WorldWideScience

Sample records for caustic-crossing microlensing events

  1. A systematic fitting scheme for caustic-crossing microlensing events

    DEFF Research Database (Denmark)

    Kains ...[et al], N.; Jørgensen, Uffe Gråe

    2009-01-01

    We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parametrization proposed and detailed by Cassan. As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a...... source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain Monte Carlo algorithm. We find a number of low-chi(2) regions in the...

  2. Predicting the Second Caustic Crossing in Binary Microlensing Events

    CERN Document Server

    Jaroszynski, M; Jaroszynski, Michal; Mao, Shude

    2001-01-01

    We fit binary lens models to the data covering the initial part of real microlensing events in an attempt to predict the time of the second caustic crossing. We use approximations during the initial search through the parameter space for light curves that roughly match the observed ones. Exact methods for calculating the lens magnification of an extended source are used when we refine our best initial models. Our calculations show that the reliable prediction of the second crossing can only be made very late, when the light curve has risen appreciably after the minimum between the two caustic-crossings. The best observational strategy is therefore to sample as frequently as possible once the light curve starts to rise after the minimum.

  3. A Planetary lensing feature in caustic-crossing high-magnification microlensing events

    CERN Document Server

    Chung, Sun-Ju; Ryu, Yoon-Hyun; Lee, Chung-Uk

    2012-01-01

    Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately dist...

  4. Discovery and Characterization of a Caustic Crossing Microlensing Event in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    We present photometric observations and analysis of the second microlensing event detected toward the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1. This event was detected early enough to allow intensive observation of the light curve. These observations revealed 98-SMC-1 to be the first caustic crossing binary microlensing event toward the Magellanic Clouds to be discovered in progress. Frequent coverage of the evolving light curve allowed an accurate prediction for the date of the source crossing out of the lens caustic structure. The caustic crossing temporal width, along with the angular size of the source star, measures the proper motion of the lens with respect to the source and thus allows an estimate of the location of the lens. Lenses located in the Galactic halo would have a velocity projected to the SMC of v∼1500 kms-1, while an SMC lens would typically have v∼60 kms-1. The event light curve allows us to obtain a unique fit to the parameters of the binary lens and to estimate the proper motion of the lensing system. We have performed a joint fit to the MACHO/GMAN data presented here, including recent EROS data of this event from Afonso and collaborators. These joint data are sufficient to constrain the time t* for the lens to move an angle equal to the source angular radius: t* =0.116±0.010 days. We estimate a radius for the lensed source of R* =1.1±0.1 Rcircle-dot from its unblended color and magnitude. This yields a projected velocity of v=76±10 kms-1. Only 0.12% of halo lenses would be expected to have a v value at least as small as this, while 38% of SMC lenses would be expected to have v as large as this. This implies that the lensing system is more likely to reside in the SMC than in the Galactic halo. Similar observations of future Magellanic Cloud microlensing events will help to determine the contribution of MACHOS to the Galaxy's dark halo. copyright copyright 1999. The American Astronomical Society

  5. The rate of caustic crossing microlensing events for Q2237+0305

    OpenAIRE

    Wyithe, J. S. B.; Webster, R. L.; Turner, E. L.

    1999-01-01

    Spectrophotometric observation of the gravitationally microlensed quasar Q2237+0305 during a High Magnification Event (HME) is potentially a very powerful tool for probing the structure of the quasars accretion disc on scales of less than 10^-8 arc seconds. How often we can expect to observe a HME is dependent on the lens system parameters of galactic transverse velocity, mean microlens mass and the size of the magnified continuum source. We have previously used published microlensed light-cu...

  6. The rate of caustic crossing microlensing events for Q2237+0305

    CERN Document Server

    Wyithe, J S B; Turner, E L

    2000-01-01

    Spectrophotometric observation of the gravitationally microlensed quasar Q2237+0305 during a High Magnification Event (HME) is potentially a very powerful tool for probing the structure of the quasars accretion disc on scales of less than 10^-8 arc seconds. How often we can expect to observe a HME is dependent on the lens system parameters of galactic transverse velocity, mean microlens mass and the size of the magnified continuum source. We have previously used published microlensed light-curves to obtain expressions for the likely-hood of the values for these parameters (Wyithe, Webster & Turner 1999b,c; Wyithe, Webster, Turner & Mortlock 1999). Here we use this information to investigate the expected rate of SHMEs. We find the average rate of SHMEs as well as the number that we can expect to observe over periods of a decade and of a single observing season. We find that the average SHME rate summed over all images in Q2237+0305 is 1.5\\pm0.6 - 6.3\\pm1.3 events per decade. During the period following...

  7. STATISTICS OF MICROLENSING CAUSTIC CROSSINGS IN Q 2237+0305: PECULIAR VELOCITY OF THE LENS GALAXY AND ACCRETION DISK SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200 Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva E-18071 Granada (Spain); Muñoz, J. A. [Departamento de Astronomía y Astrofísica, Universidad de Valencia E-46100 Burjassot, Valencia (Spain); Mediavilla, T.; Ariza, O. [Departamento de Estadística e Investigación Operativa, Universidad de Cádiz, Avda Ramón Puyol s/n E-11202, Algeciras, Cádiz (Spain)

    2015-01-10

    We use the statistics of caustic crossings induced by microlensing in the lens system Q 2237+0305 to study the lens galaxy peculiar velocity. We calculate the caustic crossing rates for a comprehensive family of stellar mass functions and find a dependence of the average number of caustic crossings with the effective transverse velocity and the average mass, 〈n〉∝v{sub eff}/√(〈m〉), equivalent to the theoretical prediction for the case of microlenses with identical masses. We explore the possibilities of the method to measure v {sub eff} using the ∼12 yr of Optical Gravitational Lensing Experiment monitoring of the four images of Q 2237+0305. To determine a lower limit for v {sub eff}, we count, conservatively, a single caustic crossing for each one of the four high magnification events identified in the literature (plus one additional proposed by us) obtaining v{sub eff}≳240√(〈m〉/0.17 M{sub ⊙}) km s{sup −1} at 68% of confidence. From this value and the average FWHM of the four high magnification events, we obtain a lower limit of r{sub s}≳1.4√(〈m〉/0.17 M{sub ⊙}) light-days for the radius of the source (r{sub s} = FWHM/2.35). Tentative identification of three additional caustic crossing events leads to estimates of v{sub eff}≃(493±246)√(〈m〉/0.17 M{sub ⊙}) km s{sup −1} for the effective transverse velocity and of r{sub s}≃(2.7±1.3)√(〈m〉/0.17 M{sub ⊙}) light-days for the source size. The estimated transverse peculiar velocity of the galaxy is v{sub t}≃(429±246)√(〈m〉/0.17 M{sub ⊙}) km s{sup −1}.

  8. Hard X-ray view of microlensing events in RX J1131-1231

    CERN Document Server

    Neronov, A; Walter, R

    2016-01-01

    RX J1131-1231 is a gravitationally lensed system which includes four images of a quasar lensed by an elliptical galaxy. The flux in the individual images is known to be affected by microlensing effect in the visible and X-ray bands. We study the multi-wavelength properties of RX J1131-1231 over a broad energy range, from optical to hard X-ray, during the periods of the microlensing caustic crossings. We aim to constrain the spatial extent of the X-ray emission region at different energies. We combine the data of the source monitoring in the visible band with the X-ray data of the Burst Alert Telescope (BAT) on board of SWIFT satellite and Chandra X-ray observatory. Inspecting the broad band spectrum and lightcurves of the source we identify several microlensing caustic crossing events, and study the details of variability of the source during these events. The caustic crossings of image A on MJD 55150 and 55500 produce strong variations of the overall X-ray flux from the source. In the soft X-ray band, the ca...

  9. Predictions for microlensing planetary events from core accretion theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei; Mao, Shude [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Penny, Matthew; Gould, Andrew [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Gendron, Rieul, E-mail: weizhu@astronomy.ohio-state.edu [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom)

    2014-06-10

    We conduct the first microlensing simulation in the context of a planet formation model. The planet population is taken from the Ida and Lin core accretion model for 0.3 M {sub ☉} stars. With 6690 microlensing events, we find that for a simplified Korea Microlensing Telescopes Network (KMTNet), the fraction of planetary events is 2.9%, out of which 5.5% show multiple-planet signatures. The numbers of super-Earths, super-Neptunes, and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 minute sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high magnification events. The uniformly high-cadence observations expected for KMTNet also result in ∼55% of all detected planets not being caustic crossing, and more low-mass planets even down to Mars mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.

  10. Predictions for microlensing planetary events from core accretion theory

    International Nuclear Information System (INIS)

    We conduct the first microlensing simulation in the context of a planet formation model. The planet population is taken from the Ida and Lin core accretion model for 0.3 M ☉ stars. With 6690 microlensing events, we find that for a simplified Korea Microlensing Telescopes Network (KMTNet), the fraction of planetary events is 2.9%, out of which 5.5% show multiple-planet signatures. The numbers of super-Earths, super-Neptunes, and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 minute sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high magnification events. The uniformly high-cadence observations expected for KMTNet also result in ∼55% of all detected planets not being caustic crossing, and more low-mass planets even down to Mars mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.

  11. Illuminating Hot Jupiters in caustic crossing

    CERN Document Server

    Sajadian, Sedighe

    2010-01-01

    In recent years a large number of Hot Jupiters orbiting in a very close orbit around the parent stars have been explored with the transit and doppler effect methods. Here in this work we study the gravitational microlensing effect of a binary lens on a parent star with a Hot Jupiter revolving around it. Caustic crossing of the planet makes enhancements on the light curve of the parent star in which the signature of the planet can be detected by high precision photometric observations. We use the inverse ray shooting method with tree code algorithm to generate the combined light curve of the parent star and the planet. In order to investigate the probability of observing the planet signal, we do a Monte-Carlo simulation and obtain the observational optical depth of $\\tau \\sim 10^{-8}$. We show that about ten years observations of Galactic Bulge with a network of telescopes will enable us detecting about ten Hot Jupiter with this method. Finally we show that the observation of the microlensing event in infra-re...

  12. Interferometric observation of microlensing events

    Science.gov (United States)

    Cassan, Arnaud; Ranc, Clément

    2016-05-01

    Interferometric observations of microlensing events have the potential to provide unique constraints on the physical properties of the lensing systems. In this work, we first present a formalism that closely combines interferometric and microlensing observable quantities, which lead us to define an original microlensing (u, v) plane. We run simulations of long-baseline interferometric observations and photometric light curves to decide which observational strategy is required to obtain a precise measurement on vector Einstein radius. We finally perform a detailed analysis of the expected number of targets in the light of new microlensing surveys (2011+) which currently deliver 2000 alerts per year. We find that a few events are already at reach of long-baseline interferometers (CHARA, VLTI), and a rate of about six events per year is expected with a limiting magnitude of K ≃ 10. This number would increase by an order of magnitude by raising it to K ≃ 11. We thus expect that a new route for characterizing microlensing events will be opened by the upcoming generations of interferometers.

  13. Interferometric observation of microlensing events

    CERN Document Server

    Cassan, A

    2016-01-01

    Interferometric observations of microlensing events have the potential to provide unique constraints on the physical properties of the lensing systems. In this work, we first present a formalism that closely combines interferometric and microlensing observable quantities, which lead us to define an original microlensing (u,v) plane. We run simulations of long-baseline interferometric observations and photometric light curves to decide which observational strategy is required to obtain a precise measurement on vector Einstein radius. We finally perform a detailed analysis of the expected number of targets in the light of new microlensing surveys (2011+) which currently deliver 2000 alerts/year. We find that a few events are already at reach of long baseline interferometers (CHARA, VLTI), and a rate of about 6 events/year is expected with a limiting magnitude of K~10. This number would increase by an order of magnitude by raising it to K~11. We thus expect that a new route for characterizing microlensing events...

  14. Measuring Polarization in microlensing events

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, Ph; Nucita, A A; Strafella, F

    2014-01-01

    We re-consider the polarization of the star light that may arise during microlensing events due to the high gradient of magnification across the atmosphere of the source star, by exploring the full range of microlensing and stellar physical parameters. Since it is already known that only cool evolved giant stars give rise to the highest polarization signals, we follow the model by Simmons et al. (2002) to compute the polarization as due to the photon scattering on dust grains in the stellar wind. Motivated by the possibility to perform a polarization measurement during an ongoing microlensing event, we consider the recently reported event catalog by the OGLE collaboration covering the 2001-2009 campaigns (OGLE-III events), that makes available the largest and more comprehensive set of single lens microlensing events towards the Galactic bulge. The study of these events, integrated by a Monte Carlo analysis, allows us to estimate the expected polarization profiles and to predict for which source stars and at w...

  15. Polarization in binary microlensing events

    CERN Document Server

    Ingrosso, G; Nucita, A A; Strafella, F; Novati, S Calchi; Jetzer, Ph; Liuzzi, G; Zakharov, A

    2013-01-01

    The light received by source stars in microlensing events may be significantly polarized if both an efficient photon scattering mechanism is active in the source stellar atmosphere and a differential magnification is therein induced by the lensing system. The best candidate events for observing polarization are highly magnified events with source stars belonging to the class of cool, giant stars {in which the stellar light is polarized by photon scattering on dust grains contained in their envelopes. The presence in the stellar atmosphere of an internal cavity devoid of dust produces polarization profiles with a two peaks structure. Hence, the time interval between them gives an important observable quantity directly related to the size of the internal cavity and to the model parameters of the lens system.} We show that {during a microlensing event} the expected polarization variability can solve an ambiguity, that arises in some cases, related to the binary or planetary lensing interpretation of the perturba...

  16. Polarization in binary microlensing events

    International Nuclear Information System (INIS)

    The light received by source stars in microlensing events may be significantly polarized if both an efficient photon-scattering mechanism is active in the source stellar atmosphere and a differential magnification is therein induced by the lensing system. The best candidate events for observing polarization are highly magnified events with source stars belonging to the class of cool, giant stars in which the stellar light is polarized by photon scattering on dust grains contained in their envelopes. The presence in the stellar atmosphere of an internal cavity devoid of dust produces polarization profiles with a two peaks structure. Hence, the time interval between them gives an important observable quantity directly related to the size of the internal cavity and to the model parameters of the lens system. We show that, during a microlensing event, the expected polarization variability can solve an ambiguity that arises in some cases, related to the binary or planetary lensing interpretation of the perturbations observed near the maximum of the event light-curve. We consider a specific event case for which the parameter values corresponding to the two solutions are given. Then, assuming a polarization model for the source star, we compute the two expected polarization profiles. The position of the two peaks appearing in the polarization curves and the characteristic time interval between them allow us to distinguish between the binary and planetary lens solutions. (paper)

  17. Resolving Microlensing Events with Triggered VLBI

    OpenAIRE

    Karami, M; Broderick, A. E.; Rahvar, S.; Reid, M.

    2016-01-01

    Microlensing events provide a unique capacity to study the stellar remnant population of the Galaxy. Optical microlensing suffers from a near complete degeneracy between the mass, the velocity and the distance. However, a subpopulation of lensed stars, Mira variable stars, are also radio bright, exhibiting strong SiO masers. These are sufficiently bright and compact to permit direct imaging using existing very long baseline interferometers such as the Very Long Baseline Array (VLBA). We show ...

  18. Resolving Microlensing Events with Triggered VLBI

    CERN Document Server

    Karami, M; Rahvar, S; Reid, M

    2016-01-01

    Microlensing events provide a unique capacity to study the stellar remnant population of the Galaxy. Optical microlensing suffers from a near complete degeneracy between the mass, the velocity and the distance. However, a subpopulation of lensed stars, Mira variable stars, are also radio bright, exhibiting strong SiO masers. These are sufficiently bright and compact to permit direct imaging using existing very long baseline interferometers such as the Very Long Baseline Array (VLBA). We show that these events are relatively common, occurring at a rate of ~ 40 per year of which 1.3 per year are associated with Galactic black holes. Features in the associated images, e.g., the Einstein ring, are sufficiently well resolved to fully reconstruct the lens properties, enabling the measurement of mass, distance, and tangential velocity of the lensing object to a precision better than 15%. Future radio microlensing surveys conducted with upcoming radio telescopes combined with modest improvements in the VLBA could inc...

  19. Characterizing low-mass binaries from observation of long-timescale caustic-crossing gravitational microlensing events

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Choi, J.-Y;

    2012-01-01

    Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of phys...

  20. Observations of the Binary Microlens Event MACHO-98-SMC-1 by the Microlensing Planet Search Collaboration

    CERN Document Server

    Rhie, S H; Bennett, D P; Fragile, P C; Johnson, B R; King, L J; Peterson, B A; Quinn, J

    1998-01-01

    We present the observations of the binary lensing event MACHO-98-SMC-1 conducted at the Mt.~Stromlo 74" telescope by the Microlensing Planet Search (MPS) collaboration. The MPS data constrain the first caustic crossing to have occurred after 1998 June 5.55 UT and thus directly rule out one of the two fits presented by the PLANET collaboration (model II). This substantially reduces the uncertainty in the the relative proper motion estimations of the lens object. We perform joint binary microlensing fits of the MPS data together with the publicly available data from the EROS, MACHO/GMAN and OGLE collaborations. We also study the binary lens fit parameters previously published by the PLANET and MACHO/GMAN collaborations by using them as initial values for $\\chi^2$ minimization. Fits based on the PLANET model I appear to be in conflict with the GMAN-CTIO data. From our best fit, we find that the lens system has a proper motion of $\\mu = 1.3\\pm 0.2 \\kmsk$ with respect to the source, which implies that the lens sys...

  1. Empirical microlensing event rates predicted by a phenomenological model

    Science.gov (United States)

    Poleski, Radosław

    2016-02-01

    Estimating the number of microlensing events observed in different parts of the Galactic bulge is a crucial point in planning microlensing experiments. Reliable estimates are especially important if observing resources are scarce, as is the case for space missions: K2, WFIRST, and Euclid. Here we show that the number of detected events can be reliably estimated based on statistics of stars observed in targeted fields. The statistics can be estimated relatively easily, which makes presented method suitable for planning future microlensing experiments.

  2. Gravitational Microlensing Events as a Target for the SETI project

    Science.gov (United States)

    Rahvar, Sohrab

    2016-09-01

    The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbiting around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.

  3. Interpretation of the OGLE Q2237+0305 microlensing light-curve

    CERN Document Server

    Wyithe, J S B; Webster, R L

    2000-01-01

    The four bright images of the gravitationally lensed quasar Q2237+0305 are being monitored from the ground (eg. OGLE collaboration, Apache Point Observatory) in the hope of observing a high magnification event (HME). Over the past three seasons (1997-1999) the OGLE collaboration has produced microlensing light-curves with unprecedented coverage. These demonstrate smooth, independent (therefore microlensing) variability between the images (Wozniak et al. 2000; OGLE web page). The data is of sufficient quality to quantitatively test microlensing models. We have retrospectively compared probability functions for high-magnification event parameters with several observed light-curve features. We conclude that the 1999 image C peak was due to the source having passed outside of a cusp rather than to a caustic crossing. In addition, we find that the image C light-curve shows evidence for a caustic crossing between the 1997 and 1998 observing seasons involving the appearance of new critical images. Our models predict...

  4. Predictions for Microlensing Planetary Events from Core Accretion Theory

    OpenAIRE

    Wei ZHU; Penny, Matthew; Mao, Shude; Gould, Andrew; Gendron, Rieul

    2014-01-01

    We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_\\odot$ stars. With $6690$ microlensing events, we find for a simplified Korea Microlensing Telescopes Network (KMTNet) the fraction of planetary events is $2.9\\%$ , out of which $5.5\\%$ show multiple-planet signatures. The number of super-Earths, super-Neptunes and super-Jupiters detected are expected to be almost equal. Our si...

  5. Empirical microlensing event rates predicted by a phenomenological model

    OpenAIRE

    Poleski, R.

    2015-01-01

    Estimating the number of microlensing events observed in different parts of the Galactic bulge is a crucial point in planning microlensing experiments. Reliable estimates are especially important if observing resources are scarce, as is the case for space missions: K2, WFIRST, and Euclid. Here we show that the number of detected events can be reliably estimated based on statistics of stars observed in targeted fields. The statistics can be estimated relatively easily, which makes presented me...

  6. Gravitational Microlensing Events as a Target for SETI project

    CERN Document Server

    Rahvar, Sohrab

    2015-01-01

    Detection of signals from a possible extrasolar technological civilization is one of the challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet harbours an Extra Terrestrial Intelligent (ETI) technology. The gravitational microlensing surveys are monitoring a large area of Galactic bulge for searching microlensing events and each year they find more than $2000$ events. These lenses are capable of playing the role of natural telescopes and in some occasions they can magnify signals from planets orbiting around the source stars in the gravitational microlensing systems. Assuming that frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as Square Kilometre Array (SKA), Low Frequency Demonstrators (LFD) and Mileura Wide-Field Array (MWA). Amplifying...

  7. Starspot induced effects in microlensing events with rotating source star

    CERN Document Server

    Giordano, Mosè; De Paolis, Francesco; Ingrosso, Gabriele

    2015-01-01

    We consider the effects induced by the presence of hot and cold spots on the source star in the light curves of simulated microlensing events due to either single or binary lenses taking into account the rotation of the source star and the orbital motion of the lens system. Our goal is to study the anomalies induced by these effects on simulated microlensing light curves.

  8. Reanalyses of Anomalous Gravitational Microlensing Events in the OGLE-III Early Warning System Database with Combined Data

    CERN Document Server

    Jeong, J; Han, C; Gould, A; Udalski, A; Szymański, M K; Pietrzyński, G; Soszyński, I; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Albrow, M D; Batista, V; Beaulieu, J -P; Caldwell, J A R; Cassan, A; Cole, A; Coutures, C; Dieters, S; Dominik, M; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Hoffman, M; Huber, M; Jørgensen, U G; Kane, S R; Kubas, D; Martin, R; Marquette, J -B; Menzies, J; Pitrou, C; Pollard, K; Sahu, K C; Vinter, C; Wambsganss, J; Williams, A; Allen, W; Bolt, G; Choi, J -Y; Christie, G W; DePoy, D L; Drummond, J; Gaudi, B S; Hwang, K -H; Jung, Y K; Lee, C -U; Mallia, F; Maoz, D; Maury, A; McCormick, J; Monard, L A G; Moorhouse, D; Natusch, T; Ofek, E O; Park, B -G; Pogge, R W; Santallo, R; Shin, I -G; Thornley, G; Yee, J C; Bramich, D M; Horne, K; Hundertmark, M; Kains, N; Snodgrass, C; Steele, I; Street, R; Tsapras, Y

    2015-01-01

    We reanalyze microlensing events in the published list of anomalous events that were observed from the OGLE lensing survey conducted during 2004-2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of 8 events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of 5 events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for 6 events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein ...

  9. A new analysis of the MEGA M31 microlensing events

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, P; Nucita, A A; Scarpetta, G; Strafella, F; Jetzer, Ph.

    2006-01-01

    We discuss the results of the MEGA microlensing campaign towards M31. Our analysis is based on an analytical evaluation of the microlensing rate, taking into account the observational efficiency as given by the MEGA collaboration. In particular, we study the spatial and time duration distributions of the microlensing events for several mass distribution models of the M31 bulge. We find that only for extreme models of the M31 luminous components it is possible to reconcile the total observed MEGA events with the expected self-lensing contribution. Nevertheless, the expected spatial distribution of self-lensing events is more concentrated and hardly in agreement with the observed distribution. We find it thus difficult to explain all events as being due to self-lensing alone. On the other hand, the small number of events does not yet allow to draw firm conclusions on the halo dark matter fraction in form of MACHOs.

  10. EROS2 microlensing search towards the Magellanic Clouds

    International Nuclear Information System (INIS)

    EROS2 is a second generation microlensing experiment operating since mid-1996 at the European Southern Observatory (ESO) at La Silla, Chile. We first recall the results from our two-year microlensing search towards the Small Magellanic Cloud (SMC), then report on the intensive observation of the caustic crossing event MACHO-SMC98-1 that allowed to locate this double lens. Finally, we present preliminary results from our search towards the Large Magellanic Cloud (LMC); 25 square degrees are being analyzed and two candidates have been found. This allows us to set a new upper limit on the halo mass fraction comprised of compact objects

  11. Determination of Stellar Ellipticities in Future Microlensing Surveys

    CERN Document Server

    Han, C; Han, Cheongho; Chang, Heon-Young

    2006-01-01

    We propose a method that can determine the ellipticities of source stars of microlensing events produced by binary lenses. The method is based on the fact that the products of the caustic-crossing timescale, $\\Delta t$, and the cosine of the caustic incidence angle of the source trajectory, $\\kappa$, of the individual caustic crossings are different for events involving an elliptical source, while the products are the same for events associated with a circular source. The product $\\Delta t_\\perp =\\Delta t \\cos\\kappa$ corresponds to the caustic-crossing timescale when the incidence angle of the source trajectory is $\\kappa=0$. For the unique determination of the source ellipticity, resolutions of at least three caustic crossings are required. Although this requirement is difficult to achieve under the current observational setup based on alert/follow-up mode, it will be possible with the advent of future lensing experiments that will survey wide fields continuously at high cadence. For typical Galactic bulge e...

  12. Event Rate and Einstein Time Evaluation in Pixel Microlensing

    International Nuclear Information System (INIS)

    In previous work it has been shown that a flux-weighted FWHM timescale of a microlensing event can be used as an unbiased estimator of the optical depth. For the first time, this allows the optical depth, which is effectively the microlensing probability, to be easily estimated from pixel microlensing data. In this paper we derive analytic expressions for the observed rate of pixel lensing events as a function of the FWHM timescale. This contrasts works in the literature that express rates in terms of an ''event duration'' or Einstein time, which require knowledge of the magnification, which is difficult to determine in a pixel event. The FWHM is the most directly measured timescale. We apply these results to possible pixel lensing surveys, using the Hubble Space Telescope (HST) for M87 and the Canada-France-Hawaii Telescope (CFHT) for M31. We predict M87 microlensing rates for the HST Advanced Camera and for the Next-Generation Space Telescope (NGST), and demonstrate that one will be able to probe the stellar initial mass function (IMF). Next, we describe a new method by which a crude measurement of the magnification can be made in the regime of magnifications A∼10-100. This in turn gives a crude measurement of the Einstein time. This program requires good photometry and sampling in the low-magnification tails of an event, but is feasible with today's technology. (c) 2000 The American Astronomical Society

  13. Predictions for Microlensing Planetary Events from Core Accretion Theory

    CERN Document Server

    Zhu, Wei; Mao, Shude; Gould, Andrew; Gendron, Rieul

    2014-01-01

    We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_\\odot$ stars. With $6690$ microlensing events, we find for a simplified Korea Microlensing Telescopes Network (KMTNet) the fraction of planetary events is $2.9\\%$ , out of which $5.8\\%$ show multiple-planet signatures. The number of super-Earths, super-Neptunes and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 min sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be...

  14. Parallax and orbital effects in astrometric microlensing with binary sources

    CERN Document Server

    Nucita, A A; Ingrosso, G; Giordano, M; Manni, L

    2016-01-01

    In gravitational microlensing, binary systems may act as lenses or sources. Identifying lens binarity is generally easy especially in events characterized by caustic crossing since the resulting light curve exhibits strong deviations from smooth single-lensing light curve. On the contrary, light curves with minor deviations from a Paczy\\'nski behaviour do not allow one to identify the source binarity. A consequence of the gravitational microlensing is the shift of the position of the multiple image centroid with respect to the source star location - the so called astrometric microlensing signal. When the astrometric signal is considered, the presence of a binary source manifests with a path that largely differs from that expected for single-source events. Here, we investigate the astrometric signatures of binary sources taking into account their orbital motion and the parallax effect due to the Earth motion, which turn out not to be negligible in most cases. We also show that considering the above-mentioned e...

  15. Polarization profiles for selected microlensing events towards the galactic bulge

    CERN Document Server

    Nucita, A A; De Paolis, F; Strafella, F; Calchi-Novati, S; Jetzer, Ph; Zakharov, A F

    2013-01-01

    Gravitational microlensing, in case of relevant finite source size effects, provides an unique tool for the study of stellar atmospheres through the enhancement of a characteristic polarization signal. Here, we consider a set of highly magnified events and show that for different types of source stars (as hot, late type main sequence and cool giants) showing that the polarization strength may be of $\\simeq 0.04$ percent for late type stars and up to a few percent for cool giants.

  16. Galactic Bulge Microlensing Events from the MACHO Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C L; Griest, K; Popowski, P; Cook, K H; Drake, A J; Minniti, D; Myer, D G; Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D L

    2005-06-16

    The authors present a catalog of 450 relatively high signal-to-noise microlensing events observed by the MACHO collaboration between 1993 and 1999. The events are distributed throughout the fields and, as expected, they show clear concentration toward the Galactic center. No optical depth is given for this sample since no blending efficiency calculation has been performed, and they find evidence for substantial blending. In a companion paper they give optical depths for the sub-sample of events on clump giant source stars, where blending is a less significant effect. Several events with sources that may belong to the Sagittarius dwarf galaxy are identified. For these events even relatively low dispersion spectra could suffice to classify these events as either consistent with Sagittarius membership or as non-Sagittarius sources. Several unusual events, such as microlensing of periodic variable source stars, binary lens events, and an event showing extended source effects are identified. They also identify a number of contaminating background events as cataclysmic variable stars.

  17. Planetary and Other Short Binary Microlensing Events from the MOA Short Event Analysis

    CERN Document Server

    Bennett, D P; Bond, I A; Kamiya, K; Abe, F; Botzler, C S; Fukui, A; Furusawa, K; Itow, Y; Korpela, A V; Kilmartin, P M; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Suzuki, D; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M

    2012-01-01

    We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered in an analysis designed to find short timescale single lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which stellar host is only detected through binary microlensing effects. The mass ratio, q = 4.9 \\pm 1.4 \\times 10^{-3}, is relatively large for a planetary system, and the star-planet separation, s = 2.10 \\pm 0.05, is the largest ever for a low magnification microlensing event. The planet MOA-bin-1Lb has a mass of m_p = 3.7 \\pm 2.1 M_Jup,and or...

  18. Candidate Gravitational Microlensing Events for Future Direct Lens Imaging

    CERN Document Server

    Henderson, C B; Sumi, T; Udalski, A; Gould, A; Tsapras, Y; Han, C; Gaudi, B S; Bozza, V; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Suzuki, D; Sweatman, W L; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Skowron, J; Kozłowski, S; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Almeida, L A; Bos, M; Choi, J -Y; Christie, G W; Depoy, D L; Dong, Subo; Friedmann, M; Hwang, K -H; Jablonski, F; Jung, Y K; Kaspi, S; Lee, C -U; Maoz, D; McCormick, J; Moorhouse, D; Natusch, T; Ngan, H; Pogge, R W; Shin, I -G; Shvartzvald, Y; Tan, T -G; Thornley, G; Yee, J C; Allan, A; Bramich, D M; Browne, P; Dominik, M; Horne, K; Hundertmark, M; Jaimes, R Figuera; Kains, N; Snodgrass, C; Steele, I A; Street, R A

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic Bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 -- 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with mu >~ 8 mas/yr. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA...

  19. Empirical study of simulated two-planet microlensing events

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei; Gould, Andrew; Penny, Matthew [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Mao, Shude [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Gendron, Rieul, E-mail: weizhu@astronomy.ohio-state.edu [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom)

    2014-10-10

    We undertake the first study of two-planet microlensing models recovered from simulations of microlensing events generated by realistic multiplanet systems in which 292 planetary events, including 16 two-planet events, were detected from 6690 simulated light curves. We find that when two planets are recovered, their parameters are usually close to those of the two planets in the system most responsible for the perturbations. However, in 1 of the 16 examples, the apparent mass of both detected planets was more than doubled by the unmodeled influence of a third, massive planet. This fraction is larger than but statistically consistent with the roughly 1.5% rate of serious mass errors due to unmodeled planetary companions for the 274 cases from the same simulation in which a single planet is recovered. We conjecture that an analogous effect due to unmodeled stellar companions may occur more frequently. For 7 out of 23 cases in which two planets in the system would have been detected separately, only one planet was recovered because the perturbations due to the two planets had similar forms. This is a small fraction (7/274) of all recovered single-planet models, but almost a third of all events that might plausibly have led to two-planet models. Still, in these cases, the recovered planet tends to have parameters similar to one of the two real planets most responsible for the anomaly.

  20. Empirical study of simulated two-planet microlensing events

    International Nuclear Information System (INIS)

    We undertake the first study of two-planet microlensing models recovered from simulations of microlensing events generated by realistic multiplanet systems in which 292 planetary events, including 16 two-planet events, were detected from 6690 simulated light curves. We find that when two planets are recovered, their parameters are usually close to those of the two planets in the system most responsible for the perturbations. However, in 1 of the 16 examples, the apparent mass of both detected planets was more than doubled by the unmodeled influence of a third, massive planet. This fraction is larger than but statistically consistent with the roughly 1.5% rate of serious mass errors due to unmodeled planetary companions for the 274 cases from the same simulation in which a single planet is recovered. We conjecture that an analogous effect due to unmodeled stellar companions may occur more frequently. For 7 out of 23 cases in which two planets in the system would have been detected separately, only one planet was recovered because the perturbations due to the two planets had similar forms. This is a small fraction (7/274) of all recovered single-planet models, but almost a third of all events that might plausibly have led to two-planet models. Still, in these cases, the recovered planet tends to have parameters similar to one of the two real planets most responsible for the anomaly.

  1. Empirical Study of Simulated Two-planet Microlensing Event

    CERN Document Server

    Zhu, Wei; Penny, Matthew; Mao, Shude; Gendron, Rieul

    2014-01-01

    We undertake the first study of two-planet microlensing models recovered from simulations of microlensing events generated by realistic multi-planet systems in which 292 planetary events including 16 two-planet events were detected from 6690 simulated light curves. We find that when two planets are recovered, their parameters are usually close to those of the two planets in the system most responsible for the perturbations. However, in one of the 16 examples, the apparent mass of both detected planets was more than doubled by the unmodeled influence of a third, massive planet. This fraction is larger than, but statistically consistent with, the roughly 1.5% rate of serious mass errors due to unmodeled planetary companions for the 274 cases from the same simulation in which a single planet is recovered. We conjecture that an analogous effect due to unmodeled stellar companions may occur more frequently. For seven out of 23 cases in which two planets in the system would have been detected separately, only one p...

  2. Detectability of GW150914-like events by gravitational microlensing

    CERN Document Server

    Eilbott, Daniel H; Cohn, Jonathan H; Kesden, Michael; King, Lindsay J

    2016-01-01

    The recent discovery of gravitational waves from stellar-mass binary black holes (BBHs) provided direct evidence of the existence of these systems. These BBHs would have gravitational microlensing signatures that are, due to their large masses and small separations, distinct from single-lens signals. We apply Bayesian statistics to examine the distinguishability of BBH microlensing events from single-lens events under ideal observing conditions, using modern photometric and astrometric capabilities. The parameter space of stellar-mass BBHs is explored to determine what parameter values optimize detectability. Given one year of ideal observations, a source star at the Galactic center, a GW150914-like BBH lens (total mass 65 solar masses, mass ratio 0.8) at half that distance, and an impact parameter of 0.4 Einstein radii, we find that BBH separations down to 0.00682 Einstein radii are detectable. Holding all other parameters constant, impact parameters <= 0.473 Einstein radii result in detectable BBHs with ...

  3. Microlensing by multiple planets in high-magnification events

    NARCIS (Netherlands)

    Gaudi, BS; Sackett, PD

    1998-01-01

    Microlensing is increasingly gaining recognition as a powerful method for the detection and characterization of extrasolar planetary systems. Naively, one might expect that the probability of detecting the influence of more than one planet on any single microlensing light curve would be small. Recen

  4. Galactic Distribution of Planets From High-Magnification Microlensing Events

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean

    2015-10-01

    We will use Spitzer to measure microlens parallaxes for ~14 microlensing events that are high-magnification (as seen from Earth), in order to determine the Galactic distribution of planets. Simultaneous observations from Spitzer and Earth yield parallaxes because they are separated by ~1 AU, which is of order the size of the Einstein radius projected on the observer plane. Hence, Earth and Spitzer see substantially different lightcurves for the same event. These Spitzer parallaxes enable measurements of the distances to the lenses (and their masses), which is a crucial element for measuring the Galactic distribution of planets. High-mag events are exceptionally sensitive to planets: Gould+ (2010) detected 6 planets from 13 high-mag events. However, previously it was believed impossible to measure their parallaxes using Spitzer: scheduling constraints imply a 3-10 day delay from event recognition to first observation, while high-mag events are typically recognized only 1-2 days before peak. By combining aggressive observing protocols, a completely new photometry pipeline, and new mathematical techniques, we successfully measured parallaxes for 7 events with peak magnification A>100 and another ~7 with 50events. From this sample, we expect to detect ~4 planets (the number is smaller than Gould+ 2010 because our Spitzer sample will have lower mean magnification). These ~4 planets represent significant progress toward the ~12 necessary to measure the Galactic distribution. All lightcurves will be reduced using our customized software and then made public (unrestricted use), within 2 months of the completion of observations (as we did for our 2015 observations).

  5. Detectability of orbital motion in stellar binary and planetary microlenses

    Science.gov (United States)

    Penny, Matthew T.; Mao, Shude; Kerins, Eamonn

    2011-03-01

    A standard binary microlensing event light curve allows just two parameters of the lensing system to be measured: the mass ratio of the companion to its host and the projected separation of the components in units of the Einstein radius. However, other exotic effects can provide more information about the lensing system. Orbital motion in the lens is one such effect, which, if detected, can be used to constrain the physical properties of the lens. To determine the fraction of binary-lens light curves affected by orbital motion (the detection efficiency), we simulate light curves of orbiting binary star and star-planet (planetary) lenses and simulate the continuous, high-cadence photometric monitoring that will be conducted by the next generation of microlensing surveys that are beginning to enter operation. The effect of orbital motion is measured by fitting simulated light-curve data with standard static binary microlensing models; light curves that are poorly fitted by these models are considered to be detections of orbital motion. We correct for systematic false positive detections by also fitting the light curves of static binary lenses. For a continuous monitoring survey without intensive follow-up of high-magnification events, we find the orbital motion detection efficiency for planetary events with caustic crossings to be 0.061 ± 0.010, consistent with observational results, and 0.0130 ± 0.0055 for events without caustic crossings (smooth events). Similarly, for stellar binaries, the orbital motion detection efficiency is 0.098 ± 0.011 for events with caustic crossings and is 0.048 ± 0.006 for smooth events. These result in combined (caustic-crossing and smooth) orbital motion detection efficiencies of 0.029 ± 0.005 for planetary lenses and 0.070 ± 0.006 for stellar binary lenses. We also investigate how various microlensing parameters affect the orbital motion detectability. We find that the orbital motion detection efficiency increases as the binary

  6. PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS

    International Nuclear Information System (INIS)

    We present the analysis of four candidate short-duration binary microlensing events from the 2006-2007 MOA Project short-event analysis. These events were discovered as a by-product of an analysis designed to find short-timescale single-lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which the stellar host is only detected through binary microlensing effects. The mass ratio and separation are q (4.9 ± 1.4) × 10–3 and s = 2.10 ± 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of mp = 3.7 ± 2.1 MJup and orbits a star of M* = 0.75-0.41+0.33 M☉ at a semimajor axis of a = 8.3-2.7+4.5 AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide-separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide-separation planets with an efficiency at least as high as that for isolated planets, then we can set limits on the distribution of planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semimajor axis is >30 AU.

  7. The macho project: 45 candidate microlensing events from the first-year Galactic bulge data

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)] Allsman, R.A. [Supercomputing Facility, Australian National University, Canberra, A.C.T. 0200 (Australia)] Alves, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] Axelrod, T.S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, A.C.T. 2611 (Australia); Cook, K.H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)] Freeman, K.C. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, A.C.T. 2611 (Australia); Guern, J.; Lehner, M.J. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)] [Department of Physics, University of California, San Diego, California 92093 (United States)] Marshall, S.L. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)] [Department of Physics, University of California, Santa Barbara, California 93106 (United States)] Park, H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] Perlmutter, S. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)] Peterson, B.A. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia)] Pratt, M.R. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)] [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    1997-04-01

    We report the detection of 45 candidate microlensing events in fields toward the Galactic bulge. These come from the analysis of 24 fields containing 12.6 million stars observed for 190 days in 1993. Many of these events are of extremely high signal-to-noise ratio and are remarkable examples of gravitational microlensing. The distribution of peak magnifications is shown to be consistent with the microlensing interpretation of these events. Using a subsample of 1.3 million {open_quotes}clump giant{close_quotes} stars whose distance and detection efficiency are well known, we find 13 events and estimate the microlensing optical depth toward the Galactic bulge as {tau}{sub bulge}=3.9{sub {minus}1.2}{sup +1.8}{times}10{sup {minus}6} averaged over an area of {approximately}12deg{sup 2} centered at Galactic coordinates l=2.55{degree} and b=3.64{degree}. This is similar to the value reported by the OGLE collaboration and is marginally higher than current theoretical models for {tau}{sub bulge}. The optical depth is also seen to increase significantly for decreasing {vert_bar}b{vert_bar}. These results demonstrate that obtaining large numbers of microlensing events toward the Galactic bulge is feasible, and that the study of such events will have important consequences for the structure of the Galaxy and its dark halo. {copyright} {ital 1997} {ital The American Astronomical Society}

  8. Candidate microlensing events from M31 observations with the Loiano telescope

    CERN Document Server

    Novati, S Calchi; De Paolis, F; Dominik, M; Ingrosso, G; Jetzer, Ph; Mancini, L; Nucita, A; Scarpetta, G; Sereno, M; Strafella, F; Gould, A

    2009-01-01

    Microlensing observations towards M31 are a powerful tool for the study of the dark matter population in the form of MACHOs both in the Galaxy and the M31 halos, a still unresolved issue, as well as for the analysis of the characteristics of the M31 luminous populations. In this work we present the second year results of our pixel lensing campaign carried out towards M31 using the 152 cm Cassini telescope in Loiano. We have established an automatic pipeline for the detection and the characterisation of microlensing variations. We have carried out a complete simulation of the experiment and evaluated the expected signal, including an analysis of the efficiency of our pipeline. As a result, we select 1-2 candidate microlensing events (according to different selection criteria). This output is in agreement with the expected rate of M31 self-lensing events. However, the statistics are still too low to draw definitive conclusions on MACHO lensing.

  9. CANDIDATE MICROLENSING EVENTS FROM M31 OBSERVATIONS WITH THE LOIANO TELESCOPE

    International Nuclear Information System (INIS)

    Microlensing observations toward M31 are a powerful tool for the study of the dark matter population in the form of MACHOs both in the Galaxy and the M31 halos, a still unresolved issue, as well as for the analysis of the characteristics of the M31 luminous populations. In this work, we present the second-year results of our pixel lensing campaign carried out toward M31 using the 152 cm Cassini telescope in Loiano. We have established an automatic pipeline for the detection and the characterization of microlensing variations. We have carried out a complete simulation of the experiment and evaluated the expected signal, including an analysis of the efficiency of our pipeline. As a result, we select 1-2 candidate microlensing events (according to different selection criteria). This output is in agreement with the expected rate of M31 self-lensing events. However, the statistics are still too low to draw definitive conclusions on MACHO lensing.

  10. The chemical evolution of the Galactic Bulge seen through micro-lensing events

    Directory of Open Access Journals (Sweden)

    Lucatello S.

    2012-02-01

    Full Text Available Galactic bulges are central to understanding galaxy formation and evolution. Here we report on recent studies using micro-lensing events to obtain spectra of high resolution and moderately high signal-to-noise ratios of dwarf stars in the Galactic bulge. Normally this is not feasible for the faint turn-off stars in the Galactic bulge, but micro-lensing offers this possibility. Elemental abundance trends in the Galactic bulge as traced by dwarf stars are very similar to those seen for dwarf stars in the solar neighbourhood. We discuss the implications of the ages and metallicity distribution function derived for the micro-lensed dwarf stars in the Galactic bulge.

  11. The advantages of using a Lucky Imaging camera for observations of microlensing events

    CERN Document Server

    Sajadian, Sedighe; Dominik, Martin; Hundertmark, Markus

    2016-01-01

    In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky imaging camera. This camera is used at the Danish $1.54$-m follow-up telescope. Using a specific observational strategy, For an Earth-mass planet in the resonance regime, where the detection probability in crowded-fields is smaller, lucky imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.

  12. The advantages of using a Lucky Imaging camera for observations of microlensing events

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus

    2016-05-01

    In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.

  13. Parallax and Orbital Effects in Astrometric Microlensing with Binary Sources

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Ingrosso, G.; Giordano, M.; Manni, L.

    2016-06-01

    In gravitational microlensing, binary systems may act as lenses or sources. Identifying lens binarity is generally easy, in particular in events characterized by caustic crossing since the resulting light curve exhibits strong deviations from a smooth single-lensing light curve. In contrast, light curves with minor deviations from a Paczyński behavior do not allow one to identify the source binarity. A consequence of gravitational microlensing is the shift of the position of the multiple image centroid with respect to the source star location — the so-called astrometric microlensing signal. When the astrometric signal is considered, the presence of a binary source manifests with a path that largely differs from that expected for single source events. Here, we investigate the astrometric signatures of binary sources taking into account their orbital motion and the parallax effect due to the Earth’s motion, which turn out not to be negligible in most cases. We also show that considering the above-mentioned effects is important in the analysis of astrometric data in order to correctly estimate the lens-event parameters.

  14. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

    International Nuclear Information System (INIS)

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg2 toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy

  15. Red Noise Versus Planetary Interpretations in the Microlensing Event Ogle-2013-BLG-446

    Science.gov (United States)

    Bachelet, E.; Bramich, D. M.; Han, C.; Greenhill, J.; Street, R. A.; Gould, A.; D'Ago, G.; AlSubai, K.; Dominik, M.; Figuera Jaimes, R.; Horne, K.; Hundertmark, M.; Kains, N.; Snodgrass, C.; Steele, I. A.; Tsapras, Y.; RoboNet Collaboration; Albrow, M. D.; Batista, V.; Beaulieu, J.-P.; Bennett, D. P.; Brillant, S.; Caldwell, J. A. R.; Cassan, A.; Cole, A.; Coutures, C.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Hill, K.; Marquette, J.-B.; Menzies, J.; Pere, C.; Ranc, C.; Wambsganss, J.; Warren, D.; PLANET Collaboration; de Almeida, L. Andrade; Choi, J.-Y.; DePoy, D. L.; Dong, S.; Hung, L.-W.; Hwang, K.-H.; Jablonski, F.; Jung, Y. K.; Kaspi, S.; Klein, N.; Lee, C.-U.; Maoz, D.; Muñoz, J. A.; Nataf, D.; Park, H.; Pogge, R. W.; Polishook, D.; Shin, I.-G.; Shporer, A.; Yee, J. C.; μFUN Collaboration; Abe, F.; Bhattacharya, A.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Ohnishi, K.; Philpott, L. C.; Rattenbury, N.; Saito, To.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yonehara, A.; The MOA Collaboration; Bozza, V.; Calchi Novati, S.; Ciceri, S.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Korhonen, H.; Mancini, L.; Melchiorre, C.; Popovas, A.; Postiglione, A.; Rabus, M.; Rahvar, S.; Schmidt, R. W.; Scarpetta, G.; Skottfelt, J.; Southworth, John; Stabile, An.; Surdej, J.; Wang, X.-B.; Wertz, O.; The MiNDSTEp Collaboration

    2015-10-01

    For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing data sets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (Amax ˜ 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (˜3M⊕) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favor the planetary interpretation when systematic errors are taken into account.

  16. Red noise versus planetary interpretations in the microlensing event OGLE-2013-BLG-446

    CERN Document Server

    Bachelet, E; Han, C; Greenhill, J; Street, R A; Gould, A

    2015-01-01

    For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing datasets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (A_{max} \\sim 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (\\sim 3M_\\oplus ) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favour the planetary interpretation when systematic errors are taken into account.

  17. Exoplanetary Microlensing

    CERN Document Server

    Gaudi, B Scott

    2010-01-01

    Gravitational microlensing occurs when a foreground star happens to pass very close to our line of sight to a more distant background star. The foreground star acts as a lens, splitting the light from the source star into two images, which are typically unresolved. However, these images are also magnified, by an amount that depends on the angular lens-source separation. The relative lens-source motion results in a time-variable source magnification: a microlensing event. If the foreground star happens to host a planet with projected separation near the paths of these images, the planet will further perturb the images, resulting in a characteristic, short-lived signature of the planet. This chapter provides an introduction to the discovery and characterization of exoplanets with gravitational microlensing. The theoretical foundation of the method is reviewed, focusing on the phenomenology of planetary perturbations. The strengths and weaknesses of the microlensing technique are discussed, highlighting the fact...

  18. Interpretation of a short-term anomaly in the gravitational microlensing event MOA-2012-BLG-486

    International Nuclear Information System (INIS)

    A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present the analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.

  19. A Characteristic Planetary Feature in Double-Peaked, High-Magnification Microlensing Events

    CERN Document Server

    Han, Cheongho

    2008-01-01

    A significant fraction of microlensing planets have been discovered in high-magnification events, and a significant fraction of these events exhibit a double-peak structure at their peak. However, very wide or very close binaries can also produce double-peaked high-magnification events, with the same gross properties as those produced by planets. Traditionally, distinguishing between these two interpretations has relied upon detailed modeling, which is both time-consuming and generally does not provide insight into the observable properties that allow discrimination between these two classes of models. We study the morphologies of these two classes of double-peaked high-magnification events, and identify a simple diagnostic that can be used to immediately distinguish between perturbations caused by planetary and binary companions, without detailed modeling. This diagnostic is based on the difference in the shape of the intra-peak region of the light curves. The shape is smooth and concave for binary lensing, ...

  20. Detection Level Enhancement of Gravitational Microlensing Events from the Light Curves

    CERN Document Server

    Ibrahim, Ichsan; Djamal, Mitra; Kunjaya, Chatief; Jaelani, Anton Timur; Putri, Gerhana Puannandra

    2015-01-01

    In Astronomy, intensity of the source light is expressed in magnitude. Conventionally, magnitude is defined by logarithmic function of the received flux. This relationship is known as Pogson formulae. For received flux with small signal to noise ratio (S/N), the formulae gives large magnitude error. We want to inspect whether using Inverse Hyperbolic Sine function (hereinafter referred to as Asinh magnitude) can give an alternative calculation of magnitudes for small S/N flux and gives better results to represent the magnitude for that region. We study the possibility of increasing detection level of gravitational microlensing from 40 selected microlensing events light curves for 2013 and 2014 season by using Asinh magnitude. We obtained that the use of the Asinh make the events brighter than using logarithmic with average of about 3.42 x 10^-2 magnitude. We find also average of magnitude error difference between logarithmic magnitude and Asinh magnitude to is about 2.21 x 10^-2 magnitude, so we propose a lim...

  1. Detection of chromatic microlensing in Q 2237+0305 A

    CERN Document Server

    Mosquera, A M; Mediavilla, E

    2008-01-01

    We present narrow band images of the gravitational lens system Q~2237+0305 made with the Nordic Optical Telescope in eight different filters covering the wavelength interval 3510-8130 \\AA. Using PSF photometry fitting we have derived the difference in magnitude vs. wavelength between the 4 images of Q~2237+0305. At $\\lambda=4110$ \\AA, the wavelength range covered by the Str\\"omgren-v filter coincides with the position and width of the CIV emission line. This allows us to determine the existence of microlensing in the continuum and not in the emission lines for two images of the quasar. Moreover the brightness of image A shows a significant variation with wavelength which can only be explained as consequence of chromatic microlensing. To perform a complete analysis of this chromatic event our observations were used together with OGLE light curves. Both data sets can not be reproduced by the simple phenomenology described under the caustic crossing approximation; using more realistic representations of microlen...

  2. First simultaneous microlensing observations by two space telescopes: $Spitzer$ & $Swift$ reveal a brown dwarf in event OGLE-2015-BLG-1319

    CERN Document Server

    Shvartzvald, Y; Udalski, A; Gould, A; Sumi, T; Street, R A; Novati, S Calchi; Hundertmark, M; Bozza, V; Beichman, C; Bryden, G; Carey, S; Drummond, J; Fausnaugh, M; Gaudi, B S; Henderson, C B; Tan, T G; Wibking, B; Pogge, R W; Yee, J C; Zhu, W; Tsapras, Y; Bachelet, E; Dominik, M; Bramich, D M; Cassan, A; Jaimes, R Figuera; Horne, K; Ranc, C; Schmidt, R; Snodgrass, C; Wambsganss, J; Steele, I A; Menzies, J; Mao, S; Poleski, R; Pawlak, M; Szymański, M K; Skowron, J; Mróz, P; Kozłowski, S; Wyrzykowski, Ł; Pietrukowicz, P; Soszyński, I; Ulaczyk, K; Abe, F; Asakura, Y; Barry, R K; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Hirao, Y; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Fukui, A; Matsubara, Y; Muraki, Y; Nagakane, M; Nishioka, T; Ohnishi, K; Oyokawa, H; Rattenbury, N J; Saito, To; Sharan, A; Sullivan, D J; Suzuki, D; Tristram, P J; Yonehara, A; Jørgensen, U G; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Hinse, T C; Kains, N; Kerins, E; Korhonen, H; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Scarpetta, G; Skottfelt, J; Southworth, J; Peixinho, N; Verma, P; Sbarufatti, B; Kennea, J A; Gehrels, N

    2016-01-01

    Simultaneous observations of microlensing events from multiple locations allow for the breaking of degeneracies between the physical properties of the lensing system, specifically by exploring different regions of the lens plane and by directly measuring the "microlens parallax". We report the discovery of a 30-55$M_J$ brown dwarf orbiting a K dwarf in microlensing event OGLE-2015-BLG-1319. The system is located at a distance of $\\sim$5 kpc toward the Galactic bulge. The event was observed by several ground-based groups as well as by $Spitzer$ and $Swift$, allowing the measurement of the physical properties. However, the event is still subject to an 8-fold degeneracy, in particular the well-known close-wide degeneracy, and thus the projected separation between the two lens components is either $\\sim$0.25 AU or $\\sim$45 AU. This is the first microlensing event observed by $Swift$, with the UVOT camera. We study the region of microlensing parameter space to which $Swift$ is sensitive, finding that while for thi...

  3. Pixel Lensing Search For Bright Microlensing Events and Variables in the Galactic Bulge

    CERN Document Server

    Gould, A; Gould, Andrew

    1997-01-01

    We describe a new method to search for gravitational microlensing toward the Galactic bulge that employs a small camera rather than a conventional telescope and probes new regions of parameter space. The small aperture (~65 mm) permits detection of stellar flux variations corresponding to magnitudes 715. The large pixel size (~10") and ~(6 deg)^2 field of view allows observation of the entire bulge with a few pointings. With this large pixel size (and with the even larger 30" PSF that we advocate) most bulge stars are unresolved, so one is in the regime of pixel lensing: microlensing and other forms of stellar variation are detected from the difference of pixel counts in successive images. We identify three principal uses of such a search. First, the observations are analogous to normal pixel lensing observations of the bulge of M31, but are carried out under conditions where the detected events can be followed up in detail. This permits crucial checks on the systematics of the M31 searches. Second, the searc...

  4. Monte Carlo analysis of the MEGA microlensing events towards M31

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, P; Nucita, A A; Strafella, F; Jetzer, Ph.

    2005-01-01

    We perform an analytical study and a Monte Carlo (MC) analysis of the main features for microlensing events in pixel lensing observations towards M31. Our main aim is to investigate the lens nature and location of the 14 candidate events found by the MEGA collaboration. Assuming a reference model for the mass distribution in M31 and the standard model for our galaxy, we estimate the MACHO-to-self lensing probability and the event time duration towards M31. Reproducing the MEGA observing conditions, as a result we get the MC event number density distribution as a function of the event full-width half-maximum duration $t_{1/2}$ and the magnitude at maximum $R_{\\mathrm {max}}$. For a MACHO mass of $0.5 M_{\\odot}$ we find typical values of $t_{1/2} \\simeq 20$ day and $R_{\\mathrm {max}} \\simeq 22$, for both MACHO-lensing and self-lensing events occurring beyond about 10 arcminutes from the M31 center. A comparison of the observed features ($t_{1/2}$ and $R_{\\mathrm {max}}$) with our MC results shows that for a MAC...

  5. Peculiar Transverse Velocities of Galaxies from Quasar Microlensing. Tentative Estimate of the Peculiar Velocity Dispersion at $z\\sim 0.5$

    CERN Document Server

    Mediavilla, E; Munoz, J A; Battaner, E

    2016-01-01

    We propose to use the flux variability of lensed quasar images induced by gravitational microlensing to measure the transverse peculiar velocity of lens galaxies over a wide range of redshift. Microlensing variability is caused by the motions of the observer, the lens galaxy (including the motion of the stars within the galaxy), and the source; hence, its frequency is directly related to the galaxy's transverse peculiar velocity. The idea is to count time-event rates (e.g., peak or caustic crossing rates) in the observed microlensing light curves of lensed quasars that can be compared with model predictions for different values of the transverse peculiar velocity. To compensate for the large time-scale of microlensing variability we propose to count and model the number of events in an ensemble of gravitational lenses. We develop the methodology to achieve this goal and apply it to an ensemble of 17 lensed quasar systems. In spite of the shortcomings of the available data, we have obtained tentative estimates...

  6. Properties of microlensing events by wide separation planets with a moon

    CERN Document Server

    Chung, Sun-Ju

    2016-01-01

    We investigate the properties of microlensing events caused by planetary systems where planets with a moon are widely separated from their host stars. From this investigation, we find that the moon feature generally appears as an very short-duration perturbation on the smooth asymmetric light curve of the lensing event induced by the wide separation planet; thus it can be easily discriminated from the planet feature responsible for the overall asymmetric light curve. For typical Galactic lensing events with the Einstein radius of $\\sim 2$ AU, the asymmetry of the light curves due to bound planets can be noticed up to $\\sim 20$AU. We also find that the perturbations of the wide planetary systems become dominated by the moon as the projected star-planet separation increases, and eventually the light curves of events produced by the systems appear as the single lensing light curve of the planet itself with a very short-duration perturbation induced by the moon, which is a representative light curve of the event ...

  7. MACHO Project Analysis of the Galactic Bulge Microlensing Events with Clump Giants as Sources

    Energy Technology Data Exchange (ETDEWEB)

    Popowski, P; Vandehei, T; Griest, K; Alcock, C; Alves, D R; Allsman, R A; Axelrod, T S; Becker, A; Bennett, D P; Cook, K H; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Minniti, D; Nelson, C; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Welch, D L

    2002-03-06

    We present preliminary results of the analysis of 5 years of MACHO data on the Galactic bulge microlensing events with clump giants as sources. This class of events allows one to obtain robust conclusions because relatively bright clump stars are not strongly affected by blending. We discuss: (1) the selection of ''giant'' events, (2) the distribution of event durations, (3) the anomalous character of event durations and optical depth in the MACHO field 104 centered on (l,b) = (3{sup o}.1,-3{sup o}.0). We report the preliminary average optical depth of {tau} = (2.0 {+-} 0.4) x10{sup -6} (internal) at (l,b) = (3{sup o}.9, -3{sup o}.8), and present a map of the spatial distribution of the optical depth. When field 104 is removed from the sample, the optical depth drops to {tau} = (1.4 {+-} 0.3) x 10{sup -6}, which is in excellent agreement with infrared-based models of the central Galactic region.

  8. A New Nonplanetary Interpretation of the Microlensing Event OGLE-2013-BLG-0723

    Science.gov (United States)

    Han, Cheongho; Bennett, David P.; Udalski, Andrzej; Jung, Youn Kil

    2016-07-01

    Recently, the discovery of a Venus-mass planet orbiting a brown-dwarf host in a binary system was reported from the analysis of the microlensing event OGLE-2013-BLG-0723. We reanalyze the event considering the possibility of other interpretations. From this, we find a new solution where the lens is composed of two bodies, in contrast to the three-body solution of the previous analysis. The new solution better explains the observed light curve than the previous solution with Δχ 2 ∼ 202, suggesting that the new solution is a correct model for the event. From the estimation of the physical parameters based on the new interpretation, we find that the lens system is composed of two low-mass stars with ∼0.2 M ⊙ and ∼0.1 M ⊙ and located at a distance of ∼3 kpc. The fact that the physical parameters correspond to those of the most common lens population located at a distance with a large lensing probability further supports the likelihood of the new interpretation. Considering that two dramatically different solutions can approximately explain the observed light curve, the event suggests the need for carefully testing all possible lens-system geometries.

  9. Studying the microlenses mass function from statistical analysis of the caustic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, T; Ariza, O [Departamento de Estadistica e Investigacion Operativa, Universidad de Cadiz, Avda de Ramon Puyol, s/n 11202 Algeciras (Spain); Mediavilla, E [Instituto de Astrofisica de Canarias, Avda Via Lactea s/n, La Laguna (Spain); Munoz, J A, E-mail: teresa.mediavilla@ca.uca.es, E-mail: octavio.ariza@uca.es, E-mail: emg@iac.es [Departamento de Astrofisica y Astronomia, Universidad de Valencia, Burjassot, Valencia (Spain)

    2011-09-22

    The statistical distribution of caustic crossings by the images of a lensed quasar depends on the properties of the distribution of microlenses in the lens galaxy. We use a procedure based in Inverse Polygon Mapping to easily identify the critical and caustic curves generated by a distribution of stars in the lens galaxy. We analyze the statistical distributions of the number of caustic crossings by a pixel size source for several projected mass densities and different mass distributions. We compare the results of simulations with theoretical binomial distributions. Finally we apply this method to the study of the stellar mass distribution in the lens galaxy of QSO 2237+0305.

  10. A New Non-Planetary Interpretation of the Microlensing Event OGLE-2013-BLG-0723

    CERN Document Server

    Han, Cheongho; Udalski, Andrzej; Jung, Youn Kil

    2016-01-01

    Recently, the discovery of a Venus-mass planet orbiting a brown-dwarf host in a binary system was reported from the analysis of the microlensing event OGLE-2013-BLG-0723. We reanalyze the event considering the possibility of other interpretations. From this, we find a new solution where the lens is composed of 2 bodies in contrast to the 3-body solution of the previous analysis. The new solution better explains the observed light curve than the previous solution with $\\Delta\\chi^2\\sim 202$, suggesting that the new solution is a correct model for the event. From the estimation of the physical parameters based on the new interpretation, we find that the lens system is composed of two low-mass stars with $\\sim 0.2\\ M_\\odot$ and $\\sim 0.1\\ M_\\odot$ and located at a distance $\\sim 3$ kpc. The fact that the physical parameters correspond to those of the most common lens population located at a distance with a large lensing probability further supports the likelihood of the new interpretation. Considering that two d...

  11. Determining the Physical Lens Parameters of the Binary Gravitational Microlensing Event MOA-2009-BLG-016

    CERN Document Server

    Hwang, K -H; Bond, I A; Miyake, N; Abe, F; Bennett, D P; Botzler, C S; Fukui, A; Furusawa, K; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Muraki, Y; Nishimoto, K; Ohnishi, K; Perrott, Y C; Rattenbury, N; Saito, To; Sako, T; Skuljan, L; Sullivan, D J; Sumi, T; Suzuki, D; Sweatman, W L; P.,; Tristram, J; Wada, K; L., P C M Yock D; Depoy,; Gaudi, B S; Gould, A; Lee, C -U; Pogge, R W

    2010-01-01

    We report the result of the analysis of the light curve of the microlensing event MOA-2009-BLG-016. The light curve is characterized by a short-duration anomaly near the peak and an overall asymmetry. We find that the peak anomaly is due to a binary companion to the primary lens and the asymmetry of the light curve is explained by the parallax effect caused by the acceleration of the observer over the course of the event due to the orbital motion of the Earth around the Sun. In addition, we detect evidence for the effect of the finite size of the source near the peak of the event, which allows us to measure the angular Einstein radius of the lens system. The Einstein radius combined with the microlens parallax allows us to determine the total mass of the lens and the distance to the lens. We identify three distinct classes of degenerate solutions for the binary lens parameters, where two are manifestations of the previously identified degeneracies of close/wide binaries and positive/negative impact parameters...

  12. Discovery of a Gas giant Planet in Microlensing Event OGLE-2014-BLG-1760

    CERN Document Server

    Bhattacharya, A; Bond, I A; Sumi, T; Udalski, A; Street, R; Tsapras, Y; Abe, F; Freeman, M; Fukui, A; Itow, Y; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Ohnishi, K; Philpott, L C; Rattenbury, N; Saito, T; Sharan, A; Sullivan, D J; Suzuki, D; Tristram, P J; Szymański, M K; Kubiac, M; Pietrzyński, G; Soszyński, I; Poleski, R; Kozlowski, S; Pietrukowicz, P; Ulaczyk, K; Wyrzykowski, L; Bachelet, E; Bramich, D M; Browne, P; Dominik, M; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Snodgrass, C; Steele, I A

    2016-01-01

    We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light curve signal due to the presence of a Jupiter mass-ratio planet. One unusual feature of this event is that the source star is quite blue, with $V-I = 1.48\\pm 0.08$. This is marginally consistent with source star in the Galactic bulge, but it could possibly indicate a young source star in the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at $D_L = 6.9 \\pm 1.1 $ kpc. It also indicates a host star mass of $M_* = 0.51 \\pm 0.44 M_\\odot$, a planet mass of $m_p = 180 \\pm 110 M_\\oplus$, and a projected star-planet separation of $a_\\perp = 1.7\\pm 0.3\\,$AU. The lens-source relative proper motion is $\\mu_{\\rm rel} = 6.5\\pm 1.1$ mas/yr. The lens (and stellar host star) is predicted to be very faint, so it is most likely that it can detected only when the lens and sour...

  13. Statistical searches for microlensing events in large, non-uniformly sampled time-domain surveys: A test using palomar transient factory data

    International Nuclear Information System (INIS)

    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ∼20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ∼40 times in the R band, ∼2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.

  14. Estimating Finite Source Effects in Microlensing Events due to Free-Floating Planets with the Euclid Survey

    CERN Document Server

    Hamolli, Lindita; De Paolis, Francesco; Nucita, Achille A

    2015-01-01

    In recent years free-loating planets (FFPs) have drawn a great interest among astrophysicists. Gravitational microlensing is a unique and exclusive method for their investigation which may allow obtaining precious information about their mass and spatial distribution. The planned Euclid space-based observatory will be able to detect a substantial number of microlensing events caused by FFPs towards the Galactic bulge. Making use of a synthetic population algorithm, we investigate the possibility of detecting finite source effects in simulated microlensing events due to FFPs. We find a significant efficiency for finite source effect detection that turns out to be between 20% and 40% for a FFP power law mass function index in the range [0.9, 1.6]. For many of such events it will also be possible to measure the angular Einstein radius and therefore constrain the lens physical parameters. These kinds of observations will also offer a unique possibility to investigate the photosphere and atmosphere of Galactic bul...

  15. Estimating Finite Source Effects in Microlensing Events due to Free-Floating Planets with the Euclid Survey

    Directory of Open Access Journals (Sweden)

    Lindita Hamolli

    2015-01-01

    Full Text Available In recent years free-floating planets (FFPs have drawn a great interest among astrophysicists. Gravitational microlensing is a unique and exclusive method for their investigation which may allow obtaining precious information about their mass and spatial distribution. The planned Euclid space-based observatory will be able to detect a substantial number of microlensing events caused by FFPs towards the Galactic bulge. Making use of a synthetic population algorithm, we investigate the possibility of detecting finite source effects in simulated microlensing events due to FFPs. We find a significant efficiency for finite source effect detection that turns out to be between 20% and 40% for a FFP power law mass function index in the range [0.9, 1.6]. For many of such events it will also be possible to measure the angular Einstein radius and therefore constrain the lens physical parameters. These kinds of observations will also offer a unique possibility to investigate the photosphere and atmosphere of Galactic bulge stars.

  16. Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169

    CERN Document Server

    Bennett, D P; Anderson, J; Bond, I A; Anderson, N; Barry, R; Batista, V; Beaulieu, J -P; DePoy, D L; Dong, Subo; Gaudi, B S; Gilbert, E; Gould, A; Pfeifle, R; Pogge, R W; Suzuki, D; Terry, S; Udalski, A

    2015-01-01

    We present Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the source and lens stars for planetary microlensing event OGLE-2005-BLG-169, which confirm the relative proper motion prediction due to the planetary light curve signal observed for this event. This (and the companion Keck result) provide the first confirmation of a planetary microlensing signal, for which the deviation was only 2%. The follow-up observations determine the flux of the planetary host star in multiple passbands and remove light curve model ambiguity caused by sparse sampling of part of the light curve. This leads to a precise determination of the properties of the OGLE-2005-BLG-169Lb planetary system. Combining the constraints from the microlensing light curve with the photometry and astrometry of the HST/WFC3 data, we find star and planet masses of M_* = 0.69+- 0.02 M_solar and m_p = 14.1 +- 0.9 M_earth. The planetary microlens system is located toward the Galactic bulge at a distance of D_L = 4.1 +- 0.4 kpc, a...

  17. Detecting Planets Through Microlensing

    OpenAIRE

    Sahu, Kailash C.

    1997-01-01

    More than 100 microlensing events have been detected during the last ~4 years, most of them towards the Galactic Bulge. Since the line of sight towards the Bulge passes through the disk and the Bulge itself, the known stars towards the Bulge play a dominant role as gravitational lenses. If these stars have planets around them, then the signature of the planets can be seen as sharp, extra peaks on the microlensing light curves. Frequent, continuous monitoring of the on-going microlensing event...

  18. Constraint on Additional Planets in Planetary Systems Discovered through the Channel of High-magnification Gravitational Microlensing Events

    CERN Document Server

    Shin, I -G; Choi, J -Y; Hwang, K -H; Jung, Y K; Park, H

    2015-01-01

    High-magnification gravitational microlensing events provide an important channel of detecting planetary systems with multiple giants located at their birth places. In order to investigate the potential existence of additional planets, we reanalyze the light curves of the eight high-magnification microlensing events for each of which a single planet was previously detected. The analyzed events include OGLE-2005-BLG-071, OGLE-2005-BLG-169, MOA-2007-BLG-400, MOA-2008-BLG-310, MOA-2009-BLG-319, MOA-2009-BLG-387, MOA-2010-BLG-477, and MOA-2011-BLG-293. We find that including an additional planet improves fits with $\\Delta\\chi^2 < 80$ for seven out of eight analyzed events. For MOA-2009-BLG-319, the improvement is relatively big with $\\Delta\\chi^2 \\sim 143$. From inspection of the fits, we find that the improvement of the fits is attributed to systematics in data. Although no clear evidence of additional planets is found, it is still possible to constrain the existence of additional planets in the parameter spa...

  19. A new type of Ambiguity in the Planet and Binary Interpretations of Central Perturbations of High-magnification Gravitational Microlensing Events

    DEFF Research Database (Denmark)

    Choi, J.-Y; Shin, I.-G; Han, C.;

    2012-01-01

    High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally di...

  20. Characterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.;

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-...

  1. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    CERN Document Server

    Chung, Sun-Ju; Koo, Jae-Rim

    2014-01-01

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over the peak, confident planet detection did not happen due to extremely weak central perturbations (fractional deviations of $\\lesssim 2\\%$). For confident detection of planets in extremely weak central perturbation (EWCP) events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems.The next-generation ground-based observation project, KMTNet (Korea Microlensing Telescope Network), satisfies the conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of $\\leq 2\\%$ in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of $> 50\\%$ in the case of $\\lesssim 100\\ M_{\\rm E}$ planets with separations of $0.2\\ {\\rm AU} \\lesssim d \\lesssim 20\\ {\\rm AU}$. We find that for m...

  2. Microlensing as a possible probe of event-horizon structure in quasars

    CERN Document Server

    Tomozeiu, Mihai; Rabold, Manuel; Saha, Prasenjit; Wambsganss, Joachim

    2016-01-01

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disk tends to produce roughly crescent sources. When a crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.

  3. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    International Nuclear Information System (INIS)

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M E planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M E planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.

  4. Microlensing events by Proxima Centauri in 2014 and 2016: Opportunities for mass determination and possible planet detection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Kailash C.; Bond, Howard E.; Anderson, Jay [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dominik, Martin, E-mail: ksahu@stsci.edu, E-mail: jayander@stsci.edu, E-mail: heb11@psu.edu, E-mail: md35@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2014-02-20

    We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.''6), and to a mag 19.5 star in 2016 February (impact parameter 0.''5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of ∼0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.''0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.

  5. A Super-Jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    CERN Document Server

    Tsapras, Y; Street, R A; Han, C; Bozza, V; Gould, A; Dominik, M; Beaulieu, J -P; Udalski, A; Jørgensen, U G; Sumi, T; Bramich, D M; Browne, P; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Snodgrass, C; Steele, I A; Alsubai, K A; Andersen, J M; Novati, S Calchi; Damerdji, Y; Diehl, C; Elyiv, A; Giannini, E; Hardis, S; Harpsøe, K; Hinse, T C; Juncher, D; Kerins, E; Korhonen, H; Liebig, C; Mancini, L; Mathiasen, M; Penny, M T; Rabus, M; Rahvar, S; Scarpetta, G; Skottfelt, J; Southworth, J; Surdej, J; Tregloan-Reed, J; Vilela, C; Kozłowski, J Wambsganss S; Kubiak, M; Pietrukowicz, P; Pietrzyński, G; Poleski, R; Skowron, J; Soszyński, I; Szymański, M K; Ulaczyk, K; Albrow, Łukasz Wyrzykowski M D; Bachelet, E; Barry, R; Batista, V; Bhattacharya, A; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Kane, S R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Pollard, K R; Williams, A; Wouters, D; Christie, G; DePoy, D L; Dong, S; Drummond, J; Gaudi, B S; Henderson, C B; Hwang, K H; Jung, Y K; Kavka, A; Koo, J -R; Lee, C -U; Maoz, D; Monard, L A G; Natusch, T; Ngan, H; Park, H; Pogge, R W; Porritt, I; Shin, I -G; Shvartzvald, Y; Tan, T G; Yee, J C; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yonehara, P C M Yock A

    2013-01-01

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\\pm 0.43\\ M_{\\rm J}$ planet orbiting a $0.44\\pm 0.07\\ M_{\\odot}$ early M-type star. The distance to the lens is $4.97\\pm 0.29$\\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  6. A Super-Jupiter Orbiting a Late-type Star: A Refined Analysis of Microlensing Event OGLE-2012-BLG-0406

    Science.gov (United States)

    Tsapras, Y.; Choi, J.-Y.; Street, R. A.; Han, C.; Bozza, V.; Gould, A.; Dominik, M.; Beaulieu, J.-P.; Udalski, A.; Jørgensen, U. G.; Sumi, T.; Bramich, D. M.; Browne, P.; Horne, K.; Hundertmark, M.; Ipatov, S.; Kains, N.; Snodgrass, C.; Steele, I. A.; RoboNet Collaboration; Alsubai, K. A.; Andersen, J. M.; Calchi Novati, S.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Giannini, E.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Juncher, D.; Kerins, E.; Korhonen, H.; Liebig, C.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Skottfelt, J.; Southworth, J.; Surdej, J.; Tregloan-Reed, J.; Vilela, C.; Wambsganss, J.; MiNDSTEp Collaboration; Skowron, J.; Poleski, R.; Kozłowski, S.; Wyrzykowski, Ł.; Szymański, M. K.; Kubiak, M.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Barry, R.; Batista, V.; Bhattacharya, A.; Brillant, S.; Caldwell, J. A. R.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Kubas, D.; Marquette, J.-B.; Menzies, J.; Père, C.; Pollard, K. R.; Zub, M.; PLANET Collaboration; Christie, G.; DePoy, D. L.; Dong, S.; Drummond, J.; Gaudi, B. S.; Henderson, C. B.; Hwang, K. H.; Jung, Y. K.; Kavka, A.; Koo, J.-R.; Lee, C.-U.; Maoz, D.; Monard, L. A. G.; Natusch, T.; Ngan, H.; Park, H.; Pogge, R. W.; Porritt, I.; Shin, I.-G.; Shvartzvald, Y.; Tan, T. G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Fukunaga, D.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Namba, S.; Ohnishi, K.; Rattenbury, N. J.; Saito, To.; Sullivan, D. J.; Sweatman, W. L.; Suzuki, D.; Tristram, P. J.; Tsurumi, N.; Wada, K.; Yamai, N.; Yock, P. C. M.; Yonehara, A.; MOA Collaboration

    2014-02-01

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M J planet orbiting a 0.44 ± 0.07 M ⊙ early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  7. A super-jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    International Nuclear Information System (INIS)

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M J planet orbiting a 0.44 ± 0.07 M ☉ early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  8. The LMC Microlensing Events Originate in the Warped and Flaring Milky Way Disk

    CERN Document Server

    Evans, N W; Turner, M S; Binney, J

    1997-01-01

    The MACHO and EROS Collaborations, monitoring millions of stars in the Large Magellanic Cloud (LMC), have seen at least fourteen instances of microlensing. The simplest interpretation is that about one third of the halo of our own Milky Way galaxy exists in the form of objects of around 0.5 solar mass. There are problems with this interpretation. A normal stellar population of 0.5 solar mass stars should be visible. The remaining candidate for the lenses is a population of white dwarfs. But, the precursor population must have enriched the interstellar medium with metals, in conflict with current population II abundance ratios. Moreover, the mass budget is very high, because the efficiency of making white dwarfs is only around ten per cent. Here, we propose a more conventional, but at the moment more speculative, explanation. Some of the lenses are stars in the disk of the Milky Way a few kiloparsecs from us. They lie along the line of sight to the LMC because of warping and flaring of the Galactic disk. Micro...

  9. OGLE-2014-BLG-0257L: A Microlensing Brown Dwarf Orbiting a Low-mass M Dwarf

    CERN Document Server

    Han, C; Udalski, A; Gould, A; Bozza, V; Szymański, M K; Soszyński, I; Poleski, R; Kozłowski, S; Pietrukowicz, P; Skowron, J; Ulaczyk, K; Wyrzykowski, Ł

    2016-01-01

    In this paper, we report the discovery of a binary composed of a brown dwarf and a low-mass M dwarf from the observation of the microlensing event OGLE-2014-BLG-0257. Resolution of the very short-lasting caustic crossing combined with the detection of subtle continuous deviation in the lensing light curve induced by the Earth's orbital motion enable us to precisely measure both the Einstein radius \\theta_E and the lens parallax pi_E, which are the two quantities needed to unambiguously determine the mass and distance to the lens. It is found that the companion is a substellar brown dwarf with a mass 0.036 +/- 0.005 Msun (37.7 +/- 5.2\\ M_J) and it is orbiting an M dwarf with a mass 0.19 +/- 0.02 Msun. The binary is located at a distance 1.25 +/- 0.13 kpc toward the Galactic bulge and the projected separation between the binary components is 0.61 +/- 0.07 AU. The separation scaled by the mass of the host is 3.2 AU/Msun. Under the assumption that separations scale with masses, then, the discovered brown dwarf is...

  10. Microlensing Parallax for Observers in Heliocentric Motion

    CERN Document Server

    Novati, S Calchi

    2016-01-01

    Motivated by the ongoing Spitzer observational campaign, and the forecoming K2 one, we revisit, working in an heliocentric reference frame, the geometrical foundation for the analysis of the microlensing parallax, as measured with the simultaneous observation of the same microlensing event from two observers with relative distance of order AU. For the case of observers at rest we discuss the well known fourfold microlensing parallax degeneracy and determine an equation for the degenerate directions of the lens trajectory. For the case of observers in motion, we write down an extension of the Gould (1994) relationship between the microlensing parallax and the observable quantities and, at the same time, we highlight the functional dependence of these same quantities from the timescale of the underlying microlensing event. Furthermore, through a series of examples, we show the importance of taking into account the motion of the observers to correctly recover the parameters of the underlying microlensing event. ...

  11. AgapeZ1 a Large Amplification Microlensing Event or an Odd Variable Star Towards the Inner Bulge of M31

    CERN Document Server

    Ansari, R; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Giraud-Héraud, Yannick; Gondolo, P; Hecquet, J; Kaplan, J; Kim, A; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G; Coutures, Ch.

    1999-01-01

    AgapeZ1 is the brightest and the shortest duration microlensing candidate event found in the Agape data. It occured only 42" from the center of M31. Our photometry shows that the half intensity duration of the event6 is 4.8 days and at maximum brightness we measure a stellar magnitude of R=18.0 with B-R=0.80 mag color. A search on HST archives produced a single resolved star within the projected event position error box. Its magnitude is R=22.

  12. AgapeZ1: a Large Amplification Microlensing Event or an Odd Variable Star Towards the Inner Bulge of M31

    OpenAIRE

    Ansari, R.; Auriere, M.; Baillon, P.; Bouquet, A.; Coupinot, G.; Coutures, Ch.; Ghesquiere, C.; Giraud-Heraud, Y.; Gondolo, P.; Hecquet, J.; Kaplan, J; Kim, A.; Du, Y. Le; Melchior, A. L.; Moniez, M.

    1998-01-01

    AgapeZ1 is the brightest and the shortest duration microlensing candidate event found in the Agape data. It occured only 42" from the center of M31. Our photometry shows that the half intensity duration of the event6 is 4.8 days and at maximum brightness we measure a stellar magnitude of R=18.0 with B-R=0.80 mag color. A search on HST archives produced a single resolved star within the projected event position error box. Its magnitude is R=22.

  13. OGLE-2016-BLG-0596Lb: High-Mass Planet From High-Magnification Pure-Survey Microlensing Event

    CERN Document Server

    Mróz, P; Udalski, A; Poleski, R; Skowron, J; Szymański, M K; Soszyński, I; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M; Albrow, M D; Cha, S -M; Chung, S -J; Jung, Y K; Kim, D -J; Kim, S -L; Lee, C -U; Lee, Y; Park, B -G; Pogge, R W; Ryu, Y -H; Shin, I -G; Yee, J C; Zhu, W; Gould, A

    2016-01-01

    We report the discovery of a high mass-ratio planet $q=0.012$, i.e., 13 times higher than the Jupiter/Sun ratio. The host mass is not presently measured but can be determined or strongly constrained from adaptive optics imaging. The planet was discovered in a small archival study of high-magnification events in pure-survey microlensing data, which was unbiased by the presence of anomalies. The fact that it was previously unnoticed may indicate that more such planets lie in archival data and could be discovered by similar systematic study. In order to understand the transition from predominantly survey+followup to predominately survey-only planet detections, we conduct the first analysis of these detections in the observational $(s,q)$ plane. Here $s$ is projected separation in units of the Einstein radius. We find some evidence that survey+followup is relatively more sensitive to planets near the Einstein ring, but that there is no statistical difference in sensitivity by mass ratio.

  14. Revisiting the microlensing event OGLE 2012-BLG-0026: A solar mass star with two cold giant planets

    CERN Document Server

    Beaulieu, J P; Batista, V; Fukui, A; Marquette, J -B; Brillant, S; Cole, A A; Rogers, L A; Sumi, T; Abe, F; Bhattacharya, A; Koshimoto, N; Suzuki, D; Tristram, P J; Han, C; Gould, A; Pogge, R; Yee, J

    2016-01-01

    Two cold, gas giant planets orbiting a G-type main sequence star in the galactic disk have previously been discovered in the high magnification microlensing event OGLE-2012-BLG-0026 (Han et al. 2013). Here we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, $H=16.39 \\pm 0.08$. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B\\&C telescope in New Zealand and CTIO 1.3m H band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a $\\sim 4-9$ Gyr lens star of $\\rm M_{lens} = 1.06 \\pm 0.05~\\,M_\\odot$ at a distance of $\\rm D_{lens} = 4.0 \\pm 0.3~$kpc, orbited by two giant plan...

  15. Real-time detection of gravitational microlensing

    CERN Document Server

    Pratt, M R; Axelrod, T S; Becker, A; Bennett, D P; Cook, K H; Freeman, K C; Griest, K; Guern, J A; Lehner, M; Marshall, S L; Peterson, B A; Quinn, P J; Reiss, D; Rodgers, A W; Stubbs, C W; Sutherland, W; Welch, D

    1995-01-01

    Real-time detection of microlensing has moved from proof of concept in 1994 to a steady stream of events this year. Global dissemination of these events by the MACHO and OGLE collaborations has made possible intensive photometric and spectroscopic followup from widely dispersed sites confirming the microlensing hypothesis. Improved photometry and increased temporal resolution from followup observations greatly increases the possibility of detecting deviations from the standard point-source, point-lens, inertial motion microlensing model. These deviations are crucial in understanding individual lensing systems by breaking the degeneracy between lens mass, position and velocity. We report here on GMAN (Global Microlensing Alert Network), the coordinated followup of MACHO alerts.

  16. A new type of Ambiguity in the Planet and Binary Interpretations of Central Perturbations of High-magnification Gravitational Microlensing Events

    DEFF Research Database (Denmark)

    Choi, J.-Y; Shin, I.-G; Han, C.; Udalski, A.; Sumi, T.; Gould, A.; Bozza, V.; Dominik, M.; Fouque´, P.; Horne, K.; Szyman´ski, M. K.; Kubiak, M.; Soszyn´ski, I.; Pietrzyn´ski, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; Kozłowski, S.; Skowron, J.; Wyrzykowski, Ł.; OGLE Collaboration; Abe, F.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Chote, P.; Freeman, M.; Fukui, A.; Furusawa, K.; Itow, Y.; Kobara, S.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Ohmori, K.; Ohnishi, K.; Rattenbury, N. J.; Saito, To; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Bramich, D. M.; Snodgrass, C.; Steele, I. A.; Street, R. A.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Browne, P.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Fang, X.-S; Grundahl, F.; Gu, C.-H; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hornstrup, Allan; Hundertmark, M.; Jessen-Hansen, J.; Jørgensen, U. G.; Kains, N.; Kerins, E.; Liebig, C.; Lund, M.; Lunkkvist, M.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Skottfelt, J.; Southworth, J.; Surdej, J.; Tregloan-Reed, J.; Wambsganss, J.; Wertz, O.; Almeida, L. A.; Batista, V.; Christie, G.; DePoy, D. L.; Dong, Subo; Gaudi, B. S.; Henderson, C.; Jablonski, F.; Lee, C.-U; McCormick, J.; McGregor, D.; Moorhouse, D.; Natusch, T.; Ngan, H.; Pogge, R. W.; Tan, T.-G; Thornley, G.; Yee, J. C.; Albrow, M. D.; Bachelet, E.; Beaulieu, J.-P; Brillant, S.; Cassan, A.; Cole, A. A.; Corrales, E.; Coutures, C.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Greenhill, J.; Kubas, D.; Marquette, J.-B; Menzies, J. W.; Sahu, K. C.; Zub, M.

    2012-01-01

    High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally...... very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ2 ~ 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference...

  17. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    OpenAIRE

    Choi, J.-Y.; Shin, I. -G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M; W. Allen; Almeida, L. A.; Bos, M.; Christie, G. W.; DePoy, D. L.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile o...

  18. A POSSIBLE BINARY SYSTEM OF A STELLAR REMNANT IN THE HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENT OGLE-2007-BLG-514

    International Nuclear Information System (INIS)

    We report the extremely high-magnification (A > 1000) binary microlensing event OGLE-2007-BLG-514. We obtained good coverage around the double peak structure in the light curve via follow-up observations from different observatories. The binary lens model that includes the effects of parallax (known orbital motion of the Earth) and orbital motion of the lens yields a binary lens mass ratio of q = 0.321 ± 0.007 and a projected separation of s = 0.072 ± 0.001 in units of the Einstein radius. The parallax parameters allow us to determine the lens distance DL = 3.11 ± 0.39 kpc and total mass ML = 1.40 ± 0.18 M☉; this leads to the primary and secondary components having masses of M1 = 1.06 ± 0.13 M☉ and M2 = 0.34 ± 0.04 M☉, respectively. The parallax model indicates that the binary lens system is likely constructed by the main-sequence stars. On the other hand, we used a Bayesian analysis to estimate probability distributions by the model that includes the effects of xallarap (possible orbital motion of the source around a companion) and parallax (q = 0.270 ± 0.005, s = 0.083 ± 0.001). The primary component of the binary lens is relatively massive, with M1 = 0.9+4.6–0.3 M☉ and it is at a distance of DL = 2.6+3.8–0.9 kpc. Given the secure mass ratio measurement, the companion mass is therefore M2 = 0.2+1.2–0.1 M☉. The xallarap model implies that the primary lens is likely a stellar remnant, such as a white dwarf, a neutron star, or a black hole.

  19. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    Science.gov (United States)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  20. The 24-hour night shift : Astronomy from microlensing monitoring networks

    NARCIS (Netherlands)

    Sackett, PD; Brainerd, TG; Kochanek, CS

    2001-01-01

    Scores of on-going microlensing events are now announced yearly by the microlensing discovery teams OGLE, MACHO and EROS. These early warning systems have allowed other international microlensing networks to focus considerable resources on intense photometric and occasionally spectroscopic - monitor

  1. New method to measure proper motions of microlensed sources: Application to candidate free-floating-planet event MOA-2011-BLG-262

    International Nuclear Information System (INIS)

    We develop a new method to measure source proper motions in microlensing events, which can partially overcome problems due to blending. It takes advantage of the fact that the source position is known precisely from the microlensing event itself. We apply this method to the event MOA-2011-BLG-262, which has a short timescale t E = 3.8 day, a companion mass ratio q = 4.7 × 10–3, and a very high or high lens-source relative proper motion μrel = 20 mas yr–1 or 12 mas yr–1 (for two possible models). These three characteristics imply that the lens could be a brown dwarf or a massive planet with a roughly Earth-mass 'moon'. The probability of such an interpretation would be greatly increased if it could be shown that the high lens-source relative proper motion was primarily due to the lens rather than the source. Based on the long-term monitoring data of the Galactic bulge from the Optical Gravitational Lensing Experiment, we measure the source proper motion that is small, μs=(−2.3,−0.9)±(2.8,2.6) mas yr−1 in a (north, east) Galactic coordinate frame. These values are then important input into a Bayesian analysis of the event presented in a companion paper by Bennett et al.

  2. Faint detection of exoplanets in microlensing surveys

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert A., E-mail: rbrown@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-06-20

    We propose a new approach to discovering faint microlensing signals below traditional thresholds, and for estimating the binary-lens mass ratio and the apparent separation from such signals. The events found will be helpful in accurately estimating the true distribution of planetary semimajor axes, which is an important goal of space microlensing surveys.

  3. Frequency of Solar-Like Systems and of Ice and Gas Giants Beyond the Snow Line from High-Magnification Microlensing Events in 2005-2008

    CERN Document Server

    Gould, A; Gaudi, B S; Udalski, A; Bond, I A; Greenhill, J; Street, R A; Dominik, M; Sumi, T; Szymanski, M K; Han, C

    2014-01-01

    We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-ratios[-4.5200) microlensing events during 2005-8. The sample host stars have typical mass M_host 0.5 Msun, and detection is sensitive to planets over a range of projected separations (R_E/s_max,R_E*s_max), where R_E 3.5 AU sqrt(M_host/Msun) is the Einstein radius and s_max (q/5e-5)^{2/3}, corresponding to deprojected separations ~3 times the "snow line". Though frenetic, the observations constitute a "controlled experiment", which permits measurement of absolute planet frequency. High-mag events are rare, but the high-mag channel is efficient: half of high-mag events were successfully monitored and half of these yielded planet detections. The planet frequency derived from microlensing is a factor 7 larger than from RV studies at factor ~25 smaller separations [2

  4. Astrophysical applications of gravitational microlensing

    Institute of Scientific and Technical Information of China (English)

    Shude Mao

    2012-01-01

    Since the first discovery of microlensing events nearly two decades ago,gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications.The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights.(1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs).This confirms most dark matter is non-baryonic,consistent with other observations.(2) Microlensing has discovered about 20 extrasolar planets (16 published),including the first two Jupiter-Saturn like systems and the only five "cold Neptunes" yet detected.They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation.(3) Microlensing provides a unique way to measure the mass of isolated stars,including brown dwarfs and normal stars.Half a dozen or so stellar mass black hole candidates have also been proposed.(4) High-resolution,target-of-opportunity spectra of highly-magnified dwarf stars provide intriguing "age" determinations which may either hint at enhanced helium enrichment or unusual bulge formation theories.(5) Microlensing also measured limb-darkening profiles for close to ten giant stars,which challenges stellar atmosphere models.(6) Data from surveys also provide strong constraints on the geometry and kinematics of the Milky Way bar (through proper motions); the latter indicates predictions from current models appear to be too anisotropic compared with observations.The future of microlensing is bright given the new capabilities of current surveys and forthcoming new telescope networks from the ground and from space.Some open issues in the field are identified and briefly discussed.

  5. The M31 microlensing event WeCAPP-GL1/Point-AGAPE-S3: evidence for a MACHO component in the dark halo of M31?

    CERN Document Server

    Riffeser, A; Bender, R

    2008-01-01

    We re-analyze the M31 microlensing event WeCAPP-GL1/Point-AGAPE-S3 taking into account that stars are not point-like but extended. We show that the finite size of stars can dramatically change the self-lensing eventrate and (less dramatically) also the halo lensing eventrate, if events are as bright as WeCAPP-GL1. The brightness of the brightest events mostly depends on the source sizes and fluxes and on the distance distribution of sources and lenses and therefore can be used as a sensitive discriminator between halo-lensing and self-lensing events, provided the stellar population mix of source stars is known well enough. Using a realistic model for the 3D-light distribution, stellar population and extinction of M31, we show that an event like WeCAPP-GL1 is very unlikely to be caused by self-lensing. In the entire WeCAPP-field ($17.2'\\times 17.2'$ centered on the bulge) we expect only one self-lensing event every 49 years with the approximate parameters of WeCAPP-GL1 (time-scale 1-3d, $R$ flux-excess <19....

  6. AGAPE a microlensing search for dark matter by monitoring pixels

    CERN Document Server

    Gondolo, P; Aurière, M; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Giraud-Héraud, Yannick; Hecquet, J; Kaplan, J; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G; Coutures, Ch.

    1996-01-01

    AGAPE is an observational search of massive compact halo objects (MACHOs) in the direction of M31 by means of a novel method: the gravitational microlensing of unresolved stars. The search consists in examining CCD pixel light curves for microlensing features. The high level of temporal stability necessary to detect microlensing events has been achieved, with quiet pixels stable within a factor of two of the photon noise (the brightest ones down to a level of 0.001 mag). The data analysis is still in progress, but hundreds of variable objects (cepheids, novae, ...) have already been found. Among them there are several lightcurves that resemble microlensing events.

  7. Microlensing Observations Rapid Search for Exoplanets: MORSE code for GPUs

    CERN Document Server

    McDougall, Alistair

    2015-01-01

    The rapid analysis of ongoing gravitational microlensing events has been integral to the successful detection and characterisation of cool planets orbiting low mass stars in the Galaxy. In this paper we present an implementation of search and fit techniques on Graphical Processing Unit hardware. The method allows for the rapid identification of candidate planetary microlensing events and their subsequent followup for detailed characterisation.

  8. OGLE-2012-BLG-0455/MOA-2012-BLG-206: Microlensing event with ambiguity in planetary interpretations caused by incomplete coverage of planetary signal

    CERN Document Server

    Park, H; Gould, A; Udalski, A; Sumi, T; Fouqué, P; Choi, J -Y; Christie, G; Depoy, D L; Dong, Subo; Gaudi, B S; Hwang, K -H; Jung, Y K; Kavka, A; Lee, C -U; Monard, L A G; Natusch, T; Ngan, H; Pogge, R W; Shin, I -G; Yee, J C; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Poleski, R; Ulaczyk, K; Pietrukowicz, P; Kozłowski, S; Skowron, J; Wyrzykowski, Ł; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Fukunaga, D; Harris, P; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Wada, K; Yamai, N; Yock, P C M; Yonehara, A

    2014-01-01

    Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interpreting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can also result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event $(A_{\\rm max}\\sim400)$ exhibits very strong deviation from a point-lens model with $\\Delta\\chi^{2}\\gtrsim4000$. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While th...

  9. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ∼ 0.08 mas combined with the short timescale of tE ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  10. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  11. Applications of Microlensing to Stellar Astrophysics

    CERN Document Server

    Gould, A

    2001-01-01

    Over the past decade, microlensing has developed into a powerful tool to study stellar astrophysics, especially stellar atmospheres, stellar masses, and binarity. I review this progress. Stellar atmospheres can be probed whenever the source in a microlensing event passes over the caustic (contour of infinite magnification) induced by the lens because the caustic effectively resolves the source. Broad-band observations of four events have yielded limb-darkening measurements, which in essence map the atmospheric temperature as a function of depth. And now, for the first time, spectroscopic observations of one event promise much richer diagnostics of the source atmosphere. In the past two years, a practical method has finally been developed to systematically measure the lens masses in microlensing events. This will permit a census of all massive objects, both dark and luminous, in the Galactic bulge, including low-mass stars, brown dwarfs, white dwarfs, neutron stars, and black holes. The method combines traditi...

  12. Hubble Space Telescope Discovery of a Probable Caustic-Crossing Event in the MACS1149 Galaxy Cluster Field

    Science.gov (United States)

    Kelly, Patrick L.; Rodney, Steven; Diego, Jose Maria; Zitrin, Adi; Broadhurst, Tom; Selsing, Jonatan; Balestra, Italo; Benito, Alberto Molino; Bradac, Marusa; Bradley, Larry; Brammer, Gabriel; Cenko, Brad; Christensen, Lise; Coe, Dan; Filippenko, Alexei V.; Foley, Ryan; Frye, Brenda; Graham, Melissa; Graur, Or; Grillo, Claudio; Hjorth, Jens; Howell, Andy; Jauzac, Mathilde; Jha, Saurabh; Kaiser, Nick; Kawamata, Ryota; Kneib, Jean-Paul; Lotz, Jennifer; Matheson, Thomas; McCully, Curtis; Merten, Julian; Nonino, Mario; Oguri, Masamune; Richard, Johan; Riess, Adam; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Smith, Nathan; Strolger, Lou; Treu, Tommaso; Wang, Xin; Weiner, Ben; Williams, Liliya; Zheng, Weikang

    2016-05-01

    While monitoring the MACS1149 (z = 0.54) galaxy cluster as part of the RefsdalRedux program (PID 14199; PI Kelly) with the Hubble Space Telescope (HST) WFC3 IR camera, we have detected a rising transient that appears to be coincident ( Target-of-opportunity optical follow-up imaging in several ACS and WFC3 bands with the FrontierSN program (PID 14208; PI Rodney) has revealed that its rest-frame ultraviolet through optical spectrum may be reasonably well fit with that of a B star at z=1.49 exhibiting a strong Balmer break.

  13. K2 Microlensing and Campaign 9

    Science.gov (United States)

    Penny, Matthew

    2016-06-01

    Campaign 9 of K2 will observe a contiguous 3.7 deg^2 region of the Galactic bulge in order to search for microlensing events and measure microlens parallaxes. It will also perform targeted follow-up of approximately 50 microlensing events spread throughout the Kepler focal plane. Parallax measurements are a critical ingredient for measurements of both the lens mass and distance, which contribute to our understanding of the formation of cold exoplanets, and the formation of planets as a function of Galactic environment. Additionally, as the first un-targeted, space-based microlensing survey, K2C9 offers us the first chance to measure the masses and kinematics of a large population of free-floating planet candidates, whose large abundance has been a puzzle since their discovery.I will review the scientific goals of the K2C9 survey, which will be well underway, and report on the ongoing activity of the K2 Campaign 9 Microlensing Science Team and the wider microlensing community, with a focus on the progress that has been made towards analyzing K2 data in crowded fields.

  14. Microlensing, Brown Dwarfs and GAIA

    CERN Document Server

    Evans, N W

    2014-01-01

    The GAIA satellite can precisely measure the masses of nearby brown dwarfs and lower main sequence stars by the microlensing effect. The scientific yield is maximised if the microlensing event is also followed with ground-based telescopes to provide densely sampled photometry. There are two possible strategies. First, ongoing events can be triggered by photometric or astrometric alerts by GAIA. Second, events can be predicted using known high proper motion stars as lenses. This is much easier, as the location and time of an event can be forecast. Using the GAIA source density, we estimate that the sample size of high proper motion ($>300$ mas yr$^{-1}$) brown dwarfs needed to provide predictable events during the 5 year mission lifetime is surprisingly small, only of the order of a hundred. This is comparable to the number of high proper motion brown dwarfs already known from the work of the UKIDSS Large Area Survey and the all-sky WISE satellite. Provided the relative parallax of the lens and the angular Ein...

  15. Stellar rotation effects in polarimetric microlensing

    CERN Document Server

    Sajadian, Sedighe

    2016-01-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rapidly rotate around their stellar axes. The stellar rotation makes ellipticity and gravity-darkening effects which break the spherical symmetry of the source shape and the circular symmetry of the source surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetry microlensing of fast rotating stars. For moderate rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetry observations. The gravity-darkening effect due to a rotating source star makes asymmetric perturbations in polarimetry and photometry microlensing curves whose maximum happens when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity makes a time shift (i) in the position of ...

  16. Abundance of Terrestrial Planets by Microlensing

    OpenAIRE

    Yock, Philip

    2000-01-01

    Terrestrial planets may be detected using the gravitational microlensing technique. This was demonstrated in the high magnification event MACHO-98-BLG-35. Observing strategies aimed at measuring the abundance of terrestrial planets are discussed, using both existing telescopes and planned telescopes.

  17. Discovering Extrasolar Planets with Microlensing Surveys

    Science.gov (United States)

    Wambsganss, J.

    2016-06-01

    An astronomical survey is commonly understood as a mapping of a large region of the sky, either photometrically (possibly in various filters/wavelength ranges) or spectroscopically. Often, catalogs of objects are produced/provided as the main product or a by-product. However, with the advent of large CCD cameras and dedicated telescopes with wide-field imaging capabilities, it became possible in the early 1990s, to map the same region of the sky over and over again. In principle, such data sets could be combined to get very deep stacked images of the regions of interest. However, I will report on a completely different use of such repeated maps: Exploring the time domain for particular kinds of stellar variability, namely microlens-induced magnifications in search of exoplanets. Such a time-domain microlensing survey was originally proposed by Bohdan Paczynski in 1986 in order to search for dark matter objects in the Galactic halo. Only a few years later three teams started this endeavour. I will report on the history and current state of gravitational microlensing surveys. By now, routinely 100 million stars in the Galactic Bulge are monitored a few times per week by so-called survey teams. All stars with constant apparent brightness and those following known variability patterns are filtered out in order to detect the roughly 2000 microlensing events per year which are produced by stellar lenses. These microlensing events are identified "online" while still in their early phases and then monitored with much higher cadence by so-called follow-up teams. The most interesting of such events are those produced by a star-plus-planet lens. By now of order 30 exoplanets have been discovered by these combined microlensing surveys. Microlensing searches for extrasolar planets are complementary to other exoplanet search techniques. There are two particular advantages: The microlensing method is sensitive down to Earth-mass planets even with ground-based telecopes, and it

  18. Searching gravitational microlensing events in the galaxy spiral arms by EROS II; Recherche d'evenements de microlentille gravitationnelle dans les bras spiraux de la galaxie avec EROS II

    Energy Technology Data Exchange (ETDEWEB)

    Derue, Frederic [Paris-11 Univ., 91 Orsay (France)

    1999-04-15

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10{sup -3} < M/M{sub 0} < 0.84 at 95% CL. The amplification curve of another candidate shows a modulation which can be interpreted as a microlensing effect acting on a binary source, with an orbital period of P{sub 0} = 50 {+-} 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is {tau}-bar = 0.45{sub 0.11}{sup +0.23} x 10{sup -6}. It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to

  19. On calculation of microlensing light curve by gravitational lens caustic

    OpenAIRE

    Bogdanov, M B

    2001-01-01

    For an analysis of microlensing observational data in case of binary gravitational lenses as well as for an interpretation of observations of high magnification events in multiple images of a lensed quasar it is necessary to calculate for a given source the microlensing light curve by a fold caustic. This problem comes to the numerical calculation of a singular integral. We formulated the sufficient condition of a convergence of the integral sum for this singular integral. The strictly approa...

  20. The Angstrom Project Alert System: real-time detection of extragalactic microlensing

    CERN Document Server

    Darnley, M J; Newsam, A; Duke, J P; Gould, A; Han, C; Ibrahimov, M A; Im, M; Jeon, Y B; Karimov, R G; Lee, C U; Park, B G

    2006-01-01

    The Angstrom Project is undertaking an optical survey of stellar microlensing events across the bulge region of the Andromeda Galaxy (M31) using a distributed network of two-meter class telescopes. The Angstrom Project Alert System (APAS) has been developed to identify in real time candidate microlensing and transient events using data from the Liverpool and Faulkes North robotic telescopes. This is the first time that real-time microlensing discovery has been attempted outside of the Milky Way and its satellite galaxies. The APAS is designed to enable follow-up studies of M31 microlensing systems, including searches for gas giant planets in M31. Here we describe the APAS and we present a few example light curves obtained during its commissioning phase which clearly demonstrate its real-time capability to identify microlensing candidates as well as other transient sources.

  1. Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Stubbs, C; Becker, A C; Miknaitis, G A; Miceli, A; Covarrubias, R; Hawley, S L; Smith, C; Suntzeff, N B; Olsen, K; Prieto, J; Hiriart, R; Welch, D L; Cook, K; Nikolaev, S; Proctor, G; Clocchiatti, A; Minniti, D; Garg, A; Challis, P; Keller, S C; Scmidt, B P

    2004-05-27

    Characterizing the nature and spatial distribution of the lensing objects that produce the observed microlensing optical depth toward the Large Magellanic Cloud (LMC) remains an open problem. They present an appraisal of the ability of the SuperMACHO Project, a next-generation microlensing survey pointed toward the LMC, to discriminate between various proposed lensing populations. they consider two scenarios: lensing by a uniform foreground screen of objects and self-lensing of LMC stars. The optical depth for ''screen-lensing'' is essentially constant across the face of the LMC; whereas, the optical depth for self-lensing shows a strong spatial dependence. they have carried out extensive simulations, based upon actual data obtained during the first year of the project, to assess the SuperMACHO survey's ability to discriminate between these two scenarios. In the simulations they predict the expected number of observed microlensing events for each of their fields by adding artificial stars to the images and estimating the spatial and temporal efficiency of detecting microlensing events using Monte-Carlo methods. They find that the event rate itself shows significant sensitivity to the choice of the LMC luminosity function shape and other parameters, limiting the conclusions which can be drawn from the absolute rate. By instead determining the differential event rate across the LMC, they can decrease the impact of these systematic uncertainties rendering the conclusions more robust. With this approach the SuperMACHO Project should be able to distinguish between the two categories of lens populations and provide important constraints on the nature of the lensing objects.

  2. Galactic microlensing as a method of detecting massive compact halo objects

    International Nuclear Information System (INIS)

    The dark matter of the Galaxy may well consist of Jupiters, brown dwarfs, or the remnants of an early generation of stars. In 1986, Paczynski suggested that a population of such objects could be detected by watching for microlensing of stars in the LMC. Using a more realistic model of the halo density and velocity structure this paper recalculates the microlensing optical depth, the microlensing event rate, and the average duration of an event, correcting an error, but finding rough agreement with Paczynski's estimates. Also calculated is the distribution of microlensing events as a function of their duration and amplitude, finding that photometric measurements more frequent than the average event duration are needed to detect a substantial fraction of the events. 24 refs

  3. Microlenses for stereoscopic image formation

    OpenAIRE

    R.P. Rocha; Carmo, J.P.; Correia, J. H.

    2012-01-01

    This paper presents microlenses for integration on a stereoscopic image sensor in CMOS technology for use in biomedical devices. It is intended to provide an image sensor with a stereoscopic vision. An array of microlenses potentiates stereoscopic vision and maximizes the color fidelity. An array of optical filters tuned at the primary colors will enable a multicolor usage. The material selected for fabricating the microlens was the AZ4562 positive photoresist. The reflow method a...

  4. Ground-based Microlensing Surveys

    OpenAIRE

    Gould, Andrew; Gaudi, B. Scott; Bennett, David P.

    2007-01-01

    Microlensing is a proven extrasolar planet search method that has already yielded the detection of four exoplanets. These detections have changed our understanding of planet formation ``beyond the snowline'' by demonstrating that Neptune-mass planets with separations of several AU are common. Microlensing is sensitive to planets that are generally inaccessible to other methods, in particular cool planets at or beyond the snowline, very low-mass (i.e. terrestrial) planets, planets orbiting low...

  5. The Fourth Microlensing Planet Revisited

    CERN Document Server

    Yock, Philip

    2015-01-01

    The fourth microlensing planet, otherwise known as OGLE-2005-BLG-169Lb, was discovered by a collaboration of US, NZ, Polish and UK astronomers in 2005-2006. Recently the results were confirmed by the Hubble Space Telescope and by the Keck Observatory. OGLE-2005-BLG-169Lb is the first microlensing planet to receive such confirmation. Its discovery and confirmation are described here in an historical context.

  6. MOA-2011-BLG-322 - a "second generation survey" microlensing planet

    CERN Document Server

    Shvartzvald, Y; Kaspi, S; Sumi, T; Udalski, A; Gould, A; Bennett, D P; Abe, F; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, K; Tristram, P J; Wada, K; Yock, P C M; Skowron, J; Kozłowski, S; M.,; Szymański, K; Kubiak, M; Pietrzyński, G; Soszyński, I; Ulaczyk, K; Wyrzykowski, Ł; Poleski, R; Pietrukowicz, P

    2013-01-01

    Global "second-generation" microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups only, without prompting alerts that could have led to any dedicated follow-up observations. Fitting a microlensing model to the data, we find that the time scale of the event was t_E=23.4+/-0.9 days, and the mass ratio between the lens star and its companion is q=0.024+/-0.002. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that...

  7. A Super-Jupiter Microlens Planet Characterized by High-Cadence KMTNet Microlensing Survey Observations

    CERN Document Server

    Shin, I -G; Albrow, M; Cha, S -M; Choi, J -Y; Chung, S -J; Han, C; Hwang, K -H; Jung, Y K; Kim, D -J; Kim, S -L; Lee, C -U; Lee, Y -S; Park, B -G; Park, H; Pogge, R W; Yee, J C; Gould, A

    2016-01-01

    We report the characterization of a massive planet m_p=4.4 +- 1.6 M_jup orbiting an M dwarf host M=0.37 +- 0.14 M_sun at a distance of 0.6 +- 0.3 kpc toward the Galactic bulge, with planet host projected separation a_perp ~ 1.2 AU. The characterization was made possible by the wide-field (4 deg^2) high cadence (6/hr) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time, t_* ~ 16 min, is among the shortest ever published. The high-cadence, wide-field observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional effects (bright lens and/or microlens parallax). When combined with the measured cr...

  8. Extended-Source Effect and Chromaticity in Two-Point-Mass Microlensing

    CERN Document Server

    Pejcha, Ondrej

    2007-01-01

    We explore the sensitivity of two-point-mass gravitational microlensing to the extended nature of the source star and the related sensitivity to its limb darkening. We demonstrate that the sensitive region, usually considered to be limited to a source-diameter-wide band along the caustic, is strongly expanded near cusps, most prominently along their outer axis. In the case of multi-component caustics, facing cusps may form a region with a non-negligible extended-source effect spanning the gap between them. We demonstrate that for smaller sources the size of the sensitive region extending from a cusp measured in units of source radii increases, scaling as the inverse cube root of the radius. Taking into account the extent of different sensitivity contours, we show that for a Galactic Bulge giant and a lens with a multi-component caustic the probability of encountering at least a 1% extended-source effect may be more than two times higher than the probability of caustic crossing. We derive analytical expression...

  9. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.;

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...... of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q ~ 0.1, making the companion of the lens a strong brown dwarf candidate....

  10. Probing the Spatial Distribution of Extrasolar Planets with Gravitational Microlensing

    OpenAIRE

    Han, Cheongho; Kang, Young Woon

    2003-01-01

    Under the current microlensing planet search strategy of monitoring events caused by stellar-mass lenses, only planets located within a narrow region of separations from central stars can be effectively detected. However, with the dramatic increase of the monitoring frequency, two additional populations of free-floating and wide-orbit planets can be detected. In this paper, we investigate the lensing properties of events caused by wide-orbit planets and find that the light curves of a signifi...

  11. Free-floating planets from core accretion theory: microlensing predictions

    CERN Document Server

    Ma, Sizheng; Ida, Shigeru; Zhu, Wei; Lin, Douglas N C

    2016-01-01

    We calculate the microlensing event rate and typical time-scales for the free-floating planet (FFP) population that is predicted by the core accretion theory of planet formation. The event rate is found to be ~$1.8\\times 10^{-3}$ of that for the stellar population. While the stellar microlensing event time-scale peaks at around 20 days, the median time-scale for FFP events (~0.1 day) is much shorter. Our values for the event rate and the median time-scale are significantly smaller than those required to explain the \\cite{Sum+11} result, by factors of ~13 and ~16, respectively. The inclusion of planets at wide separations does not change the results significantly. This discrepancy may be too significant for standard versions of both the core accretion theory and the gravitational instability model to explain satisfactorily. Therefore, either a modification to the planet formation theory is required, or other explanations to the excess of short-time-scale microlensing events are needed. Our predictions can be t...

  12. Polarization in microlensing towards the Galactic bulge

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, Ph; Nucita, A A; Strafella, F; Zakharov, A F

    2012-01-01

    Gravitational microlensing, when finite size source effects are relevant, provides an unique tool for the study of source star stellar atmospheres through an enhancement of a characteristic polarization signal. This is due to the differential magnification induced during the crossing of the source star. In this paper we consider a specific set of reported highly magnified, both single and binary exoplanetary systems, microlensing events towards the Galactic bulge and evaluate the expected polarization signal. To this purpose, we consider several polarization models which apply to different types of source stars: hot, late type main sequence and cool giants. As a result we compute the polarization signal P,which goes up to P=0.04% for late type stars and up to a few percent for cool giants, depending on the underlying physical polarization processes and atmosphere model parameters. Given a I band magnitude at maximum magnification of about 12, and a typical duration of the polarization signal up to 1 day, we c...

  13. Probing Galactic structure using micro-lensing with EROS-2

    CERN Document Server

    Ansari, R

    1999-01-01

    EROS has been monitoring few million stars in the Magellanic clouds, as well as toward the Galactic bulge and spiral arms since 1996, to search for microlensing events. In this paper, we present briefly the EROS setup and scientific program and discuss the results obtained from our observations in four directions in the Galactic plane, away from the bulge. Seven light curves, out of 9.1 million stars observed in these directions show luminosity variations interpreted as due to microlensing. The averaged estimated optical depth tau = 0.45 +0.24 -0.11 is compatible with expectations from simple Galactic models. Nonetheless a small excess of short time-scale events may be present in the direction closest to the Galactic center.

  14. Microlensing by Kuiper, Oort, and Free-Floating Planets

    CERN Document Server

    Gould, Andrew

    2016-01-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event. At present, the search for such hosts is restricted to within the "confusion limit" of theta_confus ~ 250 mas, but future WFIRST observations will allow one to probe beyond this confusion limit as well.

  15. High precision microlensing maps of the Galactic bulge

    CERN Document Server

    Kerins, E; Marshall, D J

    2008-01-01

    We present detailed maps of the microlensing optical depth and event density over an area of 195 sq. deg towards the Galactic bulge. The maps are computed from synthetic stellar catalogues generated from the Besancon Galaxy Model, which comprises four stellar populations and a three-dimensional extinction map calibrated against the Two-Micron All-Sky Survey. The optical depth maps have a resolution of 15 arcminutes, corresponding to the angular resolution of the extinction map. We compute optical depth and event density maps for all resolved sources above I=19, for unresolved (difference image) sources magnified above this limit, and for bright standard candle sources in the bulge. We show that the resulting optical depth contours are dominated by extinction effects, exhibiting fine structure in stark contrast to previous theoretical optical depth maps. Optical depth comparisons between Galactic models and optical microlensing survey measurements cannot safely ignore extinction or assume it to be smooth. We s...

  16. Caustic Structures and Detectability of Circumbinary Planets in Microlensing

    CERN Document Server

    Luhn, Jacob K; Gaudi, B Scott

    2015-01-01

    Recent discoveries of circumbinary planets in Kepler data show that there is a viable channel of planet formation around binary main sequence stars. Motivated by these discoveries, we have investigated the caustic structures and detectability of circumbinary planets in microlensing events. We have produced a suite of animations of caustics as a function of the projected separation and angle of the binary host to efficiently explore caustic structures over the entire circumbinary parameter space. Aided by these animations, we have derived a semi-empirical analytic expression for the location of planetary caustics, which are displaced in circumbinary lenses relative to those of planets with a single host. We have used this expression to show that the dominant source of caustic motion will be due to the planet's orbital motion and not that of the binary star. Finally, we estimate the fraction of circumbinary microlensing events that are recognizable as such to be significant (5-50 percent) for binary projected s...

  17. Mass Measurements of Isolated Objects from Space-based Microlensing

    Science.gov (United States)

    Zhu, Wei; Calchi Novati, S.; Gould, A.; Udalski, A.; Han, C.; Shvartzvald, Y.; Ranc, C.; Jørgensen, U. G.; Poleski, R.; Bozza, V.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Porritt, I.; Wibking, B.; Yee, J. C.; SPITZER Team; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNET Group; Friedmann, M.; Kaspi, S.; Maoz, D.; WISE Group; Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bramich, D. M.; Cassan, A.; Dominik, M.; Bachelet, E.; Dong, Subo; Figuera Jaimes, R.; Horne, K.; Mao, S.; Menzies, J.; Schmidt, R.; Snodgrass, C.; Steele, I. A.; Wambsganss, J.; RoboNeT Team; Skottfelt, J.; Andersen, M. I.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Gu, S.-H.; Hinse, T. C.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Tronsgaard, R.; Scarpetta, G.; Southworth, J.; Surdej, J.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEP Group

    2016-07-01

    We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}ȯ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted.

  18. First microlensing candidate towards M31 from Nainital Microlensing Survey

    CERN Document Server

    Joshi, Y C; Narasimha, D; Sagar, R

    2004-01-01

    We report our first microlensing candidate NMS-E1 towards M31 from the data accumulated during four years long Nainital Microlensing Survey. Cousin R and I band observations of ~13'x13' field in the direction of M31 were carried out since 1998 and data is analysed using pixel technique proposed by the AGAPE collaboration. The NMS-E1 lies in the disk of M31 at \\alpha = 0:43:33.3 and \\delta = +41:06:44, about 15.5 arcmin away in the South-East direction from the center of M31. The degenerate Paczy\\'{n}ski fit gives a half intensity duration of ~ 59 days. The photometric analysis of candidate shows that it reached up to R ~ 20.1 mag at the time of maximum brightness and colour of the source star estimated to be (R-I)_0 ~ 1.1 mag. It is seen that the microlensing candidate is blended by red variable stars consequently light curves do not strictly follow the characteristic Paczy\\'{n}ski shape and achromatic nature however its long period monitoring and similar behaviour in R and I bands lend support of its microle...

  19. Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    CERN Document Server

    Zhu, Wei; Beichman, Charles; Novati, Sebastiano Calchi; Carey, Sean; Gaudi, B Scott; Henderson, Calen B; Penny, Matthew; Shvartzvald, Yossi; Yee, Jennifer C; Udalski, A; Poleski, R; Skowron, J; Kozlowski, S; Mroz, P; Pietrukowicz, P; Pietrzynski, G; Szymanski, M K; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Abe, F; Barry, R K; Bennett, D P; Bhattacharya, A; Fukunaga, D; Inayama, K; Koshimoto, N; Namba, S; Sumi, T; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A; Maoz, D; Kaspi, S; Friedmann, M

    2015-01-01

    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed.

  20. Space based microlensing planet searches

    CERN Document Server

    Beaulieu, J P; Batista, V

    2013-01-01

    The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: "Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes". They also add: "This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters". We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020-2025.

  1. Quasar microlensing and dark matter

    Science.gov (United States)

    Rix, Hans-Walter; Hogan, Craig J.

    1988-01-01

    The amplification of quasar brightness due to gravitational lensing by foreground objects is discussed. It is shown that a recently published sample of X-ray-selected quasars behind foreground galaxies shows a statistically significant brightening compared to a control sample. Correlations with galaxy redshift and impact parameter predicted by microlensing are also demonstrated. A technique is described to measure the mean density of the lenses from a small number of identified cases of microlensing. It is shown that, in this sample, amplification bias is important in determining the mean intensity enhancement and must be included in the density estimate. Assuming that at least two of the four intrinsically brightest quasars behind galaxies are indeed microlensed, the present data yield a formal lower limit on the mean density parameter of lenses Omega(l) greater than 0.25 at 95 percent confidence. These data also imply that a considerable quantity of dark matter exists in macroscopic objects outside the visible parts of galaxies but is still highly correlated with them.

  2. Space based microlensing planet searches

    Directory of Open Access Journals (Sweden)

    Tisserand Patrick

    2013-04-01

    Full Text Available The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: “Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes”. They also add: “This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters”. We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020–2025.

  3. Mass Measurements of Isolated Objects from Space-based Microlensing

    CERN Document Server

    Zhu, Wei; Gould, A; Udalski, A; Han, C; Shvartzvald, Y; Ranc, C; Jorgensen, U G; Poleski, R; Bozza, V; Beichman, C; Bryden, G; Carey, S; Gaudi, B S; Henderson, C B; Pogge, R W; Porritt, I; Wibking, B; Yee, J C; Pawlak, M; Szymanski, M K; Skowron, J; Mroz, P; Kozlowski, S; Wyrzykowski, L; Pietrukowicz, P; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Choi, J Y; Park, H; Jung, Y K; Shin, I -G; Albrow, M D; Park, B -G; Kim, S -L; Lee, C -U; Kim, D -J; Lee, Y; Friedmann, M; Kaspi, S; Maoz, D; Hundertmark, M; Street, R A; Tsapras, Y; Bramich, D M; Cassan, A; Dominik, M; Bachelet, E; Dong, Subo; Jaimes, R Figuera; Horne, K; Mao, S; Menzies, J; Schmidt, R; Snodgrass, C; Steele, I A; Wambsganss, J; Skottfelt, J; Andersen, M I; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Gu, S -H; Hinse, T C; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Peixinho, N; popovas, A; Rabus, M; Rahvar, S; Rasmussen, R T; Scarpetta, G; Southworth, J; Surdej, J; von Essen, C; Wang, Y -B; Wertz, O

    2015-01-01

    We report on the mass and distance measurements of two single-lens events from the 2015 \\emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is a $47\\pm7$ $M_{\\rm J}$ brown dwarf at $5.4\\pm1.0$ kpc, and that the lens of OGLE-2015-BLG-0763 is a $0.50\\pm0.04$ $M_\\odot$ star at $6.9\\pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses, including isolated stellar mass black holes and free floating planets, is dramatically increased once simultaneous ground- and space-based observations are conducted.

  4. Microlensing of Kepler Stars as a Method of Detecting Primordial Black Hole Dark Matter

    Science.gov (United States)

    Griest, Kim; Lehner, Matthew J.; Cieplak, Agnieszka M.; Jain, Bhuvnesh

    2011-12-01

    If the dark matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA’s Kepler search for extrasolar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150 000 light curves would result in large numbers of detectable events for PBHs in the mass range 5×10-10M⊙ to 10-4M⊙. Nondetection of these events would close almost 2 orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects.

  5. Microlensing of Kepler Stars as a Method of Detecting Primordial Black Hole Dark Matter

    CERN Document Server

    Griest, Kim; Cieplak, Agnieszka M; Jain, Bhuvnesh

    2011-01-01

    If the Dark Matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extra-solar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 lightcurves would result in large numbers of detectable events for PBHs in the mass range $5 \\ten{-10}\\msun$ to $\\aten{-4}\\msun$. Non-detection of these events would close almost two orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects.

  6. New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data

    Science.gov (United States)

    Griest, Kim; Cieplak, Agnieszka M.; Lehner, Matthew J.

    2013-11-01

    We present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates. We measure the efficiency of our selection criteria by adding millions of simulated microlensing lensing events into the Kepler light curves. We find that PBH DM with masses in the range 2×10-9M⊙ to 10-7M⊙ cannot make up the entirety of the DM in the Milky Way. At the low-mass end, this decreases the allowed mass range by more than an order of magnititude.

  7. Microlensing of Kepler stars as a method of detecting primordial black hole dark matter.

    Science.gov (United States)

    Griest, Kim; Lehner, Matthew J; Cieplak, Agnieszka M; Jain, Bhuvnesh

    2011-12-01

    If the dark matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extrasolar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 light curves would result in large numbers of detectable events for PBHs in the mass range 5×10(-10) M(⊙) to 10(-4) M(⊙). Nondetection of these events would close almost 2 orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects. PMID:22182077

  8. New limits on primordial black hole dark matter from an analysis of Kepler source microlensing data.

    Science.gov (United States)

    Griest, Kim; Cieplak, Agnieszka M; Lehner, Matthew J

    2013-11-01

    We present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates. We measure the efficiency of our selection criteria by adding millions of simulated microlensing lensing events into the Kepler light curves. We find that PBH DM with masses in the range 2 × 10(-9) M[Symbol: see text] to 10(-7)M[Symbol: see text] cannot make up the entirety of the DM in the Milky Way. At the low-mass end, this decreases the allowed mass range by more than an order of magnititude. PMID:24237504

  9. Evidence of halo microlensing in M31

    NARCIS (Netherlands)

    Uglesich, RR; Crotts, APS; Baltz, EA; de Jong, J; Boyle, RP; Corbally, CJ

    2004-01-01

    We have completed an intensive monitoring program of two fields on either side of the center of M31 and report here on the results concerning microlensing of stars in M31. These results stem from a 3 yr study ( the Vatican Advanced Technology Telescope [VATT]/Columbia survey) of microlensing and var

  10. Results from microlensing searches for extrasolar planets

    NARCIS (Netherlands)

    Sackett, PD; Penny, A; Artymowicz, P; Lagrance, AM; Russell, S

    2004-01-01

    Specially-designed microlensing searches, some of which have been underway for several years, are sensitive to extrasolar planets orbiting the most common stars in our Galaxy. Microlensing is particularly well-suited to the detection of Jupiter-mass planets orbiting their parent stars at several AU.

  11. Microlensing planets in M22 free-floating or bound?

    CERN Document Server

    De la Marcos, R F

    2001-01-01

    We use detailed numerical simulations and theoretical estimates to show that, if confirmed, the unusually brief microlensing events observed by Sahu et al. (2001) in the field of the globular cluster M22 might be explained as a result of microlensing by a population of clustered MACHOs, a dark cluster or RAMBO, not associated with the globular cluster. If real, this dark cluster would be located between M22 and the Galactic bulge and could include at least $10^6$ substellar members with a typical size of 1-3 pc. Bound planets in wide or/and eccentric orbits are also able to reproduce the observed microlensing behaviour, but only if multiplanet systems (including large Kuiper-belt-like objects) are abundant, although, our calculations argue against the latter scenario as the ionization rate in M22 is very high. Dynamically ejected or lone planets are, in principle, incompatible with the observational findings as they either escape their parent cluster in a relatively short time-scale after ejection or segregat...

  12. The frequency of snowline-region planets from four years of OGLE-MOA-Wise second-generation microlensing

    Science.gov (United States)

    Shvartzvald, Y.; Maoz, D.; Udalski, A.; Sumi, T.; Friedmann, M.; Kaspi, S.; Poleski, R.; Szymański, M. K.; Skowron, J.; Kozłowski, S.; Wyrzykowski, Ł.; Mróz, P.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Abe, F.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Bond, I. A.; Freeman, M.; Inayama, K.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Fukui, A.; Matsubara, Y.; Muraki, Y.; Ohnishi, K.; Rattenbury, N. J.; Saito, To.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.

    2016-04-01

    We present a statistical analysis of the first four seasons from a `second-generation' microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg2 of the Galactic bulge by the Optical Gravitational Lens Experiment (OGLE), Microlensing Observations in Astrophysics (MOA), and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12 per cent of the events showed a deviation from single-lens microlensing, and for ˜one-third of those the anomaly is likely caused by a planetary companion. For each of the 224 events, we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that 55^{+34}_{-22} per cent of microlensed stars host a snowline planet. Moreover, we find that Neptune-mass planets are ˜10 times more common than Jupiter-mass planets. The companion-to-host mass-ratio distribution shows a deficit at q ˜ 10-2, separating the distribution into two companion populations, analogous to the stellar-companion and planet populations, seen in radial-velocity surveys around solar-like stars. Our survey, however, which probes mainly lower mass stars, suggests a minimum in the distribution in the super-Jupiter mass range, and a relatively high occurrence of brown-dwarf companions.

  13. Gravitational Microlensing A Report on the MACHO Project

    CERN Document Server

    Sutherland, W

    1998-01-01

    There is abundant evidence that the mass of the Universe is dominated by dark matter of unknown form. The MACHO project is one of several teams searching for the dark matter around our Galaxy in the form of Massive Compact Halo Objects (MACHOs). If a compact object passes very close to the line of sight to a background star, the gravitational deflection of light causes an apparent brightening of the star, i.e. a gravitational `microlensing' event. Such events will be very rare, so millions of stars must be monitored for many years. We describe our search for microlensing using a very large CCD camera on the dedicated 1.27m telescope at Mt. Stromlo, Australia: currently some 14 events have been discovered towards the Large Magellanic Cloud. The lack of short-timescale events excludes planetary mass MACHOs as a major contributor to the dark matter, but the observed long events (durations 1--6 months) suggest that a major fraction may be in fairly massive objects $\\sim 0.5 \\Msun$. It is currently difficult but n...

  14. Using microlensed quasars to probe the structure of the Milky Way

    CERN Document Server

    Wang, Jian

    2010-01-01

    This paper presents an investigation into the gravitational microlensing of quasars by stars and stellar remnants in the Milky Way. We present predictions for the all-sky microlensing optical depth, time-scale distributions and event rates for future large-area sky surveys. As expected, the total event rate increases rapidly with increasing magnitude limit, reflecting the fact that the number density of quasars is a steep function of magnitude. Surveys such as Pan-STARRS and LSST should be able to detect more than ten events per year, with typical event durations of around one month. Since microlensing of quasar sources suffers from fewer degeneracies than lensing of Milky Way sources, they could be used as a powerful tool for recovering the mass of the lensing object in a robust, often model-independent, manner. As a consequence, for a subset of these events it will be possible to directly `weigh' the star (or stellar remnant) that is causing the lensing signal, either through higher order microlensing effec...

  15. Microlensing towards the SMC: a new analysis of OGLE and EROS results

    CERN Document Server

    Novati, S Calchi; Jetzer, Ph; Scarpetta, G

    2013-01-01

    We present a new analysis of the results of the EROS-2, OGLE-II, and OGLE-III microlensing campaigns towards the Small Magellanic Cloud (SMC). Through a statistical analysis we address the issue of the \\emph{nature} of the reported microlensing candidate events, whether to be attributed to lenses belonging to known population (the SMC luminous components or the Milky Way disc, to which we broadly refer to as "self lensing") or to the would be population of dark matter compact halo objects (MACHOs). To this purpose, we present profiles of the optical depth and, comparing to the observed quantities, we carry out analyses of the events position and duration. Finally, we evaluate and study the microlensing rate. Overall, we consider five reported microlensing events towards the SMC (one by EROS and four by OGLE). The analysis shows that in terms of number of events the expected self lensing signal may indeed explain the observed rate. However, the characteristics of the events, spatial distribution and duration (...

  16. The OGLE-III planet detection efficiency from six years of microlensing observations (2003-2008)

    Science.gov (United States)

    Tsapras, Y.; Hundertmark, M.; Wyrzykowski, Ł.; Horne, K.; Udalski, A.; Snodgrass, C.; Street, R.; Bramich, D. M.; Dominik, M.; Bozza, V.; Figuera Jaimes, R.; Kains, N.; Skowron, J.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Kozłowski, S.; Pietrukowicz, P.; Poleski, R.

    2016-04-01

    We use six years (2003-2008) of Optical Gravitational Lensing Experiment-III microlensing observations to derive the survey detection efficiency for a range of planetary masses and projected distances from the host star. We perform an independent analysis of the microlensing light curves to extract the event parameters and compute the planet detection probability given the data. 2433 light curves satisfy our quality selection criteria and are retained for further processing. The aggregate of the detection probabilities over the range explored yields the expected number of microlensing planet detections. We employ a Galactic model to convert this distribution from dimensionless to physical units, α/au and M⊕. The survey sensitivity to small planets is highest in the range 1-4 au, shifting to slightly larger separations for more massive ones.

  17. The OGLE-III planet detection efficiency from six years of microlensing observations (2003 to 2008)

    CERN Document Server

    Tsapras, Y; Wyrzykowski, Ł; Horne, K; Udalski, A; Snodgrass, C; Street, R; Bramich, D M; Dominik, M; Bozza, V; Jaimes, R Figuera; Kains, N; Skowron, J; Szymański, M K; Pietrzyński, G; Soszyński, I; Ulaczyk, K; Kozłowski, S; Pietrukowicz, P; Poleski, R

    2016-01-01

    We use six years (2003 to 2008) of Optical Gravitational Lensing Experiment III microlensing observations to derive the survey detection efficiency for a range of planetary masses and projected distances from the host star. We perform an independent analysis of the microlensing light curves to extract the event parameters and compute the planet detection probability given the data. 2433 light curves satisfy our quality selection criteria and are retained for further processing. The aggregate of the detection probabilities over the range explored yields the expected number of microlensing planet detections. We employ a Galactic model to convert this distribution from dimensionless to physical units, \\alpha/au and M_E. The survey sensitivity to small planets is highest in the range 1 to 4 au, shifting to slightly larger separations for more massive ones.

  18. Gravitational microlensing of gamma-ray blazars

    DEFF Research Database (Denmark)

    F. Torres, Diego; E. Romero, Gustavo; F. Eiroa, Ernesto;

    2003-01-01

    We present a detailed study of the effects of gravitational microlensing on compact and distant $\\gamma$-ray blazars. These objects have $\\gamma$-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze the...... galactic latitude whose gamma-ray statistical properties are very similar to detected $\\gamma$-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs)....

  19. Detectability of extrasolar moons as gravitational microlenses

    OpenAIRE

    Liebig, Christine; Wambsganss, Joachim

    2009-01-01

    We evaluate gravitational lensing as a technique for the detection of extrasolar moons. Since 2004 gravitational microlensing has been successfully applied as a detection method for extrasolar planets. In principle, the method is sensitive to masses as low as an Earth mass or even a fraction of it. Hence it seems natural to investigate the microlensing effects of moons around extrasolar planets. We explore the simplest conceivable triple lens system, containing one star, one planet and one mo...

  20. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    , i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... the time duration of the signal, not the signal amplitude, rendering it critical to sample ongoing events very densely in time to detect Earth-mass planets. The lower limit of planet mass that will give rise to a signal is set by the angular size of the source which illuminates the lensing system. It...... can be shown that in the crowded fields where microlensing is observed, the primary obstacle for detecting Earth-mass planets is the crowding, rendering it hard to extract accurate photometry from faint sources at seeing limited resolutions. As all the sources tend to be at approximately the same...

  1. Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    OpenAIRE

    Zhu, Wei; Beichman, Charles; Calchi Novati, Sebastiano; Carey, Sean

    2015-01-01

    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet s...

  2. First microlens mass measurement : Planet photometry of EROS BLG-2000-5

    NARCIS (Netherlands)

    An, JH; Albrow, MD; Beaulieu, JP; Caldwell, JAR; DePoy, DL; Dominik, M; Gaudi, BS; Gould, A; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pogge, RW; Pollard, KR; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A

    2002-01-01

    We analyze PLANET photometric observations of the caustic-crossing binary lens microlensing event, EROS BLG-2000-5, and find that modeling the observed light curve requires incorporation of the microlens parallax and the binary orbital motion. The projected Einstein radius ((r) over tilde (E) = 3.61

  3. Microlensing to probe the quasar structure: spectrophotometry of Q2237+0305 and of J1131-1231

    CERN Document Server

    Sluse, D; Courbin, F; Hutsemékers, D; Claeskens, J -F; Meylan, G; Agol, E; Surdej, J

    2008-01-01

    We present the main results of the first long-term spectrophotometric monitoring of the ``Einstein cross'' Q2237+0305 and of the single-epoch spectra of the lensed quasar J1131-1231. From October 2004 to December 2006, we find that two prominent microlensing events affect images A & B in Q2237+0305 while images C & D remain grossly unaffected by microlensing on a time scale of a few months. Microlensing in A & B goes with chromatic variations of the quasar continuum. We observe stronger micro-amplification in the blue than in the red part of the spectrum, as expected for continuum emission arising from a standard accretion disk. Microlensing induced variations of the CIII] emission are observed both in the integrated line intensity and profile. Finally, we also find that images C & D are about 0.1-0.3 mag redder than images A & B. The spectra of images A-B-C in J1131-1231 reveal that, in April 2003, microlensing was at work in images A and C. We find that microlensing de-amplifies the cont...

  4. The Angstrom Project: a microlensing survey of the structure and composition of the bulge of the Andromeda galaxy

    CERN Document Server

    Kerins, E; Duke, J; Gould, A; Han, C; Jeon, Y B; Newsam, A; Park, B G

    2006-01-01

    The Andromeda Galaxy Stellar Robotic Microlensing Project (The Angstrom Project) aims to use stellar microlensing events to trace the structure and composition of the inner regions of the Andromeda Galaxy (M31). We present microlensing rate and timescale predictions and spatial distributions for stellar and sub-stellar lens populations in combined disk and barred bulge models of M31. We show that at least half of the stellar microlenses in and around the bulge are expected to have characteristic durations between 1 and 10 days, rising to as much as 80% for brown-dwarf dominated mass functions. These short-duration events are mostly missed by current microlensing surveys that are looking for Macho candidates in the M31 dark matter halo. Our models predict that an intensive monitoring survey programme such as Angstrom, which will be able to detect events of durations upwards of a day, could detect around 30 events per season within ~5 arcminutes of the M31 centre, due to ordinary low-mass stars and remnants. Th...

  5. Caustic Structures and Detectability of Circumbinary Planets in Microlensing

    Science.gov (United States)

    Luhn, Jacob K.; Penny, Matthew T.; Gaudi, B. Scott

    2016-08-01

    Recent discoveries of circumbinary planets in Kepler data show that there is a viable channel of planet formation around binary main-sequence stars. Motivated by these discoveries, we have investigated the caustic structures and detectability of circumbinary planets in microlensing events. We have produced a suite of animations of caustics as a function of the projected separation and angle of the binary host to efficiently explore caustic structures over the entire circumbinary parameter space. Aided by these animations, we have derived a semi-empirical analytic expression for the location of planetary caustics, which are displaced in circumbinary lenses relative to those of planets with a single host. We have used this expression to show that the dominant source of caustic motion will be due to the planet’s orbital motion and not that of the binary star. Finally, we estimate the fraction of circumbinary microlensing events that are recognizable as such to be significant (5%–50%) for binary projected separations in the range 0.1–0.5 in units of Einstein radii.

  6. The frequency of snowline-region planets from four-years of OGLE-MOA-Wise second-generation microlensing

    CERN Document Server

    Shvartzvald, Y; Udalski, A; Sumi, T; Friedmann, M; Kaspi, S; Poleski, R; Szymański, M K; Skowron, J; Kozłowski, S; Wyrzykowski, Ł; Mróz, P; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Ulaczyk, K; Abe, F; Barry, R K; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Inayama, K; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Fukui, A; Matsubara, Y; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A

    2015-01-01

    We present a statistical analysis of the first four seasons from a "second-generation" microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg$^2$ of the Galactic bulge by the OGLE, MOA, and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for $\\sim$1/3 of those the anomaly is likely caused by a planetary companion. For each of the 224 events we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that $55^{+34}_{-22}\\%$ of microlensed stars host a snowline planet. Moreover, we find that Neptunes-mass planets are $\\sim10$ times more common than Jupiter-mass planets. The companion-to-host mass ratio distribution shows a deficit at $q\\sim10^{-2}$, separating the distribution...

  7. Eclipsing negative-parity image of gravitational microlensing by a giant-lens star

    Science.gov (United States)

    Rahvar, Sohrab

    2016-07-01

    Gravitational microlensing has been used as a powerful tool for astrophysical studies and exoplanet detections. In the gravitational microlensing, we have two images with negative and positive parities. The negative-parity image is a fainter image and is produced at a closer angular separation with respect to the lens star. In the case of a red-giant lens star and large impact parameter of lensing, this image can be eclipsed by the lens star. The result would be dimming the flux receiving from the combination of the source and the lens stars and the light curve resembles to an eclipsing binary system. In this work, we introduce this phenomenon and propose an observational procedure for detecting this eclipse. The follow-up microlensing telescopes with lucky imaging camera or space-based telescopes can produce high-resolution images from the events with reddish sources and confirm the possibility of blending due to the lens star. After conforming a red-giant lens star and source star, we can use the advance photometric methods and detect the relative flux change during the eclipse in the order of 10-4-10-3. Observation of the eclipse provides the angular size of source star in the unit of Einstein angle and combination of this observation with the parallax observation enable us to calculate the mass of lens star. Finally, we analysed seven microlensing event and show the feasibility of observation of this effect in future observations.

  8. Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies

    CERN Document Server

    Moniez, Marc

    2010-01-01

    Microlensing is now a very popular observational astronomical technique. The investigations accessible through this effect range from the dark matter problem to the search for extra-solar planets. In this review, the techniques to search for microlensing effects and to determine optical depths through the monitoring of large samples of stars will be described. The consequences of the published results on the knowledge of the Milky-Way structure and its dark matter component will be discussed. The difficulties and limitations of the ongoing programs and the perspectives of the microlensing optical depth technique as a probe of the Galaxy structure will also be detailed.

  9. Microlensing variability in time-delay quasars

    CERN Document Server

    Paraficz, D; Burud, I; Jakobsson, P; Eliasdottir, A

    2006-01-01

    We have searched for microlensing variability in the light curves of five gravitationally lensed quasars with well-determined time delays: SBS 1520+530, FBQ 0951+2635, RX J0911+0551, B1600+434 and HE 2149-2745. By comparing the light curve of the leading image with a suitably time offset light curve of a trailing image we find that two (SBS 1520+530 and FBQ 0951+2635) out of the five quasars have significant long-term (years) and short-term (100 days) brightness variations that may be attributed to microlensing.The short-term variations may be due to nanolenses, relativistic hot or cold spots in the quasar accretion disks, or coherent microlensing at large optical depth.

  10. Using microlensed quasars to probe the structure of the Milky Way

    Science.gov (United States)

    Wang, Jian; Smith, Martin C.

    2011-01-01

    This paper presents an investigation into the gravitational microlensing of quasars by stars and stellar remnants in the Milky Way. We present predictions for the all-sky microlensing optical depth, time-scale distributions and event rates for future large-area sky surveys. As expected, the total event rate increases rapidly with increasing magnitude limit, reflecting the fact that the number density of quasars is a steep function of magnitude. Surveys, such as Pan-STARRS and LSST, should be able to detect more than 10 events per year, with typical event durations of around 1 month. Since microlensing of quasar sources suffers from fewer degeneracies than lensing of Milky Way sources, they could be used as a powerful tool for recovering the mass of the lensing object in a robust, often model-independent, manner. As a consequence, for a subset of these events, it will be possible to directly `weigh' the star (or stellar remnant) that is causing the lensing signal, either through higher order microlensing effects and/or high-precision astrometric observations of the lens star (using e.g. Gaia or SIM-lite). This means that such events could play a crucial role in stellar astronomy. Given the current operational timelines for Pan-STARRS and LSST, by the end of the decade, they could potentially detect up to 100 events. Although this is still too few events to place detailed constraints on Galactic models, consistency checks can be carried out and such samples could lead to exciting and unexpected discoveries.

  11. Microlensing towards the Magellanic Clouds: Nature of the Lenses and Implications for Dark Matter

    OpenAIRE

    Sahu, Kailash C.

    2003-01-01

    (Abridged) A close scrutiny of the microlensing results towards the Magellanic clouds reveals that the stars within the Magellanic clouds are major contributors as lenses, and the contribution of MACHOs to dark matter is 0 to 5%. The principal results which lead to this conclusion are the following. (i) Out of the ~17 events detected so far towards the Magellanic Clouds, the lens locations have been determined for four events where the lenses are most likely within the Magellanic clouds. (ii)...

  12. Microlensing of Quasar UV Iron Emission

    CERN Document Server

    Guerras, E; Jimenez-Vicente, J; Kochanek, C S; Muñoz, J A; Falco, E; Motta, V

    2013-01-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in 4 cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications we infer a typical size of r ~ 4*sqrt(M/Msun) light-days for the Fe line emitting regions which is comparable to the size of the region generating the UV continuum (5 ~ 8 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  13. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  14. Chalcogenide glass microlenses by inkjet printing

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Eric A.; Waldmann, Maike; Arnold, Craig B.

    2011-05-10

    We demonstrate micrometer scale mid-IR lenses for integrated optics, using solution-based inkjet printing techniques and subsequent processing. Arsenic sulfide spherical microlenses with diameters of 10-350 {mu}m and focal lengths of 10-700 {mu}m have been fabricated. The baking conditions can be used to tune the precise focal length.

  15. Chalcogenide glass microlenses by inkjet printing

    International Nuclear Information System (INIS)

    We demonstrate micrometer scale mid-IR lenses for integrated optics, using solution-based inkjet printing techniques and subsequent processing. Arsenic sulfide spherical microlenses with diameters of 10-350 μm and focal lengths of 10-700 μm have been fabricated. The baking conditions can be used to tune the precise focal length.

  16. OGLE‐2008‐BLG‐510: first automated real‐time detection of a weak microlensing anomaly – brown dwarf or stellar binary?★

    DEFF Research Database (Denmark)

    Bozza, V.; Dominik, M.; Rattenbury, N. J.;

    2012-01-01

    ‐lens and binary‐source models, including the possibility that the lens system consists of an M dwarf orbited by a brown dwarf. The detection of this microlensing anomaly and our analysis demonstrate that: (1) automated real‐time detection of weak microlensing anomalies with immediate feedback is feasible......The microlensing event OGLE‐2008‐BLG‐510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system in real time. The skewness of the light curve appears to be compatible both with binary......, efficient and sensitive, (2) rather common weak features intrinsically come with ambiguities that are not easily resolved from photometric light curves, (3) a modelling approach that finds all features of parameter space rather than just the ‘favourite model’ is required and (4) the data quality is most...

  17. The 1995 pilot campaign of planet : Searching for microlensing anomalies through precise, rapid, round-the-clock monitoring

    NARCIS (Netherlands)

    Albrow, M; Beaulieu, JP; Birch, P; Caldwell, JAR; Kane, S; Martin, R; Menzies, J; Pel, JW; Pollard, K; Sackett, PD; Sahu, KC; Williams, A; Zwaan, MA

    1998-01-01

    PLANET (the Probing Lensing Anomalies NETwork) is a worldwide collaboration of astronomers whose primary goal is to monitor microlensing events densely and precisely in order to detect and study anomalies that contain information about Galactic lenses and sources that would otherwise be unobtainable

  18. Black hole, neutron star and white dwarf candidates from microlensing with OGLE-III★

    Science.gov (United States)

    Wyrzykowski, Ł.; Kostrzewa-Rutkowska, Z.; Skowron, J.; Rybicki, K. A.; Mróz, P.; Kozłowski, S.; Udalski, A.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Pietrukowicz, P.; Poleski, R.; Pawlak, M.; Iłkiewicz, K.; Rattenbury, N. J.

    2016-05-01

    Most stellar remnants so far have been found in binary systems, where they interact with matter from their companions. Isolated neutron stars and black holes are difficult to find as they are dark, yet they are predicted to exist in our Galaxy in vast numbers. We explored the OGLE-III data base of 150 million objects observed in years 2001-2009 and found 59 microlensing events exhibiting a parallax effect due to the Earth's motion around the Sun. Combining parallax and brightness measurements from microlensing light curves with expected proper motions in the Milky Way, we identified 13 microlensing events which are consistent with having a white dwarf, neutron star or a black hole lens and we estimated their masses and distances. The most massive of our black hole candidates has 9.3 M⊙ and is at a distance of 2.4 kpc. The distribution of masses of our candidates indicates a continuum in mass distribution with no mass gap between neutron stars and black holes. We also present predictions on how such events will be observed by the astrometric Gaia mission.

  19. Black Holes, Neutron Stars and White Dwarf Candidates from Microlensing with OGLE-III

    CERN Document Server

    Wyrzykowski, L; Skowron, J; Rybicki, K A; Mroz, P; Kozlowski, S; Udalski, A; Szymanski, M K; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Pietrukowicz, P; Poleski, R; Pawlak, M; Ilkiewicz, K; Rattenbury, N J

    2015-01-01

    Most stellar remnants so far have been found in binary systems, where they interact with matter from their companions. Isolated neutron stars and black holes are difficult to find as they are dark, yet they are predicted to exist in our Galaxy in vast numbers. We explored the OGLE-III database of 150 million objects observed in years 2001-2009 and found 59 microlensing events exhibiting a parallax effect due to the Earth's motion around the Sun. Combining parallax and brightness measurements from microlensing light curves with expected proper motions in the Milky Way, we identified 15 microlensing events which are consistent with having a white dwarf, neutron star or a black hole lens and we estimated their masses and distances. The most massive of our black hole candidates has 8.3 M_Sun and is at a distance of 2.4 kpc. The distribution of masses of our candidates indicates a continuum in mass distribution with no mass gap between neutron stars and black holes. We also present predictions on how such events w...

  20. Microlensing of a Ring Model for Quasar Structure

    CERN Document Server

    Schild, R; Schild, Rudolph; Vakulik, Viktor

    2003-01-01

    Microlensing observations of the Q0957+561 A,B have consistently shown evidence for structure in the quasar that has not been evident in available microlensing models, where the luminous source has been consistently modeled as a single large round structure. We show that the microlensing features can easily be reproduced by a luminous quasar model motivated by observations; a luminous inner accretion disc edge and outer ring-shaped structures where the emission lines form. Such a model can explain all of the features known from 24 years of Q0957 microlensing observations.

  1. The MACHO project: Microlensing and variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Marshall, S. L.; Minniti, D.

    1996-10-01

    The MACHO Project monitors millions of stars in the Large Magellanic Cloud, the Small Magellanic Cloud and the bulge of the Milky Way searching for the gravitational microlensing signature of baryonic dark matter. This Project has yielded surprising results. An analysis of two years of data monitoring the Large Magellanic Cloud points to {approximately} 50% of the mass of the Milky Way`s halo in compact objects of {approximately} 0.5 solar mass. An analysis of one year of monitoring the bulge has yielded more microlensing than predicted without invocation of a massive bar or significant disk dark matter. The huge database of light curves created by this search is yielding information on extremely rare types of astrophysical variability as well as providing temporal detail for the study of well known variable astrophysical phenomena. The variable star catalog created from this database is previewed and example light curves are presented. 31 refs., 7 figs., 1 tab.

  2. Microlensing of quasar ultraviolet iron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna 38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Muñoz, J. A. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V.; Rojas, K. [Departamento de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile)

    2013-12-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r{sub s}∼4√(M/M{sub ⊙}) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  3. Microlensing and the stellar mass function

    CERN Document Server

    Gould, A

    1996-01-01

    Traditional approaches to measuring the stellar mass function (MF) are fundamentally limited because objects are detected based on their luminosity, not their mass. These methods are thereby restricted to luminous and relatively nearby stellar populations. Gravitational microlensing promises to revolutionize our understanding of the MF. It is already technologically feasible to measure the MFs of the Galactic disk and Galactic bulge as functions of position, although the actual execution of this program requires aggressive ground-based observations including infrared interferometry, as well as the launching of a small satellite telescope. Rapid developments in microlensing, including the new technique of ``pixel lensing'' of unresolved stars, will allow one to probe the MF and luminosity function of nearby galaxies. Such observations of M31 are already underway, and pixel-lensing observations of M87 with the {\\it Hubble Space Telescope} would permit detection of dark intra-cluster objects in Virgo. Microlensi...

  4. New Microlensing Constraints of Primordial Black Hole Dark Matter based on First Two Years of Kepler Data

    Science.gov (United States)

    Cieplak, Agnieszka; Griest, K.; Lehner, M.

    2014-01-01

    Primordial Black Holes (PBHs) remain one of the few Dark Matter (DM) candidates left within the Standard Model of Particle Physics. We have previously found that previous PBH DM limits could theoretically be extended by two orders of magnitude by using the microlensing of the source stars monitored by the Kepler satellite due to its photometric precision and the large projected cross section of the nearby stars. Here we present the experimental results of our study of the first two years of Kepler stellar lightcurves. After eliminating background events such as variable stars, flares, and comets, we have found no microlensing events. We were therefore able to calculate our efficiency of detection by introducing millions of fake microlensing events which included limb-darkening and a corrected finite-source microlensing formalism. By performing this Monte Carlo analysis, we have found that PBHs with masses between 2 × 10-9 M⊙ and 10-7 M⊙ cannot constitute the entirety of the DM, thereby constraining a full order of magnitude of the previously allowed PBH DM mass range.

  5. Rigorous diffraction theory applied to microlenses

    OpenAIRE

    Blattner, Peter; Herzig, Hans-Peter

    2007-01-01

    In this paper, we discuss the behaviour of small cylindrical microlenses, arranged in one-dimensional arrays and as single elements. For this purpose, we apply a standard rigorous diffraction theory, commonly used for diffraction gratings. We investigate the coupling effect between the elements. It turns out that single elements behave like periodic elements if the spacing is chosen correctly. Furthermore, we compute the complex transmission function by rigorous diffraction theory and compare...

  6. Topics in microlensing and dark energy

    Science.gov (United States)

    Yashar, Mark

    In this dissertation we describe two separate research projects. The first project involves the utilization and development of reddening models, color magnitude diagrams (CMDs), and microlensing population models of the Large Magellanic Cloud (LMC) to constrain the locations of micro-lensing source stars and micro-lensing objects in the Large Magellanic Cloud and the Milky Way (MW) halo using data of 13 microlensing source stars obtained by the MACHO (massive compact halo objects) collaboration with the Hubble Space Telescope. This analysis suggests that the source stars are located in the LMC disk and the lenses are located in the MW halo. For the second project, we report on the results of a Markov Chain Monte Carlo (MCMC) analysis of an inverse power law (IPL) quintessence model using the Dark Energy Task Force (DETF) simulated data models as a representation of future dark energy experiments. Simulated data sets were generated for a Lambda cold dark matter (L CDM ) background cosmology as well as a case where the dark energy is provided by a specific IPL fiducial model. The results are presented in the form of error contours generated by these two background cosmologies which are then used to consider the effects of future dark energy projects on IPL scalar field models and are able to demonstrate the power of DETF Stage 4 data sets in the context of the IPL model. We find that the respective increase in constraining power with higher quality data sets produced by our analysis gives results that are broadly consistent with the DETF results for the w 0 - w a parameterization of dark energy. Finally, using our simulated data sets constructed around a fiducial IPL model, we find that for a universe containing dark energy described by such a scalar field, a cosmological constant can be excluded by Stage 4 data at the 3s level.

  7. LMC Microlensing and Very Thick Disks

    OpenAIRE

    Gyuk, Geza; Gates, Evalyn

    1998-01-01

    We investigate the implications of a very thick (scale height 1.5 - 3.0 kpc) disk population of MACHOs. Such a population represents a reasonable alternative to standard halo configurations of a lensing population. We find that very thick disk distributions can lower the lens mass estimate derived from the microlensing data toward the LMC, although an average lens mass substantially below $0.3\\Msol$ is unlikely. Constraints from direct searches for such lenses imply very low luminosity object...

  8. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  9. The WFIRST Microlensing Survey: Expectations and Unexpectations

    Science.gov (United States)

    Gaudi, B. Scott; Penny, Matthew

    2016-01-01

    The WFIRST microlensing survey will provide the definitive determination of the demographics of cool planets with semimajor axes > 1 AU and masses greater than that of the Earth, including free-floating planets. Together with the results from Kepler, TESS, and PLATO, WFIRST will complete the statistical census of planets in the Galaxy. These expectations are based on the most basic and conservative assumptions about the data quality, and assumes that the analysis methodologies will be similar to that used for current ground-based microlensing. Yet, in fact, the data quality will be dramatically better, and information content substantially richer, for the WFIRST microlensing survey as compared to current ground-based surveys. Thus WFIRST should allow for orders of magnitude improvement in both sensitivity and science yield. We will review some of these expected improvements and opportunities (the "known unknowns"), and provide a "to do list" of what tasks will need to be completed in order to take advantage of these opportunities. We will then speculate on the opportunities that we may not be aware of yet (the "unknown unknowns"), how we might go about determining what those opportunities are, and how we might figure out what we will need to do to take advantage of them.This work was partially supported by NASA grant NNX14AF63G.

  10. Liquid Crystal Microlenses for Autostereoscopic Displays

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2016-01-01

    Full Text Available Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined.

  11. Detectability of extrasolar moons as gravitational microlenses

    CERN Document Server

    Liebig, Christine

    2009-01-01

    We evaluate gravitational lensing as a technique for the detection of extrasolar moons. Since 2004 gravitational microlensing has been successfully applied as a detection method for extrasolar planets. In principle, the method is sensitive to masses as low as an Earth mass or even a fraction of it. Hence it seems natural to investigate the microlensing effects of moons around extrasolar planets. We explore the simplest conceivable triple lens system, containing one star, one planet and one moon. From a microlensing point of view, this system can be modelled as a particular triple with hierarchical mass ratios very different from unity. Since the moon orbits the planet, the planet-moon separation will be small compared to the distance between planet and star. Such a configuration can lead to a complex interference of caustics. We present detectability and detection limits by comparing triple-lens light curves to best-fit binary light curves as caused by a double-lens system consisting of host star and planet -...

  12. High magnification events by MOA in 2007

    OpenAIRE

    Yock, Philip

    2008-01-01

    Gravitational microlensing events of high magnification provide exceptional sensitivity to the presence of low-mass planets orbiting the lens star, including planets with masses as low as that of Earth. The essential requirement for the detection of such planets in these events is that the FWHM of the light curve be monitored continuously, or as nearly continuously as possible. The dependence of planet detectability on the magnification caused by microlensing, on the planet mass and planet lo...

  13. Microlensing of Kepler Stars as a Method of Detecting Primordial Black Hole Dark Matter

    OpenAIRE

    Griest, Kim; Lehner, Matthew J.; Cieplak, Agnieszka M.; Jain, Bhuvnesh

    2011-01-01

    If the Dark Matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extra-solar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 lightcurves would result in large numbers of detectable events for PBHs in the mass range $5 \\ten{-10}\\msun$ to $\\aten{-4}\\msun$. Non-detection of these events would close almost two orders of magnitude of the mass window for...

  14. Analysis of photometric uncertainties in the OGLE-IV Galactic Bulge microlensing survey data

    CERN Document Server

    Skowron, J; Kozłowski, S; Szymański, M K; Mróz, P; Wyrzykowski, Ł; Poleski, R; Pietrukowicz, P; Ulaczyk, K; Pawlak, M; Soszyński, I

    2016-01-01

    We present a statistical assessment of both, observed and reported, photometric uncertainties in the OGLE-IV Galactic bulge microlensing survey data. This dataset is widely used for the detection of variable stars, transient objects, discovery of microlensing events, and characterization of the exo-planetary systems. Large collections of RR Lyrae stars and Cepheids discovered by the OGLE project toward the Galactic bulge provide light curves based on this dataset. We describe the method of analysis, and provide the procedure, which can be used to update preliminary photometric uncertainties, provided with the light curves, to the ones reflecting the actual observed scatter at a given magnitude and for a given CCD detector of the OGLE-IV camera.This is of key importance for data modeling, in particular, for the correct estimation of the goodness of fit.

  15. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, the Weizmann Institute (Israel); Hung, L.-W. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Janczak, J. [Department of Physics, Ohio State University, 191 W. Woodruff, Columbus, OH 43210 (United States); Kaspi, S. [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  16. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    International Nuclear Information System (INIS)

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3σ confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q ∼ 0.1, making the companion of the lens a strong brown dwarf candidate.

  17. Signatures of rotating binaries in micro-lensing experiments

    CERN Document Server

    Nucita, A A; De Paolis, F; Ingrosso, G

    2014-01-01

    Gravitational microlensing offers a powerful method with which to probe a variety of binary-lens systems, as the binarity of the lens introduces deviations from the typical (single-lens) Paczy\\'nski behaviour in the event light curves. Generally, a static binary lens is considered to fit the observed light curve and, when the orbital motion is taken into account, an oversimplified model is usually employed. In this paper, we treat the binary-lens motion in a realistic way and focus on simulated events that are fitted well by a Paczy\\'nski curve. We show that an accurate timing analysis of the residuals (calculated with respect to the best-fitting Paczy\\'nski model) is usually sufficient to infer the orbital period of the binary lens. It goes without saying that the independently estimated period may be used to further constrain the orbital parameters obtained by the best-fitting procedure, which often gives degenerate solutions. We also present a preliminary analysis of the event OGLE-2011-BLG-1127 / MOA-2011...

  18. Constraints on Cold H_2 Clouds from Gravitational Microlensing Searches

    CERN Document Server

    Rafikov, R R; Rafikov, Roman R.; Draine, Bruce T.

    2000-01-01

    It has been proposed that the Galaxy might contain a population of cold clouds in numbers sufficient to account for a substantial fraction of the total mass of the Galaxy. These clouds would have masses of the order of 10^{-3} Solar mass and sizes of the order of 10 AU. We consider here the lensing effects of such clouds on the light from background stars. A semianalytical formalism for calculation of the magnification event rate produced by such gaseous lensing is developed, taking into account the spatial distribution of the dark matter in the Galaxy, the velocity distribution of the lensing clouds and source stars, and motion of the observer. Event rates are calculated for the case of gaseous lensing of stars in the Large Magellanic Cloud and results are directly compared with the results of the search for gravitational microlensing events undertaken by the MACHO collaboration. The MACHO experiment strongly constrains the properties of the proposed molecular clouds, but does not completely rule them out. F...

  19. IMPROVED THEORETICAL PREDICTIONS OF MICROLENSING RATES FOR THE DETECTION OF PRIMORDIAL BLACK HOLE DARK MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Agnieszka M.; Griest, Kim [Department of Physics, University of California, San Diego, CA 92093 (United States)

    2013-04-20

    Primordial black holes (PBHs) remain a dark matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability, and limb darkening. We extend the theoretically detectable PBH DM mass range down to 2 Multiplication-Sign 10{sup -10} M{sub Sun }, two orders of magnitude below current limits and one-third order of magnitude below our previous estimate. We address how to extract the DM properties, such as mass and spatial distribution, if PBH microlensing events were detected. We correct an error in a well-known finite-source limb-darkening microlensing formula and also examine the effects of varying the light curve cadence on PBH DM detectability. We also introduce an approximation for estimating the predicted rate of detection per star as a function of the star's properties, thus allowing for selection of source stars in future missions, and extend our analysis to planned surveys, such as the Wide-Field Infrared Survey Telescope.

  20. Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses

    Directory of Open Access Journals (Sweden)

    Peter Schnauber

    2015-12-01

    Full Text Available We report on enhancing the photon-extraction efficiency (PEE of deterministic quantum dot (QD microlenses via anti-reflection (AR coating. The AR-coating deposited on top of the curved microlens surface is composed of a thin layer of Ta2O5, and is found to effectively reduce back-reflection of light at the semiconductor-vacuum interface. A statistical analysis of spectroscopic data reveals, that the AR-coating improves the light out-coupling of respective microlenses by a factor of 1.57 ± 0.71, in quantitative agreement with numerical calculations. Taking the enhancement factor into account, we predict improved out-coupling of light with a PEE of up to 50%. The quantum nature of emission from QDs integrated into AR-coated microlenses is demonstrated via photon auto-correlation measurements revealing strong suppression of two-photon emission events with g(2(0 = 0.05 ± 0.02. As such, these bright non-classical light sources are highly attractive with respect to applications in the field of quantum cryptography.

  1. Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network

    CERN Document Server

    Henderson, Calen B; Han, Cheongho; Skowron, Jan; Penny, Matthew T; Nataf, David; Gould, Andrew P

    2014-01-01

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6m telescopes each with a 4 deg^{2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for, and predict the planetary yields of, KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t_{exp} = 120s, leading to the detection of ~2,200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 <= M_{p}/M_{Earth} <= 1000 and 0.4 <= a/AU <= 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan (2012), we predict KMTNet will be approximately uniformly sensitive to planets with mas...

  2. IMPROVED THEORETICAL PREDICTIONS OF MICROLENSING RATES FOR THE DETECTION OF PRIMORDIAL BLACK HOLE DARK MATTER

    International Nuclear Information System (INIS)

    Primordial black holes (PBHs) remain a dark matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability, and limb darkening. We extend the theoretically detectable PBH DM mass range down to 2 × 10–10 M☉, two orders of magnitude below current limits and one-third order of magnitude below our previous estimate. We address how to extract the DM properties, such as mass and spatial distribution, if PBH microlensing events were detected. We correct an error in a well-known finite-source limb-darkening microlensing formula and also examine the effects of varying the light curve cadence on PBH DM detectability. We also introduce an approximation for estimating the predicted rate of detection per star as a function of the star's properties, thus allowing for selection of source stars in future missions, and extend our analysis to planned surveys, such as the Wide-Field Infrared Survey Telescope.

  3. Improved Theoretical Predictions of Microlensing Rates for the Detection of Primordial Black Hole Dark Matter

    Science.gov (United States)

    Cieplak, Agnieszka M.; Griest, Kim

    2013-04-01

    Primordial black holes (PBHs) remain a dark matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability, and limb darkening. We extend the theoretically detectable PBH DM mass range down to 2 × 10-10 M ⊙, two orders of magnitude below current limits and one-third order of magnitude below our previous estimate. We address how to extract the DM properties, such as mass and spatial distribution, if PBH microlensing events were detected. We correct an error in a well-known finite-source limb-darkening microlensing formula and also examine the effects of varying the light curve cadence on PBH DM detectability. We also introduce an approximation for estimating the predicted rate of detection per star as a function of the star's properties, thus allowing for selection of source stars in future missions, and extend our analysis to planned surveys, such as the Wide-Field Infrared Survey Telescope.

  4. Improved Theoretical Predictions of Microlensing Rates for the Detection of Primordial Black Hole Dark Matter

    CERN Document Server

    Cieplak, Agnieszka M

    2012-01-01

    Primordial Black Holes (PBHs) remain a Dark Matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability and limb-darkening. We extend the theoretically detectable PBH DM mass range down to $2\\times10^{-10} M_\\sun$, two orders of magnitude below current limits and one third order of magnitude below our previous estimate. We address how to extract the DM properties such as mass and spatial distribution if PBH microlensing events were detected. We correct an error in a well-known finite-source limb-darkening microlensing formula and also examine the effects of varying the light curve cadence on PBH DM detectability. We also introduce an approximation for estimating the predicted rate of detection per star as a function of the star's propertie...

  5. Exoplanetary searches with gravitational microlensing: polarization issues

    CERN Document Server

    Zakharov, A F; De Paolis, F; Nucita, A A; Strafella, F; Novati, S Calchi; Jetzer, Ph

    2013-01-01

    There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star or near the so-called snow line with a temperature in the range $0-100^0$ C on a solid surface of an exoplanet. We emphasize the importance of polarization measurements which can help to resolve degeneracies in theoretical models. In particular, the polarization angle could give additional information about the relative position of the lens with respect to the source.

  6. Characterization of Gravitational Microlensing Planetary Host Stars

    CERN Document Server

    Bennett, D P; Gaudi, B S; Bennett, David P.; Anderson, Jay

    2006-01-01

    The gravitational microlensing light curves that reveal the presence of extrasolar planets generally yield the planet-star mass ratio and separation in units of the Einstein ring radius. The microlensing method does not require the detection of light from the planetary host star. This allows the detection of planets orbiting very faint stars, but it also makes it difficult to convert the planet-star mass ratio to a value for the planet mass. We show that in many cases, the lens stars are readily detectable with high resolution space-based follow-up observations. When the lens star is detected, the lens-source relative proper motion can also be measured, and this allows the masses of the planet and its host star to be determined and the star-planet separation can be converted to physical units.For the recently detected super-Earth planet, OGLE-2005-BLG-169Lb, we show that the lens star will definitely be detectable with observations by the Hubble Space Telescope (HST) unless it is a stellar remnant. Finally, w...

  7. Detecting Extrasolar Asteroid Belts Through Their Microlensing Signatures

    CERN Document Server

    Lake, Ethan; Dong, Subo

    2016-01-01

    We propose that extrasolar asteroid belts can be detected through their gravitational microlensing signatures. Asteroid belt + star lens systems create so-called "pseudo-caustics", regions in the source plane where the magnification exhibits a finite but discontinuous jump. These features allow such systems to generate distinctive microlensing light curves across a wide region of belt parameter space and possess remarkably large lensing cross-sections. Sample light curves for a range of asteroid belt parameters are presented. In the near future, space-based microlensing surveys (e.g., WFIRST) may be able to discover extrasolar asteroid belts with masses of the order of $0.1 M_{\\oplus}$.

  8. The MACHO project 2nd year LMC microlensing results and dark matter implications

    CERN Document Server

    Pratt, M R; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Cook, K H; Freeman, K C; Griest, K; Guern, J A; Lehner, M J; Marshall, S L; Peterson, B A; Quinn, P J; Rodgers, A W; Stubbs, C W; Sutherland, W; Welch, D L

    1996-01-01

    The MACHO Project is searching for galactic dark matter in the form of massive compact halo objects (Machos). Millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge are photometrically monitored in an attempt to detect rare gravitational microlensing events caused by otherwise invisible Machos. Analysis of two years of photometry on 8.5 million stars in the LMC reveals 8 candidate microlensing events, far more than the \\sim1 event expected from lensing by low-mass stars in known galactic populations. From these eight events we estimate the optical depth towards the LMC from events with 2 < \\that < 200 days to be \\tau_2^{200} \\approx 2.9 ^{+1.4}_{-0.9} \\ten{-7}. This exceeds the optical depth of 0.5\\ten{-7} expected from known stars and is to be compared with an optical depth of 4.7\\ten{-7} predicted for a ``standard'' halo composed entirely of Machos. The total mass in this lensing population is \\approx 2^{+1.2}_{-0.7} \\ten{11} \\msun (within 50 kpc from t...

  9. Dynamics and Origin of Extra-solar Planetary Systems and Microlensing Detection of Extra-solar Planets

    Science.gov (United States)

    Peale, S. J.

    2003-01-01

    We compare a space-based microlensing search for planets, with a ground based microlensing search originally proposed by D. Tytler (Beichman, et al. 1996). Perturbations of microlensing light curves when the lens star has a planetary companion are sought by one wide angle survey telescope and an array of three or four followup narrow angle telescopes distributed in longitude that follow events with high precision, high time resolution photometry. Alternative ground based programs are considered briefly. With the four 2 meter telescopes distributed in longitude in the southern hemisphere in the Tytler proposal, observational constraints on a ground-based search for planets during microlensing events toward the center of the galaxy are severe. Probably less than 100 events could be monitored per year with high precision, high time resolution photometry with only about 42% coverage on the average regardless of how many events were discovered by the survey telescope. Statistics for the occurrence and properties for Jupiter-mass planets would be meaningful but relatively meager four years after the program was started, and meaningful statistics for Earth-mass planets would be non existent. In contrast, the 14,500 events in a proposed 4 year space based program (GEST = Galactic Exoplanet Survey Telescope) would yield very sound statistics on the occurrence, masses and separations of Jupiter-mass planets, and significant constraints on similar properties for Earth-mass planets. The significance of the Jupiter statistics would be to establish the frequency of planetary systems like our own, where terrestrial planets could exist inside the orbits of the giants.

  10. MOA 2010-BLG-477Lb: CONSTRAINING THE MASS OF A MICROLENSING PLANET FROM MICROLENSING PARALLAX, ORBITAL MOTION, AND DETECTION OF BLENDED LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, E.; Fouque, P. [IRAP, Universite de Toulouse, CNRS, 14 Avenue Edouard Belin, 31400 Toulouse (France); Shin, I.-G.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Gould, A.; Dong, Subo; Marshall, J.; Skowron, J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Menzies, J. W. [South African Astronomical Observatory, P.O. Box 9, Observatory 7925 (South Africa); Beaulieu, J.-P.; Marquette, J.-B. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Heyrovsky, D. [Institute of Theoretical Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Street, R. A. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Goleta, CA 93117 (United States); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Abe, L.; Agabi, K. [Laboratoire Fizeau, Observatoire de la Cote d' Azur, Boulevard de l' Observatoire, 06300 Nice (France); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Collaboration: PLANET Collaboration; FUN muCollaboration; MOA Collaboration; OGLE Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-07-20

    Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA 2010-BLG-477. The measured planet-star mass ratio is q = (2.181 {+-} 0.004) Multiplication-Sign 10{sup -3} and the projected separation is s = 1.1228 {+-} 0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large {theta}{sub E} = 1.38 {+-} 0.11 mas. Combining this measurement with constraints on the 'microlens parallax' and the lens flux, we can only limit the host mass to the range 0.13 < M/M{sub Sun} < 1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M{sub *} = 0.67{sup +0.33}{sub -0.13} M{sub Sun} and m{sub p} = 1.5{sup +0.8}{sub -0.3} M{sub JUP} at a distance of D = 2.3 {+-} 0.6 kpc, and with a semi-major axis of a = 2{sup +3}{sub -1} AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.

  11. Could the Optical Transient SCP 06F6 be due to Microlensing?

    Indian Academy of Sciences (India)

    Marek Biesiada

    2010-12-01

    In this paper, we consider the mysterious optical transient SCP 06F6 displaying a symmetric light curve with a (half-time) duration of about 100 days. The projected location of the event falls close to the center of the galaxy cluster CL 1432.5 + 332.8 lying at the redshift = 1.112. Guided by suggestive symmetry of the light curve and its similarity in two photometric bands, which is a typical signature of microlensing events, we discuss this possibility in several scenarios. As a consistency check we use the lens mass inferred from the event duration and the size of the source. The second check comes from a plausible assumption that since the event was highly magnified there was a perfect alignment at the maximum magnification. A scenario where the lens and the source are located in our Galaxy is ruled out. There remain extragalactic scenarios in which the source is a broad absorption line quasar at redshift 2.7 (as might be suggested by transient’s spectroscopy) and the lens could be a compact object associated either with the cluster or with quasar’s host galaxy. They give reasonable results. Even if the true nature of the transient eventually turns out different, the idea presented here is interesting from the perspective of cosmological microlensing studies.

  12. The Frequency of Extrasolar Planet Detections with Microlensing Simulations

    OpenAIRE

    Gendron, Rieul

    2011-01-01

    To date, over 500 extrasolar planets have been discovered. The microlensing planets, although relatively few in number, probe a region of the planet mass versus semi-major axis plane that is currently out of reach of the other methods, with the sensitivity peaking just beyond $\\sim 1$ AU. Microlensing planets are therefore very useful for placing constraints on planet formation models.We simulate light curves for 1000 extrasolar planet systems around host stars of mass $0.25\\,\\,{\\textrm{M}}_{...

  13. Measuring Microlensing using Spectra of Multiply Lensed Quasars

    CERN Document Server

    Motta, V; Falco, E; Munoz, J A

    2012-01-01

    We report on a program of spectroscopic observations of gravitationally-lensed QSOs with multiple images. We seek to establish whether microlensing is occurring in each QSO image using only single-epoch observations. We calculate flux ratios for the cores of emission lines in image pairs to set a baseline for no microlensing. The offset of the continuum flux ratios relative to this baseline yields the microlensing magnification free from extinction, as extinction affects the continuum and the lines equally. When we find chromatic microlensing, we attempt to constrain the size of the QSO accretion disk. SDSSJ1004+4112 and HE1104-1805 show chromatic microlensing with amplitudes $0.2< |\\Delta m| < 0.6$ and $0.2< |\\Delta m| < 0.4$ mag, respectively. Modeling the accretion disk with a Gaussian source ($I\\propto \\exp(-R^2/2r_s^2)$) of size $r_s\\propto \\lambda^p$ and using magnification maps to simulate microlensing we find $r_s(\\lambda 3363)=7\\pm3 light-days (18.1\\pm7.8 \\times 10^{15} cm$) and $p=1.1\\pm...

  14. Chromatic control in coextruded layered polymer microlenses

    CERN Document Server

    Crescimanno, Michael; Andrews, James H; Zhou, Chuanhong; Petrus, Joshua B; Merlo, Cory; Bagheri, Cameron; Hetzel, Connor; Tancabel, James; Singer, Kenneth D; Baer, Eric

    2015-01-01

    We describe the formation, characterization and theoretical understanding of microlenses comprised of alternating polystyrene and polymethylmethacrylate layers produced by multilayer coextrusion. These lenses are fabricated by photolithography, using a grayscale mask followed by plasma etching, so that the refractive index alternation of the bilayer stack appears across the radius of the microlens. The alternating quarter-wave thick layers form a one-dimensional photonic crystal whose dispersion augments the material dispersion, allowing one to sculpt the chromatic dispersion of the lens by adjusting the layered structure. Using Huygen's principle, we model our experimental measurements of the focal length of these lenses across the reflection band of the multilayer polymer film from which the microlens is fashioned. For a 56 micron diameter multilayered lens of focal length 300 microns, we measured a nearly 25 percent variation in the focal length across a shallow, 50 nm-wide reflection band.

  15. Determining neutron star masses with weak microlensing

    CERN Document Server

    Tian, Lanlan

    2012-01-01

    The masses of stars including stellar remnants are almost exclusively known from binary systems. In this work, we study gravitational microlensing of faint background galaxies by isolated neutron stars (pulsars). We show that the resulting surface brightness distortions can be used to determine the masses of neutron star. Due to different evolutionary histories, isolated neutron stars may have different masses from those in binary systems, and thus provide unique insight into their equation of states under extreme physical conditions. We search for existing pulsar catalogs and find one promising pair of a nearby pulsar and a background galaxy. This method will become more practical for the next generation optical and radio surveys and telescopes.

  16. Gravitational microlensing by dark clusters in the galactic halo

    CERN Document Server

    Maoz, E

    1994-01-01

    The dark matter in Galactic halos, or some fraction of it, may be in the form of dark clusters which consist of small mass objects. Carr & Lacey (1987) have derived the permissible properties of such systems, and proposed the existence of dark clusters with mass of order $10^6\\solarmass$ to explain some of the observed dynamical properties of the stellar disk of the Galaxy. A population of bound systems with mass of $\\sim 10^5-10^6\\solarmass$ is also an attractive possibility since it is close to the baryon Jeans mass at recombination, which may be the preferred mass scale for the first bound objects to form in the universe. At the present, the existence of dark clusters which consist of brown dwarfs, Jupiters, or black hole remnants of an early generation of stars, is not indicated, nor can be excluded on observational grounds. We describe how dark clusters can be discovered in a sample of gravitational microlensing events in LMC stars. Alternatively, it could provide strict bounds on the fraction of hal...

  17. Constraining the Frequency of Free-Floating Planets from a Synthesis of Microlensing, Radial Velocity, and Direct Imaging Survey Results

    CERN Document Server

    Clanton, Christian

    2016-01-01

    A microlensing survey by Sumi et al. (2011) exhibits an overabundance of short-timescale events (STEs; t_E~10 AU) and free-floating planets. Assuming these STEs are indeed due to planetary-mass objects, we aim to constrain the fraction of these events that can be explained by bound but wide-separation planets. We fit the observed timescale distribution with a lens mass function comprised of brown dwarfs, main-sequence stars, and stellar remnants, finding and thus corroborating the initial identification of an excess of STEs. We then include a population of bound planets that are expected not to show signatures of the primary lens (host) in their microlensing light curves and that are also consistent with results from representative microlensing, radial velocity, and direct imaging surveys. We find that bound planets alone cannot explain the entire STE excess without violating the constraints from the surveys we consider and thus some fraction of these events must be due to free-floating planets, if our model ...

  18. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    International Nuclear Information System (INIS)

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  19. MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

    CERN Document Server

    Skowron, J; Poleski, R; Kozłowski, S; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Abe, F; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Yonehara, A; Dominik, M; Jørgensen, U G; Bozza, V; Harpsøe, K; Hundertmark, M; Skottfelt, J

    2015-01-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the ...

  20. Spitzer Microlensing Program as a Probe for Globular Cluster Planets. Analysis of OGLE-2015-BLG-0448

    CERN Document Server

    Poleski, Radosław; Christie, Grant W; Udalski, Andrzej; Gould, Andrew; Bachelet, Etienne; Skottfelt, Jesper; Novati, Sebastiano Calchi; Szymański, M K; Soszyński, I; Pietrzyński, G; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Kozłowski, Szymon; Skowron, J; Mróz, P; Pawlak, M; Beichman, C; Bryden, G; Carey, S; Fausnaugh, M; Gaudi, B S; Henderson, C B; Pogge, R W; Shvartzvald, Y; Wibking, B; Yee, J C; Beatty, T G; Eastman, J D; Drummond, J; Friedmann, M; Henderson, M; Johnson, J A; Kaspi, S; Maoz, D; McCormick, J; McCrady, N; Natusch, T; Ngan, H; Porritt, I; Relles, H M; Sliski, D H; Tan, T -G; Wittenmyer, R A; Wright, J T; Street, R A; Tsapras, Y; Bramich, D M; Horne, K; Snodgrass, C; Steele, I A; Menzies, J; Jaimes, R Figuera; Wambsganss, J; Schmidt, R; Cassan, A; Ranc, C; Mao, S; Bozza, V; Dominik, M; Hundertmark, M P G; Jørgensen, U G; Andersen, M I; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Gu, S -H; Hinse, T C; Kains, N; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Rasmussen, R T; Southworth, G Scarpetta J; Surdej, J; Unda-Sanzana, E; Verma, P; von Essen, C; Wang, Y -B; Wertz, O

    2015-01-01

    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ($\\mu_{\\rm cl}$(N,E) = (+0.36+-0.10, +1.42+-0.10) mas/yr) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using OGLE photometry is consistent with the value found based on the light curve displacement between Earth and Spitzer.

  1. The MACHO project: Limits on planetary mass dark matter in the galactic halo from gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Allsman, R.A. [Supercomputing Facility, Australian National University, Canberra, ACT 0200 (Australia); Alves, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Department of Physics, University of California, Davis, California 95616 (United States); Axelrod, T.S. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Becker, A.C. [Departments of Astronomy and Physics, University of Washington, Seattle, Washington 98195 (United States); Bennett, D.P.; Cook, K.H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Freeman, K.C. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Griest, K.; Guern, J.; Lehner, M.J. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, San Diego, California 92093 (United States); Marshall, S.L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Peterson, B.A. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Pratt, M.R. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Departments of Astronomy and Physics, University of Washington, Seattle, Washington 98195 (United States)]|[Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    1996-11-01

    The MACHO project has been monitoring about 10 million stars in the Large Magellanic Cloud (LMC) in the search for gravitational microlensing events caused by massive compact halo objects (MACHOs) in the halo of the Milky Way. In our standard analysis, we have searched this data set for well-sampled, long-duration microlensing light curves, detected several microlensing events consistent with MACHOs in the 0.1{ital M}{sub {circle_dot}}{approx_lt}{ital m}{approx_lt}1.0{ital M}{sub {circle_dot}} mass range, and set limits on the abundance of objects with masses 10{sup {minus}5}{ital M}{sub {circle_dot}}{approx_lt}{ital m}{approx_lt}10{sup {minus}1}{ital M}{sub {circle_dot}}. In this paper, we present a different type of analysis involving the search for very short timescale brightenings of stars, which is used to set strong limits on the abundance of lower mass MACHOs. Our analysis of the first 2 years of data toward the LMC indicates that MACHOs with masses in the range 2.5{times}10{sup {minus}7}{ital M}{sub {circle_dot}}{lt}{ital m}{lt}5.2{times}10{sup {minus}4}{ital M}{sub {circle_dot}} cannot make up the entire mass of a standard spherical dark halo. Combining these results with those from the standard analysis, we find that the halo dark matter cannot be comprised of objects with masses 2.5{times}10{sup {minus}7}{ital M}{sub {circle_dot}}{lt}{ital m}{lt}8.1{times}10{sup {minus}2}{ital M}{sub {circle_dot}}. {copyright} {ital 1996 The American Astronomical Society.}

  2. MOA 2010-BLG-477Lb: CONSTRAINING THE MASS OF A MICROLENSING PLANET FROM MICROLENSING PARALLAX, ORBITAL MOTION, AND DETECTION OF BLENDED LIGHT

    International Nuclear Information System (INIS)

    Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA 2010-BLG-477. The measured planet-star mass ratio is q = (2.181 ± 0.004) × 10–3 and the projected separation is s = 1.1228 ± 0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θE = 1.38 ± 0.11 mas. Combining this measurement with constraints on the 'microlens parallax' and the lens flux, we can only limit the host mass to the range 0.13 ☉ * = 0.67+0.33–0.13 M☉ and mp = 1.5+0.8–0.3 MJUP at a distance of D = 2.3 ± 0.6 kpc, and with a semi-major axis of a = 2+3–1 AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.

  3. The Spitzer microlensing program as a probe for globular cluster planets : analysis of OGLE-2015-BLG-0448

    OpenAIRE

    Poleski, Radosław; Zhu, Wei; Christie, Grant W.; Udalski, Andrzej; Gould, Andrew; Bachelet, Etienne; Skottfelt, Jesper; Calchi Novati, Sebastiano; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K; Pietrukowicz, P.; Kozłowski, Szymon

    2016-01-01

    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters.We measure the proper motion of NGC 6558 μcl(N, E)=(+0.36 ± 0.10,+1.42 ± 0.10) mas yr-1) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the d...

  4. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    Energy Technology Data Exchange (ETDEWEB)

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  5. MEASURING MICROLENSING USING SPECTRA OF MULTIPLY LENSED QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Motta, V. [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avda. Gran Bretana 1111, Playa Ancha, Valparaiso 2360102 (Chile); Mediavilla, E. [Instituto de Astrofisica de Canarias, Avda. Via Lactea s/n, La Laguna, Tenerife 38200 (Spain); Falco, E. [Whipple Observatory, Smithsonian Institution, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Munoz, J. A., E-mail: vmotta@dfa.uv.cl, E-mail: emg@iac.es, E-mail: falco@cfa.harvard.edu, E-mail: jmunoz@uv.es [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100-Burjassot, Valencia (Spain)

    2012-08-10

    We report on a program of spectroscopic observations of gravitationally lensed QSOs with multiple images. We seek to establish whether microlensing is occurring in each QSO image using only single-epoch observations. We calculate flux ratios for the cores of emission lines in image pairs to set a baseline for no microlensing. The offset of the continuum flux ratios relative to this baseline yields the microlensing magnification free from extinction, as extinction affects the continuum and the lines equally. When we find chromatic microlensing, we attempt to constrain the size of the QSO accretion disk. SDSSJ1004+4112 and HE1104-1805 show chromatic microlensing with amplitudes 0.2 < |{Delta}m| < 0.6 and 0.2 < |{Delta}m| < 0.4 mag, respectively. Modeling the accretion disk with a Gaussian source (I{proportional_to}exp (- R{sup 2}/2r{sup 2}{sub s})) of size r{sub s} {proportional_to}{lambda}{sup p} and using magnification maps to simulate microlensing, we find r{sub s} ({lambda}3363) = 7 {+-} 3 lt-day(18.1 {+-} 7.8 Multiplication-Sign 10{sup 15} cm) and p = 1.1 {+-} 0.4 for SDSS1004+4112, and r{sub s} ({lambda}3363) = 6 {+-} 2 lt-day(15.5 {+-} 5.2 Multiplication-Sign 10{sup 15} cm) and p = 0.7 {+-} 0.1 for HE1104-1805. For SDSSJ1029+2623, we find strong chromaticity of {approx}0.4 mag in the continuum flux ratio, which probably arises from microlensing, although not all the available data fit within this explanation. For Q0957+561, we measure B - A magnitude differences of 0.4 mag, much greater than the {approx}0.05 mag amplitude usually inferred from light-curve variability. It may substantially modify the current interpretations of microlensing in this system, likely favoring the hypothesis of smaller sources and/or larger microdeflectors. For HS0818+1227, our data yield possible evidence of microlensing.

  6. Preparing for the WFIRST Microlensing Survey: Simulations, Requirements, Survey Strategies, and Precursor Observations

    Science.gov (United States)

    Gaudi, Bernard

    As one of the four primary investigations of the Wide Field Infrared Survey Telescope (WFIRST) mission, the microlensing survey will monitor several square degrees of the Galactic bulge for a total of roughly one year. Its primary science goal is to "Complete the statistical census of planetary systems in the Galaxy, from the outer habitable zone to free floating planets, including analogs of all of the planets in our Solar System with the mass of Mars or greater.'' WFIRST will therefore (a) measure the mass function of cold bound planets with masses greater than that of roughly twice the mass of the moon, including providing an estimate of the frequency of sub-Mars-mass embryos, (b) determine the frequency of free-floating planets with masses down to the Earth and below, (c) inform the frequency and habitability of potentially habitable worlds, and (d) revolutionize our understanding of the demographics of cold planets with its exquisite sensitivity to, and large expected yield of, planets in a broad and unexplored region of parameter space. In order for the microlensing survey to be successful, we must develop a plan to go from actual survey observations obtained by the WFIRST telescope and hardware to the final science products. This plan will involve many steps, the development of software, data reduction, and analysis tools at each step, and a list of requirements for each of these components. The overarching goal of this proposal is thus to develop a complete flowdown from the science goals of the microlensing survey to the mission design and hardware components. We have assembled a team of scientists with the breadth of expertise to achieve this primary goal. Our specific subgoals are as follows. Goal 1: We will refine the input Galactic models in order to provide improved microlensing event rates in the WFIRST fields. Goal 2: We will use the improved event rate estimates, along with improvements in our simulation methodology, to provide higher

  7. OGLE-2008-BLG-513Lb: The Orbital Solution for a Microlensing Planet

    CERN Document Server

    Yee, J C; Dong, Subo; Greenhill, J; Tsapras, Y; Bond, I A; Gould, A; Kozlowski, S; Fouque, P; Albrow, M D; Han, C; Monard, L A G; McCormick, J; Williams, A; Kains, N; An, J; Dominik, M

    2011-01-01

    The dominant features of the microlensing event OGLE-2008-BLG-513 arise from a 2-body lens with a mass ratio q=0.027+/-0.001. The light curve cannot be adequately described by a static, 2-body lens model, which forces us to consider the orbital motion of the lens system. Including orbital motion improves the fit by Delta chi^2>1000. We model the orbital motion as a Keplerian orbit, and with the additional information from microlens parallax, we are able to place constraints on all eight parameters of the orbit. If our model is correct, this gives us the most complete orbital information of any microlensing planet. We find that the host star is 0.18event is also unusual because the positio...

  8. OGLE-2011-BLG-0265Lb: a Jovian Microlensing Planet Orbiting an M Dwarf

    CERN Document Server

    Skowron, J; Udalski, A; Han, C; Sumi, T; Shvartzvald, Y; Gould, A; Dominis-Prester, D; Street, R A; Jørgensen, U G; Bennett, D P; Bozza, V; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Poleski, R; Kozłowski, S; Pietrukowicz, P; Ulaczyk, K; Wyrzykowski, Ł; Abe, F; Bhattacharya, A; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Ling, C H; Koshimoto, N; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L C; Rattenbury, N; Saito, T; Sullivan, D J; Suzuki, D; Tristram, P J; Yock, P C M; Maoz, D; Kaspi, S; Friedman, M; Almeida, L A; Batista, V; Christie, G; Choi, J -Y; DePoy, D L; Gaudi, B S; Henderson, C; Hwang, K -H; Jablonski, F; Jung, Y K; Lee, C -U; McCormick, J; Natusch, T; Ngan, H; Park, H; Pogge, R W; Yee, J; Albrow, M D; Bachelet, E; Beaulieu, J -P; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Donatowicz, J; Fouqué, P; Greenhill, J; Kains, N; Kane, S R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Pollard, K R; Ranc, C; Sahu, K C; Wambsganss, J; Williams, A; Wouters, D; Tsapras, Y; Bramich, D M; Horne, K; Hundertmark, M; Snodgrass, C; Steele, I A; Alsubai, K A; Browne, P; Burgdorf, M J; Novati, S Calchi; Dodds, P; Dominik, M; Dreizler, S; Fang, X -S; Gu, C -H; Hardis,; Harpsøe, K; Hessman, F V; Hinse, T C; Hornstrup, A; Jessen-Hansen, J; Kerins, E; Liebig, C; Lund, M; Lundkvist, M; Mancini, L; Mathiasen, M; Penny, M T; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Southworth, J; Surdej, J; Tregloan-Reed, J; Wertz, O

    2014-01-01

    We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{\\rm p}$ = 1.0 $\\pm$ 0.3 $M_{\\rm J}$, and the planet is orbiting a star with a mass $M$ = 0.23 $\\pm$ 0.07 $M_\\odot$. The second possible configuration (2\\sigma away) consists of a planet with $M_{\\rm p}$ = 0.6 $\\pm$ 0.2 $M_{\\rm J}$ and host star with $M$ = 0.15 $\\pm$ 0.06 $M_{\\odot}$. The system is located in the Galactic disk 3-4 kpc towards the Galactic bulge. In...

  9. Experimental limits on the dark matter halo of the galaxy from gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R.A.; Axelrod, T.S.; Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Griest, K.; Guern, J.A.; Lehner, M.J.; Marshall, S.L.; Park, H.; Perlmutter, S.; Peterson, B.A.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Stubbs, C.W.; Sutherland, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Supercomputing Facility, Australian National University, Canberra, A.C.T. 0200 (Australia)]|[Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, A.C.T. 2611 (Australia)]|[Department of Physics, University of California, San Diego, California 92093 (United States)]|[Department of Physics, University of California, Santa Barbara, California 93106 (United States)]|[Departments of Astronomy and Physics, University of Washington, Seattle, Washington 98195 (United States)]|[Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); (MACHO Collaboration)

    1995-04-10

    We monitored 8.6{times}10{sup 6} stars in the Large Magellanic Cloud for 1.1 years and have found three events consistent with gravitational microlensing. We place strong constraints on Galactic halo lensing objects in the mass range 10{sup {minus}4}{ital M}{sub {circle_dot}} to 10{sup {minus}1}{ital M}{sub {circle_dot}}. Three events are fewer than expected for a standard spherical halo of objects in this mass range, but appear to exceed the number expected from known Galactic populations. Fitting a naive spherical halo model to our data yields a MACHO fraction {ital f} of massive compact halo objects (MACHOs), {ital f}=0.19{sub {minus}0.10}{sup +0.16}, a total MACHO mass (inside 50 kpc) of 7.6{sub {minus}4}{sup +6}{times}10{sup 10}{ital M}{sub {circle_dot}}, and a microlensing optical depth 8.8{sub {minus}5}{sup +7}{times}10{sup {minus}8} (68% C.L.).

  10. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan; Penny, Matthew T.; Gould, Andrew P. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, Cheongho [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Nataf, David, E-mail: henderson@astronomy.ohio-state.edu [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia)

    2014-10-10

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg{sup 2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t {sub exp} = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M{sub p} /M {sub ⊕} < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  11. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    International Nuclear Information System (INIS)

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg2 field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t exp = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ Mp /M ⊕ ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ Mp /M ⊕ ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ Mp /M ⊕ < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  12. OGLE 2008--BLG--290: An accurate measurement of the limb darkening of a Galactic Bulge K Giant spatially resolved by microlensing

    CERN Document Server

    Fouque, P; Dong, S; Gould, A; Udalski, A; Albrow, M D; Batista, V; Beaulieu, J -P; Bennett, D P; Bond, I A; Bramich, D M; Novati, S Calchi; Cassan, A; Coutures, C; Dieters, S; Dominik, M; Prester, D Dominis; Greenhill, J; Horne, K; Jorgensen, U G; Kozlowski, S; Kubas, D; Lee, C -H; Marquette, J -B; Mathiasen, M; Menzies, J; Monard, L A G; Nishiyama, S; Papadakis, I; Street, R; Sumi, T; Williams, A; Yee, J C; Brillant, S; Caldwell, J A R; Cole, A; Cook, K H; Donatowicz, J; Kains, N; Kane, S R; Martin, R; Pollard, K R; Sahu, K C; Tsapras, Y; Wambsganss, J; Zub, M; DePoy, D L; Gaudi, B S; Han, C; Lee, C -U; Park, B -G; Pogge, R W; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Abe, F; Fukui, A; Furusawa, K; Gilmore, A C; Hearnshaw, J B; Itow, Y; ~Kamiya, K; Kilmartin, P M; Korpela, A V; Lin, W; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Ohnishi, K; Okumura, T; Perrott, Y; Rattenbury, N J; Saito, To; Sako, T; Sato, S; Skuljan, L; Sullivan, D; Sweatman, W; Tristram, P J; Yock, P C M; Allan, A; Bode, M F; Burgdorf, M J; Clay, N; Fraser, S N; Hawkins, E; Kerins, E; Lister, T A; Mottram, C J; Saunders, E S; Snodgrass, C; Steele, I A; Wheatley, P J; Anguita, T; Bozza, V; Harpsoe, K; Hinse, T C; Hundertmark, M; Kjaergaard, P; Liebig, C; Mancini, L; Masi, G; Rahvar, S; Ricci, D; Scarpetta, G; Southworth, J; Surdej, J; Thone, C C; Riffeser, A; ~Seitz, S; Bender, R

    2015-01-01

    Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross over the source disk, which allows a determination of the angular size of the source and additionally a measurement of its limb darkening. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczynski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. In the case of microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification of about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darke...

  13. Searching for intermediate-mass black holes with gravitational microlensing

    Science.gov (United States)

    Kains, Noé; Bramich, Dan; Sahu, Kailash C.; Calamida, Annalisa

    2016-06-01

    Despite a lot of indirect observational evidence, no intermediate-mass black hole (IMBH) has been detected unambiguously so far. A clear detection would shed light on the possible role of IMBHs in the formation of supermassive black holes, and on the evolution of Galaxies. This could be achieved with gravitational microlensing. We present the results of simulations to estimate the expected astrometric microlensing rates by IMBHs in globular clusters, and show that microlensing has the potential to detect signals that can be unambiguously attributed to an IMBH in several Galactic globular clusters. We also discuss the implication of our simulations for archival studies with available Hubble Space Telescope data, and the impact of JWST and WFIRST on possible future detections.

  14. VCSEL collimation using self-aligned integrated polymer microlenses

    OpenAIRE

    Levallois, Christophe; Bardinal, Véronique; Vergnenegre, Corinne; Leïchlé, Thierry; Camps, Thierry; Daran, Emmanuelle; Doucet, Jean-Baptiste

    2008-01-01

    International audience We report on the design and fabrication of polymer microlenses fabricated on patterned SU-8 layers in view of integrating microlenses on VCSEL arrays for laser beam shaping. For a standard top-emitting VCSEL, the lens has to be fabricated on a thick intermediate layer (pedestal) whose optimal thickness can be modelled as a function of the initial and of the aimed optical properties of the VCSEL beam. In this work, pedestals are fabricated with SU-8, which is a negati...

  15. The parallax distorsion via a weak microlensing effect

    CERN Document Server

    Sazhin, M V; Kalinina, T A

    2000-01-01

    Parallax measurements allow distances to celestial objects to be determined. Coupled with measurement of their position on the celestial sphere, it gives a full three-dimensional picture of the location of the objects relative to the observer. The distortion of the parallax value of a remote source affected by a weak microlensing is considered. This means that the weak microlensing leads to distortion of the distance scale. It is shown that the distortions to appear may change strongly the parallax values in case they amount to several microseconds of arc. In particular, at this accuracy many measured values of the parallaxes must be negative.

  16. Prospects for Characterizing Host Stars of the Planetary System Detections Predicted for the Korean Microlensing Telescope Network

    CERN Document Server

    Henderson, Calen B

    2014-01-01

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by 1) imaging a lens once it is spatially resolved from the source, 2) measuring the elongation of the point spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and 3) taking prompt follow-up photometry. In each case I simulate observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on VLT), future ground-based AO facilities (GMTIFS on GMT), and future space telescopes (NIRCAM on $JWST$). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of $\\sigma_{H_{\\ell}} \\leq 0.1$ for $\\gtrsim$60$\\%$ of planet detections $\\geq$5 years after each microlensing event, for a simulated observ...

  17. Searching for intermediate-mass black holes in globular clusters with gravitational microlensing

    Science.gov (United States)

    Kains, N.; Bramich, D. M.; Sahu, K. C.; Calamida, A.

    2016-08-01

    We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several clusters, the probability of detecting such an event is significant with available archival data from the Hubble Space Telescope. Specifically, we find that M 22 is the cluster with the best chances of yielding an intermediate-mass black hole (IMBH) detection via astrometric microlensing. If M 22 hosts an IMBH of mass 105 M⊙, then the probability that at least one star will yield a detectable signal over an observational baseline of 20 years is ˜86 per cent, while the probability of a null result is around 14 per cent. For an IMBH of mass 106 M⊙, the detection probability rises to >99 per cent. Future observing facilities will also extend the available time baseline, improving the chance of detections for the clusters we consider.

  18. Searching for intermediate-mass black holes in globular clusters with gravitational microlensing

    CERN Document Server

    Kains, N; Sahu, K C; Calamida, A

    2016-01-01

    We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic Bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several clusters, the probability of detecting such an event is significant with available archival data from the Hubble Space Telescope. Specifically, we find that M 22 is the cluster with the best chances of yielding an IMBH detection via astrometric microlensing. If M 22 hosts an IMBH of mass $10^5M_\\odot$, then the probability that at least one star will yield a detectable signal over an observational baseline of 20 years is $\\sim 86\\%$, while the probability of a null result is around $14\\%$. For an IMBH of mass $10^6M_\\odot$, the ...

  19. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  20. AGAPE a microlensing search in the direction of M31

    CERN Document Server

    Ansari, R; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Giraud-Héraud, Yannick; Gondolo, P; Hecquet, J; Kaplan, J; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G

    1996-01-01

    A status report of the microlensing search by the pixel method in the direction of M31, on the 2 meter telescope at Pic du Midi is given. Pixels are stable to a level better than 0.5%. Pixel variations as small as 0.02 magnitude can clearly be detected.

  1. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.

  2. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    International Nuclear Information System (INIS)

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σHℓ≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f bin)% of planet detections, where f bin is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M ☉

  3. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys, I: Methodology

    CERN Document Server

    Clanton, Christian

    2014-01-01

    Motivated by the order-of-magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets ($m_p \\gtrsim 1~M_{...

  4. A New Method of Detecting Primordial Black Hole Dark Matter using Microlensing

    Science.gov (United States)

    Cieplak, Agnieszka; Griest, K.; Lehner, M. J.

    2012-01-01

    Primordial Black Holes (PBHs) are the only remaining Dark Matter (DM) candidate of the Standard Model of Particle Physics. We present a new method of constraining up to 40% of the remaining mass range of the PBH DM using microlensing of stars targeted by NASA's Kepler mission. Kepler's exceptional photometric precision and finite-source effects allow for a higher microlensing rate than previously thought. We introduce a new formalism with these effects for the optical depth and microlensing rate.

  5. Improved Predictions of Kepler Microlensing Rates for Primordial Black Hole Dark Matter

    Science.gov (United States)

    Cieplak, Agnieszka; Griest, K.

    2013-01-01

    Primordial Black Holes (PBHs) remain a viable Dark Matter (DM) candidate of the Standard Model of Particle Physics. Previously, we have proposed a new method to constrain the remaining PBH DM mass range using microlensing of Kepler source stars, with the possibility of closing up to 40% of the remaining mass window. Here we re-address this analysis using a more accurate treatment of the distribution of the source stars, including limb-darkening as well as reflecting a more accurate number of variable stars. Including the extended Kepler mission the theoretically detectable PBH DM mass range could be extended down to 2*10^-10 solar masses. We address the possible PBH parameters that could be detected if such an event would be observed as well as possible improvements for future survey satellite missions.

  6. Search for exoplanets in M31 with pixel-lensing and the PA-99-N2 event revisited

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, Ph; Nucita, A A; Zakharov, A F

    2010-01-01

    Several exoplanets have been detected towards the Galactic bulge with the microlensing technique. We show that exoplanets in M31 may also be detected with the pixel-lensing method, if telescopes making high cadence observations of an ongoing microlensing event are used. Using a Monte Carlo approach we find that the mean mass for detectable planetary systems is about $2 M_{\\rm {J}}$. However, even small mass exoplanets ($M_{\\rm P} < 20 M_{\\oplus}$) can cause significant deviations, which are observable with large telescopes. We reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the robustness of the binary lens conclusion for this light curve. Second, we show that for such long duration and bright microlensing events, the efficiency for finding planetary-like deviations is strongly enhanced with respect to that evaluated for all planetary detectable events.

  7. The Spitzer Microlensing Program as a Probe for Globular Cluster Planets: Analysis of OGLE-2015-BLG-0448

    Science.gov (United States)

    Poleski, Radosław; Zhu, Wei; Christie, Grant W.; Udalski, Andrzej; Gould, Andrew; Bachelet, Etienne; Skottfelt, Jesper; Calchi Novati, Sebastiano; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrukowicz, P.; Kozłowski, Szymon; Skowron, J.; Mróz, P.; Pawlak, M.; OGLE group; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Shvartzvald, Y.; Wibking, B.; Yee, J. C.; Spitzer team; Beatty, T. G.; Eastman, J. D.; Drummond, J.; Friedmann, M.; Henderson, M.; Johnson, J. A.; Kaspi, S.; Maoz, D.; McCormick, J.; McCrady, N.; Natusch, T.; Ngan, H.; Porritt, I.; Relles, H. M.; Sliski, D. H.; Tan, T.-G.; Wittenmyer, R. A.; Wright, J. T.; μFUN group; Street, R. A.; Tsapras, Y.; Bramich, D. M.; Horne, K.; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; project, RoboNet; Bozza, V.; Dominik, M.; Hundertmark, M. P. G.; Jørgensen, U. G.; Andersen, M. I.; Burgdorf, M. J.; Ciceri, S.; D’Ago, G.; Evans, D. F.; Gu, S.-H.; Hinse, T. C.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Rasmussen, R. T.; Scarpetta, G.; Southworth, J.; Surdej, J.; Unda-Sanzana, E.; Verma, P.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEp group

    2016-05-01

    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ({{\\boldsymbol{μ }}}{cl}(N,E)=(+0.36+/- 0.10,+1.42+/- 0.10) {{mas}} {{{yr}}}-1) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer.

  8. An X-Ray Microlensing Test of the Au-Scale Central Structure of the Quadruple Quasar 2237+0305

    Science.gov (United States)

    Mineshige, Shin

    2011-09-01

    We propose Chandra observations of the gravitationally lensed quasar Q2237+0305 during a microlensing event to reveal its AU scale central structure. The quasar being monitored from the ground regularly to ascertain the onset of the event. As it occurs, we will measure X-ray spectral variations with Chandra and compare with those taken before and after the event. Since a small region of the quasar accretion disk is strongly magnified during the event, we will be able to limit the mass contained on scales of several AUs and to probe the physical properties of X-ray emitting gas in the vicinity of the black hole. Together with ground-based telescope, we can resolve the quasar emission regions at multiple wavelength. This provides a critical test of quasar accretion disk theories.

  9. Gravitational Microlensing as a probe of Quasar Structure

    Science.gov (United States)

    Floyd, David

    2011-01-01

    Gravitational microlensing provides information at the micro-to-nano arcsecond scale necessary to probe the structure of the central engine of quasars. We can now determine the radius of the broad line emitting regions, and measure the temperature profile of the continuum emitting region using single-epoch observations. I will present X-shooter spectroscopy that provides new insight into the accretion mechanism, and the structure of the broad line region.

  10. The macho project first-year large magellanic cloud results: The microlensing rate and the nature of the galactic dark halo

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C. [Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Allsman, R.A. [Supercomputing Facility, Australian National University, Canberra, ACT 0200 (Australia); Axelrod, T.S. [Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States)]|[Mount Stomlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Bennett, D.P.; Cook, K.H. [Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Freeman, K.C. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Griest, K.; Guern, J.A.; Lehner, M.J. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, San Diego, California 92093-0354 (United States); Marshall, S.L. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Santa Barbara, California 93106 (United States); Park, H. [Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States); Perlmutter, S. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Peterson, B.A. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Pratt, M.R. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Santa Barbara, California 93106 (United States); Quinn, P.J.; Rodgers, A.W. [Mount Stromlo and Siding Spring Observatories, (Australia)

    1996-04-01

    Since July 1992, the MACHO project has been carrying out long-term photometric monitoring of over 20 million stars in the Magellanic Clouds and Galactic bulge. Our aim is to search for the very rare gravitational microlensing events predicted if the dark halo of our Galaxy is comprised of massive compact halo objects (hereafter MACHOs). We have now analyzed most of the first year{close_quote}s LMC data, comprising 9.5 million light curves of stars with an average of 235 observations each. Automated selection procedures applied to this sample show three events consistent with microlensing; the first detected is very striking (Alcock and coworkers), and two are of modest amplitude. We have evaluated our experimental detection efficiency using a range of detailed Monte Carlo simulations, including the addition of artificial stars to real data frames. Using a ``standard`` halo density profile, we find that a halo comprised entirely of MACHOs in the mass range 3{times}10{sup {minus}4} to 0.06 {ital M}{sub {circle_dot}} would predict more than 15 detected events in this data set, and objects around 3{times}10{sup {minus}3} {ital M}{sub {circle_dot}} would predict 25 events; thus a standard spherical halo cannot be dominated by objects in this mass range. Assuming all three events are microlensing by halo objects, and fitting a naive spherical halo model to our data yields a MACHO halo fraction {ital f}=0.19{sup +0.16}{sub -0.10}, a total mass in MACHOs (inside 50 kpc) of 7.6{sup +6}{sub -4}{times}10{sup 10} {ital M}{sub {circle_dot}}, and a microlensing optical depth 8.8{sup +7}{sub -5}{times}10{sup -8} (68% confidence level). Should only one of these events be microlensing, this could be explained in terms of previously known populations. We have explored a wide range of halo models and find that, while our constraints on the MACHO fraction are quite model dependent, constraints on the total mass in MACHOs within 50 kpc are quite secure.

  11. Campaign 9 of the $K2$ Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    CERN Document Server

    Henderson, Calen B; Street, Rachel A; Bennett, David P; Hogg, David W; Poleski, R; Barclay, T; Barentsen, G; Howell, S B; Udalski, A; Szymański, M K; Skowron, J; Mróz, P; Kozłowski, S; Wyrzykowski, Ł; Pietrukowicz, P; Soszyński, I; Ulaczyk, K; Pawlak, M; Sumi, T; Abe, F; Asakura, Y; Barry, R K; Bhattacharya, A; Bond, I A; Donachie, M; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Oyokawa, H; Rattenbury, N; Saito, To; Sharan, A; Sullivan, D J; Tristram, P J; Yonehara, A; Bachelet, E; Bramich, D A; Cassan, A; Dominik, M; Jaimes, R Figuera; Horne, K; Hundertmark, M; Mao, S; Ranc, C; Schmidt, R; Snodgrass, C; Steele, I A; Tsapras, Y; Wambsganss, J; Akeson, R; Batista, V; Beaulieu, J -P; Beichman, C A; Bozza, V; Bryden, G; Ciardi, D; Cole, A; Coutures, C; Dong, S; Foreman-Mackey, D; Fouqué, P; Gaudi, B S; Kerins, E; Korhonen, H; Jørgensen, U; Lang, D; Lineweaver, C; Marquette, J -B; Mogavero, Federico; Morales, J C; Nataf, D; Pogge, R W; Santerne, A; Shvartzvald, Y; Suzuki, D; Tamura, M; Tisserand, P; Wang, D; Zhu, W

    2016-01-01

    $K2$'s Campaign 9 ($K2$C9) will conduct a $\\sim$3.4 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $\\pi_{\\rm E}$ for $\\gtrsim$120 microlensing events, including several planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this white paper we provide an overview of the $K2$C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of $K2$C9, and the array of ground-based resources dedicated to concurrent observations. Finally, we outline the avenues throug...

  12. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    CERN Document Server

    Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M

    2016-01-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  13. MOA-2011-BLG-293LB: First microlensing planet possibly in the habitable zone

    International Nuclear Information System (INIS)

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r = 1.1 ± 0.1 AU from its ML = 0.86 ± 0.06 M ☉ host, being the highest microlensing mass definitely identified. The planet has a mass mp = 4.8 ± 0.3 M Jup, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: DL = 7.72 ± 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model. These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is HL = 19.16 ± 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.

  14. MOA-2011-BLG-293LB: First microlensing planet possibly in the habitable zone

    Energy Technology Data Exchange (ETDEWEB)

    Batista, V.; Gould, A.; Yee, J. C.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, 98 Bis Boulevard Arago, F-75014 Paris (France); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Udalski, A., E-mail: virginie@astronomy.ohio-state.edu, E-mail: gould@astronomy.ohio-state.edu, E-mail: jyee@astronomy.ohio-state.edu, E-mail: beaulieu@iap.fr, E-mail: bennett@nd.edu, E-mail: afukui@oao.nao.ac.jp, E-mail: sumi@ess.sci.osaka-u.ac.jp, E-mail: udalski@astrouw.edu.pl [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2014-01-01

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r = 1.1 ± 0.1 AU from its M{sub L} = 0.86 ± 0.06 M {sub ☉} host, being the highest microlensing mass definitely identified. The planet has a mass m{sub p} = 4.8 ± 0.3 M {sub Jup}, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: D{sub L} = 7.72 ± 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model. These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is H{sub L} = 19.16 ± 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.

  15. High magnification events by MOA in 2007

    CERN Document Server

    Yock, Philip

    2008-01-01

    Gravitational microlensing events of high magnification provide exceptional sensitivity to the presence of low-mass planets orbiting the lens star, including planets with masses as low as that of Earth. The essential requirement for the detection of such planets in these events is that the FWHM of the light curve be monitored continuously, or as nearly continuously as possible. The dependence of planet detectability on the magnification caused by microlensing, on the planet mass and planet location, and on the size of the source star, may be understood in terms of simple geometrical properties of microlensing that have been known since 1964. Planetary signals of low-mass planets are found to be approximately independent of the magnification caused by microlensing. This implies that planets can be detected in events over a wide range of magnifications, from moderately high values ~ 100 to very high values ~ 1000. The former values are likely to yield more clear-cut separations of the stellar and planetary feat...

  16. Detection efficiencies of microlensing data sets to stellar and planetary companions

    NARCIS (Netherlands)

    Gaudi, BS; Sackett, PD

    2000-01-01

    Microlensing light curves are now being monitored with the temporal sampling and photometric precision required to detect small perturbations due to planetary companions of the primary lens. Microlensing is complementary to other planetary search techniques, both in the mass and orbital separation o

  17. ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): A possible expert-system based cooperative effort to hunt for planets of Earth mass and below

    Science.gov (United States)

    Dominik, M.; Horne, K.; Allan, A.; Rattenbury, N. J.; Tsapras, Y.; Snodgrass, C.; Bode, M. F.; Burgdorf, M. J.; Fraser, S. N.; Kerins, E.; Mottram, C. J.; Steele, I. A.; Street, R. A.; Wheatley, P. J.; Wyrzykowski, Ł.

    2008-03-01

    The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. Thus, valuable information for testing models of planet formation and orbital migration is gathered, constituting an important piece in the puzzle for the existence of life forms throughout the Universe. In order to achieve these goals in reasonable time, a well-coordinated effort involving a network of either 2m or 4×1m telescopes at each site is required. It could lead to the first detection of an Earth-mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three-step strategy of survey, follow-up, and anomaly monitoring. As an expert system embedded in eSTAR (e-Science Telescopes for Astronomical Research), ARTEMiS will give advice for follow-up based on a priority algorithm that selects targets to be observed in order to maximize the expected number of planet detections, and will also alert on deviations from ordinary microlensing light curves by means of the SIGNALMEN anomaly detector. While the use of the VOEvent (Virtual Observatory Event) protocol allows a direct interaction with the telescopes that are part of the HTN (Heterogeneous Telescope Networks) consortium, additional interfaces provide means of communication with all existing microlensing campaigns that rely on human observers. The success of discovering a planet by microlensing critically depends on the availability of a telescope in a suitable location at the right time, which can mean within 10 min. To encourage follow-up observations, microlensing campaigns are therefore releasing photometric data in real time. On ongoing planetary anomalies, world

  18. GERLUMPH Data Release 2: 2.5 billion simulated microlensing light curves

    CERN Document Server

    Vernardos, Georgios; Bate, Nicholas F; Croton, Darren; Vohl, Dany

    2015-01-01

    In the upcoming synoptic all--sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disc. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated $>2.5$ billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to: train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our ...

  19. Broadband Metallic Planar Microlenses in an Array: the Focusing Coupling Effect.

    Science.gov (United States)

    Yu, Yiting; Wang, Ping; Zhu, Yechuan; Diao, Jinshuai

    2016-12-01

    The microlens arrays (MLAs) are widely utilized for various applications. However, when the lens size and the spacing between two adjacent microlenses are of the length scale of the working wavelength, the diffraction effect plays a vital role in the final focusing performance. We suggest a kind of broadband metallic planar microlenses, based on which the ultra-compact microlens arrays are also constructed. The focusing coupling effect revealing for such devices is then investigated in detail by using the finite-difference time-domain (FDTD) method, with the emphasis on the changing spacing between adjacent microlenses, the working wavelength, the diameter of microlenses, and the array size. The results show that a larger spacing, a larger lens size, a shorter wavelength, or a smaller array scale can lead to a weaker focusing coupling effect. This research provides an important technological reference to design an array of metallic planar microlenses with the well-controlled focusing performance. PMID:26922796

  20. The MACHO Project HST Follow-Up: The Large Magellanic Cloud Microlensing Source Stars

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.A.; /LLNL, Livermore /UC, Berkeley; Drake, A.J.; /Caltech; Cook, K.H.; /LLNL, Livermore /UC, Berkeley; Bennett, D.P.; /Caltech /Notre Dame U.; Popowski, P.; /Garching, Max Planck Inst.; Dalal, N.; /Toronto U.; Nikolaev, S.; /LLNL, Livermore; Alcock, C.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.; Axelrod, T.S.; /Arizona U.; Becker, A.C. /Washington U., Seattle; Freeman, K.C.; /Res. Sch. Astron. Astrophys., Weston Creek; Geha, M.; /Yale U.; Griest, K.; /UC, San Diego; Keller, S.C.; /LLNL, Livermore; Lehner, M.J.; /Harvard-Smithsonian Ctr. Astrophys. /Taipei, Inst. Astron. Astrophys.; Marshall, S.L.; /SLAC; Minniti, D.; /Rio de Janeiro, Pont. U. Catol. /Vatican Astron. Observ.; Pratt, M.R.; /Aradigm, Hayward; Quinn, P.J.; /Western Australia U.; Stubbs, C.W.; /UC, Berkeley /Harvard U.; Sutherland, W.; /Oxford U. /Oran, Sci. Tech. U. /Garching, Max Planck Inst. /McMaster U.

    2009-06-25

    We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large Magellanic Cloud (LMC) microlensing source stars with respect to the distributions of stars and dust in the LMC and compare this to the predictions of various models of LMC microlensing. This test excludes at {approx}> 90% confidence level models where more than 80% of the source stars lie behind the LMC. Exotic models that attempt to explain the excess LMC microlensing optical depth seen by MACHO with a population of background sources are disfavored or excluded by this test. Models in which most of the lenses reside in a halo or spheroid distribution associated with either the Milky Way or the LMC are consistent which these data, but LMC halo or spheroid models are favored by the combined MACHO and EROS microlensing results.

  1. Gravitational Microlensing and the Structure of Quasar Outflows

    CERN Document Server

    Chelouche, D

    2005-01-01

    We show that invaluable information on the structure of quasar outflows can be obtained by considering microlensing (ML) induced variability of absorption line troughs in lensed quasars. Depending on the structure and geometry of the outflowing gas, such extrinsic line variability can be manifested as changes to the equivalent width of the line as well as line profile distortions. Here we consider several physically distinct outflow models, having very similar spectral predictions, and show how ML induced absorption line variability can be used to distinguish between them. The merits of future systematic studies of these effects are exemplified.

  2. Relativity and Exoplanets: Gravitational Microlensing, Doppler Beaming, and More

    Science.gov (United States)

    Gaudi, Scott

    2016-03-01

    Perhaps surprisingly, the theories of both special and general relativity play important roles in several areas of exoplanet research. I will review the most important and intriguing of these applications. The most obvious case is gravitational microlensing, which has become a fairly routine method of finding planets, and is poised to become even more important in the next decade. I will also briefly survey the numerous other areas where relativity plays a role in exoplanet theory and observations, including photometric Doppler beaming, general relativistic precession, transits of compact objects, and even (potentially) gravitational wave experiments.

  3. On the Feasibility of Characterizing Free-floating Planets with Current and Future Space-based Microlensing Surveys

    CERN Document Server

    Henderson, Calen B

    2016-01-01

    Simultaneous space- and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and $WFIRST$, facilitate measuring the masses and distances of free-floating planet (FFP) candidates. FFPs are identified as single-lens events with a short timescale, of-order 1 day. Measuring the mass of the lensing object requires determining the finite size of the source star $\\rho$, as well as the microlens parallax $\\pi_{\\rm E}$. A planet that is bound to but widely separated from a host star can produce a light curve similar to that of an FFP. This tension can be resolved with high-resolution imaging of the microlensing target to search for the lens flux $F_l$ from a possible host star. Here we investigate the accessible parameter space for each of these components --- $\\pi_{\\rm E}$, $\\rho$, and $F_l$ --- considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation from the Earth (as viewed from the ...

  4. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    International Nuclear Information System (INIS)

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (mp ≳ 1 M Jup) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (mp ≳ 0.1 M Jup) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  5. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    Science.gov (United States)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  6. Dark Matter Fraction in Lens Galaxies: New Estimates from Microlensing

    CERN Document Server

    Jiménez-Vicente, J; Kochanek, C S; Muñoz, J A

    2014-01-01

    We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars from microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The maximum likelihood estimate for the fraction of the surface mass density in the form of stars is $\\alpha=0.2^{+0.1}_{-0.1}$ near the Einstein radius of the lenses ($\\sim 1 - 2$ effective radii). The estimate for the average accretion disk size is $r_s=6.0^{+3.0}_{-1.1}\\sqrt{M/0.3M_\\sun}$ light-days. The fraction of mass in stars at these radii is significantly larger than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 80\\ is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.

  7. Amplification and variability of the AGN X-ray emission due to microlensing

    OpenAIRE

    Popovic, L. C.; Jovanovic, P; Petrovic, T.; Shalyapin, V. N.

    2006-01-01

    We consider the contribution of microlensing to the AGN Fe K$\\alpha$ line and X-ray continuum amplification and variation. To investigate the variability of the line and X-ray continuum, we studied the effects of microlensing on quasar X-ray spectra produced by crossing of a microlensing pattern across a standard relativistic accretion disk. To describe the disk emission we used a ray tracing method considering both metrics, Schwarzschild and Kerr. We found that the Fe K$\\alpha$ and continuum...

  8. A Search for Stellar-Mass Black Holes via Astrometric Microlensing

    CERN Document Server

    Lu, J R; Ofek, E O; Udalski, A; Kozlowski, S

    2016-01-01

    While dozens of stellar mass black holes have been discovered in binary systems, isolated black holes have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over 1-2 years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained by the photometric light curves. The OB120169 light curve is well-fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary-lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were c...

  9. Besan\\c{c}on Galactic model analysis of MOA-II microlensing: evidence for a mass deficit in the inner bulge

    CERN Document Server

    Awiphan, Supachai; Robin, Annie

    2015-01-01

    Galactic bulge microlensing surveys provide a probe of Galactic structure. We present the first field-by-field comparison between microlensing observations and the Besan\\c{c}on population synthesis Galactic model. Using an updated version of the model we provide maps of optical depth, average event duration and event rate for resolved source populations and for difference imaging (DIA) events. We also compare the predicted event timescale distribution to that observed. The simulation follows the selection criteria of the MOA-II survey (Sumi et al. 2013). We modify the Besan\\c{c}on model to include M dwarfs and brown dwarfs. Our best fit model requires a brown dwarf mass function slope of $-0.4$. The model provides good agreement with the observed average duration, and respectable consistency with the shape of the timescale distribution (reduced $\\chi^2 \\simeq 2.2$). The DIA and resolved source limiting yields bracket the observed number of events by MOA-II ($2.17\\times$ and $0.83\\times$ the number observed, r...

  10. MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS

    International Nuclear Information System (INIS)

    Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial follow-up observations. This planet is robustly detected in survey+follow-up data (Δχ2 ∼ 5400). The planet/host mass ratio is q = (5.3 ± 0.2) × 10–3. The best-fit projected separation is s = 0.548 ± 0.005 Einstein radii. However, due to the s↔s–1 degeneracy, projected separations of s–1 are only marginally disfavored at Δχ2 = 3. A Bayesian estimate of the host mass gives ML = 0.43+0.27–0.17 M☉, with a sharp upper limit of ML ☉ from upper limits on the lens flux. Hence, the planet mass is mp = 2.4+1.5–0.9 MJup, and the physical projected separation is either r ≅ 1.0 AU or r ≅ 3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the Δχ2 is much smaller (Δχ2 ∼ 500) than with the follow-up data. The Δχ2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both follow-up data and high-cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.

  11. Accretion Disc Structure and Orientation in the Lensed and Microlensed Q0957+561 Quasar

    CERN Document Server

    Schild, R E

    2005-01-01

    Because quasars are unresolved in optical imaging, their structures must presently be inferred. Gravitational microlensing offers the possibility to produce information about the luminous structure provided the Einstein ring diameter of the microlensing particle is comparable to or smaller than the radiating quasar components. The long brightness history measured for the Q0957 quasar has been analyzed previously for information about the microlensing particles, and evidence for the existence of a cosmologically significant population of planetary mass particles has been reported. The microlensing results have also directly determined the sizes of the ultraviolet light emitting surfaces in the quasar Autocorrelation analysis of the same brightness record has produced evidence for complex structure in the quasar; if the quasar suddenly brightens today, it is probable that it will brighten again after 129, 190, 540, and 620 days. We interpret these lags as the result of luminous structure around the quasar, and ...

  12. Adventures in the microlensing cloud: large datasets, eResearch tools, and GPUs

    CERN Document Server

    Vernardos, Georgios

    2014-01-01

    As astronomy enters the petascale data era, astronomers are faced with new challenges relating to storage, access and management of data. A shift from the traditional approach of combining data and analysis at the desktop to the use of remote services, pushing the computation to the data, is now underway. In the field of cosmological gravitational microlensing, future synoptic all--sky surveys are expected to bring the number of multiply imaged quasars from the few tens that are currently known to a few thousands. This inflow of observational data, together with computationally demanding theoretical modelling via the production of microlensing magnification maps, requires a new approach. We present our technical solutions to supporting the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). This extensive dataset for cosmological microlensing modelling comprises over 70,000 individual magnification maps and ${\\sim}10^6$ related results. We describe our approaches to hosting, or...

  13. Biconvex Polymer Microlenses with Tunable Imaging Properties Designed by Janus Droplet Microfluidics

    Directory of Open Access Journals (Sweden)

    Takasi Nisisako

    2015-09-01

    Full Text Available This work presents a technique for fabricating biconvex polymer microlenses using microfluidics, and then evaluates their tunable optical properties. A glass microfluidic channel was employed to rapidly mass-produce nanoliter-sized biphasic Janus droplets, which consist of a biconvex segment of a photocurable monomer and a concave-convex segment of a non-curable silicone oil that contained a surfactant. Subsequent photopolymerization produces polymeric biconvex spherical microlenses with templated dual curvatures. By changing the flow-rate ratios of the photocurable and non-curable droplet phases in the microfluidic channel, the radii of curvature of the two lens surfaces and the thicknesses of the resultant microlenses can be varied. The resulting biconvex microlenses with different shapes were used in image projection experiments. Different magnification properties were observed, and were consistent with the properties estimated quantitatively from the geometrical parameters of the lenses.

  14. Crosstalk reduction in free space optical interconnects systems using microlenses with Gaussian transmittance

    Science.gov (United States)

    Al-Ababneh, Nedal

    2014-05-01

    A novel method to reduce the diffraction crosstalk for micro-lens based free space optical interconnects is presented. Instead of using microlenses with uniform transmittance apertures, the use of microlenses with non-uniform transmittance apertures is proposed. It is shown that the diffraction crosstalk which exists in the free space interconnects systems that use microlenses with uniform transmittance apertures can be substantially reduced by using microlenses with Gaussian transmittance. The optical field at the detectors array using both the uniform and Gaussian apertures have been derived and used to calculate the crosstalk. Numerical results have been introduced to show the improvement of the signal-to-crosstalk ratio when using the Gaussian transmittance for the microlens.

  15. Microlensing light curve of a source on the other side of a wormhole

    CERN Document Server

    Tsukamoto, Naoki

    2016-01-01

    The observation of microlensing is a good probe into the topological structure of dark gravitating celestial objects. In this paper, we study the microlensing light curves due to light rays emitted by a source on the other side of a traversable wormhole. The present method will apply for general spherically symmetric traversable wormholes. Based on the obtained light curves, we discuss a possibility to observationally distinguish traversable wormholes with nontrivial topology from usual positive masses and other exotic objects without nontrivial topology.

  16. Limits on compact halo objects as dark matter from gravitational microlensing

    Directory of Open Access Journals (Sweden)

    Jetzer Philippe

    2014-04-01

    Full Text Available Microlensing started with the seminal paper by Paczyński in 1986 [1], first with observations towards the Large Magellanic Cloud and the galactic bulge. Since then many other targets have been observed and new applications have been found. In particular, it turned out to be a powerful method to detect planets in our galaxy and even in the nearby M31. Here, we will present some results obtained so far by microlensing without being, however, exhaustive.

  17. The MACHO Project HST Follow-Up: The Large Magellanic Cloud Microlensing Source Stars

    CERN Document Server

    Nelson, C A; Cook, K H; Bennett, D P; Popowski, P; Dalal, N; Nikolaev, S; Alcock, C; Axelrod, T S; Becker, A C; Freeman, K C; Geha, M; Griest, K; Keller, S C; Lehner, M J; Marshall, S L; Minniti, D; Pratt, M R; Quinn, P J; Stubbs, C W; Sutherland, W; Tomaney, A B; Vandehei, T; Welch, D

    2009-01-01

    We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large ...

  18. Microlensing in the double quasar SBS1520+530

    CERN Document Server

    Gaynullina, E R; Akhunov, T; Burkhonov, O M; Gottlöber, S; Mirtadjieva, K; Nuritdinov, S N; Tadjibaev, I; Wambsganss, J; Wisotzki, L

    2005-01-01

    We present the results of a monitoring campaign of the double quasar SBS1520+530 at Maidanak observatory from April 2003 to August 2004. We obtained light curves in V and R filters that show small-amplitude \\Delta m~0.1 mag intrinsic variations of the quasar on time scales of about 100 days. The data set is consistent with the previously determined time delay of \\Delta t=(130+-3) days by Burud et al. (2002). We find that the time delay corrected magnitude difference between the quasar images is now larger by (0.14+-0.03) mag than during the observations by Burud et al. (2002). This confirms the presence of gravitational microlensing variations in this system.

  19. Studying wave optics in exoplanet microlensing light curves

    CERN Document Server

    Mehrabi, Ahmad

    2012-01-01

    We study the wave optics feature of the gravitational microlensing by a binary system composed of parent star and a planet. In the binary system, near the caustic lines multiple images play the role of secondary sources for the observer, in analogy to the double slit Young's experiment. In the case of having coherent wave fronts from the source on the lens plane, images can produce diffraction pattern on the observer plane. For the binary lensing system we have two modes of close and wide images around the planet and lens star and these images can produce two different types of fringes with the high and low frequencies on the observer plane. By taking into account the finite size of the source star, enhancements in the diffraction fringes get dimmer. For the observational prospects, we study this effect for the SKA project in the case of resonance and the high magnification exoplanet channels. This method can partially break degeneracies between the lens parameters.

  20. Common Radial Velocity vs. Rare Microlensing: Difficulties and Futures

    CERN Document Server

    Molaverdikhani, Karan

    2010-01-01

    In this paper, effective factors for success of Microlensing and Radial Velocity methods were choose. A semi-Delphi process applied on the factors to evaluating them and finding the most important factors for present situation of ML and RV, with help from about 100 experts, in or related exoplanets detection. I found the public definition on "success of exoplanets detection methods" is not correct and we should change it, as some experts did it, in the form of fundamental questions in planetary science. Also, the views of "Special Experts" are different from other experts that help us to choose the right way in evaluating. The next step was choosing the best strategy for future and finally, from SWOT landscape and with a new objective of ML method (New Game Board Strategy) I suggested four critical future strategies for completing current strategic directions.

  1. The MACHO Project Large Magellanic Cloud microlensing results from the first two years and the nature of the galactic dark halo

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Allsman, R.A. [Supercomputing Facility, Australian National University, Canberra, ACT 0200 (Australia); Alves, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Department of Physics, University of California, Davis, California 95616 (United States); Axelrod, T.S. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Becker, A.C. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Departments of Astronomy and Physics, University of Washington, Seattle, Washington 98195 (United States); Bennett, D.P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Davis, California 95616 (United States)]|[Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Cook, K.H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Freeman, K.C. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Griest, K.; Guern, J.; Lehner, M.J. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Marshall, S.L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California (United States)

    1997-09-01

    The MACHO Project is a search for dark matter in the form of massive compact halo objects (MACHOs). Photometric monitoring of millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge is used to search for gravitational microlensing events caused by these otherwise invisible objects. Analysis of the first 2.1 yr of photometry of 8.5 million stars in the LMC reveals eight candidate microlensing events. This is substantially more than the number expected ({approximately}1.1) from lensing by known stellar populations. The timescales (t) of the events range from 34 to 145 days. We estimate the total microlensing optical depth toward the LMC from events with 2{lt}{cflx t}{lt}200 days to be {tau}{sub 2}{sup 200}=2.9{sub {minus}0.9}{sup +1.4}{times}10{sup {minus}7} based upon our eight event sample. This exceeds the optical depth, {tau}{sub backgnd}=0.5{times}10{sup {minus}7}, expected from known stars, and the difference is to be compared with the optical depth predicted for a {open_quotes}standard{close_quotes} halo composed entirely of MACHOs: {tau}{sub halo}=4.7{times}10{sup {minus}7}. To compare with Galactic halo models, we perform likelihood analyses on the full eight-event sample and a six-event subsample (which allows for two events to be caused by a nonhalo {open_quotes}background{close_quotes}). This gives a fairly model-independent estimate of the halo mass in MACHOs within 50 kpc of 2.0{sub {minus}0.7}{sup +1.2}{times}10{sup 11}M{sub {circle_dot}}, which is about half of the {open_quotes}standard halo{close_quotes} value. We also find a most probable MACHO mass of 0.5{sub {minus}0.2}{sup +0.3}M{sub {circle_dot}}, although this value is strongly model dependent. In addition, the absence of short duration events places stringent upper limits on the contribution of low-mass MACHOs: objects from 10{sup {minus}4}M{sub {circle_dot}} to 0.03M{sub {circle_dot}} contribute {approx_lt}20{percent} of the {open

  2. KMT-2015-1b: a Giant Planet Orbiting a Low-mass Dwarf Host Star Discovered by a New High-cadence Microlensing Survey with a Global Telescope Network

    CERN Document Server

    Hwang, K -H; Choi, J -Y; Park, H; Jung, Y K; Shin, I -G; Albrow, M D; Gould, A; Bozza, V; Park, B -G; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y

    2015-01-01

    We report the discovery of an extrasolar planet, KMT-2015-1b, that was detected using the microlensing technique. The planetary lensing event was observed by KMTNet survey that has commenced in 2015. With dense coverage by using network of globally distributed telescopes equipped with very wide-field cameras, the short planetary signal is clearly detected and precisely characterized. We find that KMT-2015-1b is a giant planet orbiting a low-mass M-dwarf host star. The planet has a mass about twice that of Jupiter and it is located beyond the snow line of the host star. With the improvement of existing surveys and the advent of new surveys, future microlensing planet samples will include planets not only in greatly increased number but also in a wide spectrum of hosts and planets, helping us to have a better and comprehensive understanding about the formation and evolution of planets.

  3. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Vernardos, G.; Fluke, C. J.; Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3122 (Australia); Bate, N. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW, 2006 (Australia)

    2014-03-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.

  4. COSMIC ERROR CAUSED BY THE GRAVITATIONAL MICROLENSING EFFECT IN HIGH-PRECISION ASTROMETRY

    International Nuclear Information System (INIS)

    We have investigated an expected deviation of the positions or the proper motions of stars as the cosmic error caused by the gravitational microlensing effect. In observing stars in the Galactic bulge region, we obtain an expected deviation of a star positions by the gravitational microlensing effect of about 7 μas. We have also estimated the expected deviation of the proper motions of stars in the Galactic bulge caused by the gravitational microlensing effect. The expected deviation of the proper motions is mainly caused by the lens object located at the nearest angular distance from the source star. Each deviation of the proper motion has a value of less than 0.02 μas yr–1 for 99% of the sources. We have investigated the correlation of the deviation of Galactic bulge stars caused by the gravitational microlensing effect. The value of the correlation angle of the positional deviation is estimated to be about 1 arcmin. In the same way, we have estimated the correlation angle of the deviation of the proper motions. The angle is estimated to be about 1 arcsec. The following difference distinguishes the deviation of the position and that of the proper motion. The positional deviation is affected not only by lenses near the source but also by the lenses far from the source. On the other hand, the deviation of the proper motion by microlensing is mainly only caused by the nearest lens from the source. This difference causes that of the correlation angle.

  5. The microlensing rate and distribution of free-floating planets towards the Galactic bulge

    CERN Document Server

    Ban, M; Robin, A C

    2016-01-01

    Ground-based optical microlensing surveys have provided tantalising, if inconclusive, evidence for a significant population of free-floating planets (FFPs). Both ground and space-based facilities are being used and developed which will be able to probe the distrubution of FFPs with much better sensitivity. It is vital also to develop a high-precision microlensing simulation framework to evaluate the completeness of such surveys. We present the first signal-to-noise limited calculations of the FFP microlensing rate using the Besancon Galactic model. The microlensing distribution towards the Galactic centre is simulated for wide-area ground-based optical surveys such as OGLE or MOA, a wide-area ground-based near-IR survey, and a targeted space-based near-IR survey which could be undertaken with Euclid or WFIRST. We present a calculation framework for the computation of the optical and near-infrared microlensing rate and optical depth for simulated stellar catalogues which are signal-to-noise limited, and take a...

  6. An Extrasolar Planet Census with a Space-based Microlensing Survey

    CERN Document Server

    Bennett, D P; Beaulieu, J -P; Bond, I; Cheng, E; Cook, K; Friedman, S; Gaudi, B S; Gould, A; Jenkins, J; Kimble, R; Lin, D; Rich, M; Sahu, K; Tenerelli, D; Udalski, A; Yock, P

    2007-01-01

    A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses down to 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar System's planets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass ...

  7. A Census of Exoplanets in Orbits Beyond 0.5 AU via Space-based Microlensing

    CERN Document Server

    Bennett, David P; Beaulieu, J -P; Bond, I; Cheng, E; Cook, K; Friedman, S; Gaudi, B S; Gould, A; Jenkins, J; Kimble, R; Lin, D; Mather, J; Rich, M; Sahu, K; Sumi, T; Tenerelli, D; Udalski, A; Yock, P

    2009-01-01

    A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar System's planets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the ...

  8. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    International Nuclear Information System (INIS)

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/

  9. The PLANET microlensing follow-up network : results and prospects for the detection of extra-solar planets

    NARCIS (Netherlands)

    Dominik, M; Albrow, MD; Beaulieu, JP; Caldwell, JAR; DePoy, DL; Gaudi, BS; Gould, A; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Naber, RM; Pel, JW; Pogge, RW; Pollar, KR; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A

    2002-01-01

    Among various techniques to search for extra-solar planets, microlensing has some unique characteristics. Contrary to all other methods which favour nearby objects, microlensing is sensitive to planets around stars at distances of several kpc. These stars act as gravitational lenses leading to a bri

  10. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-12-20

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free-surface thermal compression molding method. The laser fabricated poly(methyl methacrylate) (PMMA) sheet is used as the mold for the thermal compression molding process. With different surface treatment methods of the PMMA mold, microlenses with either convex or concave profiles could be achieved during the thermal molding process. By integrating the microlenses in the microfluidic systems, observing the flow inside the microchannels is easier. This new technique is rapid, low cost, and it does not require cleanroom facilities. Microlenses with both convex and concave profiles can be easily fabricated and integrated in microfluidic system with this technique. © 2013 Springer-Verlag Berlin Heidelberg.

  11. Adaptable acylindrical microlenses fabricated by femtosecond laser micromachining

    Science.gov (United States)

    Paiè, Petra; Bragheri, Francesca; Claude, Theo; Osellame, Roberto

    2015-03-01

    Microfluidic lenses are a powerful tool for many lab on a chip applications ranging from sensing to detection and also to imaging purpose, with the great advantage to increase the degree of integration and compactness of these micro devices. In this work we present the realization of such a compact microfluidic lens with reconfigurable optical properties. The technique used to realize the device we present is femtosecond laser micromachining followed by chemical etching, which allows to easily fabricate 3D microfluidic devices with an arbitrary shape. Thanks to that it has been possible to easily fabricate different lens made up by cylindrical microchannel in fused silica glasses filled with liquids with a proper refractive index. The optical properties of these devices are tested and shown to be in a good agreement with the theoretical model previously implemented. Furthermore we have also optimized the design of these microlenses in order to reduce the effects of spherical aberrations in the focal region, thus allowing us to obtain a set of different acylindrical microfluidic lenses, whose validation is also reported. In this work the lens adaptability can be achieved by replacing the liquid inside the microchannel, so that we can easily tune the feature of the focused beam. Thus increasing the possible range of applications of these micro optical elements, as an example we report on the validation of the device as a fast integrated optofluidic shutter.

  12. Gravitational microlensing of quasar Broad Line Regions: the influence of fractal structures

    CERN Document Server

    Lewis, G F; Lewis, Geraint F.; Ibata, Rodrigo A.

    2006-01-01

    Recent models for the emission clouds within the Broad Line Region of quasars suggest that they are due to transient overdensities within an overall turbulent medium. If this were the case, the broad line emission would spatially appear fractal, possessing structure on a range of scales. This paper examines the influence of such fractal structure when a quasar is microlensed by a population of intervening masses. It is found that while the highest fractal levels can undergo significant microlensing magnification, when these light curves are superimposed to create an emission line profile, the resultant emission line profile remains relatively constant for physical models of the Broad Line Region. It is concluded that the detection of the possible fractal structure of Broad Line Regions via gravitational microlensing is not practical.

  13. Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function

    CERN Document Server

    Green, Anne M

    2016-01-01

    The recent discovery of gravitational waves from mergers of $\\sim 10 \\, M_{\\odot}$ black hole binaries has stimulated interested in Primordial Black Hole dark matter in this mass range. Microlensing and dynamical constraints exclude all of the dark matter being in compact objects with a delta function mass function in the range $10^{-7} \\lesssim M/ M_{\\odot} \\lesssim 10^{5}$. However it has been argued that all of the dark matter could be composed of compact objects in this range with an extended mass function. We explicitly recalculate the microlensing and dynamical constraints for compact objects with an extended mass function which replicates the PBH mass function produced by inflation models. We find that the microlensing and dynamical constraints place conflicting constraints on the width of the mass function, and do not find a mass function which satisfies both constraints.

  14. Microlensing of Quasar Broad Emission Lines: Constraints on Broad Line Region Size

    CERN Document Server

    Guerras, E; Jimenez-Vicente, J; Kochanek, C S; Muñoz, J A; Falco, E; Motta, V

    2012-01-01

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that high ionization lines such as CIV are more strongly microlensed than low ionization lines, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region radius of 24 (-15/+22) and 55 (-35/+150) light-days (90% confidence) for the high and low ionization lines, respectively. When the sample is divided attending to quasar luminosity, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  15. Detection of Exoplanets in M31 with Pixel-Lensing: The Event Pa-99-N2 Case

    CERN Document Server

    Ingrosso, G; Novati, S Calchi; Jetzer, Ph; Nucita, A A; Zakharov, A F

    2010-01-01

    We show that exoplanets in the M31 galaxy may be detected with the pixel-lensing method by using telescopes making high cadence observations of an ongoing microlensing event. Although the mean mass for detectable exoplanets is about $2 M_{\\rm {J}}$, even small mass exoplanets ($M_{\\rm P} < 20 M_{\\oplus}$) can cause significant deviations, which are observable with large telescopes. We reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the robustness of the binary lens conclusion for this light curve. Second, we show that for such long duration and bright microlensing events, the efficiency for finding planetary-like deviations is strongly enhanced.

  16. NASA ExoPAG Study Analysis Group 11: Preparing for the WFIRST Microlensing Survey

    CERN Document Server

    Yee, Jennifer C; Barry, Richard K; Bennett, David; Bryden, Geoff; Chung, Sun-Ju; Gaudi, B Scott; Gehrels, Neil; Gould, Andrew; Penny, Matthew T; Rattenbury, Nicholas; Ryu, Yoon-Hyun; Skowron, Jan; Street, Rachel; Sumi, Takahiro

    2014-01-01

    NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission.

  17. MOA-2011-BLG-293Lb: First Microlensing Planet possibly in the Habitable Zone

    OpenAIRE

    Batista, V.; Beaulieu, J. -P.; Gould, A.; Bennett, D.P.; Yee, J. C.; Fukui, A; Gaudi, B. S.; Sumi, T.; Udalski, A

    2013-01-01

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation $r_\\perp=1.1\\pm 0.1\\,$AU from its $M_{L}=0.86\\pm 0.06\\,M_\\odot$ host, being the highest microlensing mass definitely identified. The planet has a mass $m_p = 4.8\\pm 0.3\\,M_{\\rm Jup}$, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: $D...

  18. Size of the accretion disk in the gravitationally lensed quasar SDSS J1004+4112 from the statistics of microlensing magnifications

    CERN Document Server

    Fian, C; Hanslmeier, A; Oscoz, A; Serra-Ricart, M; Muñoz, J A; Jiménez-Vicente, J

    2016-01-01

    We present eight monitoring seasons of the four brightest images of the gravitational lens SDSS J1004+4112 observed between December 2003 and October 2010. Using measured time delays for the images A, B and C and the model predicted time delay for image D we have removed the intrinsic quasar variability, finding microlensing events of about 0.5 and 0.7 mag of amplitude in the images C and D. From the statistics of microlensing amplitudes in images A, C, and D, we have inferred the half-light radius (at {\\lambda} rest = 2407 {\\AA}) for the accretion disk using two different methods, $R_{1/2}=8.7^{+18.5}_{-5.5} \\sqrt{M/0.3 M_\\odot}$ (histograms product) and $R_{1/2} = 4.2^{+3.2}_{-2.2} \\sqrt{M/0.3 M_\\odot}$ light-days ($\\chi^2$). The results are in agreement within uncertainties with the size predicted from the black hole mass in SDSS J1004+4112 using the thin disk theory.

  19. Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device

    OpenAIRE

    Pericet-Camara, Ramon; Best, Andreas; Nett, Sebastian K.; Gutmann, Jochen S.; Bonaccurso, Elmar

    2007-01-01

    We report of a method for fabricating two-dimensional, regular arrays of polymer microlenses with focal lengths variable between 0.2 and 4.5 mm. We first make concave microlenses by ink-jetting solvent on a polymer substrate with a commercial drop-on-demand device. Solvent evaporation restructures the surface by a series of combined effects, which are discussed. In the second step we obtain convex elastomeric microlenses by casting the template made in the first step. We demonstrate the good ...

  20. Experimental and theoretical study of the Gouy phase anomaly of light in the focus of microlenses

    International Nuclear Information System (INIS)

    We report on the Gouy phase anomaly of light in the focus of cylindrical and spherical microlenses. The prime subject of our study concerns a discussion of how the very small size of microlenses affects the phase properties of light in their foci. We put emphasis on determining the amount of the Gouy phase shift for line and point foci within the limited axial space. Contrary to macroscopic lenses, the optical properties of microlenses are strongly governed by the effect of diffraction when their size tends to be comparable to the operation wavelength. In our study, we clearly show how such diffraction features affect the axial phase shift. For instance, phase singularities, which occur at discrete points on the optical axis where the total intensity vanishes for spherical microlenses, cause an additional axial phase shift when compared to the cylindrical microlens where those axial phase singularities are absent. The rotational symmetry of the Fresnel zones is the origin of such a difference between point and line foci. (paper)

  1. Completing the Census of Exoplanets with the Microlensing Planet Finder (MPF)

    CERN Document Server

    Bennett, David P; Beaulieu, J -P; Bond, I; Cheng, E; Cook, K; Friedman, S; Gaudi, B S; Gould, A; Jenkins, J; Kimble, R; Lin, D; Mather, J; Rich, M; Sahu, K; Shao, M; Sumi, T; Tenerelli, D; Udalski, A; Yock, P

    2010-01-01

    The MPF mission will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar System's planets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass of the planetary host stars for the v...

  2. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  3. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.;

    2013-01-01

    discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known...

  4. Search for black matter through the detection of gravitational micro-lenses in differential photometry

    International Nuclear Information System (INIS)

    The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)

  5. A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

    DEFF Research Database (Denmark)

    Kains, N.; Street, R.A.; Choi, J.-Y.;

    2013-01-01

    find that the lens is made up of a planet of mass 0.53 ± 0.21 M J orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M⊙. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in...... units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we...

  6. A Giant Planet beyond the Snow Line in Microlensing Event OGLE-2011-BLG-0251

    OpenAIRE

    Kains, N.; Street, R. A.; Choi, J.-Y.; Han, C.; Udalski, A; Almeida, L. A.; Jablonski, F.; Tristram, P. J.; Jørgensen, U. G.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Kozłowski, S.

    2013-01-01

    N.K. acknowledges an ESO Fellowship. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (/FP7/2007-2013/) under grant agreements No 229517 and 268421. The OGLE project has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 246678 to AU. K.A., D.B., M.D., K.H., M.H., S.I., C.L., R.S., Y.T. are supported by NPRP grant NPRP-09-476...

  7. Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device

    Science.gov (United States)

    Pericet-Camara, Ramon; Best, Andreas; Nett, Sebastian K.; Gutmann, Jochen S.; Bonaccurso, Elmar

    2007-07-01

    We report of a method for fabricating two-dimensional, regular arrays of polymer microlenses with focal lengths variable between 0.2 and 4.5 mm. We first make concave microlenses by ink-jetting solvent on a polymer substrate with a commercial drop-on-demand device. Solvent evaporation restructures the surface by a series of combined effects, which are discussed. In the second step we obtain convex elastomeric microlenses by casting the template made in the first step. We demonstrate the good optical quality of the microlenses by characterising their surfaces with atomic force microscopy and white light interferometry, and by directly measuring their focal lengths with ad-hoc confocal laser scanning microscopy.

  8. Post-Decadal White Paper: A Dual-Satellite Dark-Energy/Microlensing NASA-ESA Mission

    OpenAIRE

    Gould, Andrew

    2010-01-01

    A confluence of scientific, financial, and political factors imply that launching two simpler, more narrowly defined dark-energy/microlensing satellites will lead to faster, cheaper, better (and more secure) science than the present EUCLID and WFIRST designs. The two satellites, one led by ESA and the other by NASA, would be explicitly designed to perform complementary functions of a single, dual-satellite dark-energy/microlensing ``mission''. One would be a purely optical wide-field camera, ...

  9. Microlensing probes the AGN structure of the lensed quasar J1131-1231

    Science.gov (United States)

    Sluse, D.; Claeskens, J.-F.; Hutsemékers, D.; Surdej, J.

    2008-04-01

    We present the analysis of single epoch long slit spectra of the three brightest images of the gravitationally lensed system J1131-1231. These spectra provide one of the clearest observational evidence for differential micro-lensing of broad emission lines (BELs) in a gravitationally lensed quasar. The micro-lensing effect enables us: (1) to confirm that the width of the emission lines is anti-correlated to the size of the emitting region; (2) to show that the bulk of Fe II is emitted in the outer parts of the Broad Line Region (BLR) while another fraction of Fe II is produced in a compact region; (3) to derive interesting informations on the origin of the narrow intrinsic Mg II absorption doublet observed in that system.

  10. Microlensing probes the AGN structure of the lensed quasar J1131-1231

    CERN Document Server

    Sluse, D; Hutsemékers, D; Surdej, J

    2008-01-01

    We present the analysis of single epoch long slit spectra of the three brightest images of the gravitationally lensed system J1131-1231. These spectra provide one of the clearest observational evidence for differential micro-lensing of broad emission lines (BELs) in a gravitationally lensed quasar. The micro-lensing effect enables us: (1) to confirm that the width of the emission lines is anti-correlated to the size of the emitting region; (2) to show that the bulk of FeII is emitted in the outer parts of the Broad Line Region (BLR) while another fraction of FeII is produced in a compact region; (3) to derive interesting informations on the origin of the narrow intrinsic MgII absorption doublet observed in that system.

  11. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  12. MICROLENSING DISCOVERY OF A POPULATION OF VERY TIGHT, VERY LOW MASS BINARY BROWN DWARFS

    International Nuclear Information System (INIS)

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M☉ and 0.034 M☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ∼0.02 M☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries.

  13. Formation of Polymeric Hollow Microcapsules and Microlenses Using Gas-in-Organic-in-Water Droplets

    Directory of Open Access Journals (Sweden)

    Dong Hyun Yoon

    2015-05-01

    Full Text Available This paper presents methods for the formation of hollow microcapsules and microlenses using multiphase microdroplets. Microdroplets, which consist of a gas core and an organic phase shell, were generated at a single junction on a silicon device without surface treatment of the fluidic channels. Droplet, core and shell dimensions were controlled by varying the flow rates of each phase. When the organic solvent was released from the organic phase shell, the environmental conditions changed the shape of the solidified polymer shell to either a hollow capsule or a microlens. A uniform solvent release process produced polymeric capsules with nanoliter gas core volumes and a membrane thickness of approximately 3 μm. Alternatively physical rearrangement of the core and shell allowed for the formation of polymeric microlenses. On-demand formation of the polymer lenses in wells and through-holes polydimethylsiloxane (PDMS structures was achieved. Optical properties of the lenses were controlled by changing the dimension of these structures.

  14. WFIRST-AFTA: What Can We Learn by Detecting Thousands of Cold Exoplanets via Microlensing?

    Science.gov (United States)

    Penny, Matthew

    2014-06-01

    The WFIRST-AFTA microlensing survey will monitor a few hundred million stars in the Galactic bulge every ~15 minutes to measure the microlensing signatures of thousands of both bound and free-floating planets with masses ranging from super-Jupiters down to that of Ganymede. This huge sample of cold planets will perfectly compliment the sample of warm and hot planets that have been found by Kepler and will be further expanded by TESS and PLATO. I will review the measurements that WFIRST-AFTA will make for each of the planets it finds, and attempt to predict the impact that these will have on our understanding of exoplanet demographics and the planet formation process.

  15. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  16. Metallic nanowires can lead to wavelength-scale microlenses and microlens arrays.

    Science.gov (United States)

    Zaiba, Soraya; Kouriba, Timothe; Ziane, Omar; Stéphan, Olivier; Bosson, Jocelyne; Vitrant, Guy; Baldeck, Patrice L

    2012-07-01

    We theoretically and experimentally demonstrate that the diffraction of microstructures based on silver nanowires leads to very efficient microfocusing effects. Pairs of parallel nanowires act as ultrasmall cylindrical microlenses with diffraction-limited resolution in the Fresnel region. This is a new diffraction scheme to make micron-sized optical lenses with higher transmittance than plasmonic microlens based on nano-aperture arrays. Calculations based on the scalar Rayleigh-Sommerfeld integral highlights the pure scalar diffractive contribution. Thus, the plasmon contribution is negligible in such micron-sized metallic geometry. We demonstrate that two-dimensional grids of nanowires can be used to fabricate dense arrays of microlenses, i.e. 10000x10000 DPI (dots per inch). PMID:22772246

  17. Micro-lensed single-mode optical fiber with high numerical aperture

    CERN Document Server

    Kato, Shinya; Aoki, Takao

    2013-01-01

    We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemispherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62\\lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29\\lambda for \\lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.

  18. GLE-2005-BLG-153: Microlensing Discovery and Characterization of A Very Low Mass Binary

    CERN Document Server

    Hwang, K -H; Han, C; Ryu, Y -H; Bond, I A; Beaulieu, J -P; Dominik, M; Horne, K; Gould, A; Gaudi, B S; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Abe, F; Botzler, C S; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Ohnishi, K; Okada, C; Rattenbury, N; Saito, To; Sako, T; Sasaki, M; Sullivan, D J; Sumi, T; Tristram, P J; Wood, J N; Yock, P C M; Yoshioka, T; Albrow, M; Bennett, D P; Bramich, D M; Brillant, S; Caldwell, J A R; Calitz, J J; Cassan, A; Cook, K H; Corrales, E; Coutures, C; Desort, M; Dieters, S; Dominis, D; Donatowicz, J; Fouque, P; Greenhill, J; Harpsoe, K; Hill, K; Hoffman, M; Jorgensen, U G; Kane, S; Kubas, D; Martin, R; Marquette, J -B; Meintjes, P; Menzies, J; Pollard, K; Sahu, K; Steele, I; Vinter, C; Wambsganss, J; Williams, A; Woller, K; Burgdorf, M; Snodgrass, C; Bode, M; Depoy, D L; Lee, C -U; Park, B -G; Pogge, R W

    2010-01-01

    The mass function and statistics of binaries provide important diagnostics of the star formation process. Despite this importance, the mass function at low masses remains poorly known due to observational difficulties caused by the faintness of the objects. Here we report the microlensing discovery and characterization of a binary lens composed of very low-mass stars just above the hydrogen-burning limit. From the combined measurements of the Einstein radius and microlens parallax, we measure the masses of the binary components of $0.10\\pm 0.01\\ M_\\odot$ and $0.09\\pm 0.01\\ M_\\odot$. This discovery demonstrates that microlensing will provide a method to measure the mass function of all Galactic populations of very low mass binaries that is independent of the biases caused by the luminosity of the population.

  19. Fabrication of axicon microlenses on capillaries and microstructured fibers by wet etching.

    Science.gov (United States)

    Bachus, Kyle; Filho, Elton Soares de Lima; Wlodarczyk, Kamila; Oleschuk, Richard; Messaddeq, Younes; Loock, Hans-Peter

    2016-09-01

    A facile method is presented for the fabrication of microlenses at the facet of fused silica capillaries and microstructured fibers. After submersion in hydrogen fluoride solution water is pumped slowly through the center hole of the capillary microchannel to create an etchant gradient extending from the capillary axis. The desired axicon angle is generated by adjusting the etching time and/or concentration of the etchant. Similarly, flow- assisted HF etching of a custom microstructured fiber containing nine microchannels produces nine individual microlenses simultaneously at the fiber facet, where each microaxicon lens shows a similar focusing pattern. A theoretical model of the flow-assisted etching process is used to determine the axicon angle and post angle. Also, a simple ray-based model was applied to characterize the focusing properties of the microaxicons in good agreement with experimental observations. PMID:27607641

  20. MOA-2008-BLG-379Lb: A Massive Planet from a High Magnification Event with a Faint Source

    CERN Document Server

    Suzuki, D; Sumi, T; Bennett, D P; Bond, I A; Abe, F; Botzler, C S; Freeman, M; Fukagawa, M; Fukui, A; Furusawa, K; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Ohnishi, K; Rattenbury, N; Saito, To; Shibai, H; Sullivan, D J; Suzuki, K; Sweatman, W L; Takino, S; Tristram, P J; Wada, K; Yock, P C M; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł

    2013-01-01

    We report analysis of high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak, due to a massive planet with a mass ratio of q = 6.9 x 10^{-3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the MOA Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M_L = 0.66_{-0.33}^{+0.29} M_Sun orbited by a planet of mass m_P = 4.8_{-2.4}^{+2.1} M_Jup at an orbital separation of a = 4.1_{-1.5}^{+1.9} AU at a distance of D_L = 3.6 +/- 1.3 kpc. The faint source magnitude of I_S = 21.30 and relatively high lens-so...

  1. X-RAY MICROLENSING IN RXJ1131-1231 AND HE1104-1805

    International Nuclear Information System (INIS)

    We present results from a monitoring campaign performed with the Chandra X-ray Observatory of the gravitationally lensed quasars RX J1131-1231 and HE 1104-1805. We detect significant X-ray variability in all images of both quasars. The flux variability detected in image A of RX J1131-1231 is of particular interest because of its high amplitude (a factor of ∼ 20). We interpret it as arising from microlensing since the variability is uncorrelated with that of the other images and the X-ray flux ratios show larger changes than the optical as we would expect for microlensing of the more compact X-ray emission regions. The differences between the X-ray and optical flux ratios of HE 1104-1805 are less dramatic, but there is no significant soft X-ray or dust absorption, implying the presence of X-ray microlensing in this system as well. Combining the X-ray data with the optical light curves we find that the X-ray emitting region of HE 1104-1805 is compact with a half-light radius ∼g , where the gravitational radius is r g = 3.6 x 1014 cm, thus placing significant constraints on AGN corona models. We also find that the microlensing in HE 1104-1805 favors mass models for the lens galaxy that are dominated by dark matter. Finally, we better characterize the massive foreground cluster near RX J1131-1231, set limits on other sources of extended X-ray emission, and limit the fluxes of any central odd images to be 30-50 (3σ) times fainter than the observed images.

  2. Astrometric Image Centroid Displacements due to Gravitational Microlensing by the Ellis Wormhole

    OpenAIRE

    Toki, Yukiharu; Kitamura, Takao; Asada, Hideki; Abe, Fumio

    2011-01-01

    Continuing work initiated in an earlier publication (Abe, ApJ, 725 (2010) 787), we study the gravitational microlensing effects of the Ellis wormhole in the weak-field limit. First, we find a suitable coordinate transformation, such that the lens equation and analytic expressions of the lensed image positions can become much simpler than the previous ones. Second, we prove that two images always appear for the weak-field lens by the Ellis wormhole. By using these analytic results, we discuss ...

  3. Searching for intermediate-mass black holes in globular clusters with gravitational microlensing

    OpenAIRE

    Kains, N.; Bramich, D.M.; Sahu, K. C.; Calamida, A.

    2016-01-01

    We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic Bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several cluster...

  4. Formation of Polymeric Hollow Microcapsules and Microlenses Using Gas-in-Organic-in-Water Droplets

    OpenAIRE

    Dong Hyun Yoon; Kenta Hasegawa; Yuji Kaneko; Takahiro Arakawa; Jeung Sang Go; Tetsushi Sekiguchi; Shuichi Shoji

    2015-01-01

    This paper presents methods for the formation of hollow microcapsules and microlenses using multiphase microdroplets. Microdroplets, which consist of a gas core and an organic phase shell, were generated at a single junction on a silicon device without surface treatment of the fluidic channels. Droplet, core and shell dimensions were controlled by varying the flow rates of each phase. When the organic solvent was released from the organic phase shell, the environmental conditions changed the ...

  5. The Demographics of Extrasolar Planets Beyond the Snow Line with Ground-based Microlensing Surveys

    OpenAIRE

    Gaudi, B. Scott; Beaulieu, J. -P.; Bennett, David P.; Bond, Ian A.; Dong, Subo; Gould, Andrew; Han, Cheongho; Park, Byeong-Gon; Sumi, Takahiro

    2009-01-01

    In the currently-favored paradigm of planet formation, the location of the snow line in the protoplanetary disk plays a crucial role. Determining the demographics of planets beyond the snow line of stars of various masses is thus essential for testing this model. Microlensing is sensitive to planets that are generally inaccessible to other methods, and in particular is most sensitive to cool planets at or beyond the snow line, including very low-mass (i.e. terrestrial) planets. Hence, microle...

  6. Properties of Planet-induced Deviations in the Astrometric Microlensing Centroid Shift Trajectory

    OpenAIRE

    Han, Cheongho; Lee, Chunguk

    2001-01-01

    In this paper, we investigate the properties of the planet-induced deviations in the trajectory of the microlensed source star centroid motion (astrometric curve) and the correlations between the astrometric and photometric deviations. For this, we construct vector field maps of excess centroid shifts. Fromthe investigation of the maps, we find that the astrometric deviation is closely correlated with the photometric one. The astrometric deviation increases as the photometric deviation increa...

  7. Disentangling microlensing and differential extinction in the double QSO HE0512-3329

    CERN Document Server

    Wucknitz, O; López, S; Gregg, M D

    2003-01-01

    We present the first separate spectra of both components of the small-separation double QSO HE0512-3329 obtained with HST/STIS in the optical and near UV. The similarities especially of the emission line profiles and redshifts strongly suggest that this system really consists of two lensed images of one and the same source. The emission line flux ratios are assumed to be unaffected by microlensing and are used to study the differential extinction effects caused by the lensing galaxy. Fits of empirical laws show that the extinction properties seem to be different on both lines of sight. With our new results, HE0512-3329 becomes one of the few extragalactic systems which show the 2175 AA absorption feature, although the detection is only marginal. We then correct the continuum flux ratio for extinction to obtain the differential microlensing signal. Since this may still be significantly affected by variability and time-delay effects, no detailled analysis of the microlensing is possible at the moment. This is t...

  8. A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses

    International Nuclear Information System (INIS)

    Light-initiated quasi-instant solidification of a liquid polymer is attractive for its ultra-precise spatial and temporal control of the photochemical reaction. In this paper we present microlenses structured by femtosecond laser-induced photopolymerization. Due to nonlinear phenomena the fabrication resolution is not restricted to the diffraction limit for the applied laser excitation wavelength but is determined by the intensity of a focused beam. Furthermore, pin-point structuring enables one to produce three-dimensional structures of any form from the photopolymer. The smallest structural elements of 200 nm lateral dimensions can be achieved reproducibly by using high numerical aperture oil immersion focusing optics (NA = 1.4). Axial resolution (which is fundamentally a few times worse than lateral resolution due to the distribution of light intensity in the focal region) can be controlled to a precision of a few hundred nanometers by decreasing the scanning step. In our work we applied the commercially available and widely used zirconium–silicon based hybrid sol–gel photopolymer (Ormosil, SZ2080). Arrays of custom-parameter spherical microlenses for microscopy applications have been fabricated. Their surface roughness, focal distance and imaging quality were tested. The obtained results show potential for fast and flexible fabrication of custom-parameter microlenses by the proposed technique

  9. THE SECOND MULTIPLE-PLANET SYSTEM DISCOVERED BY MICROLENSING: OGLE-2012-BLG-0026Lb, c-A PAIR OF JOVIAN PLANETS BEYOND THE SNOW LINE

    Energy Technology Data Exchange (ETDEWEB)

    Han, C.; Choi, J.-Y. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Szymanski, M. K.; Kubiak, M.; Soszynski, I.; Pietrzynski, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; Kozlowski, S.; Wyrzykowski, L. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Yee, J. C.; Gould, A.; Skowron, J.; Batista, V. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Christie, G. [Auckland Observatory, Auckland (New Zealand); Tan, T.-G. [Perth Exoplanet Survey Telescope, Perth (Australia); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, SP (Brazil); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Collaboration: OGLE Collaboration; muFUN Collaboration; and others

    2013-01-10

    We report the discovery of a planetary system from observation of the high-magnification microlensing event OGLE-2012-BLG-0026. The lensing light curve exhibits a complex central perturbation with multiple features. We find that the perturbation was produced by two planets located near the Einstein ring of the planet host star. We identify four possible solutions resulting from the well-known close/wide degeneracy. By measuring both the lens parallax and the Einstein radius, we estimate the physical parameters of the planetary system. According to the best-fit model, the two planet masses are {approx}0.11 M{sub J} and 0.68 M{sub J} and they are orbiting a G-type main-sequence star with a mass {approx}0.82 M{sub Sun }. The projected separations of the individual planets are beyond the snow line in all four solutions, being {approx}3.8 AU and 4.6 AU in the best-fit solution. The deprojected separations are both individually larger and possibly reversed in order. This is the second multi-planet system with both planets beyond the snow line discovered by microlensing. This is the only such system (other than the solar system) with measured planet masses without sin i degeneracy. The planetary system is located at a distance 4.1 kpc from the Earth toward the Galactic center. It is very likely that extra light from stars other than the lensed star comes from the lens itself. If this is correct, it will be possible to obtain detailed information about the planet host star from follow-up observation.

  10. The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    Science.gov (United States)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.

    2016-07-01

    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).

  11. Numerical Simulation of Refractive-Microlensed HgCdTe Infrared Focal Plane Arrays Operating in Optical Systems

    Science.gov (United States)

    Li, Yang; Ye, Zhen-Hua; Hu, Wei-Da; Lei, Wen; Gao, Yan-Lin; He, Kai; Hua, Hua; Zhang, Peng; Chen, Yi-Yu; Lin, Chun; Hu, Xiao-Ning; Ding, Rui-Jun; He, Li

    2014-08-01

    The optoelectronic performance of the mid-wavelength HgCdTe infrared focal plane array (IRFPA) with refractive microlenses integrated on its CdZnTe substrate has been numerically simulated. A reduced light-distribution model based on scalar Kirchhoff diffraction theory was adopted to reveal the true behavior of IRFPAs operating in an optical system under imaging conditions. The pixel crosstalk obtained and the energy-gathering characteristics demonstrated that the microlenses can delay the rise in crosstalk when the image point shifts toward pixel boundaries, and can restrict the major optical absorption process in any case within a narrow region around the pixel center. The dependence of the microlenses' effects on the system's properties was also analyzed; this showed that intermediate relative aperture and small microlens radius are required for optimized device performance. Simulation results also indicated that for detectors farther from the center of the field of view, the efficacy of microlenses in crosstalk suppression and energy gathering is still maintained, except for a negligible difference in the lateral magnification from an ordinary array without microlenses.

  12. Post-Decadal White Paper: A Dual-Satellite Dark-Energy/Microlensing NASA-ESA Mission

    CERN Document Server

    Gould, Andrew

    2010-01-01

    A confluence of scientific, financial, and political factors imply that launching two simpler, more narrowly defined dark-energy/microlensing satellites will lead to faster, cheaper, better (and more secure) science than the present EUCLID and WFIRST designs. The two satellites, one led by ESA and the other by NASA, would be explicitly designed to perform complementary functions of a single, dual-satellite dark-energy/microlensing ``mission''. One would be a purely optical wide-field camera, with large format and small pixels, optimized for weak-lensing, which because of its simple design, could be launched by ESA on relatively short timescales. The second would be a purely infrared satellite with marginally-sampled or under-sampled pixels, launched by NASA. Because of budget constraints, this would be launched several years later. The two would complement one another in 3 dark energy experiments (weak lensing, baryon oscillations, supernovae) and also in microlensing planet searches. Signed international agr...

  13. MOA-2008-BLG-379Lb: A massive planet from a high magnification event with a faint source

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, D.; Sumi, T.; Fukagawa, M.; Shibai, H. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601 (Japan); Botzler, C. S.; Freeman, M.; Rattenbury, N. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Muraki, Y. [Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501 (Japan); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To. [Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-01-10

    We report on the analysis of the high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak due to a massive planet with a mass ratio of q = 6.9 × 10{sup –3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the Microlensing Observations in Astrophysics (MOA) Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M{sub L}=3.3{sub −1.2}{sup +1.7} M{sub ⊙} orbited by a planet of mass m{sub P}=0.56{sub −0.27}{sup +0.24} M{sub Jup} at an orbital separation of a=3.3{sub −1.2}{sup +1.3} AU at a distance of D{sub L}=4.1{sub −1.9}{sup +1.7} kpc. The faint source magnitude of I {sub S} = 21.30 and relatively high lens-source relative proper motion of μ{sub rel} = 7.6 ± 1.6 mas yr{sup –1} imply that high angular resolution adaptive optics or Hubble Space Telescope observations are likely to be able to detect the source star, which would determine the masses and distance of the planet and its host star.

  14. OGLE-2013-BLG-0102LA,B: MICROLENSING BINARY WITH COMPONENTS AT STAR/BROWN DWARF AND BROWN DWARF/PLANET BOUNDARIES

    International Nuclear Information System (INIS)

    We present an analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification A max ∼ 1.5. It is found that the event was produced by a binary lens with a mass ratio between the components of q = 0.13 and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. Based on the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, we determine the physical parameters of the lens system. The measured masses of the lens components are M 1 = 0.096 ± 0.013 M ☉ and M 2 = 0.012 ± 0.002 M ☉, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is 3.04 ± 0.31 kpc and the projected separation between the lens components is 0.80 ± 0.08 AU

  15. OGLE-2013-BLG-0102LA,B: MICROLENSING BINARY WITH COMPONENTS AT STAR/BROWN DWARF AND BROWN DWARF/PLANET BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. K.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Skowron, J.; Kozłowski, S.; Poleski, R.; Wyrzykowski, Ł.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Pietrukowicz, P.; Mróz, P.; Kubiak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Abe, F. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Botzler, C. S., E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Collaboration: OGLE Collaboration; MOA Collaboration; μFUN Collaboration; and others

    2015-01-10

    We present an analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification A {sub max} ∼ 1.5. It is found that the event was produced by a binary lens with a mass ratio between the components of q = 0.13 and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. Based on the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, we determine the physical parameters of the lens system. The measured masses of the lens components are M {sub 1} = 0.096 ± 0.013 M {sub ☉} and M {sub 2} = 0.012 ± 0.002 M {sub ☉}, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is 3.04 ± 0.31 kpc and the projected separation between the lens components is 0.80 ± 0.08 AU.

  16. Solving the long-standing discrepancy in the Microlensing Optical Depth Toward the Galactic Bulge by correcting the stellar number count

    CERN Document Server

    Sumi, T

    2016-01-01

    We find that significant incompleteness in stellar number counts results in a significant overestimate of the microlensing optical depth $\\tau$ and event rate per star per year $\\Gamma$ toward the Galactic bulge from the first two years of MOA-II survey. We find that the completeness in Red Clump Giant (RCG) counts $f_{\\rm RC}$ decreases proportional to the galactic latitude $b$, as $f_{\\rm RC}=(0.63\\pm0.11)-(0.052\\pm0.028)\\times b$, ranging 1-0.7 at $b=-6^\\circ\\sim-1.5^\\circ$. This caused overestimates in $\\tau$ and $\\Gamma$. The previous measurements with all source by Difference Image Analysis (DIA) by MACHO and MOA-I suffer the same bias due to their relatively poor seeing. On the other hand, the measurements with RCG sample by OGLE-II, MACHO and EROS were free from this bias because they seldomected only the events associated to the resolved stars. Thus, the incompleteness both in the number of events and stellar number count cancel out. We estimate $\\tau$ and $\\Gamma$ by correcting this incompleteness. ...

  17. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys, II: The Frequency of Planets Orbiting M Dwarfs

    OpenAIRE

    Clanton, Christian; Gaudi, Scott

    2014-01-01

    In contrast to radial velocity surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion ($\\sim 0.1~M_{\\rm Jup}$) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf radial velocity (RV) surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian ($>M_{\\rm Jup}...

  18. ASTROMETRIC IMAGE CENTROID DISPLACEMENTS DUE TO GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE

    International Nuclear Information System (INIS)

    Continuing work initiated in an earlier publication, we study the gravitational microlensing effects of the Ellis wormhole in the weak-field limit. First, we find a suitable coordinate transformation, such that the lens equation and analytic expressions of the lensed image positions can become much simpler. Second, we prove that two images always appear for the weak-field lens by the Ellis wormhole. By using these analytic results, we discuss astrometric image centroid displacements due to gravitational microlensing by the Ellis wormhole. The astrometric image centroid trajectory by the Ellis wormhole is different from the standard one by a spherical lensing object that is expressed by the Schwarzschild metric. The anomalous shift of the image centroid by the Ellis wormhole lens is smaller than that by the Schwarzschild lens, provided that the impact parameter and the Einstein ring radius are the same. Therefore, the lensed image centroid by the Ellis wormhole moves slower. Such a difference, although it is very small, will be, in principle, applicable for detecting or constraining the Ellis wormhole by using future high-precision astrometry observations. In particular, the image centroid position gives us additional information, so that the parameter degeneracy existing in photometric microlensing can be partially broken. The anomalous shift reaches the order of a few micro arcseconds, if our galaxy hosts a wormhole with throat radius larger than 105 km. When the source moves tangentially to the Einstein ring, for instance, the maximum position shift of the image centroid by the Ellis wormhole is 0.18 normalized by the Einstein ring radius. For the same source trajectory, the maximum difference between the centroid displacement by the Ellis wormhole lens and that by the Schwarzschild one with the same Einstein ring radius is -0.16 in the units of the Einstein radius, where the negative means that the astrometric displacement by the Ellis wormhole lens is smaller

  19. Resolving the Structure at the Heart of BAL Quasars Through Microlensing Induced Polarisation Variability

    CERN Document Server

    Hales, C A; Hales, Christopher A.; Lewis, Geraint F.

    2007-01-01

    While amongst the most luminous objects in the universe, many details regarding the inner structure of quasars remain unknown. One such area is the mechanism promoting increased polarisation in the broad absorption line troughs of certain quasars. This study shows how microlensing can be used to differentiate between two popular models that explain such polarisation through a realistic computational analysis. By examining a statistical ensemble of correlation data between two observables (namely image brightness and polarisation of the flux coming from the quasar), it was found that through spectropolarimetric monitoring it would be possible to discern between a model with an external scattering region and a model without one.

  20. Strong chromatic microlensing in HE0047–1756 and SDSS1155+6346

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, K.; Motta, V. [Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102 (Chile); Mediavilla, E. [Instituto de Astrofísica de Canarias, Avda. Vía Lactea s/n, La Laguna, E-38200 Tenerife (Spain); Falco, E. [Whipple Observatory, Smithsonian Institution, 670 Mt. Hopkins Road, PO Box 6369, Amado, AZ 85645 (United States); Jiménez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A., E-mail: karina.rojas@uv.cl, E-mail: veronica.motta@uv.cl, E-mail: emg@iac.es, E-mail: falco@cfa.harvard.edu, E-mail: jjimenez@ugr.es, E-mail: jmunoz@uv.es [Departamento de Astronomía y Astrofísica, Universidad de Valencia, Burjassot, E-46100 Valencia (Spain)

    2014-12-10

    We use spectra of the double-lensed quasars HE0047–1756 and SDSS1155+6346 to study their unresolved structure through the impact of microlensing. There is no significant evidence of microlensing in the emission line profiles except for the Lyα line of SDSS1155+6346, which shows strong differences in the shapes for images A and B. However, the continuum of the B image spectrum in SDSS1155+6346 is strongly contaminated by the lens galaxy, and these differences should be considered with caution. Using the flux ratios of the emission lines for image pairs as a baseline to remove macro-magnification and extinction, we have detected strong chromatic microlensing in the continuum measured by CASTLES (www.cfa.harvard.edu/castles/) in both lens systems, with amplitudes 0.09(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for HE0047–1756, and 0.2(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for SDSS1155+6346. Using magnification maps to simulate microlensing and modeling the accretion disk as a Gaussian source (I ∝ exp(–R {sup 2}/2r {sub s}{sup 2})) of size r {sub s} ∝ λ {sup p}, we find r {sub s} = 2.5{sub −1.4}{sup +3.0} √(M/0.3M{sub ⊙}) lt-day and p = 2.3 ± 0.8 at the rest frame for λ = 2045 for HE0047–1756 (log prior) and r {sub s} = 5.5{sub −3.3}{sup +8.2} √(M/0.3M{sub ⊙}) lt-day and p = 1.5 ± 0.6 at the rest frame of λ = 1398 for SDSS1155+6346 (log prior). Contrary to other studied lens systems, the chromaticity detected in HE0047–1756 and SDSS1155+6346 is large enough to fulfill the thin disk prediction. The inferred sizes, however, are very large compared to the predictions of this model, especially in the case of SDSS1155+6346.

  1. MOA-2011-BLG-293Lb: A Test of Pure Survey Microlensing Planet Detections

    OpenAIRE

    Yee, J. C.; Shvartzvald, Y.; Gal-Yam, A.; Bond, I. A.; Udalski, A.; Kozłowski, S.; Han, C.; Gould, A.; Skowron, J.; Suzuki, D; Abe, F.; Bennett, D. P.; Botzler, C. S.; Chote, P.; Freeman, M.

    2012-01-01

    Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial...

  2. New aperture photometry of QSO 0957+561; application to time delay and microlensing

    OpenAIRE

    Ovaldsen, J. E.; Teuber, J.; Schild, R. E.; Stabell, R.

    2003-01-01

    We present a re-reduction of archival CCD frames of the doubly imaged quasar 0957+561 using a new photometry code. Aperture photometry with corrections for both cross contamination between the quasar images and galaxy contamination is performed on about 2650 R-band images from a five year period (1992-1997). From the brightness data a time delay of 424.9 +/- 1.2 days is derived using two different statistical techniques. The amount of gravitational microlensing in the quasar light curves is b...

  3. Improved Theoretical Predictions of Microlensing Rates for the Detection of Primordial Black Hole Dark Matter

    OpenAIRE

    Cieplak, Agnieszka M.; Griest, Kim

    2012-01-01

    Primordial Black Holes (PBHs) remain a Dark Matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability and limb-darkening. We extend the theoretically detectable PBH DM mass range down to $2\\times10^{-10} M_\\sun$, two ord...

  4. The Detection of Terrestrial Planets via Gravitational Microlensing: Space vs. Ground-based Surveys

    OpenAIRE

    Bennett, David P.

    2004-01-01

    I compare an aggressive ground-based gravitational microlensing survey for terrestrial planets to a space-based survey. The Ground-based survey assumes a global network of very wide field-of-view ~2m telescopes that monitor fields in the central Galactic bulge. I find that such a space-based survey is ~100 times more effective at detecting terrestrial planets in Earth-like orbits. The poor sensitivity of the ground-based surveys to low-mass planets is primarily due to the fact that the main s...

  5. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    CERN Document Server

    Sluse, D

    2014-01-01

    Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the mo...

  6. AGAPE a search for dark matter towards M31 by microlensing effects on unresolved stars

    CERN Document Server

    Ansari, R; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Gondolo, P; Hecquet, J; Kaplan, J; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G

    1996-01-01

    M31 is a very tempting target for a microlensing search of compact objects in galactic haloes. It is the nearest large galaxy, it probably has its own dark halo, and its tilted position with respect to the line of sight provides an unmistakable signature of microlensing. However most stars of M31 are not resolved and one has to use the ``pixel method'': monitor the pixels of the image rather than the stars. AGAPE is the implementation of this idea. Data have been collected and treated during two autumns of observation at the 2 metre telescope of Pic du Midi. The process of geometric and photometric alignment, which must be performed before constructing pixel light curves, is described. Seeing variations are minimised by working with large super-pixels (2.1 ") compared with the average seeing. A high level of stability of pixel fluxes, crucial to the approach, is reached. Fluctuations of super-pixels do not exceed 1.7 times the photon noise which is 0.1\\% of the intensity for the brightest ones. With such stab...

  7. Speeding up low-mass planetary microlensing simulations and modeling: The caustic region of influence

    International Nuclear Information System (INIS)

    Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such computations is the computation of light curves. However, for low-mass planets, most of these computations are wasteful, as most light curves do not contain detectable planetary signatures. In this paper, I develop a parameterization of the binary microlens that is conducive to avoiding light curve computations. I empirically find analytic expressions describing the limits of the parameter space that contain the vast majority of low-mass planet detections. Through a large-scale simulation, I measure the (in)completeness of the parameterization and the speed-up it is possible to achieve. For Earth-mass planets in a wide range of orbits, it is possible to speed up simulations by a factor of ∼30-125 (depending on the survey's annual duty-cycle) at the cost of missing ∼1% of detections (which is actually a smaller loss than for the arbitrary parameter limits typically applied in microlensing simulations). The benefits of the parameterization probably outweigh the costs for planets below 100 M⊕. For planets at the sensitivity limit of AFTA-WFIRST, simulation speed-ups of a factor ∼1000 or more are possible.

  8. New aperture photometry of QSO 0957+561; application to time delay and microlensing

    Science.gov (United States)

    Ovaldsen, J. E.; Teuber, J.; Schild, R. E.; Stabell, R.

    2003-05-01

    We present a re-reduction of archival CCD frames of the doubly imaged quasar 0957+561 using a new photometry code. Aperture photometry with corrections for both cross contamination between the quasar images and galaxy contamination is performed on about 2650 R-band images from a five year period (1992-1997). From the brightness data a time delay of 424.9 +/- 1.2 days is derived using two different statistical techniques. The amount of gravitational microlensing in the quasar light curves is briefly investigated, and we find unambiguous evidence of both long term and short term microlensing. We also note the unusual circumstance regarding time delay estimates for this gravitational lens. Estimates by different observers from different data sets or even with the same data sets give lag estimates differing by typically 8 days, and error bars of only a day or two. This probably indicates several complexities where the result of each estimate depends upon the details of the calculation.

  9. New aperture photometry of QSO 0957+561; application to time delay and microlensing

    CERN Document Server

    Ovaldsen, J E; Schild, R E; Stabell, R

    2003-01-01

    We present a re-reduction of archival CCD frames of the doubly imaged quasar 0957+561 using a new photometry code. Aperture photometry with corrections for both cross contamination between the quasar images and galaxy contamination is performed on about 2650 R-band images from a five year period (1992-1997). From the brightness data a time delay of 424.9 +/- 1.2 days is derived using two different statistical techniques. The amount of gravitational microlensing in the quasar light curves is briefly investigated, and we find unambiguous evidence of both long term and short term microlensing. We also note the unusual circumstance regarding time delay estimates for this gravitational lens. Estimates by different observers from different data sets or even with the same data sets give lag estimates differing by typically 8 days, and error bars of only a day or two. This probably indicates several complexities where the result of each estimate depends upon the details of the calculation.

  10. Inferring statistics of planet populations by means of automated microlensing searches

    CERN Document Server

    Dominik, M; Horne, K; Tsapras, Y; Street, R A; Wyrzykowski, L; Hessman, F V; Hundertmark, M; Rahvar, S; Wambsganss, J; Scarpetta, G; Bozza, V; Novati, S Calchi; Mancini, L; Masi, G; Teuber, J; Hinse, T C; Steele, I A; Burgdorf, M J; Kane, S

    2008-01-01

    (abridged) The study of other worlds is key to understanding our own, and not only provides clues to the origin of our civilization, but also looks into its future. Rather than in identifying nearby systems and learning about their individual properties, the main value of the technique of gravitational microlensing is in obtaining the statistics of planetary populations within the Milky Way and beyond. Only the complementarity of different techniques currently employed promises to yield a complete picture of planet formation that has sufficient predictive power to let us understand how habitable worlds like ours evolve, and how abundant such systems are in the Universe. A cooperative three-step strategy of survey, follow-up, and anomaly monitoring of microlensing targets, realized by means of an automated expert system and a network of ground-based telescopes is ready right now to be used to obtain a first census of cool planets with masses reaching even below that of Earth orbiting K and M dwarfs in two dist...

  11. DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200, Tenerife (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Muñoz, J. A. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain)

    2015-02-01

    We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1-2 effective radii). The estimate for the average accretion disk size is R{sub 1/2}=7.9{sub −2.6}{sup +3.8}√(M/0.3 M{sub ⊙}) light days. The fraction of mass in stars at these radii is significantly larger than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.

  12. The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    CERN Document Server

    Braibant, Lorraine; Sluse, Dominique; Anguita, Timo

    2016-01-01

    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization H$\\alpha$ line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of H$\\alpha$ favors a flattened, viri...

  13. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography.

    Science.gov (United States)

    Gschrey, M; Thoma, A; Schnauber, P; Seifried, M; Schmidt, R; Wohlfeil, B; Krüger, L; Schulze, J-H; Heindel, T; Burger, S; Schmidt, F; Strittmatter, A; Rodt, S; Reitzenstein, S

    2015-01-01

    The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter. PMID:26179766

  14. Orbital Motion During Gravitational Lensing Events

    CERN Document Server

    Di Stefano, Rosanne

    2014-01-01

    Gravitational lensing events provide unique opportunities to discover and study planetary systems and binaries. Here we build on previous work to explore the role that orbital motion can play in both identifying and learning more about multiple-mass systems that serve as gravitational lenses. We find that a significant fraction of planet-lens and binary-lens light curves are influenced by orbital motion. Furthermore, the effects of orbital motion extend the range of binaries for which lens multiplicity can be discovered and studied. Orbital motion will play an increasingly important role as observations with sensitive photometry, such as those made by the space missions Kepler, Transiting Exoplanet Survey Satellite, (TESS), and WFIRST discover gravitational lensing events. Similarly, the excellent astrometric measurements made possible by GAIA will allow it to study the effects of orbital motion. Frequent observations, such as those made possible with the Korean Microlensing Telescope Network, KMTNet, will al...

  15. Energy Dependent X-Ray Microlensing and the Structure of Quasars

    Science.gov (United States)

    Kochanek, C.

    2012-10-01

    The structure of the X-ray emitting regions of quasars remains an open question. Using microlensing in lensed quasars, we can now constrain the sizes, finding that they are compact compared to the UV emission {2500A} with 1/2 light radii of 10-30 gravitational radii. We propose measuring the relative sizes of the hard and soft X-ray emission, better constraining the overall X-ray sizes and comparing them to the hottest regions of the accretion disk by coarsely monitoring 6 lenses with CXO {6 epochs each} and 5 with HST/UV {2 epochs}. In essence, the variability amplitudes of the X-ray/UV compared to our well-sampled optical light curves allows us to measure the sizes. We request 2/3 {1/3} of the time in Cycle 14 {15} for a total of 864 ks {with slew tax} and 12 HST orbits.

  16. Label-Free Nanoscopy with Contact Microlenses: Super-Resolution Mechanisms and Limitations

    CERN Document Server

    Astratov, Vasily N; Brettin, Aaron; Allen, Kenneth W; Maslov, Alexey V; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M

    2016-01-01

    Despite all the success with developing super-resolution imaging techniques, the Abbe limit poses a severe fundamental restriction on the resolution of far-field imaging systems based on diffraction of light. Imaging with contact microlenses, such as microspheres or microfibers, can increase the resolution by a factor of two beyond the Abbe limit. The theoretical mechanisms of these methods are debated in the literature. In this work, we focus on the recently expressed idea that optical coupling between closely spaced nanoscale objects can lead to the formation of the modes that drastically impact the imaging properties. These coupling effects emerge in nanoplasmonic or nanocavity clusters, photonic molecules, or various arrays under resonant excitation conditions. The coherent nature of imaging processes is key to understanding their physical mechanisms. We used a cluster of point dipoles, as a simple model system, to study and compare the consequences of coherent and incoherent imaging. Using finite differe...

  17. Integral-field spectroscopy of the quadruple QSO HE 0435-1223: Evidence for microlensing

    CERN Document Server

    Wisotzki, L; Christensen, L; Helms, A; Jahnke, K; Kelz, A; Roth, M M; Sánchez, S F

    2003-01-01

    We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between ...

  18. COSMOGRAIL XI: Techniques for time delay measurement in presence of microlensing

    CERN Document Server

    Tewes, M; Meylan, G

    2013-01-01

    Measuring time delays between the multiple images of gravitationally lensed quasars is now recognized as a competitive way to constrain the cosmological parameters, well complementary with other cosmological probes. This requires long and well sampled optical light curves of numerous lensed quasars, e.g., as obtained by the COSMOGRAIL collaboration. High-quality data from our monitoring campaign calls for novel numerical techniques to robustly measure the delays as well as the associated random and systematic uncertainties, even in presence of microlensing variations. We propose three different point estimators to measure time delays, that are explicitly designed to handle light curves with extrinsic variability. These methods share a common formalism, which enables them to process data from n-image lenses. As the estimators rely on significantly contrasting ideas, we expect them to be sensitive to different bias sources. For each method and data set, we empirically estimate both the precision and accuracy (b...

  19. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Science.gov (United States)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  20. Using graphical and pictorial representations to teach introductory astronomy students about the detection of extrasolar planets via gravitational microlensing

    CERN Document Server

    Wallace, Colin S; Prather, Edward E; Brissenden, Gina

    2016-01-01

    The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics, and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravitationally microlensed by an extrasolar planet. In order to facilitate instructors' abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial, "Detecting Exoplanets with Gravitational Microlensing." In this paper, we describe how this new Lecture-Tutorial's representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.

  1. Using graphical and pictorial representations to teach introductory astronomy students about the detection of extrasolar planets via gravitational microlensing

    Science.gov (United States)

    Wallace, Colin S.; Chambers, Timothy G.; Prather, Edward E.; Brissenden, Gina

    2016-05-01

    The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravitationally microlensed by an extrasolar planet. In order to facilitate instructors' abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial called "Detecting Exoplanets with Gravitational Microlensing." In this paper, we describe how this new Lecture-Tutorial's representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.

  2. A brown dwarf orbiting an M-dwarf

    DEFF Research Database (Denmark)

    Bachelet, E.; Fouqué, P.; Albrow, M.D.;

    2012-01-01

    Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted. Aims. MOA 2009-BLG-411 was detected on August 5, 2009 by the M...

  3. MOA-II Galactic Microlensing Constraints: The Inner Milky Way has a Low Dark Matter Fraction and a Near Maximal Disk

    Science.gov (United States)

    Wegg, Christopher; Gerhard, Ortwin; Portail, Matthieu

    2016-08-01

    Microlensing provides a unique tool to break the stellar to dark matter degeneracy in the inner Milky Way. We combine N-body dynamical models fitted to the Milky Way's Boxy/Peanut bulge with exponential disk models outside this, and compute the microlensing properties. Considering the range of models consistent with the revised MOA-II data, we find low dark matter fractions in the inner Galaxy: at the peak of their stellar rotation curve a fraction fv = (0.88 ± 0.07) of the circular velocity is baryonic (at 1σ, fv > 0.72 at 2σ). These results are in agreement with constraints from the EROS-II microlensing survey of brighter resolved stars, where we find fv = (0.9 ± 0.1) at 1σ. Our fiducial model of a disk with scale length 2.6 kpc, and a bulge with a low dark matter fraction of 12%, agrees with both the revised MOA-II and EROS-II microlensing data. The required baryonic fractions, and the resultant low contribution from dark matter, are consistent with the NFW profiles produced by dissipationless cosmological simulations in Milky Way mass galaxies. They are also consistent with recent prescriptions for the mild adiabatic contraction of Milky Way mass haloes without the need for strong feedback, but there is some tension with recent measurements of the local dark matter density. Microlensing optical depths from the larger OGLE-III sample could improve these constraints further when available.

  4. Fabrication of polymer-based reflowed microlenses on optical fibre with control of focal length using differential coating technique

    Indian Academy of Sciences (India)

    Mohammed Ashraf; Franck Chollet; Murukeshan Matham; Chun Yang

    2009-08-01

    Thermal reflow of polymer to generate spherical profile has been used to fabricate microlenses in this paper. A simple model based on the volume conservation (before and after reflow) and geometrical consideration of lens profile, shows that the focal length of the microlens produced by reflow technique is a function of the initial geometry of microcylinders, i.e. diameter and thickness. This relationship of focal length with diameter and thickness is used as a basis to control focal length. A simple spin coating technique on dual surface is used to achieve differential thickness, to control the focal length of microlenses produced on the same substrate. A biomedical application of such combination of microlenses is endoscopy where the lenses of varying diameter and equal focal length are needed on top of optical fibre bundles to provide independent function of illumination and imaging. This paper incorporates the differential thickness technique to show a micro fabrication process to produce the polymer reflowed microlenses, with a control of focal length based on thickness. The design also helps to integrate these microlenses on top an optical fibre with accurate alignment.

  5. Integral-field spectrophotometry of the quadruple QSO HE 0435-1223: Evidence for microlensing

    Science.gov (United States)

    Wisotzki, L.; Becker, T.; Christensen, L.; Helms, A.; Jahnke, K.; Kelz, A.; Roth, M. M.; Sanchez, S. F.

    2003-09-01

    We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE 0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec. 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between model and data are still unacceptably large. Finally, we present a detection of the lensing galaxy, although this is close to the limits of the data. Comparing with a model galaxy spectrum, we obtain a redshift estimate of zlens=0.44+/- 0.02.

  6. Integral field spectroscopy of four lensed quasars: analysis of their neighborhood and evidence for microlensing

    CERN Document Server

    Anguita, T; Yonehara, A; Wambsganss, J; Kneib, J -P; Covone, G; Alloin, D

    2008-01-01

    CONTEXT: Gravitationally lensed quasars constitute an independent tool to derive H0 through time-delays; they offer as well the opportunity to study the mass distribution and interstellar medium of their lensing galaxies and, through microlensing they also allow one to study details of the emitting source. AIMS: For such studies, one needs to have an excellent knowledge of the close environment of the lensed images in order to model the lensing potential: this means observational data over a large field-of-view and spectroscopy at high spatial resolution. METHODS: We present VIMOS integral field observations around four lensed quasars: HE 0230-2130, RX J0911.4+0551, H 1413+117 and B 1359+154. Using the low, medium and high resolution modes, we study the quasar images and the quasar environments, as well as provide a detailed report of the data reduction. RESULTS: Comparison between the quasar spectra of the different images reveals differences for HE 0230-2130, RX J0911.4+0551 and H 1413+117: flux ratios betw...

  7. Beyond the Wobbles: Teaching Students About Detecting Planets with the Transit and Gravitational Microlensing Methods

    Science.gov (United States)

    Prather, Edward E.; Wallace, Colin Scott; Chambers, Timothy G.; Brissenden, Gina; Traub, Wesley A.; Greene, W. M.; Biferno, Anya A.; Rodriguez, Joshua

    2015-01-01

    Members of the Center for Astronomy Education (CAE) at the University of Arizona's Steward Observatory in collaboration with JPL scientists, visualization experts, and education and public outreach professionals with the Exoplanet Exploration Program (ExEP) have recently completed classroom field-testing of a new suite of educational materials to help learners better understand how extrasolar planets are detected using the transit and gravitational microlensing techniques. This collaboration has created a set of evidence-based Think-Pair-Share questions, Lecture-Tutorials, animations, presentation slides, and instrucotrs guide that can be used together or separately to actively engage learners in reasoning about the data and scientific representations associated with these exciting new extrasolar planet detection methods. In this talk we present several of the conceptually challenging collaborative learning tasks that students encounter with this new suite of educational materials and some of the assessment questions we are using to assess the efficacy of their use in general education, college-level astronomy courses.

  8. On the age of Galactic bulge microlensed dwarf and subgiant stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2015-01-01

    Recent results by Bensby and collaborators on the ages of microlensed stars in the Galactic bulge have challenged the picture of an exclusively old stellar population. However, these age estimates have not been independently confirmed. In this paper we verify these results by means of a grid-based method and quantify the systematic biases that might be induced by some assumptions adopted to compute stellar models. We explore the impact of increasing the initial helium abundance, neglecting the element microscopic diffusion, and changing the mixing-length calibration in theoretical stellar track computations. We adopt the SCEPtER pipeline with a novel stellar model grid for metallicities [Fe/H] from -2.00 to 0.55 dex, and masses in the range [0.60; 1.60] Msun from the ZAMS to the helium flash at the red giant branch tip. We show for the considered evolutionary phases that our technique provides unbiased age estimates. Our age results are in good agreement with Bensby and collaborators findings and show 16 star...

  9. Microlensed image centroid motions by an exotic lens object with negative convergence or negative mass

    CERN Document Server

    Kitamura, Takao; Nakajima, Koki; Hagiwara, Chisaki; Asada, Hideki

    2013-01-01

    Gravitational lens models with negative convergence (surface mass density projected onto the lens plane) inspired by modified gravity theories, exotic matter and energy have been recently examined to discuss possible demagnification of images and gravitational lensing shear, in such a way that a static and spherically symmetric modified spacetime metric depends on the inverse distance to the power of positive $n$ ($n=1$ for Schwarzschild metric, $n=2$ for Ellis wormhole) in the weak-field approximation [Kitamura, Nakajima and Asada, PRD 87, 027501 (2013), Izumi et al. to be published in PRD (2013)]. Some of the exotic lens models cause the attractive force on light rays like a convex lens, whereas the others are repulsive on light rays like a concave lens. The present paper considers microlensed image centroid motions by the exotic lens models. Numerical calculations show that, for large $n$ cases in the convex-type models, the centroid shift from the source position might move on a multiply-connected curve l...

  10. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    Science.gov (United States)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  11. Possible Solution of the Long-standing Discrepancy in the Microlensing Optical Depth toward the Galactic Bulge by Correcting the Stellar Number Count

    Science.gov (United States)

    Sumi, T.; Penny, M. T.

    2016-08-01

    We find that significant incompleteness in stellar number counts results in a significant overestimate of the microlensing optical depth τ and event rate per star per year Γ toward the Galactic bulge from the first two years of the MOA-II survey. We find that the completeness in red clump giant (RCG) counts {f}{{RC}} decreases proportional to the galactic latitude b, as {f}{{RC}}=(0.63+/- 0.11)-(0.052+/- 0.028)× b, ranging between 1 and 0.7 at b=-6^\\circ ˜ -1\\buildrel{\\circ}\\over{.} 5. The previous measurements using all sources by difference image analysis (DIA) by MACHO and MOA-I suffer the same bias. On the other hand, the measurements using an RCG sample by OGLE-II, MACHO, and EROS were free from this bias because they selected only the events associated with the resolved stars. Thus, the incompleteness both in the number of events and stellar number count cancel out. We estimate τ and Γ by correcting this incompleteness. In the central fields with | l| \\lt 5^\\circ , we find {{Γ }}=[18.74+/- 0.91]× {10}-6\\exp [(0.53+/- 0.05)(3-| b| )] star‑1 yr‑1 and {τ }200=[1.84+/- 0.14]× {10}-6\\exp [(0.44+/- 0.07)(3-| b| )] for the 427 events with {t}{{E}}≤slant 200 days using all sources brighter than {I}s≤slant 20 mag. Our revised all-source τ measurements are about 2σ smaller than the other all-source measurements and are consistent with the RCG measurements within 1σ. We conclude that the long-standing problem on discrepancy between the high τ with all-source samples by DIA and low τ with RCG samples can probably be explained by the incompleteness of the stellar number count. A model fit to these measurements predicts {{Γ }}=4.60+/- 0.25× {10}-5 star‑1 yr‑1 at | b| ˜ -1\\buildrel{\\circ}\\over{.} 4 and -2\\buildrel{\\circ}\\over{.} 25\\lt l\\lt 3\\buildrel{\\circ}\\over{.} 75 for sources with I\\lt 20, where the future space mission, Wide Field Infrared Space Telescope, will observe.

  12. The First Six Months of the LLNL-CfPA-MSSSO Search for Baryonic Dark Matter in the Galaxy's Halo via its Gravitational Microlensing Signature

    Science.gov (United States)

    Cook, K.; Alcock, C.; Allsman, R.; Axelrod, T.; Bennett, D.; Marshall, S.; Stubbs, C.; Griest, K.; Perlmutter, S.; Sutherland, W.; Freeman, K.; Peterson, B.; Quinn, P.; Rodgers, A.

    1992-12-01

    This collaboration, dubbed the MACHO Project (an acronym for MAssive Compact Halo Objects), has refurbished the 1.27-m, Great Melbourne Telescope at Mt. Stromlo and equipped it with a corrected {1°} FOV. The prime focus corrector yields a red and blue beam for simultaneous imaging in two passbands, 4500{ Angstroms}--6100{ Angstroms} and 6100{ Angstroms}--7900{ Angstroms}. Each beam is imaged by a 2x2 array of 2048x2048 pixel CCDs which are simultaneously read out from two amplifiers on each CCD. A 32 Megapixel dual-color image of 0.5 square degree is clocked directly into computer memory in less than 70 seconds. We are using this system to monitor more than 10(7) stars in the Magellanic Clouds for gravitational microlensing events and will soon monitor an additional 10(7) stars in the bulge of our galaxy. Image data goes directly into a reduction pipeline where photometry for stars in an image is determined and stored in a database. An early version of this pipeline has used a simple aperture photometry code and results from this will be presented. A more sophisticated PSF fitting photometry code is currently being installed in the pipeline and results should also be available at the meeting. The PSF fitting code has also been used to produce ~ 10(7) photometric measurements outside of the pipeline. This poster will present details of the instrumentation, data pipeline, observing conditions (weather and seeing), reductions and analyses for the first six months of dual-color observing. Eventually, we expect to be able to determine whether MACHOs are a significant component of the galactic halo in the mass range of \\(10^{-6} M_{\\sun} < M \\ {lower .5exhbox {\\: \\buildrel < \\over \\sim ;}} \\ 100 M_{\\sun}\\).

  13. EVENT MARKETING

    OpenAIRE

    Cajnko, Katja

    2014-01-01

    In a highly developed consumer society saturated with advertisements, events are getting more and more popular as a marketing communication element. In literature events are mentioned in connection with tourism and event management, but recent research shows an increase in using events as an element of the marketing communication mix. Two of the most important advantages of events are: it is the consumer's own decision to attend the events and they can offer to the consumer a positive experie...

  14. Event management

    OpenAIRE

    Urban, Zdeněk

    2013-01-01

    The thesis deals with event management and is formally divided into three sections. The first section provides the theoretical basis for the practical part. It primarily defines the terms event, event management and event marketing. The theoretical part proceeds from the general introduction to more detailed examination of the issue, which includes the classification of event marketing within the marketing and communication mix of the company, the typology of events and explanation of various...

  15. Event management

    OpenAIRE

    Jandová, Dita

    2011-01-01

    The thesis deal with event management. For better insight into this field event management is described on case of management of conference. The thesis has three main parts. In the theoretical part there are definitions of terms like event management, conference and other related terms. Further chapters are concerned with the position of event management in the communication mix, typologies of events and mostly with the crucial aspects of event management. In the second part of the thesis the...

  16. Event management

    OpenAIRE

    Šubrtová, Veronika

    2013-01-01

    This bachelor thesis on the topic event management develops this concept, focuses mainly on the creation of the event and its application in practice. Management, event and event management are described in the theoretical section. The importace of event management in the marketing communications mix is shown subsequently and especially the creation of the event is more detailed described. This is then reflected in the practical part of the thesis, in which the awards gala is planed and orga...

  17. Event management

    OpenAIRE

    Grebíková, Kristýna

    2014-01-01

    The thesis in theoretical part focuses on the concepts of event management and their interaction. The theoretical part focuses on the creation of event planning and marketing strategies, typology of events, and provides a situational analysis, objectives events, defines the target group, plan the resources, establish a budget and will focus on event controlling. The practical part carries theory into practice and deals with the organization of the event in the company TON in Chile. Based on a...

  18. Event marketing

    OpenAIRE

    Pham, Quynh Trang

    2008-01-01

    This study aims to analyze event-marketing activities of the small firm and propose new events. At first the theoretical part describes marketing and communication mix and then especially planning and development of event marketing campaign. Research data were collected by the method of survey to propose the new events. Randomly selected customers were asked to fill the questionnaire. Its results were integrated into the proposal of the new events. The interview was realized with the owner of...

  19. Event management

    OpenAIRE

    Pavléková, Markéta

    2013-01-01

    The main theme of the work is event management, which deals with the social events of various types. Event as a mean of communication is a common part of business strategy today and the organization became a separate industry. Procedures how to implement successful event are the essential part of the work. Organizationally demanding activity of event managers, which includes planning, organizing, staffing, leadership and control is supported by marketing activities, which are described in the...

  20. Event management

    OpenAIRE

    Michňa, Michal

    2011-01-01

    The theoretical part of this thesis deals with event management in general. The stress of its theoretical part is put on relation between event management and the other communication channels usually used by marketing experts in a firm. There is also described a confrontation of event management with processes which are basically used in project management. The theoretical part is mainly concerned with event management and organisation of events. There is a deep description of its prepara...

  1. Event management

    OpenAIRE

    Vomáčková, Kateřina

    2013-01-01

    This thesis deals with event management from theory to practice. First part of the thesis consists of literature review of this topic – from definition of basic terms, through event management’s classification in marketing of a company, to description of different stages of event management process. The second part of the thesis is based on practice – an agency that organized for the third year an event focusing on children and sport, is presented here. Last year of this event including...

  2. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys, II: The Frequency of Planets Orbiting M Dwarfs

    CERN Document Server

    Clanton, Christian

    2014-01-01

    In contrast to radial velocity surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion ($\\sim 0.1~M_{\\rm Jup}$) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf radial velocity (RV) surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian ($>M_{\\rm Jup}$) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. We combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters ($1\\lesssim m_p\\sin{i}/M_{\\rm Jup}\\lesssim 13$) with periods $1\\leq P/{\\rm days}\\leq 10^4$ is $f_{\\rm J}=0.029^{+0.013}_{-0.015}$, a median factor of 4.3 ($1.5-14$ at 95% ...

  3. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. IV. Two bulge populations

    CERN Document Server

    Bensby, T; Meléndez, J; Gould, A; Feltzing, S; Asplund, M; Johnson, J A; Lucatello, S; Yee, J C; Ramírez, I; Cohen, J G; Thompson, I; Gal-Yam, A; Sumi, T; Bond, I A

    2011-01-01

    [ABRIDGED] Based on high-resolution (R~42000 to 48000) and high signal-to-noise (S/N~50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 26 microlensed dwarf and subgiant stars in the Galactic bulge. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the 7Li line at 670.8 nm. We show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H]= -0.6 and one at [Fe/H]=+0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can n...

  4. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. II. The Frequency of Planets Orbiting M Dwarfs

    Science.gov (United States)

    Clanton, Christian; Gaudi, B. Scott

    2014-08-01

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (~0.1 M Jup) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M Jup) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 definition of giant planets (50 <~ mp sin i/M ⊕ <~ 104), we find f_G^{\\prime }=0.11+/- 0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 <= mp sin i/M ⊕ <= 104 and 1 <= P/days <= 104 to be fp = 1.9 ± 0.5.

  5. MOA-II Galactic Microlensing Constraints: The Inner Milky Way has a Low Dark Matter Fraction and a Near Maximal Disk

    CERN Document Server

    Wegg, Christopher; Portail, Matthieu

    2016-01-01

    Microlensing provides a unique tool to break the stellar to dark matter degeneracy in the inner Milky Way. We combine N-body dynamical models fitted to the Milky Way's Boxy/Peanut bulge with exponential disk models outside this, and compute the microlensing properties. Considering the range of models consistent with the revised MOA-II data, we find low dark matter fractions in the inner Galaxy: at the peak of their stellar rotation curve a fraction $f_v=(0.88\\pm0.07)$ of the circular velocity is baryonic (at $1\\sigma$, $f_v > 0.72$ at $2\\sigma$). These results are in agreement with constraints from the EROS-II microlensing survey of brighter resolved stars, where we find $f_v=(0.9\\pm0.1)$ at $1\\sigma$. Our fiducial model of a disk with scale length 2.6kpc, and a bulge with a low dark matter fraction of 12%, agrees with both the revised MOA-II and EROS-II microlensing data. The required baryonic fractions, and the resultant low contribution from dark matter, are consistent with the NFW profiles produced by dis...

  6. Search for black matter through the detection of gravitational micro-lenses in differential photometry; Recherche de matiere noire galactique par detection de microlentilles gravitationnelles en photometrie differentielle

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, L

    2003-09-01

    The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)

  7. Event management

    OpenAIRE

    Palkosková, Barbora

    2011-01-01

    The diploma thesis deals with a term of event management and its connection to the event marketing. First part of the work focuses on terms that are superior to event management and those are marketing and marketing mix of 4P´s. Communication mix is than separated into smaller parts, defining the position of event marketing and management among them. Accent is put on the current possibilities of typology and separation of event and its practical use. Issue of events is connected to the...

  8. Measurement of the abundance of stellar mass compact objects in the galactic halo by detecting micro-lenses in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Many experimental and theoretical results lead to the conclusion that at least 80 percent of the mass of our Galaxy is dark. Part of this so-called dark matter could be in the form of stellar mass compact objects, called MACHOS; these could be detected using the gravitational microlensing effect. The first generation experiments EROS1 and MACHO have strongly constrained the galactic abundance of objects lighter than 0.01 solar mass to less than 10 percent of the total mass. In parallel, the observation by the MACHO group of massive candidates (half the Sun's mass), numerous enough to constitute 50 percent of galactic dark matter, was a further motivation for the EROS group to extend this search to stellar mass objects in a second phase, EROS2. The present work deals with the analysis of 25 million stellar light curves in the Large Magellanic Cloud, observed for three years in order to extract the rare microlensing candidates and to measure the galactic halo mass fraction in the form of compact objects. After recalling the motivations of this search and the theoretical context, I describe the EROS2 experiment. The observational strategy and the photometric reduction procedures needed to deal with the 1.2 To of data are then presented. A new method to detect micro-lenses is detailed, as well as a discussion of background light curves, poorly known. We do not find enough microlensing candidates to explain the galactic rotation curve; this confirms, and improve on previous EROS1 and EROS2 results. Combining all results from EROS allows to exclude that MACHOS with a mass between 10 e-7 and 10 solar mass are important constituents of the galactic halo. This statement agrees with recent results from the MACHO group, although our interpretations differ, namely on the topics of the location of the lenses, and of a possible contamination of the microlensing ample by background phenomena. (author)

  9. Event management

    OpenAIRE

    Štefl, Petr

    2011-01-01

    This bachelor thesis on the topic of event management deals with planning, organizing, managing, monitoring and implementation of special social events, termed event. It explains what they mean by this term we can imagine and as you can in terms of typology to distinguish events. Literature review consists of the acquired theoretical knowledge in management, project management and marketing. It describes the principles and procedure in place, we should keep the successful organization of ...

  10. Event management

    OpenAIRE

    Strýhalová, Veronika

    2013-01-01

    The Diploma thesis is focused on the Event management company, which organizes a big family minded sport day and describes its activity plan. The thesis consists three main parts, the first – the teoretic part specifices proffesional terms about an event management. This part also describes different event forms which are focused on the right selection and final strategy, the following control of financial situation and event overall what is in general a part of marketing mixture. The second ...

  11. Event management

    OpenAIRE

    Stružková, Tereza

    2014-01-01

    The main objective of this thesis is based on theoretical knowledge and analysis of the actual implementation event action in congress centre of 4*hotel. Asesment of importance, correctnesand effectivess of the vatious procedures of organizin events and create new complete schematic principle of organizin events Implementation actions will be considered from two sides – from side of the company organizer and from the side of event managment coordinator. All the outputs of these two aspect ...

  12. X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080

    Science.gov (United States)

    Morgan, Christopher W.; Kochanek, Christopher. S.; Dai, Xinyu; Morgan, Nicholas D.; Falco, Emilio E.

    2008-12-01

    We analyzed the microlensing of the X-ray and optical emission of the lensed quasar PG 1115+080. We find that the effective radius of the X-ray emission is 1.3+ 1.1-0.5 dex smaller than that of the optical emission. Viewed as a thin disk observed at inclination angle i, the optical accretion disk has a scale length, defined by the point where the disk temperature matches the rest-frame energy of the monitoring band (kT = hc/λrest with λrest = 0.3 μm), of log{(rs, opt/cm)[cos(i)/0.5]½} = 16.6 +/- 0.4. The X-ray emission region (1.4-21.8 keV in the rest frame) has an effective half-light radius of log (r1/2,X/cm) = 15.6+ 0.6-0.9. Given an estimated black hole mass of 1.2 × 109 M⊙, corresponding to a gravitational radius of log (rg/cm) = 14.3, the X-ray emission is generated near the inner edge of the disk, while the optical emission comes from scales slightly larger than those expected for an Eddington-limited thin disk. We find a weak trend supporting models with low stellar mass fractions near the lensed images, in mild contradiction to inferences from the stellar velocity dispersion and the time delays. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium; the Apache Point Observatory 3.5 meter telescope, which is owned and operated by the Astrophysical Research Consortium; the WIYN Observatory, which is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatory (NOAO); the 6.5 m Magellan Baade telescope, which is a collaboration between the Observatories of the Carnegie Institution of Washington (OCIW), the University of Arizona, Harvard University, the University of Michigan, and the Massachusetts Institute of Technology; and observations made with the NASA/ESA Hubble Space Telescope for program HST-GO-9744 of the Space Telescope Science Institute, which is operated by the

  13. Gravitational lensing size scales for quasars

    Science.gov (United States)

    Chartas, G.; Rhea, C.; Kochanek, C.; Dai, X.; Morgan, C.; Blackburne, J.; Chen, B.; Mosquera, A.; MacLeod, C.

    2016-05-01

    We review results from our monitoring observations of several lensed quasars performed in the optical, UV, and X-ray bands. Modeling of the multi-wavelength light curves provides constraints on the extent of the optical, UV, and X-ray emission regions. One of the important results of our analysis is that the optical sizes as inferred from the microlensing analysis are significantly larger than those predicted by the theoretical-thin-disk estimate. In a few cases we also constrain the slope of the size-wavelength relation. Our size constraints of the soft and hard X-ray emission regions of quasars indicate that in some objects of our sample the hard X-ray emission region is more compact than the soft and in others the soft emission region is smaller. This difference may be the result of the relative strengths of the disk-reflected (harder and extended) versus corona-direct (softer and compact) components in the quasars of our sample. Finally, we present the analysis of several strong microlensing events where we detect an evolution of the relativistic Fe line profile as the magnification caustic traverses the accretion disk. These caustic crossings are used to provide constraints on the innermost stable circular orbit (ISCO) radius and the accretion disk inclination angle of the black hole in quasar RX J1131-1231.

  14. Event Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2001-01-01

    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics.We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...... temporarily from bookcases to borrowers. When we characterize events as change agents we focus on concepts like transactions, entity processes, and workflow processes....

  15. Event Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2001-01-01

    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics. We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...... temporarily from bookcases to borrowers. When we characterize events as change agents we focus on concepts like transactions, entity processes, and workflow processes....

  16. FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158-4325

    International Nuclear Information System (INIS)

    We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by the application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A leads image B). Despite our failure to robustly measure the time delay, we successfully model the microlensing at optical and X-ray wavelengths to find a half-light radius for soft X-ray emission log (r1/2,X,soft/cm) = 14.3+0.4–0.5, an upper limit on the half-light radius for hard X-ray emission log (r1/2,X,hard/cm) ≤ 14.6, and a refined estimate of the inclination-corrected scale radius of the optical R-band (rest frame 3100 Å) continuum emission region of log (rs /cm) = 15.6 ± 0.3.

  17. ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) - A possible expert-system based cooperative effort to hunt for planets of Earth mass and below

    CERN Document Server

    Dominik, M; Allan, A; Rattenbury, N J; Tsapras, Y; Snodgrass, C; Bode, M F; Burgdorf, M J; Fraser, S N; Kerins, E; Mottram, C J; Steele, I A; Street, R A; Wheatley, P J; Wyrzykowski, L

    2008-01-01

    (abridged) The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. In order to achieve these goals in reasonable time, a well-coordinated effort involving a network of either 2m or 4 x 1m telescopes at each site is required. It could lead to the first detection of an Earth-mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three-step strategy of survey, follow-up, and anomaly monitoring. As an expert system embedded in eSTAR (e-Science Telescopes for Astronomical Research), ARTEMiS will give advice on the optimal targets to be observed at any given time, and will also alert on deviations from ordinary microlensing l...

  18. EVENT SEGMENTATION

    OpenAIRE

    Zacks, Jeffrey M.; Swallow, Khena M.

    2007-01-01

    One way to understand something is to break it up into parts. New research indicates that segmenting ongoing activity into meaningful events is a core component of ongoing perception, with consequences for memory and learning. Behavioral and neuroimaging data suggest that event segmentation is automatic and that people spontaneously segment activity into hierarchically organized parts and sub-parts. This segmentation depends on the bottom-up processing of sensory features such as movement, an...

  19. Event management

    OpenAIRE

    Plechatý, Josef

    2012-01-01

    This theses focused on Event management is divided into two parts. First part includes theoretical knowledge while the second part is strictly practical. The first part is focused on marketing, its importance and basic terms. The chapter about marketing is followed by marketing mix, which is shortly characterized and divided into advertisement, sales promotion, public relations and other elements of the communication mix. The last part is a detailed study of Event marketing which includes th...

  20. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs

    International Nuclear Information System (INIS)

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M Jup) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M Jup) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ mp sin i/M Jup ≲ 13) with periods 1 ≤ P/days ≤ 104 is fJ=0.029−0.015+0.013, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ mp sin i/M ⊕ ≲ 104 and 1 ≤ P/days ≤ 104 to be fG=0.15−0.07+0.06, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ mp sin i/M ⊕ ≲ 104), we find fG′=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ mp sin i/M ⊕ ≤ 104 and 1 ≤ P/days ≤ 104 to be fp = 1.9 ± 0.5.

  1. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Clanton, Christian; Gaudi, B. Scott, E-mail: clanton@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2014-08-20

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M {sub Jup}) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M {sub Jup}) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ m{sub p} sin i/M {sub Jup} ≲ 13) with periods 1 ≤ P/days ≤ 10{sup 4} is f{sub J}=0.029{sub −0.015}{sup +0.013}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub G}=0.15{sub −0.07}{sup +0.06}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4}), we find f{sub G{sup ′}}=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ m{sub p} sin i/M {sub ⊕} ≤ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub p} = 1.9 ± 0.5.

  2. Event management

    OpenAIRE

    Myslivcová, Hana Bc.

    2007-01-01

    V práci je popsán teoretický postup při pořádání eventů, který vychází ze zásad projektového řízení. Tyto postupy jsou také aplikovány v praktické realizaci eventu. Následuje výzkum aktuálních trendů v event managementu a výzkum cílových skupin s pomocí dat MML/TGI.

  3. Topography's event

    DEFF Research Database (Denmark)

    Munck Petersen, Rikke

    The aim of the paper is first to discuss how horizon and scale can be understood, secondly how they differ and what they might have in common? If topography can be seen as a way of working with these relations experiences, creations and latencies? Thirdly if diagrams and diagrammatology can bring...... space formation - to stimulate and elaborate the event of conception and topological thinking....

  4. The size of a quasar's mid-IR emission region inferred from microlensed images of Q2237+0305

    CERN Document Server

    Wyithe, J S B; Fluke, C J

    2002-01-01

    We use published mid-IR and V-band flux ratios for images A and B of Q2237+0305 to demonstrate that the size of the mid-IR emission region has a scale comparable to or larger than the microlens Einstein Radius (ER, ~10^17 cm for solar mass stars). Q2237+0305 has been monitored extensively in the R and V-bands for ~15 years. The variability record shows significant microlensing variability of the optical emission region, and has been used by several studies to demonstrate that the optical emission region is much smaller than the ER for solar-mass objects. For the majority of the monitoring history, the optical flux ratios have differed significantly from those predicted by macro-models. In contrast, recent observations in mid-IR show flux ratios similar to those measured in the radio, and to predictions of some lens models, implying that the mid-IR flux is emitted from a region that is at least 2 orders of magnitude larger than the optical emission region. We have calculated the likeli-hood of the observed mid...

  5. Event Index - a LHCb Event Search System

    CERN Document Server

    Ustyuzhanin, Andrey; Kazeev, Nikita; Redkin, Artem

    2015-01-01

    LHC experiments generate up to $10^{12}$ events per year. This paper describes Event Index - an event search system. Event Index's primary function is quickly selecting subsets of events from a combination of conditions, such as the estimated decay channel or stripping lines output. Event Index is essentially Apache Lucene optimized for read-only indexes distributed over independent shards on independent nodes.

  6. Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars

    OpenAIRE

    Schild, Rudolph E.; Leiter, Darryl J.; Robertson, Stanley L.

    2007-01-01

    We show how direct microlensing-reverberation analysis performed on two well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of quasar Q2237 in a radio quiet high-soft state, and compare it to quasar Q0957 in a radio loud low-hard state. We find that the observed differences in the spectral states...

  7. VLT Spectra "Resolve" a Stellar Disk at 25,000 Light-Years Distance

    Science.gov (United States)

    2001-04-01

    astronomers are thrilled by a new series of spectra from the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope at Paranal. They "resolve" for the first time the surface of a normal star some 25,000 light-years away. This amazing observational feat has been possible with some help from a natural "magnifying glass". The road leading to this remarkable result is an instructive and interesting one. Gravitational microlensing ESO PR Photo 16a/01 ESO PR Photo 16a/01 [Preview - JPEG: 361 x 400 pix - 34k] [Normal - JPEG: 721 x 800 pix - 83k] [Hi-Res - JPEG: 2705 x 3000 pix - 536k] Caption : Schematic representation of the lightcurve of the EROS-BLG-2000-5 microlensing event. It represents the changing brightness of a background star, as its light is being amplified by a binary gravitational lens that passes the line-of-sight from the Earth to the star. The ordinate indicates the factor by which the intensity increases during the various phases of the lensing event, as compared to the normal brightness of the star. The moment of the second "caustic crossing" is indicated, during which the image of the star is substantially brighter. Spectral observations were made with the VLT at the times indicated by arrows. For details, see the text. The light from a distant star is affected by the gravity of the objects it passes on its way to us. This effect was predicted by Albert Einstein early last century and observationally confirmed in 1919 when a solar eclipse allowed the study of stars close to the line of sight of the Sun. Accurate positional measurements showed that the light from those remote stars was bent by the Sun's gravitational field. However, the light may not only be deflected, it can also be amplified . In that case, the massive object works like a giant "magnifying lens" that concentrates the light from the distant source. Effects of gravitational optics in space were first observed in 1979. When produced by extended, very heavy clusters of galaxies, they may take

  8. Simulating events

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Bruzzone, L. [Techint Italimpianti, Milan (Italy)

    2000-06-01

    The Petacalco Marine terminal on the Pacific coast in the harbour of Lazaro Carclenas (Michoacan) in Mexico, provides coal to the thermoelectric power plant at Pdte Plutarco Elias Calles in the port area. The plant is being converted from oil to burn coal to generate 2100 MW of power. The article describes the layout of the terminal and equipment employed in the unloading, coal stacking, coal handling areas and the receiving area at the power plant. The contractor Techint Italimpianti has developed a software system, MHATIS, for marine terminal management which is nearly complete. The discrete event simulator with its graphic interface provides a real-type decision support system for simulating changes to the terminal operations and evaluating impacts. The article describes how MHATIS is used. 7 figs.

  9. Events diary

    Science.gov (United States)

    2000-01-01

    as Imperial College, the Royal Albert Hall, the Royal College of Art, the Natural History and Science Museums and the Royal Geographical Society. Under the heading `Shaping the future together' BA2000 will explore science, engineering and technology in their wider cultural context. Further information about this event on 6 - 12 September may be obtained from Sandra Koura, BA2000 Festival Manager, British Association for the Advancement of Science, 23 Savile Row, London W1X 2NB (tel: 0171 973 3075, e-mail: sandra.koura@britassoc.org.uk ). Details of the creating SPARKS events may be obtained from creating.sparks@britassoc.org.uk or from the website www.britassoc.org.uk . Other events 3 - 7 July, Porto Alegre, Brazil VII Interamerican conference on physics education: The preparation of physicists and physics teachers in contemporary society. Info: IACPE7@if.ufrgs.br or cabbat1.cnea.gov.ar/iacpe/iacpei.htm 27 August - 1 September, Barcelona, Spain GIREP conference: Physics teacher education beyond 2000. Info: www.blues.uab.es/phyteb/index.html

  10. Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing

    CERN Document Server

    Jiménez-Vicente, J; Kochanek, C S; Muñoz, J A

    2015-01-01

    We use X-ray and optical microlensing measurements of 47 image pairs in 18 lens systems to study the shape of the dark matter density profile in the lens galaxies and the size of the (soft) X-ray emission region. We show that single epoch X-ray microlensing is sensitive to the source size. Our results, in good agreement with previous estimates, show that the X-ray size scales roughly linearly with the black hole mass, with a half light radius of $R_{1/2}\\simeq(20\\pm12) r_g$ (for $r_g=GM_{BH}/c^2$). This corresponds to a size of $\\sim$ 1 light day for a black hole mass of $M_{BH}=10^9 M_\\sun$. We simultaneously estimated the fraction of the local surface mass density in stars, finding that the stellar mass fraction is $\\alpha=0.20\\pm0.05$ at an average radius of $\\sim 1.9 R_{e}$, where $R_e$ is the effective radius of the lens. This stellar mass fraction is insensitive to the X-ray source size and in excellent agreement with our earlier results based on optical data. By combining the X-ray and optical microlen...

  11. OGLE-2015-BLG-0479LA,B: Binary Gravitational Microlens Characterized by Simultaneous Ground-based and Space-based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Street, R A; Yee, J C; Beichman, C; Bryden, C; Novati, S Calchi; Carey, S; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M; Tsapras, Y; Hundertmark, M; Bachelet, E; Dominik, M; Bramich, D M; Cassan, A; Jaimes, R Figuera; Horne, K; Ranc, C; Schmidt, R; Snodgrass, C; Wambsganss, J; Steele, I A; Menzies, J; Mao, S; Bozza, V; Jørgensen, U G; Alsubai, K A; Ciceri, S; D'Ago, G; Haugbølle, T; Hessman, F V; Hinse, T C; Juncher, D; Korhonen, H; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Scarpetta, G; Skottfelt, J; Southworth, J; Starkey, D; Surdej, J; Wertz, O; Zarucki, M; Pogge, R W; DePoy, D L

    2016-01-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the {\\it Spitzer Space Telescope}. The light curves seen from the ground and from space exhibit a time offset of $\\sim 13$ days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lens is a binary composed of two G-type stars with masses $\\sim 1.0\\ M_\\odot$ and $\\sim 0.9\\ M_\\odot$ located at a distance $\\sim 3$ kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also ob...

  12. Event Segmentation Ability Uniquely Predicts Event Memory

    OpenAIRE

    Sargent, Jesse Q.; Zacks, Jeffrey M.; Hambrick, David Z.; Zacks, Rose T.; Kurby, Christopher A.; Bailey, Heather R.; Eisenberg, Michelle L.; Beck, Taylor M.

    2013-01-01

    Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for...

  13. Event Index - an LHCb Event Search System

    OpenAIRE

    Ustyuzhanin, Andrey; Artemov, Alexey; Kazeev, Nikita; Redkin, Artem

    2015-01-01

    During LHC Run 1, the LHCb experiment recorded around $10^{11}$ collision events. This paper describes Event Index - an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene optimized for read-only indexes distributed over independent shards on independent nodes.

  14. Event Index - an LHCb Event Search System

    CERN Document Server

    Ustyuzhanin, Andrey

    2015-01-01

    During LHC Run 1, the LHCb experiment recorded around 1011 collision events. This paper describes Event Index | an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene [1] optimized for read-only indexes distributed over independent shards on independent nodes.

  15. Extracting Event Dynamics from Event-by-Event Analysis

    OpenAIRE

    Fu, Jinghua; Liu, Lianshou

    2003-01-01

    The problem of eliminating the statistical fluctuations and extracting the event dynamics from event-by-event analysis is discussed. New moments $G_p$ (for continuous distribution), and $G_{q,p}$ (for anomalous distribution) are proposed, which are experimentally measurable and can eliminate the Poissonian type statistical fluctuations to recover the dynamical moments $C_p$ and $C_{q,p}$. In this way, the dynamical distribution of the event-averaged transverse momentum $\\bar{\\pt}$ can be extr...

  16. Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars

    CERN Document Server

    Schild, Rudolph E; Robertson, Stanley L

    2007-01-01

    We show how direct microlensing-reverberation analysis performed on two well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of quasar Q2237 in a radio quiet high-soft state, and compare it to quasar Q0957 in a radio loud low-hard state. We find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of rotating intrinsically magnetic supermassive compact objects in the centers of these quasars.

  17. Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys

    Science.gov (United States)

    Clanton, Christian; Gaudi, B. Scott

    2016-03-01

    We present the first study to synthesize results from five different exoplanet surveys using three independent detection methods: microlensing, radial velocity, and direct imaging. The constraints derived herein represent the most comprehensive picture of the demographics of large-separation (≳2 AU) planets orbiting the most common stars in our Galaxy that has been constructed to date. We assume a simple, joint power-law planet distribution function of the form {d}2{N}{{pl}}/(d{log} {m}p d{log} a)={ A }{({m}p/{M}{{Sat}})}α {(a/2.5{{AU}})}β with an outer cutoff radius of the separation distribution function of aout. Generating populations of planets from these models and mapping them into the relevant observables for each survey, we use actual or estimated detection sensitivities to determine the expected observations for each survey. Comparing with the reported results, we derive constraints on the parameters \\{α ,β ,{ A },{a}{{out}}\\} that describe a single population of planets that is simultaneously consistent with the results of microlensing, radial velocity, and direct imaging surveys. We find median and 68% confindence intervals of α =-{0.86}-0.19+0.21 (-{0.85}-0.19+0.21), β ={1.1}-1.4+1.9 ({1.1}-1.3+1.9), { A }={0.21}-0.15+0.20 {{dex}}-2 ({0.21}-0.15+0.20 {{dex}}-2), and {a}{{out}}={10}-4.7+26 AU ({12}-6.2+50 AU) assuming “hot-start” (“cold-start”) planet evolutionary models. These values are consistent with all current knowledge of planets on orbits beyond ∼2 AU around single M dwarfs.

  18. Dig-event: let's socialize around events

    OpenAIRE

    Zhao, Zhenzhen; Liu, Ji; Crespi, Noel

    2012-01-01

    International audience Traditional social networks socialize around the contents that have uploaded to these sites and discover interesting contents uploaded by others. In this demo we aim to explore the idea of activity-oriented social networks. We design a novel social networking site called Dig-Event (Do-it-together Event), where people are able to share events through calendar, while discover interesting events shared by others. Our demo has been inspired by previous research on calend...

  19. Public events, private events: the visible structure of media events

    Directory of Open Access Journals (Sweden)

    Lígia Campos de Cerqueira lana

    2012-07-01

    Full Text Available Facts apparently irrelevant about the private life of celebrities compose the agenda of contemporary media. Despite its weak public interest, these events have major repercussions in collective life, repositioning the rigid opposition between public and private events. When events gain publicity in the media, they become relevant through a work to make visible specific aspects of its constitution. The targeting of certain issues is related to causal network of meanings. Public and private events, when subjected to the regime of media visibility, have a similar structure, conditioned to its configuration and activity of individuals involved.

  20. Microlensing of Large Sources

    OpenAIRE

    Agol, Eric

    2003-01-01

    We prove a gravitational lensing theorem: the magnification of a source of uniform brightness by a foreground spherical lens is mu =1+pi(2R_E^2-R_L^2)/A, where A is the area of the source and R_E and R_L are the Einstein radius and size of the lens projected into the source plane; this provides an accurate approximation to the exact magnification for R_L^2,R_E^2

  1. Zooming into the broad line region of the gravitationally lensed quasar Q2237+0305 = the Einstein Cross: III. Determination of the size and structure of the CIV and CIII] emitting regions using microlensing

    CERN Document Server

    Sluse, D; Courbin, F; Hutsemékers, D; Meylan, G; Eigenbrod, A; Anguita, T; Agol, E; Wambsganss, J

    2010-01-01

    Aims: We aim to use microlensing taking place in the lensed quasar Q2237+0305 to study the structure of the broad line region and measure the size of the region emitting the CIV and CIII] lines. Methods: Based on 39 spectrophotometric monitoring data points obtained between Oct. 2004 and Dec. 2007, we derive lightcurves for the CIV and CIII] emission lines. We use three different techniques to analyse the microlensing signal. Different components of the lines (narrow, broad and very broad) are identified and studied. We build a library of simulated microlensing lightcurves which reproduce the signal observed in the continuum and in the lines provided only the source size is changed. A Bayesian analysis scheme is then developed to derive the size of the various components of the BLR. Results: 1. The half-light radius of the region emitting the CIV line is found to be R_CIV ~ 66^{+110}_{-46} lt-days = 0.06^{+0.09}_{-0.04} pc = 1.7^{+2.8}_{-1.1} 10^17 cm (at 68.3% CI). Similar values are obtained for CIII]. Rela...

  2. Hyperlocal event extraction of future events

    OpenAIRE

    Arrskog, Tobias; Exner, Peter; Jonsson, Håkan; Norlander, Peter; Nugues, Pierre

    2012-01-01

    From metropolitan areas to tiny villages, there is a wide variety of organizers of cultural, business, entertainment, and social events. These organizers publish such information to an equally wide variety of sources. Every source of published events uses its own document structure and provides dierent sets of information. This raises signicant customization issues. This paper explores the possibilities of extracting future events from a wide range of web sources, to determine if the document...

  3. Keterlibatan Event Stakeholders pada Keberhasilan Event PR

    OpenAIRE

    Lidya Wati Evelina

    2013-01-01

    The objective of this article is to determine how event organizers collaborate with stakeholders including the media, particular community, sponsors, participants, venue providers, accommodation providers, carteres, legal and finance personnel, production, local trade, transportation providers, government and associations for implementation Public Relations event. This paper discusses about the things that must be done for the cooperation and the benefits of cooperation undertaken. The method...

  4. Practices Surrounding Event Photos

    OpenAIRE

    Vyas, Dhaval; Nijholt, Anton; Veer, van der, P.T.; Kotzé, P; Marsden, G.; Lindgaard, G.; Wesson, J.; Winckler, M.

    2013-01-01

    Sharing photos through mobile devices has a great potential for creating shared experiences of social events between co-located as well as remote participants. In order to design novel event sharing tools, we need to develop indepth understanding of current practices surrounding these so called ‘event photos’- photos about and taken during different social events such as weddings picnics, and music concert visits among others. We studied people’s practices related to event photos through in-d...

  5. Synthesizing Exoplanet Demographics: A Single Population of Long-Period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys

    CERN Document Server

    Clanton, Christian

    2015-01-01

    We present the first study to synthesize results from five different exoplanet surveys using three independent detection methods: microlensing, radial velocity, and direct imaging. The constraints derived herein represent the most comprehensive picture of the demographics of large-separation (>~ 2 AU) planets orbiting the most common stars in our Galaxy that has been constructed to date. We assume a simple, joint power-law planet distribution function of the form d^2N_{pl}/[dlog(m_p)dlog(a)] = A(m_p/M_{Sat})^{alpha}(a/2.5 AU)^{beta} with an outer cutoff radius of the separation distribution function of a_{out}. Generating populations of planets from these models and mapping them into the relevant observables for each survey, we use actual or estimated detection sensitivities to determine the expected observations for each survey. Comparing with the reported results, we derive constraints on the parameters {alpha, beta, A, a_{out}} that describe a single population of planets that is simultaneously consistent ...

  6. Initiating events frequency determination

    International Nuclear Information System (INIS)

    The paper describes work performed for the Nuclear Power Station (NPS). Work is related to the periodic initiating events frequency update for the Probabilistic Safety Assessment (PSA). Data for all relevant NPS initiating events (IE) were reviewed. The main focus was on events occurring during most recent operating history (i.e., last four years). The final IE frequencies were estimated by incorporating both NPS experience and nuclear industry experience. Each event was categorized according to NPS individual plant examination (IPE) initiating events grouping approach. For the majority of the IE groups, few, or no events have occurred at the NPS. For those IE groups with few or no NPS events, the final estimate was made by means of a Bayesian update with general nuclear industry values. Exceptions are rare loss-of-coolant-accidents (LOCA) events, where evaluation of engineering aspects is used in order to determine frequency.(author)

  7. Initial external events: floods

    International Nuclear Information System (INIS)

    The initial external event, specifically flood in a Nuclear power plant, and the calculation necessary to determine the contribution of this type of event in a Probabilistic Safety Analysis, are presented. (M.I.)

  8. Traumatic events and children

    Science.gov (United States)

    ... over and over are: Physical or emotional abuse Sexual abuse Gang violence War Terrorist events ... Force on Community Preventive Services. The effectiveness of interventions to reduce psychological harm from traumatic events among ...

  9. Bike Race Event

    OpenAIRE

    Hasan, M. Mehedi

    2013-01-01

    In this workshop project, our intention is to arrange a Bike race event for the bike club’s members. Our project is based upon through a market research of Bike race event market. After analysing the market we have done a plan for our event, which structured by different tools of the project management, such as WBS, RBS etc. project management is the key tool in this project. Lastly we have shown our budget and financial structure of the event.

  10. Advertising Effectiveness In Events

    OpenAIRE

    Jain, Sushilkumar

    2012-01-01

    Confronted with decreasing effectiveness of the classic marketing communications, events have become an increasingly popular alternative for marketers. Events constitute one of the most exciting and fastest growing forms of leisure and business. With time, the decreasing effectiveness of classical marketing communications boosted the use of events for marketing and making brand awareness. Event marketing is seen as the unique opportunity to integrate the firm’s communication activities like p...

  11. Event generators at BESⅢ

    Institute of Scientific and Technical Information of China (English)

    PING Rong-Gang

    2008-01-01

    We present a brief remark and introduction to event generators for tau-charm physics currently used at BESⅢ,including KKMC,BesEvtGen,Bhlumi,Bhwide,Babayaga and inclusive Monte-Carlo event generators.This paper provides basic information on event generators for BESⅢ users.

  12. Event matrix system

    International Nuclear Information System (INIS)

    The number of background events in nuclear and particle physics experiments which use multiwire proportional chambers can be extremely high. Using a computer to resolve these events results in a high deadtime for the experiment. A fast matrix system for decreasing the number of background events is described in this report. 4 figures

  13. Event sponsorship in China

    OpenAIRE

    Y. Fan; Pfitzenmaier, N

    2002-01-01

    Event marketing is currently at the infant stage in China, but holds a great potential in future. This is concluded from an Internet-based survey. The respondents believe that event marketing provides international companies with a viable alternative to the increasingly cluttered mass media, and plays a key role in the integrated marketing communications (IMC). Sponsoring sports and music events is found particularly effective in reaching the opinion leaders and innovators, and establishing f...

  14. LIFE EVENTS AND DEPRESSION

    OpenAIRE

    R N Chatterjee; Mukherjee, S. P.; Nandi, D.N.

    1981-01-01

    SUMMARY The life events occurring in a 6 month period preceding onset of illness in 50 OPD primary depressives were inquired into by a Life Events Inventory and compared with those in a corresponding time period of 50 matched controls. The relation between life events and the depth of depression at initial interview was also studied. The results are analysed and the probable pitfalls discussed.

  15. Event Detection in Tweets

    Directory of Open Access Journals (Sweden)

    Houssem Eddine Dridi

    Full Text Available We present a system for finding, from Twitter data, events that raised the interest of users within a given time period and the important dates for each event. An event is represented by many terms whose frequency increases suddenly at one or more moments during the analysed period. In order to determine the terms (especially the hashtags dealing with a topic, we propose methods to cluster similar terms: phonetic methods adapted to the writing mode used by users and some statistical methods. In order to select the set of events, we used three main criteria: frequency, variation and Tf*Idf.

  16. Direct Microlensing-Reverberation Observations of the Intrinsic Magnetic Structure of Active Galactic Nuclei in Different Spectral States: A Tale of Two Quasars

    Science.gov (United States)

    Schild, Rudolph E.; Leiter, Darryl J.; Robertson, Stanley L.

    2008-03-01

    We show how direct microlensing-reverberation analysis performed on two well-known quasars (Q2237, the Einstein Cross, and Q0957, the Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of Q2237 in a radio-quiet high-soft state, and compare it to Q0957 in a radio-loud low-hard state. When taken together we find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of the magnetospheric eternally collapsing objects (MECO) in the centers of these quasars. The radiating structures observed in these quasars are associated with standard accretion disks and outer outflow structures, where the latter are the major source of UV-optical continuum radiation. While the observed inner accretion disk structure of the radio-quiet quasar Q2237 is consistent with either a MECO or a black hole, the observed inner structure of the radio-loud quasar Q0957 can only be explained by the action of the intrinsic magnetic propeller of a MECO with its accretion disk. Hence a simple and unified answer to the long-standing question: "Why are some quasars radio loud?" is found if the central objects of quasars are MECO, with radio-loud and radio-quiet spectral states similar to the case of galactic black hole candidates.

  17. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    Science.gov (United States)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  18. Safeguards summary event list (SSEL)

    International Nuclear Information System (INIS)

    The List contains nine categories of events involving NRC licensed material or licensees. It is deliberately broad in scope for two main reasons. First, the list is designed to serve as a reference document. It is as complete and accurate as possible. Second, the list is intended to provide as broad a perspective of the nature of licensee-related events as possible. The nine categories of events are as follows: bomb-related events; intrusion events; missing and/or allegedly stolen events; transportation-related events; vandalism events; arson events; firearms-related events; sabotage events; and miscellaneous events

  19. Features, Events, and Processes: Disruptive Events

    Energy Technology Data Exchange (ETDEWEB)

    J. King

    2004-03-31

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report.

  20. Features, Events, and Processes: Disruptive Events

    International Nuclear Information System (INIS)

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report

  1. Features, Events, and Processes: Disruptive Events

    International Nuclear Information System (INIS)

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the disruptive events features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for license application (TSPA-LA). A screening decision, either ''Included'' or ''Excluded,'' is given for each FEP, along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), and (f) [DIRS 156605]. The FEPs addressed in this report deal with both seismic and igneous disruptive events, such as fault displacements through the repository and an igneous intrusion into the repository. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). Previous versions of this report were developed to support the total system performance assessments (TSPA) for various prior repository designs. This revision addresses the repository design for the license application (LA)

  2. Features, Events, and Processes: Disruptive Events

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2004-11-08

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the disruptive events features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for license application (TSPA-LA). A screening decision, either ''Included'' or ''Excluded,'' is given for each FEP, along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), and (f) [DIRS 156605]. The FEPs addressed in this report deal with both seismic and igneous disruptive events, such as fault displacements through the repository and an igneous intrusion into the repository. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). Previous versions of this report were developed to support the total system performance assessments (TSPA) for various prior repository designs. This revision addresses the repository design for the license application (LA).

  3. The ATLAS Event Builder

    CERN Document Server

    Vandelli, W; Battaglia, A; Beck, H P; Blair, R; Bogaerts, A; Bosman, M; Ciobotaru, M; Cranfield, R; Crone, G; Dawson, J; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Drake, G; Ermoline, Y; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Gorini, B; Green, B; Haberichter, W; Haberli, C; Hauser, R; Hinkelbein, C; Hughes-Jones, R; Joos, M; Kieft, G; Klous, S; Korcyl, K; Kordas, K; Kugel, A; Leahu, L; Lehmann, G; Martin, B; Mapelli, L; Meessen, C; Meirosu, C; Misiejuk, A; Mornacchi, G; Müller, M; Nagasaka, Y; Negri, A; Pasqualucci, E; Pauly, T; Petersen, J; Pope, B; Schlereth, J L; Spiwoks, R; Stancu, S; Strong, J; Sushkov, S; Szymocha, T; Tremblet, L; Ünel, G; Vermeulen, J; Werner, P; Wheeler-Ellis, S; Wickens, F; Wiedenmann, W; Yu, M; Yasu, Y; Zhang, J; Zobernig, H; 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference

    2008-01-01

    Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment in a three-level trigger system, which, at its first two trigger levels (LVL1+LVL2), reduces the initial bunch crossing rate of 40~MHz to $sim$3~kHz. At this rate, the Event Builder collects the data from the readout system PCs (ROSs) and provides fully assembled events to the Event Filter (EF). The EF is the third trigger level and its aim is to achieve a further rate reduction to $sim$200~Hz on the permanent storage. The Event Builder is based on a farm of O(100) PCs, interconnected via a Gigabit Ethernet to O(150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs, and substantial fractions of the Event Builder and Event Filter PCs have been installed and commissioned. We report on performance tests on this initial system, which is capable of going beyond the required data rates and bandwidths for Event Building for the ATLAS experiment.

  4. The Blayais event

    International Nuclear Information System (INIS)

    This document provides the main events occurred to the Blayais installation during the year 2000. For each events, the detailed chronology, the situation analysis, the crisis management and the public information are provided. Some recommendations are also provided by the nuclear safety authorities. (A.L.B.)

  5. Human Performance Event Database

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe several aspects of a Human Performance Event Database (HPED) that is being developed by the Nuclear Regulatory Commission. These include the background, the database structure and basis for the structure, the process for coding and entering event records, the results of preliminary analyses of information in the database, and plans for the future. In 1992, the Office for Analysis and Evaluation of Operational Data (AEOD) within the NRC decided to develop a database for information on human performance during operating events. The database was needed to help classify and categorize the information to help feedback operating experience information to licensees and others. An NRC interoffice working group prepared a list of human performance information that should be reported for events and the list was based on the Human Performance Investigation Process (HPIP) that had been developed by the NRC as an aid in investigating events. The structure of the HPED was based on that list. The HPED currently includes data on events described in augmented inspection team (AIT) and incident investigation team (IIT) reports from 1990 through 1996, AEOD human performance studies from 1990 through 1993, recent NRR special team inspections, and licensee event reports (LERs) that were prepared for the events. (author)

  6. Event generator overview

    International Nuclear Information System (INIS)

    Due to their ability to provide detailed and quantitative predictions, the event generators have become an important part of studying relativistic heavy ion physics and of designing future experiments. In this talk, the author will briefly summarize recent progress in developing event generators for the relativistic heavy ion collisions

  7. Acute Coronary Events

    Science.gov (United States)

    Arbab-Zadeh, Armin; Nakano, Masataka; Virmani, Renu; Fuster, Valentin

    2012-01-01

    In the United States alone, more than 400,000 Americans die annually from coronary artery disease and more than 1,000,000 suffer acute coronary events, i.e., myocardial infarction and sudden cardiac death.1 Considering the aging of our population and increasing incidence of diabetes and obesity, the morbidity from coronary artery disease, and its associated costs, will place an increasing, substantial burden on our society.2 Between 2010 and 2030, total direct medical costs spent in the US for cardiovascular diseases are projected to triple from 273 to 818 billion dollars.2 Although effective treatments are available and considerable efforts are ongoing to identify new strategies for the prevention of coronary events, predicting such events in an individual has been challenging.3 In hopes of improving our ability to determine the risk of coronary events, it is prudent to review our knowledge of factors that lead to acute coronary events. PMID:22392862

  8. "Universe" event at AIMS

    Science.gov (United States)

    2008-06-01

    Report of event of 11 May 2008 held at the African Institute of Mathematical Sciences (Muizenberg, Cape), with speakers Michael Griffin (Administrator of NASA), Stephen Hawking (Cambridge), David Gross (Kavli Institute, Santa Barbara) and George Smoot (Berkeley).

  9. FLOOD EVENT MAPPING IMAGES

    Science.gov (United States)

    OSEI flood products (FLD) include multichannel color composite imagery and single-channel grayscale imagery of enlarged river areas or increased sediment flow. Typically, these events are displayed by comparison to imagery taken when flooding was not occurring.

  10. Event shape sorting

    Science.gov (United States)

    Kopečná, Renata; Tomášik, Boris

    2016-04-01

    We propose a novel method for sorting events of multiparticle production according to the azimuthal anisotropy of their momentum distribution. Although the method is quite general, we advocate its use in analysis of ultra-relativistic heavy-ion collisions where a large number of hadrons is produced. The advantage of our method is that it can automatically sort out samples of events with histograms that indicate similar distributions of hadrons. It takes into account the whole measured histograms with all orders of anisotropy instead of a specific observable ( e.g., v_2 , v_3 , q_2 . It can be used for more exclusive experimental studies of flow anisotropies which are then more easily compared to theoretical calculations. It may also be useful in the construction of mixed-events background for correlation studies as it allows to select events with similar momentum distribution.

  11. Solar extreme events

    OpenAIRE

    Hudson, Hugh S.

    2015-01-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, e...

  12. Successful event promotions

    OpenAIRE

    Vitikainen, Anna; Pakarinen, Siiri

    2015-01-01

    The field of event promotions is a growing industry. As it is still a new area of business, the information available is broad and not very detailed. Promotions are usually seen as a bigger field in advertising and specific information about event promotions is more difficult to find. Today marketing is shifting from basic, traditional advertising to digital marketing and telling the brands’ story by creating an unforgettable and positive experience. Companies are trying to come up with new w...

  13. Gargamelle: neutral current event

    CERN Multimedia

    1973-01-01

    This event shows real tracks of particles from the 1200 litre Gargamelle bubble chamber that ran on the PS from 1970 to 1976 and on the SPS from 1976 to 1979. In this image a neutrino passes close to a nucleon and reemerges as a neutrino. Such events are called neutral curent, as they are mediated by the Z0 boson which has no electric charge.

  14. Detecting Priming News Events

    CERN Document Server

    Wu, Di; Yu, Jeffrey Xu; Liu, Zheng

    2012-01-01

    We study a problem of detecting priming events based on a time series index and an evolving document stream. We define a priming event as an event which triggers abnormal movements of the time series index, i.e., the Iraq war with respect to the president approval index of President Bush. Existing solutions either focus on organizing coherent keywords from a document stream into events or identifying correlated movements between keyword frequency trajectories and the time series index. In this paper, we tackle the problem in two major steps. (1) We identify the elements that form a priming event. The element identified is called influential topic which consists of a set of coherent keywords. And we extract them by looking at the correlation between keyword trajectories and the interested time series index at a global level. (2) We extract priming events by detecting and organizing the bursty influential topics at a micro level. We evaluate our algorithms on a real-world dataset and the result confirms that ou...

  15. 1997: notifiable events

    International Nuclear Information System (INIS)

    In May 1998, the German Federal Ministry for the Environment, Nature Conservation, and Rector Safety (BMU) presented the 1997 survey of 'Notifiable events in plants for nuclear fuel fission - nuclear power and research reactors whose maximum power exceeds 50 kW of continuous thermal power - in the Federal Republic of Germany'. Since 1975, the operators of nuclear power plants in the Federal Republic of Germany have been required to report to the nuclear supervisory authorities all notifiable events in accordance with standard national reporting criteria. This official reporting system serves for monitoring the safety status of notifiable plants and use the findings derived from the events reported to improve the safety status of plants within the supervisory procedures where necessary. The reports constitute an important base for the early detection of defects and for preventing the occurrence of similar defects in other plants. In 1997, there were 117 notifiable events in nuclear power plants in the Federal Republic of Germany. None of these events is to be classified as an accident, and in none of the events were dose limits under the German Radiation Protection Ordinance exceeded. (orig.)

  16. Measurement of the abundance of stellar mass compact objects in the galactic halo by detecting micro-lenses in the Large Magellanic Cloud; Mesure de l'abondance des astres sombres de masse stellaire dans le halo galactique par la recherche de phenomenes de microlentilles vers les nuages de magellan

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th

    2000-05-09

    Many experimental and theoretical results lead to the conclusion that at least 80 percent of the mass of our Galaxy is dark. Part of this so-called dark matter could be in the form of stellar mass compact objects, called MACHOS; these could be detected using the gravitational microlensing effect. The first generation experiments EROS1 and MACHO have strongly constrained the galactic abundance of objects lighter than 0.01 solar mass to less than 10 percent of the total mass. In parallel, the observation by the MACHO group of massive candidates (half the Sun's mass), numerous enough to constitute 50 percent of galactic dark matter, was a further motivation for the EROS group to extend this search to stellar mass objects in a second phase, EROS2. The present work deals with the analysis of 25 million stellar light curves in the Large Magellanic Cloud, observed for three years in order to extract the rare microlensing candidates and to measure the galactic halo mass fraction in the form of compact objects. After recalling the motivations of this search and the theoretical context, I describe the EROS2 experiment. The observational strategy and the photometric reduction procedures needed to deal with the 1.2 To of data are then presented. A new method to detect micro-lenses is detailed, as well as a discussion of background light curves, poorly known. We do not find enough microlensing candidates to explain the galactic rotation curve; this confirms, and improve on previous EROS1 and EROS2 results. Combining all results from EROS allows to exclude that MACHOS with a mass between 10 e-7 and 10 solar mass are important constituents of the galactic halo. This statement agrees with recent results from the MACHO group, although our interpretations differ, namely on the topics of the location of the lenses, and of a possible contamination of the microlensing ample by background phenomena. (author)

  17. Concepts of event-by-event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stroebele, H. [Universitaet Frankfurt (Germany)

    1995-07-15

    The particles observed in the final state of nuclear collisions can be divided into two classes: those which are susceptible to strong interactions and those which are not, like leptons and the photon. The bulk properties of the {open_quotes}matter{close_quotes} in the reaction zone may be read-off the kinematical characteristics of the particles observable in the final state. These characteristics are strongly dependent on the last interaction these particles have undergone. In a densly populated reaction zone strongly interacting particles will experience many collisions after they have been formed and before they emerge into the asymptotic final state. For the particles which are not sensitive to strong interactions their formation is also their last interaction. Thus photons and leptons probe the period during which they are produced whereas hadrons reflect the so called freeze-out processes, which occur during the late stage in the evolution of the reaction when the population density becomes small and the mean free paths long. The disadvantage of the leptons and photons is their small production cross section; they cannot be used in an analysis of the characteristics of individual collision events, because the number of particles produced per event is too small. The hadrons, on the other hand, stem from the freeze-out period. Information from earlier periods requires multiparticle observables in the most general sense. It is one of the challenges of present day high energy nuclear physics to establish and understand global observables which differentiate between mere hadronic scenarios, i.e superposition of hadronic interactions, and the formation of a partonic (short duration) steady state which can be considered a new state of matter, the Quark-Gluon Plasma.

  18. RETRIEVAL EVENTS EVALUATION

    International Nuclear Information System (INIS)

    The purpose of this analysis is to evaluate impacts to the retrieval concept presented in the Design Analysis ''Retrieval Equipment and Strategy'' (Reference 6), from abnormal events based on Design Basis Events (DBE) and Beyond Design Basis Events (BDBE) as defined in two recent analyses: (1) DBE/Scenario Analysis for Preclosure Repository Subsurface Facilities (Reference 4); and (2) Preliminary Preclosure Design Basis Event Calculations for the Monitored Geologic Repository (Reference 5) The objective of this task is to determine what impacts the DBEs and BDBEs have on the equipment developed for retrieval. The analysis lists potential impacts and recommends changes to be analyzed in subsequent design analyses for developed equipment, or recommend where additional equipment may be needed, to allow retrieval to be performed in all DBE or BDBE situations. This analysis supports License Application design and therefore complies with the requirements of Systems Description Document input criteria comparison as presented in Section 7, Conclusions. In addition, the analysis discusses the impacts associated with not using concrete inverts in the emplacement drifts. The ''Retrieval Equipment and Strategy'' analysis was based on a concrete invert configuration in the emplacement drift. The scope of the analysis, as presented in ''Development Plan for Retrieval Events Evaluation'' (Reference 3) includes evaluation and criteria of the following: Impacts to retrieval from the emplacement drift based on DBE/BDBEs, and changes to the invert configuration for the preclosure period. Impacts to retrieval from the main drifts based on DBE/BDBEs for the preclosure period

  19. Event Marketing : En Begreppsutredning

    OpenAIRE

    Linge, Johan; Skantze Carlsson, Johanna

    2004-01-01

    Event marketing har allt sedan begreppet instiftades runt tiden för OS i Los Angeles 1984 varit starkt praktikerdrivet, vilket även återspeglas i den litteratur som skrivits om fenomenet. Den största delen av denna är av normativ karaktär och antar skepnaden av handböcker snarare än av akademisk litteratur. Bland författarna råder dessutom stor oenighet angående vad som faktiskt innefattas av begreppet event marketing. För den person som försöker förstå vad event marketing handlar om utgör de...

  20. Detection of anomalous events

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  1. Reporting of safeguards events

    International Nuclear Information System (INIS)

    On June 9, 1987, the Commission published in the Federal Register a final rule revising the reporting requirements for safeguards events. Safeguards events include actual or attempted theft of special nuclear material (SNM); actual or attempted acts or events which interrupt normal operations at power reactors due to unauthorized use of or tampering with machinery, components, or controls; certain threats made against facilities possessing SNM; and safeguards system failures impacting the effectiveness of the system. The revised rule was effective October 8, 1987. On September 14, 1987, the NRC held a workshop in Bethesda, MD, to answer affected licensees' questions on the final rule. This report documents questions discussed at the September 14 meeting, reflects a completed staff review of the answers, and supersedes previous oral comment on the topics covered

  2. Discrete-Event Simulation

    Directory of Open Access Journals (Sweden)

    Prateek Sharma

    2015-04-01

    Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

  3. First Indico Virtual Event

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The first Indico virtual event will take place on February 4th 15:00 and will focus on two main topics The release of Indico v1.2 The migration of the OO Indico backend database (ZODB) to a more standard DBMS It will be fully virtual using the CERN Vidyo service and will foster discussions between developers and administrators of Indico servers worldwide. Connections to the virtual room will be open, but attendees are encouraged to register to the event, in order to be informed of any changes in the organisation if any. If you would like to add a topic of discussion or propose yourself a contribution, please let us know at indico-team@cern.ch. Connection to Vidyo Vidyo connection details are available here CERN Vidyo service documentation can be found here First-time users are encouraged to try the service before connecting to the real event

  4. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  5. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  6. Zooming into the broad line region of the gravitationally lensed quasar QSO 2237 + 0305 ≡ the Einstein Cross. III. Determination of the size and structure of the C iv and C iii] emitting regions using microlensing

    Science.gov (United States)

    Sluse, D.; Schmidt, R.; Courbin, F.; Hutsemékers, D.; Meylan, G.; Eigenbrod, A.; Anguita, T.; Agol, E.; Wambsganss, J.

    2011-04-01

    Aims: We aim to use microlensing taking place in the lensed quasar QSO 2237 + 0305 to study the structure of the broad line region (BLR) and measure the size of the region emitting the C iv and C iii] lines. Methods: Based on 39 spectrophotometric monitoring data points obtained between Oct. 2004 and Dec. 2007, we derived lightcurves for the C iv and C iii] emission lines. We used three different techniques to analyse the microlensing signal. Different components of the lines (narrow, broad, and very broad) were identified and studied. We built a library of the simulated microlensing lightcurves that reproduce the signal observed in the continuum and in the lines provided only the source size is changed. A Bayesian analysis scheme is then developed to derive the size of the various components of the BLR. Results: 1. The half-light radius of the region emitting the C iv line is found to be RC IV} ˜ 66+110-46} light-days = 0.06+0.09-0.04 pc = 1.7+2.8-1.1 × 1017 cm (at 68.3% CI). Similar values are obtained for C iii]. Relative sizes of the carbon-line and V-band continuum emitting-regions are also derived with median values of Rline/Rcont in the range 4 to 29, depending on the FWHM of the line component. 2. The size of the C iv emitting region agrees with the radius-luminosity relationship derived from reverberation mapping. Using the virial theorem, we derive the mass of the black hole in QSO 2237 + 0305 to be MBH ~ 108.3 ± 0.3 M⊙. 3. We find that the C iv and C iii] lines are produced in at least 2 spatially distinct regions, the most compact one giving rise to the broadest component of the line. The broad and narrow line profiles are slightly different for C iv and C iii]. 4. Our analysis suggests a different structure for the C iv and Fe ii+iii emitting regions, with the latter produced in the inner part of the BLR or in a less extended emitting region than C iv. Based on observations made with the ESO-VLT Unit Telescope # 2 Kueyen (Cerro Paranal, Chile

  7. Electrocardiogram events detection

    OpenAIRE

    Teixeira, João Paulo; Lopes, Vanda

    2011-01-01

    This work aims to create a system of medical diagnosis of the Electrocardiogram (ECG). The events of the ECG are related with the functioning of the heart and different disorders of the heart functioning have their own ECG pattern allowing the connection between ECG patterns and cardiac disorders. For this purpose, we present here an algorithm that detects the P, QRS and T events of the ECG under MATLAB environment. The algorithm is based in two techniques. The search for picks and valleys an...

  8. DER 83: outstanding events

    International Nuclear Information System (INIS)

    The DER's activity is presented through 82 ''outstanding events''. Each one is a stage in the effort of research and development of the DER. These events concern the following fields: new applications of electric power for customers; environment protection and new energy sources; improvements of electric power production units; electrical materials; electric network planning and control; computer codes. In the production field, one deals more particularly with nuclear reactor safety studies: analysis of the behaviour of different components; reactor safety experiments; reliability of different systems (safety, communications...)

  9. Blogimarkkinointi : Case: Laurea Events

    OpenAIRE

    Kronberg, Anna

    2014-01-01

    Tämän opinnäytetyön toimeksiantaja oli Laurea Events. Työn aiheena oli blogimarkkinointi. Opinnäytetyön tavoitteena oli tuoda esiin blogimarkkinoinnin käytettävyyteen vaikuttavia tekijöitä ja kehittää sisältöideoita blogiin, jolla Laurea Eventsin palveluita ja Laureaammattikorkeakoulun restonomikoulutusta voidaan markkinoida mielekkäämmin perinteisen markkinoinnin ohella. Opinnäytetyön tarkoituksena oli se, että toimeksiantaja Laurea Events voi hyödyntää saatuja tuloksia blogim...

  10. Recurring events - Volume 2

    International Nuclear Information System (INIS)

    The feedback of operating experience from nuclear power plants (NPP) is intended to help avoid occurrence or recurrence of safety significant events. Regulatory bodies, and utilities operating nuclear power plants, have established operating experience feedback systems since the beginning of commercial nuclear power production. Well-established operating experience feedback systems exist on national and international level. An example of an international system is the Incident Reporting System (IRS) jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency (NEA). There also are systems maintained by the operating organizations, including the World Association of Nuclear Operators (WANO), and owner groups of different NPP vendors. Committee on the Safety of Nuclear Installations (CSNI) Working Group on Operating Experience (WGOE; formerly Principal Working Group No. 1, PWG1) carried out a study on recurring events some years ago. This report, published in 1999, highlighted some areas of safety significance involving recurrent events in different NPPs around the world. Based on the important findings of this report, CSNI requested two additional studies: 1. first an international workshop should be organized and second, 2. a task group should be established to develop a second report on the topic and to evaluate the findings of the workshop. The workshop, hosted by the Swiss Regulatory Authority, HSK, was held in Switzerland in March 2002. It was attended by 32 experts representing the regulatory, nuclear power plant, vendor, and international agency communities. Several insights and recommendations were presented and are integrated in this report with respect to causes of recurring events: - Operating experience feedback processes had not always been effective, that is, the existing operating experiences had not been effectively applied, - Actions to be taken were not implemented in a timely manner, - The root cause was not

  11. Events and Effects

    DEFF Research Database (Denmark)

    Rytter, Mikkel

    2010-01-01

    national identity politics in Denmark. Despite the medical doctors’ efforts and intentions, the out- come was framed by 9/11, which has become the major critical event of the decade—one that has supported a developing cleavage between the Danish majority and Denmark’s Muslim immigrant minority....

  12. Event-as-participation

    DEFF Research Database (Denmark)

    Kjeldsen, Lena

    2016-01-01

    herved skabe en ny begivenhed- en begivenhed der gennem artiklen konceptualiseres som ”event-as-participation”. Omdrejningspunktet i denne artikel er således de ændrede dynamikker forårsaget af samspillet mellem transmitterede politiske begivenheder og sociale netværkssider. Praksissen skaber nye...

  13. On Objects and Events

    DEFF Research Database (Denmark)

    Eugster, Patrick Thomas; Guerraoui, Rachid; Damm, Christian Heide

    2001-01-01

    This paper presents linguistic primitives for publish/subscribe programming using events and objects. We integrate our primitives into a strongly typed object-oriented language through four mechanisms: (1) serialization, (2) multiple sub typing, (3) closures, and (4) deferred code evaluation. We...

  14. ATLAS "Splash event" 2008

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    "Splash events": As the LHC was being tuned up on 10 September 2008, beam was initially directed at beam collimators just outside the detector, so that a splash of particles would fill much of the detector allowing ATLAS experimenters to prepare the detector for actual running.

  15. RETRIEVAL EVENTS EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    T. Wilson

    1999-11-12

    The purpose of this analysis is to evaluate impacts to the retrieval concept presented in the Design Analysis ''Retrieval Equipment and Strategy'' (Reference 6), from abnormal events based on Design Basis Events (DBE) and Beyond Design Basis Events (BDBE) as defined in two recent analyses: (1) DBE/Scenario Analysis for Preclosure Repository Subsurface Facilities (Reference 4); and (2) Preliminary Preclosure Design Basis Event Calculations for the Monitored Geologic Repository (Reference 5) The objective of this task is to determine what impacts the DBEs and BDBEs have on the equipment developed for retrieval. The analysis lists potential impacts and recommends changes to be analyzed in subsequent design analyses for developed equipment, or recommend where additional equipment may be needed, to allow retrieval to be performed in all DBE or BDBE situations. This analysis supports License Application design and therefore complies with the requirements of Systems Description Document input criteria comparison as presented in Section 7, Conclusions. In addition, the analysis discusses the impacts associated with not using concrete inverts in the emplacement drifts. The ''Retrieval Equipment and Strategy'' analysis was based on a concrete invert configuration in the emplacement drift. The scope of the analysis, as presented in ''Development Plan for Retrieval Events Evaluation'' (Reference 3) includes evaluation and criteria of the following: Impacts to retrieval from the emplacement drift based on DBE/BDBEs, and changes to the invert configuration for the preclosure period. Impacts to retrieval from the main drifts based on DBE/BDBEs for the preclosure period.

  16. Estimate of neutrons event-by-event in DREAM

    International Nuclear Information System (INIS)

    We have measured the contribution of neutrons to hadronic showers in the DREAM module event-by-event as a means to estimate the event-by-event fluctuations in binding energy losses by hadrons as they break up nuclei of the Cu absorber. We make a preliminary assessment of the consequences for hadronic energy resolution in dual-readout calorimeters.

  17. Event boundaries and anaphoric reference.

    Science.gov (United States)

    Thompson, Alexis N; Radvansky, Gabriel A

    2016-06-01

    The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition. PMID:26452376

  18. Using Event Studies to Assess the Impact of Unexpected Events

    OpenAIRE

    James V Koch; Robert N Fenili

    2013-01-01

    The quantitative assessment of the financial impact of unexpected events is the realm of the “event study.” We examine how CEOs, boards, and public policymakers can utilize event studies to inform and improve their decision making. The breadth of application of event studies is surprisingly broad and ranges from situations involving the death of a CEO to emergency product recalls. We present illustrative event studies for two Steve Jobs-related announcements concerning his health in order to ...

  19. Event-by-event fluctuations in collective quantities

    OpenAIRE

    S.A. Voloshin; Koch, V; Ritter, H. G.

    1999-01-01

    We discuss an event-by-event fluctuation analysis of particle production in heavy ion collisions. We compare different approaches to the evaluation of the event-by-event dynamical fluctuations in quantities defined on groups of particles, such quantities as mean transverse momentum, transverse momentum spectra slope, strength of anisotropic flow, etc.. The direct computation of the dynamical fluctuations and the sub-event method are discussed in more detail. We also show how the fluctuation i...

  20. Event Index — an LHCb Event Search System

    Science.gov (United States)

    Ustyuzhanin, A.; Artemov, A.; Kazeev, N.; Redkin, A.

    2015-12-01

    During LHC Run 1, the LHCb experiment recorded around 1011 collision events. This paper describes Event Index — an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene [1] optimized for read-only indexes distributed over independent shards on independent nodes.

  1. Terrorism as Media Event

    Directory of Open Access Journals (Sweden)

    2012-07-01

    Full Text Available Proving that terrorism should be seen as a media event (as defined by Dayan and Katzafter 9/11 and treated accordingly. We have turned to the work of Dayan and Katz and GeorgeGerbner’s for a definition of media events and of violence in the mass media. This paper is ahermeneutical interpretation of the concept of terrorism and its relation to communication. We haveput forward a better understanding of the complex concept of terrorism and its definitions in the massmedia context. Terrorism nowadays should always be defined within its inherent relation with themedia. The article is the first to define terrorism as media evenit in Dayan and Katz’s terms.

  2. Energetic solar particle events

    International Nuclear Information System (INIS)

    Studies of the arrival directions of energetic solar particles during ground level enhancements (CLE's) observed by neutron monitors have shown that, in general, in the first hour of the event most of the particles arrive with a distribution of pitch angles peaked about the garden hose field direction in the vicinity of Earth. During the first hour some of the particles arrive from the antisolar direction, while in later stages of the event the intensity becomes more nearly isotropic as a result of scattering of particles in interplanetary space. An attempt is made to determine the arrival directions of the particles during the early stages of the GLE of 16 February 1984 using the data currently available from high latitude neutron monitors near sea level where the cut off is essentially atmospheric (approx. LGV)

  3. Single event mass spectrometry

    Science.gov (United States)

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  4. Innovation in events management

    OpenAIRE

    Nguyen Bui Phuong, Tam

    2015-01-01

    Events industry has been developing rapidly and improving significantly living standard in recent decades. The main reason for the remarkable development in the industry is innovation which is easy to acknowledge yet difficult to achieve. With the basic of human’s creative ability and available technological applications, the main theoretical framework of the thesis was created including innovation resources and innovation applications. The content in innovation resources was used to dev...

  5. Solar extreme events

    CERN Document Server

    Hudson, Hugh S

    2015-01-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than $S^{-2}$, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial $^{14}$C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observation...

  6. LHCb Event display

    CERN Document Server

    Trisovic, Ana

    2014-01-01

    The LHCb Event Display was made for educational purposes at the European Organization for Nuclear Research, CERN in Geneva, Switzerland. The project was implemented as a stand-alone application using C++ and ROOT, a framework developed by CERN for data analysis. This paper outlines the development and architecture of the application in detail, as well as the motivation for the development and the goals of the exercise. The application focuses on the visualization of events recorded by the LHCb detector, where an event represents a set of charged particle tracks in one proton-proton collision. Every particle track is coloured by its type and can be selected to see its essential information such as mass and momentum. The application allows students to save this information and calculate the invariant mass for any pair of particles. Furthermore, the students can use additional calculating tools in the application and build up a histogram of these invariant masses. The goal for the students is to find a $D^0$ par...

  7. PREVENTABLE ERRORS: NEVER EVENTS

    Directory of Open Access Journals (Sweden)

    Narra Gopal

    2014-07-01

    Full Text Available Operation or any invasive procedure is a stressful event involving risks and complications. We should be able to offer a guarantee that the right procedure will be done on right person in the right place on their body. “Never events” are definable. These are the avoidable and preventable events. The people affected from consequences of surgical mistakes ranged from temporary injury in 60%, permanent injury in 33% and death in 7%”.World Health Organization (WHO [1] has earlier said that over seven million people across the globe suffer from preventable surgical injuries every year, a million of them even dying during or immediately after the surgery? The UN body quantified the number of surgeries taking place every year globally 234 million. It said surgeries had become common, with one in every 25 people undergoing it at any given time. 50% never events are preventable. Evidence suggests up to one in ten hospital admissions results in an adverse incident. This incident rate is not acceptable in other industries. In order to move towards a more acceptable level of safety, we need to understand how and why things go wrong and have to build a reliable system of working. With this system even though complete prevention may not be possible but we can reduce the error percentage2. To change present concept towards patient, first we have to change and replace the word patient with medical customer. Then our outlook also changes, we will be more careful towards our customers.

  8. Securing Major Events

    International Nuclear Information System (INIS)

    When asked why the IAEA should provide nuclear security support to countries that organize large public events, Nuclear Security Officer Sophia Miaw answers quickly and without hesitation. ''Imagine any major public event such as the Olympics, a football championship, or an Expo. If a dirty bomb were to be exploded at a site where tens of thousands of people congregate, the radioactive contamination would worsen the effects of the bomb, increase the number of casualties, impede a rapid emergency response, and cause long term disruption in the vicinity,'' she said. Avoiding such nightmarish scenarios is the driving purpose behind the assistance the IAEA offers States that host major sporting or other public events. The support can range from a single training course to a comprehensive programme that includes threat assessment, training, loaned equipment and exercises. The type and scope of assistance depends on the host country's needs. ''We incorporate nuclear security measures into their security plan. We don't create anything new,'' Miaw said

  9. Distributed event-based systems

    CERN Document Server

    Fiege, Ludger; Pietzuch, Peter R

    2006-01-01

    This book provides an in-depth description of event-based systems, covering topics ranging from local event matching and distributed event forwarding algorithms, through a practical discussion of software engineering issues raised by the event-based style, to state-of-the-art research in event-based systems like composite event detection and security. The authors offer a comprehensive overview, and show the power of event-based architectures in modern system design, encouraging professionals to exploit this technique in next generation large-scale distributed applications like information diss

  10. Focusing properties of mushroom microlenses

    CERN Document Server

    Boriskin, A V; Benson, T; Sewell, P; Nosich, A I

    2010-01-01

    Focusing properties of a novel type photoresist microlens are studied. A specific character of the microlens is its mushroom shape. Recently it was predicted and experimentally revealed that such a lens integrated with a light-emitting diode is capable of enhancing its output efficiency and directivity. In our paper we describe the true electromagnetic performance of a mushroom lens by applying a mathematically rigorous method of boundary integral equations. Numerical results are presented for the mushroom lens illuminated with a plane E-polarized wave and include figures describing the evolution of the lens focal spot and near field maps.

  11. Event selection services in ATLAS

    International Nuclear Information System (INIS)

    ATLAS has developed and deployed event-level selection services based upon event metadata records (''TAGS'') and supporting file and database technology. These services allow physicists to extract events that satisfy their selection predicates from any stage of data processing and use them as input to later analyses. One component of these services is a web-based Event-Level Selection Service Interface (ELSSI). ELSSI supports event selection by integrating run-level metadata, luminosity-block-level metadata (e.g., detector status and quality information), and event-by-event information (e.g., triggers passed and physics content). The list of events that survive after some selection criterion is returned in a form that can be used directly as input to local or distributed analysis; indeed, it is possible to submit a skimming job directly from the ELSSI interface using grid proxy credential delegation. ELSSI allows physicists to explore ATLAS event metadata as a means to understand, qualitatively and quantitatively, the distributional characteristics of ATLAS data. In fact, the ELSSI service provides an easy interface to see the highest missing ET events or the events with the most leptons, to count how many events passed a given set of triggers, or to find events that failed a given trigger but nonetheless look relevant to an analysis based upon the results of offline reconstruction, and more. This work provides an overview of ATLAS event-level selection services, with an emphasis upon the interactive Event-Level Selection Service Interface.

  12. Alaistaitokartoitus, Red Events Oy

    OpenAIRE

    Latva, Mariikka

    2013-01-01

    Tämän tutkimuksellisen opinnäytetyön tarkoituksena oli kartoittaa tapahtuma-alan yrityksen Red Events Oy:n vuokratyöntekijöiden mielipiteitä heidän omista alaistaidoistaan. Työn tavoitteena oli saada kartoituksen tulosten pohjalta mahdollisia kehittämisehdotuksia. Opinnäytetyön tietoperusta muodostui alaistaidoista ja psykologisesta sopimuksesta. Psykologisen sopimuksen osa-alueista esiteltiin työn kannalta merkittävimmät, joita olivat vuorovaikutus, palautteen antaminen ja vastaanottam...

  13. LIU 2011 event

    CERN Multimedia

    BE Department

    2011-01-01

    The LHC injectors upgrade (LIU) project was launched at the end of 2010 to coordinate the preparation of the CERN accelerator complex to meet the needs of the High Luminosity LHC (HL-LHC) until at least 2030. It should be completed by the end of the second long LHC shutdown, presently scheduled for 2018.   The goal of the LIU-2011 event is to present the status and plans of the LIU project, describing the needs and the actions foreseen in the different accelerators, from Linac4 to the PSB, PS and SPS.  

  14. CATASTROPHIC EVENTS MODELING

    Directory of Open Access Journals (Sweden)

    Ciumas Cristina

    2013-07-01

    Full Text Available This paper presents the emergence and evolution of catastrophe models (cat models. Starting with the present context of extreme weather events and features of catastrophic risk (cat risk we’ll make a chronological illustration from a theoretical point of view of the main steps taken for building such models. In this way the importance of interdisciplinary can be observed. The first cat model considered contains three modules. For each of these indentified modules: hazard, vulnerability and financial losses a detailed overview and also an exemplification of a potential case of an earthquake that measures more than 7 on Richter scale occurring nowadays in Bucharest will be provided. The key areas exposed to earthquake in Romania will be identified. Then, based on past catastrophe data and taking into account present conditions of housing stock, insurance coverage and the population of Bucharest the impact will be quantified by determining potential losses. In order to accomplish this work we consider a scenario with data representing average values for: dwelling’s surface, location, finishing works. On each step we’ll make a reference to the earthquake on March 4 1977 to see what would happen today if a similar event occurred. The value of Bucharest housing stock will be determined taking firstly the market value, then the replacement value and ultimately the real value to quantify potential damages. Through this approach we can find the insurance coverage of potential losses and also the uncovered gap. A solution that may be taken into account by public authorities, for example by Bucharest City Hall will be offered: in case such an event occurs the impossibility of paying compensations to insured people, rebuilding infrastructure and public buildings and helping the suffering persons should be avoided. An actively public-private partnership should be created between government authorities, the Natural Disaster Insurance Pool, private

  15. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  16. Fibrations of financial events

    CERN Document Server

    Carf\\i, David

    2011-01-01

    In this paper we shall prove that the plane of financial events, introduced and applied to financial problems by the author himself (see [2], [3] and [4]) can be considered as a fibration in two different ways. The first one, the natural one, reveals itself to be isomorphic to the tangent- bundle of the real line, when the last one is considered as a differentiable manifold in the natural way; the second one is a fibration induced by the status of compound interest capitalization at a given rate i in the interval ] - 1, \\rightarrow [. Moreover, in the paper we define on the first fibration an affine connection, also in this case induced by the status of compound interest at a given rate i. The final goal of this paper is the awareness that all the effects determined by the status of compound interest are nothing but the consequences of the fact that the space of financial events is a fibration endowed with a particular affine connection, so they are consequences of purely geometric properties, at last, depend...

  17. On Event-by-Event Fluctuations in Nuclear Collisions

    OpenAIRE

    Gazdzicki, Marek; Leonidov, Andrei; Roland, Gunther

    1997-01-01

    We demonstrate that a new type of analysis in heavy-ion collisions, based on an event-by-event analysis of the transverse momentum distribution, allows us to obtain information on secondary interactions and collective behaviour that is not available from the inclusive spectra. Using a random walk model as a simple phenomenological description of initial state scattering in collisions with heavy nuclei, we show that the event-by-event measurement allows a quantitative determination of this eff...

  18. Event display of a H -> 4mu candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4mu candidate event with m(4l) = 124.1 (125.1) GeV without (with) Z mass constraint. The masses of the lepton pairs are 86.3 GeV and 31.6 GeV. The event was recorded by ATLAS on 10-Jun-2012, 13:24:31 CEST in run number 204769 as event number 71902630. Zoom into the tracking detector. Muon tracks are colored red.

  19. Event display of a H -> 4mu candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4mu candidate event with m(4l) = 124.1 (125.1) GeV without (with) Z mass constraint. The masses of the lepton pairs are 86.3 GeV and 31.6 GeV. The event was recorded by ATLAS on 10-Jun-2012, 13:24:31 CEST in run number 204769 as event number 71902630. Muon tracks are colored red.

  20. Analysis of Future Event Set Algorithms for Discrete Event Simulation

    OpenAIRE

    McCormack, William M.; Robert G. Sargent

    1980-01-01

    This work reports on new analytical and empirical results on the performance of algorithms for handling the future event set in discrete event simulation. These results provide a clear insight to the factors affecting algorithm performance; evaluate the "hold" model, often used to study future event set algorithms; and determine the best algorithm(s) to use.