WorldWideScience

Sample records for causing turbulent high-velocity

  1. Si iv Column Densities Predicted from Non-Equilibrium Ionization Simulations of Turbulent Mixing Layers and High-Velocity Clouds

    CERN Document Server

    Kwak, Kyujin; Henley, David B

    2015-01-01

    We present predictions of the Si iv ions in turbulent mixing layers (TMLs) between hot and cool gas and in cool high-velocity clouds (HVCs) that travel through a hot halo, complementing the C iv, N v, and O vi predictions in Kwak & Shelton, Kwak et al., and Henley et al. We find that the Si iv ions are most abundant in regions where the hot and cool gases first begin to mix or where the mixed gas has cooled significantly. The predicted column densities of high velocity Si iv and the predicted ratios of Si iv to C iv and O vi found on individual sightlines in our HVC simulations are in good agreement with observations of high velocity gas. Low velocity Si iv is also seen in the simulations, as a result of decelerated gas in the case of the HVC simulations and when looking along directions that pass perpendicular to the direction of motion in the TML simulations. The ratios of low velocity Si iv to C iv and O vi in the TML simulations are in good agreement with those recorded for Milky Way halo gas, while t...

  2. Dogs with hearth diseases causing turbulent high-velocity blood flow have changes in patelet function and von Willebrand factor multimer distribution

    DEFF Research Database (Denmark)

    Tarnow, Inge; Kristensen, Annemarie Thuri; Olsen, Lisbeth Høier

    2005-01-01

    and echocardiography were performed in all dogs. PFA100 closure times (the ability of platelets to occlude a hole in a membrane at high shear rates), platelet activation markers (plasma thromboxane B2 concentration, platelet surface P-selectin expression), platelet aggregation (in whole blood and platelet-rich plasma...

  3. High velocity collisions of nanoparticles

    Science.gov (United States)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  4. Causes of non-Kolmogorov turbulence in the atmosphere.

    Science.gov (United States)

    Lukin, V P; Nosov, E V; Nosov, V V; Torgaev, A V

    2016-04-20

    In the present work, we briefly describe a model for atmospheric turbulence energy on the basis of experimental data obtained in Siberia. A series of new studies is considered and the results of our long-term experimental observations are summarized. The results of these studies form the basis for an explanation of some effects in interactions between optical waves and atmospheric turbulence. Our numerous experimental results point to the possible generation of so-called coherent turbulence in the atmosphere. When analyzing the problem, we proceeded based on our own experimental data and comprehension that the coherent turbulence is a result of the action of self-organizing nonlinear processes, which run in continuous media, including atmospheric air. The experimental data confirmed the effect of attenuation of light fluctuations in coherent turbulence.

  5. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  6. Gouge initiation in high-velocity rocket sled testing

    Science.gov (United States)

    Tachau, R. D. M.; Trucano, T. G.; Yew, C. H.

    1994-07-01

    A model is presented which describes the formation of surface damage 'gouging' on the rails that guide rocket sleds. An unbalanced sled can randomly cause a very shallow-angle, oblique impact between the sled shoe and the rail. This damage phenomenon has also been observed in high-velocity guns where the projectile is analogous to the moving sled shoe and the gun barrel is analogous to the stationary rail. At sufficiently high velocity, the oblique impact will produce a thin hot layer of soft material on the contact surfaces. Under the action of a normal moving load, the soft layer lends itself to an anti-symmetric deformation and the formation of a 'hump' in front of the moving load. A gouge is formed when this hump is overrun by the sled shoe. The phenomenon is simulated numerically using the CTH strong shock physics code, and the results are in good agreement with experimental observation.

  7. Turbulence

    Institute of Scientific and Technical Information of China (English)

    Z. Lin; R.E. Waltz

    2007-01-01

    @@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.

  8. A High-Velocity Collision With Our Galaxy's Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    What caused the newly discovered supershell in the outskirts of our galaxy? A new study finds evidence that a high-velocity cloud may have smashed into the Milky Ways disk millions of years ago.Mysterious Gas ShellsA single velocity-channel map of the supershell GS040.2+00.670, with red contours marking the high-velocity cloud at its center. [Adapted from Park et al. 2016]The neutral hydrogen gas that fills interstellar space is organized into structures like filaments, loops, and shells. Supershells are enormous shells of hydrogen gas that can have radii of a thousand light-years or more; weve spotted about 20 of these in our own galaxy, and more in nearby dwarfs and spiral galaxies.How do these structures form? One theory is that they result from several supernovae explosions occurring in the same area. But the energy needed to create a supershell is more than 3 x 1052 erg, which corresponds to over 30 supernovae quite a lot to have exploding in the same region.Theres an interesting alternative scenario: the supershells might instead be caused by the impacts of high-velocity clouds that fall into the galactic disk.Velocity data for the compact high-velocity cloud CHVC040. The cloud is moving fast enough to create the supershell observed. [Adapted from Park et al. 2016]The Milky Ways Speeding CloudsHigh-velocity clouds are clouds of mostly hydrogen that speed through the Milky Way with radial velocities that are very different from the material in the galactic disk. The origins of these clouds are unknown, but its proposed that they come from outside the galaxy they might be fragments of a nearby, disrupting galaxy, or they might have originated from flows of accreting gas in the space in between galaxies.Though high-velocity clouds have long been on the list of things that might cause supershells, weve yet to find conclusive evidence of this. But that might have just changed, with a recent discovery by a team of scientists led by Geumsook Park (Seoul National

  9. Detecting Dark Matter in High Velocity Clouds

    CERN Document Server

    Lewis, G F; Putman, M E; Lewis, Geraint F; Bland-Hawthorn, Joss; Putman, Mary E; Gibson, Brad C

    2000-01-01

    Many high velocity HI clouds (HVCs) are now believed to be scattered throughout the Galactic halo on scales of tens of kiloparsecs. Some of these clouds appear to contain substantial HI masses (>10^6 Msun). It has been suggested that these structures may be associated with dark matter `mini halos' accreting onto the Galactic halo. For a compact HVC along the sight line to a more distant galaxy, we demonstrate that `pixel gravitational lensing' provides a crucial test for the presence of a dark halo in the form of massive compact objects. The detection of pixel lensing will provide an independent means to map the mass distribution within HVCs.

  10. MECHANISM AND PREDICTION OF MATERIAL ABRASION IN HIGH-VELOCITY SEDIMENT-LADEN FLOW

    Institute of Scientific and Technical Information of China (English)

    HUANG Xi-bin; YUAN Yin-zhong

    2006-01-01

    The wall surface of material is prone to silt abrasion by high-velocity sediment-laden flow. The silt abrasion is different form cavitation erosion. In this article, the characteristics of silt abrasion were discussed. The mechanism of silt abrasion was analyzed and the formation and development of ripple shape on wall surface of material were explained thereafter. Based on turbulence theory and test data, some formulas were derived for predicting the abrasion rate of concrete wall surface in high-velocity sediment-laden flow. The calculated results show good agreement with the experimental data.

  11. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  12. Analysis of high velocity impact on hybrid composite fan blades

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    This paper describes recent developments in the analysis of high velocity impact of composite blades using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an intraply hybrid composite aircraft engine fan blade is described in detail. The predicted results agree with measured data. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.

  13. Real gas flows with high velocities

    CERN Document Server

    Lunev, Vladimir V

    2009-01-01

    Gasdynamic Model and Equations Outline of the Gasdynamic Model Basic Equations and Postulates Equations of State Kinetic Theory Second Law of Thermodynamics Speed of Sound Integral Equations of Motion Kinematics of Fluid Media Differential Equations of Gasdynamics Rheological Model Initial and Boundary Conditions Similarity and Modeling in Gasdynamics Euler Equations Navier-Stokes Equations Turbulent Flows Viscous and Inviscid Flow Models Inviscid Gasdynamics Stream Function, Potential,

  14. Strong intensity variations of laser feedback interferometer caused by atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Yiyi Sun(孙毅义); Zhiping Li(李治平)

    2003-01-01

    The significant variation of the laser output can be caused by feedback of a small part of laser beam, whichis reflected or backscattered by a target at a long distance from laser source, into the laser cavity. Thispaper describes and analyzes theoretically and experimentally the influence of atmospheric turbulence oninterference caused by laser feedback. The influence depends upon both the energy of feedback into thelaser cavity and the strength of turbulence over a laser propagation path in the atmosphere. In the caseof stronger energy of feedback and weak turbulence variance of fluctuation of the laser output can beenhanced by hundreds to thousands times. From our measurements and theoretical analysis it shows thatthese significant enhancements can result from the change of laser-cavity-modes which can be stimulatedsimultaneously and from beat oscillations between a variety of frequencies of laser modes. This also canresult from optical chaos inside the laser resonator because a non-separable distorted external cavity canbecome a prerequisite for optical chaos.

  15. Highly Ionized Envelopes of High Velocity Clouds

    CERN Document Server

    Zekis, Erin E

    2009-01-01

    We present recent results on highly ionized gas in Galactic High-Velocity Clouds (HVCs), originally surveyed in OVI (Sembach et al. 2003). In a new FUSE/HST survey of SiII/III/IV (Shull et al. 2009) toward 37 AGN, we detected SiIII (lambda 1206.500 A) absorption with a sky coverage fraction 81 +/- 5% (61 HVCs along 30 of 37 high-latitude sight lines). The SiIII (lambda 1206.500 A) line is typically 4-5 times stronger than OVI (lambda 1031.926 A). The mean HVC column density of perhaps 10^19 cm^-2 of low-metallicity (0.1 - 0.2 Z_sun) ionized gas in the low halo. Recent determinations of HVC distances allow us to estimate a total reservoir of ~10^8 M_sun. Estimates of infall velocities indicate an infall rate of around 1 M_sun yr^-1, comparable to the replenishment rate for star formation in the disk. HVCs appear to be sheathed by intermediate-temperature gas (10^4.0 - 10^4.5 K) detectable in SiIII and SiIV, as well as hotter gas seen in OVI and other high ions. To prepare for HST observations of 10 HVC-selecte...

  16. High velocity impact and armour design

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Improving combat survivability is the most important aspect of military technology. Hence the development of new lightweight armour systems is a key requirement. A large number of new high performance polymer fibres have been developed in recent years, which include Aramid fibres, polyethylene fibres and polypropylene fibres, amongst others, and have been applied to soft armour systems. To gain a fundamental understanding of which fibre type is the best for a specific application requires the development of techniques which can span all length scales. It has been widely recognised that multiscale modelling, which encompasses the full range of length and time scales, will be an important factor in the future design and testing of novel materials, and their application to armour design. In the present paper a new material damage model suitable for the simulation of impact on thin laminated panels fabricated from high performance fibres is implemented into the commercial ls-dyna® finite element code. The new material model links the mesoscale behaviour of the individual fibres to the macroscale behaviour within a conventional shell finite element. The implemented model is used in a parametric high velocity study to illustrate the applicability of the model to the design of thin armour panels.

  17. High Velocity Cloud Edges and Mini-HVCs

    CERN Document Server

    Hoffman, G L; Salpeter, E E

    2002-01-01

    Arecibo mapping is reported of the neutral hydrogen distribution along selected directions out from the centers of two small High Velocity Clouds (HVC), W486 and W491. Both HVCs have a small inner region where the neutral hydrogen column density N_HI decreases slowly and a larger outer region where N_HI declines more rapidly, smoothly and exponentially from ~ 2 X 10^19 atoms cm^-2 down to < 10^18 atoms cm^-2. Line widths, and presumably temperature and turbulence, do not increase in the outermost regions. Therefore pressure decreases smoothly, making confinement by dark matter gravity more likely than confinement by external pressure. The more extended HVC, W491, has a superimposed small cloud (which we dub a ``mini-HVC''), offset by 66 km s^-1 in velocity along the line of sight with peak column density about 5 X 10^18 atoms cm^-2. Preliminary data toward future mapping of two more HVCs reveals two more mini-HVCs of similarly small size and central column density a bit less than 1 X 10^19 atoms cm^-2. We ...

  18. High Velocity Droplet Rebound On Liquid Pools

    Science.gov (United States)

    Doak, William; Laiacona, Danielle; Chiarot, Paul; German, Guy

    2015-11-01

    Rebound of high velocity, periodic droplet streams off viscous liquid pools is studied experimentally. Droplets, approximately 60 micrometers in diameter, impact the oil surface at velocities up to 13 m/s and at angles between 2-25 degrees. The oil surface does not degrade or lose its ability to provide rebound even after millions of droplet impacts. The oil was varied to examine the effect that surface tension and viscosity had on droplet rebound. Stable rebound is achievable on oils varying in dynamic viscosity in the range 13-970 Pa.s and surface tensions in the range 19-28 mN/m. When rebound occurs, a consistent 29% loss of droplet kinetic energy is observed. This is a surprising relationship due to the fact that it holds true for all cases of stable rebound regardless of the oil used. We further observe an upper inertial limit where droplets no longer provide stable rebound and instead become fully entrained in the oil pool. This limit is governed by the Rayleigh-Plateau instability and can be characterized and predicted using a modified version of the Weber number. The droplet rebound presented in this study is unique due to the size, velocity, and frequency of the droplets used. Another unique feature is that the rebound manifests itself as an effectively static phenomenon. No motion of the interface - oscillations, waves, or otherwise - was observed during rebound. The quasi-static nature of rebound enabled distinctions to be made regarding energy dissipation and the transition from droplet rebound to entrainment.

  19. Dust particle spin-up caused by cross-field plasma flow and turbulence.

    Science.gov (United States)

    Shukla, P. K.; Shevchenko, V. I.; Krasheninnikov, S. I.

    2006-10-01

    Spinning of dust particles adds new interesting features to dust particle dynamics and to the dusty plasma physics. Several reasons for dust particle spin-up have been suggested (e.g. Ref. 1): i) sheared flow of plasmas around charge dust particles, ii) dust particle surface irregularities, and iii) sheath effects resulting from the interactions of a charge dipole of a dust particle (caused by plasma flows into the sheath) with the sheath electric field. Here we present a novel mechanism for charged dust particle spin-up. The physics of the present mechanism is simple and robust, and is associated with the interaction of a charge dipole of a dust particle, D, induced by the ExB cross-field flow of a magnetized plasma (D ExB), where E and B are the electric and ambient magnetic fields. Since the resulting torque is proportional to | E |^2, the presented mechanism of charged dust particle spin-up works for both stationary and non-stationary (turbulent in particular) electric fields. In many cases the turbulent electric field stremgth is much larger than the laminar one so that the impact of turbulence can be dominant. We present theoretical analyses for charged dust particle spin-up and estimate the maximum value for the angular velocity charged dust particle can acquire due to our new spin-up mechanism. [1] N. Sato ``Spinning Motion of Fine Particles in Plasmas'', AIP Conference Proceedings No. 799, p. 97; AIP, New York, 2005.

  20. Simplex-based wavefront control for the mitigation of dynamic distortions caused by atmospheric turbulence

    Science.gov (United States)

    Nikulin, Vladimir V.; Zhang, Dave

    2005-04-01

    Laser communication systems operating in the atmosphere require certain power and beam quality to establish and maintain a reliable communication link. Although such systems utilize the most advanced materials and technologies, their performance is adversely affected by optical turbulence, often posing a serious problem, even for short-range links. Atmospheric effects change optical properties of the propagation channel, causing signal fades, beam wander and scintillations. A common method of mitigating turbulence effects suggests dynamic wavefront control. In this paper the proposed technique is based on correction of the distorted beam using an electrically addressed programmable spatial light modulator (SLM). The phase profile that we impose on the distorted laser beam is described using Zernike formalism to calculate the wavefront OPD function. The Nelder-Mead simplex optimization algorithm is used as a correction procedure that provides fast results, required for real-time operation. In general, calculation of the required phase profile for an SLM with large number of pixels could be highly computationally intensive. Coupling modulator inputs to the first several Zernike coefficients allows significant reduction of the dimension of the optimization problem. The algorithm is tested in the simulation environment and its ability to compensate dynamic distortions is assessed. The results show that both dimension of the input space and the initial conditions affect the speed and convergence to a particular minimum. Recommendations for improving the system performance are also presented.

  1. Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire

    Directory of Open Access Journals (Sweden)

    Richartz Barbara M

    2006-03-01

    velocity below a critical Reynolds number of 500. Reaching a coronary flow velocity above the velocity of the critical Reynolds number may result in an underestimation of the CFVR caused by turbulent flow. This underestimation of the flow velocity may reach up to 22.5 % compared to the actual volumetric flow. Cardiologists should consider this phenomena in at least 20 % of patients when measuring CFVR for clinical decision making.

  2. A HIGH VELOCITY FEED UNIT DRIVEN BY LINEAR MOTOR

    Institute of Scientific and Technical Information of China (English)

    Zhang Bolin; Chen Yanji; Li Zhiying

    2000-01-01

    In order to realize high speed machining,the special requirements for feed transmission system of the CNC machine tool have to be satisfied.A high velocity feed unit driven by a induction linear motor is developed.The compositions of the high velocity CNC feed unit and main problems in the unit design are discussed.

  3. Variable turbulent convection as the cause of the Blazhko effect - testing the Stothers model

    CERN Document Server

    Smolec, R; Kolenberg, K; Bryson, S; Cote, M T; Morris, R L

    2011-01-01

    The amplitude and phase modulation observed in a significant fraction of the RR Lyrae variables - the Blazhko effect - represents a long-standing enigma in stellar pulsation theory. No satisfactory explanation for the Blazhko effect has been proposed so far. In this paper we focus on the Stothers (2006) idea, in which modulation is caused by changes in the structure of the outer convective zone, caused by a quasi-periodically changing magnetic field. However, up to this date no quantitative estimates were made to investigate whether such a mechanism can be operational and whether it is capable of reproducing the light variation we observe in Blazhko variables. We address the latter problem. We use a simplified model, in which the variation of turbulent convection is introduced into the non-linear hydrodynamic models in an ad hoc way, neglecting interaction with the magnetic field. We study the light curve variation through the modulation cycle and properties of the resulting frequency spectra. Our results are...

  4. Cryogenic Testing of High-Velocity Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion University; Delayen, Jean R. [Old Dominion University; Park, HyeKyoung [JLAB

    2014-12-01

    Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, β0= 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-spoke cavity.

  5. Pierce Prize Lecture: High Velocity Clouds: Cosmological and Galactic Weather

    Science.gov (United States)

    Sembach, K.

    2001-12-01

    The Milky Way and its surrounding environs contain gas moving at high velocities with respect to the Sun. For the past half century, most of the information available for these high velocity clouds (HVCs) has come from H I 21cm surveys. Improvements in these surveys have recently led to the idea that some of the high velocity H I clouds may be located outside the Milky Way within the Local Group. Such a hypothesis is testable by various means, but the neutral gas content of the clouds tells only half of a much more complex story. In this talk I will present new information about the ionized gas within HVCs, their impact on the gaseous atmosphere of the Galaxy, and their relevance to the cosmic web of hot gas that may contain a significant fraction of the baryonic material in the low-redshift universe.

  6. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  7. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  8. Surgical treatment of tibial nonunion after wounding by high velocity missile and external fixators: A case report

    OpenAIRE

    2012-01-01

    Introduction. The missiles of modern firearms can cause severe fractures of the extremity. High velocity missile fractures of the tibia are characterized by massive tissue destruction and primary contamination with polymorphic bacteria. Treatment of these fractures is often complicated by delayed healing, poor position healing, nonhealing and bone tissue infection. Case Outline. We present the management of tibial nonunion after wounding by high velocity missile and primary treatment by...

  9. Acceleration of objects to high velocity by electromagnetic forces

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F

    2017-02-28

    Two exemplary approaches to the acceleration of projectiles are provided. Both approaches can utilize concepts associated with the Inductrack maglev system. Either of them provides an effective means of accelerating multi-kilogram projectiles to velocities of several kilometers per second, using launchers of order 10 meters in length, thus enabling the acceleration of projectiles to high velocities by electromagnetic forces.

  10. Certain optimal parameters of high-velocity Venturi ejection tubes

    Science.gov (United States)

    Stark, S. B.; Reznichenko, I. G.; Pavlenko, Y. P.

    1984-11-01

    The influence of the geometrical characteristics of centrifugal nozzles in high velocity Venturi ejection tubes for atomizing liquid in gas cleaning plant is analyzed. An optimal value of the nozzle geometrical characteristic, which is a function of the degree of filling of the nozzle outlet opening by the liquid, is given, at which the throat length is independent of water pressure before the nozzle.

  11. Westerbork HI observations of two High-Velocity Clouds

    NARCIS (Netherlands)

    Stoppelenburg, PS; Schwarz, UJ; van Woerden, H

    1998-01-01

    Westerbork HI synthesis observations are presented for the directions of the stars 4 Lac and HD 135485. Interstellar absorption lines at high velocities had been reported in the UV spectrum of 4 Lac, setting an upper limit of 1.2 kpc on the distance of the associated, small HI cloud (Bates et al. 19

  12. WESTERBORK OBSERVATIONS OF HIGH-VELOCITY CLOUDS - THE DATA

    NARCIS (Netherlands)

    WAKKER, BP

    1991-01-01

    The results of Westerbork * observations of small-scale structure in high-velocity clouds (HVCs) at 1' angular and 1 km s-1 velocity resolution are presented in the form of a table of observational parameters, maps of hydrogen column density, velocity-right ascension cuts, and histograms of the line

  13. WESTERBORK OBSERVATIONS OF HIGH-VELOCITY CLOUDS - DISCUSSION

    NARCIS (Netherlands)

    WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    Six high-velocity cloud fields were observed with 1' and 1 km s-1 resolution, using the Westerbork Synthesis Radio Telescope. The structures seen in earlier observations at 10' resolution break up into a disorderly collection of concentrations. The presence of much substructure has important implica

  14. Distances to galactic high-velocity clouds : Complex C

    NARCIS (Netherlands)

    Wakker, B. P.; York, D. G.; Howk, J. C.; Barentine, J. C.; Wilhelm, R.; Peletier, R. F.; van Woerden, H.; Beers, T. C.; Ivezic, Z.; Richter, P.; Schwarz, U. J.

    2007-01-01

    We report the first determination of a distance bracket for the high- velocity cloud (HVC) complex C. Combined with previous measurements showing that this cloud has a metallicity of 0.15 times solar, these results provide ample evidence that complex C traces the continuing accretion of intergalacti

  15. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  16. Dynamical evolution of high velocity clouds in the intergalactic medium

    CERN Document Server

    Konz, C; Birk, G T

    2002-01-01

    HI observations of high-velocity clouds (HVCs) indicate, that they are interacting with their ambient medium. Even clouds located in the very outer Galactic halo or the intergalactic space seem to interact with their ambient medium. In this paper, we investigate the dynamical evolution of high velocity neutral gas clouds moving through a hot magnetized ambient plasma by means of two-dimensional magnetohydrodynamic plasma-neutral gas simulations. This situation is representative for the fast moving dense neutral gas cloudlets in the Magellanic Stream as well as for high velocity clouds in general. The question on the dynamical and thermal stabilization of a cold dense neutral cloud in a hot thin ambient halo plasma is numerically investigated. The simulations show the formation of a comet-like head-tail structure combined with a magnetic barrier of increased field strength which exerts a stabilizing pressure on the cloud and hinders hot plasma from diffusing into the cloud. The simulations can explain both the...

  17. High-velocity gas associated ultracompact HII regions

    Institute of Scientific and Technical Information of China (English)

    XU; Ye(徐烨); JIANG; Dongrong(蒋栋荣); YANG; Chuanyi(杨传义); ZHENG; Xingwu(郑兴武); GU; Minfeng(顾敏峰); PEI; Chunchuan(裴春传)

    2002-01-01

    We present the results of a survey for high-velocity 12CO (1-0) emission associated H2O masers and ultracompact (UC) HII regions. The aim is to investigate the relationship between H2O masers, CO high-velocity gas (HVG) and their associated infrared sources. Our sample satisfies Wood & Churchwell criterion. Almost 70 % of the sources have full widths (FWs) greater than 15 km@ s?1 at T*a = 100 mK and 15 % have FWs greater than 30 km@ s?1. In most of our objects there is excess high velocity emission in the beam. There is a clear correlation between CO line FWs and far-infrared luminosities: the FW increases with the FIR luminosity. The relation suggests that more luminous sources are likely to be more energetic and able to inject more energy into their surroundings. As a result, larger FW of the CO line could be produced. In most of our sources, the velocities of peak of the H2O emission are in agreement with those of the CO cloud, but a number of them have a large blueshift with respect to the CO peak. These masers might stem from the amplifications of a background source, which may amplify some unobservable weak masers to an observable level.

  18. The Collisions Of High-Velocity Clouds With A Magnetized Gaseous Galactic Disk

    CERN Document Server

    Santillan, A; Martos, M A; Kim, J; Santillan, Alfredo; Franco, Jose; Martos, Marco; Kim, Jongsoo

    1999-01-01

    We present two-dimensional MHD numerical simulations for the interaction of high-velocity clouds with both magnetic and non-magnetic Galactic thick gaseous disks. For the magnetic models, the initial magnetic field is oriented parallel to the disk, and we consider two different field topologies (with and without tension effects): parallel and perpendicular to the plane of motion of the clouds. The impinging clouds move in oblique trajectories and fall toward the central disk with different initial velocities. The $B$-field lines are distorted and compressed during the collision, increasing the field pressure and tension. This prevents the cloud material from penetrating into the disk, and can even transform a high-velocity inflow into an outflow, moving away from the disk. The perturbation creates a complex, turbulent, pattern of MHD waves that are able to traverse the disk of the Galaxy, and induce oscillations on both sides of the plane. Thus, the magnetic field efficiently transmits the perturbation over a...

  19. A data-driven method to characterize turbulence-caused uncertainty in wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    2016-10-01

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generation are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  20. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    Science.gov (United States)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  1. The feedback effect caused by bed load on a turbulent liquid flow

    CERN Document Server

    Franklin, Erick de Moraes; Rosa, Eugênio Spanó

    2016-01-01

    Experiments on the effects due solely to a mobile granular layer on a liquid flow are presented (feedback effect). Nonintrusive measurements were performed in a closed conduit channel of rectangular cross section where grains were transported as bed load by a turbulent water flow. The water velocity profiles were measured over fixed and mobile granular beds of same granulometry by Particle Image Velocimetry. The spatial resolution of the measurements allowed the experimental quantification of the feedback effect. The present findings are of importance for predicting the bed-load transport rate and the pressure drop in activities related to the conveyance of grains.

  2. Pseudo-invariants causing inverse energy cascades in three-dimensional turbulence

    CERN Document Server

    Rathmann, Nicholas M

    2016-01-01

    Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where a second positive-definite flow invariant, enstrophy, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation it has previously been show that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show both theoretically and numerically that an additional subset of interactions exist conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or inverse en...

  3. Electric rail gun projectile acceleration to high velocity

    Science.gov (United States)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  4. Internal Ballistics of High Velocity Special Purpose Guns

    Directory of Open Access Journals (Sweden)

    V. K. Gupta

    1976-07-01

    Full Text Available More and more conventional guns are being utilized as special purpose guns to achieve very high velocity by using unconventionally high C/W ratios. The existing methods of internal ballistics give satisfactory results only for low (less than one C/W ratios. In the present paper the basic internal ballistic equations have been modified to cater for non-linear rate of burning, cubical form function and a realistic pressure gradient between breech face and the projectile base. The equations have been numerically solved. The results for low and high C/W ratios have been compared with those obtained by using conventional methods.

  5. A Investigation of Gouge Initiation in High-Velocity Sliding Contact

    Science.gov (United States)

    Tachau, Robert David Mazur

    1991-02-01

    Surface damage has been observed on the rails of rocket sled tracks and on the barrels of high-velocity guns. The phenomenon is generally referred to as "gouging". Damage to a stationary surface (guider) is created from the oblique impact of a high-velocity object (slider) moving over its surface. The surface damage (gouge) is typically a shallow crater in the shape of a teardrop with the leading edge characterized by the wider end and a slightly raised lip. For rocket sleds, rail gouging occurs when the sled velocity is greater than 1.5 km/sec; while in guns, barrel gouging occurs when the velocity exceeds 4 km/sec. A model is developed to describe the phenomenon of gouging. An unbalanced slider randomly causes a shallow -angle, oblique impact between the slider and the guider. At sufficiently high velocity, the impact produces a thin, but very hot, layer of soft material at the contact surface. Under the action of a moving load, the soft layer lends itself to an antisymmetric deformation and a gouge is formed when this soft material is over-run by the slider. The model is simulated numerically with a hydrodynamic (CTH) code. The results of the simulations are in good agreement with the observed phenomena. Based on the simulated temperature and pressure profiles at the contact surface, design criteria for gouge mitigation are developed in this study.

  6. Formation of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Struminskii, V.V. (Sektor Mekhaniki Neodnorodnykh Sred, Moscow (USSR))

    1989-01-01

    Two essentially different forms of turbulence are identified in liquids and gases: (1) turbulent flow in the vicinity of solid or liquid boundaries and (2) turbulent flows evolving far from the walls. The generation mechanisms and principal characteristics of the two types of turbulent flows are discussed. It is emphasized that the two types of turbulent flows are caused by different physical mechanisms and should be considered separately in turbulence studies. 14 refs.

  7. Aerosol production by high-velocity molten-metal droplets

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D J; Benson, D A

    1988-06-01

    This report presents the results of an experimental study of the aerosol produced by high-velocity molten-metal droplets. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. The primary droplets are produced by the heating and electromagnetic launch of metal wires; velocities approaching Mach 1 can be obtained at present. Size distributions obtained tungsten and zirconium droplets burning in air. Lognormal size distributions were observed in both cases with DMPS-equivalent mean diameters of about 0.4 ..mu..m and geometric standard deviations of about two. SEM and TEM analysis of aerosol samples collected by a point-to-plane electrostatic precipitator showed that the majority of these particles were web-like chain agglomerates. Tests performed in argon atmospheres produced several orders-of-magnitude less aerosol mass than in equivalent air tests, supporting the key role combustion plays in secondary aerosol generation. 26 refs., 14 figs., 2 tabs.

  8. High-velocity molecular outflows hear massive young stellar objects

    Institute of Scientific and Technical Information of China (English)

    吴月芳; 李月兴; 杨传义; 雷成明; 孙金江; 吕静; 韩溥

    1999-01-01

    By mapping the 12CO J=1—0 lines in IRAS 05391-0217, 06114+1745 and 06291+0421, three new high-velocity bipolar molecular outflows are found. Parameters of these outflows are derived, which suggest that they are massive and energetic outflows with total kinetic energies of about 1038 J and mass loss rates about 10-5 M⊙/a. The driving sources are identified by analyzing the positions, intensities and color temperatures of the associated infrared sources. These outflows are most likely driven by single sources which correspond to massive young stellar objects. In these regions H2O masers have been detected located near the embedded infrared sources, which indicates that their exciting mechanism may be correlated with that of the CO outflows. The relationship between the parameters of outflows and central sources shows that high-velocity outflow and thermal radiation of a star are two basic correlated but different features in the evolution of young stars.

  9. Carbon film deposition from high velocity rarefied flow

    Energy Technology Data Exchange (ETDEWEB)

    Rebrov, A.K., E-mail: rebrov@itp.nsc.ru; Emelyanov, A.A.; Yudin, I.B.

    2015-01-30

    The presented study is based on the idea of the activation of a gas-precursor high velocity flow by hot wire. The wire forms the channel for flow before expansion to substrate. The construction allows change of the specific flow rate, velocity, composition and temperature of a gas mixture by studying the film synthesis in conditions from free molecular to continuum flow at velocities from hundreds to thousands of m/s. At a high pressure, the film has typical and unusual hexagonal incorporations for diamond tetragonal particles. Raman spectrum with the pronounced diamond peak is typical for diamond-like film. X-ray diffraction points in the presence of lonsdaleite. Conditions of deposition were simulated by Monte Carlo method. Collisions with hot surfaces and chemical transformations were taken into consideration as well.

  10. Low and high velocity impact response of thick hybrid composites

    Science.gov (United States)

    Hiel, Clement; Ishai, Ori

    1993-01-01

    The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.

  11. Influences of the Air in Metal Powder High Velocity Compaction

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2017-01-01

    Full Text Available During the process of metal powder high velocity impact compaction, the air is compressed sharply and portion remains in the compacts. In order to study the Influences, a discrete density volleyball accumulation model for aluminium powder was established with the use of ABAQUS. Study found that the powder porosity air obstruct the pressing process because remaining air reduced strength and density of the compacts in the current high-speed pressing (V≤100m/s. When speed further increased (V≥100m/s, the temperature of the air increased sharply, and was even much higher than the melting point of the material. When aluminium powder was compressed at a speed of 200m/s, temperatures of air could reach 2033 K, far higher than the melting point of 877 K. Increased density of powders was a result of local softening and even melt adhesive while air between particles with high temperature and pressure flowed past.

  12. Solar wind collimation of the Jupiter high velocity dust streams

    Science.gov (United States)

    Flandes, A.; Krueger, H.

    2006-12-01

    The dust bursts discovered by the Ulysses dust sensor when approaching Jupiter in 1992 were later confirmed as collimated streams of high velocity (~200 km/s) charged (~5V) dust grains escaping from Jupiter and dominated by the interplanetary Magnetic field (IMF). With Cassini, a similar phenomenon was observed in Saturn. It was demonstrated that the Jovian dust streams are closely related to the solar wind compressed regions, either Corotating interaction regions (CIRs) or Coronal mass ejections (CMEs) ¨Cto a minor extent-. Actually the dust streams seem ultimately to be generated by such events. This can be explained considering that dust grains are accelerated as they gain substantial energy while compressed at the forward and reverse shocks that bound or precede these solar wind regions.

  13. Are Compact High-Velocity Clouds Extragalactic Objects?

    CERN Document Server

    Maloney, P R; Maloney, Philip R.; Putman, Mary E.

    2003-01-01

    Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the Local Group model and would have HI volume densities of order 0.0003/cm^3. Clouds with these volume densities and the observed neutral hydrogen column densities will be largely ionized, even if exposed only to the extragalactic ionizing radiation field. Here we examine the implications of this process for models of CHVCs. We have modeled the ionization structure of spherical clouds (with and without dark matter halos) for a large range of densities and sizes, appropriate to CHVCs over the range of suggested distances, exposed to the extragalactic ionizing photon flux. Constant-density cloud models in which the CHVCs are at Local Group distances have total (ionized plus neutral) gas masses roughly 20-30 times larger than the neutral gas masses, implying that the gas mass alone of the observed population of CHVCs is about 40 billion solar masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass in such CHVCs is a s...

  14. Configuration optimization of high velocity arc spraying gun

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-xiong; ZHU Zi-xin; LIU Yan; XU Bin-shi

    2004-01-01

    In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.

  15. Intermediate- and High-Velocity Ionized Gas toward zeta Orionis

    CERN Document Server

    Welty, D E; Raymond, J C; Mallouris, C; York, D G

    2002-01-01

    We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and Copernicus to study the abundances and physical conditions in the predominantly ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to -10 km/s) toward zeta Ori. We have high resolution (FWHM ~ 3.3-4.5 km/s) and/or high S/N spectra for at least two significant ions of C, N, Al, Si, S, and Fe -- enabling accurate estimates for both the total N(H II) and the elemental depletions. C, N, and S have essentially solar relative abundances; Al, Si, and Fe appear to be depleted by about 0.8, 0.3-0.4, and 0.95 dex, respectively. While various ion ratios would be consistent with collisional ionization equilibrium (CIE) for T ~ 25,000-80,000 K, the widths of individual high-velocity absorption components indicate that T ~ 9000 K -- so the gas is not in CIE. Analysis of the C II fine-structure excitation equilibrium yields estimated densities (n_e ~ n_H ~ 0.1-0.2 cm^{-3}), thermal pressures (2 n_H T ~ 2000-4000 cm^{-3}K), and thi...

  16. Arecibo imaging of compact high-velocity clouds

    CERN Document Server

    Burton, W B; Chengalur, J N

    2001-01-01

    Ten isolated compact high-velocity clouds (CHVCs) of the type cataloged by Braun & Burton (1999) have been imaged with the Arecibo telescope and were found to have a nested core/halo morphology. We argue that a combination of high-resolution filled-aperture and synthesis data is crucial to determining the intrinsic properties of the CHVCs. We identify the halos as Warm Neutral Medium surrounding one or more cores in the Cool Neutral Medium phase. These halos are clearly detected and resolved by the Arecibo filled-aperture imaging, which reaches a limiting sensitivity (1 sigma) of N_H about 2x10^17 cm^-2 over the typical 70 km/s linewidth at zero intensity. The FWHM linewidth of the halo gas is found to be 25 km/s, consistent with a WNM thermal broadening within 10^4 K gas. Substantial asymmetries are found at high N_H (>10^18.5 cm^-2) levels in 60% of our sample. A high degree of reflection-symmetry is found at low N_H (<10^18.5 cm^-2) in all sources studied at these levels. The column-density profiles...

  17. Improvement of a High Velocity Compaction Technique for Iron Powder

    Institute of Scientific and Technical Information of China (English)

    Dil Faraz KHAN; Haiqing YIN; Zahid USMAN; Matiullah KHAN; Xianjie YUAN; Wenhao WANG; Xuanhui QU

    2013-01-01

    Water atomized pure iron powder was compacted by high velocity compaction (HVC) with and without upper relaxation assist (URA) device.The influence of URA device on green density,spring back,green strength and hardness was studied.Morphological characteristics of the samples were observed by scanning electron microscope (SEM).Green strength of the samples was measured by computer controlled universal testing machine.The results show that as stroke length increases,the green density,green strength and hardness of the compacts increase gradually.At the identical stroke length,the green density of the compacts pressed with URA devise was 2% higher than the compacts pressed without URA device.The green strength and hardness of the compacts pressed with URA device were higher than the compacts pressed without URA device.Furthermore,the radial spring back of the compacts decreased gradually with the increment in stroke length,whilst that of compacts prepared with URA device was lower.

  18. Dynamic weakening by nanoscale smoothing during high velocity fault slip

    Science.gov (United States)

    Chen, X.; Madden, A. S.; Bickmore, B. R.; Reches, Z.

    2012-12-01

    Rock friction is commonly determined through measurements on rock samples with areas from a few cm^2 to 1 m^2. On the other hand, theoretical models suggest that frictional processes are scale-dependent, and active at scales of a few microns or less. We used Atomic Force Microscope (AFM) to determine the frictional strength and roughness of experimental fault surfaces that slipped under high velocity (Sierra White granite (SWG) and Kasota dolomite (KD), and the sheared surfaces were sampled for the nanoscale measurements by the AFM. The friction coefficient (FC) at the sub-micron scale was measured by using the AFM to press & shear a tiny silica glass bead against the rock surface (Stiernstedt et al., 2005). The 3D morphology of the fault surfaces at the nano- to microscale was measured with the standard AFM intermittent contact mode with sharp tip probe. In the AFM friction measurements, a total of 43 sites have been measured and each site was repeated hundreds of times; 33 of these sites were measured under air and 10 sites were measured under deionized water. The SWG and KD samples display FC values that vary systematically with orientation and conditions. Room-dry, un-sheared surfaces have FC = 0.64 ± 0.05 for both rock types. KD normal to striations has FC = 0.60 ± 0.15. SWG rough, sheared surface display FC = 0.71 ± 0.02. Significant friction drop was observed under dry, parallel to striations, with FC = 0.34 ± 0.08 (KD) and FC = 0.52 ± 0.03 (SWG). Under wet (water covered) conditions parallel to slickensides, the friction dropped even further to FC = 0.15 ± 0.05 (dolomite) and FC = 0.31 ± 0.05 (granite). The nanoscale FC (room dry, parallel to striations) is comparable to the macroscopic FC for the host experiments. Roughness calculations are based on AFM topographic images, and analyzed by both Power Spectral Density (PSD) and RMS. The PSD curves display a clear, expected trend: the cleaved biotite is the smoothest surface, the un-sheared surface is

  19. Collisional Disruption of Ice by High-Velocity Impact

    Science.gov (United States)

    Arakawa, Masahiko

    1999-11-01

    High-velocity impact among icy planetesimals is a physical phenomenon important to the planetary evolution process in the outer Solar System. In order to study this phenomenon, impact experiments on water ice were made by using a two-stage light gas gun installed in a cold room (-10°C) to clarify the elementary processes of collisional disruption and to study the reaccumulation and the escape conditions of the impact fragments. Cubic ice targets ranging in size from 15 to 100 mm were impacted by a nylon projectile of 7 mg with an impact velocity ( vi) from 2.3 to 4.7 km/s. The corresponding mass ratio of the projectile to the target ( mp/ Mt) ranged from 10 -3 to 10 -6, which is two orders of magnitude lower than that used in previous studies (Arakawa et al. 1995, Icarus118, 341-354). As a result, we obtained data on elementary processes such as attenuation of the shock wave and fragmentation dynamics. We found that the shock pressure attenuates in the ice target according to the relation of P∝( Lp/ r2, irrespective of the mass ratio between 10 -3 and 10 -5, where Lp is the projectile size and r is a propagation distance. The largest fragment mass ( ml) normalized by the original target mass has a good relationship to a nondimensional impact stress ( PI, NDIS) defined as the ratio of the antipodal pressure to the material strength. This relationship is described as ml/ Mt ∝ PI-1.7 for a wide range of impact conditions (50 m/s20 km) reaccumulated. On the other hand, when smaller icy bodies (radius<2 km) disrupted catastrophically, all fragments escaped and a rubble pile was never formed.

  20. Semi-analytical method for calculating aeroelastic effect of profiled rod flying at high velocity

    Directory of Open Access Journals (Sweden)

    Hui-jun Ning

    2015-03-01

    Full Text Available The key technique of a kinetic energy rod (KER warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method (CFD/FEM, respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.

  1. Fault gouge rheology under confined, high-velocity conditions

    Science.gov (United States)

    Reches, Z.; Madden, A. S.; Chen, X.

    2012-12-01

    We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was

  2. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    OpenAIRE

    Yunhou Sun; Cuncheng Shi; Zheng Liu; Desheng Wen

    2015-01-01

    With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape,...

  3. Chemical reactions induced by high-velocity molecular impacts: challenges for closed-source mass spectrometry

    Science.gov (United States)

    Austin, Daniel

    2016-07-01

    Analysis of upper atmosphere composition using closed-source neutral mass spectrometers (e.g., Cassini INMS, MAVEN NGIMS) is subject to error due to chemical reactions caused by the high-velocity impacts of neutral molecules on the source surfaces. In addition to species traditionally considered "surface reactive" (e.g., O, N) it is likely that many or all impacting molecules are vibrationally excited to the point that chemical changes can occur. Dissociation, fragmentation, formation of radicals and ions, and other reactions likely obscure analysis of the native atmospheric composition, particularly of organic compounds. Existing techniques are not capable of recreating the relevant impact chemistry in the lab. We report on the development of a new capability allowing reactions of high-velocity neutrals impacting surfaces to be characterized directly. Molecules introduced into a vacuum chamber are impacted at several km/s by the surface of a high-speed rotor. These molecules subsequently impact multiple times on other surfaces within the vacuum chamber until they are thermalized, after which they are cryogenically collected and analyzed. Reaction pathways and thermodynamics for volatile compounds are then determined. We will present current results on this project, including data from low- and mid-range velocity experiments. This type of information is critical to clarify prior flight results and plan for future missions. Finally, we present a new type of inlet intended to significantly reduce fragmentation for impact velocities typical of a fly-by mission. Theoretical analysis indicates that this new inlet may reduce fragmentation by more than an order of magnitude for any encounter velocity.

  4. Surgical treatment of tibial nonunion after wounding by high velocity missile and external fixators: A case report

    Directory of Open Access Journals (Sweden)

    Golubović Ivan

    2012-01-01

    Full Text Available Introduction. The missiles of modern firearms can cause severe fractures of the extremity. High velocity missile fractures of the tibia are characterized by massive tissue destruction and primary contamination with polymorphic bacteria. Treatment of these fractures is often complicated by delayed healing, poor position healing, nonhealing and bone tissue infection. Case Outline. We present the management of tibial nonunion after wounding by high velocity missile and primary treatment by external fixation in a 25-year-old patient. The patient was primarily treated with external fixation and reconstructive operations of the soft tissue without union of the fracture. Seven months after injury we placed a compression-distraction external fixator type Mitkovic and started with compression and distraction in the fracture focus after osteotomy of the fibula and autospongioplasty. We recorded satisfactory fracture healing and good functional outcome. Conclusion. Contamination and devitalization of the softtissue envelope increase the risk of infection and nonunion in fractures after wounding by high velocity missile. The use of the compression-distraction external fixator type Mitkovic may be an effective method in nonunions of the tibia after this kind of injury. [Projekat Ministarstva nauke Republike Srbije, br. III 41004

  5. Sand Transport and Turbulence over Immobile Gravel and Cobble Beds: Similarities and Differences Caused by Roughness Scale

    Science.gov (United States)

    Wren, D. G.; Langendoen, E. J.; Kuhnle, R. A.

    2011-12-01

    Characterizing the turbulence generated by flow over rough beds has become increasingly important in support of efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored in reservoirs. In many cases, fine sediments are reintroduced to coarse substrates that have large volumes of pore space available for storage after having sediments removed by years of sediment-starved flow. The roughness and porosity of the coarse substrate are both affected by the fine sediment elevation relative to the coarse substrate; therefore, the turbulence characteristics and sediment transport over and through these beds are significantly altered after sediment is reintroduced. Experiments at the USDA-ARS-National Sedimentation Laboratory have focused on sand transport and turbulence over two different rough, immobile, substrates: 35 mm gravel and 150 mm cobbles. Detailed acoustic Doppler-based measurements of turbulence structure over the gravel and cobble beds have allowed the influence of the scale of roughness on both the turbulence and sand transport to be evaluated. It was found that the sand transport in both the gravel and cobble beds showed a strong relationship with bed shear stress scaled by the value of the cumulative distribution of bed elevation at the level of sand within the rough bed. Reynolds stresses near and just below the top of the cobble bed show a region of near constant value with depth, while, for the gravel bed there is a gradual decrease in Reynolds stress beginning just above the gravel and decreasing with increasing depth into the gravel. Dispersive stresses show a very similar patter with a peak at the top of the roughness elements decaying to zero with increasing distance above and below.

  6. Computational analysis of a three-dimensional High-Velocity Oxygen-Fuel (HVOF) Thermal Spray torch

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, B.; Lopez, A.R.; Oberkampf, W.L.

    1995-07-01

    An analysis of a High-Velocity Oxygen-Fuel Thermal Spray torch is presented using computational fluid dynamics (CFD). Three-dimensional CFD results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire torch, but wire feed is not simulated. To the authors` knowledge, these are the first published 3-D results of a thermal spray device. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Argon is injected through the center of the nozzle. Pre-mixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled assuming instantaneous chemistry. A standard, two-equation, K-{var_epsilon} turbulence model is employed for the turbulent flow field. An implicit, iterative, finite volume numerical technique is used to solve the coupled conservation of mass, momentum, and energy equations for the gas in a sequential manner. Flow fields inside and outside the aircap are presented and discussed.

  7. Analysis of the flux and polarization spectra of the type Ia supernova SN 2001el: Exploring the geometry of the high-velocity Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel; Nugent, Peter; Wang, Lifan; Howell, D.A.; Wheeler, J. Craig; Hoeflich, Peter; Baade, Dietrich; Baron, E.; Hauschildt, P.H.

    2003-01-15

    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The unusual, high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v approximately 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v approximately 18,000-25,000 $ km/s) of CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the clearly discriminated if observations are obtained from several different lines of sight. Thus, assuming the high velocity structure observed for SN 2001el is a consistent feature of at least known subset of type Ia supernovae, future observations and analyses such as these may allow one to put strong constraints on the ejecta geometry and hence on supernova progenitors and explosion mechanisms.

  8. Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.

    2011-12-01

    -weakening fault in a perfect elastic medium is on the order of 30 m/s, and this velocity drops by a factor of ~4 if the host medium is elastic-plastic. He further showed that velocity drop may also occur if the fault strength is velocity-toughening due to the additional energy loss. We suggest that a fault segment that is composed of siliceous rocks may undergo velocity strengthening when the local slip velocity exceeds the critical strengthening velocity of the local lithology (0.008-0.16 m/s), and suppress further acceleration. Such lithological dependency of the strength-velocity relations is expected to cause frequent, intense variations of slip velocity during earthquakes.

  9. Turbulence and cooling in cluster cores

    CERN Document Server

    Banerjee, Nilanjan

    2014-01-01

    We study the interplay between turbulent heating, mixing, and radiative cooling in an idealized model of cool cluster cores. Active galactic nuclei (AGN) jets are expected to drive turbulence and heat cluster cores. Cooling of the intracluster medium (ICM) and stirring by AGN jets are tightly coupled in a feedback loop. We impose the feedback loop by balancing radiative cooling with turbulent heating. In addition to heating the plasma, turbulence also mixes it, suppressing the formation of cold gas at small scales. In this regard, the effect of turbulence is analogous to thermal conduction. For uniform plasma in thermal balance (turbulent heating balancing radiative cooling), cold gas condenses only if the cooling time is shorter than the mixing time. This condition requires the turbulent kinetic energy to be $\\gtrsim$ the plasma internal energy; such high velocities in cool cores are ruled out by observations. The results with realistic magnetic fields and thermal conduction are qualitatively similar to the ...

  10. Evaluation of fish-injury mechanisms during exposure to a high-velocity jet

    Energy Technology Data Exchange (ETDEWEB)

    Guensch, Gregory R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, Robert P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McKinstry, Craig A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2002-11-01

    As part of the research supported by U.S. Department of Energy (DOE) Advanced Hydropower Turbine System (AHTS) Program, the Pacific Northwest National Laboratory (PNNL) conducted a study where age-0 and age-1 Chinook salmon, as well as several other types of fish, were released into a submerged water jet to quantify injuries caused by shear stresses and turbulence (Neitzel et al. 2000). The fish releases were videotaped. These videotape records were digitized and analyzed using new methods to identify the injury mechanisms and the stresses involved. Visible external injuries sustained by fish in this study generally occurred during the initial contact with the jet and not during the tumbling that occurred after the fish fully entered the turbulent flow. The inertial stresses of tumbling, however, may cause temporary or even permanent vestibular and neurological injuries. Such injuries can result in disorientation and loss of equilibrium, which are life threatening in the “natural” environment. Operculum injuries predominated at moderate water jet speeds (12 and 15 m/s). At the highest speed, eye, operculum, isthmus, and gill injuries were equally common, and disorientation was most common. Bruising and descaling were relatively rare, especially for age-0 fish. Age-0 fish were less susceptible than the larger age-1 fish to all visible injury types, especially at lower speeds.

  11. Removal of interproximal dental biofilms by high-velocity water microdrops.

    Science.gov (United States)

    Rmaile, A; Carugo, D; Capretto, L; Aspiras, M; De Jager, M; Ward, M; Stoodley, P

    2014-01-01

    The influence of the impact of a high-velocity water microdrop on the detachment of Streptococcus mutans UA159 biofilms from the interproximal (IP) space of teeth in a training typodont was studied experimentally and computationally. Twelve-day-old S. mutans biofilms in the IP space were exposed to a prototype AirFloss delivering 115 µL water at a maximum exit velocity of 60 m/sec in a 30-msec burst. Using confocal microscopy and image analysis, we obtained quantitative measurements of the percentage removal of biofilms from different locations in the IP space. The 3D geometry of the typodont and the IP spaces was obtained by micro-computed tomography (µ-CT) imaging. We performed computational fluid dynamics (CFD) simulations to calculate the wall shear stress (τw ) distribution caused by the drops on the tooth surface. A qualitative agreement and a quantitative relationship between experiments and simulations were achieved. The wall shear stress (τw ) generated by the prototype AirFloss and its spatial distribution on the teeth surface played a key role in dictating the efficacy of biofilm removal in the IP space.

  12. Aviation turbulence processes, detection, prediction

    CERN Document Server

    Lane, Todd

    2016-01-01

    Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.

  13. Numerical study and modeling of turbulence modulation in a sheet flow burdened with particulates; Etude numerique et modelisation de la modulation de la turbulence dans un ecoulement de nappe chargee en particules

    Energy Technology Data Exchange (ETDEWEB)

    Vermorel, O.

    2003-11-15

    This work is devoted to the numerical and theoretical study of turbulence modulation by particles using direct numerical simulation for the continuous phase coupled with a Lagrangian prediction of trajectories of discrete particles. The configuration corresponds to a slab of particles injected at high velocity into an isotropic decaying turbulence. The motion of a particle is supposed to be governed only by the drag force. The particle mass loading is large so that momentum exchange between particles and fluid results in a significant modulation of the turbulence. Collisions are neglected. The momentum transfer between particles and gas causes a strong acceleration of the gas in the slab. In the periphery of the slab, the turbulence is enhanced due to the production by the mean gas velocity gradients. The analysis of the interphase transfer terms in the gas turbulent kinetic energy equation shows that the direct effect of the particles is to damp the turbulence in the core of the slab but to enhance it in the periphery. This last effect is due to a strong correlation between the particle distribution and the instantaneous gas velocity. Another issue concerns the k-{epsilon} model and the validity of its closure assumptions in two phase flows. A new eddy viscosity expression, function of particle parameters, is used to model the Reynolds stress tensor. The modelling of the gas turbulent dissipation rate is questioned. A two-phase Langevin equation is also tested to model drift velocity and fluid-particles velocity covariance equations. (author)

  14. High velocity HI in the inner 5 KPC of M31

    Science.gov (United States)

    Brinks, E.

    New radio frequency position-velocity maps of HI whithin 5 kpc of the M31 galactic center are reported. The maps were generated from 21 cm line studies performed with the Westerbork Synthesis Radio Telescope directed at regions +6 arcmin, 0 arcmin, and -6 arcmin distance from the nucleus. High velocity neutral hydrogen displayed the same signature at high velocities previously observed in the visible range (Rubin and Ford, 1970), but no HI was detected within the inner 500 pc. The data indicate that rotation produces the high velocities rather than an infall to or an ejection from the nucleus. The region around the M31 nucleus is suggested to be similar to that of the Galaxy.

  15. Accurate Solution of Navigation Equations in GPS Receivers for Very High Velocities Using Pseudorange Measurements

    Directory of Open Access Journals (Sweden)

    N. Rahemi

    2014-01-01

    Full Text Available GPS is a satellite-based navigation system that is able to determine the exact position of objects on the Earth, sky, or space. By increasing the velocity of a moving object, the accuracy of positioning decreases; meanwhile, the calculation of the exact position in the movement by high velocities like airplane movement or very high velocities like satellite movement is so important. In this paper, seven methods for solving navigation equations in very high velocities using least squares method and its combination with the variance estimation methods for weighting observations based on their qualities are studied. Simulations on different data with different velocities from 100 m/s to 7000 m/s show that proposed method can improve the accuracy of positioning more than 50%.

  16. Star Clusters and Super Massive Black Holes: High Velocity Stars Production

    CERN Document Server

    Fragione, Giacomo

    2016-01-01

    One possible origin of high velocity stars in the Galaxy is that they are the product of the interaction of binary systems and supermassive black holes. We investigate a new production channel of high velocity stars as due to the close interaction between a star cluster and supermassive black holes in galactic centres. The high velocity acquired by some stars of the cluster comes from combined effect of extraction of their gravitational binding energy and from the slingshot due to the interaction with the black holes. Stars could reach a velocity sufficient to travel in the halo and even overcome the galactic potential well, while some of them are just stripped from the cluster and start orbiting around the galactic centre.

  17. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  18. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  19. High-Velocity H2O Masers Associated Massive Star Formation Regions

    Institute of Scientific and Technical Information of China (English)

    徐烨; 蒋栋荣; 郑兴武; 顾敏峰; 俞志尧; 裴春传

    2001-01-01

    We report on the results of 12 CO (1-0) emission associated with H2O masers and massive star formation regions to identify high-velocity H2O masers. Several masers have a large blueshift, even up to 120 km.s-1, with respect to the CO peak, but no large redshifted maser appears. This result suggests that high-velocity H2O masers can most probably occur in high mass star-forming regions and quite a number of masers stem from the amplifications of a background source, which may enable those undetectable weak masers to come to an observable level.

  20. Sculpting an AGB Mass-Loss Envelope into a Bipolar Planetary Nebula: High-Velocity Outflows in V Hydrae

    CERN Document Server

    Sahai, Raghvendra; Hinkle, Kenneth

    2009-01-01

    We have carried out high-resolution spectroscopic observations of the carbon star V Hya, covering the 4.6 micron band of CO. These data, taken over 7 epochs, show that the circumstellar environment of V Hya consists of a complex high-velocity (HV) outflow containing at least six kinematic components with expansion velocities ranging between 70 and 120 km/s, together with a slow-moving normal outflow at about 10 km/s. Physical changes occur in the HV outflow regions on a time-scale as short as two days, limiting their extent to < ~ 10^{16} cm. The intrinsic line-width for each HV component is quite large (6-8 km/s) compared to the typical values (~1 km/s) appropriate for normal AGB circumstellar envelopes (CSEs), due to excess turbulence and/or large velocity gradients resulting from the energetic interaction of the HV outflow with the V Hya CSE. We have modelled the absorption features to set constraints on the temperature distribution in, and the mass ejection-rates for gas in the main HV components.

  1. Severe lung contusion and death after high-velocity behind-armor blunt trauma: relation to protection level.

    Science.gov (United States)

    Gryth, Dan; Rocksén, David; Persson, Jonas K E; Arborelius, Ulf P; Drobin, Dan; Bursell, Jenny; Olsson, Lars-Gunnar; Kjellström, Thomas B

    2007-10-01

    The most-used safety recommendation for protective vests is that the impact should not cause more than a 44-mm impression in plasticine. The aim of this study was to investigate whether this criterion was sufficient if the vest was exposed to a high-velocity projectile. We tested the hypothesis with pigs divided into a 40-mm group (n = 10) and a 34-mm group (n = 8) protected by a vest allowing a 40-mm or 34-mm impression in plasticine, respectively. Five (50%) of 10 animals in the 40-mm group and 2 (25%) of 8 in the 34-mm group died due to the trauma. We observed severe lung hematoma, impaired circulation, desaturation, and electroencephalogram changes. These effects were more aggravated in the 40-mm group compared to the 34-mm group. Based on our results, the overall judgment is that the safety criterion of 44-mm impression is insufficient when a vest is exposed to a high-velocity projectile.

  2. One-dimensional turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A.R. [Sandia National Lab., Livermore, CA (United States)

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  3. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  4. Localized turbulence in pipe flow

    NARCIS (Netherlands)

    Kuik, D.J.

    2011-01-01

    In this thesis the transition to turbulence in pipe flow is investigated. At low Reynolds numbers, the flow returns to the laminar state spontaneously. At high Reynolds number a small perturbation causes the flow to suddenly become turbulent. In the intermediate regime localized turbulence is observ

  5. High-Velocity Line-Forming Regions in the Type Ia Supernova 2009ig

    CERN Document Server

    Marion, G H "Howie"; Wheeler, J Craig; Foley, Ryan J; Hsiao, Eric Y; Brown, Peter J; Challis, Peter; Filippenko, Alexei V; Garnavich, Peter; Kirshner, Robert P; Landsman, Wayne B; Parrent, Jerod T; Pritchard, Tyler A; Roming, Peter W A; Silverman, Jeffrey M; Wang, Xiaofeng

    2013-01-01

    We report measurements and analysis of high-velocity (> 20,000 km/s) and photospheric absorption features in a sequence of spectra of SN Ia 2009ig obtained between -14d and +13d with respect to the time of B-band maximum light. We identify lines of Si II, Si III, S II, Ca II and Fe II that produce simultaneous high-velocity (HV) and photospheric velocity (PS) components from -12d to -5d. SN 2009ig is unusual in the number of lines with detectable HV features in its spectra but the light-curve parameters, M_B = -19.46 mag and the Delta m15(B) = 0.90 mag, correspond to a slightly overluminous but unexceptional SN Ia. The velocity of 13,400 km/s for Si II 6355 at the time of B-max is above "normal" for SN Ia but not unusual. The early start and high cadence of our data permit a detailed study of the transition in SN Ia from features dominated by high-velocity components to features with exclusively photospheric components. The -14d and -13d spectra in our sample are the first to clearly resolve high-velocity Si ...

  6. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  7. DISTRIBUTION AND ORIGIN OF HIGH-VELOCITY CLOUDS .3. CLOUDS, COMPLEXES AND POPULATIONS

    NARCIS (Netherlands)

    WAKKER, BP; VANWOERDEN, H

    1991-01-01

    We present the first complete catalogue of high-velocity clouds (HVCs), followed by a classification of these clouds into complexes and populations. The catalogue will form the basis for comparisons with theoretical models. The study described here yields the following conclusions: (1) Differential

  8. An investigation of constant-pressure gas well testing influenced by high-velocity flow

    Energy Technology Data Exchange (ETDEWEB)

    Berumen, Sergio; Samaniego, Fernando; Cinco, Heber [PEMEX E and P and UNAM, Ciudad Universitaria, Coyoacan, Mexico (Mexico)

    1997-11-05

    This paper presents the results of a study of transient pressure analysis of gas flow under either constant bottom-hole pressure conditions or the constant wellhead pressure conditions. The effects of formation damage, wellbore storage and high-velocity flow are included in the model. The analysis of simulated well tests showed that the interpretation methods used for liquid flow are generally accurate when the m(p) is used. For these conditions, a graph of 1/q{sub D} vs. logt{sub D} presents gradually lower values of 1.1513 as the value of p{sub wf} decreases: for pressure buildup conditions, a graph of m{sub D}(1, {Delta}t{sub a{sub D}})/q{sub D}({Delta}t{sub a{sub D}}=0) vs. (t{sub a{sub D}}+{Delta}t{sub a{sub D}})/{Delta}t{sub a{sub D}} shows values of this slope within 1% of the 1.1513 value. However, when high-velocity flow influences constant pressure production tests, the slope can yield errors up to 13%. This upper limit occurs when the formation has a relatively `high` permeability (around 1 mD) and the rate performance test is affected by high-velocity flow. It was found that pressure buildup tests are superior to rate performance tests because high-velocity flow does not affect the slope of the straight line portion of the buildup curve. Derivative analysis of simulated buildup tests showed that the skin factor is considerably miscalculated when the high-velocity flow effect is significant. This problem could lead to errors in the calculation of the skin factor, s, up to 300%

  9. Properties of Ejecta Generated at High-Velocity Perforation of Thin Bumpers made from Different Constructional Materials

    Science.gov (United States)

    Myagkov, N. N.; Shumikhin, T. A.; Bezrukov, L. N.

    2013-08-01

    The series of impact experiments were performed to study the properties of ejecta generated at high-velocity perforation of thin bumpers. The bumpers were aluminum plates, fiber-glass plastic plates, and meshes weaved of steel wire. The projectiles were 6.35 mm diameter aluminum spheres. The impact velocities ranged from 1.95 to 3.52 km/s. In the experiments the ejecta particles were captured with low-density foam collectors or registered with the use of aluminum foils. The processing of the experimental results allowed us to estimate the total masses, spatial and size distributions, and perforating abilities of the ejecta produced from these different bumpers. As applied to the problem of reducing the near-Earth space pollution caused by the ejecta, the results obtained argue against the use of aluminum plates as first (outer) bumper in spacecraft shield protection.

  10. Electromyography normalization methods for high-velocity muscle actions: review and recommendations.

    Science.gov (United States)

    Ball, Nick; Scurr, Joanna

    2013-10-01

    Electromyograms used to assess neuromuscular demand during high-velocity tasks require normalization to aid interpretation. This paper posits that, to date, methodological approaches to normalization have been ineffective and have limited the application of electromyography (EMG). There is minimal investigation seeking alternative normalization methods, which must be corrected to improve EMG application in sports. It is recognized that differing normalization methods will prevent cross-study comparisons. Users of EMG should aim to identify normalization methods that provide good reliability and a representative measure of muscle activation. The shortcomings of current normalization methods in high-velocity muscle actions assessment are evident. Advances in assessing alternate normalization methods have been done in cycling and sprinting. It is advised that when normalizing high-intensity muscle actions, isometric methods are used with caution and a dynamic alternative, where the muscle action is similar to that of the task is preferred. It is recognized that optimal normalization methods may be muscle and task dependent.

  11. High Velocity Impact Interaction of Metal Particles with Porous Heterogeneous Materials with an Inorganic Matrix

    Science.gov (United States)

    Glazunov, A. A.; Ishchenko, A. N.; Afanasyeva, S. A.; Belov, N. N.; Burkin, V. V.; Rogaev, K. S.; Tabachenko, A. N.; Khabibulin, M. V.; Yugov, N. T.

    2016-03-01

    A computational-experimental investigation of stress-strain state and fracture of a porous heterogeneous material with an inorganic matrix, used as a thermal barrier coating of flying vehicles, under conditions of a high-velocity impact by a spherical steel projectile imitating a meteorite particle is discussed. Ballistic tests are performed at the velocities about 2.5 km/s. Numerical modeling of the high-velocity impact is described within the framework of a porous elastoplastic model including fracture and different phase states of the materials. The calculations are performed using the Euler and Lagrange numerical techniques for the velocities up to 10 km/s in a complete-space problem statement.

  12. A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    CERN Document Server

    Thom, C; Christlieb, N; Thom, Christopher; Gibson, Brad K.; Christlieb, Norbert

    2005-01-01

    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.

  13. Mapping Metal-Enriched High Velocity Clouds to Very Low HI Column Densities

    CERN Document Server

    Churchill, C W; Masiero, J R; Churchill, Chris; Charlton, Jane

    2001-01-01

    Our galaxy is the nearest known quasar absorption line system, and it uniquely provides us with an opportunity to probe multiple lines of sight through the same galaxy. This is essential for our interpretations of the complex kinematic profiles seen in the MgII absorption due to lines of sight through intermediate redshift galaxies. The Milky Way halo has never been probed for high velocity clouds below the 21-cm detection threshold of N(HI)~10^18 cm-2. Through a survey of MgII absorption looking toward the brightest AGNs and quasars, it will be possible to reach down a few orders of magnitude in HI column density. The analogs to the high velocity components of the MgII absorption profiles due to intermediate redshift galaxies should be seen. We describe a program we are undertaking, and present some preliminary findings.

  14. High Velocity Tensile Test for Thin Plate Specimen with One Bar Method

    Science.gov (United States)

    Itabashi, Masaaki

    In order to design thin-walled impact-resistant structure, for example, an automotive body, dynamic behavior of thin plate is essential. So far, except for laminated composite materials, high velocity tensile test of thin plate specimen did not attract impact researchers' and engineers' attention very much. In this paper, the previous thin plate specimen assembly for the one bar method was improved. The one bar method has been utilized for cylindrical specimens of various solid materials and is known as an effective high velocity tensile testing technique. Unfortunately, the previous assembly introduced a tremendous initial peak on stress-strain curves, even for aluminum alloys. With a new specimen assembly, stress-strain curves for IF (Interstitial-atom Free) steel and 7075-T6 aluminum alloy obtained by the one bar method were almost equivalent to those obtained by the tensile version of the split Hopkinson pressure bar method.

  15. Chronic symptoms after vestibular neuritis and the high velocity vestibulo-ocular reflex

    Science.gov (United States)

    Patel, Mitesh; Arshad, Qadeer; Roberts, R Edward; Ahmad, Hena; Bronstein, Adolfo M.

    2015-01-01

    Hypothesis As the anterior and posterior semicircular canals are vital to the regulation of gaze stability, particularly during locomotion or vehicular travel, we tested whether the high velocity vestibulo-ocular reflex (VOR) of the three ipsilesional semicircular canals elicited by the modified Head Impulse Test would correlate with subjective dizziness or vertigo scores after vestibular neuritis (VN). Background Recovery following acute VN varies with around half reporting persistent symptoms long after the acute episode. However, an unanswered question is whether chronic symptoms are associated with impairment of the high velocity VOR of the anterior or posterior canals. Methods Twenty patients who had experienced an acute episode of VN at least three months earlier were included in this study. Participants were assessed with the video head impulse test (vHIT) of all six canals, bithermal caloric irrigation, the Dizziness Handicap Inventory (DHI) and the Vertigo Symptoms Scale short-form (VSS). Results Of these 20 patients, 12 felt that they had recovered from the initial episode whereas 8 did not and reported elevated DHI and VSS scores. However, we found no correlation between DHI or VSS scores and the ipsilesional single or combined vHIT gain, vHIT gain asymmetry or caloric paresis. The high velocity VOR was not different between patients who felt they had recovered and patients who felt they had not. Conclusions Our findings suggest that chronic symptoms of dizziness following VN are not associated with the high velocity VOR of the single or combined ipsilesional horizontal, anterior or posterior semicircular canals. PMID:26719963

  16. A DAMAGE ACCUMULATING MODELING OF FAILURE WAVES IN GLASS UNDER HIGH VELOCITY IMPACT

    Institute of Scientific and Technical Information of China (English)

    刘占芳; 姚国文; 詹先义

    2001-01-01

    The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damageaccumulating model to describe the failure delay in the interior of materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.

  17. High-velocity H I clouds and the adiabatic theory of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.; Shandarin, S.F.

    1979-05-01

    The intergalactic interpretation of high-velocity H I clouds is examined in terms of the evolutionary theory of galaxy formation. From 21-cm line measurements and the representation of the intergalactic medium according to the adiabatic theory of galaxy formation (the ''pancake'' theory), parameters (density, mass, radius, entropy, distance) are calculated for various clouds, regarded as quasistationary. The observational and theoretical estimates are consistent. The assumption that many H I clouds are extragalactic is in good accord with the evolutionary theory.

  18. Variables Affecting Smooth Particle Hydrodynamics Simulation of High-Velocity Flyer Plate Impact Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Deepak S [UNLV; Trabia, Mohamed [UNLV; O' Toole, Brendan [UNLV; Hixson, Robert S [NSTec

    2014-01-23

    This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.

  19. Shells, holes, worms, high-velocity gas and the z-distribution of gas in galaxies.

    Science.gov (United States)

    Rand, R. J.

    The author gives an overview of the current observational understanding of vertically extended gas components in spiral galaxies and the various phenomena which come under such names as shells, holes, worms, and high-velocity gas. For the most part, the focus is on recent high-resolution interferometric studies. The author concentrates on cold gas, and briefly on warm ionized gas, in the Milky Way and a few nearby spirals. Along the way, it is seen how phenomena such as worms and shells may be related to the formation and maintenance of the vertically extended components.

  20. Mapping High-velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    OpenAIRE

    France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Lundqvist, Peter; Smith, Nathan; Sonneborn, George

    2015-01-01

    We present new {\\it Hubble Space Telescope} images of high-velocity H-$\\alpha$ and Lyman-$\\alpha$ emission in the outer debris of SN~1987A. The H-$\\alpha$ images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H$\\alpha$ imaging, we measure the mass flux of hydrogen atoms cr...

  1. Double electron capture of He sup 2+ from He at high velocity

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.; Justiniano, E.; Vogt, H. (Heidelberg Univ. (Germany, F.R.). Physikalisches Inst.); Deco, G.; Gruen, N. (Giessen Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)

    1991-03-14

    The double electron capture process by He{sup 2+} ions in collisions with helium is studied in the high velocity regime with the measurement of total cross sections at 1.5, 4 and 6 MeV beam energy and angular differential cross sections for 1.5 MeV. The experimental results compare well with theoretical calculations which include correlation effects in the initial and final He ground states for the derivation of the capture amplitude in a continuum distorted-wave approximation. (author).

  2. High-Velocity Features in Type Ia Supernovae from a Compact Circumstellar Shell

    Science.gov (United States)

    Mulligan, Brian W.; Wheeler, J. Craig

    2017-01-01

    High-velocity features (HVF) of Ca prior to B-band maximum light are a ubiquitous property of Type Ia supernovae (SN Ia), but the origin of this high-velocity material is unknown. It may result from ejection of material during the explosion, detonation of material on the surface prior to the supernova, or interaction with a companion or material in the nearby environment. Here we introduce the methods we use to simulate the interaction of SN Ia ejecta with a shell of material surrounding the progenitor at a distance of less than 1 R⊙. Assuming free expansion, constant ion state and excitation temperature, we generate synthetic spectra from the data showing the effect of equation of state, explosion model, and the width, initial density profile, and mass of the shell on the appearance and temporal evolution of the Ca II near-infrared triplet (CaNIR). The Ca abundance of the shell is taken to be a free parameter. We compare the evolution of the pseudo-equivalent width (pEW) of the CaNIR feature resulting from these models to observational results. We find that the mass of the shell must be less than 0.012 ± 0.004 M⊙. We discuss potential ambiguities in observational methods of determining the pEW of the HVF.

  3. GASS High Velocity Clouds in the Region of the Magellanic Leading Arm

    CERN Document Server

    For, Bi-Qing; McClure-Griffiths, Naomi M

    2012-01-01

    We present a new catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (HI) from the Parkes Galactic All-Sky Survey (GASS). Excellent spectral resolution allows clouds with narrow-line components to be resolved. The total number of detected clouds is 407. We describe the method of cataloging and present the basic parameters of the clouds. We discuss the general distribution of the high-velocity clouds and classify the clouds based on their morphological type. The presence of a significant number of head-tail clouds and their distribution in the region is compared with simulations. We suggest that ram-pressure stripping is a more important factor than tidal forces for the morphology and formation of the Magellanic Leading Arm and that different environmental conditions might explain the morphological difference between the Magellanic Leading Arm and Magellanic Stream. Using the velocity structure of the Leading Arm we derive the distance for the c...

  4. Oxidation performance of Fe-Al/WC composite coatings produced by high velocity arc spraying

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-jun; XU Bin-shi; ZHU Sheng; MA Shi-ning; ZHANG wei

    2005-01-01

    Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room tem perature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800 ℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2 O3, Fe2 O3, Fe3 O4 and FeO. These phases distribute unevenly. The protective Al2 O3 film firstly forms and preserves the coatings from further oxidation.

  5. Exploring High-Velocity NH_3(6,6) Emission at the Center of our Galaxy

    CERN Document Server

    Donovan, J L; Ho, P T P; Donovan, Jennifer L.; Herrnstein, Robeson M.; Ho, Paul T.P.

    2006-01-01

    Using the NH\\3 (6,6) transition, which samples dense ($\\sim 10^{5}$) molecular gas with an energy above ground of 412 K, we find hot gas at high velocities (--142 to --210 km s$^{-1}$) associated with the central 2 pc of the Galactic center. This material may be either infalling gas due to shocks or tidal stripping, or possibly gas swept from the nuclear region. We identify two high-velocity features, which we call the Southern Runner and the Cap, and correlate these features with others detected in various molecular observations of the Galactic center. The characteristic linewidths of the Southern Runner and Cap, 10 -- 15 \\kms, are similar to those of other hot Galactic center clouds. The estimated H$_{2}$ masses of these clouds are 4$\\times 10^{3}$ M$\\sol$ and 2$\\times 10^{3}$ M$\\sol$, consistent with the masses of the western streamer and northern ridge, NH\\3 (6,6) emission features detected within the central 10 pc at lower velocities. Three possible explanations for this emission are discussed assuming t...

  6. The collisions of high-velocity clouds with the galactic halo

    CERN Document Server

    Jelinek, Petr; 10.1016/j.cpc.2011.01.023

    2011-01-01

    Spiral galaxies are surrounded by a widely distributed hot coronal gas and seem to be fed by infalling clouds of neutral hydrogen gas with low metallicity and high velocities. We numerically study plasma waves produced by the collisions of these high-velocity clouds (HVCs) with the hot halo gas and with the gaseous disk. In particular, we tackle two problems numerically: 1) collisions of HVCs with the galactic halo gas and 2) the dispersion relations to obtain the phase and group velocities of plasma waves from the equations of plasma motion as well as further important physical characteristics such as magnetic tension force, gas pressure, etc. The obtained results allow us to understand the nature of MHD waves produced during the collisions in galactic media and lead to the suggestion that these waves can heat the ambient halo gas. These calculations are aiming at leading to a better understanding of dynamics and interaction of HVCs with the galactic halo and of the importance of MHD waves as a heating proce...

  7. HIGH-VELOCITY RESISTANCE EXERCISE PROTOCOLS IN OLDER WOMEN: EFFECTS ON CARDIOVASCULAR RESPONSE

    Directory of Open Access Journals (Sweden)

    Rodrigo P. da Silva

    2007-12-01

    Full Text Available Acute cardiovascular responses to different high-velocity resistance exercise protocols were compared in untrained older women. Twelve apparently healthy volunteers (62.6 ± 2.9 y performed three different protocols in the bench press (BP. All protocols involved three sets of 10 repetitions performed with a 10RM load and 2 minutes of rest between sets. The continuous protocol (CP involved ten repetitions with no pause between repetitions. The discontinuous protocols were performed with a pause of five (DP5 or 15 (DP15 seconds between the fifth and sixth repetitions. Heart rate (HR, systolic blood pressure (SBP, rate pressure product (RPP, Rating of Perceived Exertion (RPE, and blood lactate (BLa were assessed at baseline and at the end of all exercise sets. Factorial ANOVA was used to compare the cardiovascular response among different protocols. Compared to baseline, HR and RPP were significantly (p < 0.05 higher after the third set in all protocols. HR and RPP were significantly (p < 0.05 lower in DP5 and DP15 compared with CP for the BP exercise. Compared to baseline, RPE increased significantly (p < 0.05 with each subsequent set in all protocols. Blood lactate concentration during DP5 and DP15 was significantly lower than CP. It appears that discontinuous high-velocity resistance exercise has a lower cardiovascular demand than continuous resistance exercise in older women

  8. High-velocity gas towards the LMC resides in the Milky Way halo

    CERN Document Server

    Richter, P; Werner, K; Rauch, T

    2015-01-01

    To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d=9.2 kpc distance. We study the velocity-component structure of low and intermediate metal ions in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard HST, and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer spectrum of the nearby LMC star Sk-69 59 and with HI 21cm data from the Leiden-Argentina-Bonn (LAB) survey. Metal absorption towards RXJ0439.8-6809 is unambiguously detected in three different velocity components near v_LSR=0,+60, and +150 km/s. The presence of absorption proves that all three gas components are situated in front of the star, thus being located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v_LSR=+150 km/s we deri...

  9. High-Velocity Interstellar Bullets in IRAS05506+2414: A Very Young Protostar

    CERN Document Server

    Sahai, Raghvendra; Contreras, Carmen Sánchez; Morris, Mark; Sarkar, Geetanjali

    2008-01-01

    We have made a serendipitous discovery of an enigmatic outflow source, IRAS 05506+2414 (hereafter IRAS 05506), as part of a multi-wavelength survey of pre-planetary nebulae (PPNs). The HST optical and near-infrared images show a bright compact central source with a jet-like extension, and a fan-like spray of high-velocity (with radial velocities upto 350 kms/s) elongated knots which appear to emanate from it. These structures are possibly analogous to the near-IR "bullets" seen in the Orion nebula. Interferometric observations at 2.6 mm show the presence of a high-velocity CO outflow and a continuum source also with a faint extension, both of which are aligned with the optical jet structure. IRAS 05506 is most likely not a PPN. We find extended NH3 (1,1) emission towards IRAS 05506; these data together with the combined presence of far-IR emission, H2O and OH masers, and CO and CS J=2-1 emission, strongly argue for a dense, dusty star-forming core associated with IRAS 05506. IRAS 05506 is probably an intermed...

  10. Characterization of High-Velocity Single Particle Impacts on Plasma-Sprayed Ceramic Coatings

    Science.gov (United States)

    Kiilakoski, Jarkko; Lindroos, Matti; Apostol, Marian; Koivuluoto, Heli; Kuokkala, Veli-Tapani; Vuoristo, Petri

    2016-08-01

    High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.

  11. Discovery of Outlying, High-Velocity Oxygen-Rich Ejecta in Cassiopeia A

    CERN Document Server

    Fesen, R A; Morse, J; Chevalier, R A; Borkowski, K J; Dopita, M A; Gerardy, C L; Lawrence, S S; Raymond, J C; Van den Bergh, S

    2006-01-01

    Hubble Space Telescope images of the young Galactic supernova remnant Cassiopeia A reveal a far larger population of outlying, high-velocity knots of ejecta with a broader range of chemical properties than previously suspected. We identify three main classes of outer ejecta: 1) Knots dominated by [N II] 6548,6583 emission; 2) Knots dominated by oxygen emission lines especially [O II] 7319,7330; and 3) Knots with emission line strengths similar to the [S II] strong FMK ejecta commonly seen in the main emission shell. The discovery of a significant population of O-rich ejecta situated in between the suspected N-rich outer photospheric layer and S-rich FMK-like ejecta suggests that the Cas A progenitor's chemical layers were not completely disrupted by the supernova explosion outside of the remnant's NE and SW high velocity `jet' regions. In addition, we find the majority of O-rich outer ejecta at projected locations out beyond (v = 6500 - 9000 km/s) the remnant's fastest moving Fe-rich X-ray emission material (...

  12. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  13. High-velocity OH megamasers in IRAS 20100-4156: Evidence for a Supermassive Black Hole

    CERN Document Server

    Harvey-Smith, L; Green, J A; Bannister, K W; Chippendale, A; Edwards, P G; Heywood, I; Hotan, A W; Lenc, E; Marvil, J; McConnell, D; Phillips, C P; Sault, R J; Serra, P; Stevens, J; Voronkov, M; Whiting, M

    2016-01-01

    We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)'s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at $-$409 and $-$562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100$-$4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAP's BETA. Our data, combined w...

  14. An investigation of constant pressure gas well testing influenced by high velocity flow

    Energy Technology Data Exchange (ETDEWEB)

    Berumen, S. [PEMEX Exploracion-Produccion, Mexico City (Mexico); Samaniego, F. [Universidad de Mexico, Mexico City (Mexico). Facultad de Ingeniera; Cinco-Ley, H. [Universidad de Mexico, Mexico City (Mexico). Facultad de Ingeniera; Bouhroum, A.

    1997-03-01

    This paper presents the results of a study of transient pressure analysis of gas flow under either constant bottom-hole conditions or the constant wellhead pressure conditions. The effect of formation damage, wellbore storage and high velocity flow are included in the model. The analysis of simulated well tests showed that the interpretation methods used for liquid flow are generally accurate when the p{sub p}(p) is used. For these conditions, a graph of 1/q{sub D} vs log t{sub D} presents gradually lower values of 1.1513 as the value of p{sub wf} decreases: For pressure buildup conditions a graph of p{sub pD}(1, {Delta}t{sub aD})/q{sub D}({Delta}t{sub aD}=0) vs (t{sub aD}+{Delta}t{sub aD})/{Delta}t{sub aD} shows values of this slope within 1% of the 1.1513 value. The maximum error was in the rate performance simulated cases that included high-velocity flows; being less than 13%. This upper limit occurs when the formation has a relatively `high` permeability (around 1 mD) and the rate performance test is affected by high-velocity flow. It was found that pressure buildup tests are superior to rate performance tests because high-velocity flow does not affect the slope of the straight line portion of the buildup curve. However, it was also found, through derivative analysis of simulated buildup tests, that the skin factor is sensibly miscalculated when the high-velocity flow effect is singificant. This problem could lead to errors in the calculation of the skin factor, s, up to 300%. (orig.) [Deutsch] Vorgestellt werden instationaere Testergebnisse an Gas-Sonden unter konstanten Bohrlochsohlenbedingungen bzw. konstantem Bohrlochkopfdruck. Folgende Stoereffekte: Sondennahe Tragerschaedigung, Speicherkapazitaet des Bohrloches und die bei der Gasstroemung eintretende hohe Fliessgeschwindigkeit werden beruecksichtigt. Die Auswertung von simulierten Testergebnissen zeigt, dass die zur Interpretation von Erdoelsonden bewaehrten Verfahren in der Darstellung p{sub p}(p) gute

  15. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  16. Turbulence and diffusion fossil turbulence

    CERN Document Server

    Gibson, C H

    2000-01-01

    Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...

  17. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    This thesis addresses stochastic modelling of turbulence with applications to wind energy in mind. The primary tool is ambit processes, a recently developed class of computationally tractable stochastic processes based on integration with respect to Lévy bases. The subject of ambit processes...... stochastic turbulence model based on ambit processes is proposed. It is shown how a prescribed isotropic covariance structure can be reproduced. Non-Gaussian turbulence models are obtained through non-Gaussian Lévy bases or through volatility modulation of Lévy bases. As opposed to spectral models operating...... is dissipated into heat due to the internal friction caused by viscosity. An existing stochastic model, also expressed in terms of ambit processes, is extended and shown to give a universal and parsimonious description of the turbulent energy dissipation. The volatility modulation, referred to above, has...

  18. High velocity anomaly beneath the Deccan volcanic province: Evidence from seismic tomography

    Science.gov (United States)

    Iyer, H.M.; Gaur, V.K.; Rai, S.S.; Ramesh, D.S.; Rao, C.V.R.; Srinagesh, D.; Suryaprakasam, K.

    1989-01-01

    Analysis of teleseismic P-wave residuals observed at 15 seismograph stations operated in the Deccan volcanic province (DVP) in west central India points to the existence of a large, deep anomalous region in the upper mantle where the velocity is a few per cent higher than in the surrounding region. The seismic stations were operated in three deployments together with a reference station on precambrian granite at Hyderabad and another common station at Poona. The first group of stations lay along a west-northwesterly profile from Hyderabad through Poona to Bhatsa. The second group roughly formed an L-shaped profile from Poona to Hyderabad through Dharwar and Hospet. The third group of stations lay along a northwesterly profile from Hyderabad to Dhule through Aurangabad and Latur. Relative residuals computed with respect to Hyderabad at all the stations showed two basic features: a large almost linear variation from approximately +1s for teleseisms from the north to-1s for those from the southeast at the western stations, and persistance of the pattern with diminishing magnitudes towards the east. Preliminary ray-plotting and three-dimensional inversion of the P-wave residual data delineate the presence of a 600 km long approximately N-S trending anomalous region of high velocity (1-4% contrast) from a depth of about 100 km in the upper mantle encompassing almost the whole width of the DVP. Inversion of P-wave relative residuals reveal the existence of two prominent features beneath the DVP. The first is a thick high velocity zone (1-4% faster) extending from a depth of about 100 km directly beneath most of the DVP. The second feature is a prominent low velocity region which coincides with the westernmost part of the DVP. A possible explanation for the observed coherent high velocity anomaly is that it forms the root of the lithosphere which coherently translates with the continents during plate motions, an architecture characteristic of precambrian shields. The low

  19. A study of human liver ferritin and chicken liver and spleen using Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation)

    2008-01-15

    Lyophilized samples of human liver ferritin and chicken liver and spleen were measured at room temperature using Moessbauer spectroscopy with high velocity resolution. An increase in the velocity resolution of Moessbauer spectroscopy permitted us to increase accuracy and decrease experimental error in determining the hyperfine parameters of human liver ferritin and chicken liver and spleen. Moessbauer spectroscopy with high velocity resolution may be very useful for revealing small differences in hyperfine parameters during biomedical research.

  20. A Compact Circumstellar Shell as the Source of High--velocity Features in SN 2011fe

    CERN Document Server

    Mulligan, Brian W

    2015-01-01

    High--velocity features (HVF), especially of Ca II, are frequently seen in Type Ia supernovae observed prior to B-band maximum (Bmax). These HVF start at more than 25,000 km/s in the days after first light, and slow to about 18,000 km/s near Bmax. To recreate the Ca II near-infrared triplet (CaNIR) HVF in SN 2011fe, we consider the interaction between a Type Ia supernova and a compact circumstellar shell, employing a hydrodynamic 1-D simulation using FLASH. We generate synthetic spectra from the hydrodynamic results using syn++. We show that the CaNIR HVF and its velocity evolution is better explained by a supernova model interacting with a shell than a model without a shell, and briefly discuss the implications for progenitor models.

  1. The Draco Nebula, a Molecular Cloud Associated with a High Velocity Cloud?

    Science.gov (United States)

    Mebold, U.; Kalberla, P. W. M.

    1984-01-01

    Extended and very faint bright nebulae are found in high galactic latitudes at the Palomar Observatory Sky Survey. Such a nebula, located in the constellation Draco and called Draco Nebula or Dracula, was found to be in detailed positional coincidence with a 21 cm emission line feature. Estimates of the minimum visual extinction from star counts ON and OFF Dracula and an estimated visual surface brightness indicate that Dracula fits the relation SBV = 24.2 - 2.5 log AV for dust clouds located above the galactic plane and reflecting the integrated starlight of the galactic disk. Hence Dracula is probably a reflection nebula. Indicators of molecular hydrogen in Dracula, molecules such as CO, were searched for by using a 2.5-m mm-telescope. Molecular hydrogen column densities were estimated. The dynamics of CO clumps was studied. Dracula has a close positional and possibly even astrophysical relationship to the high velocity cloud phenomenon.

  2. Draco Nebula, a molecular cloud associated with a high velocity cloud

    Energy Technology Data Exchange (ETDEWEB)

    Mebold, U.; Kalberla, P.W.M.

    1984-11-01

    Extended and very faint bright nebulae are found in high galactic latitudes at the Palomar Observatory Sky Survey. Such a nebula, located in the constellation Draco and called Draco Nebula or Dracula, was found to be in detailed positional coincidence with a 21 cm emission line feature. Estimates of the minimum visual extinction from star counts ON and OFF Dracula and an estimated visual surface brightness indicate that Dracula fits the relation SBV 24.2 - 2.5 log AV for dust clouds located above the galactic plane and reflecting the integrated starlight of the galactic disk. Hence Dracula is probably a reflection nebula. Indicators of molecular hydrogen in Dracula, molecules such as CO, were searched for by using a 2.5-m mm-telescope. Molecular hydrogen column densities were estimated. The dynamics of CO clumps was studied. Dracula has a close positional and possibly even astrophysical relationship to the high velocity cloud phenomenon.

  3. Microstructure Characterization of WCCo-Mo Based Coatings Produced Using High Velocity Oxygen Fuel

    Directory of Open Access Journals (Sweden)

    Serkan Islak

    2015-12-01

    Full Text Available The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD and scanning electron microscope (SEM. XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.

  4. IUE observations of high velocity gas towards the M16 nebula

    Science.gov (United States)

    Welsh, B. Y.

    1984-03-01

    The star HD 168183, which is part of the giant H II region-molecular cloud complex of M16 (NGC 6611), has been observed at high resolution using the IUE satellite. High velocity interstellar absorption components have been detected at velocities of -83, -38 and +40 km s-1 and it is proposed that a stellar wind-driven shock-front, interacting with the ambient neutral interstellar gas, is responsible for such complex velocity structure. Strong absorption from five of the 12C16O UV molecular lines has also been detected and the present UV absorption line data seem consistent with radio observations of M16 in which the Tenorio-Tagle 'champagne' model has been invoked to explain the ionized and neutral gas outflows from the nebula.

  5. Tribological properties of high velocity arc sprayed Fe-Al based composite coatings at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; ZHANG Shu; XU Wei-pu; ZU Zi-xin; XU Bin-shi

    2004-01-01

    Fe-Al based intermetallic composite coatings were in-situ synthesized using Fe-Al/Cr3C2 or Fe-Al/WC cored wires and high velocity are spraying (HVAS) technology. The tribological properties of the Fe-Al based intermetallic composite coatings were investigated using a ball-on-disc tribotester from room temperature to 650 ℃. The results show that the coatings have relatively high bond strength and micro-hardness. The tribological properties of Fe-Al/Cr3C2 and Fe-Al/WC composite coatings were further analyzed and compared. Low and stable wear rates of the Fe-Al based intermetallic composite coatings were indicated from room temperature to 650 ℃. The excellent wear resistance of the composite coatings in high temperature was discussed.

  6. Design and Construction of a One-Stage Gas Gun for High Velocity Impact Tests

    Directory of Open Access Journals (Sweden)

    Gamboa-Castellanos Ricardo Alberto

    2015-03-01

    Full Text Available High impact tests are characterized by a projectile traveling at high speed as well as complex events such as flying fragments due to the velocity at which the impact occurs; however, these tests have become increasingly popular due to the need for more stringent protective material requirements nowadays. In this paper, the design and construction of a one-stage light gas gun for ballistic testing is presented. This particular design is characterized by its simplicity, excellent performance at low cost and compact dimensions, when compared to commercial systems, presenting an affordable option for materials characterization for high velocity impact tests. The results are completed with the characterization of an armor grade material, obtaining the ballistic limit of the material, as well as demonstrating the effectiveness and versatility of the equipment.

  7. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  8. Sliding wear behavior of high velocity arc sprayed Fe-Al coating

    Institute of Scientific and Technical Information of China (English)

    朱子新; 徐滨士; 马世宁; 张伟

    2003-01-01

    The friction and wear behavior of Fe-Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball-on-disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.

  9. DYNAMIC ANALYSIS OF PARTICLE FLYING VELOCITY IN HIGH VELOCITY OXYGEN FUEL SPRAY

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Dong Zujue; Huo Shubin

    2000-01-01

    Based on gas dynamics,thermodynamics,fluid dynamics of multiphase systems and other theories,the dynamic analyses of the particle flying velocity in a high velocity oxygen fuel spray (HVOF) is accomplished.The relationships between the flying velocity of a particle and the flying time or flying length,particle size,hot gas velocity,and pressure or density of the gas are proposed.Meanwhile,the influences of the velocity and mass rate of flow of the flame gas of a HVOF gun,and particle size on the particle flying velocity are discussed in detail.The dynamic pressure concept is introduced to express the flow capacity of hot gas of a HVOF gun,and the relationship between the dynamic pressure of a HVOF gun and the velocity of a particle for depositing is presented.

  10. Numerical Simulation on Supersonic Flow in High-Velocity Oxy-Fuel Thermal Spray Gun

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Hideki YAMAMOTO; Kazuyasu MATSUO

    2006-01-01

    This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical simulation. The HVOF gun in the present analysis is an axially symmetric convergent-divergent nozzle with the design Mach number of 2.0. From the present analysis, the distributions of velocity and temperature of the coating particles flying inside and outside of the HVOF gun are predicted. The velocity and temperature of the coating particles at the exit of the gun calculated by the present method agree well with the previous experimental results. Therefore, the present method of calculation is considered to be useful for predicting the HVOF gas and particle flows.

  11. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  12. Minimally-invasive treatment of high velocity intra-articular fractures of the distal tibia.

    LENUS (Irish Health Repository)

    Leonard, M

    2012-02-01

    The pilon fracture is a complex injury. The purpose of this study was to evaluate the outcome of minimally invasive techniques in management of these injuries. This was a prospective study of closed AO type C2 and C3 fractures managed by early (<36 hours) minimally invasive surgical intervention and physiotherapist led rehabilitation. Thirty patients with 32 intra-articular distal tibial fractures were treated by the senior surgeon (GK). Our aim was to record the outcome and all complications with a minimum two year follow-up. There were two superficial wound infections. One patient developed a non-union which required a formal open procedure. Another patient was symptomatic from a palpable plate inferiorly. An excellent AOFAS result was obtained in 83% (20\\/24) of the patients. Early minimally invasive reduction and fixation of complex high velocity pilon fractures gave very satisfactory results at a minimum of two years follow-up.

  13. High-Velocity Impact Behaviour of Prestressed Composite Plates under Bird Strike Loading

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2012-01-01

    Full Text Available An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.

  14. Changes of balance between proteinase and their inhibitors in blood of pigs with high-velocity missile wounds

    Institute of Scientific and Technical Information of China (English)

    周元国; 朱佩芳; 周继红; 李晓炎

    2003-01-01

    Objective: To study the effect of imbalance between lysosomal enzymes and their inhibitors in blood on disturbance of the local and whole body after trauma. Methods: The dynamic changes of lysosomal enzymes and proteinase inhibitors were studied in 12 pigs with femoral comminuted fractures in both hind limbs caused by high velocity missiles. Four normal pigs served as controls. Results: After injury, the activity of Cathepsin D in arterial plasma increased gradually and reached the highest level at 8 hours, acid phosphatase in serum began to increase at 12 hours and the value of serum elastase did not change significantly. The level of α1-antitrypsin, a proteinase inhibitor in plasma, decreased significantly in the early stage after injury [73.5%±6.4% and 81.0%±5.1% of the baseline value (1.67 μmol*ml-1*min-1± 0.29 μmol*ml-1*min-1) at l and 2 hours after injury, respectively, P<0.05], then increased gradually and was higher than the baseline value at 12 hours after injury. Conclusions: Imbalance between lysosomal enzymes and proteinase inhibitors occurs soon after injury, which might result in continuous tissue damage and play an important role in the disturbance of general reaction after injury.

  15. Simulation of compact circumstellar shells around Type Ia supernovae and the resulting high-velocity features

    Science.gov (United States)

    Mulligan, Brian W.; Wheeler, J. Craig

    2017-01-01

    For Type Ia supernovae that are observed prior to B-band maximum (approximately 18-20 days after the explosion) Ca absorption features are observed at velocities of order 10,000 km/s faster than the typical photospheric features. These high velocity features weaken in the first couple of weeks, disappearing entirely by a week after B-band maximum. The source of this high velocity material is uncertain: it may be the result of interaction between the supernova and circumstellar material or may be the result of plumes or bullets of material ejected during the course of the explosion. We simulate interaction between a supernova and several compact circumstellar shells, located within 0.03 solar radii of the progenitor white dwarf and having masses of 0.02 solar masses or less. We use FLASH to perform hydrodynamic simulations of the system to determine the structure of the ejecta and shell components after the interaction, then use these results to generate synthetic spectra with 1 day cadence for the first 25 days after the explosion. We compare the evolution of the velocity and pseudo-equivalent width of the Ca near-infrared triplet features in the synthetic spectra to observed values, demonstrating that these models are consistent with observations. Additionally, we fit the observed spectra of SN 2011fe (Parrent 2012, Pereira 2013) prior to B-band maximum using these models and synthetic spectra and provide an estimate for Ca abundance within the circumstellar material with implications for the mechanism by which the white dwarf explodes.

  16. Wide Binaries among High-Velocity and Metal-Poor Stars

    Science.gov (United States)

    Allen, C.; Herrera, M. A.; Poveda, A.

    The properties of old disk and halo binaries are of interest for the understanding of the processes of formation and early dynamical evolution of the Galaxy. The luminosity function of the components of wide binaries and multiples, their mass function, the fraction of halo or old disk stars that are members of wide binaries, and the distribution of its separations are some of the basic properties that are poorly understood, mainly because of the paucity of known wide binaries among halo and old disk stars. The present work is an attempt to ameliorate this situation. We have elaborated a list of 130 halo and old disk wide binaries by searching for common proper motion companions to the high-velocity and metal-poor stars studied by Schuster and Nissen (1988, 1993). Based on Stromgren photometry, these authors have derived distances, metallicities and ages for their stars. Since each star has a large and well determined proper motion it was possible to compare this value with that of NLTT stars of its vicinity. In this way we were able to identify 130 high-velocity and metal-poor common proper motion binary systems. Each system was carefully checked to avoid misidentifications, and when possible, distances were updated using the Hipparcos trigonometric parallaxes. We have determined the distribution of angular separations for our wide binaries. Reliable distances are available for all of our systems, so this distribution can be converted into a separation distribution in AU. We find that 12 systems have separations in excess of 10000 AU, and their existence poses interesting dynamical problems. Since many systems also have known radial velocities, space velocities for them can be determined, and galactic orbits have been computed and characterized. The secondaries of these wide binaries are interesting in themselves, since they represent a sampling of the faint end of the main sequence of old disk and halo stars.

  17. Effects of High-Velocity Resistance Training on Athletic Performance in Prepuberal Male Soccer Athletes.

    Science.gov (United States)

    Negra, Yassine; Chaabene, Helmi; Hammami, Mehréz; Hachana, Younés; Granacher, Urs

    2016-12-01

    Negra, Y, Chaabene, H, Hammami, M, Hachana, Y, and Granacher, U. Effects of high-velocity resistance training on athletic performance in prepuberal male soccer athletes. J Strength Cond Res 30(12): 3290-3297, 2016-The aim of this study was to assess the effectiveness of a 12-week in-season low-to-moderate load high-velocity resistance training (HVRT) in addition to soccer training as compared with soccer training only on proxies of athletic performance in prepubertal soccer players. Twenty-four male soccer players performed 2 different protocols: (a) regular soccer training with 5 sessions per week (n = 11; age = 12.7 ± 0.3 years) and (b) regular soccer training with 3 sessions per week and HVRT with 2 sessions per week (n = 13; age = 12.8 ± 0.2 years). The outcome measures included tests for the assessment of muscle strength (e.g., 1 repetition maximum [1RM] half-squat tests), jump ability (e.g., countermovement jump, squat jump [SJ], standing long jump [SLJ], and multiple 5-bound tests [MB5s]), linear speed (e.g., 5-, 10-, 20-, and 30-m sprint tests), and change of direction (e.g., T-test and Illinois change of direction test). Results revealed significant group × test interactions for the SJ test (p ≤ 0.05, d = 0.59) and the SLJ test (p soccer training is a safe and feasible intervention that has positive effects on maximal strength, vertical and horizontal jump and sprint performance as compared with soccer training only.

  18. Mapping High-Velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    Science.gov (United States)

    France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Lundqvist, Peter; Smith, Nathan; Sonneborn, George

    2015-01-01

    We present new Hubble Space Telescope images of high-velocity H-alpha and Lyman-alpha emission in the outer debris of SN 1987A. The H-alpha images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H-alpha imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals (-7,500 < V(sub obs) < -2,800 km/s) and (1,000 < V(sub obs) < 7,500 km/s), ?M(sub H) = 1.2 × 10(exp -3) M/ y. We also present the first Lyman-alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyman-alpha and X-ray emission, we observe that the majority of the high-velocity Lyman-alpha emission originates interior to the equatorial ring. The observed Lyman-alpha/H-alpha photon ratio, R(L-alpha/H-alpha) approx. = 17, is significantly higher than the theoretically predicted ratio of approx. = 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-alpha production mechanism in SN 1987A at this phase in its evolution.

  19. A turbulent premixed flame on fractal-grid generated turbulence

    CERN Document Server

    Soulopoulos, Nikos; Beyrau, Frank; Hardalupas, Yannis; Taylor, A M K P; Vassilicos, J Christos

    2010-01-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent combustion experiment. In contrast to the power law decay of a standard turbulence grid, the downstream turbulence intensity of the fractal grid increases until it reaches a peak at some distance from the grid before it finally decays. The effective mesh size and the solidity are the same as those of a standard square mesh grid with which it is compared. It is found that, for the same flow rate and stoichiometry, the fractal generated turbulence enhances the burning rate and causes the flame to further increase its area. Using a flame fractal model, an attempt is made to highlight differences between the flames established at the two different turbulent fields.

  20. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  1. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  2. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    Science.gov (United States)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  3. H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, M. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Magrini, L. [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Mucciarelli, A.; Fraternali, F. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat, 6/2, I-40127 Bologna (Italy); Beccari, G. [European Southern Observatory, Alonso de Cordova 3107, Vitacura Santiago (Chile); Ibata, R.; Martin, N. [Obs. astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Battaglia, G. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Testa, V. [INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (Italy); Fumana, M.; Marchetti, A. [INAF—IASF, via E. Bassini 15, I-20133, Milano (Italy); Correnti, M., E-mail: michele.bellazzini@oabo.inaf.it [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2015-02-10

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of M{sub H} {sub I}/L{sub V}≳20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model.

  4. A High-Velocity Cloud Impact Forming a Supershell in the Milky Way

    CERN Document Server

    Park, Geumsook; Kang, Ji-hyun; Gibson, Steven J; Peek, J E G; Douglas, Kevin A; Korpela, Eric J; Heiles, Carl E

    2016-01-01

    Neutral atomic hydrogen (HI) gas in interstellar space is largely organized into filaments, loops, and shells, the most prominent of which are "supershells". These gigantic structures requiring $\\gtrsim 3 \\times 10^{52}$ erg to form are generally thought to be produced by either the explosion of multiple supernovae (SNe) in OB associations or alternatively by the impact of high-velocity clouds (HVCs) falling to the Galactic disk. Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01$-$282 (hereafter CHVC040) at its geometrical center using the "Inner-Galaxy Arecibo L-band Feed Array" HI 21-cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud originated from an intergalactic accreting flow, collided with the disk $\\sim 5$ Myrs ago to form the supershell. Our result shows that some compact HVCs can survive their trip through the ...

  5. Dust in a compact, cold, high-velocity cloud: A new approach to removing foreground emission

    CERN Document Server

    Lenz, Daniel; Kerp, Jürgen

    2015-01-01

    Because isolated high-velocity clouds (HVCs) are found at great distances from the Galactic radiation field and because they have subsolar metallicities, there have been no detections of dust in these structures. A key problem in this search is the removal of foreground dust emission. Using the Effelsberg-Bonn HI Survey and the Planck far-infrared data, we investigate a bright, cold, and clumpy HVC. This cloud apparently undergoes an interaction with the ambient medium and thus has great potential to form dust. To remove the local foreground dust emission we used a regularised, generalised linear model and we show the advantages of this approach with respect to other methods. To estimate the dust emissivity of the HVC, we set up a simple Bayesian model with mildly informative priors to perform the line fit instead of an ordinary linear least-squares approach. We find that the foreground can be modelled accurately and robustly with our approach and is limited mostly by the cosmic infrared background. Despite t...

  6. The High Velocity Galaxy Problem of $\\Lambda$CDM in the Local Group $-$ Including External Perturbers

    CERN Document Server

    Banik, Indranil

    2016-01-01

    We recently used an axisymmetric model of the Local Group (LG) to show that the observed positions and velocities of galaxies inside it are difficult to reconcile with the standard cosmological model, $\\Lambda$CDM (MNRAS, 459, 2237). We now extend this investigation using a 3D model of the LG. This makes it feasible to directly include several other mass concentrations within and just outside the LG e.g. M33 and IC 342, respectively. As before, LG dwarf galaxies are treated as test particles. Although our best-fitting 3D model yields different velocity predictions for individual galaxies, the overall picture remains unchanged. In particular, observed radial velocities (RVs) tend to exceed $\\Lambda$CDM model predictions. The typical mismatch is slightly higher than in our earlier axisymmetric analysis, with a root mean square value of $\\sim$50 km/s. \\emph{Our main finding is that including the 3D distribution of massive perturbing dark matter halos is unlikely to help greatly with the high velocity galaxy prob...

  7. The collision of high-velocity clouds with a galactic disk

    Science.gov (United States)

    Tenorio-Tagle, G.; Bodenheimer, P.; Rozyczka, M.; Franco, J.

    1986-01-01

    Two-dimensional hydrodynamic simulations for the interaction of high-velocity clouds with a galactic disk are presented. The impinging clouds are assumed to be spherical and the target disk is represented by a constant density slab, n(g) = 1/cu cm, with a total width W(g) = 200 pc. The numerical experiments cover a wide range of cloud densities, between 0.1 and 100/cu cm, and velocities between 100 and 300 km/s. At a time approximately 10 to the 7th yr after impact, two types of final configurations are found. In the first case, the infalling cloud is completely shocked in a time short compared with the crossing time of the disk. Then, the generated cavity has time to grow sideways and large scale structures with a round shape, and in some cases nearly spherical, are produced. In the second case, which occurs for high density clouds, the cloud is shocked on a time scale longer than or comparable to the crossing time. The resultant cylindrical holes drilled across the entire disk have the dimensions of the impinging cloud. Cloud-galaxy interactions are compared with other energy sources and the morphologies of the resultant structures are suggested to resemble the large scale structures observed in H I.

  8. Ultra-Compact High Velocity Clouds as Minihalos and Dwarf Galaxies

    CERN Document Server

    Faerman, Yakov; McKee, Christopher F

    2013-01-01

    We present dark-matter minihalo models for the Ultra-Compact High Velocity HI Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 10^4 K HI gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally-stripped cosmological subhalos at redshift z=0 have dark-matter masses of ~10^7 M_{sun} within the central 300 pc (independent of total halo mass), consistent with the "Strigari mass scale" observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass-discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed HI mass and predict the associated (projected) HI half-mass radii, assuming the clouds are embedded in distant (d > 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km/s) we predict physical HI half-mass radii of 0.18 to 0.35 kp...

  9. Chemical abundances in a high velocity RR Lyrae star near the bulge

    CERN Document Server

    Hansen, Camilla Juul; Koch, Andreas; Xu, Siyi; Kunder, Andrea; Ludwig, Hans-Guenter

    2016-01-01

    Low-mass, variable, high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic centre. Wide-area surveys like APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities larger than 350 km/s. In this study we present the first abundance analysis of a low-mass, RR Lyrae star, located close to the Galactic bulge, with a space motion of ~ -400 km/s. Using medium-resolution spectra, we derive abundances (including upper limits) of 11 elements. These allow us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, combining its retrograde orbit and the derived abundances suggests that the star was accelerated from the out...

  10. Abrasive wear behaviors of high velocity arc sprayed iron aluminum composite coatings

    Institute of Scientific and Technical Information of China (English)

    Weipu Xu; Binshi Xu; Wei Zhang; Zixin Zhu; Yixiong Wu

    2005-01-01

    The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-Al/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature.The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.

  11. THE NEAREST HIGH-VELOCITY STARS REVEALED BY LAMOST DATA RELEASE 1

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jing; Chen, Li; Hou, Jinliang; Shen, Shiyin; Shao, Zhengyi; Li, Jing [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Liu, Chao; Luo, Ali; Shi, Jianrong; Zhang, Haotong; Yang, Ming; Deng, Licai [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road 20A, Beijing 100012 (China); De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Jin, Ge [University of Science and Technology of China, Hefei 230026 (China); Zhang, Yong; Hou, Yonghui; Zhang, Zhenchao, E-mail: jzhong@shao.ac.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2014-07-01

    We report the discovery of 28 candidate high-velocity stars (HVSs) at heliocentric distances of less than 3 kpc, based on the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 1. Our sample of HVS candidates covers a much broader color range than the equivalent ranges discussed in previous studies and comprises the first and largest sample of HVSs in the immediate solar neighborhood, at heliocentric distances less than 1-3 kpc. The observed as well as the derived parameters for all candidates are sufficiently accurate to allow us to ascertain their nature as genuine HVSs, of which a subset of 12 objects represents the most promising candidates. Our results also highlight the great potential of discovering statistically large numbers of HVSs of different spectral types in LAMOST survey data. This will ultimately enable us to achieve a better understanding of the nature of Galactic HVSs and their ejection mechanisms, and to constrain the structure of the Galaxy.

  12. High-velocity gas toward hot molecular cores: evidence for collimated outflows from embedded sources

    CERN Document Server

    Gibb, A G; Wyrowski, F

    2004-01-01

    We present observations made with the Berkeley-Illinois-Maryland Association millimeter array of the H2S 2(2,0)-2(1,1) and C18O 2-1 transitions toward a sample of four hot molecular cores associated with ultracompact HII regions: G9.62+0.19, G10.47+0.03, G29.96-0.02 and G31.41+0.31. The angular resolution varies from 1.5 to 2.4 arcsec, corresponding to scales of ~0.06 pc at the distance of these sources. High-velocity wings characteristic of molecular outflows are detected toward all four sources in the H2S line. In two cases (G29.96 and G31.41) red- and blueshifted lobes are clearly defined and spatially separate, indicating that the flows are collimated. We also confirm the previous detection of the outflow in G9.62F. Although the gas-phase H2S abundance is not well constrained, assuming a value of 10^-7 yields lower limits to total outflow masses of ~8 Msun, values which are consistent with the driving sources being massive protostars. Linear velocity gradients are detected in both C18O and H2S across G9.6...

  13. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Science.gov (United States)

    Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  14. Identifying galaxy candidates in WSRT HI imaging of ultra-compact high velocity clouds

    CERN Document Server

    Adams, Elizabeth A K; Cannon, John M; Giovanelli, Riccardo; Haynes, Martha P

    2016-01-01

    Ultra-compact high velocity clouds (UCHVCs) were identified in the ALFALFA HI survey as potential gas-bearing dark matter halos. Here we present higher resolution neutral hydrogen (HI) observations of twelve UCHVCS with the Westerbork Synthesis Radio Telescope (WSRT). The UCHVCs were selected based on a combination of size, isolation, large recessional velocity and high column density as the best candidate dark matter halos. The WSRT data were tapered to image the UCHVCs at 210" (comparable to Arecibo) and 105" angular resolution. In a comparison of the single-dish to interferometer data, we find that the line flux recovered in the WSRT observations is comparable to that from the single-dish ALFALFA data. In addition, any structure seen in the ALFALFA data is reproduced in the WSRT maps at the same angular resolution. At 210'" resolution all the sources are generally compact with a smooth HI morphology, as expected from their identification as UCHVCs. At the higher angular resolution, a majority of the source...

  15. Fabricating Aluminum Bronze Rotating Band for Large-Caliber Projectiles by High Velocity Arc Spraying

    Science.gov (United States)

    Wu, Bin; Fang, Ling-hui; Chen, Xiao-lei; Zou, Zhi-qiang; Yu, Xu-hua; Chen, Gang

    2014-02-01

    The necessity of finding new rotating band materials and developing corresponding joining technologies for large-caliber projectiles has been revealed by the recent increase in the ballistic performance of high loads. In this paper, aluminum bronze coatings were fabricated by the high velocity arc spraying (HVAS) technique. Microstructure and microhardness of the prepared coatings were investigated. Ring-on-disk dry sliding wear tests were conducted in an ambient condition to examine the tribological behavior of the coatings. Quasi-static engraving processes of rotating bands made of as-sprayed aluminum bronze coating and bulk copper were studied using rate-controlled push test methodology on an MTS 810 Material Testing System. The results show that the as-sprayed aluminum bronze coatings have a dense microstructure with porosity of about 1.6%. Meanwhile, the as-sprayed coating presents a higher microhardness than pure copper. The friction coefficient of coatings is about 0.2-0.3 in the steady state. Tribological mechanisms of the as-sprayed coatings were discussed. The engraving test results show that the aluminum bronze rotating band presents high bonding strength and good plasticity. The HVAS aluminum bronze coating should be a possible substitute for the state-of-the-art copper rotating band.

  16. A High-velocity Cloud Impact Forming a Supershell in the Milky Way

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, J. E. G.; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2016-08-01

    Neutral atomic hydrogen (H i) gas in interstellar space is largely organized into filaments, loops, and shells, the most prominent of which are “supershells.” These gigantic structures, which require ≳ 3× {10}52 erg to form, are generally thought to be produced by either the explosion of multiple supernovae (SNe) in OB associations or, alternatively, by the impact of high-velocity clouds (HVCs) falling into the Galactic disk. Here, we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040 + 01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” H i 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  17. The First Distance Constraint on the Renegade High Velocity Cloud Complex WD

    CERN Document Server

    Peek, J E G; Sana, Hugues; Roman-Duval, Julia; Tumlinson, Jason; Zheng, Yong

    2016-01-01

    We present medium-resolution, near-ultraviolet VLT/FLAMES observations of the star USNO-A0600-15865535. We adapt a standard method of stellar typing to our measurement of the shape of the Balmer epsilon absorption line to demonstrates that USNO-A0600-15865535 is a blue horizontal branch star, residing in the lower stellar halo at a distance of 4.4 kpc from the Sun. We measure the H & K lines of singly-ionized calcium and find two isolated velocity components, one originating in the disk, and one associated with high-velocity cloud complex WD. This detection demonstrated that complex WD is closer than ~4.4 kpc and is the first distance constraint on the +100 km/s Galactic complex of clouds. We find that Complex WD is not in corotation with the Galactic disk as has been assumed for decades. We examine a number of scenarios, and find that the most likely is that Complex WD was ejected from the solar neighborhood and is only a few kpc from the Sun.

  18. Experimental and analytical study of high velocity impact on Kevlar/Epoxy composite plates

    Science.gov (United States)

    Sikarwar, Rahul; Velmurugan, Raman; Madhu, Velmuri

    2012-12-01

    In the present study, impact behavior of Kevlar/Epoxy composite plates has been carried out experimentally by considering different thicknesses and lay-up sequences and compared with analytical results. The effect of thickness, lay-up sequence on energy absorbing capacity has been studied for high velocity impact. Four lay-up sequences and four thickness values have been considered. Initial velocities and residual velocities are measured experimentally to calculate the energy absorbing capacity of laminates. Residual velocity of projectile and energy absorbed by laminates are calculated analytically. The results obtained from analytical study are found to be in good agreement with experimental results. It is observed from the study that 0/90 lay-up sequence is most effective for impact resistance. Delamination area is maximum on the back side of the plate for all thickness values and lay-up sequences. The delamination area on the back is maximum for 0/90/45/-45 laminates compared to other lay-up sequences.

  19. Fabry-Perot images of NGC 1275 and its puzzling high-velocity system

    Science.gov (United States)

    Caulet, Adeline; Woodgate, Bruce E.; Brown, Larry W.; Gull, Theodore R.; Hintzen, Paul; Lowenthal, James D.; Oliversen, Ronald J.; Ziegler, Michael M.

    1992-01-01

    The Fabry-Perot imager is used to obtain a velocity sequence of calibrated narrow-band CCD images to cover 3000 km/s velocity space between the redshifted H-alpha emission lines of NGC 1275, its extended associated system of low-velocity (LV) filaments, and the high-velocity (HV) system of knots, projected on the same line of sight in the sky. The lack of intermediate-velocity emission-line gas between the two systems leads to an upper limit of 1.5 x 10 exp -16 ergs/sq cm s sq arcsec (3 sigma) on stripped ionized gas due to the dynamical interaction between NGC 1275 and its HV companion galaxy. It also confirms previous reports that the level of continuum light arising from stellar and nonstellar sources must be very low in otherwise bright, strongly concentrated emission-line knots with unresolved diameters of 425/h pc. The H-alpha luminosities of the emission-line regions of the two systems were measured and star formation rates derived in order to investigate quantitatively the physical relation between the HV galaxy, NGC 1275, and the surrounding cooling flow filaments.

  20. Atomic Hydrogen Gas in Dark-Matter Minihalos and the Compact High Velocity Clouds

    CERN Document Server

    Sternberg, A; Wolfire, M G

    2002-01-01

    We calculate the coupled hydrostatic and ionization structures of pressure-supported gas clouds that are confined by gravitationally dominant dark-matter (DM) mini-halos and by an external bounding pressure provided by a hot medium. We focus on clouds that are photoionized and heated by the present-day background metagalactic field and determine the conditions for the formation of warm (WNM), and multi-phased (CNM/WNM) neutral atomic hydrogen (HI) cores in the DM-dominated clouds. We consider LCDM dark-matter halos, and we compute models for a wide range of halo masses, total cloud gas masses, and external bounding pressures. We present models for the pressure-supported HI structures observed in the Local Group dwarf galaxies Leo A and Sag DIG. We then construct minihalo models for the multi-phased (and low-metallicity) compact high-velocity HI clouds (CHVCs). If the CHVCs are drawn from the same family of halos that successfully reproduce the dwarf galaxy observations, then the CHVCs must be "circumgalactic ...

  1. On the Metallicity and Origin of the Smith High-Velocity Cloud

    CERN Document Server

    Fox, Andrew J; Lockman, Felix J; Wakker, Bart P; Hill, Alex S; Heitsch, Fabian; Stark, David V; Barger, Kathleen A; Sembach, Kenneth R; Rahman, Mubdi

    2015-01-01

    The Smith Cloud is a gaseous high-velocity cloud (HVC) in an advanced state of accretion, only 2.9 kpc below the Galactic plane and due to impact the disk in 27 Myr. It is unique among HVCs in having a known distance (12.4+/-1.3 kpc) and a well-constrained 3D velocity (296 km/s), but its origin has long remained a mystery. Here we present the first absorption-line measurements of its metallicity, using HST/COS UV spectra of three AGN lying behind the Cloud together with Green Bank Telescope 21 cm spectra of the same directions. Using Voigt-profile fitting of the S II 1250, 1253, 1259 triplet together with ionization corrections derived from photoionization modeling, we derive the sulfur abundance in each direction; a weighted average of the three measurements gives [S/H]=-0.28+/-0.14, or 0.53+0.21-0.15 solar metallicity. The finding that the Smith Cloud is metal-enriched lends support to scenarios where it represents recycled Galactic material rather than the remnant of a dwarf galaxy or accreting intergalact...

  2. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    CERN Document Server

    Gutiérrez, Claudia P; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares, Felipe E; Haislip, Joshua B; Reichart, Daniel E

    2016-01-01

    Aims. We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods. We obtain and analyze multi-band optical light curves and optical-near-infrared spectroscopy at low and medium resolution spanning from -7 days to +300 days from the B-band maximum. Results. A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light curve shape of $\\Delta m_{15}(B)=1.12 \\pm 0.02$ and a stretch s = $0.94 \\pm 0.01$ suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of $E(B - V) = 0.25 \\pm 0.05$ and a reddening law of $R_v = 1.54 \\pm 0.65$. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si II {\\lambda}6355 absorption features. We also find that SN 2010ev is a high-velocity gradient SN, with a value of $164 \\pm 7$ km s$^{-1}$ d$^{-1}$. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocit...

  3. High-Velocity Features of Calcium and Silicon in the Spectra of Type Ia Supernovae

    CERN Document Server

    Silverman, Jeffrey M; Marion, G H; Wheeler, J Craig; Barna, Barnabas; Szalai, Tamas; Mulligan, Brian; Filippenko, Alexei V

    2015-01-01

    "High-velocity features" (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical "photospheric-velocity features" (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ~9000-15,000 km/s near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the "Phillips relation." A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II {\\lambda}6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We f...

  4. Integrity of high-velocity water slug generated by an impacting technique

    Science.gov (United States)

    Dehkhoda, Sevda; Bourne, Neil

    2013-06-01

    A pulsed water jet is a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at the stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the integrity of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence of the generated water pulse was of concern in this study. If repeated shock reflections within the chamber were transmitted or were carried into the internal geometry of nozzle, the emerging jet could pulsate. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to study the quality and endurance of the water pulse stream as it travelled through air.

  5. Production of a high-velocity water slug using an impacting technique

    Science.gov (United States)

    Dehkhoda, S.; Bourne, N. K.

    2014-02-01

    A pulsed water jet consists of a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress pulses reaching an amplitude known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at a lower stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the quality of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence and integrity of the jet core was of concern in this study. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to determine the unity and endurance of the water slug stream once travelled through air.

  6. VLA Observations of the Magnetic Field of the Smith High Velocity Cloud

    Science.gov (United States)

    Betti, Sarah; Hill, Alex S.; Mao, Sui Ann; McClure-Griffiths, Naomi M.; Lockman, Felix J.; Benjamin, Robert A.; Gaensler, Bryan M.

    2017-01-01

    High velocity clouds (HVCs) are hydrogen gas clouds around galaxies with velocities inconsistent with Galactic rotation. HVCs may fuel future star formation and drive galaxy evolution. The Smith Cloud is an HVC with an orbit suggesting it has made at least one passage through the disk. A measured magnetic field suggests how it survived passage through the Galactic halo. The Faraday rotation measure (RM) provides information about the strength and direction of the magnetic field. We use the Karl G. Jansky Very Large Array (VLA) to obtain reliable RMs towards ~950 background point sources to measure the geometry of the magnetic field of the Smith Cloud. These RMs constrain the strength of the magnetic field at the head, tail, and body of the Smith Cloud while RMs directly behind the Smith Cloud suggest there is ionized gas associated with the cloud that has not previously been detected. The confirmation of the magnetic field of the Smith Cloud along with a detailed morphology of the magnetic field structure will constrain how HVCs pass through the Galactic halo without losing their gas and survive the passage through the intergalactic and interstellar media.

  7. HI Imaging of LGS 3 and an Apparently Interacting High-Velocity Cloud

    CERN Document Server

    Robishaw, T; Blitz, L; Robishaw, Timothy; Simon, Joshua D.; Blitz, Leo

    2002-01-01

    We present a 93' by 93' map of the area near the Local Group dwarf galaxy LGS 3, centered on an HI cloud 30' away from the galaxy. Previous authors associated this cloud with LGS 3 but relied on observations made with a 36' beam. Our high-resolution (3.4'), wide-field Arecibo observations of the region reveal that the HI cloud is distinct from the galaxy and suggest an interaction between the two. We point out faint emission features in the map that may be gas that has been tidally removed from the HI cloud by LGS 3. We also derive the rotation curve of the cloud and find that it is in solid-body rotation out to a radius of 10', beyond which the rotation velocity begins to decline. Assuming a spherical geometry for the cloud, the implied mass is 2.8 x 10^7 (d/Mpc) M_{Sun}, where d is the distance in Mpc. The observed HI mass is 5.5 x 10^6 (d/Mpc)^2 M_{Sun}, implying that the cloud is dark-matter dominated unless its distance is at least 1.9 Mpc. We propose that the cloud is a high-velocity cloud that is under...

  8. Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows

    Science.gov (United States)

    Ingebo, Robert D.

    1993-01-01

    Effects of gas properties on cryogenic liquid-jet atomization in high-velocity helium, nitrogen, and argon gas flows were investigated. Volume median diameter, D(sub v.5e), data were obtained with a scattered-light scanning instrument. By calculating the change in spray drop size, -Delta D(sub v.5)(exp 2), due to droplet vaporization, it was possible to calculate D(sub v.5C). D(sub v.5C) is the unvaporized characteristic drop size formed at the fuel-nozzle orifice. This drop size was normalized with respect to liquid-jet diameter, D(sub O). It was then correlated with several dimensionless groups to give an expression for the volume median diameter of cryogenic LN2 sprays. This expression correlates drop size D(sub v.5c) with aerodynamic and liquid-surface forces so that it can be readily determined in the design of multiphase-flow propellant injectors for rocket combustors.

  9. Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity

    Directory of Open Access Journals (Sweden)

    Jiajia Zheng

    2014-02-01

    Full Text Available A novel magnetorheological (MR damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap.

  10. High Velocity Outflow in CO J=7-6 from the Orion Hot Core

    CERN Document Server

    Furuya, Ray S

    2009-01-01

    Using the Caltech Submillimeter Observatory 10.4-meter telescope, we performed sensitive mapping observations of 12CO J=7-6 emission at 807 GHz towards Orion IRc2. The image has an angular resolution of 10", which is the highest angular resolution data toward the Orion Hot Core published for this transition. In addition, thanks to the on-the-fly mapping technique, the fidelity of the new image is rather high, particularly in comparison to previous images. We have succeeded in mapping the northwest-southeast high-velocity molecular outflow, whose terminal velocity is shifted by ~70-85 km/s with respect to the systemic velocity of the cloud. This yields an extremely short dynamical time scale of ~900 years. The estimated outflow mass loss rate shows an extraordinarily high value, on the order of 10^{-3} Msun/yr. Assuming that the outflow is driven by Orion IRc2, our result agrees with the picture so far obtained for a 20 Msun (proto)star in the process of formation.

  11. Residual stresses in high-velocity oxy-fuel metallic coatings

    Science.gov (United States)

    Totemeier, T. C.; Wright, R. N.; Swank, W. D.

    2004-06-01

    X-ray based residual stress measurements were made on type 316 stainless steel and Fe3Al coatings that were high-velocity oxy-fuel (HVOF) sprayed onto low-carbon and stainless steel substrates. Nominal coating thicknesses varied from 250 to 1500 µm. The effect of HVOF spray particle velocity on residual stress and deposition efficiency was assessed by preparing coatings at three different torch chamber pressures. The effect of substrate thickness on residual stress was determined by spraying coatings onto thick (6.4 mm) and thin (1.4 mm) substrates. Residual stresses were compressive for both coating materials and increased in magnitude with spray velocity. For coatings applied to thick substrates, near-surface residual stresses were essentially constant with increasing coating thickness. Differences in thermal expansion coefficient between low-carbon and stainless steels led to a 180 MPa difference in residual stress for Fe3Al coatings. Deposition efficiency for both materials is maximized at an intermediate (˜600 m/s) velocity. Considerations for X-ray measurement of residual stresses in HVOF coatings are also presented.

  12. Smith's Cloud: A High-velocity Cloud Colliding with the Milky Way

    CERN Document Server

    Lockman, Felix J; Heroux, A J; Langston, Glen I

    2008-01-01

    New 21cm HI observations made with the Green Bank Telescope show that the high-velocity cloud known as Smith's Cloud has a striking cometary appearance and many indications of interaction with the Galactic ISM. The velocities of interaction give a kinematic distance of 12.4 +/-1.3 kpc, consistent with the distance derived from other methods. The Cloud is >3 x 1 kpc in size and its tip at (l,b)=(39 deg,-13 deg) is 7.6 kpc from the Galactic center and 2.9 kpc below the Galactic plane. It has greater than 10^6 M solar masses in HI. Its leading section has a total space velocity near 300 km/s, is moving toward the Galactic plane with a velocity of 73+/-26 km/s, and is shedding material to the Galaxy. In the absence of drag the Cloud will cross the plane in about 27 Myr. Smith's Cloud may be an example of the accretion of gas by the Milky Way needed to explain certain persistent anomalies in Galactic chemical evolution.

  13. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    Veen, van der Roeland Cornelis Adriaan

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study t

  14. Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    CERN Document Server

    Schekochihin, A A; Highcock, E G; Dellar, P J; Dorland, W; Hammett, G W

    2015-01-01

    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., drift-wave turbulence driven by temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. A consistent theory is constructed in which very little free energy leaks into high velocity moments of the distribution, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also i...

  15. Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri

    CERN Document Server

    White, Marc C; Sutherland, Ralph S; Salmeron, Raquel; McGregor, Peter J

    2015-01-01

    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock- excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission t...

  16. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    Science.gov (United States)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  17. Turbulent Phenomena in the Aerobreakup of Liquid Droplets

    Directory of Open Access Journals (Sweden)

    Andras Horvath

    2012-09-01

    Full Text Available This work presents the computational simulation results of turbulent phenomena in a high velocity multiphase flow, where the predominantly turbulent phase is the gaseous phase. For reliable simulation results the code is validated by comparing results of a single phase supersonic turbulent flow to other simulation and experimental results and good agreement is found. This is a precondition for the simulation of the initial stages of the breakup of a liquid droplet in a high Weber number flow. The role of the subgrid-scale turbulence is investigated and two distinct regions are identified. In the second region turbulence phenomena seem to be the predominant factors for the characteristic shape. Simulation results are compared to experiments of the droplet breakup at high Weber number.

  18. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    Science.gov (United States)

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  19. A Stress-Induced Martensitic Transformation in Aged Ti49Ni51 Alloy after High-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Yingying Zhu

    2016-06-01

    Full Text Available The effects of a high-velocity impact on the microstructure, phase transformation and mechanical property of aged Ti49Ni51 alloy are investigated. The transformation behavior and microstructure along the impact direction after impact emerge with regionalization characteristics, including a deformed region near the crater (0–4 mm and an un-deformed region of the distal crater (5–6 mm. Stress-induced martensite is the main deformation mechanism in the deforming region of aged Ti49Ni51 alloy under high-velocity impact.

  20. INTERSTELLAR TURBULENCE

    Directory of Open Access Journals (Sweden)

    D. Falceta-Gonçalves

    2011-01-01

    Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.

  1. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  2. GEOMETRIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-05-01

    Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed

  3. HI Observations of the Asymptotic Giant Branch Star X Herculis: Discovery of an Extended Circumstellar Wake Superposed on a Compact High-Velocity Cloud

    CERN Document Server

    Matthews, L D; Gerard, E; Bertre, T Le; Johnson, M C; Dame, T M

    2010-01-01

    We report HI 21-cm line observations of the AGB star X Her obtained with the Green Bank Telescope (GBT) and the Very Large Array (VLA). We have detected HI emission totaling M_HI=2.1e-03 M_sun associated with the circumstellar envelope of the star. The HI distribution exhibits a head-tail morphology, similar to those previously observed around Mira and RS Cnc. The tail extends ~6.0' (0.24 pc) in the plane of the sky, along the direction of the star's space motion. We also detect a velocity gradient of ~6.5 km/s across the envelope, consistent with the HI tracing a turbulent wake that arises from the motion of a mass-losing star through the ISM. GBT mapping of a 2x2deg region around X Her reveals that the star lies (in projection) near the periphery of a much larger HI cloud that also exhibits signatures of ISM interaction. The properties of the cloud are consistent with those of compact high-velocity clouds. Using CO observations, we have placed an upper limit on its molecular gas content of N_H22.4~M_sun) an...

  4. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  5. COLLISIONS BETWEEN DARK MATTER CONFINED HIGH VELOCITY CLOUDS AND MAGNETIZED GALACTIC DISKS: THE SMITH CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Galyardt, Jason; Shelton, Robin L., E-mail: jeg@uga.edu, E-mail: rls@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

    2016-01-01

    The Galaxy’s population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark-matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of 5 × 10{sup 6}M{sub ⊙} and dark matter minihalo masses of 0, 3 × 10{sup 8}, or 1 × 10{sup 9} M{sub ⊙}. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud’s collision with the galactic disk creates a hole in the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to 6.0 × 10{sup 5} M{sub ⊙} in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark-matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.

  6. Uvby-B Photometry of High Velocity Stars. Photometric Parallaxes and Preliminary Kinematic Results

    Science.gov (United States)

    Schuster, W. J.

    1990-11-01

    RESUMEN. Se han explorado dos metodos para la determinaci6n de paralajes fotometricos usando fotometrfa uv - . Estos metodos dependen de las relaciones estandar de Crawford (1975) y de Olsen (1984) y de colores y magnitudes sinteticas de VandenBerg y Bell (1985). Ambos metodos incluyen una correcci6n evolucionaria de forma f6c0. Se calculan las distancias para las 711 estrellas de alta velocidad y pobres en metales en el catalogo uvby-p de Schuster y Nissen (1988). Se comparan estas con las distancias de Sandage y Fouts (1987) y Laird, Carney y Latham (1988) para las estrellas en comtfin. Tambien son aplicables nuestros metodos a estrellas de paralaje. En general las comparaciones son satisfactorias y las sistematicas son despreciables o pequefias. Las distancias finales de nuestras 711 estrellas se aplican a un numero de problemas cinematicos. Se estudian algunos diagramas interesantes, tales como el diagrama de energia de Toomre y el diagrama V(rot) versus [Fe/H]. ABSTRACT Two methods for the determination of parallaxes using uvbyP photometry are being explored. These methods depend upon the standard relations of Crawford (1975) and of Olsen (1984) and upon synthetic colors and magnitudes of VandenBerg and Bell (1985). Both include an evolutionary correction of the form f6c0. Distances are calculated for the 711 high-velocity and metal-poor stars in the uvby-P catalogue of Schuster and Nissen (1988). These are compared to the distances of Sandage and Fouts (1987) and Laird, Carney, and Lathain (1988) for stars in common. Also our methods are applied to parallax stars. In general the comparisons are good with negligible or small systematic differences. The final distances of our 711 stars are applied to a number of kinematical problems. Several interesting diagrams are studied, sucl as Toomre energy diagram and the plot of V(rot) versus [Fe/H]. Key words: DISTANCES - PHOTOMETRY - STARS-POPULATION II

  7. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  8. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    Science.gov (United States)

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  9. Characteristics of MCrAlY coatings sprayed by high velocity oxygen-fuel spraying system

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Y.; Saitoh, M.; Tamura, M.

    2000-01-01

    High velocity oxygen-fuel (HVOF) spraying system in open air has been established for producing the coatings that are extremely clean and dense. It is thought that the HVOF sprayed MCrAlY (M is Fe, Ni and/or Co) coatings can be applied to provide resistance against oxidation and corrosion to the hot parts of gas turbines. Also, it is well known that the thicker coating can be sprayed in comparison with any other thermal spraying systems due to improved residual stresses. However, thermal and mechanical properties of HVOF coatings have not been clarified. Especially, the characteristics of residual stress, that are the most important property from the view point of production technique, have not been made clear. In this paper, the mechanical properties of HVOF sprayed MCrAlY coatings were measured in both the case of as-sprayed and heat-treated coatings in comparison with a vacuum plasma sprayed MCrAlY coatings. It was confirmed that the mechanical properties of HVOF sprayed MCrAlY coatings could be improved by a diffusion heat treatment to equate the vacuum plasma sprayed MCrAlY coatings. Also, the residual stress characteristics were analyzed using a deflection measurement technique and a X-ray technique. The residual stress of HVOF coating was reduced by the shot-peening effect comparable to that of a plasma spray system in open air. This phenomena could be explained by the reason that the HVOF sprayed MCrAlY coating was built up by poorly melted particles.

  10. The space density of primordial gas clouds near galaxies and groups and their relation to galactic high-velocity clouds

    NARCIS (Netherlands)

    Zwaan, MA; Briggs, FH

    2000-01-01

    The Arecibo H I Strip Survey probed the halos of similar to 300 cataloged galaxies and the environments of similar to 14 groups with sensitivity to neutral hydrogen masses greater than or equal to 10(7) M-circle dot. The survey detected no objects with properties resembling the high-velocity clouds

  11. DISTRIBUTION AND ORIGIN OF HIGH-VELOCITY CLOUDS .2. STATISTICAL-ANALYSIS OF THE WHOLE-SKY SURVEY

    NARCIS (Netherlands)

    WAKKER, BP

    1991-01-01

    A sensitive, almost complete, whole-sky survey of high-velocity clouds (HVCs) has been made available by Bajaja et al. (1985) and Hulsbosch & Wakker (1988, Paper I). This paper (Paper II in a series on HVCs) is dedicated to the analysis of the statistical properties of these surveys. The main conclu

  12. Hyperfine interactions in soybean and lupin oxy-leghemoglobins studied using Mössbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [University of Delhi South Campus, Department of Biochemistry (India); Alenkina, I. V. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Zakharova, A. P. [Ural Federal University, Department of Experimental Physics, Institute of Physics and Technology (Russian Federation); Oshtrakh, M. I., E-mail: oshtrakh@gmail.com; Semionkin, V. A. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation)

    2015-04-15

    A comparative study of monomeric soybean and lupin leghemoglobins in the oxy-form was carried out using Mössbauer spectroscopy with a high velocity resolution at 90 K. The {sup 57}Fe hyperfine parameters of measured spectra were evaluated and compared with possible structural differences in the heme Fe(II)–O {sub 2} bond.

  13. TOPICAL REVIEW Warm spraying—a novel coating process based on high-velocity impact of solid particles

    Directory of Open Access Journals (Sweden)

    Seiji Kuroda et al

    2008-01-01

    Full Text Available In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1 the critical velocity needed to form a coating can be significantly lowered by heating, (2 the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3 various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC–Co cermet and polymers are described with potential industrial applications.

  14. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  15. ULTRA-COMPACT HIGH VELOCITY CLOUDS AS MINIHALOS AND DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Faerman, Yakov; Sternberg, Amiel [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); McKee, Christopher F., E-mail: yakovfae@post.tau.ac.il [Department of Physics and Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2013-11-10

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 10{sup 4} K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ∼10{sup 7} M{sub ☉} within the central 300 pc (independent of total halo mass), consistent with the 'Strigari mass scale' observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d ∼> 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s{sup –1}), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M{sub 300} = 8 (± 0.2) × 10{sup 6} M{sub ☉} best fits the observed H I profile. We derive an upper limit of P{sub HIM} ∼< 150 cm{sup –3} K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  16. Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments

    Science.gov (United States)

    Reches, Z.; Liao, Z.; Chang, J. C.

    2014-12-01

    We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.

  17. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    Energy Technology Data Exchange (ETDEWEB)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 AMU, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Landsman, Wayne B. [Adnet Systems, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Parrent, Jerod T. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pritchard, Tyler A.; Roming, Peter W. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Wang, Xiaofeng, E-mail: gmarion@cfa.harvard.edu [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 1,00084 (China)

    2013-11-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup –1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = –19.46 mag and Δm{sub 15}(B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup –1}). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup –1}. After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  18. On the Metallicity and Origin of the Smith High-velocity Cloud

    Science.gov (United States)

    Fox, Andrew J.; Lehner, Nicolas; Lockman, Felix J.; Wakker, Bart P.; Hill, Alex S.; Heitsch, Fabian; Stark, David V.; Barger, Kathleen A.; Sembach, Kenneth R.; Rahman, Mubdi

    2016-01-01

    The Smith Cloud (SC) is a gaseous high-velocity cloud (HVC) in an advanced state of accretion, only 2.9 kpc below the Galactic plane and due to impact the disk in ≈27 Myr. It is unique among HVCs in having a known distance (12.4 ± 1.3 kpc) and a well-constrained 3D velocity (296 km s-1), but its origin has long remained a mystery. Here we present the first absorption-line measurements of its metallicity, using Hubble Space Telescope/COS UV spectra of three active galactic nuclei lying behind the Cloud together with Green Bank Telescope 21 cm spectra of the same directions. Using Voigt-profile fitting of the S ii λλ1250, 1253, 1259 triplet together with ionization corrections derived from photoionization modeling, we derive the sulfur abundance in each direction; a weighted average of the three measurements gives [S/H] = -0.28 ± 0.14, or {0.53}-0.15+0.21 solar metallicity. The finding that the SC is metal-enriched lends support to scenarios where it represents recycled Galactic material, rather than the remnant of a dwarf galaxy or accreting intergalactic gas. The metallicity and trajectory of the Cloud are both indicative of an origin in the outer disk. However, its large mass and prograde kinematics remain to be fully explained. If the cloud has accreted cooling gas from the corona during its fountain trajectory, as predicted in recent theoretical work, its current mass would be higher than its launch mass, alleviating the mass concern. Based on observations taken under program 13840 of the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, and under program GBT09A_17 of the Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

  19. Turbulence and turbulent mixing in natural fluids

    CERN Document Server

    Gibson, Carl H

    2010-01-01

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

  20. DNS study on shock/turbulence interaction in homogeneous isotropic turbulence at low turbulent Mach number

    Science.gov (United States)

    Tanaka, Kento; Watanabe, Tomoaki; Nagata, Koji; Sasoh, Akihiro; Sakai, Yasuhiko; Hayase, Toshiyuki; Nagoya Univ Collaboration

    2016-11-01

    The interaction between homogeneous isotropic turbulence and normal shock wave is investigated by direct numerical simulations (DNSs). In the DNSs, a normal shock wave with a shock Mach number 1.1 passes through homogeneous isotropic turbulence with a low turbulent Mach number and a moderate turbulent Reynolds number. The statistics are calculated conditioned on the distance from the shock wave. The results showed that the shock wave makes length scales related to turbulence small. This effect is significant for the Taylor microscale defined with the velocity derivative orthogonal to the shock wave. The decrease in the Kolmogorov scale is also found. Statistics of velocity derivative are found to be changed by the shock wave propagation. The shock wave causes enstrophy amplification due to the dilatation/vorticity interaction. By this interaction, the vorticity components parallel to the shock wave is more amplified than the normal component. The strain rate is also amplified by the shock wave.

  1. Theorem of turbulent intensity and macroscopic mechanism of the turbulence development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Turbulence is one of the most common nature phenomena in everyday experience, but that is not adequately understood yet. This article reviews the history and present state of development of the turbulence theory and indicates the necessity to probe into the turbulent features and mechanism with the different methods at different levels. Therefore this article proves a theorem of turbulent transpor- tation and a theorem of turbulent intensity by using the theory of the nonequilibrium thermodynamics, and that the Reynolds turbulence and the Rayleigh-Bénard turbulence are united in the theorems of the turbulent intensity and the turbulent transportation. The macroscopic cause of the development of fluid turbulence is a result from shearing effect of the velocity together with the temperature, which is also the macroscopic cause of the stretch and fold of trajectory in the phase space of turbulent field. And it is proved by the observed data of atmosphere that the phenomenological coefficient of turbulent in- tensity is not only a function of the velocity shear but also a function of temperature shear, viz the sta- bility of temperature stratification, in the atmosphere. Accordingly, authenticity of the theorem, which is proved by the theory of nonequilibrium thermodynamics, of turbulent intensity is testified by the facts of observational experiment.

  2. Turbulence and turbulent mixing in natural fluids

    OpenAIRE

    2010-01-01

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until str...

  3. Burgers turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bec, Jeremie [Laboratoire Cassiopee UMR6202, CNRS, OCA, BP4229, 06304 Nice Cedex 4 (France)]. E-mail: jeremie.bec@obs-nice.fr; Khanin, Konstantin [Department of Mathematics, University of Toronto, Toronto, Ont., M5S 3G3 (Canada)]. E-mail: khanin@math.toronto.edu

    2007-08-15

    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.

  4. Turbulence Modeling

    Science.gov (United States)

    1991-10-01

    and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also

  5. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  6. Turbulence and mixing in the early universe

    CERN Document Server

    Gibson, C H

    2001-01-01

    The role of turbulence and turbulent mixing in the formation and evolution of the early universe is examined. A new quantum-gravitational-dynamics model suggests that the mechanism of the hot big bang is functionally equivalent to the mechanism of turbulence, where an inertial-vortex force at Planck scales matches the Planck gravitational force and drives the formation of space-time-energy and the formation of more Planck particles, more spinning Planck-Kerr particles, and a big bang turbulence cascade to larger scales before cooling to the strong force freeze out temperature. Temperature fluctuations between the Planck temperature and strong force temperature are mixed by turbulence to give a Corrsin-Obukhov spectral form. Inflation fossilizes the turbulent temperature fluctuations by stretching them beyond the horizon scale of causal connection ct, where c is light speed and t is time. Fossil temperature turbulence fluctuations seed anisotropies in the nucleosynthesis of light elements, causing density fluc...

  7. Influence of oxides on high velocity arc sprayed Fe-Al/Cr3C2 composite coatings

    Institute of Scientific and Technical Information of China (English)

    XU Bin-shi; ZHANG Wei; XU Wei-pu

    2005-01-01

    Fe-Al/Cr3 C2 coatings were sprayed on low steel by high velocity arc spraying(HVAS) technology. The influences of oxides on erosion, corrosion and wear behavior for high velocity arc sprayed Fe-Al/Cr3C2 coatings were studied. The results show that HVAS-sprayed Fe-Al/Cr3 C2 coatings have good erosion, heat corrosion and wear resistance. The erosion resistance improves with the increase of the temperature. On one hand, the ferrous oxides are incompact, so they peel off the surface of the coatings easily during the high temperature erosion. On the other hand, compact Al2O3 films on the surface can protect the coatings.

  8. Coincident high-velocity DSA lifetime measurements on excited states of Si isotopes and stopping power investigations

    NARCIS (Netherlands)

    Scherpenzeel, D.E.C.; Engelbertink, G.A.P.; Aarts, H.J.M.; Poel, C.J. van der; Arciszewski, H.F.R.

    1980-01-01

    Mean lives of low-lying states of 28Si, 29Si and 30Si have been measured with the coincident high-velocity DSA method by 28Si bombardment of 2H, 3H and 4He targets. The recoils with an initial velocity of about 0.048c are slowed down in Mg, Cu, Ag and Au. The emitted γ-ray Doppler patterns are obser

  9. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....

  10. Controlling turbulence

    Science.gov (United States)

    Kühnen, Jakob; Hof, Björn

    2015-11-01

    We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.

  11. Theorem of turbulent intensity and macroscopic mechanism of the turbulence development

    Institute of Scientific and Technical Information of China (English)

    HU YinQiao; CHEN JinBei; ZUO HongChao

    2007-01-01

    Turbulence is one of the most common nature phenomena in everyday experience, but that is not adequately understood yet. This article reviews the history and present state of development of the turbulence theory and indicates the necessity to probe into the turbulent features and mechanism with the different methods at different levels. Therefore this article proves a theorem of turbulent transportation and a theorem of turbulent intensity by using the theory of the nonequilibrium thermodynamics,turbulent intensity and the turbulent transportation. The macroscopic cause of the development of fluid turbulence is a result from shearing effect of the velocity together with the temperature, which is also the macroscopic cause of the stretch and fold of trajectory in the phase space of turbulent field. And it is proved by the observed data of atmosphere that the phenomenological coefficient of turbulent intensity is not only a function of the velocity shear but also a function of temperature shear, viz the stability of temperature stratification, in the atmosphere. Accordingly, authenticity of the theorem, which is proved by the theory of nonequilibrium thermodynamics, of turbulent intensity is testified by the facts of observational experiment.

  12. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  13. Visible imaging of edge turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-06-21

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence.

  14. Visible imaging of edge turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al

    2000-06-13

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.

  15. Anisotropic turbulence in weakly stratified rotating magnetoconvection

    CERN Document Server

    Giesecke, A

    2010-01-01

    Numerical simulations of the 3D MHD-equations that describe rotating magnetoconvection in a Cartesian box have been performed using the code NIRVANA. The characteristics of averaged quantities like the turbulence intensity and the turbulent heat flux that are caused by the combined action of the small-scale fluctuations are computed. The correlation length of the turbulence significantly depends on the strength and orientation of the magnetic field and the anisotropic behavior of the turbulence intensity induced by Coriolis and Lorentz force is considerably more pronounced for faster rotation. The development of isotropic behavior on the small scales -- as it is observed in pure rotating convection -- vanishes even for a weak magnetic field which results in a turbulent flow that is dominated by the vertical component. In the presence of a horizontal magnetic field the vertical turbulent heat flux slightly increases with increasing field strength, so that cooling of the rotating system is facilitated. Horizont...

  16. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  17. A high velocity impact experiment of micro-scale ice particles using laser-driven system

    Science.gov (United States)

    Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.

    2014-11-01

    A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.

  18. Multi-Epoch Observations of Extremely High-Velocity Emergent Broad Absorption

    CERN Document Server

    Rogerson, Jesse A; Hidalgo, Paola Rodríguez; Pirkola, Patrik; Brandt, William N; Ak, Nur Filiz

    2015-01-01

    We present the discovery of the highest velocity CIV broad absorption line to date in the z=2.47 quasar SDSS J023011.28+005913.6, hereafter J0230. In comparing the public DR7 and DR9 spectra of J0230, we discovered an emerging broad absorption trough outflowing at~60,000 km/s. In pursuing follow up observations we discovered a second emergent broad absorption trough outflowing at ~40,000 km/s. We collected seven spectral epochs of J0230 that demonstrate emergent and rapidly (~10 days in the rest-frame) varying broad absorption. We investigate two possible scenarios that could cause these rapid changes: bulk motion and ionization variability. Given our multi-epoch data, a transverse motion scenario would likely be a flow-tube feature travelling across the emitting region at 8,000 =1540 cm^-3 and is at r_{eq} >= 1.37 kpc, or is at r < 1.37 kpc with no constraint on the density.

  19. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  20. Large and small-scale structure of the Intermediate and High Velocity Clouds towards the LMC and SMC

    CERN Document Server

    Smoker, J V; Keenan, F P

    2015-01-01

    We employ CaII K and NaI D interstellar absorption-line spectroscopy of early-type stars in the Large and Small Magellanic Clouds to investigate the large- and small-scale structure in foreground Intermediate and High Velocity Clouds (I/HVCs). These data include FLAMES-GIRAFFE CaII K observations of 403 stars in four open clusters, plus FEROS or UVES spectra of 156 stars in the LMC and SMC. The FLAMES observations are amongst the most extensive probes to date of CaII structures on 20 arcsec scales From the FLAMES data within a 0.5 degree field-of-view, the CaII K equivalent width in the I/HVC components towards three clusters varies by factors of >10. There are no detections of molecular gas in absorption at intermediate or high velocities, although molecular absorption is present at LMC and Galactic velocities towards some sightlines. The sightlines show variations in EW exceeding a factor 7 in CH+ towards NGC 1761 over scales of less than 10 arcminutes. The FEROS/UVES data show CaII K I/HVC absorption in $\\...

  1. A Catalog of Ultra-compact High Velocity Clouds from the ALFALFA Survey: Local Group Galaxy Candidates?

    CERN Document Server

    Adams, Elizabeth A K; Haynes, Martha P

    2013-01-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km/s, median angular diameters of 10', and median velocity widths of 23 km/s. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of ~1 Mpc, the UCHVCs have neutral hydrogen (HI) masses of ~10^5 -10^6 M_sun, HI diamet...

  2. Experimental Investigation of Multi-layer Insulation Effect on Damage of Stuffed Shield by High-velocity Impact

    Directory of Open Access Journals (Sweden)

    GUAN Gong-shun

    2016-09-01

    Full Text Available The stuffed shield with multi-layer insulation(MLI was designed by improving on Al Whipple shield, and a series of high-velocity impact tests were practiced with a two-stage light gas gun facility at vacuum environment. The damage model of the stuffed shield with different MLI location by Al-sphere projectile impacting was obtained. The effect of MLI on damage of the stuffed shield by high-velocity impact was studied. The results indicate when the MLI is located at front side of the first Al-plate, the protection performance of the stuffed shield is improved with the larger perforation diameter of the first Al-plate and more impact kinetic energy dissipation of the projectile. When MLI is arranged at back side of the first Al-plate, the expansion of the secondary debris cloud from projectile impacting the first Al-plate is restrained, it is not good to improve the protection performance of the stuffed shield. When MLI is arranged at front side of the stuffed wall, the perforation size of the stuffed wall increases; when MLI is arranged at front side of the rear wall, the distribution range of crater on the rear wall decreases.

  3. GALACTIC ALL-SKY SURVEY HIGH-VELOCITY CLOUDS IN THE REGION OF THE MAGELLANIC LEADING ARM

    Energy Technology Data Exchange (ETDEWEB)

    For, Bi-Qing; Staveley-Smith, Lister [International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); McClure-Griffiths, N. M., E-mail: biqing.for@uwa.edu.au [Australia Telescope National Facility, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710 (Australia)

    2013-02-10

    We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (H I) observations from the Parkes Galactic All-Sky Survey. Excellent spectral resolution allows clouds with narrow-line components to be resolved. The total number of detected clouds is 419. We describe the method of cataloging and present the basic parameters of the clouds. We discuss the general distribution of the high-velocity clouds and classify the clouds based on their morphological type. The presence of a significant number of head-tail clouds and their distribution in the region is discussed in the context of Magellanic System simulations. We suggest that ram-pressure stripping is a more important factor than tidal forces for the morphology and formation of the Magellanic Leading Arm and that different environmental conditions might explain the morphological difference between the Magellanic Leading Arm and Magellanic Stream. We also discuss a newly identified population of clouds that forms the LA IV and a new diffuse bridge-like feature connecting the LA II and III complexes.

  4. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    Science.gov (United States)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  5. Ribbon Turbulence

    CERN Document Server

    Venaille, Antoine; Vallis, Geoffrey K

    2014-01-01

    We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...

  6. Reliability data to improve high magnetic field coil design for high velocity coilguns.

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, Ronald John; Mann, Gregory Allen

    2003-09-01

    Coilguns have demonstrated their capability to launch projectiles to 1 km/s, and there is interest in their application for long-range precision strike weapons. However, the incorporation of cooling systems for repetitive operation will impact the mechanical design and response of the future coils. To assess the impact of such changes, an evaluation of the ruggedness and reliability of the existing 50 mm bore coil designed in 1993 was made by repeatedly testing at stress levels associated with operation in a coilgun. A two-coil testbed has been built with a static projectile where each coil is energized by its own capacitor bank. Simulation models of the applied forces generated in this testbed have been created with the SLINGSHOT circuit code to obtain loads equivalent to the worst-case anticipated in a 50 mm coilgun that could launch a 236 g projectile to 2 km/s. Bench measurements of the seven remaining coils built in 1993 have been used to evaluate which coils were viable for testing, and only one was found defective. Measurements of the gradient of the effective coil inductance in the presence of the projectile were compared to values from SLINGSHOT, and the agreement is excellent. Repeated testing of the HFC5 coil built in 1993 has demonstrated no failures after 205 shots, which is an order of magnitude greater than any number achieved in previous testing. Although this testing has only been done on two coils, the results are encouraging as it demonstrates there are no fundamental weak links in the design that will cause a very early failure. Several recommendations for future coil designs are suggested based on observations of this study.

  7. Patterns of the turbulent Taylor-Couette flow

    Science.gov (United States)

    Prigent, Arnaud; Talioua, Abdessamad; Mutabazi, Innocent

    2016-11-01

    We are interested in the study of the transition to turbulence in the Taylor-Couette flow, the flow between two independently rotating coaxial cylinders. Once the geometry is fixed, the flow is controlled by the inner and outer Reynolds numbers and present a large variety of flow regimes. In counter-rotation, the transition is characterized by a succession of more or less turbulent flow regimes: intermittency with turbulent spots, spiral turbulence, featureless turbulence. For larger values of the inner Reynolds number, turbulent Taylor roll re-emerge from the featureless turbulence and remain for very large values of the Reynolds numbers. Bifurcations between different turbulent rolls states are even observed in the ultimate turbulence regime. Nevertheless the transition from the featureless turbulence to the turbulent rolls still requires a detailed study and the mechanism which causes and sustains turbulent spots or turbulent spirals remains unknown. In this study we present new experimental information on the organization of the flow for the different regimes with turbulence. The experiments are conducted in a Taylor-Couette flow with η = 0 . 8 . Stereo-Particle Image Velocimetry measurements and visualizations of the different flow regimes are realized and discussed. This work was supported by the ANR TRANSFLOW - ANR-13-BS09-0025.

  8. Statistical turbulence theory and turbulence phenomenology

    Science.gov (United States)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  9. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    Science.gov (United States)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  10. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    Science.gov (United States)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  11. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  12. A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    CERN Document Server

    Sand, D J; Bennet, P; Willman, B; Hargis, J; Strader, J; Olszewski, E; Tollerud, E J; Simon, J D; Caldwell, N; Guhathakurta, P; James, B L; Koposov, S; McLeod, B; Morrell, N; Peacock, M; Salinas, R; Seth, A C; Stark, D P; Toloba, E

    2015-01-01

    We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{sta...

  13. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  14. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  15. Erosion-Corrosion Behaviors of High Velocity Arc Sprayed Fe-Al/Cr3C2 Coating

    Institute of Scientific and Technical Information of China (English)

    XU Weipu; XU Binshi; ZHANG Wei; WU Yixiong

    2006-01-01

    Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Arc Spraying (HVAS) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were investigated. Results show that the erosion at impingement angle of 30° is more than that of 90°. The erosion resistance of coatings was enhanced with the increase of temperature. Coatings had a better erosion resistance than substrates. The erosion changed from ductile behaviors to brittle behaviors above 450 ℃. At high temperature, the erosion resistances were superior to those at low temperature and room temperature. Coatings had much higher corrosion properties than substrates. The temperature had a little effect on the corrosion resistance of coatings; The corrosion losing of coatings increased slowly with the increase of corrosion time. The HVAS-sprayed Fe-Al/Cr3C2 coatings exhibited a high bond strength and hardness.

  16. High-Pressure Shock Compression of Solids VIII The Science and Technology of High-Velocity Impact

    CERN Document Server

    Chhabildas, Lalit C; Horie, Yasuyuki

    2005-01-01

    Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically-oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.

  17. Deposition and properties of high-velocity-oxygen-fuel and plasma-sprayed Mo-Mo2C composite coatings

    Science.gov (United States)

    Prchlik, L.; Gutleber, J.; Sampath, S.

    2001-12-01

    Molybdenum thermal-spray coatings, dispersion strengthened by molybdenum oxides and molybdenum carbides, play an important role in industrial tribological applications. Traditionally, they have been prepared by plasma and wire flame spraying. High porosity and lower cohesion strength limit their application in situations where both galling and abrasion wear is involved. In this study, high-velocity-oxygen-fuel (HVOF) deposition of molybdenum and molybdenum carbide coatings was attempted. Deposition was achieved for all powders used. Composition, microstructure, mechanical, and wear properties of the HVOF synthesized coatings were evaluated and compared with plasma-sprayed counterparts. The HVOF coatings possessed a very good abrasion resistance, whereas plasma deposits performed better in dry sliding tests. Measurements showed a close relationship between the coating surface hardness and its abrasion resistance. Results also suggested correlation between molybdenum carbide distribution in the molybdenum matrix and the sliding friction response of Mo-Mo2C coatings.

  18. Dynamic imaging and hydrodynamics study of high velocity, laser-accelerated thin foil targets using multiframe optical shadowgraphy

    Indian Academy of Sciences (India)

    S Tripathi; S Chaurasia; P Leshma; L J Dhareshwar

    2012-12-01

    The main aim of the study of thin target foil–laser interaction experiments is to understand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow-graphy diagnostics developed for dynamic imaging of high velocity laser-accelerated target foils of different thicknesses. The diagnostic has a spatial and temporal resolution of 12 m and 500 ps respectively in the measurements. The target velocity is in the range of 106 - 107 cm/s. Hydrodynamic efficiency of such targets was measured by energy balance experiments together with the measurement of kinetic energy of the laser-driven targets. Effect of target foil thickness on the hydrodynamics of aluminum foils was studied for determining the optimum conditions for obtaining a directed kinetic energy transfer of the accelerated foil. The diagnostics has also been successfully used to study ablatively accelerated targets of other novel materials.

  19. Turbulent character of wind energy.

    Science.gov (United States)

    Milan, Patrick; Wächter, Matthias; Peinke, Joachim

    2013-03-29

    Wind turbines generate electricity from turbulent wind. Large fluctuations, and, more importantly, frequent wind gusts cause a highly fluctuating electrical power feed into the grid. Such effects are the hallmark of high-frequency turbulence. Here we show evidence that it is the complex structure of turbulence that dominates the power output for one single wind turbine as well as for an entire wind farm. We illustrate the highly intermittent, peaked nature of wind power fed into the grid. Multifractal scaling is observed, as described initially by Kolmogorov's 1962 theory of turbulence. In parallel, we propose a stochastic model that converts wind speed signals into power output signals with appropriate multifractal statistics. As more and more wind turbines become integrated into our electric grids, a proper understanding of this intermittent power source must be worked out to ensure grid stability in future networks. Thus, our results stress the need for a profound understanding of the physics of turbulence and its impact on wind energy.

  20. The improvement of turbulence modeling for the aerothermal computation of hypersonic turbulent boundary layers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The engineering computation of turbulent flows is mainly based on turbulence modeling,however,accurate aerothermal computation of hypersonic turbulent boundary layers is still a not well-solved problem. Aerothermal computation for turbulent boundary layers on a supersonic or hypersonic blunt cone with small bluntness is done firstly by using both direct numerical simulation and BL model,and seven different cases are investigated. Then the results obtained by the two methods are compared,and the reason causing the differences is found to be the incorrect assumption in the turbulence modeling that the ratio between eddy heat conductivity and eddy viscosity is constant throughout the whole boundary layer. Based on certain theoretical arguments,a method of modifying the expression of eddy heat conductivity in the region surrounding the peak location of the turbulent kinetic energy is proposed,which is verified to be effective,at least for the seven cases investigated.

  1. Fossil turbulence revisited

    CERN Document Server

    Gibson, C H

    1999-01-01

    A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...

  2. Pulsar timing noise from superfluid turbulence

    CERN Document Server

    Melatos, Andrew

    2013-01-01

    Shear-driven turbulence in the superfluid interior of a neutron star exerts a fluctuating torque on the rigid crust, causing the rotational phase to walk randomly. The phase fluctuation spectrum is calculated analytically for incompressible Kolmogorov turbulence and is found to be red; the half-power point is set by the observed spin-down rate, the crust-superfluid lag, and the dynamical response time of the superfluid. Preliminary limits are placed on the latter quantities using selected time- and frequency-domain data. It is found that measurements of the normalization and slope of the power spectrum are reproduced for reasonable choices of the turbulence parameters. The results point preferentially to the neutron star interior containing a turbulent superfluid rather than a turbulent Navier-Stokes fluid. The implications for gravitational wave detection by pulsar timing arrays are discussed briefly.

  3. High-Velocity Frictional Properties of Westerly Granite and the Role of Thermal Cracking on Gouge Production

    Science.gov (United States)

    Passelegue, Francois; Spanuolo, Elena; Violay, Marie; Nielsen, Stefan; Di Toro, Giulio; Schubnel, Alexandre

    2016-04-01

    With the advent of high-velocity shear apparatus, several experimental studies have been conducted in recent years improving our understanding of fault friction at seismic slip rates (0.1-10 m/s). Here, we present the results of a series of tests conducted on Westerly granite, at INGV Roma, on a Slow to HIgh Velocity Apparatus (SHIVA), coupled with a high frequency monitoring (4MHz sampling rate). Experiments were conducted under normal stress (σn) ranging from 5 to 20 MPa and at sliding velocities (V) comprised between 3 mm/s and 3 m/s. Additional experiments were conducted in the presence of pore fluid at equivalent effective normal stress. In dry conditions, two friction drops are observed. The first drop is independent of the normal stress and occurs when V become higher than a critical value (Vc≈0.15 m/s). The second friction drop occurs after a critical slip weakening distance which decreases as a power law with the power density (τV). The first, abrupt, drop is explained by flash heating and weakening mechanism while the second, smooth, drop is due to the formation and growth of molten patches on the fault surface. In wet conditions, only the second drop of friction is observed. Average values of the fracture energy are independent of normal stress and sliding velocity at V > 0.01 m/s. However, measurements of elastic wave velocities travelling through the fault strongly suggest that higher damage is induced for 0.1 temperature is high. Some AEs are even recorded few seconds after the end of the experiments, suggesting they may be due to thermal cracking induced by heat diffusion. In addition, the presence of pore fluid pressure (water) delayed the apparition of AEs at equivalent effective pressure, supporting the link between AEs and the production and diffusion of heat. Using the thermo-elastic crack model developed by Fredriech and Wong 1986, we demonstrate that damage can indeed be induced by heat diffusion. Our theoretical prediction explains well

  4. LS Peg A Low-Inclination SW Sextantis-Type Cataclysmic Binary with High-Velocity Balmer Emission Line Wings

    CERN Document Server

    Taylor, C J; Patterson, J

    1998-01-01

    We present time-resolved spectroscopy and photometry of the bright cataclysmic variable LS Peg (= S193). The Balmer lines exhibit broad, asymmetric wings Doppler-shifted by about 2000 km/s at the edges, while the HeI lines show phase-dependent absorption features strikingly similar to SW Sextantis stars, as well as emission through most of the phase. The CIII/NIII emission blend does not show any phase dependence. From velocities of Halpha emission lines, we determine an orbital period of 0.174774 +/- 0.000003 d (= 4.1946 h), which agrees with Szkody's (1995) value of approximately 4.2 hours. No stable photometric signal was found at the orbital period. A non-coherent quasi-periodic photometric signal was seen at a period of 20.7 +/- 0.3 min. The high-velocity Balmer wings most probably arise from a stream re-impact point close to the white dwarf. We present simulated spectra based on a kinematic model similar to the modified disk-overflow scenario of Hellier & Robinson (1994). The models reproduce the br...

  5. Discovery of a high velocity, spatially extended emission ``shell'' in front of the southeast lobe of the eta Carinae Homunculus

    Science.gov (United States)

    Currie, D. G.; Dorland, B. N.; Kaufer, A.

    2002-07-01

    We report the discovery of the eta Carinae ``Ghost Shell,'' a high-velocity, spatially extended emission feature that lies in front of the southeast lobe of the eta Carinae Homunculus. Using data obtained with ``Kueyen,'' one of the European Southern Observatory's Very Large Telescope 8.2 m telescopes and its Ultraviolet and Visible Echelle Spectrograph instrument, we have observed a structure in velocity space of width ~35 km s-1 and with Doppler velocities ranging from -675 Ghost Shell has been detected in emission for multiple allowed Balmer lines and in forbidden lines of [NII], [SII], and [ArIII]. The feature is also associated with a complex absorption structure in Ca H and K lines. We propose that the Ghost Shell lies outside the Homunculus and represents the forward shock between the fast stellar wind of the Great Eruption epoch and the older slow massive stellar wind. Based on observations collected at the European Southern Observatory at Paranal, Chile (UVES commissioning II).

  6. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

    Science.gov (United States)

    Sidhu, T. S.; Prakash, S.; Agrawal, R. D.

    2006-09-01

    No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni-20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

  7. Manufacturing and Properties of High-Velocity Oxygen Fuel (HVOF)-Sprayed FeVCrC Coatings

    Science.gov (United States)

    Sassatelli, Paolo; Bolelli, Giovanni; Lusvarghi, Luca; Manfredini, Tiziano; Rigon, Rinaldo

    2016-10-01

    This paper studies the microstructure, sliding wear behavior and corrosion resistance of high-velocity oxygen fuel (HVOF)-sprayed FeVCrC-based coatings. Various process parameters were tested to evaluate their effects on the coating properties, which were also compared to those of HVOF-sprayed NiCrBSi and Stellite-6 coatings. The Fe alloy coatings are composed of flattened splats, originating from molten droplets and consisting of a super-saturated solid solution, together with rounded particles, coming from partially unmolten material and containing V- and Fe-based carbide precipitates. All process parameters, apart from "extreme" settings with excess comburent in the flame, produce dense coatings, indicating that the feedstock powder is quite easily processable by HVOF. These coatings, with a microhardness of 650-750 HV0.3, exhibit wear rates of ≈2 × 10-6 mm3/(Nm) in ball-on-disk tests against sintered Al2O3 spheres. They perform far better than the reference coatings, and better than other Fe- and Ni-based alloy coatings tested in previous research. On the other hand, the corrosion resistance of the coating material (tested by electrochemical polarization in 0.1 M HCl solution) is quite low. Even in the absence of interconnected porosity, this results in extensive, selective damage to the Fe-based matrix. This coating material is therefore unadvisable for severely corrosive environments.

  8. Searching for Optical Counterparts to Ultra-compact High Velocity Clouds: Possible Detection of a Counterpart to AGC 198606

    CERN Document Server

    Janesh, William; Salzer, John J; Janowiecki, Steven; Adams, Elizabeth A K; Haynes, Martha P; Giovanelli, Riccardo; Cannon, John M; Muñoz, Ricardo R

    2015-01-01

    We report on initial results from a campaign to obtain optical imaging of a sample of Ultra Compact High Velocity Clouds (UCHVCs) discovered by the ALFALFA neutral hydrogen (HI) survey. UCHVCs are sources with velocities and sizes consistent with their being low-mass dwarf galaxies in the Local Volume, but without optical counterparts in existing catalogs. We are using the WIYN 3.5-m telescope and pODI camera to image these objects and search for an associated stellar population. In this paper, we present our observational strategy and method for searching for resolved stellar counterparts to the UCHVCs. We combine careful photometric measurements, a color-magnitude filter, and spatial smoothing techniques to search for stellar overdensities in the g- and i-band images. We also run statistical tests to quantify the likelihood that whatever overdensities we find are real and not chance superpositions of sources. We demonstrate the method by applying it to two data sets: WIYN imaging of Leo P, a UCHVC discovere...

  9. Influence of high velocity oxy-fuel parameters on properties of nanostructured TiO2 coatings

    Indian Academy of Sciences (India)

    Maryamossadat Bozorgtabar; Mehdi Salehi; Mohammadreza Rahimipour; Mohammadreza Jafarpour

    2010-12-01

    A liquid fuel high velocity oxy-fuel (HVOF) thermal spray process has been used to deposit TiO2 nanostructured coatings utilizing a commercially available nanopowder as the feedstock. The coatings were characterized by means of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. Photocatalytic activity was evaluated as a rate constant of decomposition reaction of methylene blue (MB) determined from the changes of relative concentration of MB with UV irradiation time. The results indicate that the sprayed TiO2 coatings were composed of both TiO2 phases viz. anatase and rutile, with different phase contents and crystallite sizes. A high anatase content of 80% by volume was achieved at 0.00015, fuel-to-oxygen ratio with nanostructure coating by grain size smaller than feedstock powder. Photocatalytic activity evaluation results indicated that all the TiO2 coatings are effective to degradation MB under UV radiation and their activities differ in different spray conditions. It is found that fuel flow rate strongly influenced on phase transformation of anatase to rutile and by optimizing the rate which can promote structural transformation and grain coarsening in coating and improving photocatalytic activity.

  10. Patient-centered outcomes of high-velocity, low-amplitude spinal manipulation for low back pain: a systematic review.

    Science.gov (United States)

    Goertz, C M; Pohlman, K A; Vining, R D; Brantingham, J W; Long, C R

    2012-10-01

    Low back pain (LBP) is a well-recognized public health problem with no clear gold standard medical approach to treatment. Thus, those with LBP frequently turn to treatments such as spinal manipulation (SM). Many clinical trials have been conducted to evaluate the efficacy or effectiveness of SM for LBP. The primary objective of this paper was to describe the current literature on patient-centered outcomes following a specific type of commonly used SM, high-velocity low-amplitude (HVLA), in patients with LBP. A systematic search strategy was used to capture all LBP clinical trials of HVLA using our predefined patient-centered outcomes: visual analogue scale, numerical pain rating scale, Roland-Morris Disability Questionnaire, and the Oswestry Low Back Pain Disability Index. Of the 1294 articles identified by our search, 38 met our eligibility criteria. Like previous SM for LBP systematic reviews, this review shows a small but consistent treatment effect at least as large as that seen in other conservative methods of care. The heterogeneity and inconsistency in reporting within the studies reviewed makes it difficult to draw definitive conclusions. Future SM studies for LBP would benefit if some of these issues were addressed by the scientific community before further research in this area is conducted.

  11. Teaching and Assessment of High-Velocity, Low-Amplitude Techniques for the Spine in Predoctoral Medical Education.

    Science.gov (United States)

    Channell, Millicent King

    2016-09-01

    Although national didactic criteria have been set for predoctoral education and assessment in osteopathic manipulative treatment, there is no criterion standard for teaching methods and assessments of osteopathic manipulative treatment competence in colleges of osteopathic medicine. This issue is more pressing with the creation of the single graduate medical education accreditation system by the American Osteopathic Association and Accreditation Council for Graduate Medical Education, which introduced the creation of "osteopathic recognition" for residencies that want to incorporate osteopathic principles and practice into their programs. Residencies with osteopathic recognition may include both osteopathic and allopathic graduates. Increased standardization at the predoctoral level, however, is recommended as osteopathic principles and practice training applications are expanded. The objectives of this article are to review the standards for teaching osteopathic medical students high-velocity, low-amplitude (HVLA) techniques for the spine; to review and discuss the methods used to assess medical students' proficiency in using HVLA; and to propose baseline standards for teaching and assessing HVLA techniques among medical students.

  12. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  13. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    Science.gov (United States)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H i clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and i-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H i synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H i contour from that study. Combining our optical photometry and the H i properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}ȯ and 3.6+/- 1.0× {10}5 {M}ȯ , and an H i to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  14. Oxidation behavior of Fe40Al-xWC composite coatings obtained by high-velocity oxygen fuel thermal spray

    Institute of Scientific and Technical Information of China (English)

    XIANG Jun-huai; ZHU Xing-he; CHEN Gang; DUAN Zhi; LIN Yan; LIU Ying

    2009-01-01

    The Fe40Al-xWC (x=0,10,12,15) coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF) spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide insight into the oxidation behavior of the as-deposited coatings at 650 ℃ under 0.1 Mpa flowing pure O_2.The present results show differences in the oxidation behavior of Fe40Al coating and Fe40Al-xWC composite coatings.The irregular Fe_2O_3 layer is seen on the top surface of the composite coatings.Fe40Al coating and Fe40Al-15WC composite coating both suffer a catastrophic corrosion due to the formation of a porous structure during 24 h of oxidation.However,Fe40Al-10WC and Fe40Al-12WC composite coatings show a good oxidation resistance behavior due to their dense structure.

  15. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    Science.gov (United States)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  16. High-velocity extended molecular outflow in the star-formation dominated luminous infrared galaxy ESO 320-G030

    CERN Document Server

    Pereira-Santaella, M; García-Burillo, S; Alonso-Herrero, A; Arribas, S; Cazzoli, S; Emonts, B; López, J Piqueras; Planesas, P; Bergmann, T Storchi; Usero, A; Villar-Martín, M

    2016-01-01

    We analyze new high spatial resolution (~60 pc) ALMA CO(2-1) observations of the isolated luminous infrared galaxy ESO 320-G030 (d=48 Mpc) in combination with ancillary HST optical and near-IR imaging as well as VLT/SINFONI near-IR integral field spectroscopy. We detect a high-velocity (~450 km/s) spatially resolved (size~2.5 kpc; dynamical time ~3 Myr) massive (~10^7 Msun; mass rate~2-8 Msun/yr) molecular outflow originated in the central ~250 pc. We observe a clumpy structure in the outflowing cold molecular gas with clump sizes between 60 and 150 pc and masses between 10^5.5 and 10^6.4 Msun. The mass of the clumps decreases with increasing distance, while the velocity is approximately constant. Therefore, both the momentum and kinetic energy of the clumps decrease outwards. In the innermost (~100 pc) part of the outflow, we measure a hot-to-cold molecular gas ratio of 7x10^-5, which is similar to that measured in other resolved molecular outflows. We do not find evidence of an ionized phase in this outflow...

  17. The Silicon and Calcium High-Velocity Features in Type Ia Supernovae from Early to Maximum Phases

    CERN Document Server

    Zhao, Xulin; Maeda, Keiichi; Sai, Hanna; Zhang, Tianmeng; Zhang, Jujia; Huang, Fang; Rui, Liming; Zhou, Qi; Mo, Jun

    2015-01-01

    The high-velocity features (HVFs) in optical spectra of type Ia supernovae (SNe Ia) are examined with a large sample including very early-time spectra (e.g., t < -7 days). Multiple Gaussian fits are applied to examine the HVFs and their evolutions, using constraints on expansion velocities for the same species (i.e., SiII 5972 and SiII 6355). We find that strong HVFs tend to appear in SNe Ia with smaller decline rates (e.g., dm15(B)<1.4 mag), clarifying that the finding by Childress et al. (2014) for the Ca-HVFs in near-maximum-light spectra applies both to the Si-HVFs and Ca-HVFs in the earlier phase. The Si-HVFs seem to be more common in fast-expanding SNe Ia, which is different from the earlier result that the Ca-HVFs are associated with SNe Ia having slower SiII 6355 velocities at maximum light (i.e., Vsi). This difference can be due to that the HVFs in fast-expanding SNe Ia usually disappear more rapidly and are easily blended with the photospheric components when approaching the maximum light. Mor...

  18. An Extreme High-Velocity Bipolar Outflow in the Pre-Planetary Nebula IRAS 08005-2356

    CERN Document Server

    Sahai, R

    2015-01-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 with an angular-resolution of ~1"-5", using the Submillimeter Array (SMA), in the 12CO J=2-1, 3-2, 13CO J=2-1 and SiO J=5-4 (v=0) lines. Single-dish observations, using the SMT 10-m, were made in these lines as well as in the CO J=4-3 and SiO J-6-5 (v=0) lines. The lines profiles are very broad, showing the presence of a massive (>0.1 Msun), extreme high-velocity outflow (V~200 km/s) directed along the nebular symmetry axis derived from the HST imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad H-alpha emission profile, which we propose results from Ly-beta emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  19. An Extreme High-velocity Bipolar Outflow in the Pre-planetary Nebula IRAS 08005-2356

    Science.gov (United States)

    Sahai, R.; Patel, N. A.

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ˜1″-5″, using the Submillimeter Array, in the 12CO J = 2-1, 3-2, 13CO J = 2-1, and SiO J = 5-4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4-3 and SiO J = 6-5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M⊙), extreme high velocity outflow (V ˜ 200 km s-1) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  20. AN EXTREME HIGH-VELOCITY BIPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 08005-2356

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Patel, N. A., E-mail: raghvendra.sahai@jpl.nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ∼1″–5″, using the Submillimeter Array, in the {sup 12}CO J = 2–1, 3–2, {sup 13}CO J = 2–1, and SiO J = 5–4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4–3 and SiO J = 6–5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M{sub ⊙}), extreme high velocity outflow (V ∼ 200 km s{sup −1}) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  1. Feature of high velocity oxygen-fuel flame spraying; Kosoku flame yoshaho no tokucho to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Sakaki, K. [Shinshu University, Nagano (Japan). Faculty of Engineering

    1996-05-01

    A description is given about the high velocity flame spraying method. In this method, fuel and oxygen under high pressure are supplied to a spraying gun, a supersonic stream of flame is jetted out of a fine nozzle, and spray particles are injected into the flame to impinge on the substrate surface at a very high speed for the formation of a coating. This method is advantageous in that the spray particles are higher in flying speed than in other spraying methods, that the produced coating is dense and close and excellent in adhesion, that the flame temperature is relatively low, and that the spray material is suppressed in terms of phase transformation, oxidation, and decomposition. This spraying technique is disadvantageous in that the spray materials that it can use are limited in variety because this method meets difficulties in spraying upon high melting-point metal or ceramics. This paper also outlines the spraying devices (chamber combustion type and throat combustion type) and the characteristics of produced coatings, and spray materials and their application (centering about carbide thermit spraying) are mentioned. 23 refs., 6 figs., 2 tabs.

  2. The 21cm "Outer Arm" and the Outer-Galaxy High-Velocity Clouds: Connected by Kinematics, Metallicity, and Distance

    CERN Document Server

    Tripp, Todd M

    2011-01-01

    We compare and discuss the metallicity, kinematics, and distance of the gaseous "Outer Arm" (OA) and the high-velocity clouds (HVCs) in the outer Galaxy. Using high-resolution ultraviolet spectra obtained with the HST Space Telescope Imaging Spectrograph (STIS) and FUSE, we detect the OA in a variety of absorption lines toward two QSOs, H1821+643 and HS0624+6907. We show that the OA is not detected in absorption in STIS spectra of several stars in the OA direction, consistent with the OA distance constraint of Lehner & Howk, which brackets the Galactocentric radius to 9-18 kpc. We also show that HVC Complex G, which is near the OA at a similar velocity, is detected in absorption toward the two stars; this HVC is in the solar vicinity at R(G)=8.3-10.2 kpc. HVC Complex C is known to be at a similar distance. Comparison of the low- and high-ion absorption profiles clearly shows that the OA is a multiphase cloud. Toward H1821+643, the low-ionization metals lines are composed of multiple narrow components, ind...

  3. Low porosity and fine coatings produced by a new type nozzle of high velocity arc spray gun

    Institute of Scientific and Technical Information of China (English)

    Wang Ruijun; Zhang Tianjian; Xu Lin; Huang Xiaoou

    2006-01-01

    The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity.This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires).Using the scanning electron microscope (SEM) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic ( ESA ) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lamellarsplat structure and the average lamellar thickness is around 5 μm.

  4. Microstructure and Wear Properties of Fe-based Amorphous Coatings Deposited by High-velocity Oxygen Fuel Spraying

    Institute of Scientific and Technical Information of China (English)

    Gang WANG; Ping XIAO; Zhong-jia HUANG; Ru-jie HE

    2016-01-01

    Fe-based powder with a composition of Fe42·87 Cr15·98 Mo16·33 C15·94 B8·88 (at·%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the microstructure and the wear properties of the Fe-based alloy coatings were systematically studied.The results showed that the obtained Fe-based coatings with a thickness of about 400μm consisted of a large-volume amorphous phase and some nanocrystals.With increasing the fuel and oxygen flow rates,the porosity of the obtained coatings decreased.The coating deposited un-der optimized parameters exhibited the lowest porosity of 2·8%.The excellent wear resistance of this coating was at-tributed to the properties of the amorphous matrix and the presence of nanocrystals homogeneously distributed with-in the matrix.The wear mechanism of the coatings was discussed on the basis of observations of the worn surfaces.

  5. Dynamics of High-Velocity Evanescent Clumps [HVECs] Emitted from Comet C/2011 L4 as Observed by STEREO

    CERN Document Server

    Raouafi, N -E; Stenborg, G; Jones, G H; Schmidt, C A

    2015-01-01

    High-quality white-light images from the SECCHI/HI-1 telescope onboard STEREO-B reveal high-velocity evanescent clumps [HVECs] expelled from the coma of the C/2011 L4 [Pan-STARRS] comet. Animated images provide evidence of highly dynamic ejecta moving near-radially in the anti-sunward direction. The bulk speed of the clumps at their initial detection in the HI1-B images range from $200-400$ km s$^{-1}$ followed by an appreciable acceleration up to speeds of $450-600$ km s$^{-1}$, which are typical of slow to intermediate solar wind speeds. The clump velocities do not exceed these limiting values and seem to reach a plateau. The images also show that the clumps do not expand as they propagate. Order of magnitude calculations show that ionized single atoms or molecules accelerate too quickly compared to observations, while dust grains micron sized or larger accelerate too slowly. We find that neutral Na, Li, K, or Ca atoms with $\\beta>50$ could possibly fit the observations. Just as likely, we find that an inte...

  6. Structure and sliding wear behavior of 321 stainless steel/Al composite coating deposited by high velocity arc spraying technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-xiong; XU Bin-shi; LIU Yan; LIANG Xiu-bing; XU Yi

    2008-01-01

    A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode.The traditional 321 stainless steel coating was also prepared for comparison.Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions.The structure and worn surface of the coatings were analyzed by scanning electron microscopy (SEM),X-ray diffractometry (XRD) and energy dispersion spectroscopy (EDS).The results show that,except for aluminum phase addition in tne 321/Al coating,no other phases are created compared with the 321 coating.However,due to the addition of aluminum,the 321/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior.Under the dry sliding condition,the anti-wear property of 321/Al coating is about 42% lower than that of 321 coating.Butunder the oil lubricated conditions with or without 32h oil-dipping pretreatment,the anti-wear property of 321/Al coating is about 9% and 5% higher than that of 321 coating,respectively.The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.

  7. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  8. Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating

    Science.gov (United States)

    Gui, M.; Eybel, R.; Asselin, B.; Radhakrishnan, S.; Cerps, J.

    2012-10-01

    Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.

  9. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  10. MHD Turbulence, Turbulent Dynamo and Applications

    CERN Document Server

    Beresnyak, Andrey

    2014-01-01

    MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...

  11. Entrance and exit wounds of high velocity bullet: An autopsy analysis in the event of dispersing the mass rally in Bangkok Thailand, May 2010.

    Science.gov (United States)

    Peonim, Vichan; Srisont, Smith; Udnoon, Jitta; Wongwichai, Sompong; Thapon, Arisa; Worasuwannarak, Wisarn

    2016-11-01

    Fatal mass casualties by high velocity bullets (HVBs) are rare events in peaceful countries. This study presents 27 forensic autopsy cases with 32 shots fired by 5.56×45mm. HVB (M-16 rifle bullets) during the dispersing the mass rally in Bangkok Thailand, May 2010. It was found that twenty-three (71.88%) typical entrance HVB wounds had round sizes less than the bullet diameters. Most entrance wounds had microtears but no collar abrasion since a HVB has a small streamlined spitzer tip and full metal jacket. For exit wounds, there were various sizes and shapes depending on which section of wound ballistics presented when the bullet exited the body. If a bullet exited in the section of temporally cavity formation, there would be a large size exit wound in accordance with the degree of bullet yaw. This is different from civilian bullets whereby the shape looks like a cylindrical round nose and at low velocity that causes entrance wounds with a similar size to the bullet diameter and is usually round or oval shape with collar abrasion. The temporary cavity is not as large as in a HVB so exit wounds are not quite as large and present a ragged border compared to a HVB. We also reported 9 out of 32 shots (28.13%) of atypical entrance wounds that had various characteristics depending on site of injury and destabilization of bullets. These findings may be helpful to forensic pathologists and to give physicians, who need to diagnose HVB wounds, more confidence.

  12. Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental break-up

    Directory of Open Access Journals (Sweden)

    K. Becker

    2014-06-01

    Full Text Available High-velocity lower crust (HVLC and seaward dipping reflector sequences (SDRs are typical features of volcanic rifted margins. However, the nature and origin of HVLC is under discussion. Here we provide a comprehensive analysis of deep crustal structures in the southern segment of the South Atlantic and an assessment of HVLC along the margins. Two new seismic refraction lines off South America fill a gap in the data coverage and together with five existing velocity models allow a detailed investigation of the lower crustal properties on both margins. An important finding is the major asymmetry in volumes of HVLC on the conjugate margins. The seismic refraction lines across the South African margin reveal four times larger cross sectional areas of HVLC than at the South American margin, a finding that is in sharp contrast to the distribution of the flood basalts in the Paraná-Etendeka Large Igneous Provinces (LIP. Also, the position of the HVLC with respect to the seaward dipping reflector sequences varies consistently along both margins. Close to the Falkland-Agulhas Fracture Zone a small body of HVLC is not accompanied by seaward dipping reflectors. In the central portion of both margins, the HVLC is below the inner seaward dipping reflector wedges while in the northern area, closer to the Rio Grande Rise/Walvis Ridge, large volumes of HVLC extend far seawards of the inner seaward dipping reflectors. This challenges the concept of a simple extrusive/intrusive relationship between seaward dipping reflector sequences and HVLC, and it provides evidence for formation of the HVLC at different times during the rifting and break-up process. We suggest that the drastically different HVLC volumes are caused by asymmetric rifting in a simple shear dominated extension.

  13. Using random forests to diagnose aviation turbulence

    OpenAIRE

    2013-01-01

    Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the N...

  14. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  15. Turbulent Soret Effect

    CERN Document Server

    Mitra, Dhrubaditya; Rogachevskii, Igor

    2016-01-01

    We show, by direct numerical simulations, that heavy inertial particles (with Stokes number ${\\rm St}$) in inhomogeneously forced statistically stationary turbulent flows cluster at the minima of turbulent kinetic energy. We further show that two turbulent transport processes, turbophoresis and turbulent diffusion together determine the spatial distribution of the particles. The ratio of the corresponding transport coefficient -- the turbulent Soret coefficient -- increases with ${\\rm St}$ for small ${\\rm St}$, reaches a maxima for ${\\rm St}\\approx 10$ and decreases as $\\sim {\\rm St}^{-0.33}$ for large ${\\rm St}$.

  16. Neural responses to the mechanical parameters of a high velocity, low amplitude spinal manipulation: effect of preload parameters

    Science.gov (United States)

    Reed, William. R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2014-01-01

    Objective The purpose of this study was to determine how the preload that precedes a high velocity low amplitude spinal manipulation (HVLA-SM) affects muscle spindle input from lumbar paraspinal muscles both during and after the HVLA-SM. Methods Primary afferent activity from muscle spindles in lumbar paraspinal muscles were recorded from the L6 dorsal root in anesthetized cats. HVLA-SM of the L6 vertebra was preceded either by no preload or by systematic changes in the preload magnitude, duration, and the presence or absence of a downward incisural point (DIP). Immediate effects of preload on muscle spindle responses to the HVLA-SM were determined by comparing mean instantaneous discharge frequencies (MIF) during the HVLA-SM’s thrust phase with baseline. Longer lasting effects of preload on spindle responses to the HVLA-SM were determined by comparing MIF during slow ramp and hold movement of the L6 vertebra before and following the HVLA-SM. Results The smaller compared to the larger preload magnitude and the longer compared to the shorter preload duration significantly increased (P=0.02 and P=0.04) respectively) muscle spindle responses during the HVLA-SM thrust. The absence of preload had the greatest effect on the change in MIF. Interactions between preload magnitude, duration and DIP often produced statistically significant but arguably physiologically modest changes in the passive signaling properties of the muscle spindle following the manipulation. Conclusion Because preload parameters in this animal model were shown to affect neural responses to an HVLA-SM, preload characteristics should be taken into consideration when judging this intervention’s therapeutic benefit in both clinical efficacy studies and in clinical practice. PMID:24387888

  17. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  18. The distance to two neutral hydrogen clouds : The high-velocity complex A and the low-latitude intermediate-velocity cloud

    NARCIS (Netherlands)

    Wakker, B; Howk, C; Schwarz, U; vanWoerden, H; Beers, T; Wilhelm, R; Kalberla, P; Danly, L

    1996-01-01

    A lower limit to the distance of the high-velocity cloud (HVC) complex A of 4 kpc (z > 3 kpc) is derived. The HVC is detected toward the Seyfert galaxy Mrk 106 in Mg II lambda lambda 2796, 2803 absorption spectra taken with Hubble Space Telescope (HST) proving that Mg+ is present in the cloud. It is

  19. High velocity features in the spectra of the Type Ia SN 1999ee: a property of the explosion or evidence of circumstellar interaction?

    CERN Document Server

    Mazzali, P A; Stehle, M; Branch, D; Deng, J; Maeda, K; Nomoto, K; Hamuy, M

    2004-01-01

    The near-maximum spectra of the Type Ia SN 1999ee are reviewed. Two narrow absorption features corresponding to the strongest component of the CaII IR triplet appear in the spectra from 7 days before to 2 days after B-band maximum, at a high velocity (~22,000 km/s). Before these features emerge, the CaII IR triplet has an anomalously high velocity, indicating that the narrow features were still blended with the main, photospheric component. High-velocity CaII absorption has been observed in other SNe Ia, but usually detached from the photospheric component. Furthermore, the SiII 6355A line is observed at a comparably high velocity (~20,000 km/s) 9 and 7 days before B maximum, but then it suddenly shifts to much lower velocities. Synthetic spectra are used to reproduce the data under various scenarios. An abundance enhancement requires an outer region dominated by Si and Ca, the origin of which is not easy to explain in terms of nuclear burning. A density enhancement leads to a good reproduction of the spectra...

  20. High Resolution Simulation of Turbulent Flow in a Channel.

    Science.gov (United States)

    1987-09-25

    chosen to maintain the original Poiseuille flow . The introduction of highly unstable disturbances causes transition to turbulence so that the wall...for Turbulent Channel Flow ," Phys. Rev. Lett, Vol. 47, 832-835 (1981). 2. S.A. Orszag and L.C. Kells, "Transition to turbulence in plane Poiseuille and...plane Couette Flow ," J. Fluid Mech., Vol. 96, pp. 159-205. 3. Kreplin, H.-P. and Eckelmann, H., "Behavior of the Three Fluctucting Velocity

  1. Characterizing high-velocity angular vestibulo-ocular reflex function in service members post-blast exposure.

    Science.gov (United States)

    Scherer, Matthew R; Shelhamer, Mark J; Schubert, Michael C

    2011-02-01

    Blasts (explosions) are the most common mechanism of injury in modern warfare. Traumatic brain injury (TBI) and dizziness are common sequelae associated with blasts, and many service members (SMs) report symptoms worsen with activity. The purpose of this study was to measure angular vestibulo-ocular reflex gain (aVOR) of blast-exposed SMs with TBI during head impulse testing. We also assessed their symptoms during exertion. Twenty-four SMs recovering from TBI were prospectively assigned to one of two groups based on the presence or absence of dizziness. Wireless monocular scleral search coil and rate sensor were used to characterize active and passive yaw and pitch head and eye rotations. Visual analog scale (VAS) was used to monitor symptoms during fast walking/running. For active yaw head impulses, aVOR gains were significantly lower in the symptomatic group (0.79 ± 0.15) versus asymptomatic (0.87 ± 0.18), but not for passive head rotation. For pitch head rotation, the symptomatic group had both active (0.915 ± 0.24) and passive (0.878 ± 0.22) aVOR gains lower than the asymptomatic group (active 1.03 ± 0.27, passive 0.97 ± 0.23). Some SMs had elevated aVOR gain. VAS scores for all symptoms were highest during exertion. Our data suggest symptomatic SMs with TBI as a result of blast have varied aVOR gain during high-velocity head impulses and provide compelling evidence of pathology affecting the vestibular system. Potential loci of injury in this population include the following: disruption of pathways relaying vestibular efference signals, differential destruction of type I vestibular hair cells, or selective damage to irregular afferent pathways-any of which may explain the common discrepancy between reports of vestibular-like symptoms and laboratory testing results. Significantly reduced pitch aVOR in symptomatic SMs and peak symptom severity during exertional testing support earlier findings in the chronic blast-exposed active duty SMs.

  2. Pyrometamorphism of Fault Zone Rocks Induced by Frictional Heating in High-velocity Friction Tests: Reliable Records of Seismic Slip?

    Science.gov (United States)

    Ree, J.; Ando, J.; Kim, J.; Han, R.; Shimamoto, T.

    2008-12-01

    Recognition of seismic slip zone is important for a better understanding of earthquake generation processes in fault zones and paleoseismology. However, there has been no reliable record of ancient seismic slip except pseudotachylyte. Recently, it has been suggested that decomposition (dehydration or decarbonation) products due to frictional heating can be used as a seismic slip record. The decomposition products, however, can be easily rehydrated or recarbonated with pervasive fluid migration in the fault zone after seismic slip, raising some question about their stability as a seismic slip record. Here, we review microstructural and mineralogical changes of the simulated fault zones induced by frictional heating (pyrometamorphism) from high-velocity friction tests (HVFT) on siltstone, sandstone and carbonates at seismic slip rates, and discuss on their stability after seismic slip. HVFT on siltstone generates pseuodotachylyte in the principal slip zone (0.30-0.75 mm thick) with 'damage' layer (0.1-0.2 mm thick) along its margins. Chlorite in the damage layer suffers an incipient dehydration with many voids (0.2-1.0 μm in diameter) in transmission electron microscopy (TEM), appearing as dark tiny spots both in plane-polarized light and back-scattered electron (BSE) photomicrographs. HVFT on brown sandstone induces a color change of wall rocks adjacent to the principal slip zone (brown to red) due to the dehydration of iron hydroxides with frictional heating. These dehydration products in siltstone and sandstone due to frictional heating may be unstable since they would be easily rehydrated with fluid infiltration after a seismic slip. HVFT on carbonates including Carrara marble and siderite-bearing gouges produces decarbonation products of nano-scale lime (CaO) and magnetite (Fe3O4), respectively. Lime is a very unstable phase whereas magnetite is a stable and thus may be used as an indicator of seismic slip. The simulated fault zones of Carrara marble contain

  3. High-velocity extended molecular outflow in the star-formation dominated luminous infrared galaxy ESO 320-G030

    Science.gov (United States)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Planesas, P.; Storchi Bergmann, T.; Usero, A.; Villar-Martín, M.

    2016-10-01

    We analyze new high spatial resolution (~60 pc) ALMA CO(2-1) observations of the isolated luminous infrared galaxy ESO 320-G030 (d = 48 Mpc) in combination with ancillary Hubble Space Telescope optical and near infrared (IR) imaging, as well as VLT/SINFONI near-IR integral field spectroscopy. We detect a high-velocity (~450 km s-1) spatially resolved (size~2.5 kpc; dynamical time ~3 Myr) massive (~107 M⊙; Ṁ ~ 2-8 M⊙ yr-1) molecular outflow that has originated in the central ~250 pc. We observe a clumpy structure in the outflowing cold molecular gas with clump sizes between 60 and 150 pc and masses between 105.5 and 106.4 M⊙. The mass of the clumps decreases with increasing distance, while the velocity is approximately constant. Therefore, both the momentum and kinetic energy of the clumps decrease outwards. In the innermost (~100 pc) part of the outflow, we measure a hot-to-cold molecular gas ratio of 7 × 10-5, which is similar to that measured in other resolved molecular outflows. We do not find evidence of an ionized phase in this outflow. The nuclear IR and radio properties are compatible with strong and highly obscured star-formation (Ak ~ 4.6 mag; star formation rate ~ 15 M⊙ yr-1). We do not find any evidence for the presence of an active galactic nucleus. We estimate that supernova explosions in the nuclear starburst (νSN ~ 0.2 yr-1) can power the observed molecular outflow. The kinetic energy and radial momentum of the cold molecular phase of the outflow correspond to about 2% and 20%, respectively, of the supernovae output. The cold molecular outflow velocity is lower than the escape velocity, so the gas will likely return to the galaxy disk. The mass loading factor is ~0.1-0.5, so the negative feedback owing to this star-formation-powered molecular outflow is probably limited. The reduced images and datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  4. Fault strength evolution during high velocity friction experiments with slip-pulse and constant-velocity loading

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Reches, Z.

    2014-12-01

    Seismic analyses show that slip during large earthquakes evolves in a slip-pulse mode that is characterized by abrupt, intense acceleration followed by moderate deceleration. We experimentally analyze the friction evolution under slip-pulse proxy of a large earthquake, and compare it with the evolution at loading modes of constant-velocity and changing-velocity. We present a series of 42 experiments conducted on granite samples sheared in a high-velocity rotary apparatus. The experiments were conducted on room-dry, solid granite samples at slip-velocities of 0.0006-1 m/s, and normal stress of 1-11.5 MPa. The constitutive relations are presented with respect to mechanical power-density: PD= [shear stress * slip velocity], with units of power per area (MW/m^2). The experimental constitutive relations strongly depend on the loading mode. Constant velocity mode displays initial weakening with increasing PD that is followed by strengthening for PD = 0.02-0.5 MW/m^2, and abrupt weakening at PD > 0.5 MW/m^2. Changing-velocity modes display gentle strengthening for PD < 0.2 MW/m^2 that is followed by abrupt weakening as PD reaches 0.7-0.8 MW/m^2. Beyond this level of power-density, the two loading modes diverge: in changing-velocity of quake-mode the experimental fault continues to weaken with friction coefficient approaching 0.2, whereas in changing-velocity of ramp-mode the fault strengthens with friction coefficient approaching 1.0. The analysis demonstrates that (1) the strength evolution and constitutive parameters of the granite fault strongly depend on the loading mode, and (2) the slip-pulse mode is energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. The results suggest that the frictional strength determined in slip-pulse experiments, is more relevant to simulations of earthquake rupture than frictional strength determined in constant-velocity experiments.Figure 1. Friction

  5. Clustering of Aerosols in Atmospheric Turbulent Flow

    CERN Document Server

    Elperin, T; L'vov, V; Liberman, M A; Rogachevskii, I

    2007-01-01

    A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed...

  6. Physical Processes of Interstellar Turbulence

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2012-01-01

    I discuss the role of self-gravity and radiative heating and cooling in shaping the nature of the turbulence in the interstellar medium (ISM) of our galaxy. The heating and cooling cause it to be highly compressible, and, in some regimes of density and temperature, to become thermally unstable, tending to spontaneously segregate into warm/diffuse and cold/dense phases. On the other hand, turbulence is an inherently mixing process, tending to replenish the density and temperature ranges that would be forbidden under thermal processes alone. The turbulence in the ionized ISM appears to be transonic (i.e, with Mach numbers $\\Ms \\sim 1$), and thus to behave essentially incompressibly. However, in the neutral medium, thermal instability causes the sound speed of the gas to fluctuate by up to factors of $\\sim 30$, and thus the flow can be highly supersonic with respect to the dense/cold gas, although numerical simulations suggest that this behavior corresponds more to the ensemble of cold clumps than to the clumps'...

  7. The first turbulent combustion

    CERN Document Server

    Gibson, C H

    2005-01-01

    The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydr...

  8. Planck-Kerr Turbulence

    CERN Document Server

    Gibson, C H

    2003-01-01

    A quantum gravitational instability is identified at Planck scales between non-spinning extreme Schwarzschild black holes and spinning extreme Kerr black holes, which produces a turbulent Planck particle gas. Planck inertial vortex forces balance gravitational forces as the Planck turbulence cascades to larger scales and the universe expands and cools. Turbulent mixing of temperature fluctuations and viscous dissipation of turbulent kinetic energy provide irreversibilities necessary to sustain the process to the strong force freeze out temperature where inflation begins. Turbulent temperature fluctuations are fossilized when they are stretched by inflation beyond the horizon scale of causal connection. As the horizon of the expanding universe grows, the fluctuations seed patterns of nucleosynthesis, and these seed the formation of structure in the plasma epoch. Fossil big bang turbulence is supported by extended self similarity coefficients computed for cosmic microwave background temperature anisotropies tha...

  9. Depolarization canals and interstellar turbulence

    CERN Document Server

    Fletcher, A; Fletcher, Andrew; Shukurov, Anvar

    2006-01-01

    Recent radio polarization observations have revealed a plethora of unexpected features in the polarized Galactic radio background that arise from propagation effects in the random (turbulent) interstellar medium. The canals are especially striking among them, a random network of very dark, narrow regions clearly visible in many directions against a bright polarized Galactic synchrotron background. There are no obvious physical structures in the ISM that may have caused the canals, and so they have been called Faraday ghosts. They evidently carry information about interstellar turbulence but only now is it becoming clear how this information can be extracted. Two theories for the origin of the canals have been proposed; both attribute the canals to Faraday rotation, but one invokes strong gradients in Faraday rotation in the sky plane (specifically, in a foreground Faraday screen) and the other only relies on line-of-sight effects (differential Faraday rotation). In this review we discuss the physical nature o...

  10. Pulsating instability and self-acceleration of fast turbulent flames

    CERN Document Server

    Poludnenko, A Y

    2015-01-01

    (Abridged) A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully-resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damk\\"ohler numbers Da = 0.1-6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. 1) Turbulent flame speed develops pulsations with the observed peak-to-peak amplitude > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. 2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when the flame s...

  11. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  12. The Statistical Mechanics of Ideal Homogeneous Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2002-01-01

    Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.

  13. Turbulence modelling; Modelisation de la turbulence isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.

  14. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  15. MHD Turbulence and Magnetic Dynamos

    Science.gov (United States)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  16. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    Science.gov (United States)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  17. Detection of high-velocity material from the wind-wind collision zone of Eta Carinae across the 2009.0 periastron passage

    CERN Document Server

    Groh, Jose H; Damineli, Augusto; Gull, Theodore R; Madura, Thomas I; Hillier, D J; Teodoro, Mairan; Driebe, Thomas; Weigelt, Gerd; Hartman, Henrik; Kerber, Florian; Okazaki, Atsuo T; Owocki, Stan P; Millour, Florentin; Murakawa, Koji; Kraus, Stefan; Hofmann, Karl-Heinz; Schertl, Dieter

    2010-01-01

    We report near-IR spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using VLT/CRIRES. We detect a strong, broad absorption wing in He I 10833 extending up to -1900 km/s across the 2009.0 spectroscopic event. Archival HST/STIS ultraviolet and optical data shows a similar high-velocity absorption (up to -2100 km/s) in the UV resonance lines of Si IV 1394, 1403 across the 2003.5 event. UV lines from low-ionization species, such as Si II 1527, 1533 and C II 1334, 1335, show absorption up to -1200 km/s, indicating that the absorption with v from -1200 to -2100 km/s originates in a region markedly faster and more ionized than the nominal wind of the primary star. Observations obtained at the OPD/LNA during the last 4 spectroscopic cycles (1989-2009) also display high-velocity absorption in He I 10833 during periastron. Based on the OPD/LNA dataset, we determine that material with v 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (o...

  18. Spectroscopic Observations of SN 2012fr: A Luminous Normal Type Ia Supernova with Early High Velocity Features and Late Velocity Plateau

    CERN Document Server

    Childress, M J; Sim, S A; Tucker, B E; Yuan, F; Schmidt, B P; Cenko, S B; Silverman, J M; Contreras, C; Hsiao, E Y; Phillips, M; Morrell, N; Jha, S W; McCully, C; Filippenko, A V; Anderson, J P; Benetti, S; Bufano, F; de Jaeger, T; Forster, F; Gal-Yam, A; Guillou, L Le; Maguire, K; Maund, J; Mazzali, P A; Pignata, G; Smartt, S; Spyromilio, J; Sullivan, M; Taddia, F; Valenti, S; Bayliss, D D R; Bessell, M; Blanc, G A; Carson, D J; Clubb, K I; de Burgh-Day, C; Desjardins, T D; Fang, J J; Fox, O D; Gates, E L; Ho, I-T; Keller, S; Kelly, P L; Lidman, C; Loaring, N S; Mould, J R; Owers, M; Ozbilgen, S; Pei, L; Pickering, T; Pracy, M B; Rich, J A; Schaefer, B E; Scott, N; Stritzinger, M; Vogt, F P A; Zhou, G

    2013-01-01

    We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled from the lower velocity "photospheric" component. This Si II 6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of v~12,000 km/s until at least 5 weeks after maximum brightness. The Ca II infrared (IR) triplet exhibits similar evidence for both a photospheric component at v~12,000 km/s with narrow line width and long velocity plateau, as well as a high-velocity component beginning at v~31,000 km/s two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. (2009) classification scheme, and on the border between normal and "high-velocity" SNe Ia in the Wang et al. (2009a) system. Though it is a ...

  19. Turbulence and dynamo interlinks

    Science.gov (United States)

    de Gouveia Dal Pino, E. M.; Santos-Lima, R.; Kowal, G.; Falceta-Gonçalves, D.

    2013-07-01

    The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

  20. Turbulence and Dynamo Interlinks

    CERN Document Server

    Pino, E M de Gouveia Dal

    2013-01-01

    The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

  1. Corrosion behaviour of gas turbine alloys under high velocity burnt fuels; Korrosionsverhalten von Gasturbinenwerkstoffen unter stroemenden Heissgasbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Haubold, T.I.; Brill, U. [Krupp VDM GmbH, Altena (Germany); Abel, H.J. [Fachhochschule Dortmund (Germany). Fachbereich 5/Maschinenbau, Laborgruppe Werkstofftechnik; Klauke, P. [Fachhochschule Gelsenkirchen (Germany). Fachbereich Chemie und Materialtechnik

    2001-04-01

    The aim of alloy development in the field of nickel based superalloys for flying and land based gas turbines is to enhance significantly the mechanical properties at high temperatures thus leading to a higher temperature capability. The higher temperature capability of the structural elements of gas turbines results in an increased efficiency, a lowered fuel consumption and less emissions. To achieve an increased high temperature capability, however, surface degradation of the material must be adjusted adequately, hence corrosion resistance has to be improved. Additional to the isothermal and cyclic oxidation tests which are performed in stagnant air the oxidation behaviour of alloy 2100 GT and alloy C-263 was investigated by means of burner-rig-experiments under high velocity burnt fuels. In the burner rig test facility the sample is exposed to a hot gas stream of burned natural gas with gas velocities in the range of 60 m/s to 150 m/s. The metal temperature of the sample can be adjusted in the range of 900 C to 1200 C. In the tests described in this paper the gas velocities were chosen to be 60 m/s, 100 m/s and 140 m/s. The test duration was 1 h and 10 h. The test temperature was kept constant at 1000 C. After 1 h of testing both alloys showed mass gain which was significantly higher for alloy C-263. After 10 h of testing the mass loss of alloy C-263 was enhanced with increasing gas velocity. Alloy 2100 GT showed only at the highest gas velocity a mass loss. The examinations by means of SEM and light-optical microscopy of the oxide scale and of the microstructure showed that alloy 2100 GT has a dense adherent alumina scale and suffers no internal oxidation even under burner-rig-test conditions. Alloy C-263 forms a mixed chromia and Cr-Ti-mixed oxide scale. The chromia is evaporated with increasing gas velocity, leaving (Cr-Ti)O{sub 2}-needles on the surface. In the isothermal and cyclic oxidation tests alloy 2100 GT shows an excellent oxidation behaviour up to

  2. Outer scales of temperature turbulence and dynamic turbulence from the data of acoustic sounding of the atmosphere

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2014-11-01

    The outer scale of turbulence plays an important role in the theory of atmospheric turbulence. It specifies the lowfrequency boundary of the inertial subrange of fluctuation spectra of the atmospheric meteorological parameters, is used to construct models of the atmospheric turbulence and to estimate the excess turbulent attenuation of waves in the atmosphere. Outer scales of the wind velocity, temperature, humidity, and ozone concentration were previously determined, in particular, from direct airborne measurements of the spectral power density of these parameters, and their dependences on the altitude above the underlying surface, its properties, and type of the atmospheric stratification were demonstrated. For optical radiation propagating in the surface layer, the outer scale of temperature turbulence was determined from measurements of the variance of phase fluctuations of optical waves propagating along the near-ground paths. Unlike the optical waves, the acoustic wave propagation in the atmospheric boundary layer is influenced simultaneously by the temperature fluctuations caused by thermal convection and by the velocity fluctuations (dynamic turbulence caused by the wind shear). Their relative contributions depend on the ratio of the outer scales of the dynamic turbulence and temperature turbulence. In the present work, a method of simultaneous acoustic sounding of the outer scales of dynamic turbulence and temperature turbulence is suggested, and combined influence of these parameters on the acoustic wave propagation is estimated. Temporal dynamics of vertical profiles of the outer scales of dynamic turbulence and temperature turbulence is analyzed. The efficiency of the suggested method is confirmed by the results of comparison with the data of laser sensing of these parameters and their theoretical estimates, which demonstrate their good agreement.

  3. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.

    Science.gov (United States)

    Goldstein, M L; Wicks, R T; Perri, S; Sahraoui, F

    2015-05-13

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics.

  4. Detection of the phenomenon of turbulent thermal diffusion in numerical simulations

    CERN Document Server

    Haugen, N E L; Rogachevskii, I; Brandenburg, A

    2011-01-01

    The phenomenon of turbulent thermal diffusion causing a non-diffusive turbulent flux of particles in the direction of the turbulent heat flux, is found using direct numerical simulations (DNS) in temperature-stratified turbulence. In simulations with and without gravity, a peak in the particle number density is found around the minimum of the mean fluid temperature for small Stokes numbers due to the phenomenon of turbulent thermal diffusion. This implies that this phenomenon causes formation of large-scale inhomogeneities in the spatial distribution of particles. For Stokes numbers larger than unity, this effect decreases with increasing Stokes number.

  5. Probing 2D Quantum Turbulence in Atomic Superfluid Gas using Bragg Scattering

    CERN Document Server

    Seo, Sang Won; Kim, Joon Hyun; Shin, Yong-il

    2016-01-01

    We demonstrate the use of spatially resolved Bragg spectroscopy for detection of the quantum vortex circulation signs in an atomic Bose-Einstein condensate (BEC). High-velocity atoms near the vortex cores are resonantly scattered from the BEC, and the vortex signs are determined from the scattered atom positions relative to the corresponding vortex cores. Using this method, we investigate decaying 2D quantum turbulence in a highly oblate BEC at temperatures of $\\sim 0.5 T_c$, where $T_c$ is the critical temperature of the trapped sample. Clustering of like-sign vortices is not observed; rather, the measured vortex configurations reveal weak pair correlations between the vortices and antivortices in the turbulent BEC. Our Bragg scattering method enables a direct experimental study of 2D quantum turbulence in BECs.

  6. Edge turbulence in tokamaks

    Science.gov (United States)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  7. A Real-Time Turbulence Hazard Cockpit Display Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft encounters with turbulence are the leading cause of injuries in the airline industry and result in significant human, operational, and maintenance costs to...

  8. Turbulence new approaches

    CERN Document Server

    Belotserkovskii, OM; Chechetkin, VM

    2005-01-01

    The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.

  9. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  10. Homogeneous turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Bershadskii, A.G.

    1985-06-01

    An exact solution for the nonlinear problem of the spectral energy function of a homogeneous turbulence is derived under the assumption that energy transfer under the effect of inertial forces is determined mainly by the interactions among vortices whose wavenumbers are only slightly different from each other. The results are experimentally verified for turbulence behind grids. Similar problems are solved for MHD turbulence and for a nonstationary spectral energy function. It is shown that at the initial stage of degeneration, the spectral energy function is little influenced by the Stewart number; this agrees with experimental data for the damping of longitudinal velocity pulsations behind a grid in a longitudinal magnetic field. 15 references.

  11. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  12. Effects of light propagation in middle intensity atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Xiubua YUAN; Dexiu HUANG; Bangxu LI

    2009-01-01

    The purpose of this report is to present an experimental study of the effects of light propagation through atmospheric turbulence.Free space optical communication is a line-of-sight technology that transmits a modulated beam of visible light through the atmosphere for broadband communication.The fundamental limitations of free space optical communications arise from the environment through which it propagates.However these systems are vulnerable to atmospheric turbulence, such as attenuation and scintillation, Scintillation is due to the air index variation under the temperature effects.These factors cause an attenuated receiver signal and lead to higher bit error rate (BER).An experiment of laser propagation was carried out to characterize the light intensity through turbulent air in the laboratory environment.The experimental results agree with the calculation based on Rytov for the case of weak to intermediate turbulence.Also, we show the characteristics of irradiance scintillation, intensity distribution and atmospheric turbulence strength.By means of laboratory simulated turbulence, the turbulence box is constructed with the following measurements: 0.5 m wide, 2m long and 0.5m high.The simulation box consists of three electric heaters and is well described for understanding the experimental set up.The fans and heaters are used to increase the homogeneity of turbulence and to create different scintillation indices.The received intensity scintillation and atmosphere turbulence strength were obtained and the variation of refractive index, with its corresponding structure parameter, is calculated from the experimental results.

  13. EFFECT OF COOLED BOUNDARY ON THE TURBULENT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Li Guo-xiang; Mao Hua-yong; Li Na

    2003-01-01

    The flow field in the cooled channel of a heat exchanger was measured using the X-type film probes of Hot Wire/Firm Anemotheter, and the turbulent mechanism was discussed. It is concluded that the airflow is cooled in the flow process, the distribution of the turbulent intensity is relatively convergent near the centerline and the boundary, the constriction action produced due to heat release at the foot of the fins causes u to decrease and w to increase near the root downstream. It is concluded that the turbulent flow with cooled boundary results from the balance of production, dissipation and intermittency caused by constriction action.

  14. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  15. Color of turbulence

    CERN Document Server

    Zare, Armin; Georgiou, Tryphon T

    2016-01-01

    Second-order statistics of turbulent flows can be obtained either experimentally or via direct numerical simulations. Statistics reflect fundamentals of flow physics and can be used to develop low-complexity turbulence models. Due to experimental or numerical limitations it is often the case that only partial flow statistics can be reliably known, i.e., only certain correlations between a limited number of flow field components are available. Thus, it is of interest to complete the statistical signature of the flow field in a way that is consistent with the known dynamics. This is an inverse problem and our approach utilizes stochastically-forced linearization around turbulent mean velocity profile. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. In contrast, colored-in-time forcing of the linearized equations allows for exact matching of available correlations. To accomplish this, we develop dynamical models that generate the required stochastic excitation...

  16. Turbulence of swarming sperm

    Science.gov (United States)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L.; Plouraboué, Franck

    2015-09-01

    Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation.

  17. Scrambled and Unscrambled Turbulence

    CERN Document Server

    Ramaprabhu, P; Lawrie, A G W

    2013-01-01

    The linked fluid dynamics videos depict Rayleigh-Taylor turbulence when driven by a complex acceleration profile involving two stages of acceleration interspersed with a stage of stabilizing deceleration. Rayleigh-Taylor (RT) instability occurs at the interface separating two fluids of different densities, when the lighter fluid is accelerated in to the heavier fluid. The turbulent mixing arising from the development of the miscible RT instability is of key importance in the design of Inertial Confinement Fusion capsules, and to the understanding of astrophysical events, such as Type Ia supernovae. By driving this flow with an accel-decel-accel profile, we have investigated how structures in RT turbulence are affected by a sudden change in the direction of the acceleration first from destabilizing acceleration to deceleration, and followed by a restoration of the unstable acceleration. By studying turbulence under such highly non-equilibrium conditions, we hope to develop an understanding of the response and ...

  18. Inflow Turbulence Generation Methods

    Science.gov (United States)

    Wu, Xiaohua

    2017-01-01

    Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes–LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.

  19. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-02-23

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney).

  20. When Physics Meets Biology: Low and High-Velocity Penetration, Blunt Impact, and Blast Injuries to the Brain

    Science.gov (United States)

    Young, Leanne; Rule, Gregory T.; Bocchieri, Robert T.; Walilko, Timothy J.; Burns, Jennie M.; Ling, Geoffrey

    2015-01-01

    The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems. PMID:25999910

  1. When Physics Meets Biology: Low and High Velocity Penetration, Blunt Trauma and Blast Injuries to the Brain

    Directory of Open Access Journals (Sweden)

    Leanne eYoung

    2015-05-01

    Full Text Available The incidence of TBI in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems.

  2. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  3. Dissipation in unsteady turbulence

    CERN Document Server

    Bos, Wouter

    2016-01-01

    Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibrium correction of Kolmogorov's energy spectrum. Given the universality of the experimental and numerical observations, the ideas presented here lay the foundation for the modeling of a wide class of unsteady turbulent flows.

  4. Turbulent Plasmoid Reconnection

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2016-01-01

    The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...

  5. Re-examination of Dronino iron meteorite and its weathering products using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Oshtrakh, M. I.; Yakovlev, G. A.; Grokhovsky, V. I.; Semionkin, V. A.

    2016-12-01

    Re-examination of Dronino iron meteorite and products of its weathering in the internal and external surface layers was carried out using Mössbauer spectroscopy with a high velocity resolution. New results showed the presence of α-Fe(Ni, Co), α 2-Fe(Ni, Co) and γ-Fe(Ni, Co) phases with variations in Ni concentration in Dronino metallic iron alloy. The surface weathering products were supposed as magnetite and/or maghemite, goethite with different particles size and probably ferrihydrite in the internal layer and goethite with different particles size and probably ferrihydrite in the external layer.

  6. Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Maksimova, A. A.; Oshtrakh, M. I.; Petrova, E. V.; Grokhovsky, V. I.; Semionkin, V. A.

    2017-02-01

    Ordinary chondrites from H, L and LL groups were studied using Mössbauer spectroscopy with a high velocity resolution. Mössbauer parameters of spectral components were obtained using new fitting model excluding the effect of previous misfits of troilite component. Obtained parameters were related to corresponding iron-bearing minerals in ordinary chondrites. The differences of these minerals content as well as small differences in the hyperfine parameters of the same iron-bearing minerals were revealed for different meteorites. The temperatures of equilibrium cations distribution in silicates were estimated and suitable parameters for classification of H, L and LL chondrites were supposed using Mössbauer parameters.

  7. Bioinspired surfaces for turbulent drag reduction.

    Science.gov (United States)

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-06

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  8. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  9. Optical to extreme ultraviolet reddening curves for normal AGN dust and for dust associated with high-velocity outflows

    Science.gov (United States)

    Singh, Japneet; Gaskell, Martin; Gill, Jake

    2017-01-01

    We use mid-IR (WIRE), optical (SDSS), and ultraviolet (GALEX) photometry of over 80,000 AGNs to derive mean attenuation curves from the optical to the rest frame extreme ultraviolet (EUV) for (i) “normal” AGN dust dominating the optical reddening of AGNs and (ii) “BAL dust” - the dust causing the additional extinction in AGNs observed to have broad absorption lines (BALs). Our method confirms that the attenuation curve of “normal” AGN dust is flat in the ultraviolet, as found by Gaskell et al. (2004). In striking contrast to this, the attenuation curve for BAL dust is well fit by a steeply-rising, SMC-like curve. We confirm the shape of the theoretical Weingartner & Draine (2001) SMC curve out to 700 Angstroms but the drop in attenuation to still shorter wavelengths (400 Angstroms) seems to be less than predicted. We find identical attenuation curves for high-ionization and low-ionization BALQSOs. We suggest that attenuation curves appearing to be steeper than the SMC are due to differences in underlying spectra and partial covering by BAL dust. This work was This work was performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz.

  10. Turbulence and Fossil Turbulence in Oceans and Lakes

    Institute of Scientific and Technical Information of China (English)

    Pak-Tao Leung; Carl H. Gibson

    2004-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent

  11. Unsteady turbulence cascades

    Science.gov (United States)

    Goto, Susumu; Vassilicos, J. C.

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5 /3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935), 10.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  12. Characterizing the High-Velocity Stars of RAVE: The Discovery of a Metal-Rich Halo Star Born in the Galactic Disk

    CERN Document Server

    Hawkins, K; Gilmore, G; Masseron, T; Wyse, R F G; Ruchti, G; Bienayme, O; Bland-Hawthorn, J; Boeche, C; Freeman, K; Gibson, B K; Grebel, E K; Helmi, A; Kunder, A; Munari, U; Navarro, J F; Parker, Q A; Reid, W A; Scholz, R D; Seabroke, G; Siebert, A; Steinmetz, M; Watson, F; Zwitter, T

    2014-01-01

    We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities larger than 275 km s$^{-1}$. With 6D position and velocity information, we integrated the orbits of the HiVel stars and found that, on average, they reach out to 13 kpc from the Galactic plane and have relatively eccentric orbits consistent with the Galactic halo. Using the stellar parameters and [$\\alpha$/Fe] estimates from RAVE, we found the metallicity distribution of the HiVel stars peak at [M/H] = -1.2 dex and is chemically consistent with the inner halo. There are a few notable exceptions that include a hypervelocity star (HVS) candidate, an extremely high-velocity bound halo star, and one star that is kinematically consistent with the halo but chemically consistent with the disk. High-resolution spectra were obtained for the metal-rich HiVel star candidate ...

  13. A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF Thermal Spray

    Directory of Open Access Journals (Sweden)

    Mehdi Jadidi

    2015-10-01

    Full Text Available In thermal spraying processes, molten, semi-molten, or solid particles, which are sufficiently fast in a stream of gas, are deposited on a substrate. These particles can plastically deform while impacting on the substrate, which results in the formation of well-adhered and dense coatings. Clearly, particles in flight conditions, such as velocity, trajectory, temperature, and melting state, have enormous influence on the coating properties and should be well understood to control and improve the coating quality. The focus of this study is on the high velocity oxygen fuel (HVOF spraying and high velocity suspension flame spraying (HVSFS techniques, which are widely used in academia and industry to generate different types of coatings. Extensive numerical and experimental studies were carried out and are still in progress to estimate the particle in-flight behavior in thermal spray processes. In this review paper, the fundamental phenomena involved in the mentioned thermal spray techniques, such as shock diamonds, combustion, primary atomization, secondary atomization, etc., are discussed comprehensively. In addition, the basic aspects and emerging trends in simulation of thermal spray processes are reviewed. The numerical approaches such as Eulerian-Lagrangian and volume of fluid along with their advantages and disadvantages are explained in detail. Furthermore, this article provides a detailed review on simulation studies published to date.

  14. An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group

    CERN Document Server

    Richter, P; Fox, A J; Wakker, B P; Lehner, N; Bekhti, N Ben; Fechner, C; Wendt, M; Howk, J C; Muzahid, S; Ganguly, R; Charlton, J C

    2016-01-01

    To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Along 262 sightlines we measure metal absorption in the lines of SiII, SiIII, CII, and CIV and associated HI 21 cm emission in HVCs in the velocity range |v_LSR|=100-500 km s^-1. With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the absor...

  15. Matter mixing in aspherical core-collapse supernovae: a search for possible conditions for conveying $^{56}$Ni into high velocity regions

    CERN Document Server

    Ono, Masaomi; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Hashimoto, Masa-aki; Tolstov, Alexey

    2013-01-01

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 $M_{\\odot}$ star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that $^{56}$Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter ($\\gtrsim$ 3,500 km s$^{-1}$) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of $^{56}$Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We found that no high velocity $^{56}$Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to som...

  16. High-velocity neon line emission from the ULIRG IRAS F00183-7111: revealing the optically obscured base of a nuclear outflow

    CERN Document Server

    Spoon, H W W; Marshall, J A; Bernard-Salas, J; Farrah, D; Charmandaris, V; Kent, B R

    2008-01-01

    We report the first mid-IR detection of highly disturbed ionized gas in the ultraluminous infrared galaxy IRAS F00183-7111. The gas, traced by the 12.81um [NeII] and 15.56um [NeIII] lines, spans a velocity range of-3500 to 3000 km/s with respect to systemic velocity. Optical and near-IR spectroscopic studies show no evidence for similarly high velocity gas components in forbidden lines at shorter wavelengths. We interpret this as the result of strong extinction (Av=10-50) on the high-velocity gas, which identifies the base of the outflow traced in 5007A [OIII] as a plausible origin. Unusual excitation conditions are implied by a comparison of the mid-infrared low-excitation neon line emission and the PAH emission for a sample of 56 ULIRGs. For IRAS F00183, the neon/PAH ratio is 8 times higher than the average ratio. Similar mid-infrared kinematic and excitation characteristics are found for only 2 other ULIRGs in our sample: IRAS 12127-1412NE and IRAS 13451+1232. Both sources have an elevated neon/PAH ratio a...

  17. Phase-detection measurements in free-surface turbulent shear flows

    Science.gov (United States)

    Chanson, Hubert

    2016-04-01

    High-velocity self-aerated flows are described as ‘white waters’ because of the entrained air bubbles. The air entrainment induces a drastic change in the multiphase flow structure of the water column and this leads to significant bubble-turbulence interactions, turbulence modulation and associated mixing processes impacting on the bulk flow properties. In these high-velocity free-surface turbulent flows, the phase-detection needle probe is a most reliable instrumentation. The signal processing of a phase-detection probe is re-visited herein. It is shown that the processing may be performed on the raw probe signal as well as the thresholded data. The latter yields the time-averaged void fraction, the bubble count rate, the particle chord time distributions and the particle clustering properties within the particulate flow regions. The raw probe signal analysis gives further the auto-correlation time scale and the power spectrum density function. Finally dimensional considerations are developed with a focus on the physical modelling of free-surface flows in hydraulic structures. It is argued that the notion of scale effects must be defined in terms of some specific set of air-water flow properties within well-defined testing conditions, while a number of free-surface flow characteristics are more prone to scale effects than others, even in large-size physical facilities.

  18. Inverse scattering problem in turbulent magnetic fluctuations

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang; Narita, Yasuhito

    2016-08-01

    We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand-Levitan-Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes advantage of a particular

  19. Multifluid magnetohydrodynamic turbulent decay

    CERN Document Server

    Downes, Turlough P

    2011-01-01

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...

  20. Turbulence and Stochastic Processes

    Science.gov (United States)

    Celani, Antonio; Mazzino, Andrea; Pumir, Alain

    sec:08-1In 1931 the monograph Analytical Methods in Probability Theory appeared, in which A.N. Kolmogorov laid the foundations for the modern theory of Markov processes [1]. According to Gnedenko: "In the history of probability theory it is difficult to find other works that changed the established points of view and basic trends in research work in such a decisive way". Ten years later, his article on fully developed turbulence provided the framework within which most, if not all, of the subsequent theoretical investigations have been conducted [2] (see e.g. the review by Biferale et al. in this volume [3]. Remarkably, the greatest advances made in the last few years towards a thorough understanding of turbulence developed from the successful marriage between the theory of stochastic processes and the phenomenology of turbulent transport of scalar fields. In this article we will summarize these recent developments which expose the direct link between the intermittency of transported fields and the statistical properties of particle trajectories advected by the turbulent flow (see also [4], and, for a more thorough review, [5]. We also discuss the perspectives of the Lagrangian approach beyond passive scalars, especially for the modeling of hydrodynamic turbulence.

  1. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  2. Turbulence in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.

  3. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  4. Turbulence in the Interstellar Medium

    CERN Document Server

    Falceta-Goncalves, D; Falgarone, E; Chian, A C -L

    2014-01-01

    Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.

  5. Turbulence mitigation methods for sea scenarios

    Science.gov (United States)

    Dijk, Judith; Schutte, Klamer; Nieuwenhuizen, Robert P. J.

    2016-10-01

    Visual and infrared imagery is degraded by turbulence caused by atmospheric conditions. Because the degradation gets worse for longer distances, turbulence especially hampers long range observation. At sea this turbulence affects classification and identification of ships and other objects. State of the art software based processing algorithms assuming a static background assumption will fail in such conditions because of the non-static sea background. Therefore, we propose an adapted processing chain aiming to provide optimal turbulence correction for ships seen in the camera view. First we propose to use standard object detection and tracking methods for an indication of the location of the ship. Subsequently, image registration is performed within the ship's region of interest, covering only the ship of interest. After this region of interest registration, standard turbulence mitigation software can be applied to the region of interest. For ships with other movement than translation only we propose a two-step motion estimation using local optical flow. In this paper we show results of this processing chain for sea scenarios using our TNO turbulence mitigation method. Ship data is processed using the algorithm proposed above and the results are analyzed by both human observation and by image analysis. The improvement of the imagery is qualitatively shown by examining details which cannot be seen without processing and can be seen with processing. Quantitatively, the improvement is related to the energy per spatial frequency in the original and processed images and the signal to noise improvement. This provides a model for the improvement of the results, and is related to the improvement of the classification and identification range. The results show that with this novel approach the classification and identification range of ships is improved.

  6. Gyrokinetic simulations of ETG Turbulence*

    Science.gov (United States)

    Nevins, William

    2005-10-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence [1,2] produced different results despite similar plasma parameters. Ref.[1] differs from Ref.[2] in that [1] eliminates magnetically trapped particles ( r/R=0 ), while [2] retains magnetically trapped particles ( r/R 0.18 ). Differences between [1] and [2] have been attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations[2]. We have reproduced the results reported in [2] using a flux-tube, particle-in-cell (PIC) code, PG3EQ[3], thereby eliminating global effects as the cause of the discrepancy. We observe late-time decay of ETG turbulence and the steady-state heat transport in agreement with [2], and show this results from discrete particle noise. Discrete particle noise is a numerical artifact, so both the PG3EQ simulations reported here and those reported in Ref.[2] have little to say about steady-state ETG turbulence and the associated anomalous electron heat transport. Our attempts to benchmark PIC and continuum[4] codes at the plasma parameters used in Ref.[2] produced very large, intermittent transport. We will present an alternate benchmark point for ETG turbulence, where several codes reproduce the same transport levels. Parameter scans about this new benchmark point will be used to investigate the parameter dependence of ETG transport and to elucidate saturation mechanisms proposed in Refs.[1,2] and elsewhere[5-7].*In collaboration with A. Dimits (LLNL), J. Candy, C. Estrada-Mila (GA), W. Dorland (U of MD), F. Jenko, T. Dannert (Max-Planck Institut), and G. Hammett (PPPL). Work at LLNL performed for US DOE under Contract W7405-ENG-48.[1] F. Jenko and W. Dorland, PRL 89, 225001 (2002).[2] Z. Lin et al, 2004 Sherwood Mtg.; 2004 TTF Mtg.; Fusion Energy 2004 (IAEA, Vienna, 2005); Bull. Am. Phys. Soc. (November, 2004); 2005 TTF Mtg.; 2005 Sherwood Mtg.; Z. Lin, et al, Phys. Plasmas 12, 056125 (2005). [3] A.M. Dimits

  7. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    Science.gov (United States)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  8. Turbulence Measurements in Swirling Flows

    Directory of Open Access Journals (Sweden)

    V. M. Domkundwar

    1981-10-01

    Full Text Available Investigation have been conducted to find out the region of high turbulent intensities in a swirling jet passing through a divergent passage. A hot wire anemometer is used to measure the turbulence intensity using a four position method. It has been concluded that the jet spreads with increasing diffuser angle and the region of high turbulent intensity also spreads. The high turbulence intensity region lies around the recirculation zone and it decays rapidly along the main flow direction.

  9. Joint Agency Turbulence Experiment.

    Science.gov (United States)

    1985-01-21

    Time Series of Aircraft Longitudinal Gust Data For Penetration 1 on 1 July 1981 63 C5. Time Series of Turbulence Severity Estimates Derived From 400 m...spectral analysis of aircraft longitudinal gust data is shown in Figure B1. Figure B2 shows a modeled turbulence field. The model displays the expected...centered about Location C o %-. -. °,4 0- S E - oo -12 -4 - to 20 so O so s 7D -U. TIME (sec) Figure C4. Time Series of Aircraft Longitudinal Gust Data

  10. The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei

    OpenAIRE

    Vollmer, B; Davies, R. I.

    2013-01-01

    Galactic gas-gas collisions involving a turbulent multiphase ISM share common ISM properties: dense extraplanar gas visible in CO, large linewidths (>= 50 km/s), strong mid-infrared H_2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ICM ram pressure stripping, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, ...

  11. Turbulent diffusion and galactic magnetism

    CERN Document Server

    Brandenburg, Axel

    2009-01-01

    Using the test-field method for nearly irrotational turbulence driven by spherical expansion waves it is shown that the turbulent magnetic diffusivity increases with magnetic Reynolds numbers. Its value levels off at several times the rms velocity of the turbulence multiplied by the typical radius of the expansion waves. This result is discussed in the context of the galactic mean-field dynamo.

  12. Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating

    Science.gov (United States)

    Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.

    2017-02-01

    WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.

  13. Study of Chelyabinsk LL5 meteorite fragment with a light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Maksimova, Alevtina A.; Petrova, Evgeniya V.; Grokhovsky, Victor I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Oshtrakh, Michael I., E-mail: oshtrakh@gmail.com; Semionkin, Vladimir A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation and Department of Experimental Physics, Institute of Physics and Technology, Ura (Russian Federation)

    2014-10-27

    Study of Chelyabinsk LL5 ordinary chondrite fragment with a light lithology and its fusion crust, fallen on February 15, 2013, in Russian Federation, was carried out using Mössbauer spectroscopy with a high velocity resolution. The Mössbauer spectra of the internal matter and fusion crust were fitted and all components were related to iron-bearing phases such as olivine, pyroxene, troilite, Fe-Ni-Co alloy, and chromite in the internal matter and olivine, pyroxene, troilite, Fe-Ni-Co alloy, and magnesioferrite in the fusion crust. A comparison of the content of different phases in the internal matter and in the fusion crust of this fragment showed that ferric compounds resulted from olivine, pyroxene, and troilite combustion in the atmosphere.

  14. Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: Implication for the analysis of ferritin-like iron cores

    Science.gov (United States)

    Alenkina, I. V.; Oshtrakh, M. I.; Tugarova, A. V.; Biró, B.; Semionkin, V. A.; Kamnev, A. A.

    2014-09-01

    The results of a comparative study of two samples of the rhizobacterium Azospirillum brasilense (strain Sp245) prepared in different conditions and of human liver ferritin using Mössbauer spectroscopy with a high velocity resolution demonstrated the presence of ferritin-like iron (i.e. iron similar to that found in ferritin-like proteins) in the bacterium. Mössbauer spectra of these samples were fitted in two ways: as a rough approximation using a one quadrupole doublet fit (the homogeneous iron core model) and using a superposition of quadrupole doublets (the heterogeneous iron core model). Both results demonstrated differences in the Mössbauer parameters for mammalian ferritin and for bacterial ferritin-like iron. Moreover, some differences in the Mössbauer parameters were observed between the two samples of A. brasilense Sp245 related to the differences in their preparation conditions.

  15. AN EXPERIMENTAL INVESTIGATION OF PRESSURE AND CAVITATION CHARACTERISTICS OF HIGH VELOCITY FLOW OVER A CYLINDRICAL PROTRUSION IN THE PRESENCE AND ABSENCE OF AERATION

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LIU Zhi-ping; WU Yi-hong; ZHANG Dong

    2008-01-01

    This article experimentally investigated the pressure and cavitation characteristics of high velocity flow over a surface irregularity with and without aeration in a non-circulating water tunnel system. The surface irregularity is a cylindrical protrusion made of stainless steel of 6 mm diameter and 2 mm height. Pressures with and without aeration were measured with MPX400D pressure transducers and real-timely acquired by a SINOCERA YE6263 data acquisition system. Variations in flow regimes with and without aeration were observed. Pressure profiles and their variations with air concentration upper and lower cylindrical protrusion on the invert and obvert walls were determined. Variations of cavitation number with air concentration lower cylindrical protrusion were analyzed. Also, cavitation numbers in the presence and absence of aeration were compared.

  16. On the structure of turbulent gravel bed flow: Implications for sediment transport

    Science.gov (United States)

    Mohajeri, Seyed Hossein; Righetti, Maurizio; Wharton, Geraldene; Romano, Giovanni Paolo

    2016-06-01

    The main objective of this study was to examine the turbulent flow field over gravel particles as a first step towards understanding sediment transport in a gravel bed river. Specifically, the vertical momentum flux in gravel bed turbulent flow was investigated with particular attention to the near-bed region. Spatial organization of vertical momentum flux was studied with stereoscopic Particle Image Velocimetry (PIV) measurements in a horizontal layer 1mm above the gravel crests. The vertical momentum flux through the water column was described with digital PIV measurements in three vertical planes. The data showed that near the gravel bed, net turbulent momentum flux spatially varies with respect to bed topography. Analysis of the vertical velocity data revealed that near the gravel particle crests, there is a significant net vertical form-induced momentum flux approximately with the same order of magnitude as the net vertical turbulent momentum flux. Above the crests, total net vertical momentum flux is positive. However, below the crests, despite noticeable positive form-induced momentum flux, total net vertical momentum flux is negative. Results of quadrant analysis show that variation of turbulent net vertical momentum flux through water column is in agreement with prevalence of upward movement of low velocity flow (known as ejection) above gravel crests and downward movement of high velocity flow (known as sweep) below gravel crests. Below gravel crests (- 0.1 particles but their contribution is not sufficient to move fine particles in the longitudinal direction.

  17. The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei

    CERN Document Server

    Vollmer, B

    2013-01-01

    Galactic gas-gas collisions involving a turbulent multiphase ISM share common ISM properties: dense extraplanar gas visible in CO, large linewidths (>= 50 km/s), strong mid-infrared H_2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ICM ram pressure stripping, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, or external gas accretion on an existing gas torus in a galactic center. We suggest that the common theme of all these gas-gas interactions is adiabatic compression of the ISM leading to an increase of the turbulent velocity dispersion of the gas. The turbulent gas clouds are then overpressured and star formation is quenched. Within this scenario we developed a model for turbulent clumpy gas disks where the energy to drive turbulence is supplied by external infall or the gain of potential energy by radial gas accretion wi...

  18. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Cenko, S. B.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, J. M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Jha, S. W.; McCully, C. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Anderson, J. P.; De Jaeger, T.; Forster, F. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Benetti, S. [INAF Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bufano, F., E-mail: mjc@mso.anu.edu.au [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); and others

    2013-06-10

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II {lambda}6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II {lambda}6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of {approx}12,000 km s{sup -1} until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v Almost-Equal-To 12,000 km s{sup -1} with narrow line width and long velocity plateau, as well as an HVF beginning at v Almost-Equal-To 31,000 km s{sup -1} two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  19. Impact of turbulent mixing on isoprene chemistry

    Science.gov (United States)

    Kim, S.-W.; Barth, M. C.; Trainer, M.

    2016-07-01

    Isoprene, a volatile organic compound that is mainly emitted from trees, rapidly reacts with hydroxyl radical (OH) during daytime and subsequently forms ozone and aerosols in the troposphere. The isoprene-OH reaction can be affected by the interplay between chemistry and mixing because the two processes occur at a similar time scale. We investigate the impact of turbulent mixing on isoprene-OH reactivity with large eddy simulations (LES) coupled with comprehensive chemistry. Our results show that the covariance of isoprene and OH causes ~20% decrease to ~10% increase of the horizontal average reaction rate, depending on nitrogen oxides (NOx = NO + NO2) abundances, compared to the rate that neglects the covariance. This wide range of effects on reaction rates is caused by the primary production and loss reactions of OH in each NOx regime. Our research promotes the use of LES for better understanding the role of turbulence in isoprene-OH reaction and parameterizations in large-scale models.

  20. High Velocity Implanting of Anchors

    Science.gov (United States)

    2007-11-02

    Ce where MMP.O (’b ) v Mo 0 werere() =b V(O) + RTU ?.The next item to be calculated is the .volume, V. available to the gas. This b,•".volume come’s...FL ACE ME NT --->* 𔄀X ’ TIMi r- E3 PBURN 335 S 0, A3’i +’ANCHCR LAUNCHER ANJCHOR LAUNCH"ER ISAS VOL G,;S EP a~ +*SURE THRUST𔃿X"(SEr)"X’(IN) (SLUG

  1. Chemically Reacting Turbulent Flow.

    Science.gov (United States)

    1987-04-14

    two stages of gen I tubes equipped with P-47 phosphor screens The detector chosen for the camera was a Reticon RL128S* line detectoI- .,hich consists...the Stud’, of Turbulent Mixing," William M. Pitts, Nuclear Engineering Seminar of the Department of Chemical and Nuclear Engineering, University of

  2. Spirituality in Turbulent Times.

    Science.gov (United States)

    Wheatley, Margaret J.

    2002-01-01

    Discusses the importance of spiritual leadership in turbulent, uncertain times. Describes several spiritual principles--for example, life is cyclical; all life is interconnected. Offers six suggestions for personal health: Start day peacefully, learn to be mindful, slow things down, create own measures, expect surprise, practice gratefulness. (PKP)

  3. Non-Gaussian turbulence

    DEFF Research Database (Denmark)

    Højstrup, Jørgen; Hansen, Kurt S.; Pedersen, Bo Juul;

    1999-01-01

    The pdf's of atmosperic turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour has been investigated using data from a large WEB-database in order to quantify the amount of non-gaussianity. Models for non-...

  4. Multilevel turbulence simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tziperman, E. [Princeton Univ., NJ (United States)

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  5. The effects of forward speed on fan inlet turbulence and its relation to tone noise generation

    Science.gov (United States)

    Hodder, B. K.

    1974-01-01

    The effect of forward speed on fan inlet turbulence was studied to determine the feasibility of using a wind tunnel to simulate various flight conditions where turbulence of atmospheric origin enters the engine inlet. The investigation was conducted in the Ames 7- by 10-foot Wind Tunnel with a small-scale low pressure-ratio fan. Results indicate that a wind tunnel of this size does produce large turbulence scale appropriate for simulation of atmospheric scale. But the tunnel's low turbulence intensity seems to cause results contrary to existing theories on the effects of fan inlet velocity ratio on turbulence scale. Limited results with artificially increased turbulence intensity removed this contradiction. Acoustic measurements showed the impact of inlet turbulence on fantone noise.

  6. Intermittent Turbulence in the Very Stable Ekman Layer

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, James C.

    2001-01-05

    INTERMITTENT TURBULENCE IN THE VERY STABLE EKMAN LAYER This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).

  7. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  8. Large Eddy Simulation of Turbulent Compressible Jets

    OpenAIRE

    Semlitsch, Bernhard

    2014-01-01

    Acoustic noise pollution is an environmental aggressor in everyday life. Aero- dynamically generated noise annoys and was linked with health issues. It may be caused by high-speed turbulent free flows (e.g. aircraft jet exhausts), by airflow interacting with solid surfaces (e.g. fan noise, wind turbine noise), or it may arise within a confined flow environment (e.g. air ventilation systems, refrigeration systems). Hence, reducing the acoustic noise levels would result in a better life quality...

  9. The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    CERN Document Server

    Poludnenko, Alexei Y; 10.1016/j.combustflame.2010.09.002

    2011-01-01

    (Abridged) Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S_T, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S_L, resulting in the Damkohler number Da = 0.05. Here we show that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S_T is predominantly determined by the increase of the flame surface area, A_T, caused by turbulence. (4) The observed increase of S_T relative to S_L exceeds the corresponding increase of A_T relative to the surface area of...

  10. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  11. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.

    Science.gov (United States)

    Baykal, Yahya

    2016-02-20

    The parameters composing oceanic turbulence are the wavelength, link length, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum. The required physical entities such as the average intensity and the scintillation index in the oceanic medium are formulated by using the power spectrum of oceanic turbulence, which is described by oceanic turbulence parameters. On the other hand, there exists a rich archive of formulations and results for the above-mentioned physical entities in atmospheric turbulence, where the parameters describing the turbulence are the wavelength, the link length, and the structure constant. In this paper, by equating the spherical wave scintillation index solutions in the oceanic and atmospheric turbulences, we have expressed the oceanic turbulence parameters by an equivalent structure constant used in turbulent atmosphere. Such equivalent structure constant will help ease reaching solutions of similar entities in an oceanic turbulent medium by employing the corresponding existing solutions, which are valid in an atmospheric turbulent medium.

  12. Gravity-driven clustering of inertial particles in turbulence.

    Science.gov (United States)

    Park, Yongnam; Lee, Changhoon

    2014-06-01

    We report a different kind of particle clustering caused purely by gravity, discovered in our simulation of particle-laden turbulence. Clustering in a vertical strip pattern forms when strong gravity acts on heavy particles. This phenomenon is explained by the skewness of the flow velocity gradient in the gravitational direction experienced by particles, which causes horizontal convergence of particles.

  13. Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures.

    Science.gov (United States)

    Elperin, Tov; Golubev, Ilia; Kleeorin, Nathan; Rogachevskii, Igor

    2007-12-01

    We study a large-scale instability in a sheared nonhelical turbulence that causes generation of large-scale vorticity. Three types of the background large-scale flows are considered, i.e., the Couette and Poiseuille flows in a small-scale homogeneous turbulence, and the "log-linear" velocity shear in an inhomogeneous turbulence. It is known that laminar plane Couette flow and antisymmetric mode of laminar plane Poiseuille flow are stable with respect to small perturbations for any Reynolds numbers. We demonstrate that in a small-scale turbulence under certain conditions the large-scale Couette and Poiseuille flows are unstable due to the large-scale instability. This instability causes formation of large-scale vortical structures stretched along the mean sheared velocity. The growth rate of the large-scale instability for the "log-linear" velocity shear is much larger than that for the Couette and Poiseuille background flows. We have found a turbulent analogue of the Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of excitation of turbulent Tollmien-Schlichting waves is associated with a combined effect of the turbulent Reynolds stress-induced generation of perturbations of the mean vorticity and the background sheared motions. These waves can be excited even in a plane Couette flow imposed on a small-scale turbulence when perturbations of mean velocity depend on three spatial coordinates. The energy of these waves is supplied by the small-scale sheared turbulence.

  14. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  15. Oscillating grids turbulence generator for turbulent transport studies

    Directory of Open Access Journals (Sweden)

    A. Eidelman

    2002-01-01

    Full Text Available An oscillating grids turbulence generator was constructed for studies of two new effects associated with turbulent transport of particles, turbulent thermal diffusion and clustering instability. These effects result in formation of large-scale and small-scale inhomogeneities in the spatial distribution of particles. The advantage of this experimental set-up is the feasibility to study turbulent transport in mixtures with controllable composition and unlimited observation time. For flow measurements we used Particle Image Velocimetry with the adaptive multi-pass algorithm to determine a turbulent velocity field and its statistical characteristics. Instantaneous velocity vector maps, flow streamlines and probability density function of velocity field demonstrate properties of turbulence generated in the device.

  16. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  17. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook

    OpenAIRE

    2015-01-01

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of tur...

  18. The distinction of turbulence from chaos -- rough dependence on initial data

    OpenAIRE

    Li, Y. Charles

    2013-01-01

    I propose a new theory on the nature of turbulence: when the Reynolds number is large, violent fully developed turbulence is due to "rough dependence on initial data" rather than chaos which is caused by "sensitive dependence on initial data"; when the Reynolds number is moderate, (often transient) turbulence is due to chaos. The key in the validation of the theory is estimating the temporal growth of the initial perturbations with the Reynolds number as a parameter. Analytically, this amount...

  19. Area of turbulence

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.   The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS),
Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN),
Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), 
Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...

  20. Controlled-Turbulence Bioreactors

    Science.gov (United States)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  1. Random functions and turbulence

    CERN Document Server

    Panchev, S

    1971-01-01

    International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random

  2. Polymer Stretching by Turbulence

    CERN Document Server

    Chertkov, M

    2000-01-01

    The stretching of a polymer chain by a large scale chaotic flow is considered. The steady state which emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively described, i.e. the dependency on the flow parameters (Lyapunov exponent statistics) and the chain characteristics (the number of beads and the inter-bead elastic potential) is made explicit. Implications for the drag reduction theory are discussed.

  3. On the interaction of turbulence and flows in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Manz, P; Ramisch, M [Institut fuer Plasmaforschung, Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2011-02-15

    In toroidally confined plasmas, background E x B flows, microturbulence and zonal flows constitute a tightly coupled dynamic system and the description of confinement transitions needs a self-consistent treatment of these players. The background radial electric field, linked to neoclassical ambipolar transport, has an impact on the interaction between zonal flows and turbulence by tilting and anisotropization of turbulent eddies. Zonal-flow drive is shown to be non-local in wavenumber space and is described as a straining-out process instead as a local inverse cascade. The straining-out process is also discussed as an option to explain turbulence suppression in sheared flows and could be the cause of predator-prey oscillations in the turbulence zonal-flow system.

  4. Towards quantum turbulence in finite temperature Bose-Einstein condensates

    Science.gov (United States)

    Lan, Shanquan; Tian, Yu; Zhang, Hongbao

    2016-07-01

    Motivated by the various indications that holographic superfluid is BCS like at the standard quantization but BEC like at the alternative quantization, we have implemented the alternative quantization in the dynamical holographic superfluid for the first time. With this accomplishment, we further initiate the detailed investigation of quantum turbulence in finite temperature BEC by a long time stable numerical simulation of bulk dynamics, which includes the two body decay of vortex number caused by vortex pair annihilation, the onset of superfluid turbulence signaled by Kolmogorov scaling law, and a direct energy cascade demonstrated by injecting energy to the turbulent superfluid. All of these results share the same patterns as the holographic superfluid at the standard quantization, thus suggest that these should be universal features for quantum turbulence at temperatures order of the critical temperature.

  5. Towards Quantum Turbulence in Finite Temperature Bose-Einstein Condensates

    CERN Document Server

    Lan, Shanquan; Zhang, Hongbao

    2016-01-01

    Motivated by the various indications that holographic superfluid is BCS like at the standard quantization but BEC like at the alternative quantization, we have implemented the alternative quantization in the dynamical holographic superfluid for the first time. With this accomplishment, we further initiate the detailed investigation of quantum turbulence in finite temperature BEC by a long time stable numerical simulation of bulk dynamics, which includes the two body decay of vortex number caused by vortex pair annihilation, the onset of superfluid turbulence signaled by Kolmogorov scaling law, and a direct energy cascade demonstrated by injecting energy to the turbulent superfluid. All of these results share the same patterns as the holographic superfluid at the standard quantization, thus suggest that these should be universal features for quantum turbulence at temperatures order of the critical temperature.

  6. Orientation statistics of non-spherical particles sedimenting in turbulence

    Science.gov (United States)

    Kramel, Stefan; Tierney, Lydia; Rees, Wyatt; Voth, Greg A.; Menon, Udayshankar; Roy, Anubhab; Koch, Donald L.

    2016-11-01

    We study the sedimentation of non-spherical particles in turbulence. The particle orientation is determined by a competition between inertial torques causing a preferential alignment and turbulence randomizing the orientation. The relative importance is quantified by a settling number SF defined as the ratio of the tumbling-rate from inertial torques and from turbulence. The experiments focus on the orientation statistics of particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We measure the time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned particles to randomized orientations as SF is decreased. Results are compared to simulations and theory based on slender body theory.

  7. Model of strong stationary vortex turbulence in space plasmas

    Directory of Open Access Journals (Sweden)

    G. D. Aburjania

    2009-01-01

    Full Text Available This paper investigates the macroscopic consequences of nonlinear solitary vortex structures in magnetized space plasmas by developing theoretical model of plasma turbulence. Strongly localized vortex patterns contain trapped particles and, propagating in a medium, excite substantial density fluctuations and thus, intensify the energy, heat and mass transport processes, i.e., such vortices can form strong vortex turbulence. Turbulence is represented as an ensemble of strongly localized (and therefore weakly interacting vortices. Vortices with various amplitudes are randomly distributed in space (due to collisions. For their description, a statistical approach is applied. It is supposed that a stationary turbulent state is formed by balancing competing effects: spontaneous development of vortices due to nonlinear twisting of the perturbations' fronts, cascading of perturbations into short scales (direct spectral cascade and collisional or collisionless damping of the perturbations in the short-wave domain. In the inertial range, direct spectral cascade occurs through merging structures via collisions. It is shown that in the magneto-active plasmas, strong turbulence is generally anisotropic Turbulent modes mainly develop in the direction perpendicular to the local magnetic field. It is found that it is the compressibility of the local medium which primarily determines the character of the turbulent spectra: the strong vortex turbulence forms a power spectrum in wave number space. For example, a new spectrum of turbulent fluctuations in k−8/3 is derived which agrees with available experimental data. Within the framework of the developed model particle diffusion processes are also investigated. It is found that the interaction of structures with each other and particles causes anomalous diffusion in the medium. The effective coefficient of diffusion has a square root dependence on the stationary level of noise.

  8. Turbulent General Magnetic Reconnection

    CERN Document Server

    Eyink, Gregory L

    2014-01-01

    Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...

  9. Controllability of flow turbulence.

    Science.gov (United States)

    Guan, Shuguang; Wei, G W; Lai, C-H

    2004-06-01

    In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the limit of long time and strong coupling strength. It is further revealed that the controlled component of the velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.

  10. Statistical properties of turbulence: An overview

    Indian Academy of Sciences (India)

    Rahul Pandit; Prasad Perlekar; Samriddhi Sankar Ray

    2009-07-01

    We present an introductory overview of several challenging problems in the statistical characterization of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.

  11. Statistical Properties of Turbulence: An Overview

    CERN Document Server

    Pandit, Rahul; Ray, Samriddhi Sankar

    2009-01-01

    We present an introductory overview of several challenging problems in the statistical characterisation of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.

  12. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  13. Turbulence and fossil turbulence lead to life in the universe

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ~ 10^12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life i...

  14. Transition to turbulence in ferrofluids

    CERN Document Server

    Altmeyer, Sebastian; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed bifurcation analysis and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A striking finding is that, as the magnetic field is increased, the onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence can be greatly facilitated by using ferrofluids, opening up...

  15. Turbulence measurements in fusion plasmas

    Science.gov (United States)

    Conway, G. D.

    2008-12-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence—the microscopic random fluctuations in particle density, temperature, potential and magnetic field—is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  16. 4th European Turbulence Conference

    CERN Document Server

    1993-01-01

    The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...

  17. Helicopter response to atmospheric turbulence

    Science.gov (United States)

    Riaz, J.; Prasad, J. V. R.; Schrage, D. P.; Gaonkar, G. H.

    1992-01-01

    A new time-domain method for simulating cyclostationary turbulence as seen by a translating and rotating blade element has recently been developed for the case of one-dimensional spectral distribution. This paper extends the simulation method to the cases of two- and three-dimensional spectral distributions and presents validation results for the two-dimensional case. The statistics of an isolated rigid blade flapping response to turbulence are computed using a two-dimensional spectral representation of the von Karman turbulence model, and the results are compared with those obtained using the conventional space-fixed turbulence analysis. The new turbulence simulation method is used for predicting the Black Hawk helicopter response to atmospheric turbulence.

  18. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  19. Intermittent Turbulence in the Very Stable Ekman Layer

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, James C [Univ. of Washington, Seattle, WA (United States)

    2001-01-01

    This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).

  20. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence- Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence- chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent...flames. Mixture fraction is an important variable in understanding and modeling turbulent mixing and turbulence- chemistry interaction, two key

  1. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and an Atlas of Synthetic Dwarf Galaxies

    CERN Document Server

    Beccari, G; Battaglia, G; Ibata, R; Martin, N; Testa, V; Cignoni, M; Correnti, M

    2016-01-01

    SECCO is a survey devoted to the search for stellar counterparts within Ultra Compact High Velocity Clouds. In this contribution we present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size and distance of the stellar systems we are looking for. For all our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogs, taking into account all the observational effects. In the fields where the available observational material is of the top quality we detect synthetic galaxies as >=5 sigma over-densities of resolved stars down to muV,h=30.0 mag/arcsec2, for D<=1.5 Mpc, and down to muV,h~29.5 mag/arcsec2, for D<=2.5 Mpc. In the field with the worst observational material of the whole survey we detect synthetic galaxies with muV,h<=28.8 mag/arcsec2 out to D<=1.0 Mpc, and ...

  2. An experimental study to estimate ballistic limit velocity for glass epoxy composite under high velocity impact with two different projectile geometry.

    Directory of Open Access Journals (Sweden)

    Erfan Ebadi Afshar

    2016-12-01

    Full Text Available In this research a study in estimating velocity ballistic in glass epoxy composite sheet with construction process of padding-manually, under high velocity impact was conducted for laboratory with gas gun device and ballistic limit velocity for composite sheet with a thickness 2 mm were obtained under geometry of projectile. So that result is obtained in construction of military armor, aerospace industry, automotive, and general any industry to be used with impact challenges and faced dealt. That is down strength and toughness and resistance to crack growth in structural weight. Glass epoxy composite (three layers made and for build projectile of steel rod VCN200 (Brand steel 1.6580 was used to manually peeling method; amounting to 16 gas gun device was performed to dimensions of 65 × 65 mm on the samples. With results analysis obtained ballistic tests were two important conclusions: first, in compare of two projectile geometry together, projectile with spherical tip compared to projectile with conical tip for better performance in penetrate and pass of this armor; second ballistic limit velocity for armor was obtained under spherical tip projectile 136.6 (meters per second and under conic tip projectile 143.6 (meters per second.

  3. The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part 2: Erosion-corrosion behavior

    Science.gov (United States)

    Shrestha, S.; Hodgkiess, T.; Neville, A.

    2001-12-01

    In this paper, a study of the erosion-corrosion characteristics of a Ni-Cr-Mo-Si-B coating applied by the high-velocity oxy-fuel (HVOF) process on to an austenitic stainless steel (UNS S31603) substrate are reported. The coatings were studied in the as-sprayed condition, after vacuum sealing with polymer impregnation and after vacuum furnace fusion. The erosion-corrosion characteristics were assessed in an impinging liquid jet of 3.5% NaCl solution at 18 °C at a velocity of 17 m/s at normal incidence in two conditions: (1) free from added solids and (2) containing 800 ppm silica sand. The methodology employed electrochemical control and monitoring to facilitate the identification of the separate and interrelated erosion and corrosion contributions to the erosion-corrosion process. The rates of erosion-corrosion damage were drastically accelerated in the presence of the suspended solids. The application of cathodic protection significantly reduced the deterioration process. The study showed the effect of sealing with polymer impregnation did not significantly alter the erosion-corrosion behavior of the sprayed coating. However, there was a significant improvement in erosion-corrosion durability afforded by the postfusion process. The mechanisms by which the improved performance of vacuum-fused coatings is achieved are discussed.

  4. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  5. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  6. Microstructural Characterization and Wear Behavior of Nano-Boride Dispersed Coating on AISI 304 Stainless Steel by Hybrid High Velocity Oxy-Fuel Spraying Laser Surface Melting

    Science.gov (United States)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2015-07-01

    The current study concerns the detailed microstructural characterization and investigation of wear behavior of nano-boride dispersed coating developed on AISI 304 stainless steel by high velocity oxy-fuel spray deposition of nickel-based alloy and subsequent laser melting. There is a significant refinement and homogenization of microstructure with improvement in microhardness due to laser surface melting (1200 VHN as compared to 945 VHN of as-sprayed and 250 VHN of as-received substrate). The high temperature phase stability of the as-coated and laser melted surface has been studied by differential scanning calorimeter followed by detailed phase analysis at room and elevated temperature. There is a significant improvement in wear resistance of laser melted surface as compared to as-sprayed and the as-received one due to increased hardness and reduced coefficient of friction. The mechanism of wear has been investigated in details. Corrosion resistance of the coating in a 3.56 wt pct NaCl solution is significantly improved (4.43 E-2 mm/year as compared to 5 E-1 mm/year of as-sprayed and 1.66 mm/year of as-received substrate) due to laser surface melting as compared to as-sprayed surface.

  7. Experimental Study on Penetration Properties of High Velocity Fragment into Safety Liquid Cabin%高速破片侵彻防护液舱试验研究

    Institute of Scientific and Technical Information of China (English)

    沈晓乐; 朱锡; 侯海量; 陈长海

    2011-01-01

    为研究水下接触爆炸产生的高速破片在水中的侵彻特性,针对3.3 g立方体破片进行了水下弹道试验,结果表明:破片的侵彻阻力系数受形状的影响较大,撞击隔板时产生压缩波使破片产生墩粗和侵蚀,造成破片迎流面积的增加和质量的下降,从而使破片在速度较高时侵彻深度反而下降。%In order to study penetration properties of high velocity fragment produced by underwater contact explosion, underwater ballistic experiments of 3.3 g cubic fragment was carried out, the results show that resistance coefficient of fragment is significantly influenced by the fragment shape. When the fragment crash on the steel plate, it will bring about great compress wave which makes fragment generate mushrooming and erosion, so the incident flow area increases and the weight decreases, consequently the underwater penetration ability of the fragments decrease with the increasing of velocity.

  8. High-Temperature Behavior of a High-Velocity Oxy-Fuel Sprayed Cr3C2-NiCr Coating

    Science.gov (United States)

    Kaur, Manpreet; Singh, Harpreet; Prakash, Satya

    2012-08-01

    High-velocity oxy-fuel (HVOF) sprayed coatings have the potential to enhance the high-temperature oxidation, corrosion, and erosion-corrosion resistance of boiler steels. In the current work, 75 pct chromium carbide-25 pct (nickel-20 pct chromium) [Cr3C2-NiCr] coating was deposited on ASTM SA213-T22 boiler steel using the HVOF thermal spray process. High-temperature oxidation, hot corrosion, and erosion-corrosion behavior of the coated and bare steel was evaluated in the air, molten salt [Na2SO4-82 pct Fe2(SO4)3], and actual boiler environments under cyclic conditions. Weight-change measurements were taken at the end of each cycle. Efforts were made to formulate the kinetics of the oxidation, corrosion, and erosion-corrosion. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM)/energy dispersive spectroscopy (EDS) techniques were used to analyze the oxidation products. The coating was found to be intact and spallation free in all the environments of the study in general, whereas the bare steel suffered extensive spallation and a relatively higher rate of degradation. The coating was found to be useful to enhance the high-temperature resistance of the steel in all the three environments in this study.

  9. Water emission from the high-mass star-forming region IRAS 17233-3606. High water abundances at high velocities

    CERN Document Server

    Leurini, S; Wyrowski, F; Codella, C; Csengeri, T; van der Tak, F; Beuther, H; Flower, D R; Comito, C; Schilke, P

    2014-01-01

    We investigate the physical and chemical processes at work during the formation of a massive protostar based on the observation of water in an outflow from a very young object previously detected in H2 and SiO in the IRAS 17233-3606 region. We estimated the abundance of water to understand its chemistry, and to constrain the mass of the emitting outflow. We present new observations of shocked water obtained with the HIFI receiver onboard Herschel. We detected water at high velocities in a range similar to SiO. We self-consistently fitted these observations along with previous SiO data through a state-of-the-art, one-dimensional, stationary C-shock model. We found that a single model can explain the SiO and H2O emission in the red and blue wings of the spectra. Remarkably, one common area, similar to that found for H2 emission, fits both the SiO and H2O emission regions. This shock model subsequently allowed us to assess the shocked water column density, N(H2O)=1.2x10^{18} cm^{-2}, mass, M(H2O)=12.5 M_earth, a...

  10. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  11. Dynamic multiscaling in magnetohydrodynamic turbulence

    CERN Document Server

    Ray, Samriddhi Sankar; Pandit, Rahul

    2016-01-01

    We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  12. Turbulent wakes of fractal objects.

    Science.gov (United States)

    Staicu, Adrian; Mazzi, Biagio; Vassilicos, J C; van de Water, Willem

    2003-06-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are studied within inertial and dissipative range scales in an attempt to relate changes in their self-similar behavior to the scaling of the fractal objects.

  13. Dynamic multiscaling in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul

    2016-11-01

    We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  14. Quantum Ghost Imaging through Turbulence

    CERN Document Server

    Dixon, P Ben; Chan, Kam Wai Clifford; O'Sullivan-Hale, Colin; Rodenburg, Brandon; Hardy, Nicholas D; Shapiro, Jeffrey H; Simon, D S; Sergienko, A V; Boyd, R W; Howell, John C

    2011-01-01

    We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.

  15. Galactic turbulence and paleoclimate variability

    CERN Document Server

    Bershadskii, A

    2010-01-01

    The wavelet regression detrended fluctuations of the reconstructed temperature for the past three ice ages: approximately 340000 years (Antarctic ice cores isotopic data), exhibit clear evidences of the galactic turbulence modulation up to 2500 years time-scales. The observed strictly Kolmogorov turbulence features indicates the Kolmogorov nature of galactic turbulence, and provide explanation to random-like fluctuations of the global temperature on the millennial time scales.

  16. Superhydrophobic surfaces in turbulent channel flow

    Science.gov (United States)

    Li, Yixuan; Alame, Karim; Mahesh, Krishnan

    2016-11-01

    The drag reduction effect of superhydrophobic surfaces in turbulent channel flow is studied using direct numerical simulation. The volume of fluid (VOF) methodology is used to resolve the dynamics of the interface. Laminar flow simulations show good agreement with experiment, and illustrate the relative importance of geometry and interface boundary condition. An analytical solution for the multi-phase problem is obtained that shows good agreement with simulation. Turbulent simulations over a longitudinally grooved surface show drag reduction even in the fully wetted regime. The statistics show that geometry alone can cause an apparent slip to the external flow. Instantaneous plots indicate that the grooves prevent the penetration of near wall vorticity, yielding overall drag reduction. Results for spectra, wall pressure fluctuations and correlations will be presented. Unsteady effects on the air-vapor interface will be discussed. Results for random roughness surfaces will be presented. Supported by Office of Naval Research.

  17. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  18. The Calern atmospheric turbulence station

    Science.gov (United States)

    Chabé, Julien; Ziad, Aziz; Fantéï-Caujolle, Yan; Aristidi, Éric; Renaud, Catherine; Blary, Flavien; Marjani, Mohammed

    2016-07-01

    From its long expertise in Atmospheric Optics, the Observatoire de la Côte d'Azur and the J.L. Lagrange Laboratory have equipped the Calern Observatory with a station of atmospheric turbulence measurement (CATS: Calern Atmospheric Turbulence Station). The CATS station is equipped with a set of complementary instruments for monitoring atmospheric turbulence parameters. These new-generation instruments are autonomous within original techniques for measuring optical turbulence since the first meters above the ground to the borders of the atmosphere. The CATS station is also a support for our training activities as part of our Masters MAUCA and OPTICS, through the organization of on-sky practical works.

  19. Turbulent Dynamos and Magnetic Helicity

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Hantao

    1999-04-01

    It is shown that the turbulent dynamo alpha-effect converts magnetic helicity from the turbulent field to the mean field when the turbulence is electromagnetic while the magnetic helicity of the mean-field is transported across space when the turbulence is elcetrostatic or due to the elcetron diamagnetic effect. In all cases, however, the dynamo effect strictly conserves the total helicity expect for a battery effect which vanishes in the limit of magnetohydrodynamics. Implications for astrophysical situations, especially for the solar dynamo, are discussed.

  20. A stability condition for turbulence model: From EMMS model to EMMS-based turbulence model

    CERN Document Server

    Zhang, Lin; Wang, Limin; Li, Jinghai

    2013-01-01

    The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the heterogeneous structural parameters of turbulence to be optimized. We call this model the `EMMS-based turbulence model', and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced con...

  1. Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear

    Directory of Open Access Journals (Sweden)

    H. Z. Baumert

    2009-03-01

    Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.

    The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E2. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E1. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.

  2. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  3. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    Science.gov (United States)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  4. Global simulations of magnetorotational turbulence II: turbulent energetics

    CERN Document Server

    Parkin, E R

    2013-01-01

    Magnetorotational turbulence draws its energy from gravity and ultimately releases it via dissipation. However, the quantitative details of this energy flow have not been assessed for global disk models. In this work we examine the energetics of a well-resolved, three-dimensional, global magnetohydrodynamic accretion disk simulation by evaluating statistically-averaged mean-field equations for magnetic, kinetic, and internal energy using simulation data. The results reveal that turbulent magnetic (kinetic) energy is primarily injected by the correlation between Maxwell (Reynolds) stresses and shear in the (almost Keplerian) mean flow, and removed by dissipation. This finding differs from previous work using local (shearing-box) models, which indicated that turbulent kinetic energy was primarily sourced from the magnetic energy reservoir. Lorentz forces provide the bridge between the magnetic and kinetic energy reservoirs, converting ~ 1/5 of the total turbulent magnetic power input into turbulent kinetic ener...

  5. Aperture-averaging effects for weak to strong scintillations in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang(张逸新); Tuo Zhu(朱拓); Chunkan Tao(陶纯堪)

    2004-01-01

    Under the approximations of (1) the received irradiance fluctuations of an optical wave caused by small scale turbulent eddies are multiplicatively modulated by the fluctuations caused by large scale turbulent eddies;(2) the scintillations caused by small- and large-scale eddies, respectively, are statistically independent; (3)the Rytov method for optical scintillation collected by the finite-diameter receiving aperture is valid for light wave propagation under weak to saturation fluctuation regime, we develop the applicable apertureaveraging analytic formulas in the week-to-strong-fluctuation for the scintillations of plane and spherical waves, which include the outer- and inner-scale rules of turbulence.

  6. Formation of Large-Scale Semi-Organized Structures in Turbulent Convection

    CERN Document Server

    Elperin, T; Rogachevskii, I; Zilitinkevich, S

    2002-01-01

    A new mean-field theory of turbulent convection is developed. This theory predicts the convective wind instability in a shear-free turbulent convection which causes formation of large-scale semi-organized fluid motions in the form of cells or rolls. Spatial characteristics of these motions, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This study predicts also the existence of the convective shear instability in a sheared turbulent convection which results in generation of convective shear waves with a nonzero hydrodynamic helicity. Increase of shear promotes excitation of the convective shear instability. Applications of the obtained results to the atmospheric turbulent convection and the laboratory experiments on turbulent convection are discussed. This theory can be applied also for the describing a mesogranular turbulent convection in astrophysics.

  7. Experimental detection of turbulent thermaldiffusion of aerosols in non-isothermal flows

    Directory of Open Access Journals (Sweden)

    A. Eidelman

    2006-01-01

    Full Text Available We studied experimentally a new phenomenon of turbulent thermal diffusion of particles which can cause formation of the large-scale aerosol layers in the vicinity of the atmospheric temperature inversions. This phenomenon was detected experimentally in oscillating grids turbulence in air flow. Three measurement techniques were used to study turbulent thermal diffusion in strongly inhomogeneous temperature fields, namely Particle Image Velocimetry to determine the turbulent velocity field, an image processing technique to determine the spatial distribution of aerosols, and an array of thermocouples for the temperature field. Experiments are presented for both, stably and unstably stratified fluid flows, by using both directions of the imposed mean vertical temperature gradient. We demonstrated that even in strongly inhomogeneous temperature fields particles in turbulent fluid flow accumulate at the regions with minimum of mean temperature of surrounding fluids due to the phenomenon of turbulent thermal diffusion.

  8. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and the atlas of synthetic dwarf galaxies

    Science.gov (United States)

    Beccari, G.; Bellazzini, M.; Battaglia, G.; Ibata, R.; Martin, N.; Testa, V.; Cignoni, M.; Correnti, M.

    2016-06-01

    The searching for StEllar Counterparts of COmpact high velocity clouds (SECCO) survey is devoted to the search for stellar counterparts within ultra compact high velocity clouds that are candidate low-mass, low-luminosity galaxies. We present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size, and distance of the stellar systems we are looking for. For all of our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogues, taking all the observational effects into account. In the fields where the available observational material is of top quality (≃36% of the SECCO fields), we detect synthetic galaxies as ≥5σ over-densities of resolved stars down to μV,h ≃ 30.0 mag/arcsec2, for D ≤ 1.5 Mpc, and down to μV,h ≃ 29.5 mag/arcsec2, for D ≤ 2.5 Mpc. In the field with the worst observational material of the whole survey, we detect synthetic galaxies with μV,h ≤ 28.8 mag/arcsec2 out to D ≤ 1.0 Mpc, and those with μV,h ≤ 27.5 mag/arcsec2 out to D ≤ 2.5 Mpc. Dwarf galaxies with MV = -10.0, with sizes in the range spanned by known dwarfs, are detected by visual inspection of the images up to D = 5 Mpc independent of the image quality. In the best quality images, dwarfs are partially resolved into stars up to D = 3.0 Mpc and completely unresolved at D = 5 Mpc. As an independent test of the sensitivity of our images to low surface brightness galaxies, we report on the detection of several dwarf spheroidal galaxies probably located in the Virgo cluster with MV ≲ -8.0 and μV,h ≲ 26.8 mag/arcsec2. The nature of the previously discovered SECCO 1 stellar system, also likely located in the Virgo cluster, is rediscussed in comparison with these dwarfs. While specific for the SECCO survey, our study may also provide general

  9. Effect of Sampling Rates on the Quantification of Forces, Durations, and Rates of Loading of Simulated Side Posture High-Velocity, Low-Amplitude Lumbar Spine Manipulation☆

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-01-01

    Objective Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Methods Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. Results The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. Conclusions The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. PMID:23790603

  10. Validation of the cat as a model for the human lumbar spine during simulated high-velocity, low-amplitude spinal manipulation.

    Science.gov (United States)

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2010-07-01

    High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of approximately 25% bodyweight for 0.5 s and peak forces that rose to 50-100% bodyweight within approximately 125 ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further

  11. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus

    Science.gov (United States)

    Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J=3–2 and other molecular lines from the “water-fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0⋅″35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm−3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10−4 M⊙ yr−1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed. PMID:28191303

  12. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus

    Science.gov (United States)

    Sahai, R.; Vlemmings, W. H. T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J = 3–2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0.″35 resolution using Atacama Large Millimeter/submillimeter Array. We find (i) two very high-speed knotty, jet-like molecular outflows; (ii) a central high-density (> {few}× {10}6 cm‑3), expanding torus of diameter 1300 au; and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5× {10}-4 M⊙ yr‑1 in the past ∼455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 M⊙) of very large (∼millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age ∼160 years) and the younger high-velocity outflow (age ∼110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi–Hoyle–Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.

  13. THE HIGH-VELOCITY SYSTEM: INFALL OF A GIANT LOW-SURFACE-BRIGHTNESS GALAXY TOWARD THE CENTER OF THE PERSEUS CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Alice P.-Y.; Lim, Jeremy; Chan, Jeffrey C.-C. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Ohyama, Youichi [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Broadhurst, T. [Department of Theoretical Physics, University of Basque Country UPV/EHU, Bilbao (Spain)

    2015-12-01

    The high-velocity system (HVS) lies just north-west of the center and is moving at a speed of 3000 km s{sup −1} toward NGC 1275, the central giant elliptical galaxy in the Perseus cluster. We report imaging spectroscopy of the HVS in Hα and [N ii] that resolves both the nature of this galaxy and its physical relationship with NGC 1275. The HVS exhibits a distorted disk having a projected rotational velocity that rises steadily to ∼200 km s{sup −1} at a radius of ∼12 kpc, the same maximal extent detectable in neutral gas and dust. We discover highly blueshifted emission at relative velocities of up to ∼800 km s{sup −1} distributed throughout and confined almost entirely within the projected area of the disk, tracing gas stripped by ram pressure. The distribution of the stripped gas implies that the HVS is moving essentially along our sightline closely toward the center of NGC 1275. We show that the speed of the HVS is consistent with it having fallen from rest at the virial radius of the Perseus cluster and reached ∼100 kpc from the cluster center. Despite having an overall metallicity (inferred from [N ii]/Hα) significantly lower than that of star-forming disk galaxies, the HVS exhibits a current star formation rate of ∼3.6 M{sub ⊙} yr{sup −1} and numerous young star clusters projected against giant H ii regions. The evidence assembled implicates a progenitor giant low-surface-brightness galaxy that, because of galaxy harassment and/or the cluster tidal field, has developed two prominent spiral arms along which star formation is strongly elevated.

  14. 高速电弧喷涂Mo涂层性能初探%Study on the Properties of Mo Coating Prepared by High Velocity Arc Spraying

    Institute of Scientific and Technical Information of China (English)

    杨忠须; 刘贵民; 徐军; 郭永明

    2015-01-01

    目的:初步研究高速电弧喷涂Mo涂层的综合性能,为进一步发展热喷涂Mo涂层制备工艺提供参考。方法利用高速电弧喷涂设备在45 CrNiMoVA钢表面制备Mo涂层,采用场发射扫描电镜、X射线能谱仪、显微硬度测试仪及电子万能试验机等对涂层形貌、成分、显微硬度及结合强度进行表征和测试,并结合断口微观形貌对拉伸断裂机理进行分析。采用CETR-3型多功能摩擦磨损试验机,在润滑条件下对涂层进行不同载荷的摩擦磨损实验,通过磨损体积及表面磨痕微观形貌分析涂层的摩擦磨损性能及机理。结果 Mo涂层具有一定量的微观孔隙,氧化物含量低,与基体结合牢固可靠,平均显微硬度高达416.3 HV0.1,平均内聚强度为22.7 MPa。拉伸断口呈脆性断裂,并伴有半熔融颗粒剥落留下的剥落坑。润滑条件下,涂层在10,30,50 N载荷下的磨损体积分别为1.1×107,4.4×107,5.5×107μm3。结论高速电弧喷涂可成功制备Mo涂层,涂层与基体为机械结合。在润滑条件下,涂层的磨损体积随载荷增大而增大,不同载荷下的磨损机理均以粘着磨损为主。%ABSTRACT:Objective To study the comprehensive properties of Mo coating prepared by high velocity arc spraying, so as to pro-vide some referential value for Mo coating preparation technology. Methods The Mo coatings were prepared on the surface of 45CrNiMoVA steel by the high velocity arc spraying device, tests include microstructure, components, microhardness, bonding-strength were performed by SEM, XRD, micro-hardness test, electromechanical universal testing machine, and the fracture mecha-nism was analyzed through the micro-structure of fracture surface. The lubricative tribological properties under different loads of coating were tested by the CETR-3 multifunctional friction and wear testing machine. The friction properties and wear mechanism were characterized through the wear volume and worn

  15. Energy spectra in bubbly turbulence

    CERN Document Server

    Prakash, Vivek N; Ramos, Fabio Ernesto Mancilla; Tagawa, Yoshiyuki; Lohse, Detlef; Sun, Chao

    2013-01-01

    We conduct experiments in a turbulent bubbly flow to study the unknown nature of the transition between the classical -5/3 energy spectrum scaling for a single-phase turbulent flow and the -3 scaling for a swarm of bubbles rising in a quiescent liquid and of bubble-dominated turbulence. The bubblance parameter, b, which measures the ratio of the bubble-induced kinetic energy to the kinetic energy induced by the turbulent liquid fluctuations before bubble injection, is used to characterise the bubbly flow. We vary b from $b = \\infty$ (pseudo-turbulence) to b = 0 (single-phase flow) over 2-3 orders of magnitude: ~O(0.01, 0.1, 5) to study its effect on the turbulent energy spectrum and liquid velocity fluctuations. The experiments are conducted in a multi-phase turbulent water tunnel with air bubbles of diameters 2-4 mm and 3-5 mm. An active-grid is used to generate nearly homogeneous and isotropic turbulence in the liquid flow. The liquid speeds and gas void fractions are varied to achieve the above mentioned b...

  16. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  17. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  18. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  19. Shear dynamo, turbulence, and the magnetorotational instability

    Science.gov (United States)

    Squire, Jonathan

    The formation, evolution, and detailed structure of accretion disks remain poorly understood, with wide implications across a variety of astrophysical disciplines. While the most pressing question --- what causes the high angular momentum fluxes that are necessary to explain observations? --- is nicely answered by the idea that the disk is turbulent, a more complete grasp of the fundamental processes is necessary to capture the wide variety of behaviors observed in the night sky. This thesis studies the turbulence in ionized accretion disks from a theoretical standpoint, in particular focusing on the generation of magnetic fields in these processes, known as dynamo. Such fields are expected to be enormously important, both by enabling the magnetorotational instability (which evolves into virulent turbulence), and through large-scale structure formation, which may transport angular momentum in different ways and be fundamental for the formation of jets. The central result of this thesis is the suggestion of a new large-scale dynamo mechanism in shear flows --- the "magnetic shear-current effect" --- which relies on a positive feedback from small-scale magnetic fields. As well as being a very promising candidate for driving field generation in the central regions of accretion disks, this effect is interesting because small-scale magnetic fields have historically been considered to have a negative effect on the large-scale dynamo, damping growth and leading to dire predictions for final saturation amplitudes. Given that small-scale fields are ubiquitous in plasma turbulence above moderate Reynolds numbers, the finding that they could instead have a positive effect in some situations is interesting from a theoretical and practical standpoint. The effect is studied using direct numerical simulation, analytic techniques, and novel statistical simulation methods. In addition to the dynamo, much attention is given to the linear physics of disks and its relevance to

  20. Shell Models of Magnetohydrodynamic Turbulence

    CERN Document Server

    Plunian, Franck; Frick, Peter

    2012-01-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...

  1. Magnetohydrodynamic Turbulence and the Geodynamo

    Science.gov (United States)

    Shebalin, John V.

    2016-01-01

    Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.

  2. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  3. Modeling the stochastic dynamics of moving turbulent spots over a slender cone at Mach 5 during laminar-turbulent transition

    Science.gov (United States)

    Robbins, Brian; Field, Rich; Grigoriu, Mircea; Jamison, Ryan; Mesh, Mikhail; Casper, Katya; Dechant, Lawrence

    2016-11-01

    During reentry, a hypersonic vehicle undergoes a period in which the flow about the vehicle transitions from laminar to turbulent flow. During this transitional phase, the flow is characterized by intermittent formations of localized turbulent behavior. These localized regions of turbulence are born at the onset of transition and grow as they move to the aft end of the flight vehicle. Throughout laminar-turbulent transition, the moving turbulent spots cause pressure fluctuations on the outer surface of the vehicle, which leads to the random vibration of the structure and its internal components. In light of this, it is of great interest to study the dynamical response of a flight vehicle undergoing transitional flow so that aircraft can be better designed to prevent structural failure. In this talk, we present a statistical model that calculates the birth, evolution, and pressure field of turbulent spots over a generic slender cone structure. We then illustrate that the model appropriately quantifies intermittency behavior and pressure loading by comparing the intermittency and root-mean-square pressure fluctuations produced by the model with theory and experiment. Finally, we present results pertaining to the structural response of a housing panel on the slender cone. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions.

    Science.gov (United States)

    Volino, Ralph John

    1995-01-01

    fluctuations induced by the free-stream unsteadiness. The large scale fluctuations cause some turbulent mixing, but are not as effective at promoting turbulent transport as are smaller scale fluctuations resulting from near wall production in the turbulent boundary layer. To the author's knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  5. Coherence in Turbulence: New Perspective

    Science.gov (United States)

    Levich, Eugene

    2009-07-01

    It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows

  6. Effect of heat flux on differential rotation in turbulent convection

    CERN Document Server

    Kleeorin, N

    2006-01-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations and the turbulent heat flux. We used a spectral $\\tau$ approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of $\\sim 10 (L_\\rho / l_0)^2$, where $l_{0}$ is the maximum scale of turbulent motions and $L_\\rho$ is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  7. Effects of thrust amplitude and duration of high velocity low amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    OBJECTIVE Mechanical characteristics of high velocity low amplitude spinal manipulations (HVLA-SM) can be variable. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor’s local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether an HVLA-SM’s thrust amplitude or duration altered neural responsiveness of lumbar muscle spindles to either vertebral movement or position. METHODS Anesthetized cats (n=112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3mm) they received. Cats in each cohort received 8 thrust durations (0–250ms). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (MIF) during the baseline period preceding the ramps (ΔMIFresting), during ramp movements (ΔMIFmovement), and with the vertebra held in the new position (ΔMIFposition) were compared. RESULTS Thrust duration had a small but statistically significant effect on ΔMIFresting at all six thrust amplitudes compared to control (0ms thrust duration). The lowest amplitude thrust displacement (1mm) increased ΔMIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ΔMIFresting was not consistent and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ΔMIFmovement and ΔMIFposition were not significantly different from control. Conclusion Relatively low amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust was

  8. An Analytical Means of Determining Mass Loss from High Velocity Rigid Penetrators based on the Thermodynamic and Mechanical Properties of the Penetrator and Target

    Science.gov (United States)

    Foster, Joseph C., Jr.; Jones, S. E.; Rule, William; Toness, Odin

    1999-06-01

    Sub-scale experimentation is commonly used as a cost-effective means of conducting terminal ballistics research. Analytical models of the penetration process focus on calculating the depth of penetration based on target density, target strength represented by the unconfined compressive-strength (f”c), the areal density of the penetrator (W/A), and the impact velocity.1 Forrestal, et. al. have documented the mass loss from the penetrator during the penetration process and employed improved equations of motion.2 Various researchers have investigated the upper limits of rigid body penetration and identified the onset of instabilities.3 In an effort to better understand the physical processes associated with this instability, experimental techniques have been developed to capture the details of the penetrator and target and subject them to microscopic analysis.4 These results have served as motivation to explore new forms for the physics included in the penetration equation as a means of identifying the processes associated with high velocity instability. We have included target shear and nose friction in the formulation of the fundamental load function expressions.5 When the resulting equations of motion are integrated and combined with the thermodynamics indicated by microscopic analysis, methods are identified to calculated penetrator mass loss. A comparison of results with experimental data serves as an indicator of the thermodynamic state variables associated with the quasi-steady state penetrator target interface conditions. 1 Young, C. W. , “Depth Predictions for Earth Penetrating Projectiles,” Journal of Soil Mechanics and Foundations, Division of ASCE, May 1998 pp 803-817 2. M.J. Forrestal, D.J. Frew, S.J. Hanchak, amd Brar, “ Pentration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles,” Inrt. J. Impact Engng. Vol 18, pp. 465-476,1996 3. Andrew J. Piekutowski, Michael J. Forrestal, Kevin L. Poormon, and Thomas L. Warren,

  9. A study on turbulence modulation via an analysis of turbulence anisotropy-invariants

    Institute of Scientific and Technical Information of China (English)

    Michael; MANHART

    2010-01-01

    We investigate the turbulence modulation by particles in a turbulent two-phase channel flow via an analysis of turbulence anisotropy-invariants. The fluid turbulence is calculated by a large eddy simulation with a point-force two-way coupling model and particles are tracked by the Lagrangian trajectory method. The channel turbulence follows the two-component turbulence state within the viscous sub-layer region and outside the region the turbulence tends to follow the right curve of the anisotropy-invariant. The channel turbulence, interacting with heavy particles, is modulated to the two-component turbulence limit state near the wall and is separate from the axisymmetric turbulence state in the turbulence anisotropy-invariants map. The fluctuations of streamwise component are transferred to the other two components and hence the anisotropy decreases due to particle modulation. The study has deepened the understanding of the turbulence modulation mechanism in two-phase turbulent flows.

  10. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    S Sridhar

    2011-07-01

    Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too flat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.

  11. Turbulent deflagrations, autoignitions, and detonations

    KAUST Repository

    Bradley, Derek

    2012-09-01

    Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.

  12. Numerical methods for turbulent flow

    Science.gov (United States)

    Turner, James C., Jr.

    1988-01-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  13. Experimental study of turbulence induced wall temperature fluctuations

    Science.gov (United States)

    Garai, Anirban; Kleissl, Jan; Boundary Layer Late Afternoon and Sunset Turbulence Collaboration

    2012-11-01

    Turbulent heat transport is critical in engineering applications and atmospheric flows. The relative strength of background shear and buoyancy near the wall influences coherent structures responsible for much of the heat transport. Previous studies show that shear dominated flow causes streaky-like structures; whereas buoyancy dominated flow causes cell-like structures. In this work, we investigated the influence of flow structures on the wall temperature and heat flux in a convective atmospheric boundary layer. Turbulence data at different heights and high frequency wall temperature were obtained during the Boundary Layer Late Afternoon and Sunset Turbulence field campaign at Lannemezan, France from 7 June - 8 July, 2011. Conditional averaging confirms that the warm wall causes warm ejection events, and cold sweep events cause cooling of the wall. The wall temperature structures move along the wind and their advection speed is close to the wind speed of the upper logarithmic layer and mixed layer, have a size of about 0.2 times the boundary layer depth, become streakier with stability and its standard deviation follows a -1/3 power law with stability parameter, Obukhov length. We are thankful to all Boundary Layer Late Afternoon and Sunset Turbulence field campaign participants for data sharing and funding from a NASA New Investigator Program award.

  14. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  15. Is Navier-Stokes turbulence chaotic?

    Science.gov (United States)

    Deissler, R. G.

    1986-01-01

    Whether turbulent solutions of the Navier-Stokes equations are chaotic is considered. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions separate exponentially with time, having a positive Liapunov characteristic exponent. Thus the turbulence is characterized as chaotic.

  16. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  17. Seasonality in submesoscale turbulence.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Klymak, Jody M; Gula, Jonathan

    2015-04-21

    Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1-100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air-sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1-10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below.

  18. Unsteady turbulent buoyant plumes

    CERN Document Server

    Woodhouse, Mark J; Hogg, Andrew J

    2015-01-01

    We model the unsteady evolution of turbulent buoyant plumes following temporal changes to the source conditions. The integral model is derived from radial integration of the governing equations expressing the conservation of mass, axial momentum and buoyancy. The non-uniform radial profiles of the axial velocity and density deficit in the plume are explicitly described by shape factors in the integral equations; the commonly-assumed top-hat profiles lead to shape factors equal to unity. The resultant model is hyperbolic when the momentum shape factor, determined from the radial profile of the mean axial velocity, differs from unity. The solutions of the model when source conditions are maintained at constant values retain the form of the well-established steady plume solutions. We demonstrate that the inclusion of a momentum shape factor that differs from unity leads to a well-posed integral model. Therefore, our model does not exhibit the mathematical pathologies that appear in previously proposed unsteady i...

  19. An IntegratedTurbulence Hazard Decision Aid for the Cockpit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft encounters with turbulence are the leading cause of injuries in the airline industry and result in significant human, operational, and maintenance costs to...

  20. Subcritical excitation of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Yagi, Masatoshi; Fukuyama, Atsushi

    1996-09-01

    Theory of current-diffusive interchange mode turbulence in plasmas in the presence of collisional transport is developed. Amplitude of stationary fluctuations is expressed in terms of the double-valued function of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. The critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This work provides a prototype of the transport theory for nonlinear-nonequilibrium systems. (author)

  1. Subcritical excitation of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.

    1996-01-01

    Theory of current-diffusive interchange mode turbulence in plasmas is developed in the presence of collisional transport. Double-valued amplitude of stationary fluctuations is expressed in terms of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. Critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This provides a prototype of the transport theory for nonlinear-non-equilibrium systems. (author).

  2. Turbulent reconnection and its implications

    Science.gov (United States)

    Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

    2015-01-01

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to

  3. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  4. Turbulence evolution in MHD plasmas

    CERN Document Server

    Wisniewski, M; Spanier, F

    2013-01-01

    Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.

  5. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  6. Bumblebee flight in heavy turbulence

    CERN Document Server

    Engels, T; Schneider, K; Lehmann, F -O; Sesterhenn, J

    2016-01-01

    High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.

  7. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  8. Turbulent mixing condensation nucleus counter

    Science.gov (United States)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  9. Manufactured Turbulence with Langevin equations

    CERN Document Server

    Mishra, Aashwin

    2016-01-01

    By definition, Manufactured turbulence(MT) is purported to mimic physical turbulence rather than model it. The MT equations are constrained to be simple to solve and provide an inexpensive surrogate to Navier-Stokes based Direct Numerical Simulations (DNS) for use in engineering applications or theoretical analyses. In this article, we investigate one approach in which the linear inviscid aspects of MT are derived from a linear approximation of the Navier-Stokes equations while the non-linear and viscous physics are approximated via stochastic modeling. The ensuing Langevin MT equations are used to compute planar, quadratic turbulent flows. While much work needs to be done, the preliminary results appear promising.

  10. Modelling the dynamics of turbulent floods

    CERN Document Server

    Mei, Z; Li, Z; Li, Zhenquan

    1999-01-01

    Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.

  11. Quantum Turbulence ---Another da Vinci Code---

    Science.gov (United States)

    Tsubota, M.

    Quantum turbulence comprises a tangle of quantized vorticeswhich are stable topological defects created by Bose-Einstein condensation, being realized in superfluid helium and atomic Bose-Einstein condensates. In recent years there has been a growing interest in quantum turbulence. One of the important motivations is to understand the relation between quantum and classical turbulence. Quantum turbulence is expected to be much simpler than usual classical turbulence and give a prototype of turbulence. This article reviews shortly the recent research developments on quantum turbulence.

  12. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review

    Science.gov (United States)

    Sharman, R. D.; Trier, S. B.; Lane, T. P.; Doyle, J. D.

    2012-06-01

    Turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and is the underlying cause of many people's fear of air travel. Not only are turbulence encounters a safety issue, they also result in millions of dollars of operational costs to airlines, leading to increased costs passed on to the consumer. For these reasons, pilots, dispatchers, and air traffic controllers attempt to avoid turbulence wherever possible. Accurate forecasting of aviation-scale turbulence has been hampered in part by a lack of understanding of the underlying dynamical processes. However, more precise observations of turbulence encounters together with recent research into turbulence generation processes is helping to elucidate the detailed dynamical processes involved and is laying the foundation for improved turbulence forecasting and avoidance. In this paper we briefly review some of the more important recent observational, theoretical, and modeling results related to turbulence at cruise altitudes for commercial aircraft (i.e., the upper troposphere and lower stratosphere), and their implications for aviation turbulence forecasting.

  13. Diffusion in anisotropic fully developed turbulence: Turbulent Prandtl number

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2016-10-01

    Using the field theoretic renormalization group technique in the leading order of approximation of a perturbation theory the influence of the uniaxial small-scale anisotropy on the turbulent Prandtl number in the framework of the model of a passively advected scalar field by the turbulent velocity field driven by the Navier-Stokes equation is investigated for spatial dimensions d >2 . The influence of the presence of the uniaxial small-scale anisotropy in the model on the stability of the Kolmogorov scaling regime is briefly discussed. It is shown that with increasing of the value of the spatial dimension the region of stability of the scaling regime also increases. The regions of stability of the scaling regime are studied as functions of the anisotropy parameters for spatial dimensions d =3 ,4 , and 5. The dependence of the turbulent Prandtl number on the anisotropy parameters is studied in detail for the most interesting three-dimensional case. It is shown that the anisotropy of turbulent systems can have a rather significant impact on the value of the turbulent Prandtl number, i.e., on the rate of the corresponding diffusion processes. In addition, the relevance of the so-called weak anisotropy limit results are briefly discussed, and it is shown that there exists a relatively large region of small absolute values of the anisotropy parameters where the results obtained in the framework of the weak anisotropy approximation are in very good agreement with results obtained in the framework of the model without any approximation. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly investigated for spatial dimensions d =4 and 5. It is shown that the dependence of the turbulent Prandtl number on the anisotropy parameters is very similar for all studied cases (d =3 ,4 , and 5), although the numerical values of the corresponding turbulent Prandtl numbers are different.

  14. Turbulence Investigation and Reproduction for Assisting Downstream Migrating Juvenile Salmonids, Part II of II; Effects of Induced Turbulence on Behavior of Juvenile Salmon, 2001-2005 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Russell W.; Farley, M. Jared; Hansen, Gabriel S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2005-07-01

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide

  15. Turbulence investigation and reproduction for assisting downstream migrating juvenile salmonids, Part II of II: Effects of induced turbulence on behavior of juvenile salmon, 2001-2005 final report

    Science.gov (United States)

    Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.

    2005-01-01

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide

  16. Turbulent mixing of a passive scalar in grid turbulence

    Science.gov (United States)

    Ito, Y.; Watanabe, T.; Nagata, K.; Sakai, Y.

    2016-07-01

    Fractal grids have attracted attention as a new-type of turbulence-generating grid due to their unique characteristics. Recent studies have revealed that such uniqueness appears in the near field of regular grid-generated turbulence. Scalar transport in those flows is also of great interest as it is not yet fully understood. In this study, we investigate the scalar mixing in the near field of regular grid-generated turbulence with various grid configurations. Experiments have been carried out in liquid mixing layers with a Reynolds number of 5000 based on the mesh size of the grid and uniform velocity. Simultaneous measurements of two-component velocities and concentration have been performed by particle image velocimetry and a planar laser-induced fluorescence technique, respectively. The results show that the scaling law using the wake-interaction length scale is applicable for the turbulence intensity in the grid turbulence with different mesh sizes and the same thickness of the grid bar. The turbulence intensity increases as the thickness of the grid bar increases; thus, consequently increasing the scalar diffusion. The streamwise development of the scalar mixing layer thickness collapses onto a single curve by normalization based on the thickness of the grid bar.

  17. High-resolution Quantification of Turbulent Mixing in the North Indian Ocean During the Monsoons

    Science.gov (United States)

    2014-09-30

    High-resolution quantification of turbulent mixing in the North Indian Ocean during the monsoons Sutanu Sarkar Department of Mechanical and...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE High-resolution Quantification of Turbulent Mixing in the North Indian Ocean During the...corresponding horizontal pressure gradient drives a counter gravity current which causes the bore to decelerate. The counter current also causes the

  18. Stochastic differential equations and turbulent dispersion

    Science.gov (United States)

    Durbin, P. A.

    1983-01-01

    Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.

  19. Magnetohydrodynamic dynamo: global flow generation in plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.

    1999-07-01

    Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)

  20. Facilitating dynamo action via control of large-scale turbulence.

    Science.gov (United States)

    Limone, A; Hatch, D R; Forest, C B; Jenko, F

    2012-12-01

    The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation in geo- and astrophysical systems. Recent experimental and numerical results show that turbulence constitutes an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry of experimental interest and propose a strategy for facilitating the dynamo instability by manipulating these detrimental "hidden" dynamics.

  1. Generalized Heisenberg theory of turbulence

    Science.gov (United States)

    Uberoi, M. S.; Narain, J. P.

    1974-01-01

    Solutions of the generalized theory are obtained which are consistent with the previous work on energy transfer measurements. They also agree with the measurements of turbulent energy spectrum for wave numbers in the universal equilibrium range.

  2. Light Propagation in Turbulent Media

    CERN Document Server

    Pérez, D G

    2003-01-01

    First, we make a revision of the up-to-date Passive Scalar Fields properties: also, the refractive index is among them. Afterwards, we formulated the properties that make the family of `isotropic' fractional Brownian motion (with parameter H) a good candidate to simulate the turbulent refractive index. Moreover, we obtained its fractal dimension which matches the estimated by Constantin for passive scalar, and thus the parameter H determines the state of the turbulence. Next, using a path integral velocity representation, with the Markovian model, to calculate the effects of the turbulence over a system of grids. Finally, with the tools of Stochastic Calculus for fractional Brownian motions we studied the ray-equation coming from the Geometric Optics in the turbulent case. Our analysis covers those cases where average temperature gradients are relevant.

  3. Singularities in fully developed turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Shivamoggi, Bhimsen K., E-mail: bhimsen.shivamoggi@ucf.edu

    2015-09-18

    Phenomenological arguments are used to explore finite-time singularity (FTS) development in different physical fully-developed turbulence (FDT) situations. Effects of spatial intermittency and fluid compressibility in three-dimensional (3D) FDT and the role of the divorticity amplification mechanism in two-dimensional (2D) FDT and quasi-geostrophic FDT and the advection–diffusion mechanism in magnetohydrodynamic turbulence are considered to provide physical insights into the FTS development in variant cascade physics situations. The quasi-geostrophic FDT results connect with the 2D FDT results in the barotropic limit while they connect with 3D FDT results in the baroclinic limit and hence apparently provide a bridge between 2D and 3D. - Highlights: • Finite-time singularity development in turbulence situations is phenomenologically explored. • Spatial intermittency and compressibility effects are investigated. • Quasi-geostrophic turbulence is shown to provide a bridge between two-dimensional and three-dimensional cases.

  4. TEM turbulence optimisation in stellarators

    CERN Document Server

    Proll, J H E; Xanthopoulos, P; Lazerson, S A; Faber, B J

    2015-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is adressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X [C.D. Beidler $\\textit{et al}$ Fusion Technology $\\bf{17}$, 148 (1990)] and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT [D.A. Spong $\\textit{et al}$ Nucl. Fusion $\\bf{41}$, 711 (2001)] code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stella...

  5. Rotating Rayleigh-Taylor turbulence

    Science.gov (United States)

    Boffetta, G.; Mazzino, A.; Musacchio, S.

    2016-09-01

    The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.

  6. Statistical description of turbulent dispersion

    Science.gov (United States)

    Brouwers, J. J. H.

    2012-12-01

    We derive a comprehensive statistical model for dispersion of passive or almost passive admixture particles such as fine particulate matter, aerosols, smoke, and fumes in turbulent flow. The model rests on the Markov limit for particle velocity. It is in accordance with the asymptotic structure of turbulence at large Reynolds number as described by Kolmogorov. The model consists of Langevin and diffusion equations in which the damping and diffusivity are expressed by expansions in powers of the reciprocal Kolmogorov constant C0. We derive solutions of O(C00) and O(C0-1). We truncate at O(C0-2) which is shown to result in an error of a few percentages in predicted dispersion statistics for representative cases of turbulent flow. We reveal analogies and remarkable differences between the solutions of classical statistical mechanics and those of statistical turbulence.

  7. Structure and modeling of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.A. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-12-31

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).

  8. Energy transfer in compressible turbulence

    Science.gov (United States)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  9. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  10. What is turbulence, what is fossil turbulence, and which ways do they cascade?

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales (where the vorticity is created) to larger scales (where other forces dominate and the turbulence fossilizes). Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate information about previous turbulence to larger and smaller length scales. Big bang fossil turbulence patterns are identified in anisotropies of temperature detected by space telescopes in the cosmic microwave background. Direct numerical simulations of stratified shear flows and wakes show that turbulence and fossil turbulence interactions are recognizable and persistent.

  11. Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects

    Science.gov (United States)

    Silva, Tiago S.; B. da Silva, Carlos; Idmec Team

    2016-11-01

    The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 URL http://www.lca.uc.pt.

  12. Turbulent transport in hydromagnetic flows

    CERN Document Server

    Brandenburg, A; Del Sordo, F; Hubbard, A; Käpylä, P J; Rheinhardt, M

    2010-01-01

    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.

  13. Variable density turbulence tunnel facility

    Science.gov (United States)

    Bodenschatz, E.; Bewley, G. P.; Nobach, H.; Sinhuber, M.; Xu, H.

    2014-09-01

    The Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, produces very high turbulence levels at moderate flow velocities, low power consumption, and adjustable kinematic viscosity between 10-4 m2/s and 10-7 m2/s. The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. The highest kinematic viscosities, and hence lowest Reynolds numbers, are reached with air or nitrogen at 0.1 bar. To reach the highest Reynolds numbers the tunnel is pressurized to 15 bars with the dense gas sulfur hexafluoride (SF6). Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, Exp. Fluids 51, 1521 (2011)]. We report measurements of the characteristic scales of the flow and of turbulent spectra up to Taylor Reynolds number Rλ ≈ 1600, higher than any other grid-turbulence experiment. We also describe instrumentation under development, which includes an active grid and a Lagrangian particle tracking system that moves down the length of the tunnel with the mean flow. In this configuration, the properties of the turbulence are adjustable and its structure is resolvable up to Rλ ≈ 8000.

  14. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes

    CERN Document Server

    Grassitelli, Luca; Langer, Norbert; Simon-Diaz, Sergio; Castro, Norberto; Sanyal, Debashis

    2016-01-01

    Macroturbulence, introduced as a fudge to reproduce the width and shape of stellar absorption lines, reflects gas motions in stellar atmospheres. While in cool stars, it is thought to be caused by convection zones immediately beneath the stellar surface, the origin of macroturbulence in hot stars is still under discussion. Recent works established a correlation between the turbulent-to-total pressure ratio inside the envelope of stellar models and the macroturbulent velocities observed in corresponding Galactic stars. To probe this connection further, we evaluated the turbulent pressure that arises in the envelope convective zones of stellar models in the mass range 1-125 Msun based on the mixing-length theory and computed for metallicities of the Large and Small Magellanic Cloud. We find that the turbulent pressure contributions in models with these metallicities located in the hot high-luminosity part of the Hertzsprung-Russel (HR) diagram is lower than in similar models with solar metallicity, whereas the ...

  15. Turbulent transport and structural transition in confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1996-10-01

    Theory of the far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature of turbulence and the mechanism for self-sustaining are discussed. The transport coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from the collisional transport to the turbulent one is shown. The generation of the electric field and its influence on the turbulent transport are analyzed. The bifurcation of the radial electric field structure is addressed. The hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in transport coefficient or the self-generating oscillations in the flux. Structural formation and dynamics of plasma profiles are explained. (author)

  16. Breakup of small aggregates driven by turbulent hydrodynamic stress

    CERN Document Server

    Babler, Matthaus U; Lanotte, Alessandra S

    2012-01-01

    Breakup of small solid aggregates in homogeneous and isotropic turbulence is studied theoretically and by using Direct Numerical Simulations at high Reynolds number, Re_{\\lambda} \\simeq 400. We show that turbulent fluctuations of the hydrodynamic stress along the aggregate trajectory play a key role in determining the aggregate mass distribution function. Differences between turbulent and laminar flows are discussed. A novel definition of the fragmentation rate is proposed in terms of the typical frequency at which the hydrodynamic stress becomes sufficiently high to cause breakup along each Lagrangian path. We also define an Eulerian proxy of the real fragmentation rate, based on the joint statistics of the stress and its time derivative, which should be easier to measure in any experimental set-up. Both our Eulerian and Lagrangian formulations define a clear procedure for the computation of the mass distribution function due to fragmentation. Contrary, previous estimates based only on single point statistic...

  17. Rossby-wave turbulence in a rapidly rotating sphere

    Directory of Open Access Journals (Sweden)

    N. Schaeffer

    2005-01-01

    Full Text Available We use a quasi-geostrophic numerical model to study the turbulence of rotating flows in a sphere, with realistic Ekman friction and bulk viscous dissipation. The forcing is caused by the destabilization of an axisymmetric Stewartson shear layer, generated by differential rotation, resulting in a forcing at rather large scales. The equilibrium regime is strongly anisotropic and inhomogeneous but exhibits a steep m-5 spectrum in the azimuthal (periodic direction, at scales smaller than the injection scale. This spectrum has been proposed by Rhines for a Rossby wave turbulence. For some parameter range, we observe a turbulent flow dominated by a large scale vortex located in the shear layer, reminding us of the Great Red Spot of Jupiter.

  18. Direct numerical simulation of particles in a turbulent channel flow

    Science.gov (United States)

    Tyagi, Ankit; Kumaran, Vishwanathan

    2016-11-01

    Goswami and Kumaran(2009a,b,2011a) studied the effect of fluid turbulence on particle phase in DNS.However,their studies were restricted to one way coupling where the effect of particles on fluid turbulence was not incorporated. We have extended their work by formulating a reverse force treatment through multipole expansion for the particle disturbance to the fluid turbulence.Here,the fluid velocity, strain rate and rotation rate at the particle position are used,as a far field,to calculate the disturbance caused by the particle and relaxing the point particle approximation.The simulations are done at high Stokes number where the fluid velocity fluctuations are uncorrelated over time scales of the particle dynamics.The results indicate that the particle mean velocity and stress are reduced when reverse force is incorporated.Level of reduction increases with mass loading and Stokes number.The variance of particle distribution function is reduced due to reduction in the fluid turbulent intensities.The particle velocity,angular velocity distribution function and stresses are compared for simulations where only the reverse force is incorporated, and where the dipoles are also incorporated, to examine the effect of force dipoles on the fluid turbulence and the particle distributions.

  19. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes

    Science.gov (United States)

    Grassitelli, L.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Castro, N.; Sanyal, D.

    2016-08-01

    Macroturbulence, introduced as a fudge to reproduce the width and shape of stellar absorption lines, reflects gas motions in stellar atmospheres. While in cool stars, it is thought to be caused by convection zones immediately beneath the stellar surface, the origin of macroturbulence in hot stars is still under discussion. Recent works established a correlation between the turbulent-to-total pressure ratio inside the envelope of stellar models and the macroturbulent velocities observed in corresponding Galactic stars. To probe this connection further, we evaluated the turbulent pressure that arises in the envelope convective zones of stellar models in the mass range 1-125 M⊙ based on the mixing-length theory and computed for metallicities of the Large and Small Magellanic Cloud. We find that the turbulent pressure contributions in models with these metallicities located in the hot high-luminosity part of the Hertzsprung-Russel (HR) diagram is lower than in similar models with solar metallicity, whereas the turbulent pressure in low-metallicity models populating the cool part of the HR-diagram is not reduced. Based on our models, we find that the currently available observations of hot massive stars in the Magellanic Clouds appear to support a connection between macroturbulence and the turbulent pressure in stellar envelopes. Multidimensional simulations of sub-surface convection zones and a larger number of high-quality observations are necessary to test this idea more rigorously.

  20. Vibration time series analysis of bubbling and turbulent fluidization

    Institute of Scientific and Technical Information of China (English)

    Hedayat Azizpour; Rahmat Sotudeh-Gharebagh; Reza Zarghami; Navid Mostoufi

    2012-01-01

    A non-intrusive vibration monitoring technique was used to study the hydrodynamics of a gas-solid fluidized bed.Experiments were carried out in a 15 cm diameter fluidized bed using 226,470 and 700 μm sand particles at various gas velocities,covering both bubbling and turbulent regimes.Auto correlation function,mutual information function,Hurst exponent analysis and power spectral density function were used to analyze the fluidized bed hydrodynamics near the transition point from bubbling to turbulent fluidization regimes.The first pass of the autocorrelation function from one half and the time delay at which it becomes zero,and also the first minimum of the mutual information,occur at a higher time delay in comparison to stochastic systems,and the values of time delays were maximum at the bubbling to turbulent transition gas velocity.The maximum value of Hurst exponent of macro structure occurred at the onset of regime transition from bubbling to turbulent.Further increase in gas velocity after that regime transition velocity causes a decrease in the Hurst exponent of macro structure because of breakage of large bubbles to small ones.The results showed these methods are capable of detecting the regime transition from bubbling to turbulent fluidization conditions using vibration signals.