolve in time when observed within virialised structures like clusters, galaxies, and planetary systems. This provides a justification for combining cosmological and terrestrial constraints on the possible time variation of many assumed `constants' of Nature, including the fine structure constant and Newton's gravitation constant.
International Nuclear Information System (INIS)
A constant deflection test was developed to evaluate the susceptibility of irradiated stainless steel (SS) to irradiation-assisted stress corrosion cracking. The test was shown useful in supplementing constant extension rate tensile or slow strain rate tensile, constant load, and swelling mandrel tests that have been used in the past. Preliminary data showing the susceptibility of commercial-purity type 304 SS (UNS S30400) as a function of stress, strain, and fast neutron fluence (E > 1 MeV) were presented
The importance of being (a) constant
International Nuclear Information System (INIS)
The author intends to show how the epistemological status of the physical constants bears witness to the development of physical science in general. He classifies the various physical constants into three types, properties of particular physical objects, characteristics of classes of physical phenomena and universal constants. He discusses the phenomena of fundamental constants experiencing a change in their type, at length on the example of two important constants, c and G. He considers Planck's constant and discusses the conceptual role of universal constants in general, as well as some aspects of quantum mechanics which appear in a new light from the proposed point of view. The existence is shown of hidden universal constants, forgotten ones in the realm of classical physics, as well as overlooked ones in modern physics. The velocity of light is studied as an example of general considerations on universal constants, and as a way to approach some epistemological problems of special relativity. Newton's gravitational constant is studied in connection with the interpretation of general relativity. (Auth./C.F.)
High speed constant-fraction discriminator with ARC timing
International Nuclear Information System (INIS)
A High speed TTL output Constant-Fraction Discriminator (CFD) is introduced. The Discriminator provides both CFD timing and ARC (Amplitude and Rise time Compensated) timing. The transmission delay is only 22 ns, and the max burst rate is 100 MHz, and the Constant-Fraction shaping delay can be set internally. It provides optimum time resolution over wide ranges of pulse amplitude and rise time. The electro circuit is simple, and the cost is cheap, and it is easy to make and use it. (authors)
Five-Loop Running of the QCD coupling constant
Baikov, P A; Kühn, J H
2016-01-01
We analytically compute the five-loop term in the beta function which governs the running of $\\alpha_s$ --- the quark-gluon coupling constant in QCD. The new term leads to a reduction of the theory uncertainty in $\\alpha_s$ taken at the Z-boson scale as extracted from the $\\tau$-lepton decays as well as to new, improved by one more order of perturbation theory, predictions for the effective coupling constants of the Standard Model Higgs boson to gluons and for its total decay rate to the quark-antiquark pairs.
Success of Surgical Correction in Constant and Intermittent Exotropias
International Nuclear Information System (INIS)
Objective: To evaluate the success rate of surgical corrections of constant and intermittent exotropias. Study Design: A case series. Place and Duration of Study: Al-Ibrahim Eye Hospital, Karachi, from July 2011 to December 2012. Methodology: Patients having primary exotropia (deviation 15 - 45 prism diopters [PD]) were included. Patients with either constant exotropia or basic intermittent exotropia underwent unilateral surgery of lateral rectus recession (maximum up to 10 mm) and medial rectus resection (up to 6 mm). Similarly, when patients had intermittent distance exotropia, underwent bilateral lateral rectus recession (maximum up to 10 mm). Final outcome was considered at the end of 2 months at which achievement of A /sup 2/ 10 PD of exotropia was considered as a success. Results: Out of 248 patients, 170 (68.5%) had either constant exotropia or basic intermittent exotropia, while 78 (31.5%) had intermittent distance exotropia. Mean angle of deviation before surgery was 49.23 prism diopters while after surgery, mean angle of deviation was 8.54 prism diopters. Overall success rate was 81.45% (n=202). In case of unilateral lateral rectus recession and medial rectus resection surgery, the success rate was 85.14% while success rate in case of bilateral lateral rectus recession was 65.21% (p=0.001). Conclusion: Unilateral lateral rectus recession and medial rectus resection for surgical correction of exotropia had better surgical success rate as compared to bilateral lateral rectus recession. (author)
Constant Current Models of Brushless DC Motor
Krykowski, Krzysztof; Hetmańczyk, Janusz
2013-01-01
Two constant current models of Permanent Magnet Brushless Direct Current Motor (PM BLDC) are presented in the paper. In the first part of the paper principle of operation, basic properties and mathematical equations describing PM BLDC models are given. Then, two different constant current models of PM BLDC motor are considered: In the first model, PM BLDC motor is approximated with dc motor; in the second model, modified constant current model is applied with additional block, which is used t...
Cosmological Constant and Soft Terms in Supergravity
Choi, Kiwoon; Kim, Jihn E.; Nilles, Hans Peter, Ramos-S\\xe1nchez, Sa\\xfal
1994-01-01
Some of the soft SUSY breaking parameters in hidden sector supergravity model depend on the expectation value of the hidden sector scalar potential, $$, whose tree level value is equal to the tree level cosmological constant. The current practice of calculating soft parameters assumes that $=0$. Quantum correction to the cosmological constant can differ from the correction to $$ by an amount of order $m^2_{3/2}M_{Pl}^2/8\\pi$. This implies that, for the vanishing cosmological constant, the $$-...
Cosmological Constant and Axions in String Theory
Energy Technology Data Exchange (ETDEWEB)
Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC
2006-08-18
String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.
Bubble Universes With Different Gravitational Constants
Takamizu, Yu-ichi; Maeda, Kei-ichi
2015-01-01
We argue a scenario motivated by the context of string landscape, where our universe is produced by a new vacuum bubble embedded in an old bubble and these bubble universes have not only different cosmological constants, but also their own different gravitational constants. We study these effects on the primordial curvature perturbations. In order to construct a model of varying gravitational constants, we use the Jordan-Brans-Dicke (JBD) theory where different expectation values of scalar fi...
ZEMO system for generating group constants
International Nuclear Information System (INIS)
The code system ZEMO for generating 26 group and 140-group constant sets for fast breeder reactors neutronics is considered. Group constant libraries, calculational techniques, formats of generated group constant sets and code control parameters are described. Results of one-dimensional model calculations for some critical assemblies and results of investigation of sodium void reactivity effect calculational error caused by 26-group approximation for two-dimensional model of BN-800 are presented. 14 refs.; 1 fig.; 3 tabs
Institute of Scientific and Technical Information of China (English)
杨洋; 刘伟; 林金官; 张玉林
2014-01-01
Consider two dependent renewal risk models with constant interest rate.By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process.Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.%考虑了2个带有常数利息率的相依更新风险模型。首先研究了非复合风险模型，其中索赔额是上尾渐近独立且带有控制变换尾分布的非负随机变量，索赔时间间隔是宽下象限相依的，保费收入过程是一个非负的随机过程，利用风险理论中的方法，得到了有限时破产概率在某个有界区间上的一致渐近性。在此基础上，利用随机和尾渐近性的分析方法，进一步研究获得了更为复杂且合理的复合相依更新风险模型中有限时破产概率的一致渐近性公式，其中单个索赔额特殊化为广义负相依的，并且事故时间间隔仍然保持宽下象限相依的，索赔额和索赔次数均为控制变换尾的。
Surprises in numerical expressions of physical constants
Amir, Ariel; Tokieda, Tadashi
2016-01-01
In science, as in life, `surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a `surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form.
The determination methods of the velocity constant for electrochemical reactions
International Nuclear Information System (INIS)
In a brief introduction are recalled the fundamental mechanisms of the electrochemical reaction and the definition of the intrinsic velocity constant of a such reaction. By the nature of the different parameters which enter in this definition are due some experimental problems which are examined. Then are given the principles of the measurement methods of the velocity constant. These methods are developed with the mathematical expression of the different rates of the mass transfer to an electrode. In each case are given the experimental limits of use of the methods and the size order of the velocity constant that can be reached. A list of fundamental works to be consulted conclude this work. (O.M.)
Electromechanical systems generating constant frequency alternating current
Directory of Open Access Journals (Sweden)
Т.А. Мазур
2008-01-01
Full Text Available In the article we consider the usage of electromechanical drivers of constant speed rotation, which is based on many stepped electrodynamic reduction unit, in onboard main systems of electric supply of alternative current with constant frequency.
Habitable sphere and fine structure constant
Kozlovskii, Miroslaw P; Kozlowski, Miroslaw; Marciak-Kozlowska, Janina
2005-01-01
Future space missions, TPF and Darwin will focus on searches of signatures of life on extrasolar planets. In this paper we look for model independ definition of the habitable zone. It will be shown that the radius of the habitable sphere depends only on the constants of the Nature. Key words: Habitable sphere, fine structure constant.
Fullerene derivatives with increased dielectric constants
Jahani, Fatemeh; Torabi, Solmaz; Chiechi, Ryan C; Koster, L Jan Anton; Hummelen, Jan C
2014-01-01
The invention of new organic materials with high dielectric constants is of extreme importance for the development of organic-based devices such as organic solar cells. We report on a synthetic way to increase the dielectric constant of fullerene derivatives. It is demonstrated that introducing trie
Supplementary kinetic constants of charged particles
Ribaric, Marijan; Sustersic, Luka
2006-01-01
We put forward: (A) An improved description of classical, kinetic properties of a charged pointlike physical particle that consists, in addition to its mass and charge, also of the Eliezer and Bhabha kinetic constants; and (B) a proposal to evaluate these kinetic constants by considering the trajectories of charged particles in an acccelerator.
Constant-axial-intensity nondiffracting beam.
Cox, A J; D'Anna, J
1992-02-15
Numerical solutions of the Fresnel diffraction integral with various apodizing filter functions are used to indicate that a so-called nondiffracting beam can be produced that maintains a constant spot size and constant axial intensity over a considerable range, approximately 30 m in our example. PMID:19784285
Atomic hydrogen and fundamental physical constants
International Nuclear Information System (INIS)
Techniques are described which allow the study, in undergraduate laboratories, of the spectrum of atomic hydrogen. The Rydberg constant, the electron-proton mass ratio, and the fine-structure constant are evaluated from the measurements. The key to the series of experiments is a discharge tube in which atomic lines dominate over the molecular lines. (author)
Cosmic Time Variation of the Gravitational Constant
Tomaschitz, R
2000-01-01
A pre-relativistic cosmological approach to electromagnetism and gravitation is explored that leads to a cosmic time variation of the fundamental constants. Space itself is supposed to have physical substance, which manifests by its permeability. The scale factors of the permeability tensor induce a time variation of the fundamental constants. Atomic radii, periods, and energy levels scale in cosmic time, which results in dispersionless redshifts without invoking a space expansion. Hubble constant and deceleration parameter are reviewed in this context. The time variation of the gravitational constant at the present epoch can be expressed in terms of these quantities. This provides a completely new way to restrain the deceleration parameter from laboratory bounds on the time variation of the gravitational constant. This variation also affects the redshift dependence of angular diameters and the surface brightness, and we study in some detail the redshift scaling of the linear sizes of radio sources. The effec...
Elastic constants of layers in isotropic laminates.
Heyliger, Paul R; Ledbetter, Hassel; Kim, Sudook; Reimanis, Ivar
2003-11-01
The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity. Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions, layer thickness, and layer elastic constants. Given a material with known mass but unknown constitution, this method allows one to extract the elastic constants and density of the constituent layers. This is accomplished by measuring the frequencies and then minimizing the differences between these and those calculated using the theory of elasticity for layered media to select the constants that best replicate the frequency-response spectrum. This approach is applied to a three-layer, unsymmetric laminate of WpCu, and very good agreement is found with the elastic constants of the two constituent materials. PMID:14649998
Bubble Universes With Different Gravitational Constants
Takamizu, Yu-ichi
2015-01-01
We argue a scenario motivated by the context of string landscape, where our universe is produced by a new vacuum bubble embedded in an old bubble and these bubble universes have not only different cosmological constants, but also their own different gravitational constants. We study these effects on the primordial curvature perturbations. In order to construct a model of varying gravitational constants, we use the Jordan-Brans-Dicke (JBD) theory where different expectation values of scalar fields produce difference of constants. In this system, we investigate the nucleation of bubble universe and dynamics of the wall separating two spacetimes. In particular, the primordial curvature perturbation on superhorizon scales can be affected by the wall trajectory as the boundary effect. We show the effect of gravitational constant in the exterior bubble universe can provide a peak like a bump feature at a large scale in a modulation of power spectrum.
Distance constant of the Risø cup anemometer
DEFF Research Database (Denmark)
Kristensen, L.; Frost Hansen, O.
2002-01-01
The theory for cup-anemometer dynamics is presented in some detail and two methods of obtaining the distance constant lo are discussed. The first method is based on wind tunnel measurements: with a constant wind speed the cup anemometer is released from alocked position of the rotor and the...... increasing rotation rate recorded. It is concluded that the rapid increase in rotation rate makes the method very inaccurate. The second method consists of an analysis of turbulent, atmospheric of wind speed asmeasured by the cup anemometer and a fast-responding sonic anemometer with a spatial eddy...... resolution which is significantly better than that which can be obtained by a cup anemometer. The ratio between the measured power spectra of the horizontal windspeed by the two instruments contains the necessary information for determining the response characteristics of the cup anemometer and thereby lo...
Song, Insun
2016-05-01
The one-dimensional diffusion equation was solved to understand the pressure and flow behaviors along a cylindrical rock specimen for experimental boundary conditions of constant upstream pressure and constant downstream storage. The solution consists of a time-constant asymptotic part and a transient part that is a negative exponential function of time. This means that the transient flow exponentially decays with time and is eventually followed by a steady-state condition. For a given rock sample, the transient stage is shortest when the downstream storage is minimized. For this boundary condition, a simple equation was derived from the analytic solution to determine the hydraulic permeability from the initial flow rate during the transient stage. The specific storage of a rock sample can be obtained simply from the total flow into the sample during the entire transient stage if there is no downstream storage. In theory, both of these hydraulic properties could be obtained simultaneously from transient-flow stage measurements without a complicated curve fitting or inversion process. Sensitivity analysis showed that the derived permeability is more reliable for lower-permeability rock samples. In conclusion, the constant head method with no downstream storage might be more applicable to extremely low-permeability rocks if the upstream flow rate is measured precisely upstream.
The Hubble Constant from the Fornax Cluster Distance
Richtler, Tom; Drenkhahn, Georg; Gomez, Matias; Seggewiss, Wilhelm
1999-01-01
Type Ia supernovae are the best cosmological standard candles available. The intrinsic scatter of their decline-rate- and colour-corrected peak brightnesses in the Hubble diagram is within observational error limits, corresponding to an uncertainty of only 3km/s/Mpc of the Hubble constant. Any additional uncertainty, resulting from peak-brightness calibration, must be kept small by measuring distances to nearby host galaxies most precisely. A number of different distance determinations of the...
Global stability of an SEIR epidemic model with constant immigration
International Nuclear Information System (INIS)
An SEIR epidemic model with the infectious force in the latent (exposed), infected and recovered period is studied. It is assumed that susceptible and exposed individuals have constant immigration rates. The model exhibits a unique endemic state if the fraction p of infectious immigrants is positive. If the basic reproduction number R is greater than 1, sufficient conditions for the global stability of the endemic equilibrium are obtained by the compound matrix theory
Denny, Mark
2016-05-01
The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.
Some Zero-Sum Constants with Weights
Indian Academy of Sciences (India)
S D Adhikari; R Balasubramanian; F Pappalardi; P Rath
2008-05-01
For an abelian group , the Davenport constant () is defined to be the smallest natural number such that any sequence of elements in has a non-empty subsequence whose sum is zero (the identity element). Motivated by some recent developments around the notion of Davenport constant with weights, we study them in some basic cases. We also define a new combinatorial invariant related to $(\\mathbb{Z}/n\\mathbb{Z})^d$, more in the spirit of some constants considered by Harborth and others and obtain its exact value in the case of $(\\mathbb{Z}/n\\mathbb{Z})^2$ where is an odd integer.
Some results concerning the constant astigmatism equation
Hlaváč, Adam
2012-01-01
In this paper we continue investigation of the constant astigmatism equation z_{yy} + (1/z)_{xx} + 2 = 0. We newly interpret its solutions as describing spherical orthogonal equiareal patterns, with relevance to two-dimensional plasticity. We show how the classical Bianchi superposition principle for the sine-Gordon equation can be extended to generate an arbitrary number of solutions of the constant astigmatism equation by algebraic manipulations. As a by-product, we show that sine-Gordon solutions give slip line fields on the sphere. Finally, we compute the solutions corresponding to classical Lipschitz surfaces of constant astigmatism via the corresponding equiareal patterns.
Laser Propulsion and the Constant Momentum Mission
International Nuclear Information System (INIS)
We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids
On the constants for some Sobolev imbeddings
Directory of Open Access Journals (Sweden)
Pizzocchero Livio
2001-01-01
Full Text Available We consider the imbedding inequality is the Sobolev space (or Bessel potential space of type and (integer or fractional order . We write down upper bounds for the constants , using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if , , and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on for in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.
On structure constants of sl(2) theories
Energy Technology Data Exchange (ETDEWEB)
Petkova, V.B. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Arnold-Sommerfeld Inst. fuer Mathematische Physik (ASI); Zuber, J.B. [CEA, Service de Physique Theorique de Saclay, F-91191 Gif-sur-Yvette Cedex (France)
1995-03-27
Structure constants of minimal conformal theories are reconsidered. It is shown that ratios of structure constants of spin zero fields of a non-diagonal theory over the same evaluated in the diagonal theory are given by a simple expression in terms of the components of the eigenvectors of the adjacency matrix of the corresponding Dynkin diagram. This is proved by inspection, which leads us to carefully determine the signs of the structure constants that had not all appeared in the former works on the subject. We also present a proof relying on the consideration of lattice correlation functions and speculate on the extension of these identities to more complicated theories. ((orig.)).
Lifetime predictions of polymer matrix composites under constant or monotonic load
Guedes, RM
2006-01-01
A revision of long-term lifetime prediction of composite materials under constant and monotonic load is presented. The main failure criteria revised are energy-based criteria and fracture mechanics. It is shown that they all predict a similar relation between constant stress and constant stress rate failure strength. It is also demonstrated that the methodology proposed by Miyano et al., based on linear damage accumulation law (LCD), produces similar results. Experimental cases published in l...
Solution to the Cosmological Constant Problem by Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning; Germano Resconi; ZHENG Zhi-Peng; XU Zhan; ZHANG Da-Hua; RUAN Tu-Nan
2003-01-01
Based on geometry picture of gravitational gauge theory, the cosmological constant is determined theoreti-cally. The cosmological constant is related to the average energy density of gravitational gauge field. Because the energydensity of gravitational gauge field is negative, the cosmological constant is positive, which generates repulsive force onstars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude of theorder of about 10-52m-2, which is well consistent with experimental results.
An improved dosimeter having constant flow pump
International Nuclear Information System (INIS)
A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)
Local experiments see cosmologically varying constants
International Nuclear Information System (INIS)
We describe a rigorous matched asymptotic expansion, which establishes under very general conditions that local terrestrial and solar-system experiments will measure any variations in 'constants' of Nature occurring on cosmological scales
Cosmology with a time dependent cosmological constant
International Nuclear Information System (INIS)
In the context of the scalar-tensor theories we consider cosmological models with a time dependent cosmological constant. Several toy models are obtained among them there are solutions without singularity and accelerating. (Author)
Asymptotic safety and the cosmological constant
Falls, Kevin
2016-01-01
We study the non-perturbative renormalisation of quantum gravity in four dimensions. Taking care to disentangle physical degrees of freedom, we observe the topological nature of conformal fluctuations arising from the functional measure. The resulting beta functions possess an asymptotically safe fixed point with a global phase structure leading to classical general relativity for positive, negative or vanishing cosmological constant. If only the conformal fluctuations are quantised we find an asymptotically safe fixed point predicting a vanishing cosmological constant on all scales. At this fixed point we reproduce the critical exponent, ν = 1/3, found in numerical lattice studies by Hamber. Returning to the full theory we find that by setting the cosmological constant to zero the critical exponent agrees with the conformally reduced theory. This suggests the fixed point may be physical while hinting at solution to the cosmological constant problem.
The time constant of the somatogravic illusion
Correia Grácio, B.J.; Winkel, K.N. de; Groen, E.L.; Wentink, M.; Bos, J.E.
2013-01-01
Met desdemona hebben we gevonden dat de tijd constante van de somatografische illusie rond twee seconden is. Dit resultaat verschilt van wat was gevonden in ander onderzoek dat gebruikt maakt van een gewone centrifuge
Canonoid transformations and constants of motion
International Nuclear Information System (INIS)
The necessary and sufficient conditions for a canonoid transformation with respect to a given Hamiltonian are obtained in terms of the Lagrange brackets of the trasformation. The relation of these conditions with the constants of motion is discussed. (Author)
Hydrolysis and formation constants at 250C
International Nuclear Information System (INIS)
A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO4, PO4 and CO3. Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 250C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 250C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values
Constant global population with demographic heterogeneity
Directory of Open Access Journals (Sweden)
Joel E. Cohen
2008-05-01
Full Text Available To understand better a possible future constant global population that is demographically heterogeneous, this paper analyzes several models. Classical theory of stationary populations generally fails to apply. However, if constant global population size P(global is the sum of all country population sizes, and if constant global annual number of births B(global is the sum of the annual number of births of all countries, and if constant global life expectancy at birth e(global is the population-weighted mean of the life expectancy at birth of all countries, then B(global x e(global always exceeds P(global unless all countries have the same life expectancy at birth.
Teraji, T.; Arakaki, T.
2011-12-01
Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.
Stability of aspartame in water: organic solvent mixtures with different dielectric constants.
Sanyude, S; Locock, R A; Pagliaro, L A
1991-07-01
In order to examine the influence of solvent composition on the stability of aspartame (N-alpha-L-aspartyl-L-phenylalanine-1-methyl ester) in solution (5 mg/mL), the degradation of aspartame was carried out in water:methanol, water:ethanol, and water:glycerine mixtures with dielectric constant values of 45, 55, and 65, respectively. The rate of disappearance of aspartame was measured by a sensitive HPLC assay. The degradation rate of aspartame increased as the dielectric constant of the solvent mixture decreased in all three solvents systems. For example, at 60 degrees C, the degradation rate constants were 4.1, 5.9, and 8.4 x 10(-3) h-1 at dielectric constant of 65, 55, and 45, respectively. From these results, it can be concluded that the stability of aspartame in aqueous solutions cannot be enhanced by the replacement of water by solvents of lower dielectric constant. PMID:1941567
Holographic dark energy with varying gravitational constant
Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M. R.
2009-08-01
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.
Holographic dark energy with varying gravitational constant
International Nuclear Information System (INIS)
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.
Holographic dark energy with varying gravitational constant
Jamil, Mubasher; Setare, M R
2009-01-01
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include $G$-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the $G$-variation.
Prime rings with PI rings of constants
Kharchenko, V K; Rodríguez-Romo, S
1996-01-01
It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identitiy (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.
Siegel-Veech constants in H(2)
Lelièvre, Samuel
2005-01-01
Abelian differentials on Riemann surfaces can be seen as translation surfaces, which are flat surfaces with cone-type singularities. Closed geodesics for the associated flat metrics form cylinders whose number under a given maximal length generically has quadratic asymptotics in this length, with a common coefficient constant for the quadratic asymptotics called a Siegel--Veech constant which is shared by almost all surfaces in each moduli space of translation surfaces. Square-tiled surfaces ...
Emergent Gravity And The Cosmological Constant Problem
Yang, Hyun Seok
2007-01-01
We address issues on the origin of gravity and the cosmological constant problem based on a recent understanding about the correspondence between noncommutative field theory and gravity. We suggest that the cosmological constant problem can be resolved in a natural way if gravity emerges from a gauge theory in noncommutative spacetime. Especially, we elucidate why the emergent gravity implies that vacuum energy does not gravitate but only fluctuations around the vacuum generate gravity. That ...
Optimization for Hue Constant RGB Sensors
Finlayson, Graham D.; Süsstrunk, Sabine
2002-01-01
We present an optimization technique to find hue constant RGB sensors. The hue representation is based on a log RGB opponent color space that is invariant to brightness and gamma. While modeling the visual response did not derive the opponent space, the hue definition is similar to the ones found in CIE Lab and IPT. Finding hue constant RGB sensors through this optimization might be applicable in color engineering applications such as finding RGB sensors for color image encodings.
Beyond lensing by the cosmological constant
Faraoni, Valerio
2016-01-01
The long-standing problem of whether the cosmological constant affects directly the deflection of light caused by a gravitational lens is reconsidered. We use a new approach based on the Hawking quasilocal mass of a sphere grazed by light rays and on its splitting into local and cosmological parts. Previous literature restricted to the cosmological constant is extended to any form of dark energy accelerating the universe in which the gravitational lens is embedded.
Parametrized spaces model locally constant homotopy sheaves
Shulman, Michael A.
2007-01-01
We prove that the homotopy theory of parametrized spaces embeds fully and faithfully in the homotopy theory of simplicial presheaves, and that its essential image consists of the locally homotopically constant objects. This gives a homotopy-theoretic version of the classical identification of covering spaces with locally constant sheaves. We also prove a new version of the classical result that spaces parametrized over X are equivalent to spaces with an action of the loop space of X. This giv...
RNA structure and scalar coupling constants
Energy Technology Data Exchange (ETDEWEB)
Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G. [Univ. of California, Berkeley, CA (United States)
1994-12-01
Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.
DEFF Research Database (Denmark)
Løgager, T.; Sehested, K.; Holcman, J.
1993-01-01
Rate constants of the following equilibrium reactions were determined by pulse radiolysis at high solute concentrations: SO4.- + HNO, half arrow right over half arrow left HSO4- + NO3. [k(f) = (2.7 +/- 0.5) x 10(6) M-1 s-1, k(r) = (5.6 +/- 1.0) x 10(3) M-1 s-1] and SO4.- + NO3- half arrow right o...... over half arrow left SO42- + NO3. [k(f) = (5.0 +/- 2.0) x 10(4) M-1 s-1, k(r) = (1.0 +/-0.2) x 10(5) M-1 s-1]. By extrapolation of the latter to zero ionic strength an approximate reduction potential of NO3/NO3-, E0 = 2.45 +/- 0.05 V can be estimated....
Dynamics of Perceived Exertion in Constant-Power Cycling: Time- and Workload-Dependent Thresholds
Balagué, Natàlia; Hristovski, Robert; García, Sergi; Aguirre, Cecilia; Vázquez, Pablo; Razon, Selen; Tenenbaum, Gershon
2015-01-01
Purpose: The purpose of this study was to test the dynamics of perceived exertion shifts (PES) as a function of time and workload during constant-power cycling. Method: Fifty-two participants assigned to 4 groups performed a cycling task at 4 different constant workloads corresponding to their individual rates of perceived exertion (RPEs = 13, 15,…
Constant mortality and fertility over age in Hydra.
Schaible, Ralf; Scheuerlein, Alexander; Dańko, Maciej J; Gampe, Jutta; Martínez, Daniel E; Vaupel, James W
2015-12-22
Senescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility. PMID:26644561
Directory of Open Access Journals (Sweden)
Sofia de Amorim Cerejo
2013-09-01
Full Text Available Constant rate infusion (CRI shows several advantages in balanced anesthesia, such as reduction of requirement for inhaled anesthetics and control of pain. The most commonly used drugs in these protocols are local anesthetics, dissociative, and opioids, which may be administered alone or in combinations. We evaluated the records of 200 dogs that underwent various surgical procedures with anesthetic or analgesic CRI in the perioperative period during 2011 and 2012 at the Veterinary Hospital of Franca University (Unifran, and identified possible complications during the transoperative period. Records evaluated included clinical state, laboratory tests, drugs used in premedication and induction, and CRI protocol. Acepromazine and morphine were the main drugs used in premedication. Propofol was used to induce anesthesia alone or in combination with other agents. We evaluated records of the 25 different CRI protocols. Fentanyl was the main drug employed in CRI, either alone or in combination. There were 128 episodes of anesthetic complications during CRI;the most common were hypotension, hypertension, and tachycardia, which occurred in 43 (32%, 35 (26.3%, and 19 (14.2% dogs, respectively. Cardiac arrhythmia was reported in only 4 dogs. Signs of respiratory depression were present in dogs treated with 6 different CRI protocols. The consumption of isoflurane (vol % reduced between 15.7% and 21.05% after 30minutes of the CRI in the fentanyl and fentanyl–lidocaine–ketamine CRI groups (pO uso de técnicas de infusão contínua (IC possui inúmeras vantagens na anestesia balanceada, como a redução do requerimento de anestésicos inalatórios e controle da dor. Os fármacos mais comumente utilizados nestes protocolos são os anestésicos locais, dissociativos e opioides, que podem ser administrados isoladamente ou em associações. Foram avaliados os prontuários de 200 cães que foram submetidos a diversos procedimentos cirúrgicos com IC de anest
Estimation of Stability Constants of Complex Compounds
Directory of Open Access Journals (Sweden)
Raos, N.
Full Text Available The stability constant of a complex generally depends on the electronic, stereochemical and steric factors, as well as on the chelate effect and interaction of the complex, metal and ligand with water. In the first part of the paper we discuss the Irving-Williams order of stability of bivalent transition metal ion complexes from Mn2+ to Zn2+, along with the HSAB model (hard and soft acids and bases of stability. The second part describes three kinds of models for the estimation of the stability constants of complex compounds. First are those based on molecular mechanics, which were used mainly for the estimation of the enantioselectivity effect, i. e. Gibbs energy differences between MLL and MDL isomers. The second kind of models are mechanistic, that rest on the presumption of linear dependence of measured stability constants of the complexes with the same ligand (stability constants of mono- and bis-complexes, protonation constants, etc.. The third kind of models are heuristic (QSPR, which encompass molecular descriptors calculated by the method of overlapping spheres (OS, as well as topological indices. Among the variety of topological indices, connectivity indices proved best. They were calculated for the ligand and various representations of the coordination compound structure.
Environment-Dependent Fundamental Physical Constants
Terazawa, Hidezumi
2012-01-01
A theory of special inconstancy, in which some fundamental physical constants such as the fine-structure and gravitational constants may vary, is proposed in pregeometry. In the special theory of inconstancy, the \\alpha-G relation of \\alpha=3\\pi/[16ln(4\\pi/5GM_W^2)] between the varying fine-structure and gravitaional constants (where M_W is the charged weak boson mass) is derived from the hypothesis that both of these constants are related to the same fundamental length scale in nature. Furthermore, it leads to the prediction of dot{{\\alpha}}/\\alpha=(-0.8\\pm2.5)\\times10^{-14}yr^{-1} from the most precise limit of dot{G}/G=(-0.6\\pm2.0)\\times10^{-12}yr^{-1} by Thorsett, which is not only consistent with the recent observation of dot{{\\alpha}}/\\alpha=(0.5\\pm0.5)\\times10^{-14}yr^{-1} by Webb et al. but also feasible for future experimental tests. Also a theory of general inconstancy, in which any fundamental physical constants may vary, is proposed in "more general relativity", by assuming that the space-time is ...
Stability constants for silicate adsorbed to ferrihydrite
DEFF Research Database (Denmark)
Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten;
1994-01-01
Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...
The case for the cosmological constant
Indian Academy of Sciences (India)
Varun Sahni
2000-07-01
I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or -term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A ﬂat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the `best-ﬁt’ values ≃ 0.7 and m ≃ 0.3. A time dependent cosmological -term can be generated by scalar ﬁeld models with exponential and power law potentials. Some of these models can alleviate the `ﬁne tuning’ problem which faces the cosmological constant.
Bounds on Gromov Hyperbolicity Constant in Graphs
Indian Academy of Sciences (India)
José M Rodríguez; José M Sigarreta
2012-02-01
If is a geodesic metric space and 1,2,3 $\\in$ , a geodesic triangle ={1,2,3} is the union of the three geodesics [1,2], [2,3] and [31] in . The space is -hyperbolic (in the Gromov sense) if any side of is contained in a -neighborhood of the union of two other sides, for every geodesic triangle in . If is hyperbolic, we denote by () the sharp hyperbolicity constant of , i.e. ()=$inf{$≥ 0$ : is -hyperbolic}. In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.
Gravitational Interactions and Fine-Structure Constant
Jentschura, U D; Nandori, I
2015-01-01
Electromagnetic and gravitational central-field problems are studied with relativistic quantum mechanics on curved space-time backgrounds. Corrections to the transition current are identified. Analogies of the gravitational and electromagnetic spectra suggest the definition of a gravitational fine-structure constant. The electromagnetic and gravitational coupling constants enter the Einstein-Hilbert-Maxwell Lagrangian. We postulate that the variational principle holds with regard to a global dilation transformation of the space-time coordinates. The variation suggests is consistent with a functional relationship of the form alpha_QED being proportional to alpha_G^(1/2), where alpha_QED is the electrodynamic fine-structure constant, and alpha_G its gravitational analogue.
Conformally invariant braneworld and the cosmological constant
International Nuclear Information System (INIS)
A six-dimensional braneworld scenario based on a model describing the interaction of gravity, gauge fields and 3+1 branes in a conformally invariant way is described. The action of the model is defined using a measure of integration built of degrees of freedom independent of the metric. There is no need to fine tune any bulk cosmological constant or the tension of the two (in the scenario described here) parallel branes to obtain zero cosmological constant, the only solutions are those with zero 4D cosmological constant. The two extra dimensions are compactified in a 'football' fashion and the branes lie on the two opposite poles of the compact 'football-shaped' sphere
New concepts in constant wavelength neutron powder diffractometry
International Nuclear Information System (INIS)
Complete text of publication follows. Neutron powder diffraction is an important tool in the determination of atomic structures of materials. It has become increasingly important to improve the current constant wavelength powder diffractometers to handle the increasing demand. Where once a single diffraction pattern of a 10 gram sample was the entire experiment, today the demand is for experiments using smaller samples in multiple environments (temperature, pressure, magnetic field,...). A new type of constant wavelength diffractometer is proposed using position sensitive detectors (PSD) and advanced collimators. The PSD's allow a larger out-of-scattering plane area to be collected while still affording good peak shapes; hence good resolution at increased collection rates can be obtained. With miniaturisation of many of the detector electronics, the entire system could be affordable and compact. A system of 360 x 40 cm long PSD's is envisaged. This increased density (over the typically 64 detectors) is made possible by use of new advances in neutron collimation. (author)
Measurement of the strong coupling constant using τ decays
International Nuclear Information System (INIS)
The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton,, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs(m2τ) = 0.330 ± 0.046, evolved to the Z mass, yields αs(M2Z) = 0.118 ± 0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3 ± 0.5%
Measurement of the strong coupling constant using τ decays
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-06-01
The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.
Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads
Forth, Scott C.; Newman, James C., J.; Forman, Royce G.
2002-01-01
The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.
Comment on "Black hole constraints on varying fundamental constants"
Flambaum, V V
2008-01-01
In the Letter [1] (also [2]) there is a claim that the generalised second law of thermodynamics (entropy increase) for black holes provides some limits on the rate of variation of the fundamental constants of nature (electric charge e, speed of light c, etc.). We have come to a different conclusion. The results in [1,2] are based on assumption that mass of a black hole does not change without radiation and accreation. We present arguments showing that this assumption is incorrect and give an estimate of the black hole mass variation due to alpha=e^2/\\hbar c variation using entropy (and quantum energy level) conservation in an adiabatic process. No model-independent limits on the variation of the fundamental constants are derived from the second law of thermodynamics.
Symmetries and constant mean curvature surfaces
International Nuclear Information System (INIS)
In this paper, we discuss the Lie symmetries, symmetry algebra and symmetry reductions of the equation which describes constant mean curvature surfaces via the generalized Weierstrass-Enneper formulae. First we point out that the equation admits an infinite-dimensional symmetry Lie algebra. Then using symmetry reductions, we obtain two integrable Hamiltonian systems (one autonomous, the other nonautonomous) with two degrees of freedom. The autonomous one was obtained by Konopelchenko and Taimanov by other means. Our method provides a new approach for construction of constant mean curvature surfaces. (author)
Coulomb field in a constant electromagnetic background
Adorno, T C; Shabad, A E
2016-01-01
Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.
Atomic weights: no longer constants of nature
Coplen, Tyler B.; Holden, Norman E.
2011-01-01
Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature
Black Hole Constraints on Varying Fundamental Constants
International Nuclear Information System (INIS)
We apply the generalized second law of thermodynamics and derive upper limits on the variation in the fundamental constants. The maximum variation in the electronic charge permitted for black holes accreting and emitting in the present cosmic microwave background corresponds to a variation in the fine-structure constant of Δα/α≅2x10-23 per second. This value matches the variation measured by Webb et al. [Phys. Rev. Lett. 82, 884 (1999); Phys. Rev. Lett. 87, 091301 (2001)] using absorption lines in the spectra of distant quasars and suggests the variation mechanism may be a coupling between the electron and the cosmic photon background
The Cosmological Constant Problem (2/2)
CERN. Geneva
2015-01-01
I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.
The Cosmological Constant Problem (1/2)
CERN. Geneva
2015-01-01
I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.
Optimizing constant wavelength neutron powder diffractometers
Cussen, Leo D.
2016-06-01
This article describes an analytic method to optimize constant wavelength neutron powder diffractometers. It recasts the accepted mathematical description of resolution and intensity in terms of new variables and includes terms for vertical divergence, wavelength and some sample scattering effects. An undetermined multiplier method is applied to the revised equations to minimize the RMS value of resolution width at constant intensity and fixed wavelength. A new understanding of primary spectrometer transmission (presented elsewhere) can then be applied to choose beam elements to deliver an optimum instrument. Numerical methods can then be applied to choose the best wavelength.
Stringy mechanism for a small cosmological constant
International Nuclear Information System (INIS)
Based on the probability distributions of products of random variables, we propose a simple stringy mechanism that prefers the meta-stable vacua with a small cosmological constant. We state some relevant properties of the probability distributions of functions of random variables. We then illustrate the mechanism within the flux compactification models in Type IIB string theory. As a result of the stringy dynamics, we argue that the generic probability distribution for the meta-stable vacua typically peaks with a divergent behavior at the zero value of the cosmological constant. However, its suppression in the single modulus model studied here is modest
Hermite's Constant for Quadratic Number Fields
Baeza, Ricardo; Coulangeon, Renaud; Icaza, Maria Ines; O'Ryan, Manuel
2001-01-01
We develop a method to compute the Hermite-Humbert constants $\\gam_{K,n}$ of a real quadratic number field $K$, the analogue of the classical Hermite constant $\\gam_n$ when $\\funnyQ$ is replaced by a quadratic extension. In the case $n=2$, the problem is equivalent to the determination of lowest points of fundamental domains in $\\H^2$ for the Hilbert modular group over $K$, that had been studied experimentally by H. Cohn. We establish the results he conjectured for the...
Lattice Theta Constants vs Riemann Theta Constants and NSR Superstring Measures
Dunin-Barkowski, P; Sleptsov, A
2009-01-01
We discuss relations between two different representations of hypothetical holomorphic NSR measures, based on two different ways of constructing the semi-modular forms of weight 8. One of these ways is to build forms from the ordinary Riemann theta constants and another -- from the lattice theta constants. We discuss unexpectedly elegant relations between lattice theta constants, corresponding to 16-dimensional self-dual lattices, and Riemann theta constants and present explicit formulae expressing the former ones through the latter. Starting from genus 5 the modular-form approach to construction of NSR measures is clearly sick and it seems to fail completely already at genus 6.