WorldWideScience

Sample records for causing increased neurogenesis

  1. Flat shoes increase neurogenesis.

    Science.gov (United States)

    Flensmark, J

    2016-12-01

    The impairment of the horizontal is caused by elevation of the heel of the foot from the ground. Receptors in the soles of the feet provide a mapping of body orientation to the upright, and is identical to Mittelstaedt's idiotropic tendency. Initiation of gait wearing flat shoes without elevation of the heel is sufficient to change to a truthful horizontal. Using flat shoes increases neurogenesis and leads to a decreased frequency of diseases of the nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  3. Taurine increases hippocampal neurogenesis in aging mice.

    Science.gov (United States)

    Gebara, Elias; Udry, Florian; Sultan, Sébastien; Toni, Nicolas

    2015-05-01

    Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging. Copyright © 2015. Published by Elsevier B.V.

  4. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  5. Lack of potassium channel induces proliferation and survival causing increased neurogenesis and two-fold hippocampus enlargement

    DEFF Research Database (Denmark)

    Almgren, Malin; Persson, Ann-Sophie; Fenghua, Chen

    2007-01-01

    -fold within dentate gyrus (DG), CA2/3, and hilus of 12-week-old mceph/mceph versus wild type mice. In CA1, there was a tendency toward an increase in volume and in number of astrocytes. The volume estimates in newborn and p14 mice suggest that the overgrowth in mceph/mceph hippocampus starts between birth...

  6. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior.

    Science.gov (United States)

    Deroche-Gamonet, Véronique; Revest, Jean-Michel; Fiancette, Jean-François; Balado, Eric; Koehl, Muriel; Grosjean, Noëlle; Abrous, Djoher Nora; Piazza, Pier-Vincenzo

    2018-03-05

    The hippocampus is the main locus for adult dentate gyrus (DG) neurogenesis. A number of studies have shown that aberrant DG neurogenesis correlates with many neuropsychiatric disorders, including drug addiction. Although clear causal relationships have been established between DG neurogenesis and memory dysfunction or mood-related disorders, evidence of the causal role of DG neurogenesis in drug-seeking behaviors has not been established. Here we assessed the role of new DG neurons in cocaine self-administration using an inducible transgenic approach that selectively depletes adult DG neurogenesis. Our results show that transgenic mice with decreased adult DG neurogenesis exhibit increased motivation to self-administer cocaine and a higher seeking response to cocaine-related cues. These results identify adult hippocampal neurogenesis as a key factor in vulnerability to cocaine addiction.

  7. Neurogenesis Inhibition Prevents Enriched Environment to Prolong and Strengthen Social Recognition Memory, But Not to Increase BDNF Expression.

    Science.gov (United States)

    Pereira-Caixeta, Ana Raquel; Guarnieri, Leonardo O; Pena, Roberta R; Dias, Thomáz L; Pereira, Grace Schenatto

    2017-07-01

    Hippocampus-dependent memories, such as social recognition (SRM), are modulated by neurogenesis. However, the precise role of newborn neurons in social memory processing is still unknown. We showed previously that 1 week of enriched environment (EE) is sufficient to increase neurogenesis in the hippocampus (HIP) and the olfactory bulb (OB) of mice. Here, we tested the hypothesis that 1 week of EE would enhance SRM persistence and strength. In addition, as brain-derived neurotrophic factor (BDNF) may mediate some of the neurogenesis effects on memory, we also tested if 1 week of EE would increase BDNF expression in the HIP and OB. We also predicted that neurogenesis inhibition would block the gain of function caused by EE on both SRM and BDNF expression. We found that EE increased BDNF expression in the HIP and OB of mice; at the same time, it allowed SRM to last longer. In addition, mice on EE had their SRM unaffected by memory consolidation interferences. As we predicted, treatment with the anti-mitotic drug AraC blocked EE effects on SRM. Surprisingly, neurogenesis inhibition did not affect the BDNF expression, increased by EE. Together, our results suggest that newborn neurons improve SRM persistence through a BDNF-independent mechanism. Interestingly, this study on social memory uncovered an unexpected dissociation between the effect of adult neurogenesis and BDNF expression on memory persistence, reassuring the idea that not all neurogenesis effects on memory are BDNF-dependent.

  8. Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3β activity in mice.

    Science.gov (United States)

    Zang, Jiankun; Liu, Yinghua; Li, Wei; Xiao, Di; Zhang, Yingcheng; Luo, Yuxiang; Liang, Wanying; Liu, Fei; Wei, Wei

    2017-06-23

    Exercise has been proven to promote learning and memory, and is closely related to increased adult neurogenesis in the hippocampus. In our study, the β subunit of Glycogen synthase kinase-3 (GSK3β) can be significantly regulated by exercise, and the modulation of GSK3β activity can enhance adult neurogenesis and memory. To explore the mechanism by which exercise can improve cognitive function and adult neurogenesis, and the role GSK3β plays in this process, we established a mouse model of voluntary exercise to examine the expression and activity of GSK3β, and its associated signaling pathways, in the hippocampus dentate gyrus. The results showed an obvious increase in adult neurogenesis and cognitive functions, and the up-regulation of GSK3β, after exercise. The activity of the insulin pathway, which negatively regulates GSK3β, was also increased. Moreover, our results showed that the dopamine D 1 receptor (DARP D 1 ) pathway and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were also activated, which indicates a relationship between GSK3β and neurogenesis. Overall, our findings demonstrated that voluntary exercise promotes cognition and neurogenesis in the adult mouse dentate gyrus by the regulation of GSK3β expression and activity, which may be implemented through the DARP D 1 receptor-signaling pathway. Copyright © 2017 IBRO. All rights reserved.

  9. Changes in adult neurogenesis in neurodegenerative diseases: Cause or consequence?

    NARCIS (Netherlands)

    Thompson, A.; Boekhoorn, K.; van Dam, A.-M.; Lucassen, P.J.

    2008-01-01

    This review addresses the role of adult hippocampal neurogenesis and stem cells in some of the most common neurodegenerative disorders and their related animal models. We discuss recent literature in relation to Alzheimer's disease and dementia, Parkinson's disease, Huntington's disease, amyotrophic

  10. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence?

    NARCIS (Netherlands)

    Thompson, A.; Boekhoorn, K.; van Dam, A.M.W.; Lucassen, P.J.

    2008-01-01

    This review addresses the role of adult hippocampal neurogenesis and stem cells in some of the most common neurodegenerative disorders and their related animal models. We discuss recent literature in relation to Alzheimer's disease and dementia, Parkinson's disease, Huntington's disease, amyotrophic

  11. Implication of neuro-genesis during brain development in behavior disorders caused by depleted uranium

    International Nuclear Information System (INIS)

    Legrand, Marie

    2016-01-01

    Humans are continuously exposed to neurotoxic compounds in the environment. The developing brain is more susceptible to neurotoxic compounds and modifications in its growth could lead to disorders in adulthood. Uranium (U) is an environmental heavy metal and induces behavioral disorders as well as affects neurochemistry. The aim of my thesis was to investigate whether depleted uranium (DU) exposure affects neuro-genesis processes, which are implicated in brain development and in synaptic plasticity in adults. While DU increased cell proliferation in the hippocampal neuro-epithelium and decreased cell death at prenatal stages, DU lead to opposite effects in the dentate gyrus at postnatal stages. Moreover, DU had an inhibitory effect on the transition toward neuronal differentiation pathway during development. At adult stage, DU induced a decrease in neuronal differentiation but has no impact in cell proliferation. Finally, DU exposure during brain development caused depressive like behavior at late postnatal and adult stage, and decreased spatial memory at adult stage. Consequently, DU exposure during brain development caused modification in neuro-genesis processes associated to cognitive and emotional disorders at adult age. U could present a threat to human health, especially in pregnant women and children. (author)

  12. Increase in neurogenesis and behavioural benefit after chronic fluoxetine treatment in Wistar rats

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Flagstad, P; Kristjansen, P E G

    2008-01-01

    Disturbances in hippocampal neurogenesis may be involved in the pathophysiology of depression and it has been argued that an increase in the generation of new nerve cells in the hippocampus is involved in the mechanism of action of antidepressants....

  13. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Directory of Open Access Journals (Sweden)

    Hanqian Mao

    2016-09-01

    Full Text Available The exon junction complex (EJC is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.

  14. Suppression of Adult Neurogenesis Increases the Acute Effects of Kainic Acid

    Science.gov (United States)

    Iyengar, Sloka S.; LaFrancois, John J.; Friedman, Daniel; Drew, Liam J.; Denny, Christine A.; Burghardt, Nesha S.; Wu, Melody V.; Hsieh, Jenny; Hen, René; Scharfman, Helen E.

    2016-01-01

    Adult neurogenesis, the generation of new neurons in the adult brain, occurs in the hippocampal dentate gyrus (DG) and the olfactory bulb (OB) of all mammals, but the functions of these new neurons are not entirely clear. Originally, adult-born neurons were considered to have excitatory effects on the DG network, but recent studies suggest a net inhibitory effect. Therefore, we hypothesized that selective removal of newborn neurons would lead to increased susceptibility to the effects of a convulsant. This hypothesis was tested by evaluating the response to the chemoconvulsant kainic acid (KA) in mice with reduced adult neurogenesis, produced either by focal X-irradiation of the DG, or by pharmacogenetic deletion of dividing radial glial precursors. In the first 4 hrs after KA administration, when mice have the most robust seizures, mice with reduced adult neurogenesis had more severe convulsive seizures, exhibited either as a decreased latency to the first convulsive seizure, greater number of convulsive seizures, or longer convulsive seizures. Nonconvulsive seizures did not appear to change or they decreased. Four-21 hrs after KA injection, mice with reduced adult neurogenesis showed more interictal spikes (IIS) and delayed seizures than controls. Effects were greater when the anticonvulsant ethosuximide was injected 30 min prior to KA administration; ethosuximide allows forebrain seizure activity to be more easily examined in mice by suppressing seizures dominated by the brainstem. These data support the hypothesis that reduction of adult-born neurons increases the susceptibility of the brain to effects of KA. PMID:25476494

  15. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice.

    Science.gov (United States)

    Zhang, Zhuan; Hong, Juan; Zhang, Suyun; Zhang, Tingting; Sha, Sha; Yang, Rong; Qian, Yanning; Chen, Ling

    2016-04-01

    Postpartum estrogen withdrawal is known to be a particularly vulnerable time for depressive symptoms. Ovariectomized adult mice (OVX-mice) treated with hormone-simulated pregnancy (HSP mice) followed by a subsequent estradiol benzoate (EB) withdrawal (EW mice) exhibited depression- and anxiety-like behaviors, as assessed by forced swim, tail suspension and elevated plus-maze, while HSP mice, OVX mice or EB-treated OVX mice (OVX/EB mice) did not. The survival and neurite growth of newborn neurons in hippocampal dentate gyrus were examined on day 5 after EW. Compared with controls, the numbers of 28-day-old BrdU(+) and BrdU(+)/NeuN(+) cells were increased in HSP mice but significantly decreased in EW mice; the numbers of 10-day-old BrdU(+) cells were increased in HSP mice and OVX/EB mice; and the density of DCX(+) fibers was reduced in EW mice and OVX mice. The phosphorylation of hippocampal NMDA receptor (NMDAr) NR2B subunit or Src was increased in HSP mice but decreased in EW mice. NMDAr agonist NMDA prevented the loss of 28-day-old BrdU(+) cells and the depression- and anxiety-like behaviors in EW mice. NR2B inhibitor Ro25-6981 or Src inhibitor dasatinib caused depression- and anxiety-like behaviors in HSP mice with the reduction of 28-day-old BrdU(+) cells. The hippocampal BDNF levels were reduced in EW mice and OVX mice. TrkB receptor inhibitor K252a reduced the density of DCX(+) fibers in HSP mice without the reduction of 28-day-old BrdU(+) cells, or the production of affective disorder. Collectively, these results indicate that postpartum estrogen withdrawal impairs hippocampal neurogenesis in mice that show depression- and anxiety-like behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery.

    Science.gov (United States)

    Manzanero, Silvia; Erion, Joanna R; Santro, Tomislav; Steyn, Frederik J; Chen, Chen; Arumugam, Thiruma V; Stranahan, Alexis M

    2014-05-01

    Intermittent fasting (IF) is neuroprotective across a range of insults, but the question of whether extending the interval between meals alters neurogenesis after ischemia remains unexplored. We therefore measured cell proliferation, cell death, and neurogenesis after transient middle cerebral artery occlusion (MCAO) or sham surgery (SHAM) in mice fed ad libitum (AL) or maintained on IF for 3 months. IF was associated with twofold reductions in circulating levels of the adipocyte cytokine leptin in intact mice, but also prevented further reductions in leptin after MCAO. IF/MCAO mice also exhibit infarct volumes that were less than half those of AL/MCAO mice. We observed a 30% increase in basal cell proliferation in the hippocampus and subventricular zone (SVZ) in IF/SHAM, relative to AL/SHAM mice. However, cell proliferation after MCAO was limited in IF mice, which showed twofold increases in cell proliferation relative to IF/SHAM, whereas AL/MCAO mice exhibit fivefold increases relative to AL/SHAM. Attenuation of stroke-induced neurogenesis was correlated with reductions in cell death, with AL/MCAO mice exhibiting twice the number of dying cells relative to IF/MCAO mice. These observations indicate that IF protects against neurological damage in ischemic stroke, with circulating leptin as one possible mediator.

  17. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  18. Post-stroke gaseous hypothermia increases vascular density but not neurogenesis in the ischemic penumbra of aged rats

    DEFF Research Database (Denmark)

    Sandu, Raluca Elena; Uzoni, Adriana; Ciobanu, Ovidiu

    2016-01-01

    -PCR and immunofluorescence, we assessed infarct size, vascular density, neurogenesis and as well as the expression of genes coding for proteasomal proteins as well as in post-stroke aged Sprague-Dawley rats exposed to H2S- induced hypothermia. Results: Two days exposure to mild hypothermia diminishes the expression...... of several genes involved in protein degradation, thereby leading to better preservation of infarcted tissue. Further, hypothermia increased the density of newly formed blood vessels in the peri-lesional cortex did not enhance neurogenesis in the infarcted area of aged rats. Likewise, there was improved...

  19. Inflammation is detrimental for neurogenesis in adult brain

    Science.gov (United States)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  20. Implantation of Neuronal Stem Cells Enhances Object Recognition without Increasing Neurogenesis after Lateral Fluid Percussion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Laura B. Ngwenya

    2018-01-01

    Full Text Available Cognitive deficits after traumatic brain injury (TBI are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC. Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation.

  1. Environmental enrichment and physical exercise revert behavioral and electrophysiological impairments caused by reduced adult neurogenesis.

    Science.gov (United States)

    Sakalem, Marna Eliana; Seidenbecher, Thomas; Zhang, Mingyue; Saffari, Roja; Kravchenko, Mykola; Wördemann, Stephanie; Diederich, Kai; Schwamborn, Jens C; Zhang, Weiqi; Ambrée, Oliver

    2017-01-01

    It is well known that adult neurogenesis occurs in two distinct regions, the subgranular zone of the dentate gyrus and the subventricular zone along the walls of the lateral ventricles. Until now, the contribution of these newly born neurons to behavior and cognition is still uncertain. The current study tested the functional impacts of diminished hippocampal neurogenesis on emotional and cognitive functions in transgenic Gfap-tk mice. Our results showed that anxiety-related behavior evaluated both in the elevated plus maze as well as in the open field, social interaction in the sociability test, and spatial working memory in the spontaneous alternation test were not affected. On the other hand, recognition and emotional memory in the object recognition test and contextual fear conditioning, and hippocampal long-term potentiation were impaired in transgenic mice. Furthermore, we evaluated whether environmental enrichment together with physical exercise could improve or even restore the level of adult neurogenesis, as well as the behavioral functions. Our results clearly demonstrated that environmental enrichment together with physical exercise successfully elevated the overall number of progenitor cells and young neurons in the dentate gyrus of transgenic mice. Furthermore, it led to a significant improvement in object recognition memory and contextual fear conditioning, and reverted impairments in hippocampal long-term potentiation. Thus, our results confirm the importance of adult neurogenesis for learning and memory processes and for hippocampal circuitry in general. Environmental enrichment and physical exercise beneficially influenced adult neurogenesis after it had been disrupted and most importantly recovered cognitive functions and long-term potentiation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Karina H. Solís

    2017-12-01

    Full Text Available Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2 and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon

  3. Early-life stress diminishes the increase in neurogenesis after exercise in adult female mice

    NARCIS (Netherlands)

    Abbink, M.R.; Naninck, E.F.G.; Lucassen, P.J.; Korosi, A.

    Exposure to early-life stress (ES) has long-lasting consequences for later cognition and hippocampal plasticity, including adult hippocampal neurogenesis (AHN), i.e., the generation of new neurons from stem/progenitor cells in the adult hippocampal dentate gyrus. We had previously demonstrated a

  4. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  5. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  6. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation.

    Science.gov (United States)

    Kodali, Maheedhar; Parihar, Vipan K; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K

    2015-01-28

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.

  7. A Long-Term Treatment with Arachidonyl-2'-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy.

    Science.gov (United States)

    Andres-Mach, Marta; Zagaja, Mirosław; Haratym-Maj, Agnieszka; Rola, Radosław; Maj, Maciej; Haratym, Joanna; Dudra-Jastrzębska, Monika; Łuszczki, Jarogniew J

    2017-04-25

    Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side effects, and impact on the formation of new neurons. The aim of the study was to conduct an in vivo evaluation of the relationship between treatments with synthetic cannabinoid arachidonyl-2'-chloroethylamide (ACEA) alone or in combination with valproic acid (VPA) and hippocampal neurogenesis in a mouse pilocarpine model of epilepsy. All studies were performed on adolescent male CB57/BL mice with using the following drugs: VPA (10 mg/kg), ACEA (10 mg/kg), phenylmethylsulfonyl fluoride (PMSF-a substance protecting ACEA against degradation by fatty acid hydrolase, 30 mg/kg), pilocarpine (PILO, a single dose of 290 mg/kg) and methylscopolamine (30 min before PILO to stop peripheral cholinergic effects of pilocarpine, 1 mg/kg). We evaluated the process of neurogenesis after a 10-day treatment with ACEA and VPA, alone and in combination. We observed a decrease of neurogenesis in the PILO control group as compared to the healthy control mice. Furthermore, ACEA + PMSF alone and in combination with VPA significantly increased neurogenesis compared to the PILO control group. In contrast, VPA 10-day treatment had no impact on the level of neurons in comparison to the PILO control group. The combination of ACEA, PMSF and VPA considerably stimulated the process of creating new cells, particularly neurons, while chronic administration of VPA itself had no influence on neurogenesis in the mouse pilocarpine model of epilepsy. The obtained results enabled an in vivo evaluation of neurogenesis after treatment with antiepileptic drugs in an experimental model of epilepsy.

  8. A Long-Term Treatment with Arachidonyl-2′-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy

    Science.gov (United States)

    Andres-Mach, Marta; Zagaja, Mirosław; Haratym-Maj, Agnieszka; Rola, Radosław; Maj, Maciej; Haratym, Joanna; Dudra-Jastrzębska, Monika; Łuszczki, Jarogniew J.

    2017-01-01

    Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side effects, and impact on the formation of new neurons. The aim of the study was to conduct an in vivo evaluation of the relationship between treatments with synthetic cannabinoid arachidonyl-2′-chloroethylamide (ACEA) alone or in combination with valproic acid (VPA) and hippocampal neurogenesis in a mouse pilocarpine model of epilepsy. All studies were performed on adolescent male CB57/BL mice with using the following drugs: VPA (10 mg/kg), ACEA (10 mg/kg), phenylmethylsulfonyl fluoride (PMSF—a substance protecting ACEA against degradation by fatty acid hydrolase, 30 mg/kg), pilocarpine (PILO, a single dose of 290 mg/kg) and methylscopolamine (30 min before PILO to stop peripheral cholinergic effects of pilocarpine, 1 mg/kg). We evaluated the process of neurogenesis after a 10-day treatment with ACEA and VPA, alone and in combination. We observed a decrease of neurogenesis in the PILO control group as compared to the healthy control mice. Furthermore, ACEA + PMSF alone and in combination with VPA significantly increased neurogenesis compared to the PILO control group. In contrast, VPA 10-day treatment had no impact on the level of neurons in comparison to the PILO control group. The combination of ACEA, PMSF and VPA considerably stimulated the process of creating new cells, particularly neurons, while chronic administration of VPA itself had no influence on neurogenesis in the mouse pilocarpine model of epilepsy. The obtained results enabled an in vivo evaluation of neurogenesis after treatment with antiepileptic drugs in an experimental model of epilepsy. PMID:28441341

  9. What causes the hippocampal volume decrease in depression? : Are neurogenesis, glial changes and apoptosis implicated?

    NARCIS (Netherlands)

    Czeh, B.; Lucassen, P.J.

    2007-01-01

    Even though in vivo imaging studies document significant reductions of hippocampal volume in depressed patients, the exact underlying cellular mechanisms are unclear. Since stressful life events are associated with an increased risk of developing depression, preclinical studies in which animals are

  10. Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Kiran eTodkar

    2012-04-01

    Full Text Available Calretinin (CR and calbindin D-28k (CB are cytosolic EF-hand Ca2+-binding proteins and function as Ca2+ buffers affecting the spatiotemporal aspects of Ca2+ transients and possibly also as Ca2+ sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ neurogenic niche of the DG. Effects were evaluated I 2 and 4 weeks postnatally, during the transition period of the proliferative matrix to the adult state, and II in adult animals (3 months to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: I to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and II it may contribute to retrograde signaling required for maintenance of the progenitor

  11. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms

    Science.gov (United States)

    Seo, Dong-oh; Carillo, Mary Ann; Chih-Hsiung Lim, Sean; Tanaka, Kenji F.

    2015-01-01

    Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. SIGNIFICANCE STATEMENT The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult

  12. Neurogenesis upregulation on the healthy hemisphere after stroke enhances compensation for age-dependent decrease of basal neurogenesis.

    Science.gov (United States)

    Adamczak, Joanna; Aswendt, Markus; Kreutzer, Christina; Rotheneichner, Peter; Riou, Adrien; Selt, Marion; Beyrau, Andreas; Uhlenküken, Ulla; Diedenhofen, Michael; Nelles, Melanie; Aigner, Ludwig; Couillard-Despres, Sebastien; Hoehn, Mathias

    2017-03-01

    Stroke is a leading cause of death and disability worldwide with no treatment for the chronic phase available. Interestingly, an endogenous repair program comprising inflammation and neurogenesis is known to modulate stroke outcome. Several studies have shown that neurogenesis decreases with age but the therapeutic importance of endogenous neurogenesis for recovery from cerebral diseases has been indicated as its ablation leads to stroke aggravation and worsened outcome. A detailed characterization of the neurogenic response after stroke related to ageing would help to develop novel and targeted therapies. In an innovative approach, we used the DCX-Luc mouse, a transgenic model expressing luciferase in doublecortin-positive neuroblasts, to monitor the neurogenic response following middle cerebral artery occlusion over three weeks in three age groups (2, 6, 12months) by optical imaging while the stroke lesion was monitored by quantitative MRI. The individual longitudinal and noninvasive time profiles provided exclusive insight into age-dependent decrease in basal neurogenesis and neurogenic upregulation in response to stroke which are not accessible by conventional BrdU-based measures of cell proliferation. For cortico-striatal strokes the maximal upregulation occurred at 4days post stroke followed by a continuous decrease to basal levels by three weeks post stroke. Older animals effectively compensated for reduced basal neurogenesis by an enhanced sensitivity to the cerebral lesion, resulting in upregulated neurogenesis levels approaching those measured in young mice. In middle aged and older mice, but not in the youngest ones, additional upregulation of neurogenesis was observed in the contralateral healthy hemisphere. This further substantiates the increased propensity of older brains to respond to lesion situation. Our results clearly support the therapeutic relevance of endogenous neurogenesis for stroke recovery and particularly in older brains. Copyright

  13. Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory.

    Science.gov (United States)

    Ladrón de Guevara-Miranda, David; Moreno-Fernández, Román Darío; Gil-Rodríguez, Sara; Rosell-Valle, Cristina; Estivill-Torrús, Guillermo; Serrano, Antonia; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J; Castilla-Ortega, Estela

    2018-02-26

    Erasing memories of cocaine-stimuli associations might have important clinical implications for addiction therapy. Stimulating hippocampal plasticity by enhancing adult hippocampal neurogenesis (AHN) is a promising strategy because the addition of new neurons may not only facilitate new learning but also modify previous connections and weaken retrograde memories. To investigate whether increasing AHN prompted the forgetting of previous contextual cocaine associations, mice trained in a cocaine-induced conditioned place preference (CPP) paradigm were administered chronic intracerebroventricular infusions of lysophosphatidic acid (LPA, an endogenous lysophospholipid with pro-neurogenic actions), ki16425 (an LPA 1/3 receptor antagonist) or a vehicle solution, and they were tested 23 days later for CPP retention and extinction. The results of immunohistochemical experiments showed that the LPA-treated mice exhibited reduced long-term CPP retention and an approximately twofold increase in the number of adult-born hippocampal cells that differentiated into mature neurons. Importantly, mediation analyses confirmed a causal role of AHN in reducing CPP maintenance. In contrast, the ki16425-treated mice displayed aberrant responses, with initially decreased CPP retention that progressively increased across the extinction sessions, leading to no effect on AHN. The pharmacological treatments did not affect locomotion or general exploratory or anxiety-like responses. In a second experiment, normal and LPA 1 -receptor-deficient mice were acutely infused with LPA, which revealed that LPA 1 -mediated signaling was required for LPA-induced proliferative actions. These results suggest that the LPA/LPA 1 pathway acts as a potent in vivo modulator of AHN and highlight the potential usefulness of pro-AHN strategies to treat aberrant cognition in those addicted to cocaine. © 2018 Society for the Study of Addiction.

  14. In Vivo Expression of Reprogramming Factors Increases Hippocampal Neurogenesis and Synaptic Plasticity in Chronic Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Soohyun Wi

    2016-01-01

    Full Text Available Neurogenesis and synaptic plasticity can be stimulated in vivo in the brain. In this study, we hypothesized that in vivo expression of reprogramming factors such as Klf4, Sox2, Oct4, and c-Myc would facilitate endogenous neurogenesis and functional recovery. CD-1® mice were induced at 1 week of age by unilaterally carotid artery ligation and exposure to hypoxia. At 6 weeks of age, mice were injected GFP only or both four reprogramming factors and GFP into lateral ventricle. Passive avoidance task and open field test were performed to evaluate neurobehavioral function. Neurogenesis and synaptic activity in the hippocampus were evaluated using immunohistochemistry, qRT-PCR, and/or western blot analyses. Whereas BrdU+GFAP+ cells in the subgranular zone of the hippocampus were not significantly different, the numbers of BrdU+βIII-tubulin+ and BrdU+NeuN+ cells were significantly higher in treatment group than control group. Expressions of synaptophysin and PSD-95 were also higher in treatment group than control group. Importantly, passive avoidance task and open field test showed improvement in long-term memory and decreased anxiety in treatment group. In conclusion, in vivo expression of reprogramming factors improved behavioral functions in chronic hypoxic-ischemic brain injury. The mechanisms underlying these repair processes included endogenous neurogenesis and synaptic plasticity in the hippocampus.

  15. Negative rebound in hippocampal neurogenesis following exercise cessation.

    Science.gov (United States)

    Nishijima, Takeshi; Kamidozono, Yoshika; Ishiizumi, Atsushi; Amemiya, Seiichiro; Kita, Ichiro

    2017-03-01

    Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at week 0 ). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders. Copyright © 2017 the American Physiological Society.

  16. Distinct Effects of miR-210 Reduction on Neurogenesis: Increased Neuronal Survival of Inflammation But Reduced Proliferation Associated with Mitochondrial Enhancement.

    Science.gov (United States)

    Voloboueva, Ludmila A; Sun, Xiaoyun; Xu, Lijun; Ouyang, Yi-Bing; Giffard, Rona G

    2017-03-15

    Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury. Mitochondrial protection was shown to improve survival of young neurons. This study tested whether reducing cellular microRNA-210 (miR-210) would enhance mitochondrial function and improve survival of young murine neurons under inflammatory conditions. Several studies have demonstrated the potential of miR-210 inhibition to enhance and protect mitochondrial function through upregulation of mitochondrial proteins. Here, miR-210 inhibition significantly increased neuronal survival and protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase in differentiating NSC cultures exposed to inflammatory mediators. Unexpectedly, we found that reducing miR-210 significantly attenuated NSC proliferation upon induction of differentiation. Further investigation revealed that increased mitochondrial function suppressed the shift to primarily glycolytic metabolism and reduced mitochondrial length characteristic of dividing cells. Activation of AMP-regulated protein kinase-retinoblastoma signaling is important in NSC proliferation and the reduction of this activation observed by miR-210 inhibition is one mechanism contributing to the reduced proliferation. Postinjury neurogenesis occurs as a burst of proliferation that peaks in days, followed by migration and differentiation over weeks. Our studies suggest that mitochondrial protective miR-210 inhibition should be delayed until after the initial burst of proliferation, but could be beneficial during the prolonged differentiation stage. SIGNIFICANCE STATEMENT Increasing the success of endogenous neurogenesis after brain injury

  17. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    International Nuclear Information System (INIS)

    Khodanovich, M. Yu.

    2015-01-01

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors

  18. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    Science.gov (United States)

    Khodanovich, M. Yu.

    2015-11-01

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors.

  19. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    Energy Technology Data Exchange (ETDEWEB)

    Khodanovich, M. Yu., E-mail: khodanovich@mail.tsu.ru [Tomsk State University, Research Institute of Biology and Biophysics, Laboratory of Neurobiology (Russian Federation)

    2015-11-17

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors.

  20. Neurogenesis in Huntington's disease: can studying adult neurogenesis lead to the development of new therapeutic strategies?

    Science.gov (United States)

    Gil-Mohapel, Joana; Simpson, Jessica M; Ghilan, Mohamed; Christie, Brian R

    2011-08-11

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an unstable expansion of CAG repeats in the HD gene. The symptoms include cognitive dysfunction and severe motor impairments. The neuropathology is characterized by neuronal loss mainly in the striatum and cortex, although other regions including the hippocampus are also affected. In this review we discuss the different mouse models of HD, and how the process of neurogenesis in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) is affected in each. Deficits in adult hippocampal neurogenesis have been repeatedly shown in different genetic models of HD, raising the possibility that an impairment of the neurogenic process might underlie some of the cognitive deficits associated with this neurodegenerative disorder. On the other hand, an increase in SVZ neurogenesis has been observed in human HD brains while no differences in SVZ cell proliferation have been detected in the mouse models. In this review we will discuss the discrepancies between these findings as well as the several mechanisms that might contribute to a dysregulation of adult neurogenesis in HD. Finally, we will provide an overview of the various therapeutic strategies aimed at stimulating the endogenous neurogenic capacity that have been tested in HD genetic models. Ultimately, the insights obtained from these and future studies will greatly improve our understanding of the cognitive impairment characteristic of HD. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Adult neurogenesis and the vascular Nietzsche.

    Science.gov (United States)

    Palmer, Theo D

    2002-06-13

    Adult neurogenesis is mediated by immature neural precursors that divide within the residual germinal matrices of the brain. In the paper by in this issue of Neuron, the "cause and effect" of adult neurogenesis takes a major step forward with the description of a vascular signaling network that influences neuronal precursor migration and fate.

  2. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition.

    Science.gov (United States)

    Wakabayashi, Tamami; Hidaka, Ryo; Fujimaki, Shin; Asashima, Makoto; Kuwabara, Tomoko

    2016-07-15

    Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult neurogenesis generally occurs in the dentate gyrus of the hippocampus, the subventricular zone, and the olfactory bulbs (OB) and is defective in patients with diabetes. We hypothesized that OB neurogenesis and associated behaviors would be affected in diabetes. In this study, we show that inhibition of Wnt3-induced neurogenesis in the OB causes several behavioral deficits in STZ-induced diabetic rats, including impaired odor discrimination, cognitive dysfunction, and increased anxiety. Notably, the sodium- and chloride-dependent GABA transporters and excitatory amino acid transporters that localize to GABAergic and glutamatergic terminals decreased in the OB of diabetic rats. Moreover, GAT1 inhibitor administration also hindered Wnt3-induced neurogenesis in vitro Collectively, these data suggest that STZ-induced diabetes adversely affects OB neurogenesis via GABA and glutamate transporter systems, leading to functional impairments in olfactory performance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.

    Science.gov (United States)

    Kim, Hong; Lee, Myoung-Hwa; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Lee, Hee-Hyuk; Shin, Min-Chul; Shin, Mal-Soon; Won, Ran; Shin, Hye-Sook; Kim, Chang-Ju

    2006-03-01

    During the prenatal period, the development of individual is influenced by the environmental factors. In the present study, the influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats was investigated. The exposure to the noise during pregnancy caused growth retardation, decreased neurogenesis in the hippocampus, and impaired spatial learning ability in pups. The exposure to music during pregnancy, on the other hand, caused increased neurogenesis in the hippocampus and enhanced spatial learning ability in pups. The present study has shown the importance of the prenatal environmental conditions for the cognition and brain development.

  4. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p-CREB.

    Science.gov (United States)

    Chen, Bai Hui; Ahn, Ji Hyeon; Park, Joon Ha; Song, Minah; Kim, Hyunjung; Lee, Tae-Kyeong; Lee, Jae Chul; Kim, Young-Myeong; Hwang, In Koo; Kim, Dae Won; Lee, Choong-Hyun; Yan, Bing Chun; Kang, Il Jun; Won, Moo-Ho

    2018-04-25

    Rufinamide is a novel antiepileptic drug and commonly used in the treatment of Lennox-Gastaut syndrome. In the present study, we investigated effects of rufinamide on cognitive function using passive avoidance test and neurogenesis in the hippocampal dentate gyrus using Ki-67 (a marker for cell proliferation), doublecortin (DCX, a marker for neuroblast) and BrdU/NeuN (markers for newly generated mature neurons) immunohistochemistry in aged gerbils. Aged gerbils (24-month old) were treated with 1 mg/kg and 3 mg/kg rufinamide for 4 weeks. Treatment with 3 mg/kg rufinamide, not 1 mg/kg rufinamide, significantly improved cognitive function and increased neurogenesis, showing that proliferating cells (Ki-67-immunoreactive cells), differentiating neuroblasts (DCX-immunoreactive neuroblasts) and mature neurons (BrdU/NeuN-immunoreactive cells) in the aged dentate gyrus compared with those in the control group. When we examined its mechanisms, rufinamide significantly increased immunoreactivities of insulin-like growth factor-1 (IGF-1), its receptor (IGF-1R), and phosphorylated cAMP response element binding protein (p-CREB). However, rufinamide did not show any increase in immunoreactivities of brain-derived neurotrophic factor and its receptor. Therefore, our results indicate that rufinamide can improve cognitive function and increase neurogenesis in the hippocampus of the aged gerbil via increasing expressions of IGF-1, IGF-1R and p-CREB. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    Science.gov (United States)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  6. Neurogenesis and developmental anesthetic neurotoxicity.

    Science.gov (United States)

    Kang, Eunchai; Berg, Daniel A; Furmanski, Orion; Jackson, William M; Ryu, Yun Kyoung; Gray, Christy D; Mintz, C David

    The mechanism by which anesthetics might act on the developing brain in order to cause long term deficits remains incompletely understood. The hippocampus has been identified as a structure that is likely to be involved, as rodent models show numerous deficits in behavioral tasks of learning that are hippocampal-dependent. The hippocampus is an unusual structure in that it is the site of large amounts of neurogenesis postnatally, particularly in the first year of life in humans, and these newly generated neurons are critical to the function of this structure. Intriguingly, neurogenesis is a major developmental event that occurs during postulated windows of vulnerability to developmental anesthetic neurotoxicity across the different species in which it has been studied. In this review, we examine the evidence for anesthetic effects on neurogenesis in the early postnatal period and ask whether neurogenesis should be studied further as a putative mechanism of injury. Multiple anesthetics are considered, and both in vivo and in vitro work is presented. While there is abundant evidence that anesthetics act to suppress neurogenesis at several different phases, evidence of a causal link between these effects and any change in learning behavior remains elusive. Copyright © 2016. Published by Elsevier Inc.

  7. Neurogenesis and the Effect of Antidepressants

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available The recent evidence that neurogenesis occurs throughout adulthood and neural stem cells (NSCs reside in the adult central nervous system (CNS suggests that the CNS has the potential for self-repair. Beside this potential, the function of newly generated neuronal cells in the adult brain remains the focus of intense research. The hippocampus of patients with depression show signs of atrophy and neuronal loss. This suggests that adult neurogenesis may contribute to the biology of depression. The observations that antidepressants, like fluoxetine, increase neurogenesis in the dentate gyrus (DG and neurogenesis is required for the behavioral effect of antidepressants, lead to a new theory for depression and the design of new strategies and drugs for the treatment of depression. However, the role of adult neurogenesis in the etiology of depression remains the source of controversies and debates.

  8. Neurogenesis and The Effect of Antidepressants

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available The recent evidence that neurogenesis occurs throughout adulthood and neural stem cells (NSCs reside in the adult central nervous system (CNS suggests that the CNS has the potential for self-repair. Beside this potential, the function of newly generated neuronal cells in the adult brain remains the focus of intense research. The hippocampus of patients with depression show signs of atrophy and neuronal loss. This suggests that adult neurogenesis may contribute to the biology of depression. The observations that antidepressants, like fluoxetine, increase neurogenesis in the dentate gyrus (DG and neurogenesis is required for the behavioral effect of antidepressants, lead to a new theory for depression and the design of new strategies and drugs for the treatment of depression. However, the role of adult neurogenesis in the etiology of depression remains the source of controversies and debates.

  9. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    Science.gov (United States)

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  10. Prolonged Running, not Fluoxetine Treatment, Increases Neurogenesis, but does not Alter Neuropathology, in the 3xTg Mouse Model of Alzheimer's Disease.

    NARCIS (Netherlands)

    Marlatt, M.W.; Potter, M.C.; Bayer, T.A.; van Praag, H.; Lucassen, P.J.

    2013-01-01

    Reductions in adult neurogenesis have been documented in the original 3xTg mouse model of Alzheimer's disease (AD), notably occurring at the same age when spatial memory deficits and amyloid plaque pathology appeared. As this suggested reduced neurogenesis was associated with behavioral deficits, we

  11. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation.

    Science.gov (United States)

    Li, Li; Saiyin, Hexige; Xie, Jingmo; Ma, Lixiang; Xue, Lei; Wang, Wei; Liang, Weimin; Yu, Qiong

    2017-04-25

    Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.

  12. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice

    International Nuclear Information System (INIS)

    Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge; Pubill, David; Escubedo, Elena

    2016-01-01

    A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases in dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone-induced learning

  13. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  14. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    Science.gov (United States)

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  15. Andrographolide Stimulates Neurogenesis in the Adult Hippocampus

    Directory of Open Access Journals (Sweden)

    Lorena Varela-Nallar

    2015-01-01

    Full Text Available Andrographolide (ANDRO is a labdane diterpenoid component of Andrographis paniculata widely used for its anti-inflammatory properties. We have recently determined that ANDRO is a competitive inhibitor of glycogen synthase kinase-3β (GSK-3β, a key enzyme of the Wnt/β-catenin signaling cascade. Since this signaling pathway regulates neurogenesis in the adult hippocampus, we evaluated whether ANDRO stimulates this process. Treatment with ANDRO increased neural progenitor cell proliferation and the number of immature neurons in the hippocampus of 2- and 10-month-old mice compared to age-matched control mice. Moreover, ANDRO stimulated neurogenesis increasing the number of newborn dentate granule neurons. Also, the effect of ANDRO was evaluated in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. In these mice, ANDRO increased cell proliferation and the density of immature neurons in the dentate gyrus. Concomitantly with the increase in neurogenesis, ANDRO induced the activation of the Wnt signaling pathway in the hippocampus of wild-type and APPswe/PS1ΔE9 mice determined by increased levels of β-catenin, the inactive form of GSK-3β, and NeuroD1, a Wnt target gene involved in neurogenesis. Our findings indicate that ANDRO stimulates neurogenesis in the adult hippocampus suggesting that this drug could be used as a therapy in diseases in which neurogenesis is affected.

  16. Detrimental role of prolonged sleep deprivation on adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Carina eFernandes

    2015-04-01

    Full Text Available Adult mammalian brains continuously generate new neurons, a phenomenon called neurogenesis. Both environmental stimuli and endogenous factors are important regulators of neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and neurogenesis in brain function, such as learning, memory and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on neurogenesis.

  17. Adult neurogenesis transiently generates oxidative stress.

    Directory of Open Access Journals (Sweden)

    Noah M Walton

    Full Text Available An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer's disease, schizophrenia and Parkinson's disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG. These regions contain populations of quiescent neural stem cells (NSCs that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.

  18. Pharmacovigilance: Tiens Slimming Tea Causes Increased Blood ...

    African Journals Online (AJOL)

    ... possible link between the constituents of the slimming tea and increased blood pressure and also provide evidence of other possible harmful effects that may occur with the use of the slimming tea. Keywords: Pharmacovigilance, hypertension, slimming tea. West African Journal of Pharmacology and Drug Research Vol.

  19. Antidepressant-like Effects of Electroconvulsive Seizures Require Adult Neurogenesis in a Neuroendocrine Model of Depression.

    Science.gov (United States)

    Schloesser, Robert J; Orvoen, Sophie; Jimenez, Dennisse V; Hardy, Nicholas F; Maynard, Kristen R; Sukumar, Mahima; Manji, Husseini K; Gardier, Alain M; David, Denis J; Martinowich, Keri

    2015-01-01

    Neurogenesis continues throughout life in the hippocampal dentate gyrus. Chronic treatment with monoaminergic antidepressant drugs stimulates hippocampal neurogenesis, and new neurons are required for some antidepressant-like behaviors. Electroconvulsive seizures (ECS), a laboratory model of electroconvulsive therapy (ECT), robustly stimulate hippocampal neurogenesis. ECS requires newborn neurons to improve behavioral deficits in a mouse neuroendocrine model of depression. We utilized immunohistochemistry for doublecortin (DCX), a marker of migrating neuroblasts, to assess the impact of Sham or ECS treatments (1 treatment per day, 7 treatments over 15 days) on hippocampal neurogenesis in animals receiving 6 weeks of either vehicle or chronic corticosterone (CORT) treatment in the drinking water. We conducted tests of anxiety- and depressive-like behavior to investigate the ability of ECS to reverse CORT-induced behavioral deficits. We also determined whether adult neurons are required for the effects of ECS. For these studies we utilized a pharmacogenetic model (hGFAPtk) to conditionally ablate adult born neurons. We then evaluated behavioral indices of depression after Sham or ECS treatments in CORT-treated wild-type animals and CORT-treated animals lacking neurogenesis. ECS is able to rescue CORT-induced behavioral deficits in indices of anxiety- and depressive-like behavior. ECS increases both the number and dendritic complexity of adult-born migrating neuroblasts. The ability of ECS to promote antidepressant-like behavior is blocked in mice lacking adult neurogenesis. ECS ameliorates a number of anxiety- and depressive-like behaviors caused by chronic exposure to CORT. ECS requires intact hippocampal neurogenesis for its efficacy in these behavioral indices. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.

    Science.gov (United States)

    Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja

    2016-11-01

    Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neurogenesis in the Hippocampus of Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Zhong, Qin; Ren, Bo-Xu; Tang, Feng-Ru

    2016-02-01

    The mobilization of endogenous neural stem cells in order to substitute lost neurons in the adult brain may reduce the negative effects of patients with chronic neurodegenerative diseases. However, abnormal neurogenesis may be harmful and could lead to the worsening of patients' symptoms. In the brains of patients and animal models with temporal lobe epilepsy (TLE), increased newly generated neurons in the subgranular zone (SGZ) at early stages after brain insults have been speculated to be involved in epileptogenesis. However, this argument is unsupported by evidence showing that (1) hippocampal neurogenesis is reduced at chronic stages of intractable TLE, (2) decreased neurogenesis is involved in epileptogenesis, and (3) spontaneous recurrent seizures occur before newly generated neurons are integrated into hippocampal neural pathways. Therefore, the hypothesis of increased neurogenesis in epileptogenesis may need to be re-evaluated. In this paper, we systemically reviewed brain neurogenesis and relevant molecules in the regulation of neurogenesis in SGZ. We aimed to update researchers and epileptologists on current progresses on pathophysiological changes of neurogenesis at different stages of TLE in patients and animal models of TLE. The interactions among neurogenesis, epileptogenesis and cognitive impairment, and molecules' mechanism involved in neurogenesis would also be discussed. Future research directions are proposed at the end of this paper.

  2. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  3. Adult hippocampal neurogenesis poststroke: More new granule cells but aberrant morphology and impaired spatial memory.

    Science.gov (United States)

    Woitke, Florus; Ceanga, Mihai; Rudolph, Max; Niv, Fanny; Witte, Otto W; Redecker, Christoph; Kunze, Albrecht; Keiner, Silke

    2017-01-01

    Stroke significantly stimulates neurogenesis in the adult dentate gyrus, though the functional role of this postlesional response is mostly unclear. Recent findings suggest that newborn neurons generated in the context of stroke may fail to correctly integrate into pre-existing networks. We hypothesized that increased neurogenesis in the dentate gyrus following stroke is associated with aberrant neurogenesis and impairment of hippocampus-dependent memory. To address these questions we used the middle cerebral artery occlusion model (MCAO) in mice. Animals were housed either under standard conditions or with free access to running wheels. Newborn granule cells were labelled with the thymidine analoque EdU and retroviral vectors. To assess memory performance, we employed a modified version of the Morris water maze (MWM) allowing differentiation between hippocampus dependent and independent learning strategies. Newborn neurons were morphologically analyzed using confocal microscopy and Neurolucida system at 7 weeks. We found that neurogenesis was significantly increased following MCAO. Animals with MCAO needed more time to localize the platform and employed less hippocampus-dependent search strategies in MWM versus controls. Confocal studies revealed an aberrant cell morphology with basal dendrites and an ectopic location (e.g. hilus) of new granule cells born in the ischemic brain. Running increased the number of new neurons but also enhanced aberrant neurogenesis. Running, did not improve the general performance in the MWM but slightly promoted the application of precise spatial search strategies. In conclusion, ischemic insults cause hippocampal-dependent memory deficits which are associated with aberrant neurogenesis in the dentate gyrus indicating ischemia-induced maladaptive plasticity in the hippocampus.

  4. Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice.

    Science.gov (United States)

    Yang, Peng; Arnold, Sheila A; Habas, Agata; Hetman, Michal; Hagg, Theo

    2008-02-27

    Neurogenesis continues in the adult forebrain subventricular zone (SVZ) and the dentate gyrus of the hippocampal formation. Degeneration of dopaminergic projections in Parkinson's disease and animals reduces, whereas ciliary neurotrophic factor (CNTF) promotes, neurogenesis. We tested whether the dopaminergic system promotes neurogenesis through CNTF. Astrocytes of the SVZ and dentate gyrus expressed CNTF and were close to dopaminergic terminals. Dopaminergic denervation in adult mice reduced CNTF mRNA by approximately 60%, whereas systemic treatment with the D2 agonist quinpirole increased CNTF mRNA in the SVZ and hippocampal formation, and in cultured astrocytes by 1.5-5 fold. The effect of quinpirole in vitro was blocked by the D2 antagonist eticlopride and did not cause astroglial proliferation or hypertrophy. Systemic quinpirole injections increased proliferation in wild-type mice by approximately 25-75% but not in CNTF-/- littermates or in the SVZ of mice infused with CNTF antibodies. Quinpirole increased the number of neuroblasts in wild-type but not in CNTF-/- littermates. Neurogenesis was reduced by approximately 20% in CNTF-/- mice, confirming the endogenous role of CNTF. Nigrostriatal denervation did not affect SVZ proliferation in CNTF-/- mice, suggesting that the dopaminergic innervation normally regulates neurogenesis through CNTF. Quinpirole acted on postsynaptic receptors as it reversed the reduced proliferation seen after dopaminergic denervation in wild-type mice. Thus, CNTF mediates dopaminergic innervation- and D2 receptor-induced neurogenesis in the adult forebrain. Because CNTF is predominantly expressed in the nervous system, this mechanism and the ability to pharmacologically modulate it have implications for Parkinson's disease and cell-replacement therapies for other disorders.

  5. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke.

    Directory of Open Access Journals (Sweden)

    Zahra Hassani

    Full Text Available Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke.We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx and microglia (CD11b. So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation.We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells.Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.

  6. Epigenetic mechanisms in neurogenesis

    Science.gov (United States)

    Yao, Bing; Christian, Kimberly M.; He, Chuan; Jin, Peng; Ming, Guo-li; Song, Hongjun

    2017-01-01

    In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms — including DNA and histone modifications, as well as regulation by non-coding RNAs — have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs. PMID:27334043

  7. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    Science.gov (United States)

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  8. Activity Dependency and Aging in the Regulation of Adult Neurogenesis

    Science.gov (United States)

    Kempermann, Gerd

    2015-01-01

    Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of “neural reserve,” the brain’s ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity. PMID:26525149

  9. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators. A minireview.

    Directory of Open Access Journals (Sweden)

    Naima eLajud

    2015-02-01

    Full Text Available Adverse early life experience decreases adult hippocampal neurogenesis and results in increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal stress on neurogenesis have been widely studied in adult individuals, few efforts have been done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not clear whether postnatal stress causes a differential impact in hippocampus development in male and female neonates that could be related to emotional deficits in adulthood. It has been proposed that the long term effects of early stress exposure rise from a persistent HPA axis activation during sensitive time windows; nevertheless the exact mechanisms and mediators remain unknown. Here, we summarize the immediate and late effects of early life stress on hippocampal neurogenesis in male and female rat pups, compare its later consequences in emotionality, and highlight some relevant mediator peptides that could be potentially involved in programming.

  10. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators.

    Science.gov (United States)

    Lajud, Naima; Torner, Luz

    2015-01-01

    Adverse early life experience decreases adult hippocampal neurogenesis and results in increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal stress on neurogenesis have been widely studied in adult individuals, few efforts have been done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not clear whether postnatal stress causes a differential impact in hippocampus development in male and female neonates that could be related to emotional deficits in adulthood. It has been proposed that the long term effects of early stress exposure rise from a persistent HPA axis activation during sensitive time windows; nevertheless the exact mechanisms and mediators remain unknown. Here, we summarize the immediate and late effects of early life stress on hippocampal neurogenesis in male and female rat pups, compare its later consequences in emotionality, and highlight some relevant mediator peptides that could be potentially involved in programming.

  11. The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    Science.gov (United States)

    Hoffman, Emma; Pickavance, Lucy; Thippeswamy, Thimmasettappa; Beynon, Robert J.; Hurst, Jane L.

    2015-01-01

    The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20), a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for 7 days to male urine containing at least 0.5 μg/μl darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over 7 days, suggesting that consistency of individual scent signatures is important. While 7 days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially-relevant context. PMID

  12. Effect of Opioid on Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-01-01

    Full Text Available During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs’ effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal’s opioid addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce the vulnerability to drug craving and relapse.

  13. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa.

    Science.gov (United States)

    Bertapelle, Carla; Polese, Gianluca; Di Cosmo, Anna

    2017-06-01

    Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis. © 2017 Wiley Periodicals, Inc.

  14. No pain, no gain: lack of exercise obstructs neurogenesis.

    Science.gov (United States)

    Watson, Nate; Ji, Xunming; Yasuhara, Takao; Date, Isao; Kaneko, Yuji; Tajiri, Naoki; Borlongan, Cesar V

    2015-01-01

    Bedridden patients develop atrophied muscles, their daily activities greatly reduced, and some display a depressive mood. Patients who are able to receive physical rehabilitation sometimes show surprising clinical improvements, including reduced depression and attenuation of other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for CNS disorders, namely, transplantation of exogenous stem cells and amplification of endogenous neurogenesis. The latter strategy embraces a natural way of reinnervating the damaged brain and correcting the neurological impairments. In this study, we discussed how immobilization-induced disuse atrophy, using the hindlimb suspension model, affects neurogenesis in rats. The overarching hypothesis is that immobilization suppresses neurogenesis by reducing the circulating growth or trophic factors, such as vascular endothelial growth factor or brain-derived neurotrophic factor. That immobilization alters neurogenesis and stem cell differentiation in the CNS requires characterization of the stem cell microenvironment by examining the trophic and growth factors, as well as stress-related proteins that have been implicated in exercise-induced neurogenesis. Although accumulating evidence has revealed the contribution of "increased" exercise on neurogenesis, the reverse paradigm involving "lack of exercise," which mimics pathological states (e.g., stroke patients are often immobile), remains underexplored. This novel paradigm will enable us to examine the effects on neurogenesis by a nonpermissive stem cell microenvironment likely produced by lack of exercise. BrdU labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and brain levels of trophic factors, growth factors, and stress-related proteins are proposed as indices of neurogenesis, while quantitative measurements of spontaneous movements will reveal psychomotor components of immobilization. Studies designed to

  15. Hippocampus-dependent learning influences hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Jonathan Richard Epp

    2013-04-01

    Full Text Available The structure of the mammalian hippocampus continues to be modified throughout life by continuous addition of neurons in the dentate gyrus. Although the existence of adult neurogenesis is now widely accepted, the function that adult generated granule cells play is a topic of intense debate. Many studies have argued that adult generated neurons, due to unique physiological characteristics, play a unique role in hippocampus-dependent learning and memory. However, it is not currently clear whether this is the case or what specific capability adult generated neurons may confer that developmentally generated neurons do not. These questions have been addressed in numerous ways, from increasing and decreasing neurogenesis to computational modeling. One particular area of research has examined the effects of hippocampus dependent learning on proliferation, survival, integration and activation of immature neurons in response to memory retrieval. Within this subfield there remains a range of data showing that hippocampus dependent learning may increase, decrease or alternatively may not alter these factors. Determining how and when hippocampus-dependent learning alters adult neurogenesis will help to further clarify the role of adult generated neurons. There are many variables (such as age of immature neurons, species, strain, sex, stress, task difficulty and type of learning as well as numerous methodological differences (such as marker type, quantification techniques, apparatus size etc. that could all be crucial for a clear understanding of the interaction between learning and neurogenesis. Here, we review these findings and discuss the different conditions under which hippocampus-dependent learning impacts adult neurogenesis in the dentate gyrus.

  16. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Agarwal, Swati; Seth, Brashket; Yadav, Anuradha; Nair, Saumya; Bhatnagar, Priyanka; Karmakar, Madhumita; Kumari, Manisha; Chauhan, Lalit Kumar Singh; Patel, Devendra Kumar; Srivastava, Vikas; Singh, Dhirendra; Gupta, Shailendra Kumar; Tripathi, Anurag; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2014-01-28

    Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimer's disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.

  17. Is it only neurogenesis?

    Science.gov (United States)

    Grassi Zucconi, Gigliola; Giuditta, Antonio

    2002-01-01

    For a long time, the occurrence of neurogenesis in the adult mammalian brain was deemed non-existent or, at best, restricted to phylogenetically old brain regions. The pendulum of current opinion has now swung in the opposite direction with growing awareness that incorporation of labeled precursors into neuronal DNA occurs widely in the brain, and undergoes significant modulation with learning, different kinds of experiential inputs, and a number of physiological manipulations. A thorough review of the literature indicates that unscheduled DNA synthesis may significantly contribute to available evidence. Notably, data interpreted in terms of nerve cell turnover are more likely to reflect turnover of neuronal DNA, as suggested by earlier investigations.

  18. Neurofibromin Modulates Adult Hippocampal Neurogenesis and Behavioral Effects of Antidepressants

    Science.gov (United States)

    Li, Yun; Li, Yanjiao; McKay, Renée M.; Riethmacher, Dieter; Parada, Luis F.

    2012-01-01

    Neurogenesis persists in the rodent dentate gyrus (DG) throughout adulthood but declines with age and stress. Neural progenitor cells (NPCs) residing in the subgranular zone of the DG are regulated by an array of growth factors and respond to the microenvironment, adjusting their proliferation level to determine the rate of neurogenesis. Here we report that genetic deletion of neurofibromin (Nf1), a tumor suppressor with RAS-GAP activity,in adult NPCs enhanced DG proliferation and increased generation of new neurons in mice. Nf1 loss-associated neurogenesis had the functional effect of enhancing behavioral responses to subchronic antidepressants and, over time, led to spontaneous antidepressive-like behaviors. Thus, our findings establish an important role for the Nf1-Ras pathway in regulating adult hippocampal neurogenesis, and demonstrate that activation of adult NPCs is sufficient to modulate depression- and anxiety-like behaviors. PMID:22399775

  19. Prenatal stress inhibits hippocampal neurogenesis but spares olfactory bulb neurogenesis.

    Directory of Open Access Journals (Sweden)

    Laure Belnoue

    Full Text Available The dentate gyrus (DG and the olfactory bulb (OB are two regions of the adult brain in which new neurons are integrated daily in the existing networks. It is clearly established that these newborn neurons are implicated in specific functions sustained by these regions and that different factors can influence neurogenesis in both structures. Among these, life events, particularly occurring during early life, were shown to profoundly affect adult hippocampal neurogenesis and its associated functions like spatial learning, but data regarding their impact on adult bulbar neurogenesis are lacking. We hypothesized that prenatal stress could interfere with the development of the olfactory system, which takes place during the prenatal period, leading to alterations in adult bulbar neurogenesis and in olfactory capacities. To test this hypothesis we exposed pregnant C57Bl/6J mice to gestational restraint stress and evaluated behavioral and anatomic consequences in adult male offspring. We report that prenatal stress has no impact on adult bulbar neurogenesis, and does not alter olfactory functions in adult male mice. However, it decreases cell proliferation and neurogenesis in the DG of the hippocampus, thus confirming previous reports on rats. Altogether our data support a selective and cross-species long-term impact of prenatal stress on neurogenesis.

  20. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  1. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    International Nuclear Information System (INIS)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka; Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3 + apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB + interneurons, although the number of reelin + interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic

  2. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility

    Directory of Open Access Journals (Sweden)

    Eric J. Neuberger

    2017-09-01

    Full Text Available Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury.

  3. Maternal allergic contact dermatitis causes increased asthma risk in offspring.

    Science.gov (United States)

    Lim, Robert H; Arredouani, Mohamed S; Fedulov, Alexey; Kobzik, Lester; Hubeau, Cedric

    2007-07-27

    Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring. BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice. Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease. Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate) can result in the maternal transmission of asthma risk in mice.

  4. Maternal allergic contact dermatitis causes increased asthma risk in offspring

    Directory of Open Access Journals (Sweden)

    Kobzik Lester

    2007-07-01

    Full Text Available Abstract Background Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring. Methods BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice. Results Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease. Conclusion Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate can result in the maternal transmission of asthma risk in mice.

  5. Prozac during puberty: Distinctive effects on neurogenesis as a function of age and sex

    OpenAIRE

    Hodes, Georgia E.; Yang, Lillian; VanKooy, Jay; Santollo, Jessica; Shors, Tracey J.

    2009-01-01

    Neurogenesis is a possible substrate through which antidepressants alleviate symptoms of depression. In adult male rodents and primates, chronic treatment with fluoxetine increases neurogenesis in the hippocampal formation. Little is known about the effects of the antidepressant on neurogenesis during puberty or in female animals at any age. Therefore we examined the effects of chronic fluoxetine treatment on cell proliferation and survival in male and female rats during puberty and adulthood.

  6. Disruption of zebrafish cyclin G-associated kinase (GAK function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    Directory of Open Access Journals (Sweden)

    Szeto Daniel P

    2010-01-01

    Full Text Available Abstract Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK, differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells.

  7. Neurotoxic effect of 2,5-hexanedione on neural progenitor cells and hippocampal neurogenesis

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Park, Hee Ra; Park, Mikyung; Kim, So Jung; Kwon, Mugil; Yu, Byung Pal; Chung, Hae Young; Kim, Hyung Sik; Kwack, Seung Jun; Kang, Tae Seok; Kim, Seung Hee; Lee, Jaewon

    2009-01-01

    2,5-Hexanedione (HD), a metabolite of n-hexane, causes central and peripheral neuropathy leading to motor neuron deficits. Although chronic exposure to n-hexane is known to cause gradual sensorimotor neuropathy, there are no reports on the effects of low doses of HD on neurogenesis in the central nervous system. In the current study, we explored HD toxicity in murine neural progenitor cells (NPC), primary neuronal culture and young adult mice. HD (500 nM∼50 μM) dose-dependently suppressed NPC proliferation and cell viability, and also increased the production of reactive oxygen species (ROS). HD (10 or 50 mg/kg for 2 weeks) inhibited hippocampal neuronal and NPC proliferation in 6-week-old male ICR mice, as measured by BrdU incorporation in the dentate gyrus, indicating HD impaired hippocampal neurogenesis. In addition, elevated microglial activation was observed in the hippocampal CA3 region and lateral ventricles of HD-treated mice. Lastly, HD dose-dependently decreased the viability of primary cultured neurons. Based on biochemical and histochemical evidence from both cell culture and HD-treated animals, the neurotoxic mechanisms by which HD inhibits NPC proliferation and hippocampal neurogenesis may relate to its ability to elicit an increased generation of deleterious ROS.

  8. DNA methylation dynamics in neurogenesis

    Science.gov (United States)

    Wang, Zhiqin; Tang, Beisha; He, Yuquan; Jin, Peng

    2016-01-01

    Neurogenesis is not limited to the embryonic stage, but continually proceeds in the adult brain throughout life. Epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNA, play important roles in neurogenesis. For decades, DNA methylation was thought to be a stable modification, except for demethylation in the early embryo. In recent years, DNA methylation has proved to be dynamic during development. In this review, we summarize the latest understanding about DNA methylation dynamics in neurogenesis, including the roles of different methylation forms (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine), as well as their ‘writers’, ‘readers’ and interactions with histone modifications. PMID:26950681

  9. Unlocking epigenetic codes in neurogenesis

    Science.gov (United States)

    Yao, Bing; Jin, Peng

    2014-01-01

    During embryonic and adult neurogenesis, neuronal stem cells follow a highly conserved path of differentiation to give rise to functional neurons at various developmental stages. Epigenetic regulation—including DNA modifications, histone modifications, and noncoding regulatory RNAs, such as microRNA (miRNA) and long noncoding RNA (lncRNA)—plays a pivotal role in embryonic and adult neurogenesis. Here we review the latest in our understanding of the epigenetic regulation in neurogenesis, with a particular focus on newly identified cytosine modifications and their dynamics, along with our perspective for future studies. PMID:24939932

  10. Enhanced post-ischemic neurogenesis in aging rats

    Directory of Open Access Journals (Sweden)

    Yao-Fang Tan

    2010-08-01

    Full Text Available Hippocampal neurogenesis persists in adult mammals, but its rate declines dramatically with age. Evidence indicates that experimentally-reduced levels of neurogenesis (e.g. by irradiation in young rats has profound influence on cognition as determined by learning and memory tests. In the present study we asked whether in middle-aged, 10-13 months old rats, cell production can be restored towards the level present in young rats. To manipulate neurogenesis we induced bilateral carotid occlusion with hypotension. This procedure is known to increase neurogenesis in young rats, presumably in a compensatory manner, but until now, has never been tested in aging rats. Cell production was measured at 10, 35 and 90 days after ischemia. The results indicate that neuronal proliferation and differentiation can be transiently restored in middle-aged rats. Furthermore, the effects are more pronounced in the dorsal as opposed to ventral hippocampus thus restoring the dorso-ventral gradient seen in younger rats. Our results support previous findings showing that some of the essential features of the age-dependent decline in neurogenesis are reversible. Thus, it may be possible to manipulate neurogenesis and improve learning and memory in old age.

  11. Alternative Splicing in Neurogenesis and Brain Development

    Directory of Open Access Journals (Sweden)

    Chun-Hao Su

    2018-02-01

    Full Text Available Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  12. Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis.

    Directory of Open Access Journals (Sweden)

    Tzong-Shiue Yu

    Full Text Available Traumatic brain injury (TBI is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.

  13. Donepezil Rescues Spatial Learning and Memory Deficits following Traumatic Brain Injury Independent of Its Effects on Neurogenesis

    Science.gov (United States)

    Yu, Tzong-Shiue; Kim, Ahleum; Kernie, Steven G.

    2015-01-01

    Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis. PMID:25714524

  14. IL4/STAT6 Signaling Activates Neural Stem Cell Proliferation and Neurogenesis upon Amyloid-β42 Aggregation in Adult Zebrafish Brain

    Directory of Open Access Journals (Sweden)

    Prabesh Bhattarai

    2016-10-01

    Full Text Available Human brains are prone to neurodegeneration, given that endogenous neural stem/progenitor cells (NSPCs fail to support neurogenesis. To investigate the molecular programs potentially mediating neurodegeneration-induced NSPC plasticity in regenerating organisms, we generated an Amyloid-β42 (Aβ42-dependent neurotoxic model in adult zebrafish brain through cerebroventricular microinjection of cell-penetrating Aβ42 derivatives. Aβ42 deposits in neurons and causes phenotypes reminiscent of amyloid pathophysiology: apoptosis, microglial activation, synaptic degeneration, and learning deficits. Aβ42 also induces NSPC proliferation and enhanced neurogenesis. Interleukin-4 (IL4 is activated primarily in neurons and microglia/macrophages in response to Aβ42 and is sufficient to increase NSPC proliferation and neurogenesis via STAT6 phosphorylation through the IL4 receptor in NSPCs. Our results reveal a crosstalk between neurons and immune cells mediated by IL4/STAT6 signaling, which induces NSPC plasticity in zebrafish brains.

  15. Adult Neurogenesis and Mental Illness

    Science.gov (United States)

    Schoenfeld, Timothy J; Cameron, Heather A

    2015-01-01

    Several lines of evidence suggest that adult neurogenesis, the production of new neurons in adulthood, may play a role in psychiatric disorders, including depression, anxiety, and schizophrenia. Medications and other treatments for mental disorders often promote the proliferation of new neurons; the time course for maturation and integration of new neurons in circuitry parallels the delayed efficacy of psychiatric therapies; adverse and beneficial experiences similarly affect development of mental illness and neurogenesis; and ablation of new neurons in adulthood alters the behavioral impact of drugs in animal models. At present, the links between adult neurogenesis and depression seem stronger than those suggesting a relationship between new neurons and anxiety or schizophrenia. Yet, even in the case of depression there is currently no direct evidence for a causative role. This article reviews the data relating adult neurogenesis to mental illness and discusses where research needs to head in the future. PMID:25178407

  16. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    International Nuclear Information System (INIS)

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-01-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice

  17. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  18. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants.

    Science.gov (United States)

    Borsini, Alessandra; Alboni, Silvia; Horowitz, Mark A; Tojo, Luis M; Cannazza, Giuseppe; Su, Kuan-Pin; Pariante, Carmine M; Zunszain, Patricia A

    2017-10-01

    Both increased inflammation and reduced neurogenesis have been associated with the pathophysiology of major depression. We have previously described how interleukin-1 (IL-1) β, a pro-inflammatory cytokine increased in depressed patients, decreases neurogenesis in human hippocampal progenitor cells. Here, using the same human in vitro model, we show how omega-3 (ω-3) polyunsaturated fatty acids and conventional antidepressants reverse this reduction in neurogenesis, while differentially affecting the kynurenine pathway. We allowed neural cells to proliferate for 3days and further differentiate for 7days in the presence of IL-1β (10ng/ml) and either the selective serotonin reuptake inhibitor sertraline (1µM), the serotonin and norepinephrine reuptake inhibitor venlafaxine (1µM), or the ω-3 fatty acids eicosapentaenoic acid (EPA, 10µM) or docosahexaenoic acid (DHA, 10µM). Co-incubation with each of these compounds reversed the IL-1β-induced reduction in neurogenesis (DCX- and MAP2-positive neurons), indicative of a protective effect. Moreover, EPA and DHA also reversed the IL-1β-induced increase in kynurenine, as well as mRNA levels of indolamine-2,3-dioxygenase (IDO); while DHA and sertraline reverted the IL-1β-induced increase in quinolinic acid and mRNA levels of kynurenine 3-monooxygenase (KMO). Our results show common effects of monoaminergic antidepressants and ω-3 fatty acids on the reduction of neurogenesis caused by IL-1β, but acting through both common and different kynurenine pathway-related mechanisms. Further characterization of their individual properties will be of benefit towards improving a future personalized medicine approach. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. Real time imaging of human progenitor neurogenesis.

    Directory of Open Access Journals (Sweden)

    Thomas M Keenan

    Full Text Available Human neural progenitors are increasingly being employed in drug screens and emerging cell therapies targeted towards neurological disorders where neurogenesis is thought to play a key role including developmental disorders, Alzheimer's disease, and depression. Key to the success of these applications is understanding the mechanisms by which neurons arise. Our understanding of development can provide some guidance but since little is known about the specifics of human neural development and the requirement that cultures be expanded in vitro prior to use, it is unclear whether neural progenitors obey the same developmental mechanisms that exist in vivo. In previous studies we have shown that progenitors derived from fetal cortex can be cultured for many weeks in vitro as undifferentiated neurospheres and then induced to undergo neurogenesis by removing mitogens and exposing them to supportive substrates. Here we use live time lapse imaging and immunocytochemical analysis to show that neural progenitors use developmental mechanisms to generate neurons. Cells with morphologies and marker profiles consistent with radial glia and recently described outer radial glia divide asymmetrically and symmetrically to generate multipolar intermediate progenitors, a portion of which express ASCL1. These multipolar intermediate progenitors subsequently divide symmetrically to produce CTIP2(+ neurons. This 3-cell neurogenic scheme echoes observations in rodents in vivo and in human fetal slice cultures in vitro, providing evidence that hNPCs represent a renewable and robust in vitro assay system to explore mechanisms of human neurogenesis without the continual need for fresh primary human fetal tissue. Knowledge provided by this and future explorations of human neural progenitor neurogenesis will help maximize the safety and efficacy of new stem cell therapies by providing an understanding of how to generate physiologically-relevant cell types that maintain their

  20. Goat Meat Does Not Cause Increased Blood Pressure

    Directory of Open Access Journals (Sweden)

    Katsunori Sunagawa

    2014-01-01

    Full Text Available While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight 309.3±11.1 g were evenly separated into 4 groups. The control group (CP was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan/salt group (GY was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01 than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01. The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01 after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal

  1. Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin

    Directory of Open Access Journals (Sweden)

    Ryan P. Vetreno

    2018-03-01

    Full Text Available Alcohol abuse and binge drinking are common during adolescence, a developmental period characterized by heightened neuroplasticity. Animal studies reveal that adolescent ethanol exposure decreases hippocampal neurogenesis that persists into adulthood, but the mechanism remains to be fully elucidated. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-days on/2-days off from postnatal day [P]25 to P55, we tested the hypothesis that AIE-induced upregulation of neuroimmune signaling contributes to the loss of hippocampal neurogenesis in adulthood. We found that AIE caused upregulation of multiple proinflammatory Toll-like receptors (TLRs, increased expression of phosphorylated NF-κB p65 (pNF-κB p65 and the cell death marker cleaved caspase 3, and reduced markers of neurogenesis in the adult (P80 hippocampus, which is consistent with persistently increased neuroimmune signaling reducing neurogenesis. We observed a similar increase of pNF-κB p65-immunoreactive cells in the post-mortem human alcoholic hippocampus, an effect that was negatively correlated with age of drinking onset. Voluntary wheel running from P24 to P80 prevented the AIE-induced loss of neurogenesis markers (i.e., nestin and doublecortin in the adult hippocampus that was paralleled by blockade of increased expression of the cell death marker cleaved caspase 3. Wheel running also prevented the AIE-induced increase of hippocampal pNF-κB p65 and induction of neuroimmune NF-κB target genes, including TNFα and IκBα in the adult brain. Administration of the anti-inflammatory drug indomethacin during AIE prevented the loss of neurogenesis markers (i.e., nestin and doublecortin and the concomitant increase of cleaved caspase 3, an effect that was accompanied by blockade of the increase of pNF-κB p65. Similarly, administration of the proinflammatory TLR4 activator lipopolysaccharide resulted in a loss of doublecortin that was paralleled by increased

  2. Sleep and adult neurogenesis: implications for cognition and mood.

    Science.gov (United States)

    Mueller, Anka D; Meerlo, Peter; McGinty, Dennis; Mistlberger, Ralph E

    2015-01-01

    The hippocampal dentate gyrus plays a critical role in learning and memory throughout life, in part by the integration of adult-born neurons into existing circuits. Neurogenesis in the adult hippocampus is regulated by numerous environmental, physiological, and behavioral factors known to affect learning and memory. Sleep is also important for learning and memory. Here we critically examine evidence from correlation, deprivation, and stimulation studies that sleep may be among those factors that regulate hippocampal neurogenesis. There is mixed evidence for correlations between sleep variables and rates of hippocampal cell proliferation across the day, the year, and the lifespan. There is modest evidence that periods of increased sleep are associated with increased cell proliferation or survival. There is strong evidence that disruptions of sleep exceeding 24 h, by total deprivation, selective REM sleep deprivation, and chronic restriction or fragmentation, significantly inhibit cell proliferation and in some cases neurogenesis. The mechanisms by which sleep disruption inhibits neurogenesis are not fully understood. Although sleep disruption procedures are typically at least mildly stressful, elevated adrenal corticosterone secretion is not necessary for this effect. However, procedures that prevent both elevated corticosterone and interleukin 1β signaling have been found to block the effect of sleep deprivation on cell proliferation. This result suggests that sleep loss impairs hippocampal neurogenesis by the presence of wake-dependent factors, rather than by the absence of sleep-specific processes. This would weigh against a hypothesis that regulation of neurogenesis is a function of sleep. Nonetheless, impaired neurogenesis may underlie some of the memory and mood effects associated with acute and chronic sleep disruptions.

  3. Effects of neuroleptics administration on adult neurogenesis in the rat hypothalamus.

    Science.gov (United States)

    Rojczyk, Ewa; Pałasz, Artur; Wiaderkiewicz, Ryszard

    2015-12-01

    Among many factors influencing adult neurogenesis, pharmacological modulation has been broadly studied. It is proven that neuroleptics positively affect new neuron formation in canonical neurogenic sites - subgranular zone of the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Latest findings suggest that adult neurogenesis also occurs in several additional regions like the hypothalamus, amygdala, neocortex and striatum. As the hypothalamus is considered an important target of neuroleptics, a hypothesis can be made that these substances are able to modulate local neural proliferation. Experiments were performed on adult male rats injected for 28 days or 1 day by three neuroleptics: olanzapine, chlorpromazine and haloperidol. Immunohistochemistry was used to determine expression of proliferation marker (Ki-67) and the marker of neuroblasts - doublecortin (DCX) - which may inform about drug influence on adult neurogenesis at the level of the hypothalamus. It was shown that a single injection of antipsychotics causes significant decrease in hypothalamic DCX expression, but after chronic treatment with chlorpromazine, but not olanzapine, there is an increase in the number of newly formed neuroblasts. Haloperidol has the opposite effect - its long-term administration decreases the number of DCX-positive cells. Cell proliferation levels (Ki-67 expression) increase after long-term drug administration, whereas their single doses do not have any modulatory effect on proliferation potential. Our results throw a new light on the neuroleptics mechanism of action. They also support the potential role of antipsychotics as a factor that can modulate hypothalamic neurogenesis with putative clinical applications. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Phosphofructokinase-1 Negatively Regulates Neurogenesis from Neural Stem Cells.

    Science.gov (United States)

    Zhang, Fengyun; Qian, Xiaodan; Qin, Cheng; Lin, Yuhui; Wu, Haiyin; Chang, Lei; Luo, Chunxia; Zhu, Dongya

    2016-06-01

    Phosphofructokinase-1 (PFK-1), a major regulatory glycolytic enzyme, has been implicated in the functions of astrocytes and neurons. Here, we report that PFK-1 negatively regulates neurogenesis from neural stem cells (NSCs) by targeting pro-neural transcriptional factors. Using in vitro assays, we found that PFK-1 knockdown enhanced, and PFK-1 overexpression inhibited the neuronal differentiation of NSCs, which was consistent with the findings from NSCs subjected to 5 h of hypoxia. Meanwhile, the neurogenesis induced by PFK-1 knockdown was attributed to the increased proliferation of neural progenitors and the commitment of NSCs to the neuronal lineage. Similarly, in vivo knockdown of PFK-1 also increased neurogenesis in the dentate gyrus of the hippocampus. Finally, we demonstrated that the neurogenesis mediated by PFK-1 was likely achieved by targeting mammalian achaete-scute homologue-1 (Mash 1), neuronal differentiation factor (NeuroD), and sex-determining region Y (SRY)-related HMG box 2 (Sox2). All together, our results reveal PFK-1 as an important regulator of neurogenesis.

  5. Computational models of adult neurogenesis

    Science.gov (United States)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  6. Causes and consequences of increased sympathetic activity in renal disease

    NARCIS (Netherlands)

    Joles, JA; Koomans, HA

    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only

  7. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    Science.gov (United States)

    Yau, Suk-yu; Christie, Brian R.; So, Kwok-fai

    2014-01-01

    Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain. PMID:24818140

  8. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Suk-yu Yau

    2014-01-01

    Full Text Available Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain.

  9. Of Mice and Men: Neurogenesis, Cognition and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Orly eLazarov

    2013-08-01

    Full Text Available Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal state, age and brain health. Increasing evidence supports a role for new neurons in cognitive function in rodents. Recent evidence delineates potential significant differences between adult neurogenesis in rodents and humans. Being context-dependent, neurogenesis in the human brain might be manifested differently than in the rodent brain. Decline in neurogenesis may play a role in cognitive deterioration, leading to the development of progressive learning and memory disorders, such as Alzheimer’s disease. This review discusses the different observations concerning neurogenesis in the rodent and human brain, and their functional implications for the healthy and diseased brain.

  10. Neuropeptide y promotes neurogenesis in murine subventricular zone

    DEFF Research Database (Denmark)

    Agasse, Fabienne; Bernardino, Liliana; Kristiansen, Heidi

    2008-01-01

    Stem cells of the subventricular zone (SVZ) represent a reliable source of neurons for cell replacement. Neuropeptide Y (NPY) promotes neurogenesis in the hippocampal subgranular layer and the olfactory epithelium and may be useful for the stimulation of SVZ dynamic in brain repair purposes. We...... describe that NPY promotes SVZ neurogenesis. NPY (1 microM) treatments increased proliferation at 48 hours and neuronal differentiation at 7 days in SVZ cell cultures. NPY proneurogenic properties are mediated via the Y1 receptor. Accordingly, Y1 receptor is a major active NPY receptor in the mouse SVZ......-Jun-NH(2)-terminal kinase signal in growing axons, consistent with axonogenesis. NPY, as a promoter of SVZ neurogenesis, is a crucial factor for future development of cell-based brain therapy. Disclosure of potential conflicts of interest is found at the end of this article....

  11. Chronic ethanol consumption causes increased glucuronidation of morphine in rabbits.

    Science.gov (United States)

    Narayan, S S; Hayton, W L; Yost, G S

    1991-04-01

    1. Male rabbits were given an i.p. injection of 15 mg/kg morphine and plasma concentrations of morphine and morphine-3-glucuronide (M3G) were simultaneously quantified by h.p.l.c. After 14 days of 10% ethanol in the rabbits' drinking water, a second injection of morphine was administered and plasma concentrations were determined again. 2. Morphine plasma clearance increased significantly by 42% after ethanol treatment. The area under the plasma concentration time curve (AUC) for morphine decreased by 23% while the AUC for the glucuronide increased by 22%. 3. The ratio of the AUCs (glucruonide/morphine) increased by 72%. These results demonstrate that chronic ethanol treatment of rabbits results in increased clearance of morphine after an i.p. dose. The increase in clearance is most likely due to induction of UDP-glucuronosyltransferase isozymes by ethanol.

  12. Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity

    Science.gov (United States)

    Massa, Federico; Koehl, Muriel; Wiesner, Theresa; Grosjean, Noelle; Revest, Jean-Michel; Piazza, Pier-Vincenzo; Abrous, Djoher Nora; Oliet, Stéphane H. R.

    2011-01-01

    Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories. PMID:21464314

  13. Bumetanide reduce the seizure susceptibility induced by pentylenetetrazol via inhibition of aberrant hippocampal neurogenesis in neonatal rats after hypoxia-ischemia.

    Science.gov (United States)

    Hu, Jiang-Jian; Yang, Xing-Liang; Luo, Wen-Di; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2017-04-01

    Hypoxia-ischemia brain damage (HIBD) is one of prevalent causes of neonatal mortality and morbidity. Our data demonstrated that hypoxia-ischemia (HI) induced Na + -K + -Cl - -co-transporter 1 (NKCC1) increasing in hippocampus. Previous studies demonstrated that NKCC1 regulates various stages of neurogenesis. In this study, we studied the role of increased NKCC1 in regulating of HI-induced neurogenesis. HIBD model was established in 7days old Sprague-Dawley rat pup, and the expression of NKCC1 was detected by western blot and qPCR. Brain electrical activity in freely rats was monitored by electroencephalography (EEG) recordings. HI-induced neurogenesis was detected by immunofluorescence staining. Neurobehavioral test was to investigate the neuro-protective role of bumetanide, an inhibitor of NKCC1, on neonatal rats after HI. The results showed that bumetanide treatment significantly reduced brain electrical activity and the seizure stage of epilepsy induced by pentylenetetrazol (PTZ) in vivo after HI. In addition, bumetanide restored aberrant hippocampal neurogenesis and associated cognitive function. Our data demonstrated that bumetanide reduces the susceptibility of epilepsy induced by PTZ in rats suffering from HI injury during neonatal period via restoring the ectopic newborn neurons in dentate gyrus (DG) and cognitive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  15. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    Science.gov (United States)

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  16. What Causes Runoff and Sediment Yields to Increase After Wildfires?

    Science.gov (United States)

    Larsen, I. J.; MacDonald, L. H.; Brown, E.; Rough, D.; Welsh, M. J.; Pietraszek, J. H.; Libohova, Z.; Schaffrath, K.

    2007-12-01

    Runoff and sediment yields can increase by several orders or magnitude after high severity wildfires. These increases have been attributed to soil water repellency, loss of surface cover, and soil sealing by either mineral or ash particles, but the relative effects of these factors have rarely been isolated. The objectives of this study were hillslopes burned in high-severity wildfires, 13-34 unburned hillslopes, and 3 hillslopes where the surface cover was removed by raking; and 2) use rainfall simulations to determine whether surface sealing is more prevalent on bare soils or soils covered with varying amounts of ash. The field measurements were made over a five-year period in ponderosa pine forests in the Colorado Front Range. The burned hillslopes generally had stronger soil water repellency than the unburned hillslopes only for the first summer after burning, but the mean cumulative sediment yield from the burned hillslopes was 31 Mg ha-1 as compared to minimal sediment yields from the unburned hillslopes. The raked hillslopes had very similar sediment yields to the burned hillslopes when they had comparable surface cover, rainfall erosivity, and soil water repellency. The rainfall simulations on bare soil generated much more runoff and sediment than the simulations on ash-covered soil, and both bare soils developed a thin, structural soil seal. Runoff and sediment yields decreased as ash thickness increased, but successive simulations quickly eroded the ash cover and increased runoff rates to the levels observed for bare soil. The results indicate that: 1) post-fire sediment yields are primarily due to the loss of percent cover rather than fire-enhanced soil water repellency; 2) surface cover is important because it controls the extent of soil sealing; and 3) ash temporarily prevents soil sealing and reduces post-fire runoff and sediment yields. The results have important implications for forest management and mitigating post-fire erosion.

  17. Elevation of hippocampal neurogenesis induces a temporally-graded pattern of forgetting of contextual fear memories.

    Science.gov (United States)

    Gao, Aijing; Xia, Frances; Guskjolen, Axel; Ramsaran, Adam I; Santoro, Adam; Josselyn, Sheena A; Frankland, Paul W

    2018-02-16

    Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly-generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory DREADD hM4Di we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent (day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal neurogenesis at recent vs remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context one month later. In contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when mice were subsequently tested. These temporally-graded forgetting effects were observed using both environmental and genetic interventions to increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and suggest that as contextual fear memories mature they become less sensitive to changes in hippocampal neurogenesis levels because they no longer depend on the hippocampus for their expression. Significance statement: New neurons are generated in the hippocampus throughout life. As they integrate into the

  18. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Directory of Open Access Journals (Sweden)

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  19. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain.

    Science.gov (United States)

    Kaslin, Jan; Ganz, Julia; Brand, Michael

    2008-01-12

    and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.

  20. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    Science.gov (United States)

    Suzzi, Stefano; Vargas-Caballero, Mariana; Fransen, Nina L.; Al-Malki, Hussain; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose Manuel; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases. PMID:24941947

  1. Computational Modeling of Adult Neurogenesis

    Science.gov (United States)

    Aimone, James B.

    2016-01-01

    The restriction of adult neurogenesis to only a handful of regions of the brain is suggestive of some shared requirement for this dramatic form of structural plasticity. However, a common driver across neurogenic regions has not yet been identified. Computational studies have been invaluable in providing insight into the functional role of new neurons; however, researchers have typically focused on specific scales ranging from abstract neural networks to specific neural systems, most commonly the dentate gyrus area of the hippocampus. These studies have yielded a number of diverse potential functions for new neurons, ranging from an impact on pattern separation to the incorporation of time into episodic memories to enabling the forgetting of old information. This review will summarize these past computational efforts and discuss whether these proposed theoretical functions can be unified into a common rationale for why neurogenesis is required in these unique neural circuits. PMID:26933191

  2. Neurogenesis in the aging brain.

    Science.gov (United States)

    Apple, Deana M; Solano-Fonseca, Rene; Kokovay, Erzsebet

    2017-10-01

    Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Impact of glucocorticoid on neurogenesis

    Directory of Open Access Journals (Sweden)

    Haruki Odaka

    2017-01-01

    Full Text Available Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

  4. Peripheral nerve injury induces adult brain neurogenesis and remodelling.

    Science.gov (United States)

    Rusanescu, Gabriel; Mao, Jianren

    2017-02-01

    Unilateral peripheral nerve chronic constriction injury (CCI) has been widely used as a research model of human neuropathic pain. Recently, CCI has been shown to induce spinal cord adult neurogenesis, which may contribute to the chronic increase in nociceptive sensitivity. Here, we show that CCI also induces rapid and profound asymmetrical anatomical rearrangements in the adult rodent cerebellum and pons. This remodelling occurs throughout the hindbrain, and in addition to regions involved in pain processing, also affects other sensory modalities. We demonstrate that these anatomical changes, partially reversible in the long term, result from adult neurogenesis. Neurogenic markers Mash1, Ngn2, doublecortin and Notch3 are widely expressed in the rodent cerebellum and pons, both under normal and injured conditions. CCI-induced hindbrain structural plasticity is absent in Notch3 knockout mice, a strain with impaired neuronal differentiation, demonstrating its dependence on adult neurogenesis. Grey matter and white matter structural changes in human brain, as a result of pain, injury or learned behaviours have been previously detected using non-invasive neuroimaging techniques. Because neurogenesis-mediated structural plasticity is thought to be restricted to the hippocampus and the subventricular zone, such anatomical rearrangements in other parts of the brain have been thought to result from neuronal plasticity or glial hypertrophy. Our findings suggest the presence of extensive neurogenesis-based structural plasticity in the adult mammalian brain, which may maintain a memory of basal sensory levels, and act as an adaptive mechanism to changes in sensory inputs. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia.

    Science.gov (United States)

    Kwon, Kyoung Ja; Kim, Min Kyeong; Lee, Eun Joo; Kim, Jung Nam; Choi, Bo-Ryoung; Kim, Soo Young; Cho, Kyu Suk; Han, Jung-Soo; Kim, Hahn Young; Shin, Chan Young; Han, Seol-Heui

    2014-12-15

    Vascular dementia (VaD) is the second most common form of dementia caused by cerebrovascular disease. Several recent reports demonstrated that cholinergic deficits are implicated in the pathogenesis of VaD and that cholinergic therapies have shown improvement of cognitive function in patients with VaD. However, the precise mechanisms by which donepezil achieves its effects on VaD are not fully understood. Donepezil hydrochloride is an acetylcholinesterase inhibitor (AChEI) currently used for the symptomatic treatment of Alzheimer's disease (AD). Several lines of evidence have demonstrated that AChEIs such as donepezil promote neurogenesis in the central nervous system. We investigated whether donepezil regulated hippocampal neurogenesis after bilateral common carotid artery occlusion (BCCAO) in rats, a commonly used animal model of VaD. To evaluate the effect of donepezil on neurogenesis, we orally treated rats with donepezil (10mg/kg) once a day for 3weeks, and injected BrdU over the same 3-week period to label newborn cells. The doses of donepezil that we used have been reported to activate cholinergic activity in rats. After 3weeks, a water maze task was performed on these rats to test spatial learning, and a subsequent histopathological evaluation was conducted. Donepezil improved memory impairment and increased the number of BrdU-positive cells in the dentate gyrus (DG) of BCCAO animals. These results indicated that donepezil improves cognitive function and enhances the survival of newborn neurons in the DG in our animal model of VaD, possibly by enhancing the expression of choline acetyltransferase and brain-derived neurotropic factor. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression.

    Science.gov (United States)

    Tang, Ming-Ming; Lin, Wen-Juan; Pan, Yu-Qin; Guan, Xi-Ting; Li, Ying-Cong

    2016-07-01

    Our previous work found that triple central lipopolysaccharide (LPS) administration could induce depressive-like behaviors and increased central pro-inflammatory cytokines mRNA, hippocampal cytokine mRNA in particular. Since several neuroinflammation-associated conditions have been reported to impair neurogenesis, in this study, we further investigated whether the neuroinflammation induced depression would be associated with hippocampal neurogenesis dysfunction. An animal model of depression induced by triple central lipopolysaccharide (LPS) administration was used. In the hippocampus, the neuroinflammatory state evoked by LPS was marked by an increased production of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. It was found that rats in the neuroinflammatory state exhibited depressive-like behaviors, including reduced saccharin preference and locomotor activity as well as increased immobility time in the tail suspension test and latency to feed in the novelty suppressed feeding test. Adult hippocampal neurogenesis was concomitantly inhibited, including decreased cell proliferation and newborn cell survival. We also demonstrated that the decreased hippocampal neurogenesis in cell proliferation was significantly correlated with the depressive-like phenotypes of decreased saccharine preference and distance travelled, the core and characteristic symptoms of depression, under neuro inflammation state. These findings provide the first evidence that hippocampal neurogenesis dysfunction is correlated with neuroinflammation-induced depression, which suggests that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neruoinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling.

    Directory of Open Access Journals (Sweden)

    Maya Shakèd

    Full Text Available BACKGROUND: Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. PRINCIPAL FINDINGS: As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. CONCLUSIONS: Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical

  8. BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice.

    Directory of Open Access Journals (Sweden)

    Kevin T Gobeske

    2009-10-01

    Full Text Available Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.

  9. Voluntary Running Exercise-Mediated Enhanced Neurogenesis Does Not Obliterate Retrograde Spatial Memory.

    Science.gov (United States)

    Kodali, Maheedhar; Megahed, Tarick; Mishra, Vikas; Shuai, Bing; Hattiangady, Bharathi; Shetty, Ashok K

    2016-08-03

    Running exercise (RE) improves cognition, formation of anterograde memories, and mood, alongside enhancing hippocampal neurogenesis. A previous investigation in a mouse model showed that RE-induced increased neurogenesis erases retrograde memory (Akers et al., 2014). However, it is unknown whether RE-induced forgetting is common to all species. We ascertained whether voluntary RE-induced enhanced neurogenesis interferes with the recall of spatial memory in rats. Young rats assigned to either sedentary (SED) or running exercise (RE) groups were first subjected to eight learning sessions in a water maze. A probe test (PT) conducted 24 h after the final training session confirmed that animals in either group had a similar ability for the recall of short-term memory. Following this, rats in the RE group were housed in larger cages fitted with running wheels, whereas rats in the SED group remained in standard cages. Animals in the RE group ran an average of 78 km in 4 weeks. A second PT performed 4 weeks after the first PT revealed comparable ability for memory recall between animals in the RE and SED groups, which was evidenced through multiple measures of memory retrieval function. The RE group displayed a 1.5- to 2.1-fold higher hippocampal neurogenesis than SED rats. Additionally, both moderate and brisk RE did not interfere with the recall of memory, although increasing amounts of RE proportionally enhanced neurogenesis. In conclusion, RE does not impair memory recall ability in a rat model despite substantially increasing neurogenesis. Running exercise (RE) improves new memory formation along with an increased neurogenesis in the hippocampus. In view of a recent study showing that RE-mediated increased hippocampal neurogenesis promotes forgetfulness in a mouse model, we ascertained whether a similar adverse phenomenon exists in a rat model. Memory recall ability examined 4 weeks after learning confirmed that animals that had run a mean of 78 km and displayed a 1

  10. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators.

    Science.gov (United States)

    Hueston, C M; Cryan, J F; Nolan, Y M

    2017-04-04

    Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect

  11. L-carnitine contributes to enhancement of neurogenesis from mesenchymal stem cells through Wnt/β-catenin and PKA pathway.

    Science.gov (United States)

    Fathi, Ezzatollah; Farahzadi, Raheleh; Charoudeh, Hojjatollah Nozad

    2017-03-01

    The identification of factors capable of enhancing neurogenesis has great potential for cellular therapies in neurodegenerative diseases. Multiple studies have shown the neuroprotective effects of L-carnitine (LC). This study determined whether neuronal differentiation of rat adipose tissue-derived mesenchymal stem cells (ADSCs) can be activated by LC. In this study, protein kinase A (PKA) and Wnt/β-catenin pathways were detected to show if this activation was due to these pathways. The expression of LC-induced neurogenesis markers in ADSCs was characterized using real-time PCR. ELISA was conducted to assess the expression of cyclic adenosine monophosphate (cAMP) and PKA. The expression of β-catenin, reduced dickkopf1 (DKK1), low-density lipoprotein receptor-related protein 5 (LRP5), Wnt1, and Wnt3a genes as Wnt/β-catenin signaling members were used to detect the Wnt/β-catenin pathway. It was observed that LC could promote neurogenesis in ADSCs as well as expression of some neurogenic markers. Moreover, LC causes to increase the cAMP levels and PKA activity. Treatment of ADSCs with H-89 (dihydrochloride hydrate) as PKA inhibitor significantly inhibited the promotion of neurogenic markers, indicating that the PKA signaling pathway could be involved in neurogenesis induction. Analyses of real-time PCR data showed that the mRNA expressions of β-catenin, DKK1, LRP5c-myc, Wnt1, and Wnt3a were increased in the presence of LC. Therefore, the present study showed that LC promotes ADSCs neurogenesis and the LC-induced neurogenic markers could be due to both the PKA and Wnt/β-catenin signaling pathway. Impact statement Neural tissue has long been believed as incapable of regeneration and the identification of cell types and factors capable of neuronal differentiation has generated intense interest. Mesenchymal stem cells (MSCs) are considered as potential targets for stem cell-based therapy. L-carnitin (LC) as an antioxidant may have neuroprotective effects in

  12. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    Science.gov (United States)

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  13. Neurogenesis dan Faktor-Faktor yang Berpengaruh

    Directory of Open Access Journals (Sweden)

    Ria Puspitawati

    2015-09-01

    Full Text Available Development of nerve tissue is known as neurogenesis. Vertebrate neve system has various functional capabilities from sensory perception, motor coordination, to the ability in producing motivation, spatial abilities, learning and memorizing due to various cell types that accurately connected and interact to each other. The connections between various nerve cells are continuously developed from the embryonic time until the early period of life. Recent studies have showed that neurogenesis in certain regions of nerve tissue can still be found in adults. This article reviews the cellular mechanism of neurogenesis and conditions that have role in the process.

  14. RIT1 GTPase Regulates Sox2 Transcriptional Activity and Hippocampal Neurogenesis.

    Science.gov (United States)

    Mir, Sajad; Cai, Weikang; Andres, Douglas A

    2017-02-10

    Adult neurogenesis, the process of generating mature neurons from neuronal progenitor cells, makes critical contributions to neural circuitry and brain function in both healthy and disease states. Neurogenesis is a highly regulated process in which diverse environmental and physiological stimuli are relayed to resident neural stem cell populations to control the transcription of genes involved in self-renewal and differentiation. Understanding the molecular mechanisms governing neurogenesis is necessary for the development of translational strategies to harness this process for neuronal repair. Here we report that the Ras-related GTPase RIT1 serves to control the sequential proliferation and differentiation of adult hippocampal neural progenitor cells, with in vivo expression of active RIT1 driving robust adult neurogenesis. Gene expression profiling analysis demonstrates increased expression of a specific set of transcription factors known to govern adult neurogenesis in response to active RIT1 expression in the hippocampus, including sex-determining region Y-related HMG box 2 (Sox2), a well established regulator of stem cell self-renewal and neurogenesis. In adult hippocampal neuronal precursor cells, RIT1 controls an Akt-dependent signaling cascade, resulting in the stabilization and transcriptional activation of phosphorylated Sox2. This study supports a role for RIT1 in relaying niche-derived signals to neural/stem progenitor cells to control transcription of genes involved in self-renewal and differentiation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain.

    Science.gov (United States)

    Hong, Xiao-Ping; Chen, Tao; Yin, Ni-Na; Han, Yong-Ming; Yuan, Fang; Duan, Yan-Jun; Shen, Feng; Zhang, Yan-Hong; Chen, Ze-Bin

    2016-01-01

    Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.

  16. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    Science.gov (United States)

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  17. Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer′s disease mice

    Directory of Open Access Journals (Sweden)

    Gao-shang Chai

    2016-01-01

    Full Text Available Impaired hippocampal neurogenesis is one of the early pathological features of Alzheimer′s disease. Enhancing adult hippocampal neurogenesis has been pursued as a potential therapeutic strategy for Alzheimer′s disease. Recent studies have demonstrated that environmental novelty activates β2 -adrenergic signaling and prevents the memory impairment induced by amyloid-β oligomers. Here, we hypothesized that β2 -adrenoceptor activation would enhance neurogenesis and ameliorate memory deficits in Alzheimer′s disease. To test this hypothesis, we investigated the effects and mechanisms of action of β2 -adrenoceptor activation on neurogenesis and memory in amyloid precursor protein/presenilin 1 (APP/PS1 mice using the agonist clenbuterol (intraperitoneal injection, 2 mg/kg. We found that β2 -adrenoceptor activation enhanced hippocampal neurogenesis, ameliorated memory deficits, and increased dendritic branching and the density of dendritic spines. These effects were associated with the upregulation of postsynaptic density 95, synapsin 1 and synaptophysin in APP/PS1 mice. Furthermore, β2 -adrenoceptor activation decreased cerebral amyloid plaques by decreasing APP phosphorylation at Thr668. These findings suggest that β2 -adrenoceptor activation enhances neurogenesis and ameliorates memory deficits in APP/PS1 mice.

  18. From network structure to network reorganization: implications for adult neurogenesis

    Science.gov (United States)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  19. From network structure to network reorganization: implications for adult neurogenesis

    International Nuclear Information System (INIS)

    Schneider-Mizell, Casey M; Zochowski, Michal R; Sander, Leonard M; Parent, Jack M; Ben-Jacob, Eshel

    2010-01-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells

  20. Endogenous neurogenesis in the human brain following cerebral infarction.

    Science.gov (United States)

    Minger, Stephen L; Ekonomou, Antigoni; Carta, Eloisa M; Chinoy, Amish; Perry, Robert H; Ballard, Clive G

    2007-01-01

    Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.

  1. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice

    Directory of Open Access Journals (Sweden)

    Klaus Fabel

    2009-11-01

    Full Text Available Voluntary physical exercise (wheel running, RUN and environmental enrichment (ENR both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can “prime” the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.

  2. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Morello, Maria; Landel, Véréna; Lacassagne, Emmanuelle; Baranger, Kevin; Annweiler, Cedric; Féron, François; Millet, Pascal

    2018-01-09

    The impairment of hippocampal neurogenesis at the early stages of Alzheimer's disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in female AD-like mice reduced cognitive decline only when delivered during the symptomatic phase. With these data in hand, we wondered whether the consequences of vitamin D administration on hippocampal neurogenesis are stage-dependent. Male wild-type and transgenic AD-like mice (5XFAD model) were fed with a diet containing either no vitamin D (0VD) or a normal dose of vitamin D (NVD) or a high dose of vitamin D (HVD), from month 1 to month 6 (preventive arm) or from month 4 to month 9 (curative arm). Working memory was assessed using the Y-maze, while amyloid burden, astrocytosis, and neurogenesis were quantified using immunohistochemistry. In parallel, the effects of vitamin D on proliferation and differentiation were assayed on primary cultures of murine neural progenitor cells. Improved working memory and neurogenesis were observed when high vitamin D supplementation was administered during the early phases of the disease, while a normal dose of vitamin D increased neurogenesis during the late phases. Conversely, an early hypovitaminosis D increased the number of amyloid plaques in AD mice while a late hypovitaminosis D impaired neurogenesis in AD and WT mice. The observed in vivo vitamin D-associated increased neurogenesis was partially substantiated by an augmented in vitro proliferation but not an increased differentiation of neural progenitors into neurons. Finally, a sexual dimorphism was observed. Vitamin D supplementation improved the working memory of males and females, when delivered during

  3. Hippocampal neurogenesis in the new model of global cerebral ischemia

    Science.gov (United States)

    Kisel, A. A.; Chernysheva, G. A.; Smol'yakova, V. I.; Savchenko, R. R.; Plotnikov, M. B.; Khodanovich, M. Yu.

    2015-11-01

    The study aimed to evaluate the changes of hippocampal neurogenesis in a new model of global transient cerebral ischemia which was performed by the occlusion of the three main vessels (tr. brachiocephalicus, a. subclavia sinistra, and a. carotis communis sinistra) branching from the aortic arch and supplying the brain. Global transitory cerebral ischemia was modeled on male rats (weight = 250-300 g) under chloral hydrate with artificial lung ventilation. Animals after the same surgical operation without vessel occlusion served as sham-operated controls. The number of DCX-positive (doublecortin, the marker of immature neurons) cells in dentate gyrus (DG) and CA1-CA3 fields of hippocampus was counted at the 31st day after ischemia modeling. It was revealed that global cerebral ischemia decreased neurogenesis in dentate gyrus in comparison with the sham-operated group (Pneurogenesis in CA1-CA3 fields was increased as compared to the control (P<0.05).

  4. Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures

    Directory of Open Access Journals (Sweden)

    Bruno P. Carreira

    2015-01-01

    Full Text Available Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO. In these conditions, NO promotes proliferation of neural stem cells (NSC in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA induced seizure mouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.

  5. Neuronal Rac1 is required for learning-evoked neurogenesis

    DEFF Research Database (Denmark)

    Haditsch, Ursula; Anderson, Matthew P; Freewoman, Julia

    2013-01-01

    Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection...... neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus...... primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead...

  6. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein.

    Science.gov (United States)

    Pan, Hongyu; Wang, Dongpi; Zhang, Xiaoqin; Zhou, Dongming; Zhang, Heng; Qian, Qi; He, Xiao; Liu, Zhaoling; Liu, Yunjin; Zheng, Tingting; Zhang, Ling; Wang, Mingkai; Sun, Binggui

    2016-10-11

    Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP). However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ) or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG) of adult mice overexpressing wild-type hAPP (hAPP-I5) compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Acupuncture stimulation induces neurogenesis in adult brain.

    Science.gov (United States)

    Nam, Min-Ho; Ahn, Kwang Seok; Choi, Seung-Hoon

    2013-01-01

    The discovery of adult neurogenesis was a turning point in the field of neuroscience. Adult neurogenesis offers an enormous possibility to open a new therapeutic paradigm of neurodegenerative diseases and stroke. Recently, several studies suggested that acupuncture may enhance adult neurogenesis. Acupuncture has long been an important treatment for brain diseases in the East Asia. The scientific mechanisms of acupuncture treatment for the diseases, such as Alzheimer's disease, Parkinson's disease, and stroke, have not been clarified yet; however, the neurogenic effect of acupuncture can be a possible reason. Here, we have reviewed the studies on the effect of stimulation at various acupoints for neurogenesis, such as ST36 and GV20. The suggested mechanisms are also discussed including upregulation of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, basic fibroblast growth factor and neuropeptide Y, and activation of the function of primo vascular system. © 2013 Elsevier Inc. All rights reserved.

  8. Neuronal Rac1 Is Required for Learning-Evoked Neurogenesis

    Science.gov (United States)

    Anderson, Matthew P.; Freewoman, Julia; Cord, Branden; Babu, Harish; Brakebusch, Cord

    2013-01-01

    Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead, loss of neuronal Rac1 activation selectively impaired a learning-evoked increase in the proliferation and accumulation of neural precursors generated during the learning event itself. This indicates that experience-induced alterations in neurogenesis can be mechanistically resolved into two effects: (1) the well documented but Rac1-independent signaling cascade that enhances the survival of young postmitotic neurons; and (2) a previously unrecognized Rac1-dependent signaling cascade that stimulates the proliferative production and retention of new neurons generated during learning itself. PMID:23884931

  9. Zinc plus cyclo-(His-Pro) promotes hippocampal neurogenesis in rats.

    Science.gov (United States)

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Lee, Bo Eun; Lee, Song Hee; Kho, A Ra; Sohn, Min; Suh, Sang Won

    2016-12-17

    Zinc is a central actor in regulating stem cell proliferation and neurogenesis in the adult brain. High levels of vesicular zinc are found in the presynaptic terminals. It has been demonstrated that high levels of vesicular zinc are localized in the presynaptic terminals of the granule cells of the dentate gyrus (DG) and that neurogenesis occurs in the subgranular zone (SGZ). Furthermore, zinc chelation reduces hippocampal neurogenesis in pathological conditions such as hypoglycemia, epilepsy and traumatic brain injury. Here we test the effects of zinc plus cyclo-(His-Pro) (CHP) treatment on neurogenesis in the adult SGZ. In order to increase brain zinc, Sprague-Dawley (SD) rats, aged 5weeks, were given zinc plus CHP (ZC, 27mg/kg) orally available once per day for 2weeks. BrdU was intraperitoneally injected 2 times per day for 4 consecutive days starting 1week after initial ZC treatment. Neurogenesis was analyzed by BrdU, Ki67 and doublecortin (DCX) immunostaining. The number of progenitor cells and immature neurons were significantly increased in the DG following 2weeks of ZC treatment. Hippocampal vesicular zinc content was evaluated with TSQ staining. Vesicular TSQ fluorescent intensity was seen to increase in the mossy fiber area at 2weeks after ZC treatment. The present study demonstrates that zinc supplementation by ZC treatment increases hippocampal neurogenesis and levels of vesicular zinc. These findings provide evidence in support of the essential role of zinc in modulating hippocampal neurogenesis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Age-dependent kinetics of dentate gyrus neurogenesis in the absence of cyclin D2

    Directory of Open Access Journals (Sweden)

    Ansorg Anne

    2012-05-01

    Full Text Available Abstract Background Adult neurogenesis continuously adds new neurons to the dentate gyrus and the olfactory bulb. It involves the proliferation and subsequent differentiation of neuronal progenitors, and is thus closely linked to the cell cycle machinery. Cell cycle progression is governed by the successive expression, activation and degradation of regulatory proteins. Among them, D-type cyclins control the exit from the G1 phase of the cell cycle. Cyclin D2 (cD2 has been shown to be required for the generation of new neurons in the neurogenic niches of the adult brain. It is differentially expressed during hippocampal development, and adult cD2 knock out (cD2KO mice virtually lack neurogenesis in the dentate gyrus and olfactory bulb. In the present study we examined the dynamics of postnatal and adult neurogenesis in the dentate gyrus (DG of cD2KO mice. Animals were injected with bromodeoxyuridine at seven time points during the first 10 months of life and brains were immunohistochemically analyzed for their potential to generate new neurons. Results Compared to their WT litters, cD2KO mice had considerably reduced numbers of newly born granule cells during the postnatal period, with neurogenesis becoming virtually absent around postnatal day 28. This was paralleled by a reduction in granule cell numbers, in the volume of the granule cell layer as well as in apoptotic cell death. CD2KO mice did not show any of the age-related changes in neurogenesis and granule cell numbers that were seen in WT litters. Conclusions The present study suggests that hippocampal neurogenesis becomes increasingly dependent on cD2 during early postnatal development. In cD2KO mice, hippocampal neurogenesis ceases at a time point at which the tertiary germinative matrix stops proliferating, indicating that cD2 becomes an essential requirement for ongoing neurogenesis with the transition from developmental to adult neurogenesis. Our data further support the notion that

  11. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    International Nuclear Information System (INIS)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-01

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  12. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye, E-mail: dryetian@hotmail.com

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  13. Enriched Environment Attenuates Surgery-Induced Impairment of Learning, Memory, and Neurogenesis Possibly by Preserving BDNF Expression.

    Science.gov (United States)

    Fan, Dan; Li, Jun; Zheng, Bin; Hua, Lei; Zuo, Zhiyi

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a significant clinical syndrome. Neurogenesis contributes to cognition. It is known that enriched environment (EE) enhances neurogenesis. We determined whether EE attenuated surgery-induced cognitive impairment and whether growth factors and neurogenesis played a role in the EE effect. Eight-week-old C57BL/6J mice were subjected to carotid artery exposure. Their learning and memory were assessed by Barnes maze, and fear conditioning started 2 weeks after the surgery. Growth factor expression and cell genesis were determined at various times after the surgery. Surgery increased the time for the mice to identify the target hole in the Barnes maze and reduced context-related freezing behavior. Surgery also reduced the expression of brain-derived neurotrophic factor (BDNF) and neurogenesis in the hippocampus. These effects were attenuated by EE. EE also attenuated surgery-induced reduction of phosphorylated/activated tropomyosin-related kinase B (TrkB) and extracellular signal-regulated kinases (ERK), components of BDNF signaling pathway. ANA-12, a selective TrkB antagonist, blocked the effects of EE on cognition, phosphorylation of TrkB and ERK, and neurogenesis. These results provide initial evidence that surgery reduces BDNF expression and neurogenesis in the hippocampus. Our results suggest that EE reduces surgery-induced impairment of learning, memory, and neurogenesis by preserving BDNF expression.

  14. Depletion of adult neurogenesis using the chemotherapy drug temozolomide in mice induces behavioural and biological changes relevant to depression.

    Science.gov (United States)

    Egeland, M; Guinaudie, C; Du Preez, A; Musaelyan, K; Zunszain, P A; Fernandes, C; Pariante, C M; Thuret, S

    2017-04-25

    Numerous studies have examined links between postnatal neurogenesis and depression using a range of experimental methods to deplete neurogenesis. The antimitotic drug temozolomide (TMZ) has previously been used successfully as an experimental tool in animals to deplete adult neurogenesis and is used regularly on human patients as a standard chemotherapy for brain cancer. In this study, we wanted to evaluate whether TMZ as a model for chemotherapy treatment could affect parameters related to depression in an animal model. Prevalence rates of depression in patients is thought to be highly underdiagnosed, with some studies reporting rates as high as 90%. Results from this study in mice, treated with a regimen of TMZ similar to humans, exhibited behavioural and biochemical changes that have relevance to the development of depression. In particular, behavioural results demonstrated robust deficits in processing novelty and a significant increase in the corticosterone response. Quantification of neurogenesis using a novel sectioning method, which clearly evaluates dorsal and ventral neurogenesis separately, showed a significant correlation between the level of ventral neurogenesis and the corticosterone response. Depression is a complex disorder with discoveries regarding its neurobiology and how it relates to behaviour being only in their infancy. The findings presented in this study demonstrate that chemotherapy-induced decreases in neurogenesis results in previously unreported behavioural and biochemical consequences. These results, we argue, are indicative of a biological mechanism, which may contribute to the development of depression in patients being treated with chemotherapy and is separate from the mental distress resulting from a cancer diagnosis.

  15. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  16. IS INCREASED INSTABILITY IN CEREAL PRODUCTION IN ETHIOPIA CAUSED BY POLICY CHANGES?

    OpenAIRE

    Alemu, Zerihun Gudeta; Oosthuizen, Klopper; van Schalkwyk, Herman D.

    2003-01-01

    In Ethiopia, growth in cereal production is accompanied by a more than proportionate increase in the standard deviation of production. This study applies descriptive and variance decomposition procedures to determine the sources of increased instability in cereal production in order to show whether they are caused by policy changes. It was found that production instability was caused more by increased yield instability. Considering the fact that use of high-powered inputs is limited to a smal...

  17. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    Science.gov (United States)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  18. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    Directory of Open Access Journals (Sweden)

    Mengtao Li

    2016-03-01

    Full Text Available Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

  19. Blunted response of hippocampal AMPK associated with reduced neurogenesis in older versus younger mice.

    Science.gov (United States)

    Jang, Sooah; Kim, Hyunjeong; Jeong, Jihyeon; Lee, Su Kyoung; Kim, Eun Woo; Park, Minsun; Kim, Chul Hoon; Lee, Jong Eun; Namkoong, Kee; Kim, Eosu

    2016-11-03

    The rate of hippocampal neurogenesis declines with aging. This is partly explained by decreased neural responsiveness to various cues stimulating metabolism. AMP-activated protein kinase (AMPK), a pivotal enzyme regulating energy homeostasis in response to metabolic demands, showed the diminished sensitivity in peripheral tissues during aging. AMPK is also known to be involved in neurogenesis. We aimed to see whether AMPK reactivity is also blunted in the aged hippocampus, and thus is associated with aging-related change in neurogenesis. Following subchronic (7days) intraperitoneal and acute intracerebroventricular (i.c.v.) administration of either 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR; AMPK activator) or saline (sham) to young (16-week-old) and old (72-week-old) mice, we measured changes in AMPK activity, brain-derived neurotrophic factor (BDNF) expression or neurogenesis in the hippocampus. AICAR-induced changes in AMPK activity were observed in the hippocampus of young mice after acute i.c.v. injection. However, neither subchronic nor acute treatment induced significant changes in AMPK activity in old mice. Intriguingly, directions of AICAR-induced changes in AMPK activity were opposite between the hippocampus (decrease) and skeletal muscle (increase). ATP levels were inversely correlated with hippocampal AMPK activity, suggesting that the higher energy levels achieved by AICAR treatment might deactivate neuronal AMPK in young mice. The blunted response of AMPK to AICAR in old age was also indicated by the observations that the levels of neurogenesis and BDNF expression were significantly changed only in young mice upon AICAR treatment. Our findings suggest that the blunted response of neuronal AMPK in old age might be responsible for aging-associated decline in neurogenesis. Therefore, in addition to activation of AMPK, recovering its sensitivity may be necessary to enhance hippocampal neurogenesis in old age. Copyright © 2016 Elsevier Inc. All

  20. Upgrade of Coastal Defence Structures Against Increased Loadings Caused by Climate Change

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Lara, Javier L.

    2014-01-01

    increase in long-term wind/wave conditions as predicted for the North Sea by the Danish Coastal Authority. Both conditions of non-acceptable and acceptable increase in structure crest level are considered. Moreover, a scenario for steepening of the foreshore due to morphological changes caused by increased...

  1. Is forebrain neurogenesis a potential repair mechanism after stroke?

    OpenAIRE

    Inta, Dragos; Gass, Peter

    2015-01-01

    The use of adult subventricular zone (SVZ) neurogenesis as brain repair strategy after stroke represents a hot topic in neurologic research. Recent radiocarbon-14 dating has revealed a lack of poststroke neurogenesis in the adult human neocortex; however, adult neurogenesis has been shown to occur, even under physiologic conditions, in the human striatum. Here, these results are contrasted with experimental poststroke neurogenesis in the murine brain. Both in humans and in rodents, the SVZ ge...

  2. Preventing fatal diseases increases healthcare costs: cause elimination life table approach

    NARCIS (Netherlands)

    L.G.A. Bonneux (Luc); J.J.M. Barendregt (Jan); W.J. Nusselder (Wilma); P.J. van der Maas (Paul)

    1998-01-01

    textabstractOBJECTIVES: To examine whether elimination of fatal diseases will increase healthcare costs. DESIGN: Mortality data from vital statistics combined with healthcare spending in a cause elimination life table. Costs were allocated to specific diseases through

  3. Neurotrophic factor control of adult SVZ neurogenesis.

    Science.gov (United States)

    Bath, Kevin G; Lee, Francis S

    2010-04-01

    Neurogenesis is the process by which cells divide, migrate, and subsequently differentiate into a neuronal phenotype. Significant rates of neurogenesis persist into adulthood in two brain regions, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles. Cells of the SVZ divide and migrate via the rostral migratory stream (RMS) to the olfactory bulb (OB) where they differentiate into granule and periglomerular cells. With the discovery of large-scale neurogenesis in the adult brain, there have been significant efforts to identify the mechanisms that control this process as well as the role of these cells in neuronal functioning. Neurotrophic factors are a family of molecules that serve critical roles in the survival and differentiation of neurons during development, as well as contribute to continued plasticity throughout life. Several members of the neurotrophin family have been implicated in the control of adult postnatal SVZ neurogenesis. In this review we will address what is currently known regarding neurotrophic factor-dependent control of SVZ neurogenesis and place these findings in the context of what is known regarding other growth factors.

  4. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    Science.gov (United States)

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  5. BDNF control of adult SVZ neurogenesis.

    Science.gov (United States)

    Bath, Kevin G; Akins, Michael R; Lee, Francis S

    2012-09-01

    The sensory processing of odorants is a dynamic process that requires plasticity at multiple levels. In the olfactory bulb (OB), inhibitory interneurons undergo lifelong replacement through a process known as adult neurogenesis. These newly born cells are incorporated in a learning-dependent fashion, a process which has led some to suggest this as a primary mechanism through which the OB retains a high degree of plasticity throughout life. A continued focus of researchers in this field has been to understand the molecular mechanisms controlling adult subventricular zone (SVZ) neurogenesis and the innate functional role of these cells. Brain-derived neurotrophic factor (BDNF) has been identified as a strong candidate molecule regulating adult OB neurogenesis. We review what is known regarding the functional role of newly born cells, highlight the role of BDNF in this process, and describe preliminary findings from our lab implicating BDNF in the process of selecting of newly born cells for survival. Copyright © 2011 Wiley Periodicals, Inc.

  6. Hippocampal Neurogenesis Levels Predict WATERMAZE Search Strategies in the Aging Brain

    Science.gov (United States)

    Choquette, Will; Gothard, Russ; Simpson, Jessica M.; Christie, Brian R.

    2013-01-01

    The hippocampus plays a crucial role in the formation of spatial memories, and it is thought that adult hippocampal neurogenesis may participate in this form of learning. To better elucidate the relationship between neurogenesis and spatial learning, we examined both across the entire life span of mice. We found that cell proliferation, neuronal differentiation, and neurogenesis significantly decrease with age, and that there is an abrupt reduction in these processes early on, between 1.5-3 months of age. After this, the neurogenic capacity continues to decline steadily. The initial abrupt decline in adult neurogenesis was paralleled by a significant reduction in Morris Water Maze performance, however overall learning and memory remained constant thereafter. Further analysis of the search strategies employed revealed that reductions in neurogenesis in the aging brain were strongly correlated with the adoption of spatially imprecise search strategies. Overall, performance measures of learning and memory in the Morris Water Maze were maintained at relatively constant levels in aging animals due to an increase in the use of spatially imprecise search strategies. PMID:24086453

  7. Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus.

    Science.gov (United States)

    Alshammari, Musaad A; Alshammari, Tahani K; Nenov, Miroslav N; Scala, Federico; Laezza, Fernanda

    2016-12-01

    Adult neurogenesis, the production of mature neurons from progenitor cells in the adult mammalian brain, is linked to the etiology of neurodegenerative and psychiatric disorders. However, a thorough understanding of the molecular elements at the base of adult neurogenesis remains elusive. Here, we provide evidence for a previously undescribed function of fibroblast growth factor 14 (FGF14), a brain disease-associated factor that controls neuronal excitability and synaptic plasticity, in regulating adult neurogenesis in the dentate gyrus (DG). We found that FGF14 is dynamically expressed in restricted subtypes of sex determining region Y-box 2 (Sox2)-positive and doublecortin (DCX)-positive neural progenitors in the DG. Bromodeoxyuridine (BrdU) incorporation studies and confocal imaging revealed that genetic deletion of Fgf14 in Fgf14 -/- mice leads to a significant change in the proportion of proliferating and immature and mature newly born adult granule cells. This results in an increase in the late immature and early mature population of DCX and calretinin (CR)-positive neurons. Electrophysiological extracellular field recordings showed reduced minimal threshold response and impaired paired-pulse facilitation at the perforant path to DG inputs in Fgf14 -/- compared to Fgf14 +/+ mice, supporting disrupted synaptic connectivity as a correlative read-out to impaired neurogenesis. These new insights into the biology of FGF14 in neurogenesis shed light into the signaling pathways associated with disrupted functions in complex brain diseases.

  8. Impaired neurogenesis of the dentate gyrus is associated with pattern separation deficits: A computational study.

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A

    2016-09-01

    The separation of input patterns received from the entorhinal cortex (EC) by the dentate gyrus (DG) is a well-known critical step of information processing in the hippocampus. Although the role of interneurons in separation pattern efficiency of the DG has been theoretically known, the balance of neurogenesis of excitatory neurons and interneurons as well as its potential role in information processing in the DG is not fully understood. In this work, we study separation efficiency of the DG for different rates of neurogenesis of interneurons and excitatory neurons using a novel computational model in which we assume an increase in the synaptic efficacy between excitatory neurons and interneurons and then its decay over time. Information processing in the EC and DG was simulated as information flow in a two layer feed-forward neural network. The neurogenesis rate was modeled as the percentage of new born neurons added to the neuronal population in each time bin. The results show an important role of an optimal neurogenesis rate of interneurons and excitatory neurons in the DG in efficient separation of inputs from the EC in pattern separation tasks. The model predicts that any deviation of the optimal values of neurogenesis rates leads to different decreased levels of the separation deficits of the DG which influences its function to encode memory.

  9. Magnolol Enhances Hippocampal Neurogenesis and Exerts Antidepressant-Like Effects in Olfactory Bulbectomized Mice.

    Science.gov (United States)

    Matsui, Nobuaki; Akae, Haruka; Hirashima, Nana; Kido, Yuki; Tanabe, Satoshi; Koseki, Mayumi; Fukuyama, Yoshiyasu; Akagi, Masaaki

    2016-11-01

    Magnolol is the main constituent of Magnolia bark and has been reported to exhibit antidepressant effects in rodent models. Hippocampal neurogenesis and neurotrophins such as brain-derived neurotrophic factor are integrally involved in the action of conventional antidepressants. Here, we investigated the effects of magnolol on depressive behaviours, impaired hippocampal neurogenesis and neurotrophin-related signal transduction in an olfactory bulbectomy (OBX) mouse model of depression. Mice were submitted to OBX to induce depressive behaviour, which was evaluated in the tail suspension test. Magnolol was administered orally by gavage needle. Neurogenesis was assessed by analysis of cells expressing NeuN, a neuronal marker, and 5-bromo-2'-deoxyuridine (BrdU) uptake. Phosphorylation levels of protein kinase B (Akt), extracellular signal-regulated kinase and cyclic AMP-responsive element-binding protein were evaluated by Western blot. Fourteen day treatment with magnolol (50 or 100 mg/kg/day) significantly improved OBX-induced depressive behaviour in tail suspension test. In agreement, magnolol significantly rescued impairments of hippocampal neurogenesis. Moreover, single treatments with magnolol (50 mg/kg) significantly increased phosphorylation of Akt, extracellular signal-regulated kinase and cyclic AMP-responsive element-binding protein after 3 h. The present data indicate that magnolol exerts antidepressant-like effects on behaviours by enhancing hippocampal neurogenesis and neurotrophin-related intracellular signalling in OBX mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression.

    Science.gov (United States)

    Jin, Junghee; Kim, Seung-Nam; Liu, Xuqing; Zhang, Haijun; Zhang, Chao; Seo, Ji-Seon; Kim, Yong; Sun, Tao

    2016-08-09

    Emerging evidence has shown that noncoding RNAs, particularly microRNAs (miRNAs), contribute to the pathogenesis of mood and anxiety disorders, although the molecular mechanisms are poorly understood. Here, we show that altered levels of miR-17-92 in adult hippocampal neural progenitors have a significant impact on neurogenesis and anxiety- and depression-related behaviors in mice. miR-17-92 deletion in adult neural progenitors decreases neurogenesis in the dentate gyrus, while its overexpression increases neurogenesis. miR-17-92 affects neurogenesis by regulating genes in the glucocorticoid pathway, especially serum- and glucocorticoid-inducible protein kinase-1 (Sgk1). miR-17-92 knockout mice show anxiety- and depression-like behaviors, whereas miR-17-92 overexpressing mice exhibit anxiolytic and antidepression-like behaviors. Furthermore, we show that miR-17-92 expression in the adult mouse hippocampus responds to chronic stress, and miR-17-92 rescues proliferation defects induced by corticosterone in hippocampal neural progenitors. Our study uncovers a crucial role for miR-17-92 in adult neural progenitors through regulation of neurogenesis and anxiety- and depression-like behaviors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior.

    Science.gov (United States)

    Hu, Pu; Wang, Yu; Liu, Ji; Meng, Fan-Tao; Qi, Xin-Rui; Chen, Lin; van Dam, Anne-Marie; Joëls, Marian; Lucassen, Paul J; Zhou, Jiang-Ning

    2016-07-01

    Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Functional Role of Adult Hippocampal Neurogenesis as a Therapeutic Strategy for Mental Disorders

    Directory of Open Access Journals (Sweden)

    Heechul Jun

    2012-01-01

    Full Text Available Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.

  13. Polycythemia vera and increased hemophilic factor VIII causing acute zonal occult outer retinopathy: a case report.

    Science.gov (United States)

    Mahendradas, Padmamalini; Shetty, Rohit; Avadhani, Kavitha; Ross, Cecil; Gupta, Anchal; Shetty, Bhujang K

    2010-08-01

    To report a case of acute zonal occult outer retinopathy (AZOOR) caused by Polycythemia and increased levels of Factor VIIIC. Case Report - Interventional. We present a 23 year old male with blurring of vision and loss of lower visual fields in both eyes. Ocular examination suggested the possibility of AZOOR that was confirmed with Fluorescein Angiogram, Visual fields and Electroretinogram. Laboratory work up revealed polycythemia with increased Factor VIIIC. He was treated for the same. Ocular symptoms improved within 24 hours of treatment with venesection and asprin. Polycythemia vera and increased factor VIIIC levels, both venous thromboembolic risk factors are treatable causes of AZOOR.

  14. [Effects of sleep deprivation in hippocampal neurogenesis].

    Science.gov (United States)

    López-Virgen, Verónica; Zárate-López, David; Adirsch, Fabián L; Collas-Aguilar, Jorge; González-Pérez, Óscar

    2015-01-01

    Adult neurogenesis in the dentate gyrus (DG) in the hippocampus is a process that involves proliferation, differentiation, maturation, migration, and integration of young neurons in the granular layer of DG. These newborn neurons mature in three to four weeks and incorporate into neural circuits in the hippocampus. There, these new neurons play a role in cognitive functions, such as acquisition and retention of memory, which are consolidated during sleep period. In this review, we describe recent findings that associate sleep deprivation with changes in hippocampal neurogenesis and cognitive processes. In addition, we describe possible mechanisms implicated in this deterioration such as circadian rhythm, melatonin receptors, and growth factors.

  15. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    Science.gov (United States)

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-04

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis.

    Science.gov (United States)

    Patzke, Nina; Spocter, Muhammad A; Karlsson, Karl Æ; Bertelsen, Mads F; Haagensen, Mark; Chawana, Richard; Streicher, Sonja; Kaswera, Consolate; Gilissen, Emmanuel; Alagaili, Abdulaziz N; Mohammed, Osama B; Reep, Roger L; Bennett, Nigel C; Siegel, Jerry M; Ihunwo, Amadi O; Manger, Paul R

    2015-01-01

    The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.

  17. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  18. Testing and diagnosis of the cause of increased vibration of the fan plant's support structure

    Directory of Open Access Journals (Sweden)

    Varju Đerđ

    2015-01-01

    Full Text Available This paper presents a procedure of determining the causes of increased vibration of a fan plant and its support structure in the PUC 'Subotička toplana'. Excessive vibrations were observed following the installation of the frequency converter, thus a methodological approach of testing-analysis-diagnosis has been applied. Based on the definition of the causes of this problem, the paper also suggests possible repair procedures.

  19. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    International Nuclear Information System (INIS)

    Chow, Elly Suk Hen; Hui, Michelle Nga Yu; Lin Chunchi; Cheng Shukhan

    2008-01-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis

  20. Correlations between Hippocampal Neurogenesis and Metabolic Indices in Adult Nonhuman Primates

    Directory of Open Access Journals (Sweden)

    Tarique D. Perera

    2011-01-01

    Full Text Available Increased neurogenesis in feeding centers of the murine hypothalamus is associated with weight loss in diet-induced obese rodents (Kokoeva et al., 2005 and Matrisciano et al., 2010, but this relationship has not been examined in other species. Postmortem hippocampal neurogenesis rates and premortem metabolic parameters were statistically analyzed in 8 chow-fed colony-reared adult bonnet macaques. Dentate gyrus neurogenesis, reflected by the immature neuronal marker, doublecortin (DCX, and expression of the antiapoptotic gene factor, B-cell lymphoma 2 (BCL-2, but not the precursor proliferation mitotic marker, Ki67, was inversely correlated with body weight and crown-rump length. DCX and BCL-2 each correlated positively with blood glucose level and lipid ratio (total cholesterol/high-density lipoprotein. This study demonstrates that markers of dentate gyrus neuroplasticity correlate with metabolic parameters in primates.

  1. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis.

    Science.gov (United States)

    Amadei, Gianluca; Zander, Mark A; Yang, Guang; Dumelie, Jason G; Vessey, John P; Lipshitz, Howard D; Smibert, Craig A; Kaplan, David R; Miller, Freda D

    2015-11-25

    Here, we have asked about post-transcriptional mechanisms regulating murine developmental neurogenesis, focusing upon the RNA-binding proteins Smaug2 and Nanos1. We identify, in embryonic neural precursors of the murine cortex, a Smaug2 protein/nanos1 mRNA complex that is present in cytoplasmic granules with the translational repression proteins Dcp1 and 4E-T. We show that Smaug2 inhibits and Nanos1 promotes neurogenesis, with Smaug2 knockdown enhancing neurogenesis and depleting precursors, and Nanos1 knockdown inhibiting neurogenesis and maintaining precursors. Moreover, we show that Smaug2 likely regulates neurogenesis by silencing nanos1 mRNA. Specifically, Smaug2 knockdown inappropriately increases Nanos1 protein, and the Smaug2 knockdown-mediated neurogenesis is rescued by preventing this increase. Thus, Smaug2 and Nanos1 function as a bimodal translational repression switch to control neurogenesis, with Smaug2 acting in transcriptionally primed precursors to silence mRNAs important for neurogenesis, including nanos1 mRNA, and Nanos1 acting during the transition to neurons to repress the precursor state. The mechanisms instructing neural stem cells to generate the appropriate progeny are still poorly understood. Here, we show that the RNA-binding proteins Smaug2 and Nanos1 are critical regulators of this balance and provide evidence supporting the idea that neural precursors are transcriptionally primed to generate neurons but translational regulation maintains these precursors in a stem cell state until the appropriate developmental time. Copyright © 2015 the authors 0270-6474/15/3515666-16$15.00/0.

  2. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice

    Science.gov (United States)

    Kang, Seong Su; Keasey, Matthew P.; Arnold, Sheila A.; Reid, Rollie; Geralds, Justin; Hagg, Theo

    2013-01-01

    Focal brain ischemia in adult rats rapidly and robustly induces neurogenesis in the subventricular zone (SVZ) but there are few and inconsistent reports in mice, presenting a hurdle to genetically investigate the endogenous neurogenic regulators such as ciliary neurotrophic factor (CNTF). Here, we first provide a platform for further studies by showing that middle cerebral artery occlusion in adult male C57BL/6 mice robustly enhances neurogenesis in the SVZ only under very specific conditions, i.e., 14 days after a 30 min occlusion. CNTF expression paralleled changes in the number of proliferated, BrdU-positive, SVZ cells. Stroke-induced proliferation was absent in CNTF−/− mice, suggesting that it is mediated by CNTF. MCAO-increased CNTF appears to act on C cell proliferation and by inducing FGF2 expression but not via EGF expression or Notch1 signaling of neural stem cells in the SVZ. CNTF is unique, as expression of other gp130 ligands, IL-6 and LIF, did not predict SVZ proliferation or showed no or only small compensatory increases in CNTF−/− mice. Expression of tumor necrosis factor-α, which can inhibit neurogenesis, and the presence of leukocytes in the SVZ were inversely correlated with neurogenesis, but pro-inflammatory cytokines did not affect CNTF expression in cultured astrocytes. These results suggest that slowly up-regulated CNTF in the SVZ mediates stroke-induced neurogenesis and is counteracted by inflammation. Further pharmacological stimulation of endogenous CNTF might be a good therapeutic strategy for cell replacement after stroke as CNTF regulates normal patterns of neurogenesis and is expressed almost exclusively in the nervous system. PMID:22960105

  3. Adult neurogenesis modifies excitability of the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Taruna eIkrar

    2013-12-01

    Full Text Available Adult-born dentate granule neurons contribute to memory encoding functions of the dentate gyrus (DG such as pattern separation. However, local circuit-mechanisms by which adult-born neurons partake in this process are poorly understood. Computational, neuroanatomical and electrophysiological studies suggest that sparseness of activation in the granule cell layer (GCL is conducive for pattern separation. A sparse coding scheme is thought to facilitate the distribution of similar entorhinal inputs across the GCL to decorrelate overlapping representations and minimize interference. Here we used fast voltage-sensitive dye (VSD imaging combined with laser photostimulation and electrical stimulation to examine how selectively increasing adult DG neurogenesis influences local circuit activity and excitability. We show that DG of mice with more adult-born neurons exhibits decreased strength of neuronal activation and more restricted excitation spread in GCL while maintaining effective output to CA3c. Conversely, blockade of adult hippocampal neurogenesis changed excitability of the DG in the opposite direction. Analysis of GABAergic inhibition onto mature dentate granule neurons in the DG of mice with more adult-born neurons shows a modest readjustment of perisomatic inhibitory synaptic gain without changes in overall inhibitory tone, presynaptic properties or GABAergic innervation pattern. Retroviral labeling of connectivity in mice with more adult-born neurons showed increased number of excitatory synaptic contacts of adult-born neurons onto hilar interneurons. Together, these studies demonstrate that adult hippocampal neurogenesis modifies excitability of mature dentate granule neurons and that this non-cell autonomous effect may be mediated by local circuit mechanisms such as excitatory drive onto hilar interneurons. Modulation of DG excitability by adult-born dentate granule neurons may enhance sparse coding in the GCL to influence pattern

  4. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Directory of Open Access Journals (Sweden)

    Sanberg Paul R

    2008-02-01

    Full Text Available Abstract Background Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation. Results We determined that human umbilical cord blood mononuclear cells (UCBMC given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis. Conclusion The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.

  5. Cell lineage tree models of neurogenesis.

    Science.gov (United States)

    Slater, Jennifer L; Landman, Kerry A; Hughes, Barry D; Shen, Qin; Temple, Sally

    2009-01-21

    The production of neurons to form the mammalian cortex, known as embryonic cortical neurogenesis, is a complex developmental process. Insight into the process of cell division during neurogenesis is provided by murine cortical cell lineage trees, recorded through experimental observation. Recurring patterns within cell lineage trees may be indicative of predetermined cell behaviour. The application of mathematical modelling to this process requires careful consideration and identification of the key features to be incorporated into the model. A biologically plausible stochastic model of evolution of cell lineage trees is developed, based on the most important known features of neurogenesis. Tractable means of measuring lineage tree shape are discussed. Symmetry is identified as a significant feature of shape and is measured using Colless's Index of Imbalance. Distributions of tree size and imbalance for large tree sizes are computed and results compared to experimental data. Several refinements to the model are investigated, when the cell division probabilities are weighted according to cell generation. Two models involving generation-dependent cell division probabilities produce imbalance distributions which are the most consistent with the available experimental results. The results indicate that a stochastic cell division mechanism is a plausible basis of mammalian neurogenesis.

  6. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    Science.gov (United States)

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Eng-Tat Ang

    2010-07-01

    Full Text Available Currently, there is still no effective therapy for neurodegenerative diseases (NDD such as Alzheimer’s disease (AD and Parkinson’s disease (PD despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician’s and the scientist’s needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

  8. Urban Growth Causes Significant increase in Extreme Rainfall - A modelling study

    Science.gov (United States)

    Pathirana, Assela

    2010-05-01

    World's urban centers are growing rapidly causing the impact of extreme rainfall events felt much more severely due to relatively well unerstood phenomena like decreased infiltration and flow resistance. However, an increasing set of evidence (e.g. heavy rainfall event observed at Nerima, central part of Tokyo metropolitan area, on 21 July 1999) suggest that the extreme rainfall, the driving force itself increases as a result of the microclimatic changes due to urban growth. Urban heat islands(UHI) due to heat anomalies of urban sprawl act as virtual mountains resulting in a local atmosphere more conducive for heavy rainfall. In this study, we employ a popular mesoscale atmoshperic model to numerically simulate the UHI induced rainfall enhancement. Initial idealized experiments conducted under trophical atmospheric conditions indicated that the changes in landuse due to significant urban growth will indeed cause more intense rainfall events. This is largely due to increased convective breakup, causing a favourable situation for convective cloud systems. Five historical heavy rainfall events that caused floods in five urban centres (Dhaka, Mumbai, Colombo, Lyon and Taipei) were selected from historical records. Numerical simulations were setup to assertain what would be the amount of rainfall if the same large-scale atmospheric situations (forcings) occured under a hypothetical situation of doubled urbanization level these events. Significant increases (upto 50%) of extreme rainfall was indicated for many of the events. Under major assumptions, these simulations were used to estimate the anticipated changes in the Intensity-Duration-Frequency (IDF). The magnitude of the 30min event with 25 year return period increased by about 20 percent. Without considering any changes in the external forcing the urban growth alone could cause very significant increase in local rainfall.

  9. Cervical HSV-2 infection causes cervical remodeling and increases risk for ascending infection and preterm birth

    Science.gov (United States)

    McGee, Devin; Poncil, Sharra; Patterson, Amanda

    2017-01-01

    Preterm birth (PTB), or birth before 37 weeks gestation, is the leading cause of neonatal mortality worldwide. Cervical viral infections have been established as risk factors for PTB in women, although the mechanism leading to increased risk is unknown. Using a mouse model of pregnancy, we determined that intra-vaginal HSV2 infection caused increased rates of preterm birth following an intra-vaginal bacterial infection. HSV2 infection resulted in histological changes in the cervix mimicking cervical ripening, including significant collagen remodeling and increased hyaluronic acid synthesis. Viral infection also caused aberrant expression of estrogen and progesterone receptor in the cervical epithelium. Further analysis using human ectocervical cells demonstrated a role for Src kinase in virus-mediated changes in estrogen receptor and hyaluronic acid expression. In conclusion, HSV2 affects proteins involved in tissue hormone responsiveness, causes significant changes reminiscent of premature cervical ripening, and increases risk of preterm birth. Studies such as this improve our chances of identifying clinical interventions in the future. PMID:29190738

  10. Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Agarwal, Swati; Tripathi, Anurag; Chaturvedi, Rajnish Kumar

    2016-07-01

    Bisphenol A (BPA) is an environmental xenoestrogenic endocrine disruptor, utilized for production of consumer products, and exerts adverse effects on the developing nervous system. Recently, we found that BPA impairs the finely tuned dynamic processes of neurogenesis (generation of new neurons) in the hippocampus of the developing rat brain. Curcumin is a natural polyphenolic compound, which provides neuroprotection against various environmental neurotoxicants and in the cellular and animal models of neurodegenerative disorders. Here, we have assessed the neuroprotective efficacy of curcumin against BPA-mediated reduced neurogenesis and the underlying cellular and molecular mechanism(s). Both in vitro and in vivo studies showed that curcumin protects against BPA-induced hippocampal neurotoxicity. Curcumin protects against BPA-mediated reduced neural stem cells (NSC) proliferation and neuronal differentiation and enhanced neurodegeneration. Curcumin also enhances the expression/levels of neurogenic and the Wnt pathway genes/proteins, which were reduced due to BPA exposure in the hippocampus. Curcumin-mediated neuroprotection against BPA-induced neurotoxicity involved activation of the Wnt/β-catenin signaling pathway, which was confirmed by the use of Wnt specific activators (LiCl and GSK-3β siRNA) and inhibitor (Dkk-1). BPA-mediated increased β-catenin phosphorylation, decreased GSK-3β levels, and β-catenin nuclear translocation were significantly reversed by curcumin, leading to enhanced neurogenesis. Curcumin-induced protective effects on neurogenesis were blocked by Dkk-1 in NSC culture treated with BPA. Curcumin-mediated enhanced neurogenesis was correlated well with improved learning and memory in BPA-treated rats. Overall, our results conclude that curcumin provides neuroprotection against BPA-mediated impaired neurogenesis via activation of the Wnt/β-catenin signaling pathway.

  11. Neurogenesis and Alzheimer's disease: biology and pathophysiology in mice and men

    NARCIS (Netherlands)

    Marlatt, M.W.; Lucassen, P.J.

    2010-01-01

    The hippocampus is critical for learning and memory and heavily affected in dementia. The presence of stem cells in this structure has led to an increased interest in the phenomenon of adult neurogenesis and its role in hippocampal functioning. Not surprising, investigators of Alzheimer's disease

  12. Mechanism and preclinical prevention of increased breast cancer risk caused by pregnancy.

    Science.gov (United States)

    Haricharan, Svasti; Dong, Jie; Hein, Sarah; Reddy, Jay P; Du, Zhijun; Toneff, Michael; Holloway, Kimberly; Hilsenbeck, Susan G; Huang, Shixia; Atkinson, Rachel; Woodward, Wendy; Jindal, Sonali; Borges, Virginia F; Gutierrez, Carolina; Zhang, Hong; Schedin, Pepper J; Osborne, C Kent; Tweardy, David J; Li, Yi

    2013-12-31

    While a first pregnancy before age 22 lowers breast cancer risk, a pregnancy after age 35 significantly increases life-long breast cancer risk. Pregnancy causes several changes to the normal breast that raise barriers to transformation, but how pregnancy can also increase cancer risk remains unclear. We show in mice that pregnancy has different effects on the few early lesions that have already developed in the otherwise normal breast-it causes apoptosis evasion and accelerated progression to cancer. The apoptosis evasion is due to the normally tightly controlled STAT5 signaling going astray-these precancerous cells activate STAT5 in response to pregnancy/lactation hormones and maintain STAT5 activation even during involution, thus preventing the apoptosis normally initiated by oncoprotein and involution. Short-term anti-STAT5 treatment of lactation-completed mice bearing early lesions eliminates the increased risk after a pregnancy. This chemoprevention strategy has important implications for preventing increased human breast cancer risk caused by pregnancy. DOI: http://dx.doi.org/10.7554/eLife.00996.001.

  13. Nootropic agents stimulate neurogenesis. Brain Cells, Inc.: WO2007104035.

    Science.gov (United States)

    Taupin, Philippe

    2009-05-01

    The application is in the field of adult neurogenesis, neural stem cells and cellular therapy. It aims to characterize the activity of nootropic agents on adult neurogenesis in vitro. Nootropic agents are substances improving cognitive and mental abilities. AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) and nootropic agents were assessed for the potential to differentiate human neural progenitor and stem cells into neuronal cells in vitro. They were also tested for their behavioural activity on the novel object recognition task. AMPA, piracetam, FK-960 and SGS-111 induce and stimulate neuronal differentiation of human-derived neural progenitor and stem cells. SGS-111 increases the number of visits to the novel object. The neurogenic activity of piracetam and SGS-111 is mediated through AMPA receptor. The neurogenic activity of SGS-111 may contribute and play a role in its nootropic activity. These results suggest that nootropic agents may elicit some of their effects through their neurogenic activity. The application claims the use of nootropic agents for their neurogenic activity and for the treatment of neurological diseases, disorders and injuries, by stimulating or increasing the generation of neuronal cells in the adult brain.

  14. Adrenocorticotrophic hormone causes an increase in cortisol, but not parathyroid hormone, in dogs.

    Science.gov (United States)

    Kilpatrick, Scott; Gow, Adam G; Evans, Helen; Mellanby, Richard J

    2015-02-01

    Dogs with spontaneous disorders of glucocorticoid production often have marked disturbances in calcium homeostasis. For example, hypercalcaemia is frequently observed in dogs with hypoadrenocorticism and secondary hyperparathyroidism is a common feature of canine hyperadrenocorticism. The mechanism(s) by which glucocorticoids modulate calcium homeostasis in dogs remains ill-defined. The hypothesis of this study is that a marked increase in serum cortisol concentrations would lead to an immediate negative calcium balance state which would drive a compensatory increase in parathyroid hormone (PTH) concentrations. This hypothesis was investigated by measuring serum cortisol and plasma PTH concentration in 19 dogs before and after administration of adrenocorticotrophic (ACTH) hormone. Post ACTH administration, there was a significant increase in serum cortisol, but not PTH, concentrations. The results of this study do not support the hypothesis that an increase in endogenous glucocorticoids influences calcium balance sufficiently to cause an immediate, compensatory increase in parathyroid hormone concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ketamine Affects the Neurogenesis of the Hippocampal Dentate Gyrus in 7-Day-Old Rats.

    Science.gov (United States)

    Huang, He; Liu, Cun-Ming; Sun, Jie; Hao, Ting; Xu, Chun-Mei; Wang, Dan; Wu, Yu-Qing

    2016-08-01

    Ketamine has been reported to cause neonatal neurotoxicity via a neuronal apoptosis mechanism; however, no in vivo research has reported whether ketamine could affect postnatal neurogenesis in the hippocampal dentate gyrus (DG). A growing number of experiments suggest that postnatal hippocampal neurogenesis is the foundation of maintaining normal hippocampus function into adulthood. Therefore, this study investigated the effect of ketamine on hippocampal neurogenesis. Male Sprague-Dawley rats were divided into two groups: the control group (equal volume of normal saline), and the ketamine-anesthesia group (40 mg/kg ketamine in four injections at 1 h intervals). The S-phase marker 5-bromodeoxyuridine (BrdU) was administered after ketamine exposure to postnatal day 7 (PND-7) rats, and the neurogenesis in the hippocampal DG was assessed using single- or double-immunofluorescence staining. The expression of GFAP in the hippocampal DG was measured by western blot analysis. Spatial reference memory was tested by Morris water maze at 2 months after PND-7 rats exposed to ketamine treatment. The present results showed that neonatal ketamine exposure significantly inhibited neural stem cell (NSC) proliferation, decreased astrocytic differentiation, and markedly enhanced neuronal differentiation. The disruptive effect of ketamine on the proliferation and differentiation of NSCs lasted at least 1 week and disappeared by 2 weeks after ketamine exposure. Moreover, the migration of newborn neurons in the granule cell layer and the growth of astrocytes in the hippocampal DG were inhibited by ketamine on PND-37 and PND-44. Finally, ketamine caused a deficit in hippocampal-dependent spatial reference memory tasks at 2 months old. Our results suggested that ketamine may interfere with hippocampal neurogenesis and long-term neurocognitive function in PND-7 rats. These findings may provide a new perspective to explain the adult neurocognitive dysfunction induced by neonatal

  16. Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts

    Directory of Open Access Journals (Sweden)

    Oberland Julia

    2010-11-01

    Full Text Available Abstract Background It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion. Results Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14. These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct. Conclusions Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.

  17. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility

    DEFF Research Database (Denmark)

    Fedulov, Alexey V; Leme, Adriana; Yang, Zhiping

    2008-01-01

    Maternal immune responses can promote allergy development in offspring, as shown in a model of increased susceptibility to asthma in babies of ovalbumin (OVA)-sensitized and -challenged mother mice. We investigated whether inflammatory responses to air pollution particles (diesel exhaust particles...... exposure to both "inert" TiO(2) and DEP caused increased asthma susceptibility in offspring. We conclude that (1) pregnancy enhances lung inflammatory responses to otherwise relatively innocuous inert particles; and (2) exposures of nonallergic pregnant females to inert or toxic environmental air particles...

  18. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues

    Science.gov (United States)

    Faber, James E.; Zhang, Hua; Lassance-Soares, Roberta M.; Prabhakar, Pranay; Najafi, Amir H.; Burnett, Mary Susan; Epstein, Stephen E.

    2011-01-01

    Objective Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice. Methods and Results Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced. Conclusions Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury. PMID:21617137

  19. Agonistic behavior enhances adult neurogenesis in male Acheta domesticus crickets.

    Science.gov (United States)

    Ghosal, Kaushik; Gupta, Mohit; Killian, Kathleen A

    2009-07-01

    We examined the effect of agonistic behavior on cell proliferation and neurogenesis in the central nervous system (CNS) of adult male Acheta domesticus crickets. We combined 5-bromo,2'deoxyuridine (BrdU)-labeling of dividing cells with immunocytochemical detection of the neuronal marker horseradish peroxidase to examine the proliferation of progenitor cells and the survival of newborn neurons. In crickets, the mushroom bodies of the brain contain clusters of proliferative cells that divide and generate new neurons in adulthood. Pairs of male crickets were allowed to fight and establish social rank and were then injected with BrdU. Proliferation of mushroom body neurogenic cluster cells was unaffected by agonistic interactions; 24 h after a fight, the number of BrdU positive cells in fought and un-fought males did not significantly differ. However, agonistic interactions did influence cell survival. Two weeks after an agonistic interaction, fought males had more newborn neurons than males that did not fight. There was also a rank-specific effect because dominant males had significantly more new neurons than subordinates. We also report for the first time that neurogenesis in adult crickets can occur in other regions of the brain and in other CNS ganglia, including the terminal abdominal ganglion (TAG). Agonistic interactions enhanced the proliferation of these distributed precursor cells but did not increase the survival of the newborn neurons generated by these cells.

  20. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action?

    Science.gov (United States)

    Eliwa, Hoda; Belzung, Catherine; Surget, Alexandre

    2017-10-01

    It is now well established that all clinically available antidepressants share a common aptitude: they increase the production of adult-generated neurons in the dentate gyrus of the hippocampus. This was first observed in animal models and subsequently in human populations, highlighting the clinical relevance of this finding. Later, it was suggested that hippocampal neurogenesis was not an epiphenomenal correlate of antidepressant action but was causally involved. Indeed, when neurogenesis is suppressed, antidepressant compounds can no longer achieve remission. This action of adult-born neurons seems necessary to achieve remission, but less evidence exists to show that it is sufficient alone. In the following decades, a new generation of putative antidepressants that act through different non-monoaminergic mechanisms were proposed in preclinical research as potential therapies. Interestingly, these treatments all increased neurogenesis in animal models of pathological states: this was observed with drugs acting through peptidergic or glutamatergic mechanisms and with neurostimulation strategies not targeting the hippocampus. However, the involvement of neurogenesis was not always causal. To advance further in this field, an understanding of how adult-generated neurons induce therapeutic effects and how this is related to the pathophysiology of depression are required. Copyright © 2017. Published by Elsevier Inc.

  1. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging.

    Directory of Open Access Journals (Sweden)

    Elias Georges Gebara

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the dentate gyrus was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus.

  2. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  3. Tau protein and adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Almudena eFuster-Matanzo

    2012-07-01

    Full Text Available Tau protein is a microtubule associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubule-binding domains (without exon 10 and by presence of hypherphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

  4. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups

    Science.gov (United States)

    2013-01-01

    Background Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. Results We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. Conclusions Embryonic neurogenesis of Pseudopallene

  5. Hippocampal adult neurogenesis: Does the immune system matter?

    Science.gov (United States)

    de Miranda, Aline Silva; Zhang, Cun-Jin; Katsumoto, Atsuko; Teixeira, Antônio Lúcio

    2017-01-15

    Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress.

    Science.gov (United States)

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-04-01

    Stress and glucocorticoids suppress adult neurogenesis in the hippocampus. However, the molecular mechanisms underlying stress-induced impairment of adult neurogenesis are poorly understood. We previously suggested that cyclooxygenase (COX)-2 is a common mediator of stresses in the brain. Here, using a lipopolysaccharide (LPS)-induced acute infectious stress model, we evaluated the roles of COX-2 and its major downstream product prostaglandin E2 (PGE2) in adult neurogenesis and the influence of glucocorticoids on COX-2-related signaling. Treatment of rats with LPS significantly decreased neurogenesis in the dentate gyrus (DG) of the hippocampus, and this inhibitory effect of LPS on neurogenesis was reversed by the glucocorticoid receptor antagonist RU486. Moreover, RU486 significantly enhanced the increase in messenger RNA (mRNA) levels of COX-2 and microsomal prostaglandin E synthase (mPGES)-1 in the hippocampus following LPS stimulation. Administration of AH6809, a selective antagonist of the PGE2 EP2 receptor, as well as NS398, a COX-2 selective inhibitor, exacerbated the suppression of proliferation of neural progenitor cells (NPCs) in the DG. Gene expression of EP1, EP2, and EP3, but not EP4, receptors was also increased following LPS stimulation. Immunohistochemical studies indicated that NPCs expressed EP2 receptor, whereas the majority of cells expressing COX-2 and mPGES-1 were mature neurons in the DG. These results suggest that acute infectious stress upregulates COX-2-related signaling in neurons in the DG, which plays a protective role in neurogenesis through EP2 receptor at least partially. In addition, LPS-induced glucocorticoids suppress this COX-2-related signaling, resulting in decreased neurogenesis.

  7. ChAT-positive neurons participate in subventricular zone neurogenesis after middle cerebral artery occlusion in mice.

    Science.gov (United States)

    Wang, Jianping; Fu, Xiaojie; Zhang, Di; Yu, Lie; Li, Nan; Lu, Zhengfang; Gao, Yufeng; Wang, Menghan; Liu, Xi; Zhou, Chenguang; Han, Wei; Yan, Bo; Wang, Jian

    2017-01-01

    The mechanisms of post-stroke neurogenesis in the subventricular zone (SVZ) are unclear. However, neural stem cell-intrinsic and neurogenic niche mechanisms, as well as neurotransmitters, have been shown to play important roles in SVZ neurogenesis. Recently, a previously unknown population of choline acetyltransferase (ChAT) + neurons residing in rodent SVZ were identified to have direct control over neural stem cell proliferation by indirectly activating fibroblast growth factor receptor (FGFR). This finding revealed possible neuronal control over SVZ neurogenesis. In this study, we assessed whether these ChAT + neurons also participate in stroke-induced neurogenesis. We used a permanent middle cerebral artery occlusion (MCAO) model produced by transcranial electrocoagulation in mice, atropine (muscarinic cholinergic receptor [mAchR] antagonist), and donepezil (acetylcholinesterase inhibitor) to investigate the role of ChAT + neurons in stroke-induced neurogenesis. We found that mAchRs, phosphorylated protein kinase C (p-PKC), and p-38 levels in the SVZ were upregulated in mice on day 7 after MCAO. MCAO also significantly increased the number of BrdU/doublecortin-positive cells and protein levels of phosphorylated-neural cell adhesion molecule and mammalian achaete scute homolog-1. FGFR was activated in the SVZ, and doublecortin-positive cells increased in the peri-infarction region. These post-stroke neurogenic effects were enhanced by donepezil and partially decreased by atropine. Neither atropine nor donepezil affected peri-infarct microglial activation or serum concentrations of TNF-α, IFN-γ, or TGF-β on day 7 after MCAO. We conclude that ChAT + neurons in the SVZ may participate in stroke-induced neurogenesis, suggesting a new mechanism for neurogenesis after stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  9. Doc Title: Adult Hippocampal Neurogenesis is Impaired by Transient Developmental Thyroid Hormone Disruption

    Data.gov (United States)

    U.S. Environmental Protection Agency — Severe thyroid hormone (TH) deprivation during development impairs neurogenesis throughout the brain. The hippocampus also maintains a capacity for neurogenesis...

  10. Nitric oxide negatively regulates mammalian adult neurogenesis

    Science.gov (United States)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  11. Increased all-cause mortality with use of psychotropic medication in dementia patients and controls

    DEFF Research Database (Denmark)

    Jennum, Poul; Baandrup, Lone; Ibsen, Rikke

    2015-01-01

    We aimed to evaluate all-cause mortality of middle-aged and elderly subjects diagnosed with dementia and treated with psychotropic drugs as compared with controls subjects. Using data from the Danish National Patient Registry, n=26,821 adults with a diagnosis of dementia were included. They were...... compared with 44,286 control subjects with a minimum follow-up of four years and matched on age, gender, marital status, and community location. Information about psychotropic medication use (benzodiazepines, antidepressants, antipsychotics) was obtained from the Danish Medicinal Product Statistics. All......-cause mortality was higher in patients with dementia as compared to control subjects. Mortality hazard ratios were increased for subjects prescribed serotonergic antidepressant drugs (respectively, HR=1.355 (SD=0.023), P=0.001 in patients; HR=1.808 (0.033), P

  12. Progress to extinction: increased specialisation causes the demise of animal clades

    Science.gov (United States)

    Raia, P.; Carotenuto, F.; Mondanaro, A.; Castiglione, S.; Passaro, F.; Saggese, F.; Melchionna, M.; Serio, C.; Alessio, L.; Silvestro, D.; Fortelius, M.

    2016-08-01

    Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.

  13. Perlecan controls neurogenesis in the developing telencephalon

    Directory of Open Access Journals (Sweden)

    Fairén Alfonso

    2007-04-01

    Full Text Available Abstract Background Perlecan is a proteoglycan expressed in the basal lamina of the neuroepithelium during development. Perlecan absence does not impair basal lamina assembly, although in the 55% of the mutants early disruptions of this lamina conducts to exencephaly, impairing brain development. The rest of perlecan-null brains complete its prenatal development, maintain basal lamina continuity interrupted by some isolated ectopias, and are microcephalic. Microcephaly consists of thinner cerebral walls and underdeveloped ganglionic eminences. We have studied the mechanisms that generate brain atrophy in telencephalic areas where basal lamina is intact. Results Brain atrophy in the absence of perlecan started in the ventral forebrain and extended to lateral and dorsal parts of the cortex in the following stages. First, the subpallial forebrain developed poorly in early perlecan-null embryos, because of a reduced cell proliferation: the number of cells in mitosis decreased since the early stages of development. This reduction resulted in a decreased tangential migration of interneurons to the cerebral cortex. Concomitant with the early hypoplasia observed in the medial ganglionic eminences, Sonic Hedgehog signal decreased in the perlecan-null floor plate basal lamina at E12.5. Second, neurogenesis in the pallial neuroepithelium was affected in perlecan deficient embryos. We found reductions of nearly 50% in the number of cells exiting the cell cycle at E12–E13. The labeling index, which was normal at this age, significantly decreased with advancing corticogenesis. Moreover, nestin+ or PCNA+ progenitors increased since E14.5, reaching up to about 150% of the proportion of PCNA+ cells in the wild-type at E17.5. Thus, labeling index reduction together with increased progenitor population, suggests that atrophy is the result of altered cell cycle progression in the cortical progenitors. Accordingly, less neurons populated the cortical plate and

  14. Multiple sevoflurane anesthesia in pregnant mice inhibits neurogenesis of fetal hippocampus via repressing transcription factor Pax6.

    Science.gov (United States)

    Fang, Fang; Song, Ruixue; Ling, Xiaomin; Peng, Mengyuan; Xue, Zhanggang; Cang, Jing

    2017-04-15

    Sevoflurane is widely used in non-obstetric surgeries of pregnant women, but its influences on fetal brain are still not fully known. We set out to assess the effects of multiple maternal sevoflurane exposure on neurogenesis and cognitive dysfunction in fetus and offspring. Pregnant mice (gestational day 15.5) and cultured mouse neural stem cells (NSCs) received daily sevoflurane exposure (2.5%×2h and 4.1%×2h respectively) for three consecutive days. Cognitive function of the offspring was determined with the Morris water maze. The expression of Ccnd1 and Pax6 in fetal brains and NSCs were analyzed by immunofluorescence, Western blot and qPCR. The neurogenesis was evaluated by BrdU staining. Results showed that multiple sevoflurane exposure in pregnant mice caused the decrease of Pax6 and Ccnd1 expression, the inhibition of NSCs proliferation and fetal hippocampus neurogenesis, which may contribute to the impaired learning and memory in offspring at P28. Moreover, lithium mitigated the sevoflurane-induced reduction in Pax6, Ccnd1 and neurogenesis. All these results suggest that multiple sevoflurane exposure may induce detrimental effects in the developing brains of fetus and offspring by the depression of neurogenesis through Pax6 pathway. Copyright © 2017. Published by Elsevier Inc.

  15. Acupuncture for neurogenesis in experimental ischemic stroke: a systematic review and meta-analysis.

    Science.gov (United States)

    Lu, Lin; Zhang, Xiao-guang; Zhong, Linda L D; Chen, Zi-xian; Li, Yan; Zheng, Guo-qing; Bian, Zhao-xiang

    2016-01-20

    Acupuncture has been used for patients with stroke and post-stroke rehabilitation for thousands of years. Previous studies reported that acupuncture enhanced stroke recovery through neurogenesis. Hence, we conducted a systematic review and meta-analysis for preclinical studies to assess the current evidence for acupuncture effect on neurogenesis in treating ischaemic stroke. Studies were obtained from six databases, including PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, VIP information database, and Chinese Biomedical Literature Database, Ultimately, 34 studies containing 1617 animals were identified. Neurogenesis markers of Brdu, Nestin, PSA-NCAM, NeuN and GFAP were selected as major outcomes. The pooled results of 15 studies marked with Brdu showed significant effects of acupuncture for improving proliferation when compared with control groups (P acupuncture for increasing proliferation when compared with control groups (P acupuncture for enhancing migration when compared with control groups (P acupuncture for stimulating differentiation when compared with control groups (P acupuncture is a prospective therapy targeting neurogenesis for ischemic stroke.

  16. Malnutrition is associated with increased mortality in older adults regardless of the cause of death.

    Science.gov (United States)

    Söderström, Lisa; Rosenblad, Andreas; Thors Adolfsson, Eva; Bergkvist, Leif

    2017-02-01

    Malnutrition predicts preterm death, but whether this is valid irrespective of the cause of death is unknown. The aim of the present study was to determine whether malnutrition is associated with cause-specific mortality in older adults. This cohort study was conducted in Sweden and included 1767 individuals aged ≥65 years admitted to hospital in 2008-2009. On the basis of the Mini Nutritional Assessment instrument, nutritional risk was assessed as well nourished (score 24-30), at risk of malnutrition (score 17-23·5) or malnourished (score malnutrition, and 9·4 % of the participants were malnourished. During a median follow-up of 5·1 years, 839 participants (47·5 %) died. The multiple Cox regression model identified significant associations (hazard ratio (HR)) between malnutrition and risk of malnutrition, respectively, and death due to neoplasms (HR 2·43 and 1·32); mental or behavioural disorders (HR 5·73 and 5·44); diseases of the nervous (HR 4·39 and 2·08), circulatory (HR 1·95 and 1·57) or respiratory system (HR 2·19 and 1·49); and symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (HR 2·23 and 1·43). Malnutrition and risk of malnutrition are associated with increased mortality regardless of the cause of death, which emphasises the need for nutritional screening to identify older adults who may require nutritional support in order to avoid preterm death.

  17. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  18. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  19. Evidence of increasing drought severity caused by temperature rise in southern Europe

    International Nuclear Information System (INIS)

    Vicente-Serrano, Sergio M; Lopez-Moreno, Juan-I; Lorenzo-Lacruz, Jorge; García-Ruiz, José M; Azorin-Molina, Cesar; Morán-Tejeda, Enrique; Revuelto, Jesús; Beguería, Santiago; Sanchez-Lorenzo, Arturo; Trigo, Ricardo; Coelho, Fatima; Espejo, Francisco

    2014-01-01

    We use high quality climate data from ground meteorological stations in the Iberian Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the past five decades, as a consequence of greater atmospheric evaporative demand resulting from temperature rise. Increased drought severity is independent of the model used to quantify the reference evapotranspiration. We have also focused on drought impacts to drought-sensitive systems, such as river discharge, by analyzing streamflow data for 287 rivers in the IP, and found that hydrological drought frequency and severity have also increased in the past five decades in natural, regulated and highly regulated basins. Recent positive trend in the atmospheric water demand has had a direct influence on the temporal evolution of streamflows, clearly identified during the warm season, in which higher evapotranspiration rates are recorded. This pattern of increase in evaporative demand and greater drought severity is probably applicable to other semiarid regions of the world, including other Mediterranean areas, the Sahel, southern Australia and South Africa, and can be expected to increasingly compromise water supplies and cause political, social and economic tensions among regions in the near future. (paper)

  20. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    Science.gov (United States)

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  1. Opposite effects of early maternal deprivation on neurogenesis in male versus female rats.

    Directory of Open Access Journals (Sweden)

    Charlotte A Oomen

    Full Text Available BACKGROUND: Major depression is more prevalent in women than in men. The underlying neurobiological mechanisms are not well understood, but recent data shows that hippocampal volume reductions in depressed women occur only when depression is preceded by an early life stressor. This underlines the potential importance of early life stress, at least in women, for the vulnerability to develop depression. Perinatal stress exposure in rodents affects critical periods of brain development that persistently alter structural, emotional and neuroendocrine parameters in adult offspring. Moreover, stress inhibits adult hippocampal neurogenesis, a form of structural plasticity that has been implicated a.o. in antidepressant action and is highly abundant early postnatally. We here tested the hypothesis that early life stress differentially affects hippocampal structural plasticity in female versus male offspring. PRINCIPAL FINDINGS: We show that 24 h of maternal deprivation (MD at PND3 affects hippocampal structural plasticity at PND21 in a sex-dependent manner. Neurogenesis was significantly increased in male but decreased in female offspring after MD. Since no other structural changes were found in granule cell layer volume, newborn cell survival or proliferation rate, astrocyte number or gliogenesis, this indicates that MD elicits specific changes in subsets of differentiating cells and differentially affects immature neurons. The MD induced sex-specific effects on neurogenesis cannot be explained by differences in maternal care. CONCLUSIONS: Our data shows that early environment has a critical influence on establishing sex differences in neural plasticity and supports the concept that the setpoint for neurogenesis may be determined during perinatal life. It is tempting to speculate that a reduced level of neurogenesis, secondary to early stress exposure, may contribute to maladaptation of the HPA axis and possibly to the increased vulnerability of women

  2. Increased all-cause mortality with psychotropic medication in Parkinson's disease and controls

    DEFF Research Database (Denmark)

    Frandsen, Rune; Baandrup, Lone; Kjellberg, Jakob

    2014-01-01

    AIM: Use of medication and polypharmacy is common as the population ages and its disease burden increases. We evaluated the association of antidepressants, benzodiazepines, antipsychotics and combinations of psychotropic drugs with all-cause mortality in patients with Parkinson's disease (PD...... of psychotropic medication in PD patients and controls. Hazard ratios were as follows for the medication types: selective serotonin reuptake inhibitors or serotonin-noradrenalin reuptake inhibitors, PD HR = 1.19, 95% CI = 1.04-1.36; Control HR = 1.77, 95% CI = 1.64-1.91; benzodiazepines, PD HR = 1.17, 95% CI = 0.......20-1.76; Control HR = 2.00, 95% CI 1.66-2.43; and combinations of these drugs compared with non-medicated PD patients and controls. Discontinuation of medication was associated with decreased mortality in both groups. CONCLUSIONS: The use of psychotropic medication in the elderly is associated with increased...

  3. Role of adult hippocampal neurogenesis in stress resilience

    Directory of Open Access Journals (Sweden)

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  4. Excessive blood pressure increase with exercise and risk of all-cause mortality and cardiac events.

    Science.gov (United States)

    Bouzas-Mosquera, María C; Bouzas-Mosquera, Alberto; Peteiro, Jesús

    2016-10-01

    The association of an excessive blood pressure increase with exercise (EBPIE) on cardiovascular outcomes remains controversial. We sought to assess its impact on the risk of all-cause mortality and major cardiac events in patients with known or suspected coronary artery disease (CAD) referred for stress testing. Exercise echocardiography was performed in 10 047 patients with known or suspected CAD. An EBPIE was defined as an increase in systolic blood pressure with exercise ≥ 80 mmHg. The endpoints were all-cause mortality and major cardiac events (MACE), including cardiac death or nonfatal myocardial infarction (MI). Overall, 573 patients exhibited an EBPIE during the tests. Over a mean follow-up of 4·8 years, there were 1950 deaths (including 725 cardiac deaths), 1477 MI and 1900 MACE. The cumulative 10-year rates of all-cause mortality, cardiac death, nonfatal MI and MACE were 32·9%, 13·1%, 26·9% and 33% in patients who did not develop an EBPIE vs. 18·9%, 4·7%, 17·5% and 20·7% in those experiencing an EBPIE, respectively (P mortality (hazard ratio [HR] 0·73, 95% confidence interval [CI] 0·59-0·91, P = 0·004), cardiac death (HR 0·67, 95% CI 0·46-0·98, P = 0·04), MI (HR 0·67, 95% CI 0·52-0·86, P = 0·002) and MACE (HR 0·69, 95% CI 0·56-0·86, P = 0·001). An EBPIE was associated with a significantly lower risk of mortality and MACE in patients with known or suspected CAD referred for stress testing. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    Science.gov (United States)

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

  6. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism

    OpenAIRE

    Yang, Rui; Chen, Wei; Lu, Ye; Li, Yingke; Du, Hongli; Gao, Songyan; Dong, Xin; Yuan, Hongbin

    2017-01-01

    Sepsis, in addition to causing fatality, is an independent risk factor for cognitive impairment among sepsis survivors. The pathologic mechanism of endotoxemia induced acute neuro-inflammation still has not been fully understood. For the first time, we found the disruption of neurotransmitters 5-HT, impaired neurogenesis and activation of astrocytes coupled with concomitant neuro-inflammation were the potential pathogenesis of endotoxemia induced acute neuro-inflammation in sepsis survivors. ...

  7. Aire deficiency causes increased susceptibility to streptozotocin-induced murine type 1 diabetes.

    Science.gov (United States)

    Hässler, S; Peltonen, L; Sandler, S; Winqvist, O

    2008-06-01

    Aire-deficient mice are a model of the human monogenic disorder autoimmune polyendocrine syndrome type I (APS I) characterized by a progressive autoimmune destruction of multiple endocrine glands such as the adrenal cortex, the parathyroids and the beta-cells of the pancreas. The disease is caused by mutations in the autoimmune regulator (AIRE) gene, a putative transcription factor expressed in thymic medullary epithelial cells and in antigen-presenting cells of the myeloid lineage in peripheral lymphoid organs. As Aire(-/-) mice do not spontaneously develop endocrinopathies, we wanted to evaluate the autoimmune multiple low-dose streptozotocin (MLDSTZ) diabetes model in Aire(-/-) mice. Surprisingly, Aire heterozygote mice were most susceptible to MLDSTZ-induced diabetes, whereas Aire(-/-) mice displayed an intermediate sensitivity to diabetes. Furthermore, Aire(-/-) macrophages produced higher levels of TNF-alpha and lower levels of IL-10 following streptozotocin stimulation, and Aire(-/-) mice developed a higher frequency of islet cells autoantibodies as a sign of increased activation. However, the number of islet infiltrating F4/80(+) Aire(-/-) macrophages was significantly decreased which was attributed to an increased susceptibility to streptozotocin cytotoxicity of Aire(-/-) macrophages. In conclusion, Aire(-/-) macrophages display an increased activation after STZ stimuli, but suffer from increased susceptibility to STZ cytotoxicity. These results support an important function of Aire in the control of peripheral tolerance through myeloid antigen-presenting cells.

  8. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  9. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis.

    Science.gov (United States)

    Snyder, Jason S; Grigereit, Laura; Russo, Alexandra; Seib, Désirée R; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2016-01-01

    The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis.

  10. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    Science.gov (United States)

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.

  11. Cause marketing for tissue and organ donation to increase public awareness

    International Nuclear Information System (INIS)

    Strong, M.; Neely, D.; Warnack, K.; Willits, M.; Yriondo, L.

    1999-01-01

    Today the science of marketing is being applied more and more to increase the rate of tissue and organ donation in the United States. To benefit from the proven tools and techniques of successful marketing in the for-profit world transplantation agencies across the country are turning to integrated marketing communications strategies and strategic partnerships to help achieve their goals.The methods used in cause marketing include: Establishing clear and measurable outcomes and goals; building a marketing plan and timeline to achieve the goals; gathering resources (funding, personnel, organizations, partnerships) to execute the plan, implementation, and measurement of outcomes. This session will review the Tissue and Organ Donation campaign implemented in the Northwest and will touch on the national awareness program developed by United Network for Organ Sharing (UNOS) in the United States. Segments of the Northwest's integrated campaign will include market segmentation strategies and targeted marketing, campaign development, public service advertising and public education campaigns. Media utilized include print, bus signs and billboards, broadcast (radio and TV), video and the internet. Strategies include public service advertising, paid advertising through sponsorships, direct mail, workshops and public speaking. The success of traditional product marketing can be achieved in cause marketing with a long-term, focused public education campaign. The potential benefit to the international community warrants exploration of similar strategies to overcome cultural resistance to life saving transplantation

  12. Aortic Valve Cyclic Stretch Causes Increased Remodeling Activity and Enhanced Serotonin Receptor Responsiveness

    Science.gov (United States)

    Balachandran, Kartik; Bakay, Marina A.; Connolly, Jeanne M.; Zhang, Xuemei; Yoganathan, Ajit P.; Levy, Robert J.

    2011-01-01

    Background Increased serotonin(5HT) receptor(5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and inter-related extracellular matrix remodeling events. Methods The effects of cyclic-stretch on aortic valve 5HTR, expression, signaling and extracellular matrix remodeling were investigated using a tensile stretch bioreactor in studies which also compared the effects of adding 5HT and/or the 5HT-transporter inhibitor, Fluoxetine. Results Cyclic-stretch alone increased both proliferation and collagen in porcine aortic valve cusp samples. However, with cyclic-stretch, unlike static conditions, 5HT plus Fluoxetine caused the greatest increase in proliferation (p4.5 fold) for cyclic-stretch versus static (p<0.001), while expression of the 5HT transporter was not changed significantly. Extracellular matrix genes (eg. Collagen Types I,II,III, and proteoglycans) were also upregulated by cyclic-stretch. Conclusions Porcine aortic valve cusp samples subjected to cyclic stretch upregulate 5HTR2A and 2B, and also initiate remodeling activity characterized by increased proliferation and collagen production. Importantly, enhanced 5HTR responsiveness, due to increased 5HTR2A and 2B expression, results in a significantly greater response in remodeling endpoints (proliferation, collagen and GAG production) to 5HT in the presence of 5HT transporter blockade. PMID:21718840

  13. Wasps are the cause of an increasing mastitis problem in dairy cattle in Israel.

    Science.gov (United States)

    Yeruham, I; Braverman, Y; Schwimmer, A

    1998-07-01

    The German wasp Vespula germanica (Fabr.) (Hymenoptera: Vespidae) has been observed to injure dairy cows teats, causing lesions which can lead to mastitis. The number of dairy herds in Israel reported to be affected in this way has increased from five prior to 1989 to 32 from 1989 to 1993. Likewise, the geographical distribution of the colonies of these wasps has expanded from the Galilee to the northern Negev. Most cases of mastitis appeared during August and September when the wasps were most active; the predominant organism isolated was Streptococcus dysgalactiae. Apparently the wasps served as a vector in spreading S. dysgalactiae infection in the herds. More adult cows than first-calving cows were affected. The teats of the front quarters were more affected than those of the hind quarters.

  14. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  15. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-06-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  16. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline.

    Science.gov (United States)

    Ma, Chun-Lian; Ma, Xiao-Tang; Wang, Jin-Ju; Liu, Hua; Chen, Yan-Fang; Yang, Yi

    2017-01-15

    Accumulating evidence from animal and human research indicate that adult hippocampal neurogenesis plays a key role in cognition. Meanwhile, cognitive decline is well known to associate with ageing-related neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, prevention of hippocampal neurogenesis reduction should be critical for these diseases. Physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential therapy or an adjunctive therapeutic strategy for cognitive decline. In this review, we discuss the recent findings on hippocampal neurogenesis and the incorporation of new born neurons into the neuronal network in humans and in rodents. By focusing on hippocampal neurogenesis, we illustrate the role and possible mechanisms of physical exercise in cognition preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    Science.gov (United States)

    Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; Liput, Daniel J.; Marshall, S. Alex; Chen, Kevin Y.; Nixon, Kimberly

    2014-01-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche. PMID:24842804

  18. Low-Dose Sevoflurane Promotes Hippocampal Neurogenesis and Facilitates the Development of Dentate Gyrus-Dependent Learning in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2015-04-01

    Full Text Available Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8% sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6 were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  19. Plasticity of hippocampal stem/progenitor cells to enhance neurogenesis in response to kainate-induced injury is lost by middle age

    OpenAIRE

    Hattiangady, Bharathi; Rao, Muddanna S.; Shetty, Ashok K.

    2008-01-01

    A remarkable up-regulation of neurogenesis through increased proliferation of neural stem/progenitor cells (NSCs) is a well-known plasticity displayed by the young dentate gyrus (DG) following brain injury. To ascertain whether this plasticity is preserved during aging, we quantified DG neurogenesis in the young adult, middle-aged and aged F344 rats after kainic acid induced hippocampal injury. Measurement of new cells that are added to the dentate granule cell layer (GCL) between post-injury...

  20. Extreme Wildlife Declines and Concurrent Increase in Livestock Numbers in Kenya: What Are the Causes?

    Directory of Open Access Journals (Sweden)

    Joseph O Ogutu

    Full Text Available There is growing evidence of escalating wildlife losses worldwide. Extreme wildlife losses have recently been documented for large parts of Africa, including western, Central and Eastern Africa. Here, we report extreme declines in wildlife and contemporaneous increase in livestock numbers in Kenya rangelands between 1977 and 2016. Our analysis uses systematic aerial monitoring survey data collected in rangelands that collectively cover 88% of Kenya's land surface. Our results show that wildlife numbers declined on average by 68% between 1977 and 2016. The magnitude of decline varied among species but was most extreme (72-88% and now severely threatens the population viability and persistence of warthog, lesser kudu, Thomson's gazelle, eland, oryx, topi, hartebeest, impala, Grevy's zebra and waterbuck in Kenya's rangelands. The declines were widespread and occurred in most of the 21 rangeland counties. Likewise to wildlife, cattle numbers decreased (25.2% but numbers of sheep and goats (76.3%, camels (13.1% and donkeys (6.7% evidently increased in the same period. As a result, livestock biomass was 8.1 times greater than that of wildlife in 2011-2013 compared to 3.5 times in 1977-1980. Most of Kenya's wildlife (ca. 30% occurred in Narok County alone. The proportion of the total "national" wildlife population found in each county increased between 1977 and 2016 substantially only in Taita Taveta and Laikipia but marginally in Garissa and Wajir counties, largely reflecting greater wildlife losses elsewhere. The declines raise very grave concerns about the future of wildlife, the effectiveness of wildlife conservation policies, strategies and practices in Kenya. Causes of the wildlife declines include exponential human population growth, increasing livestock numbers, declining rainfall and a striking rise in temperatures but the fundamental cause seems to be policy, institutional and market failures. Accordingly, we thoroughly evaluate wildlife

  1. Ciliary neurotrophic factor receptor regulation of adult forebrain neurogenesis.

    Science.gov (United States)

    Lee, Nancy; Batt, Myra K; Cronier, Brigitte A; Jackson, Michele C; Bruno Garza, Jennifer L; Trinh, Dennis S; Mason, Carter O; Spearry, Rachel P; Bhattacharya, Shayon; Robitz, Rachel; Nakafuku, Masato; MacLennan, A John

    2013-01-16

    Appropriately targeted manipulation of endogenous neural stem progenitor (NSP) cells may contribute to therapies for trauma, stroke, and neurodegenerative disease. A prerequisite to such therapies is a better understanding of the mechanisms regulating adult NSP cells in vivo. Indirect data suggest that endogenous ciliary neurotrophic factor (CNTF) receptor signaling may inhibit neuronal differentiation of NSP cells. We challenged subventricular zone (SVZ) cells in vivo with low concentrations of CNTF to anatomically characterize cells containing functional CNTF receptors. We found that type B "stem" cells are highly responsive, whereas type C "transit-amplifying" cells and type A neuroblasts are remarkably unresponsive, as are GFAP(+) astrocytes found outside the SVZ. CNTF was identified in a subset of type B cells that label with acute BrdU administration. Disruption of in vivo CNTF receptor signaling in SVZ NSP cells, with a "floxed" CNTF receptor α (CNTFRα) mouse line and a gene construct driving Cre recombinase (Cre) expression in NSP cells, led to increases in SVZ-associated neuroblasts and new olfactory bulb neurons, as well as a neuron subtype-specific, adult-onset increase in olfactory bulb neuron populations. Adult-onset receptor disruption in SVZ NSP cells with a recombinant adeno-associated virus (AAV-Cre) also led to increased neurogenesis. However, the maintenance of type B cell populations was apparently unaffected by the receptor disruption. Together, the data suggest that endogenous CNTF receptor signaling in type B stem cells inhibits adult neurogenesis, and further suggest that the regulation may occur in a neuron subtype-specific manner.

  2. Microglial activation - tuning and pruning adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Christine T eEkdahl

    2012-03-01

    Full Text Available Adult born neurons are encountering numerous choices during their development from neural stem cells to mature functionally integrated neurons in the brain. Microglia are part of the microenvironment within the neurogenic niches and possibly involved during the entire decision process. Mounting evidence suggest that microglia act as local equalizers capable of amplifying as well as filtering homeostatic signals. Depending on their state of activation, they may induce or facilitate different fundamental decisions in neurogenesis, such as proliferation or quiescence, cell survival or death, migration or establishment, growth or retraction of dendrites and axons, synaptic assembly or pruning, or tuning of synaptic transmission. Microglia are activated as a first line of defence against infections and participate in transforming the innate immunity into an adaptive immune response by recruiting systemic immune cells. So far, most studies have reported an acute decrease in the survival of new neurons following this classically activated microglial reaction. However, the long-term effects are more complex. In several neurodegenerative diseases the microglial activation is also evident, including a heterogeneous population of microglial phenotypes and a plethora of immune mediators, where the initiating agent may be protein deposits or cell debris. The transformation from a pro- to an anti-inflammatory cytokine profile and the de-activation of microglia is not clearly defined, or even dysregulated, and the adaptive response is often sparse. The diverse role of microglial activation in neurodegenerative diseases is reflected by the numerous studies reporting both beneficial and detrimental effects on the different steps of neurogenesis. This review will highlight the most recent findings on how microglial activation modulates adult neurogenesis, and specifically discuss the role of microglia in synaptic integration, currently a fast expanding research

  3. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  4. Modulation of Postnatal Neurogenesis by Perinatal Asphyxia: Effect of D1 and D2 Dopamine Receptor Agonists.

    Science.gov (United States)

    Tapia-Bustos, A; Perez-Lobos, R; Vío, V; Lespay-Rebolledo, C; Palacios, E; Chiti-Morales, A; Bustamante, D; Herrera-Marschitz, M; Morales, P

    2017-01-01

    Perinatal asphyxia (PA) is associated to delayed cell death, affecting neurocircuitries of basal ganglia and hippocampus, and long-term neuropsychiatric disabilities. Several compensatory mechanisms have been suggested to take place, including cell proliferation and neurogenesis. There is evidence that PA can increase postnatal neurogenesis in hippocampus and subventricular zone (SVZ), modulated by dopamine, by still unclear mechanisms. We have studied here the effect of selective dopamine receptor agonists on cell death, cell proliferation and neurogenesis in organotypic cultures from control and asphyxia-exposed rats. Hippocampus and SVZ sampled at 1-3 postnatal days were cultured for 20-21 days. At day in vitro (DIV) 19, cultures were treated either with SKF38393 (10 and 100 µM, a D 1 agonist), quinpirole (10 µM, a D 2 agonist) or sulpiride (10 μM, a D 2 antagonist) + quinpirole (10 μM) and BrdU (10 μM, a mitosis marker) for 24 h. At DIV 20-21, cultures were processed for immunocytochemistry for microtubule-associated protein-2 (MAP-2, a neuronal marker), and BrdU, evaluated by confocal microscopy. Some cultures were analysed for cell viability at DIV 20-21 (LIVE/DEAD kit). PA increased cell death, cell proliferation and neurogenesis in hippocampus and SVZ cultures. The increase in cell death, but not in cell proliferation, was inhibited by both SKF38393 and quinpirole treatment. Neurogenesis was increased by quinpirole, but only in hippocampus, in cultures from both asphyxia-exposed and control-animals, effect that was antagonised by sulpiride, leading to the conclusion that dopamine modulates neurogenesis in hippocampus, mainly via D 2 receptors.

  5. Pacemaker lead fracture without an increase in lead impedance caused by cardiac fibroma

    Directory of Open Access Journals (Sweden)

    Daisuke Sato

    2013-12-01

    Full Text Available We report the case of a 64-year-old man who had a permanent pacemaker with a unipolar silicone electrode positioned in the right ventricle in 1989 for sinus node dysfunction. On a routine checkup in June 2011, a 28-mm-diameter mass was discovered, which appeared to adhere to the tricuspid valve and the ventricular lead. The size of the mass did not change for the next 6 months, and the lead impedance was maintained at around 500–600 Ω. Because pacing failure was observed in January 2012, he underwent an urgent pacemaker check; however, the lead impedance was found not to have increased greatly (689 Ω. Nevertheless, the pacemaker lead was noted to be fractured at the tricuspid level. His echocardiogram showed new severe tricuspid regurgitation and a floating mass around the lead. We extracted the fractured lead, enucleated the tumor, replaced the tricuspid valve, and placed an epicardial lead. Macroscopic examination revealed that the tumor surrounded the fractured lead and covered the stump. Pathological examination revealed that the tumor was composed of fibrous connective tissue. We presumed that electric current continued to flow through the stump of the fractured unipolar lead to the generator, and this might have caused the limited increase in lead impedance.

  6. Smoking Prevalence Among Mugla School of Health Sciences Students and Causes of Leading Increase in Smoking

    Directory of Open Access Journals (Sweden)

    Metin Picakciefe

    2007-08-01

    Full Text Available The purpose of this study was to determine the smoking prevalence among Mugla School of Health Sciences students, to determine the effects the increasing causes of smoking and their education about adverse health outcome of smoking. A cross-sectional study was performed among Mugla School of Health Sciences students in Mugla University. All students (417 in Mugla School of Health Sciences included in the study. The participation rates was 85.1%. Data were obtained by the self-administered questionnaire without teachers in classes. SPSS 11.0 was used for data analysis, and the differentiation was assessed by Chi-square analysis. P < 0.05 was accepted statistically significant. The prevalence of current smokers was 25.3% among students in Mugla School of Health Sciences. The students stated that the most important factor of smoking initiation was stress (59.2%. The univariable analysis showed that the friends’ smoking (p: 0.000 , having knowledge about smoking habits of teachers (p: 0.020 , alcohol consumption (p: 0.000, and other smokers out of parent in the home (p: 0.000 was significantly associated with increasing rate of smoking prevalence. The smoking prevalence was quite high (25.3% among Mugla School of Health Sciences students in Mugla University. It is needed to decreasing smoking prevalence among students that antismoking education should be reevaluated, that antismoking campaign should be administered in schools. [TAF Prev Med Bull 2007; 6(4.000: 267-272

  7. Immunization against recombinant bovine inhibin alpha subunit causes increased ovulation rates in gilts.

    Science.gov (United States)

    Brown, R W; Hungerford, J W; Greenwood, P E; Bloor, R J; Evans, D F; Tsonis, C G; Forage, R G

    1990-09-01

    Immunization of gilts in a commercial piggery against a fusion protein of the alpha subunit of bovine inhibin, produced by recombinant DNA methods, resulted in mean ovulation rate increases of 35% at the oestrus at which, under the piggery's management practices, they would have been mated. Sera from two immunized groups showed mean binding of 6.6% and 4.9% when assayed, at 1:800 final dilution, against iodinated bovine inhibin (Mr 31,000). Ovulation rates of immunized gilts were highly correlated with the ability of serum to bind iodinated native inhibin (r = 0.62; P less than 0.001), particularly when weight and age were included in the correlation (r = 0.72; P = 0.001), and inhibin binding accounted for 38% of the total variation in ovulation rate. Immunization caused no deleterious effects on growth rate or onset of oestrus. These results demonstrate the potential for use of such immunization to increase prolificacy in gilts and young sows.

  8. Increased pulmonary vascular permeability as a cause of re-expansion edema in rabbits

    International Nuclear Information System (INIS)

    Pavlin, D.J.; Nessly, M.L.; Cheney, F.W.

    1981-01-01

    In order to study the mechanism(s) underlying re-expansion edema, we measured the concentration of labeled albumin (RISA) in the extravascular, extracellular water (EVECW) of the lung as a measure of pulmonary vascular permeability. Re-expansion edema was first induced by rapid re-expansion of rabbit lungs that had been collapsed for 1 wk by pneumothorax. The RISA in EVECW was expressed as a fraction of its plasma concentration: (RISA)L/(RISA)PL. The volume of EVECW (ml/gm dry lung) was measured using a 24 Na indicator. Results in re-expansion edema were compared with normal control lungs and with oleic acid edema as a model of permeability edema. In re-expanded lungs, EVECW (3.41 +/- SD 1.24 ml/g) and (RISA)L/(RISA)PL 0.84 +/- SD 0.15) were significantly increased when compared with normal control lungs (2.25 +/- 0.41 ml/g and 0.51 +/- 0.20, respectively). Results in oleic acid edema (5.66 +/- 2.23 ml/g and 0.84 +/- 0.23) were similar to re-expansion edema. This suggested that re-expansion edema is due to increased pulmonary vascular permeability caused by mechanical stresses applied to the lung during re-expansion

  9. The public's belief in climate change and its human cause are increasing over time.

    Science.gov (United States)

    Milfont, Taciano L; Wilson, Marc S; Sibley, Chris G

    2017-01-01

    Polls examining public opinion on the subject of climate change are now commonplace, and one-off public opinion polls provide a snapshot of citizen's opinions that can inform policy and communication strategies. However, cross-sectional polls do not track opinions over time, thus making it impossible to ascertain whether key climate change beliefs held by the same group of individuals are changing or not. Here we examine the extent to which individual's level of agreement with two key beliefs ("climate change is real" and "climate change is caused by humans") remain stable or increase/decrease over a six-year period in New Zealand using latent growth curve modelling (n = 10,436). Data were drawn from the New Zealand Attitudes and Values Study, a probabilistic national panel study, and indicated that levels of agreement to both beliefs have steadily increased over the 2009-2015 period. Given that climate change beliefs and concerns are key predictors of climate change action, our findings suggest that a combination of targeted endeavors, as well as serendipitous events, may successfully convey the emergency of the issue.

  10. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease

    International Nuclear Information System (INIS)

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-01-01

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP swe /PS1 ΔE9 mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP swe /PS1 ΔE9 transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  11. Beliefs of people taking antidepressants about causes of depression and reasons for increased prescribing rates.

    Science.gov (United States)

    Read, John; Cartwright, Claire; Gibson, Kerry; Shiels, Christopher; Haslam, Nicholas

    2014-10-01

    Public beliefs about the causes of mental health problems are related to desire for distance and pessimism about recovery, and are therefore frequently studied. The beliefs of people receiving treatment are researched less often. An online survey on causal beliefs about depression and experiences with antidepressants was completed by 1829 New Zealand adults prescribed anti-depressants in the preceding five years, 97.4% of whom proceeded to take antidepressants. The most frequently endorsed of 17 causal beliefs were family stress, relationship problems, loss of loved one, financial problems, isolation, and abuse or neglect in childhood. Factor analysis produced three factors: 'bio-genetic', 'adulthood stress' and 'childhood adversity'. The most strongly endorsed explanations for increases in antidepressant prescribing invoked improved identification, reduced stigma and drug company marketing. The least strongly endorsed was 'Anti-depressants are the best treatment'. Regression analyses revealed that self-reported efficacy of the antidepressants was positively associated with bio-genetic causal beliefs, negatively associated with childhood adversity beliefs and unrelated to adulthood stress beliefs. The belief that 'People cannot׳ get better by themselves even if they try' was positively associated with bio-genetic beliefs. The convenience sample may have been biased towards a favourable view of bio-genetic explanations, since 83% reported that the medication reduced their depression. Clinicians׳ should consider exploring patients׳ causal beliefs. The public, even when taking antidepressants, continues to hold a multi-factorial causal model of depression with a primary emphasis on psycho-social causes. A three factor model of those beliefs may lead to more sophisticated understandings of relationships with stigma variables. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats.

    Science.gov (United States)

    Yau, Suk-Yu; Lau, Benson Wui-Man; Tong, Jian-Bin; Wong, Richard; Ching, Yick-Pang; Qiu, Guang; Tang, Siu-Wa; Lee, Tatia M C; So, Kwok-Fai

    2011-01-01

    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress.

  13. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats.

    Directory of Open Access Journals (Sweden)

    Suk-Yu Yau

    Full Text Available Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg of corticosterone (CORT for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog /doublecortin (immature neuronal marker showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract

  14. Glehnia littoralis Extract Promotes Neurogenesis in the Hippocampal Dentate Gyrus of the Adult Mouse through Increasing Expressions of Brain-Derived Neurotrophic Factor and Tropomyosin-Related Kinase B

    Directory of Open Access Journals (Sweden)

    Joon Ha Park

    2018-01-01

    Conclusion: G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.

  15. HIV Tat Impairs Neurogenesis through Functioning As a Notch Ligand and Activation of Notch Signaling Pathway.

    Science.gov (United States)

    Fan, Yan; Gao, Xiang; Chen, Jinhui; Liu, Ying; He, Johnny J

    2016-11-02

    Alterations in adult neurogenesis have been noted in the brain of HIV-infected individuals and are likely linked to HIV-associated neurocognitive deficits, including those in learning and memory. But the underlying molecular mechanisms are not fully understood. In the study, we took advantage of doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) and determined the relationship between Tat expression and neurogenesis. Tat expression in astrocytes was associated with fewer neuron progenitor cells (NPCs), fewer immature neurons, and fewer mature neurons in the dentate gyrus of the hippocampus of the mouse brain. In vitro NPC-derived neurosphere assays showed that Tat-containing conditioned media from astrocytes or recombinant Tat protein inhibited NPC proliferation and migration and altered NPC differentiation, while immunodepletion of Tat from Tat-containing conditioned media or heat inactivation of recombinant Tat abrogated those effects. Notch signaling downstream gene Hes1 promoter-driven luciferase reporter gene assay and Western blotting showed that recombinant Tat or Tat-containing conditioned media activated Hes1 transcription and protein expression, which were abrogated by Tat heat inactivation, immunodepletion, and cysteine mutation at position 30. Last, Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) significantly rescued Tat-impaired NPC differentiation in vitro and neurogenesis in vivo Together, these results show that Tat adversely affects NPCs and neurogenesis through Notch signaling and point to the potential of developing Notch signaling inhibitors as HIV/neuroAIDS therapeutics. HIV infection of the CNS causes cognitive and memory deficits, which have become more prevalent in the era of combination antiretroviral therapy (cART). Neurogenesis is impaired in HIV-infected individuals. But the underlying molecular mechanisms remain largely unknown. In this study, we have

  16. Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent

    Science.gov (United States)

    Atkinson, Scott; Klein, Carissa Joy; Weber, Tony; Possingham, Hugh P.

    2017-01-01

    Land-based activities, including deforestation, agriculture, and urbanisation, cause increased erosion, reduced inland and coastal water quality, and subsequent loss or degradation of downstream coastal marine ecosystems. Quantitative approaches to link sediment loads from catchments to metrics of downstream marine ecosystem state are required to calculate the cost effectiveness of taking conservation actions on land to benefits accrued in the ocean. Here we quantify the relationship between sediment loads derived from landscapes to habitat suitability of seagrass meadows in Moreton Bay, Queensland, Australia. We use the following approach: (1) a catchment hydrological model generates sediment loads; (2) a statistical model links sediment loads to water clarity at monthly time-steps; (3) a species distribution model (SDM) factors in water clarity, bathymetry, wave height, and substrate suitability to predict seagrass habitat suitability at monthly time-steps; and (4) a statistical model quantifies the effect of sediment loads on area of seagrass suitable habitat in a given year. The relationship between sediment loads and seagrass suitable habitat is non-linear: large increases in sediment have a disproportionately large negative impact on availability of seagrass suitable habitat. Varying the temporal scale of analysis (monthly vs. yearly), or varying the threshold value used to delineate predicted seagrass presence vs. absence, both affect the magnitude, but not the overall shape, of the relationship between sediment loads and seagrass suitable habitat area. Quantifying the link between sediment produced from catchments and extent of downstream marine ecosystems allows assessment of the relative costs and benefits of taking conservation actions on land or in the ocean, respectively, to marine ecosystems. PMID:29125843

  17. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells.

    Science.gov (United States)

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-04-18

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

  18. Tight Skin 2 Mice Exhibit Delayed Wound Healing Caused by Increased Elastic Fibers in Fibrotic Skin.

    Science.gov (United States)

    Long, Kristen B; Burgwin, Chelsea M; Huneke, Richard; Artlett, Carol M; Blankenhorn, Elizabeth P

    2014-09-01

    Rationale: The Tight Skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of human disease, including tight skin, excessive collagen deposition, alterations in the extracellular matrix (ECM), increased elastic fibers, and occurrence of antinuclear antibodies with age. A tight skin phenotype is observed by 2 weeks of age, but measurable skin fibrosis is only apparent at 10 weeks. We completed a series of wound healing experiments to determine how fibrosis affects wound healing in Tsk2/+ mice compared with their wild-type (WT) littermates. Method: We performed these experiments by introducing four 4 mm biopsy punched wounds on the back of each mouse, ventral of the midline, and observed wound healing over 10 days. Tsk2/+ mice showed significantly delayed wound healing and increased wound size compared with the WT littermates at both 5 and 10 weeks of age. We explored the potential sources of this response by wounding Tsk2/+ mice that were genetically deficient either for the NLRP3 inflammasome (a known fibrosis mediator), or for elastic fibers in the skin, using a fibulin-5 knockout. Conclusion: We found that the loss of elastic fibers restores normal wound healing in the Tsk2/+ mouse and that the loss of the NLRP3 inflammasome had no effect. We conclude that elastic fiber dysregulation is the primary cause of delayed wound healing in the Tsk2/+ mouse and therapies that promote collagen deposition in the tissue matrix in the absence of elastin deposition might be beneficial in promoting wound healing in SSc and other diseases.

  19. Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent.

    Directory of Open Access Journals (Sweden)

    Megan Irene Saunders

    Full Text Available Land-based activities, including deforestation, agriculture, and urbanisation, cause increased erosion, reduced inland and coastal water quality, and subsequent loss or degradation of downstream coastal marine ecosystems. Quantitative approaches to link sediment loads from catchments to metrics of downstream marine ecosystem state are required to calculate the cost effectiveness of taking conservation actions on land to benefits accrued in the ocean. Here we quantify the relationship between sediment loads derived from landscapes to habitat suitability of seagrass meadows in Moreton Bay, Queensland, Australia. We use the following approach: (1 a catchment hydrological model generates sediment loads; (2 a statistical model links sediment loads to water clarity at monthly time-steps; (3 a species distribution model (SDM factors in water clarity, bathymetry, wave height, and substrate suitability to predict seagrass habitat suitability at monthly time-steps; and (4 a statistical model quantifies the effect of sediment loads on area of seagrass suitable habitat in a given year. The relationship between sediment loads and seagrass suitable habitat is non-linear: large increases in sediment have a disproportionately large negative impact on availability of seagrass suitable habitat. Varying the temporal scale of analysis (monthly vs. yearly, or varying the threshold value used to delineate predicted seagrass presence vs. absence, both affect the magnitude, but not the overall shape, of the relationship between sediment loads and seagrass suitable habitat area. Quantifying the link between sediment produced from catchments and extent of downstream marine ecosystems allows assessment of the relative costs and benefits of taking conservation actions on land or in the ocean, respectively, to marine ecosystems.

  20. Rutin increases neural crest stem cell survival against damage caused by aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jader Nones

    2015-09-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n4p1 The neural crest (NC corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potential. The derivatives of the NC at the trunk level include neurons and glial cells of the peripheral nervous system, melanocytes, smooth muscle cells and some endocrine cells. The present work investigated, for the first time, the influence of aflatoxin B1 (AFB1 and the flavonoid rutin on the survival and proliferation of NC and NC-derived melanocytes. Quail NC cell cultures were treated with AFB1 (30 μM and/or rutin (20 μM for 6 days. Cell viability was assessed by MTT and trypan blue analyses and cell proliferation by BrdU staining. Melanocytes were identified by immunocytochemistry against the melanocyte-specific cellular marker MelEM. The AFB1 treatment decreased both NC cell viability and proliferation. The total number of MelEM-positive cells was also reduced after this treatment, an effect partially prevented by the addition of rutin. On the other hand, rutin added alone did not influence the NC cell population. Our results demonstrated that rutin increases the survival of the NC after damage caused by AFB1. However, additional studies are needed to better understand the mechanisms involved in AFB1 and rutin interactions.

  1. Tactile stimulation effects on hippocampal neurogenesis and spatial learning and memory in prenatally stressed rats.

    Science.gov (United States)

    de Los Angeles, Guerrero Aguilera María; Del Carmen, Rubio Osornio María; Wendy, Portillo Martínez; Socorro, Retana-Márquez

    2016-06-01

    Neurogenesis in the dentate gyrus (DG) of the hippocampus is increased by spatial learning and postnatal stimulation. Conversely, prenatal stress (PS) produces a decrease in the proliferation of hippocampal granular cells. This work evaluated the effect of postnatal tactile stimulation (PTS), when applied from birth to adulthood, on cognitive performance and hippocampal neurogenesis (survival and differentiation) in PS female and male rats. The response of the adrenal axis to training in the Morris water maze (MWM) was also analyzed. PS was provided during gestational days 15 through 21. Hippocampal neurogenesis and cognitive performance in the MWM were assessed at an age of three months. Results showed that escape latencies of both female and male PS rats were longer compared to those of their controls (CON). DG cell survival increased in the PS female rats. Corticosterone concentrations were significantly higher in the male and female PS rats after MWM training. PTS improved escape latencies and increased the number of new neurons in the DG of PS animals, and their corticosterone concentrations were similar to those in CON. In CON, PTS diminished DG cell survival but increased differentiation and reduces latency in the MWM. These results show that long-term PTS in PS animals might prevent learning deficits in adults through increase in the number of DG new cells and decrease of the reactivity of the adrenal axis to MWM training. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. © 2015 Society for the Study of Addiction.

  3. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.

    Science.gov (United States)

    Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara

    2017-11-01

    Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.

  4. Hippocampal Neurogenesis and the Brain Repair Response to Brief Stereotaxic Insertion of a Microneedle

    Directory of Open Access Journals (Sweden)

    Shijie Song

    2013-01-01

    Full Text Available We tested the hypothesis that transient microinjury to the brain elicits cellular and humoral responses that stimulate hippocampal neurogenesis. Brief stereotaxic insertion and removal of a microneedle into the right hippocampus resulted in (a significantly increased expression of granulocyte-colony stimulating factor (G-CSF, the chemokine MIP-1a, and the proinflammatory cytokine IL12p40; (b pronounced activation of microglia and astrocytes; and (c increase in hippocampal neurogenesis. This study describes immediate and early humoral and cellular mechanisms of the brain’s response to microinjury that will be useful for the investigation of potential neuroprotective and deleterious effects of deep brain stimulation in various neuropsychiatric disorders.

  5. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting

    Science.gov (United States)

    Yau, Suk-yu; Li, Ang; So, Kwok-Fai

    2015-01-01

    Adult hippocampal neurogenesis is a process involving the continuous generation of newborn neurons in the hippocampus of adult animals. Mounting evidence has suggested that hippocampal neurogenesis contributes to some forms of hippocampus-dependent learning and memory; however, the detailed mechanism concerning how this small number of newborn neurons could affect learning and memory remains unclear. In this review, we discuss the relationship between adult-born neurons and learning and memory, with a highlight on recently discovered potential roles of neurogenesis in pattern separation and forgetting. PMID:26380120

  6. Causes and consequences of increase in child survival rates: ethnoepidemiology among the Hmong of Thailand.

    Science.gov (United States)

    Kunstadter, P; Kunstadter, S L; Leepreecha, P; Podhisita, C; Laoyang, M; Thao, C S; Thao, R S; Yang, W S

    1992-12-01

    The Hmong "hill tribe" minority in Thailand has much higher exposure to factors usually associated with risk of child mortality (high fertility, low status of women, low education, less use of modern medical care for births, exposure to warfare, economic and physical disruption, and poor hygienic conditions) than the rural ethnic Thai population. Nonetheless, infant mortality has declined from over 120 per 1000 to under 50 per 1000 live births among both these populations in the past 30 years. The reason for the rapid increase in child survival among the Hmong appears to be better access to and more use of modern curative and preventive medical care associated with road construction rather than major changes in social or hygienic conditions. Conventional wisdom suggests that high fertility is both a cause and a consequence of high infant and child mortality and that parents will not reduce fertility until they see that mortality has declined. Most Hmong parents recognize the decline in child mortality and attribute it to better access to modern medical care. Most Hmong parents also say that, if they were starting to have children now, they would want to have fewer children. Fear of child death is infrequently mentioned as a motive for having more children, and the perceived decline in child mortality is rarely mentioned as a reason for reduced fertility. Most Hmong parents explain their desired family size in terms of economic conditions rather than perceived risk of child mortality. Results of this study suggest that fertility and child mortality can vary independently of one another and that major reductions in child mortality can be accomplished without waiting for major social changes (e.g., improved education or status of women) or major reductions in fertility.

  7. A possible cause of epistaxis: increased masked hypertension prevalence in patients with epistaxis.

    Science.gov (United States)

    Acar, Baran; Yavuz, Bunyamin; Yıldız, Erdem; Ozkan, Selcuk; Ayturk, Mehmet; Sen, Omer; Deveci, Onur Sinan

    Epistaxis and hypertension are frequent conditions in the adult population. Masked hypertension is defined as a clinical condition in which a patient's office blood pressure level is epistaxis. The prevalence of this condition in patients with epistaxis is not well defined. This study aimed to evaluate the prevalence of masked hypertension using the results of office blood pressure measurement compared with the results of ambulatory blood pressure monitoring. Sixty patients with epistaxis and 60 control subjects were enrolled in the study. All patients with epistaxis and controls without history of hypertension underwent physical examination, including office blood pressure measurement, ambulatory or home blood pressure, and measurement of anthropometric parameters. Mean age was similar between the epistaxis group and the controls - 21-68 years (mean 42.9) for the epistaxis group and 18-71 years (mean 42.2) for the control group. A total of 20 patients (33.3%) in the epistaxis group and 7 patients (11.7%) in the control group (p=0.004) had masked hypertension. Night-time systolic blood pressure was significantly higher in patients with epistaxis than in the control group (pepistaxis (p=0.517). This study demonstrates increased masked hypertension prevalence in patients with epistaxis. We suggest that all patients with epistaxis should undergo ambulatory or home blood pressure to detect masked hypertension, which could be a possible cause of epistaxis. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. Taurine counteracts the suppressive effect of lipopolysaccharide on neurogenesis in the hippocampus of rats.

    Science.gov (United States)

    Wu, Gaofeng; Matsuwaki, Takashi; Tanaka, Yoshinori; Yamanouchi, Keitaro; Hu, Jianmin; Nishihara, Masugi

    2013-01-01

    Neurogenesis has been generally accepted to happen in the subventricular zone lining the lateral ventricular and subgranular zone (SGZ) in the hippocampus of adult mammalian brain. Recent studies have reported that inflammatory stimuli, such as injection of lipopolysaccharide (LPS), impair neurogenesis in the SGZ. Taurine, a sulfur-containing β-amino acid, is a major free intracellular amino acid in many tissues of mammals and having various supplementary effects on the mammalian body functions including the brain. Recently, it has been also reported that taurine levels in the brain significantly increase under stressful conditions. The present study was aimed to evaluate the possible beneficial effects of taurine on the neurogenesis in the SGZ under the condition of acute inflammatory stimuli by LPS. Adult male rats were intraperitoneally injected with taurine once a day for 39 days. Twenty-four hours before the animals were sacrificed on the last day of taurine treatment, LPS was injected simultaneously with bromodeoxyuridine (BrdU). Immunohistochemistry for BrdU, Ki67, and Iba-1 in the brain was performed, and serum levels of TNF-α and IL-1β 2 h after LPS injection were determined. The results showed that LPS significantly decreased the number of immunoreactive cells for both BrdU and Ki67 in the SGZ, while increased that for Iba-1, all of which were restored by taurine administration. Meanwhile, the serum concentrations of TNF-α and IL-1β were significantly increased, which were significantly attenuated by taurine administration. These results suggest that taurine effectively maintains neurogenesis in the SGZ under the acute infectious condition by attenuating the increase of microgliosis in the hippocampus as well as proinflammatory cytokines in the peripheral circulation.

  9. Activation of neural stem cells from quiescence drives reactive hippocampal neurogenesis after alcohol dependence.

    Science.gov (United States)

    Hayes, Dayna M; Nickell, Chelsea G; Chen, Kevin Y; McClain, Justin A; Heath, Megan M; Deeny, M Ayumi; Nixon, Kimberly

    2018-05-01

    Neural stem cell-driven adult neurogenesis contributes to the integrity of the hippocampus. Excessive alcohol consumption in alcoholism results in hippocampal degeneration that may recover with abstinence. Reactive, increased adult neurogenesis during abstinence following alcohol dependence may contribute to recovery, but the mechanism driving reactive neurogenesis is not known. Therefore, adult, male rats were exposed to alcohol for four days and various markers were used to examine cell cycle dynamics, the percentage and number of neural progenitor cell subtypes, and the percentage of quiescent versus activated progenitors. Using a screen for cell cycle perturbation, we showed that the cell cycle is not likely altered at 7 days in abstinence. As the vast majority of Bromodeoxyuridine-positive (+) cells were co-labeled with progenitor cell marker, Sox2, we then developed a quadruple fluorescent labeling scheme to examine Type-1, -2a, -2b and -3 progenitor cells simultaneously. Prior alcohol dependence indiscriminately increased all subtypes at 7 days, the peak of the reactive proliferation. An evaluation of the time course of reactive cell proliferation revealed that cells begin proliferating at 5 days post alcohol, where only actively dividing Type 2 progenitors were increased by alcohol. Furthermore, prior alcohol increased the percentage of actively dividing Sox2+ progenitors, which supported that reactive neurogenesis is likely due to the activation of progenitors out of quiescence. These observations were associated with granule cell number returning to normal at 28 days. Therefore, activating stem and progenitor cells out of quiescence may be the mechanism underlying hippocampal recovery in abstinence following alcohol dependence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Glehnia littoralis Extract Promotes Neurogenesis in the Hippocampal Dentate Gyrus of the Adult Mouse through Increasing Expressions of Brain-Derived Neurotrophic Factor and Tropomyosin-Related Kinase B.

    Science.gov (United States)

    Park, Joon Ha; Shin, Bich Na; Ahn, Ji Hyeon; Cho, Jeong Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Jeon, Yong Hwan; Kang, Il Jun; Yoo, Ki-Yeon; Hwang, In Koo; Lee, Choong Hyun; Noh, Yoo Hun; Kim, Sung-Su; Won, Moo-Ho; Kim, Jong Dai

    2018-03-20

    Glehnia littoralis has been used for traditional Asian medicine, which has diverse therapeutic activities. However, studies regarding neurogenic effects of G. littoralis have not yet been considered. Therefore, in this study, we examined effects of G. littoralis extract on cell proliferation, neuroblast differentiation, and the maturation of newborn neurons in the hippocampus of adult mice. A total of 39 male ICR mice (12 weeks old) were randomly assigned to vehicle-treated and 100 and 200 mg/kg G. littoralis extract-treated groups (n = 13 in each group). Vehicle and G. littoralis extract were orally administrated for 28 days. To examine neurogenic effects of G. littoralis extract, we performed immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU, an indicator for cell proliferation) and doublecortin (DCX, an immature neuronal marker) and double immunofluorescence staining for BrdU and neuronal nuclear antigen (NeuN, a mature neuronal marker). In addition, we examined expressional changes of brain-derived neurotrophic factor (BDNF) and its major receptor tropomyosin-related kinase B (TrkB) using Western blotting analysis. Treatment with 200 mg/kg, not 100 mg/kg, significantly increased number of BrdU-immunoreactive ( + ) and DCX + cells (48.0 ± 3.1 and 72.0 ± 3.8 cells/section, respectively) in the subgranular zone (SGZ) of the dentate gyrus (DG) and BrdU + /NeuN + cells (17.0 ± 1.5 cells/section) in the granule cell layer as well as in the SGZ. In addition, protein levels of BDNF and TrkB (about 232% and 244% of the vehicle-treated group, respectively) were significantly increased in the DG of the mice treated with 200 mg/kg of G. littoralis extract. G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.

  11. A central role for the acid sphingomyelinase/ceramide system in neurogenesis and major depression.

    Science.gov (United States)

    Gulbins, Erich; Walter, Silke; Becker, Katrin Anne; Halmer, Ramona; Liu, Yang; Reichel, Martin; Edwards, Michael J; Müller, Christian P; Fassbender, Klaus; Kornhuber, Johannes

    2015-07-01

    Major depressive disorder is a severe and chronic illness with high lifetime prevalence and a high incidence of suicide as the cause of death for patients with this diagnosis. Major depressive disorder is often treated with anti-depressants. Although these drugs have been used for many years, their exact mode of action is still unknown. It has been suggested that many anti-depressants act by increasing the concentrations of serotonergic transmitters in the synaptic space. However, recent studies have examined the effects of anti-depressants on neurogenesis in the hippocampus, the restoration of hippocampal neuronal networks that may be affected by major depression, and the regulation of the hypothalamic-pituitary-adrenal axis by immature neurons in the hippocampus. Here, we present and discuss a novel hypothesis suggesting that these events are regulated by the concentrations of sphingolipids, in particular ceramide, in the hippocampus. These concepts suggest that the acid sphingomyelinase/ceramide system plays a central role in the pathogenesis of major depression and may be a novel target for anti-depressants. © 2015 International Society for Neurochemistry.

  12. Running wheel training does not change neurogenesis levels or alter working memory tasks in adult rats

    Directory of Open Access Journals (Sweden)

    Cesar A. Acevedo-Triana

    2017-05-01

    Full Text Available Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis, causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12 was subject to a forced exercise program for five days, whereas the control group (n = 9 stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding, or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level.

  13. Understanding adult neurogenesis beyond its role in learning and memory formation

    Directory of Open Access Journals (Sweden)

    Ab Latif Wani

    2017-04-01

    Full Text Available There has been a shift in the understanding of brain, neurons, and their functional role over the last two decades. Earlier it was believed that the brain was a static organ and was not subject to any change throughout life. An understanding was developed later that brain reorganizes its structure by a specific property called neuroplasticity. Recent research shows that the brain generates new neurons even in the adult stage, and this process is called adult neurogenesis. Although researchers still not have all the answers about the newborn neurons, and why and how they are generated, and what is their role, some have highlighted the importance of these in learning and memory formation, and even in memories of fear and spatial navigation. A wide range of environmental experience influences the generation of newborn neurons and their functional variability. There are questions about how different environmental experiences cause the differences in the generation of new neurons. Recently the field of optogenetics attempted to answer the questions on adult neurogenesis. However there are still questions about adult neurogenesis which needs a more naturalistic approach, for their better understanding.

  14. [Reparative Neurogenesis in the Brain and Changes in the Optic Nerve of Adult Trout Oncorhynchus mykiss after Mechanical Damage of the Eye].

    Science.gov (United States)

    Puschina, E V; Varaksin, A A; Obukhov, D K

    2016-01-01

    Reparative proliferation and neurogenesis in the brain integrative centers after mechanical eye injury in an adult trout Oncorhynchus mykiss have been studied. We have found that proliferation and neurogenesis in proliferative brain regions, the cerebellum, and the optic tectum were significantly enhanced after the eye injury. The cerebellum showed a significant increase in the proliferative activity of the cells of the dorsal proliferative zone and parenchymal cells of the molecular and granular layers. One week after the injury, PCNA-positive radial glia cells have been identified in the tectum. We have found for the first time that the eye trauma resulted in the development of local clusters of undifferentiated cells forming so called neurogenic niches in the tectum and cerebellum. The differentiation of neuronal cells detected by labeling cells with antibodies against the protein HuC/D occurred in the proliferative zones of the telencephalon, the optic tectum, cerebellum, and medulla of a trout within 2 days after the injury. We have shown that the HuC/D expression is higher in the proliferative brain regions than in the definitive neurons of a trout. In addition, we have examined cell proliferation, migration, and apoptosis caused by the eye injury in the contra- and ipsilateral optic nerves and adjacent muscle fibers 2 days after the trauma. The qualitative and quantitative assessment of proliferation and apoptosis in the cells of the optic nerve of a trout has been made using antibodies against PCNA and the TUNEL method.

  15. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  16. CAUSE OF A MULTI-SPECIES RADIOIODINE PLUME THAT IS INCREASING IN CONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.

    2010-09-30

    Field and laboratory studies were carried out to understand the cause for steady increases in {sup 129}I concentrations emanating from radiological seepage basins located on the Savannah River Site. The basins were closed in 1988 by adding limestone and blast furnace slag and then capping with a RCRA low permeability engineered cover. Groundwater {sup 129}I concentrations in a well near the seepage basin in 1993 were 200 pCi L{sup -1} and are presently between 400 and 1000 pCi L{sup -1}. Iodine speciation in the plume was not uniform. Near the source, the iodine was comprised of 86% iodide, 2% iodate, and 12% organo-iodine (total activity = 178 pCi L{sup -1}). Whereas, groundwater iodine speciation 365 m down stream (25 m up stream from a wetland) was 0% iodide, 93% iodate, and 7% organo iodine. Batch desorption studies demonstrated that high concentrations of {sup 129}I could be incrementally desorbed from an archived seepage basin sediment sample by raising the pH. Batch sorption studies showed that iodate, IO{sub 3}{sup -}, sorbed more strongly than iodide, I{sup -}, to a subsurface clayey sediment, but equally well as iodide to a subsurface sandy sediment and a wetland sediment. Placing an organic-rich wetland sediment, but not nearby mineral sediments, under reducing (or microaerobic) conditions resulted in a large decrease in iodide K{sub d} values (from 73 to 10 mL g{sup -1}) and iodate K{sub d} values (from 80 to 7 mL g{sup -1}). Between pH and reduction-oxidation potential, it appears that pH seems to have a stronger influence on iodide and iodate sorption to mineral sediment. This may not be true for sediments containing higher concentrations of organic matter, such as the 7.6% organic matter sediment used in this study. First order calculations based on desorption studies with seepage basin sediments indicate that the modest increase of 0.7 pH units detected in the study site groundwater over the last 17 years since closure of the seepage basin may be

  17. Functional neurogenesis in the adult hippocampus

    Science.gov (United States)

    van Praag, Henriette; Schinder, Alejandro F.; Christie, Brian R.; Toni, Nicolas; Palmer, Theo D.; Gage, Fred H.

    2002-02-01

    There is extensive evidence indicating that new neurons are generated in the dentate gyrus of the adult mammalian hippocampus, a region of the brain that is important for learning and memory. However, it is not known whether these new neurons become functional, as the methods used to study adult neurogenesis are limited to fixed tissue. We use here a retroviral vector expressing green fluorescent protein that only labels dividing cells, and that can be visualized in live hippocampal slices. We report that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells. Our findings demonstrate that newly generated cells mature into functional neurons in the adult mammalian brain.

  18. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  19. MicroRNA expression profiling in neurogenesis of adipose tissue ...

    Indian Academy of Sciences (India)

    differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 ...

  20. THE SOCIAL ENVIRONMENT AND NEUROGENESIS IN THE ADULT MAMMALIAN BRAIN

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2012-05-01

    Full Text Available Adult neurogenesis—the formation of new neurons in adulthood—has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones as well as exogenous (e.g., physical activity and environmental complexity factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. Most recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult-adult (e.g., mating, conspecific, and chemosensory signal exposure and adult-offspring (e.g., gestation, parenthood, and exposure to offspring interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant-subordinate interactions on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed.

  1. Methylene Blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats.

    Science.gov (United States)

    Ahmed, Mohammad Ejaz; Tucker, Donovan; Dong, Yan; Lu, Yujiao; Zhao, Ningjun; Wang, Ruimin; Zhang, Quanguang

    2016-11-12

    Ischemic stroke in rodents stimulates neurogenesis in the adult brain and the proliferation of newborn neurons that migrate into the penumbra zone. The present study investigated the effect of Methylene Blue (MB) on neurogenesis and functional recovery in a photothrombotic (PT) model of ischemic stroke in rats. PT stroke model was induced by photo-activation of Rose Bengal dye in cerebral blood flow by cold fiber light. Rats received intraperitoneal injection of either MB (0.5mg/kg/day) from day 1 to day 5 after stroke or an equal volume of saline solution as a control. Cell proliferative marker 5-bromodeoxyuridine (BrdU) was injected twice daily (50mg/kg) from day 2 to day 8 and animals were sacrificed on day 12 after PT induction. We report that MB significantly enhanced cell proliferation and neurogenesis, as evidenced by the increased co-localizations of BrdU/NeuN, BrdU/DCX, BrdU/MAP2 and BrdU/Ki67 in the peri-infarct zone compared with vehicle controls. MB thus effectively limited infarct volume and improved neurological deficits compared to PT control animals. The effects of MB were accompanied with an attenuated level of reactive gliosis and release of pro-inflammatory cytokines, as well as elevated levels of cytochrome c oxidase activity and ATP production in peri-infarct regions. Our study provides important information that MB has the ability to promote neurogenesis and enhance the newborn-neurons' survival in ischemic brain repair by inhibiting microenvironmental inflammation and increasing mitochondrial function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Lasting Adaptations in Social Behavior Produced by Social Disruption and Inhibition of Adult Neurogenesis.

    Science.gov (United States)

    Opendak, Maya; Offit, Lily; Monari, Patrick; Schoenfeld, Timothy J; Sonti, Anup N; Cameron, Heather A; Gould, Elizabeth

    2016-06-29

    Research on social instability has focused on its detrimental consequences, but most people are resilient and respond by invoking various coping strategies. To investigate cellular processes underlying such strategies, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Social disruption produced a preference for familiar over novel conspecifics, a change that did not involve global memory impairments or increased anxiety. Using the neuropeptide oxytocin as a tool to increase neurogenesis in the hippocampus of disrupted rats restored preference for novel conspecifics to predisruption levels. Conversely, reducing the number of new neurons by limited inhibition of adult neurogenesis in naive transgenic GFAP-thymidine kinase rats resulted in social behavior similar to disrupted rats. Together, these results provide novel mechanistic evidence that social disruption shapes behavior in a potentially adaptive way, possibly by reducing adult neurogenesis in the hippocampus. To investigate cellular processes underlying adaptation to social instability, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Unexpectedly, these changes were accompanied by changes in social strategies without evidence of impairments in cognition or anxiety regulation. Restoring adult neurogenesis in disrupted rats using oxytocin and conditionally suppressing the production of new neurons in socially naive GFAP-thymidine kinase rats showed that loss of 6-week-old neurons may be responsible for adaptive changes in social behavior. Copyright © 2016 the authors 0270-6474/16/367027-12$15.00/0.

  3. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Persistent gliosis interferes with neurogenesis in organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Johannes eGerlach

    2016-05-01

    Full Text Available Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC, which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within seven days of cultivation. Accordingly, RT-qPCR analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor (CNTF accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling

  5. Dentate Gyrus Neurogenesis, Integration, and microRNAs

    OpenAIRE

    Luikart, Bryan W; Perederiy, Julia V; Westbrook, Gary L

    2011-01-01

    Neurons are born and become a functional part of the synaptic circuitry in adult brains. The proliferative phase of neurogenesis has been extensively reviewed. We therefore focus this review on a few topics addressing the functional role of adult-generated newborn neurons in the dentate gyrus. We discuss the evidence for a link between neurogenesis and behavior. We then describe the steps in the integration of newborn neurons into a functioning mature synaptic circuit. Given the profound effe...

  6. Violent video games cause an increase in aggression long after the game has been turned off

    NARCIS (Netherlands)

    Bushman, B.J.; Gibson, B

    2011-01-01

    Experimental studies show that violent video games cause people to behave more aggressively, but how long does the effect last? In most experiments, aggression is measured immediately after gameplay. The present experiment is the first to test the long-term causal effects of violent video games on

  7. Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections

    DEFF Research Database (Denmark)

    Siemens, Nikolai; Kittang, Bård R; Chakrakodi, Bhavya

    2015-01-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) has emerged as an important cause of severe skin and soft tissue infections, but little is known of the pathogenic mechanisms underlying tissue pathology. Patient samples and a collection of invasive and non-invasive group G SDSE strains (n = 69...

  8. Myiasis caused by Dermatobia hominis: countries with increased risk for travelers going to neotropic areas.

    Science.gov (United States)

    Villalobos, Guiehdani; Vega-Memije, Maria Elisa; Maravilla, Pablo; Martinez-Hernandez, Fernando

    2016-10-01

    Here, we review the human botfly (Dermatobia hominis), which belongs to a group of Diptera generically known as "myiasis-causing flies," characterized by the ability of their larvae to develop in animal flesh. In addition to its medical and economic importance, there is an academic interest in this botfly because of its peculiar biology, particularly because a phoretic diptera is needed to complete the life cycle. The larvae penetrate the host's skin, causing furuncle-like lesions that are pruritic, painful, and resemble subcutaneous nodules, producing irreversible perforations in the skin. Although D. hominis is distributed from Mexico to Argentina, a review performed by our working group from 1999 to 2015 determined that the countries with the highest infection rates in travelers are Belize, Bolivia, and Brazil. Interestingly, infected men show a higher variation in the distribution of the lesions than in women. Many treatment schemes have been suggested, including the application of highly dense liquids to the lesion to cause anoxia in the D. hominis larvae. We showed, for the first time, a Bayesian inference between D. hominis and other myiasis-causing flies. The flies grouped into two main clusters according to their capacity to produce facultative and obligatory myiasis, and D. hominis was phylogenetically close to Cuterebra spp. © 2016 The International Society of Dermatology.

  9. Decoding the ubiquitous role of microRNAs in neurogenesis.

    Science.gov (United States)

    Nampoothiri, Sreekala S; Rajanikant, G K

    2017-04-01

    Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.

  10. Effects of increased alcohol availability during adolescence on the risk of all-cause and cause-specific disability pension: a natural experiment.

    Science.gov (United States)

    Thern, Emelie; de Munter, Jeroen; Hemmingsson, Tomas; Davey Smith, George; Ramstedt, Mats; Tynelius, Per; Rasmussen, Finn

    2017-06-01

    To test if being exposed to increased alcohol availability during adolescence is associated with an increased risk of receiving disability pension due to all-cause, alcohol use disorders and mental disorders. Register-based population-based study using a natural experiment setting, the alcohol policy change in Sweden (1967-68), with increased access to strong beer in a narrow time window and geographical area. The individuals exposed to the policy change were compared with non-exposed individuals living in the rest of Sweden, excluding a border area. Sweden. A total of 518 810 individuals (70 761 in the intervention group; 448 049 in the control group) born 1948-1953, aged 14-20 years during the policy change. Date and diagnosis of the outcome variable of disability pension due to all-cause, alcohol use disorders and mental disorders were obtained from the Swedish National Social Insurance Agency database from 1971 to 2013. Individual and family level socio-demographic and health-related covariates, as well as a regional level covariate, were included. Compared with the control group, adolescents exposed to the alcohol policy change were at an increased risk of receiving disability pension due to all-causes [hazard ratio (HR) = 1.09, 95% confidence interval (CI) = 1.07-1.11], alcohol use disorders (HR = 1.17, 95% CI = 1.05-1.30) and mental disorders (HR = 1.19, 95% CI = 1.15-1.23). In Sweden, a natural experiment with a 43-year follow-up suggests that exposure to increased alcohol availability during adolescence is associated with an increased risk of receiving a disability pension due to all-cause, alcohol use disorder and mental disorder diagnoses. © 2017 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  11. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis.

    Science.gov (United States)

    Lee, Chang Hwan; Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Liu, Xiaotong; Cai, Mudan; Hong, Jin Gyu; Park, Jeong Hill; Ryu, Jong Hoon

    2013-09-01

    Panax ginseng C.A. Meyer has been used in traditional herb prescriptions for thousands of years. A heat-processing method has been used to increase the efficacy of ginseng, yielding what is known as red ginseng. In addition, recently, a slightly modified heat-processing method was applied to ginseng, to obtain a new type of processed ginseng with increased biological activity; this new form of ginseng is referred to as Sun ginseng (SG). The aim of this study was to investigate the effect of SG on memory enhancement and neurogenesis in the hippocampal dentate gyrus (DG) region. The subchronic administration of SG (for 14 days) significantly increased the latency time in the passive avoidance task relative to the administration of the vehicle control (P memory-enhancing activities and that these effects are mediated, in part, by the increase in the levels of pERK and pAkt and by the increases in cell proliferation and cell survival. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats.

    Directory of Open Access Journals (Sweden)

    Yi-Wei Tsai

    Full Text Available Memory impairment is a frequent complication of brain ischemia. Neurogenesis is implicated in learning and memory and is regulated by the transcription factor c-Fos. Preconditioning intermittent hypoxia (IH attenuates ischemia-related memory impairments, but it is not known whether post-ischemia IH intervention has a similar effect. We investigated the effects of post-ischemia IH on hippocampal neurogenesis and c-Fos expression as well as spatial learning and memory in rats.Focal cerebral ischemia was induced in some rats by middle cerebral artery occlusion (MCAO, while other rats received sham MCAO surgery. Beginning a week later, half of the rats of each group received IH interventions (12% oxygen concentration, 4 hrs/d, for 7 d and half received sham IH sessions. An additional group of rats received MCAO, IH, and injections of the neurogenesis-impairing agent 3'-AZT. Spatial learning and memory was measured in the Morris water maze, and hippocampal neurogenesis and c-Fos expression were examined. Hypoxia-inducible factor 1α (HIF-1α and phosphorylated mitogen-activated protein kinase (pMAPK were considered as possible mediators of IH-induced changes in neurogenesis and c-Fos expression. IH intervention following MCAO resulted in recovered spatial memory, increased hippocampal neurogenesis, and increased expression of c-Fos in newborn hippocampal cells. These effects were blocked by 3'-AZT. IH intervention following MCAO also was associated with increased hippocampal pMAPK and HIF-1α expression.IH intervention following MCAO rescued ischemia-induced spatial learning and memory impairments, likely by inducing hippocampal neurogenesis and c-Fos expression through mediators including pMAPK and HIF-1α.

  13. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats.

    Science.gov (United States)

    Tsai, Yi-Wei; Yang, Yea-Ru; Wang, Paulus S; Wang, Ray-Yau

    2011-01-01

    Memory impairment is a frequent complication of brain ischemia. Neurogenesis is implicated in learning and memory and is regulated by the transcription factor c-Fos. Preconditioning intermittent hypoxia (IH) attenuates ischemia-related memory impairments, but it is not known whether post-ischemia IH intervention has a similar effect. We investigated the effects of post-ischemia IH on hippocampal neurogenesis and c-Fos expression as well as spatial learning and memory in rats. Focal cerebral ischemia was induced in some rats by middle cerebral artery occlusion (MCAO), while other rats received sham MCAO surgery. Beginning a week later, half of the rats of each group received IH interventions (12% oxygen concentration, 4 hrs/d, for 7 d) and half received sham IH sessions. An additional group of rats received MCAO, IH, and injections of the neurogenesis-impairing agent 3'-AZT. Spatial learning and memory was measured in the Morris water maze, and hippocampal neurogenesis and c-Fos expression were examined. Hypoxia-inducible factor 1α (HIF-1α) and phosphorylated mitogen-activated protein kinase (pMAPK) were considered as possible mediators of IH-induced changes in neurogenesis and c-Fos expression. IH intervention following MCAO resulted in recovered spatial memory, increased hippocampal neurogenesis, and increased expression of c-Fos in newborn hippocampal cells. These effects were blocked by 3'-AZT. IH intervention following MCAO also was associated with increased hippocampal pMAPK and HIF-1α expression. IH intervention following MCAO rescued ischemia-induced spatial learning and memory impairments, likely by inducing hippocampal neurogenesis and c-Fos expression through mediators including pMAPK and HIF-1α.

  14. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells

    OpenAIRE

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-01-01

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress...

  15. Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases.

    Science.gov (United States)

    Shin, Hwa Kyoung; Lee, Sae-Won; Choi, Byung Tae

    2017-10-01

    Acupuncture is one of the main healing arts in Oriental medicine. It has long been used in East Asian countries, including Korea and China, and is thought to be an effective alternative treatment for various neurological diseases. The therapeutic effects of acupuncture come from inserting a needle at specific acupoints on the body surface, with subsequent delivery of stimulation via manual rotation or electric pulses (electroacupuncture, EA). In various neurological disease models, peripheral nerve stimulation using acupuncture or EA may have protective effects on neural tissues by increasing expression of neurotrophic factors (NTFs), such as brain-derived neurotrophic factor and glial-derived neurotrophic factor, in the central nervous system, especially the brain. In addition, acupuncture may contribute to recovery from functional impairments following brain damage by encouraging neural stem cell proliferation, which is active at the initial stage of injury, and by further facilitating differentiation. Hence, acupuncture may act as a stimulator activating peripheral nerves at specific acupoints and inducing the expression of various NTFs in the brain. Subsequently, NTFs induced by this treatment trigger autocrine or paracrine signaling, which stimulates adult neurogenesis, thereby exerting therapeutic effects on functional impairments in neurological diseases. Acupuncture may offer an alternative treatment that promotes adult neurogenesis through the expression of NTFs in the brain. It may also have synergistic effects when combined with pharmacological interventions, again facilitating neurogenesis. This review examines recent studies concerning the effects of acupuncture and EA on adult neurogenesis associated with NTF expression in neurological diseases, in particular stroke, Alzheimer's disease, and Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    Science.gov (United States)

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.

  17. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior

    Science.gov (United States)

    Hussaini, Syed Mohammed Qasim; Choi, Chan-Il; Cho, Chang Hoon; Kim, Hyo Jin; Jun, Heechul; Jang, Mi-Hyeon

    2014-01-01

    In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification, and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms. PMID:25263701

  18. Voluntary exercise induces neurogenesis in the hypothalamus and ependymal lining of the third ventricle.

    Science.gov (United States)

    Niwa, Atsuko; Nishibori, Masahiro; Hamasaki, Shinichi; Kobori, Takuro; Liu, Keyue; Wake, Hidenori; Mori, Shuji; Yoshino, Tadashi; Takahashi, Hideo

    2016-04-01

    In the adult hypothalamus and ependymal lining of the third ventricle, tanycytes function as multipotential progenitor cells that enable continuous neurogenesis, suggesting that tanycytes may be able to mediate the restoration of homeostatic function after stroke. Voluntary wheel running has been shown to alter neurochemistry and neuronal function and to increase neurogenesis in rodents. In the present study, we found that voluntary exercise improved the survival rate and energy balance of stroke-prone spontaneously hypertensive rats (SHRSP/Kpo). We also investigated the effect of exercise on the proliferation and differentiation of hypothalamic cells using immunoreactivity for tanycytes and neural markers. The proliferation of elongated cells, which may be the tanycytes, was enhanced in exercising SHRSP compared to sedentary rats before and after stroke. In addition, the proliferation of cells was correlated with the induction of fibroblast growth factor-2 in the subependymal cells of the third ventricle and in the cerebrospinal fluid. Some of the newborn cells of exercising SHRSP showed differentiation into mature neurons after stroke. Our results suggest that voluntary exercise correlates with hypothalamic neurogenesis, leading to recovery of homeostatic functions in the adult brain after stroke.

  19. Causes for the recent increase in sea surface salinity in the north ...

    African Journals Online (AJOL)

    ... salinity budget was used to identify the mechanisms responsible for the increase. When comparing the period 2002–2009 with the period 1993–2001, significant changes in the salt budget were identified. The increase in SSS in the more recent period appeared to be driven by changes in the atmospheric freshwater flux, ...

  20. Increasing Reliability by Means of Root Cause Aware HARQ and Interference Coordination

    DEFF Research Database (Denmark)

    Soret, Beatriz; Gerardino, Guillermo Andrés Pocovi; Pedersen, Klaus I.

    2015-01-01

    of the network. Combined with a ROot Cause Aware HARQ (ROCA-HARQ), which provides additional information when a transmission fails, the joint mechanism is relevant for any LTE/LTE-A deployment and can be easily implemented in a real network. System-level simulations show attractive BLER reductions up to 80......The arrival of mission critical applications in the context of vehicular, medical and industrial wireless communications calls for reliability constraints never seen before in cellular systems. Enhanced Inter-Cell Interference Coordination (eICIC) has been widely investigated in the context of LTE...

  1. Fetal infusions of plasma cause an increase in umbilical vascular resistance in sheep.

    Science.gov (United States)

    Faber, J J; Anderson, D F; Jonker, S S; Davis, L E; Giraud, G D

    2006-08-01

    Earlier studies suggested that the fetal placental circulation is relatively inert with fetal placental flow increasing or decreasing with perfusion pressure. Subsequent studies have demonstrated that the placenta may not be an unreactive vascular bed. The present study was undertaken to determine if plasma infusion-induced hypertension increased fetal placental flow in proportion to the driving pressure across the fetal placental circulation. Six fetal sheep were operated on at 118-122 days to place intravascular catheters and a flow sensor on the common umbilical artery. Starting 6 days later, the fetuses were infused with adult sheep plasma. During the 7-day-long infusion period, they received a total of 1515+/-217 (SD) ml of fluid and 93.2+/-12.0 g of protein. Fetal plasma protein concentrations increased from 34.2+/-2.3 to 77.0+/-9.7 g/l (Pblood pressures rose from 42+/-3 to 59+/-4 mmHg (Ppressures rose from 2.2+/-0.5 to 4.8+/-0.8 mmHg (Ppressure, fetal placental blood flow remained (statistically) constant (627+/-299 ml/min and 552+/-221 ml/min) while fetal umbilical resistance increased from 0.077+/-0.038 to 0.115+/-0.053 mmHg min/ml (Ppressure across the fetal placental circulation. The increase in fetal placental resistance may be a response to the increase in arterial pressure since there was no increase in flow.

  2. Is Global Warming likely to cause an increased incidence of Malaria?

    OpenAIRE

    Nabi, SA; Qader, SS

    2009-01-01

    Abstract: The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer wor...

  3. Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice.

    Science.gov (United States)

    Yamada, Jun; Hatabe, Jun; Tankyo, Kaori; Jinno, Shozo

    2016-12-01

    Adult hippocampal neurogenesis is associated with various brain functions, such as learning, memory, and emotion. Intriguingly, reduction in new cell production in the hippocampus in middle age may underlie some of the cognitive deficits. Among several factors that may affect adult hippocampal neurogenesis, estrogens have been suggested to be critically involved in the cognitive impairment of postmenopausal women. Phytoestrogens, such as daidzein and genistein, are expected to work as estrogen substitutes. In this study, we aimed to clarify the effects of daidzein on adult hippocampal neurogenesis using middle-aged (12-month-old) female mice. Animals received daily intraperitoneal injections of daidzein or vehicle for four weeks, and the cells at specific stages of neurogenesis were presumptively defined using molecular markers. Administration of daidzein did not affect the numerical densities (NDs) of primary progenitors, early transient amplifying progenitors (TAPs), and astrocytes. In contrast, the NDs of late TAPs, neural progenitors, and immature granule cells were increased by daidzein. The NDs of proliferating cells, but not apoptotic cells, were also increased by daidzein. To examine the effects of daidzein on maturation of adult-born cells, we three-dimensionally traced their dendritic arbors: the branch number, total length, and intersection number (Sholl analysis) of immature granule cells were increased by daidzein. In general, the effects of daidzein were more dominant in the dorsal region than in the ventral region. The cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein provides a key to understanding the actions of estrogen substitutes for the treatment of postmenopausal women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome

    Science.gov (United States)

    Vetreno, Ryan P.; Klintsova, Anna; Savage, Lisa M.

    2011-01-01

    Alcohol-induced Wernicke-Korsakoff syndrome (WKS) culminates in bilateral diencephalic lesion and severe amnesia. Using the pyrithiamine-induced thiamine deficiency (PTD) animal paradigm of WKS, our laboratory has demonstrated hippocampal dysfunction in the absence of gross anatomical pathology. Extensive literature has revealed reduced hippocampal neurogenesis following a neuropathological insult, which might contribute to hippocampus-based learning and memory impairments. Thus, the current investigation was conducted to determine whether PTD treatment altered hippocampal neurogenesis in a stage-dependent fashion. Male Sprague-Dawley rats were assigned to one of 4 stages of thiamine deficiency based on behavioral symptoms: pre-symptomatic stage, ataxic stage, early post-opisthotonus stage, or the late post-opisthotonus stage. The S-phase mitotic marker 5′-bromo-2′-deoxyuridine (BrdU) was administered at the conclusion of each stage following thiamine restoration and subjects were perfused 24-hours or 28-days after BrdU to assess cellular proliferation or neurogenesis and survival, respectively. Dorsal hippocampal sections were immunostained for BrdU (proliferating cell marker), NeuN (neurons), GFAP (astrocytes), Iba-1 (microglia), and O4 (oligodendrocytes). The PTD treatment increased progenitor cell proliferation and survival during the early post-opisthotonus stage. However, levels of neurogenesis were reduced during this stage as well as the late post-opisthotonus stage where there was also an increase in astrocytogenesis. The diminished numbers of newly generated neurons (BrdU/NeuN co-localization) was paralleled by increased BrdU cells that did not co-localize with any of the phenotypic markers during these later stages. These data demonstrate that long-term alterations in neurogenesis and gliogenesis might contribute to the observed hippocampal dysfunction in the PTD model and human WKS. PMID:21440532

  5. [Increasing incidence of community-acquired pneumonia caused by atypical microorganisms].

    Science.gov (United States)

    Tazón-Varela, M A; Alonso-Valle, H; Muñoz-Cacho, P; Gallo-Terán, J; Piris-García, X; Pérez-Mier, L A

    2017-09-01

    Knowing the most common microorganisms in our environment can help us to make proper empirical treatment decisions. The aim is to identify those microorganisms causing community-acquired pneumonia. An observational, descriptive and prospective study was conducted, including patients over 14 years with a clinical and radiographic diagnosis of community-acquired pneumonia during a 383 consecutive day period. A record was made of sociodemographic variables, personal history, prognostic severity scales, progress, and pathogenic agents. The aetiological diagnosis was made using blood cultures, detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigens, sputum culture, influenza virus and Streptococcus pyogenes detection. Categorical variables are presented as absolute values and percentages, and continuous variables as their means and standard deviations. Of the 287 patients included in the study (42% women, mean age 66±22 years), 10.45% died and 70% required hospital admission. An aetiological diagnosis was achieved in 43 patients (14.98%), with 16 microorganisms found in 59 positive samples. The most frequently isolated pathogen was Streptococcus pneumonia (24/59, 41%), followed by gram-negative enteric bacilli, Klebsiella pneumonia, Escherichia coli, Serratia marcescens and Enterobacter cloacae isolated in 20% of the samples (12/59), influenza virus (5/59, 9%), methicillin-resistant Staphylococcus aureus (3/59, 5%), Pseudomonas aeruginosa (2/59, 3%), Moraxella catarrhalis (2/59, 3%), Legionella pneumophila (2/59, 3%), and Haemophilus influenza (2/59, 3%). Polymicrobial infections accounted for 14% (8/59). A high percentage of atypical microorganisms causing community-acquired pneumonia were found. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Losing the battle of the bulge: causes and consequences of increasing obesity.

    Science.gov (United States)

    Eckersley, R M

    2001-06-04

    Increasing proportions of Australians are overweight or obese, a problem shared by all developed and, increasingly, developing nations. Now as many people in the world are overweight as underweight. Increasing obesity is a serious public health as well as economic problem. Its associated greater risks of high blood pressure, heart disease, osteoarthritis, type 2 diabetes, some cancers and other health problems consume considerable proportions of healthcare budgets. Health inequalities often reflect social inequalities, but with overweight there is also a male-female difference in the relationship between overweight and socioeconomic status. Health promotion campaigns are underestimating the social determinants of health, and "risk fatigue" is affecting attitudes to complying with healthy lifestyle standards. Proposals to reverse the obesity trend, such as taxing or restricting the advertising of unhealthy foods, raise contentious issues of choice and regulation.

  7. Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations

    Science.gov (United States)

    Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar; Forster, Piers M.; Hodnebrog, Øivind; Andrews, Timothy; Boucher, Olivier; Faluvegi, Gregory; Iversen, Trond; Kasoar, Matthew; Kharin, Viatcheslav; Kirkevâg, Alf; Lamarque, Jean-François; Olivié, Dirk; Richardson, Thomas; Shawki, Dilshad; Shindell, Drew; Smith, Christopher J.; Takemura, Toshihiko; Voulgarakis, Apostolos

    2017-11-01

    We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled-climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m-2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m-2 based on five of the models) is countered by negative rapid adjustments (-0.64 W m-2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m-2—about 20% lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

  8. Effect of Maternal ±Citalopram Exposure on P11 Expression and Neurogenesis in the Mouse Fetal Brain.

    Science.gov (United States)

    King, Jennifer R; Velasquez, Juan C; Torii, Masaaki; Bonnin, Alexandre

    2017-05-17

    Fetal exposure to selective serotonin reuptake inhibitors (SSRI) has been associated with increased risk of adverse neurodevelopmental outcomes. In the adult brain, SSRI therapy regulates p11 (s100a10) expression and alters neurogenesis. The protein p11 indirectly regulates 5-HT signaling through 5-HT1B/D receptors. In the fetal brain, signaling through these receptors modulates axonal circuit formation. We determined whether p11 is expressed in the fetal mouse brain, and whether maternal SSRI exposure affects fetal p11 expression and neurogenesis. The SSRI ± citalopram was administered to pregnant mice from gestational day 8 to 17. Results show that p11 is expressed in fetal thalamic neurons and thalamocortical axons. Furthermore, p11 protein expression is significantly decreased in the fetal thalamus after in utero ±citalopram exposure compared to untreated controls, and neurogenesis is significantly decreased in specific fetal brain regions. These findings reveal differential regulation of p11 expression and altered neurogenesis in the fetal brain as a result of maternal SSRI exposure.

  9. The interplay between the hippocampus and the amygdala in regulating aberrant hippocampal neurogenesis during protracted abstinence from alcohol dependence

    Directory of Open Access Journals (Sweden)

    Chitra D Mandyam

    2013-06-01

    Full Text Available The development of alcohol dependence involves elevated anxiety, low mood, and increased sensitivity to stress, collectively labeled negative affect. Particularly interesting is the recent accumulating evidence that sensitized extrahypothalamic stress systems (e.g., hyperglutamatergic activity, blunted hypothalamic-pituitary-adrenal [HPA] hormonal levels, altered corticotropin-releasing factor signaling, and altered glucocorticoid receptor signaling in the extended amygdala are evident in withdrawn dependent rats, supporting the hypothesis that pathological neuroadaptations in the extended amygdala contribute to the negative affective state. Notably, hippocampal neurotoxicity observed as aberrant dentate gyrus (DG neurogenesis (neurogenesis is a process where neural stem cells in the adult hippocampal subgranular zone generate DG granule cell neurons and DG neurodegeneration are observed in withdrawn dependent rats. These correlations between withdrawal and aberrant neurogenesis in dependent rats suggest that alterations in the DG could be hypothesized to be due to compromised HPA axis activity and associated hyperglutamatergic activity originating from the basolateral amygdala in withdrawn dependent rats. This review discusses a possible link between the neuroadaptations in the extended amygdala stress systems and the resulting pathological plasticity that could facilitate recruitment of new emotional memory circuits in the hippocampus as a function of aberrant DG neurogenesis.

  10. p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex

    Directory of Open Access Journals (Sweden)

    Camille Belzil

    2014-05-01

    Full Text Available Apical neural progenitors (aNPs drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600 in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis.

  11. Is Global Warming likely to cause an increased incidence of Malaria?

    Science.gov (United States)

    Nabi, Sa; Qader, Ss

    2009-03-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world.This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards.

  12. Is Global Warming Likely to Cause an Increased Incidence of Malaria?

    African Journals Online (AJOL)

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by ...

  13. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.

    2015-01-01

    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  14. Is Global Warming Likely to Cause an Increased Incidence of Malaria?

    African Journals Online (AJOL)

    Administratör

    2008-12-17

    Dec 17, 2008 ... reality, like the melting of polar ice caps and glaciers, rising sea levels, changing weather systems, and climate changes [6]. There also have been reports of freshwater shortages, coral reef bleaching, and an increase in surface temperatures [7]. Patz and Kovats have identified six major areas of concern to.

  15. Is Global Warming likely to cause an increased incidence of Malaria?

    Science.gov (United States)

    Nabi, SA; Qader, SS

    2009-01-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world. This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards. PMID:21483497

  16. Probable causes of increasing brucellosis in free-ranging elk of the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Cross, P.C.; Cole, E.K.; Dobson, A.P.; Edwards, W.H.; Hamlin, K.L.; Luikart, G.; Middleton, A.D.; Scurlock, B.M.; White, P.J.

    2010-01-01

    While many wildlife species are threatened, some populations have recovered from previous overexploitation, and data linking these population increases with disease dynamics are limited. We present data suggesting that free-ranging elk (Cervus elaphus) are a maintenance host for Brucella abortus in new areas of the Greater Yellowstone Ecosystem (GYE). Brucellosis seroprevalence in free-ranging elk increased from 0-7% in 1991-1992 to 8-20% in 2006-2007 in four of six herd units around the GYE. These levels of brucellosis are comparable to some herd units where elk are artificially aggregated on supplemental feeding grounds. There are several possible mechanisms for this increase that we evaluated using statistical and population modeling approaches. Simulations of an age-structured population model suggest that the observed levels of seroprevalence are unlikely to be sustained by dispersal from supplemental feeding areas with relatively high seroprevalence or an older age structure. Increases in brucellosis seroprevalence and the total elk population size in areas with feeding grounds have not been statistically detectable. Meanwhile, the rate of seroprevalence increase outside the feeding grounds was related to the population size and density of each herd unit. Therefore, the data suggest that enhanced elk-to-elk transmission in free-ranging populations may be occurring due to larger winter elk aggregations. Elk populations inside and outside of the GYE that traditionally did not maintain brucellosis may now be at risk due to recent population increases. In particular, some neighboring populations of Montana elk were 5-9 times larger in 2007 than in the 1970s, with some aggregations comparable to the Wyoming feeding-ground populations. Addressing the unintended consequences of these increasing populations is complicated by limited hunter access to private lands, which places many ungulate populations out of administrative control. Agency-landowner hunting access

  17. Cancer causes increased mortality and is associated with altered apoptosis in murine sepsis.

    Science.gov (United States)

    Fox, Amy C; Robertson, Charles M; Belt, Brian; Clark, Andrew T; Chang, Katherine C; Leathersich, Ann M; Dominguez, Jessica A; Perrone, Erin E; Dunne, W Michael; Hotchkiss, Richard S; Buchman, Timothy G; Linehan, David C; Coopersmith, Craig M

    2010-03-01

    Whereas most septic patients have an underlying comorbidity, most animal models of sepsis use mice that were healthy before the onset of infection. Malignancy is the most common comorbidity associated with sepsis. The purpose of this study was to determine whether mice with cancer have a different response to sepsis than healthy animals. Prospective, randomized controlled study. Animal laboratory in a university medical center. C57Bl/6 mice. Animals received a subcutaneous injection of either 250,000 cells of the transplantable pancreatic adenocarcinoma cell line Pan02 (cancer) or phosphate-buffered saline (healthy). Three weeks later, mice given Pan02 cells had reproducible, nonmetastatic tumors. Both groups of mice then underwent intratracheal injection of either Pseudomonas aeruginosa (septic) or 0.9% NaCl (sham). Animals were killed 24 hrs postoperatively or followed-up 7 days for survival. Mice with cancer and healthy mice appeared similar when subjected to sham operation, although cancer animals had lower levels of T- and B-lymphocyte apoptosis. Septic mice with cancer had increased mortality compared to previously healthy septic mice subjected to the identical injury (52% vs. 28%; p = .04). This was associated with increased bacteremia but no difference in local pulmonary infection. Septic mice with cancer also had increased intestinal epithelial apoptosis. Although sepsis induced an increase in T- and B-lymphocyte apoptosis in all animals, septic mice with cancer had decreased T- and B-lymphocyte apoptosis compared to previously healthy septic mice. Serum and pulmonary cytokines, lung histology, complete blood counts, and intestinal proliferation were similar between septic mice with cancer and previously healthy septic mice. When subjected to the same septic insult, mice with cancer have increased mortality compared to previously healthy animals. Decreased systemic bacterial clearance and alterations in intestinal epithelial and lymphocyte apoptosis may

  18. Neurogenesis and growth factors expression after complete spinal cord transection in Pleurodeles waltlii

    Directory of Open Access Journals (Sweden)

    Amira Z Zaky

    2015-01-01

    Full Text Available Following spinal lesion, connections between the supra-spinal centers and spinal neuronal networks can be disturbed, which causes the deterioration or even the complete absence of sublesional locomotor activity. In Mammals, possibilities of locomotion restoration are much reduced since descending tracts either have very poor regenerative ability or do not regenerate at all. However, in lower Vertebrates, there is spontaneous locomotion recuperation after complete spinal cord transection at the mid-trunk level. This phenomenon depends on a translesional descending axon re-growth originating from the brainstem. On the other hand, cellular and molecular mechanisms underlying spinal cord regeneration and in parallel, locomotion restoration of the animal, are not well known. FGF-2 plays an important role in different processes such as neural induction, neuronal progenitor proliferation and their differentiation. Studies had shown an over expression of this growth factor after tail amputation. Nestin, a protein specific for intermediate filaments, is considered as an early marker for neuronal precursors. It has been recently shown that its expression increases after tail transection in Urodeles. Using this marker and western blots, our results show that the increase in the number of FGF-2 and FGFR2 mRNAs is correlated with an increase in neurogenesis especially in the central canal lining cells immediately after lesion. This study also confirms that spinal cord re-growth through the lesion site initially follows a rostrocaudal direction. In addition to its role known in neuronal differentiation, FGF-2 could be implicated in the differentiation of ependymal cells into neuronal progenitors.

  19. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  20. Ocean Acidification Causes Increased Calcium Carbonate Turnover during Larval Shell Formation

    Science.gov (United States)

    Frieder, C.; Pan, F.; Applebaum, S.; Manahan, D. T.

    2016-02-01

    Mollusca is a major taxon for studies of the evolution and mechanisms of calcification. Under current and future ocean change scenarios, decreases in shell size have been observed in many molluscan species during early development. The mechanistic basis for these decreases are of significant interest. In this study, Pacific oyster larvae (Crassostrea gigas) reared at aragonite undersaturation (Ω > 1). Coupling radioisotope tracer assays with mineral mass measurements allowed calculation of calcification budgets for first shell formation in veliger stage larvae. Three primary mechanisms (in order of increasing effect) contributed to the change in shell mass at undersaturation: delayed onset of calcification, increased dissolution rates, and decreased net calcification rates. The observation of dissolution indicates turnover of the newly formed shell, and physicochemical constraints of undersaturation provide a mechanistic basis for decreased calcification.

  1. [Light pollution increases morbidity and mortality rate from different causes in male rats].

    Science.gov (United States)

    Bukalev, A V; Vinogradova, I A; Zabezhinskiĭ, M A; Semenchenko, A V; Anisimov, V N

    2012-01-01

    The influence of different light regimes (constant light--LL; constant darkness--DD; standard light regime--LD, 12 hours light 12 hours darkness; natural lightening of the North-West of Russia--NL) on the dynamics of life's morbidity rate, spontaneous tumorigenesis and frequency of some kinds of non-tumor pathology revealed at the post-mortem examination of male rats was studied. It was found out that the maintenance of animals at LL and NL conditions led to the increase of the number of infectious diseases, substantially faster development of spontaneous tumors and the increase of non-tumor diseases in comparison with the animals kept at LD (standard light) regime. Light deprivation (DD) led to substantial reduction of development of new growth, of non-tumor and infectious diseases in comparison with the similar parameters in standard light regime.

  2. Increased alcohol consumption as a cause of alcoholism, without similar evidence for depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Orsted, David Dynnes; Tolstrup, Janne Schurmann

    2015-01-01

    BACKGROUND: Increased alcohol consumption has been associated with depression and alcoholism, but whether these associations are causal remains unclear. We tested whether alcohol consumption is causally associated with depression and alcoholism. METHODS: We included 78 154 men and women aged 20.......04 (1.03-1.06) observational for prescription antidepressant use, and 4.52 (0.99-20.5) causal and 0.98 (0.94-1.03) observational for hospitalization/death with depression. CONCLUSIONS: These data indicate that the association between increased alcohol consumption and alcoholism is causal, without......-100 years randomly selected in 1991-2010 from the general population of Copenhagen, Denmark, and genotyped 68 486 participants for two genetic variants in two alcohol dehydrogenase (ADH) genes, ADH-1B (rs1229984) and ADH-1C (rs698). We performed observational and causal analyses using a Mendelian...

  3. Adult Hippocampal Neurogenesis is Impaired by Transient and Moderate Developmental Thyroid Hormone Disruption

    Science.gov (United States)

    Severe thyroid hormone (TH) deprivation during development impairs neurogenesis throughout the brain. The hippocampus also maintains a capacity for neurogenesis throughout life which is reduced in adult-onset hypothyroidism. This study examined hippocampal volume in the neonate a...

  4. Collapse of a historic oyster fishery: diagnosing causes and identifying paths toward increased resilience

    Directory of Open Access Journals (Sweden)

    Edward V. Camp

    2015-09-01

    Full Text Available Diagnosing causal factors of change at the ecosystem level is challenging because multiple drivers often interact at various spatial and temporal scales. We employ an integrated natural and social science approach to assess potential mechanisms leading to the collapse of an estuarine social-ecological system, and recommend future paths to increased system resilience. Our case study is the collapse of the eastern oyster (Crassostrea virginica fishery in Apalachicola Bay, Florida, USA, and the associated impacts on local resource dependent communities. The oyster fishery collapse is the most recent in a series of environmental stressors to this region, which have included hurricanes and tropical storms, drought, and the Deepwater Horizon oil spill. We found it likely that the oyster collapse was not related to contamination from the recent oil spill, but rather to factors affecting oyster recruitment and survival, which may have been mediated by both human, e.g., fishing-related habitat alteration, and environmental, e.g., increased natural mortality from predators and disease, factors. The relative impact of each of these factors is likely to increase in the future because of changing climate and increased demand for fishery, water, and petroleum resources. Successful restoration and persistence of a viable oyster fishery will depend on: (1 implementation of some minimal best management practices, e.g., extensive habitat restoration via shell addition, and some spatial closures to harvest, (2 improving environmental knowledge and promoting episodic learning through enhanced monitoring and experimental management, and (3 continued community engagement necessary to produce adaptable governance suitable to responding to future unexpected challenges.

  5. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice.

    Science.gov (United States)

    Seong, Kyung-Joo; Kim, Hyeong-Jun; Cai, Bangrong; Kook, Min-Suk; Jung, Ji-Yeon; Kim, Won-Jae

    2018-03-01

    The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

  6. Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake

    Science.gov (United States)

    Rytuba, J. J.; Holzer, T. L.

    2014-12-01

    Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.

  7. Increased toxic urinary cations in males with interstitial cystitis: a possible cause of bladder symptoms.

    Science.gov (United States)

    Argade, Sulabha; Berecz, Zoltan; Su, Yongxuan; Parsons, C Lowell

    2016-12-01

    To identify and quantify toxic urinary cations in male patients with bladder pain syndrome/interstitial cystitis versus male controls, to compare them in symptomatic patients to those significantly improved, and to evaluate cytotoxicity of these cations to cultured urothelial cells to determine whether Tamm-Horsfall protein (THP) can neutralize the cations. Isolation of cationic fraction (CFs) was achieved by solid phase extraction on urine specimens of 51 male patients with IC and 33 male controls. C 18 reverse-phase high-performance liquid chromatography was used to profile and quantify cationic metabolites. Major CF peaks were identified by liquid chromatography-tandem mass spectrometry. HTB-4 urothelial cells were used to determine the cytotoxicity of CFs, individual metabolites, and of metabolite mixture with THP of patient versus THP of control subject. CF content was significantly higher in patients compared to controls (p < 0.001). Patients had higher levels of modified nucleosides, amino acids, and their derivatives compared to controls. Cytotoxicity for control versus patient mean (SEM) percent was 1.7 (2.9) % versus 63.0 (3.7) %, respectively, (p < 0.001). Cytotoxicity of metabolites was reduced in the presence of THP of control compared to THP of patient (p < 0.001). Patients with IC had significantly higher levels of cationic metabolites with higher cytotoxicity compared to controls. THP of these patients had reduced ability to sequester cytotoxicity of cationic metabolites. Patients who significantly improved on therapy had the same levels and toxicity of cationic metabolites as symptomatic males, suggesting that these cations may be the cause of epithelial dysfunction in IC.

  8. Hepatic radiofrequency ablation causes an increase of circulating histones in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Gu, Tao; Ge, Yang; Song, Yuezhang; Fu, Zhanzhao; Zhang, Yunjie; Wang, Guangxia; Shao, Shasha; Wen, Tao

    2015-11-01

    Radiofrequency ablation (RFA) has been increasingly accepted for the treatment of hepatocellular carcinoma (HCC). However, RFA has been associated with an obvious systemic inflammatory response, but little is known about the underlying mechanisms. Circulating histones are recently identified as pivotal inflammatory mediators. Hence, we investigated whether circulating histones are involved in RFA-related inflammation. Serial blood samples were collected from 42 HCC patients undergoing RFA at 3 time points: pre-RFA, post-RFA (within 24 h), and in 4-week follow up after RFA. Plasma histones, myeloperoxidase (MPO), inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α), liver damage parameters (ALT, AST), and creatinine were measured. Compared to pre-RFA (0.837 μg/ml), there was a significant increase in the levels of circulating histones within 24 h post-RFA (4.576 μg/ml, p histones decreased to pre-RFA levels in 4-week follow up after RFA. Meanwhile, MPO, IL-6, and IL-10 were elevated remarkably within 24 h post-RFA, indicative of an occurrence of the inflammatory response. Notably, histone levels correlated well with MPO (r = 0.5678), IL-6 (r = 0.4851), and IL-10 (r = 0.3574), respectively. In addition, there was a significant damage of liver function in patients within 24 h post-RFA, evidenced by the increased levels of ALT and AST. No changes in creatinine levels were observed. These data demonstrate that circulating histones are excessively released in HCC patients treated with RFA, which may lead to systemic inflammation by stimulating neutrophil activation and promoting cytokine production. Circulating histones may act as a novel marker to indicate the extent of inflammation related to RFA.

  9. Atypical celiac disease as cause of increased need for thyroxine: a systematic study.

    Science.gov (United States)

    Virili, Camilla; Bassotti, Giulia; Santaguida, Maria Giulia; Iuorio, Raffaella; Del Duca, Susanna Carlotta; Mercuri, Valeria; Picarelli, Antonio; Gargiulo, Patrizia; Gargano, Lucilla; Centanni, Marco

    2012-03-01

    Replacement T4 dose in hypothyroid patients bearing both chronic autoimmune thyroiditis and atypical celiac disease (CD) has been analyzed. Replacement T4 dose has been analyzed in 35 hypothyroid patients with Hashimoto's thyroiditis (HT) and atypical CD, as defined by the American Gastroenterological Association. We have evaluated the ability of the same dose of T4 to reach target TSH in 21 patients before and during gluten-free diet (GFD). In the remaining 14 patients, noncompliant with GFD, we analyzed replacement T4 dose and compared it with that in a similar group consisting of 68 patients with hypothyroid HT but no evidence of celiac sprue or other conditions interfering with T4 absorption. In patients with isolated HT, the desired serum TSH (median=1.02 mU/liter) was reached in all patients after 5±2 months of treatment at a median T4 dose of 1.31 μg/kg·d. After a similar period and dose of T4, higher levels of TSH (median=4.20 mU/liter) were observed in patients with HT and CD. In 21 CD patients, target TSH (median TSH=1.25 mU/liter) has been attained after 11±3 months of GFD without increasing T4 dose (1.32 μg/kg·d). In the remaining 14 patients, who were noncompliant with GFD, target TSH has also been achieved but at a higher T4 dose (median=1.96 μg/kg·d; +49%; P=0.0002) than in hypothyroid patients without CD. Atypical CD increases the need for T4. The effect was reversed by GFD or by increasing T4 dose. Malabsorption of T4 may provide the opportunity to detect CD that was overlooked until the patients were put under T4 therapy.

  10. Systematic appraisal of lactose intolerance as cause of increased need for oral thyroxine.

    Science.gov (United States)

    Cellini, Miriam; Santaguida, Maria Giulia; Gatto, Ilenia; Virili, Camilla; Del Duca, Susanna Carlotta; Brusca, Nunzia; Capriello, Silvia; Gargano, Lucilla; Centanni, Marco

    2014-08-01

    An increased need for T4 has been described in patients with different gastrointestinal disorders. However, there is a lack of systematic studies assessing the need for T4 in hypothyroid patients with lactose intolerance, a widespread and often occult disorder. The objective of the study was to assess the replacement T4 dose required in hypothyroid patients with lactose intolerance. This was a cohort study. The study was conducted at an outpatient endocrinology unit in a University Hospital. The replacement T4 dose has been analyzed, from 2009 to 2012, in 34 hypothyroid patients due to Hashimoto's thyroiditis and lactose intolerance and being noncompliant with a lactose-free diet. An individually tailored T4 dose was measured. In all patients with isolated Hashimoto's thyroiditis, target TSH (median TSH 1.02 mU/L) was obtained at a median T4 dose of 1.31 μg/kg/d. In patients with lactose intolerance, only five of 34 patients reached the desired TSH (median TSH 0.83 mU/L) with a similar T4 dose (1.29 μg/kg/d). In the remaining 29 patients, the T4 dose was progressively increased and the target TSH (median TSH 1.21 mU/L) was attained at a median T4 dose of 1.81 μg/kg/d (+38%, P lactose intolerance, a median T4 dose of 1.72 μg/kg/d (+31% P lactose intolerance significantly increased the need for oral T4 in hypothyroid patients.

  11. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    Science.gov (United States)

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  12. Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Scholze, M.; Petersen, Marta Axelstad

    2008-01-01

    of several anti-androgenic chemicals. In a mixture (MIX) study with three androgen receptor antagonists, vinclozolin, flutamide and procymidone, rats were gavaged during gestation and lactation with several doses of a MIX of the three chemicals or the chemicals alone. External malformations of the male...... reproductive organs were assessed on PND 47 using a score from 0 to 3 (normal to marked) for hypospadias. Markedly increased frequencies were observed after exposure to a MIX of the three chemicals compared to administration of the three chemicals alone. Anogenital distance at PND 1, nipple retention at PND 13...

  13. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  14. Reduced knee flexion is a possible cause of increased loading rates in individuals with patellofemoral pain.

    Science.gov (United States)

    Silva, Danilo de Oliveira; Briani, Ronaldo Valdir; Pazzinatto, Marcella Ferraz; Ferrari, Deisi; Aragão, Fernando Amâncio; Azevedo, Fábio Mícolis de

    2015-11-01

    Stair ascent is an activity that exacerbates symptoms of individuals with patellofemoral pain. The discomfort associated with this activity usually results in gait modification such as reduced knee flexion in an attempt to reduce pain. Although such compensatory strategy is a logical approach to decrease pain, it also reduces the normal active shock absorption increasing loading rates and may lead to deleterious and degenerative changes of the knee joint. Thus, the aims of this study were (i) to investigate whether there is reduced knee flexion in adults with PFP compared to healthy controls; and (ii) to analyze loading rates in these subjects, during stair climbing. Twenty-nine individuals with patellofemoral pain and twenty-five control individuals (18-30 years) participated in this study. Each subject underwent three-dimensional kinematic and kinetic analyses during stair climbing on two separate days. Between-groups analyses of variance were performed to identify differences in peak knee flexion and loading rates. Intraclass correlation coefficient was performed to verify the reliability of the variables. On both days, the patellofemoral pain group demonstrated significantly reduced peak knee flexion and increased loading rates. In addition, the two variables obtained high to very high reliability. Reduced knee flexion during stair climbing as a strategy to avoid anterior knee pain does not seem to be healthy for lower limb mechanical distributions. Repeated loading at higher loading rates may be damaging to lower limb joints. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Dharmalingam Mohandass

    2015-09-01

    Full Text Available Recent herbarium-based phenology assessments of many plant species have found significant responses to global climate change over the previous century. In this study, we investigate how the flowering phenology of three alpine ginger Roscoea species responses to climate change over the century from 1913 to 2011, by comparing between herbarium-based phenology records and direct flowering observations. According to the observations, flowering onset of the three alpine ginger species occurred either 22 days earlier or was delayed by 8–30 days when comparing the mean peak flowering date between herbarium-based phenology records and direct flowering observations. It is likely that this significant change in flowering onset is due to increased annual minimum and maximum temperatures and mean annual temperature by about 0.053°C per year. Our results also show that flowering time changes occurred due to an increasing winter–spring minimum temperature and monsoon minimum temperature, suggesting that these Roscoea species respond greatly to climate warming resulting in changes on flowering times.

  16. The Internet and Video Games: Causes of Increased Aggressiveness Among Young People

    Directory of Open Access Journals (Sweden)

    Nataša Ružić

    2011-12-01

    Full Text Available The increase in youth violence is among the most serious problems facing modern society. Many experts adhere to the opinion that responsibility for this phenomenon is borne by families, schools, and the media. The so-called digital generation spends much of its free time on the Internet and accepts the values imposed by the media. The modern criterion of success is to reach glory by any means necessary. As such, it is understandable that young people, eager for publicity, look for creative ways to attract attention. One of the most expedient ways to achieve fame and prove their ‘originality’ is by posting videos of violent behavior on websites like YouTube. The Internet has brought limitless freedom in the exposure of inappropriate content and has thus contributed to an increase in violence among the young, primarily through the video games industry. Based on all the above, we argue that the Internet has spurred and intensified the development of cyberbullying.

  17. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    International Nuclear Information System (INIS)

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein

  18. A macro-enzyme cause of an isolated increase of alkaline phosphatase.

    Science.gov (United States)

    Cervinski, Mark A; Lee, Hong Kee; Martin, Isabella W; Gavrilov, Dimitar K

    2015-02-02

    Macroenzyme complexes of serum enzymes and antibody can increase the circulating enzymatic activity and may lead to unnecessary additional testing and procedures. Laboratory physicians and scientists need to be aware of techniques to identify macroenzyme complexes when suspected. To investigate the possibility of a macro-alkaline phosphatase in the serum of a 74 year old male with persistently increased alkaline phosphatase we coupled a protein A/G agarose affinity chromatography technique with isoenzyme electrophoresis to look for the presence of macro-alkaline phosphatase. The majority of the alkaline phosphatase activity in the patient's serum sample was bound to the column and only a minor fraction (25%) of alkaline phosphatase activity was present in the column flow-through. The alkaline phosphatase activity was also found to co-elute with the immunoglobulins in the patient sample. The alkaline phosphatase activity in a control serum sample concurrently treated in the same manner did not bind to the column and was found in the column flow-through. The use of protein A/G agarose affinity chromatography is a rapid and simple method that can be applied to the investigation of other macro-enzyme complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Peritoneal Dialysis Catheter Increases Leukocyte Recruitment in the Mouse Parietal Peritoneum Microcirculation and Causes Fibrosis.

    Science.gov (United States)

    Kowalewska, Paulina M; Margetts, Peter J; Fox-Robichaud, Alison E

    2016-01-01

    ♦ The objective of this study was to examine the effects of a conventional dialysis solution and peritoneal catheter on leukocyte-endothelial cell interactions in the microcirculation of the parietal peritoneum in a subacute peritoneal dialysis (PD) mouse model. ♦ An intraperitoneal (IP) catheter with a subcutaneous injection port was implanted into mice and, after a 2-week healing period, the animals were injected daily for 6 weeks with a 2.5% dextrose solution. Intravital microscopy (IVM) of the parietal peritoneum microcirculation was performed 4 hours after the last injection of the dialysis solution. Leukocyte-endothelial cell interactions were quantified and compared with catheterized controls without dialysis treatment and naïve mice. ♦ The number of rolling and extravascular leukocytes along with peritoneal fibrosis and neovascularization were significantly increased in the catheterized animals compared with naïve mice but did not significantly differ between the 2 groups of catheterized animals with sham injections or dialysis solution treatment. ♦ The peritoneal catheter implant increased leukocyte rolling and extravasation, peritoneal fibrosis and vascularization in the parietal peritoneum independently from the dialysis solution treatment. Copyright © 2016 International Society for Peritoneal Dialysis.

  20. Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption?

    Science.gov (United States)

    Henshaw, Denis L; Reiter, Russel J

    2005-01-01

    Epidemiological studies have reported associations between exposure to power frequency magnetic fields and increased risk of certain cancer and noncancer illnesses. For childhood leukemia, a doubling of risk has been associated with exposures above 0.3/0.4 microT. Here, we propose that the melatonin hypothesis, in which power frequency magnetic fields suppress the nocturnal production of melatonin in the pineal gland, accounts for the observed increased risk of childhood leukemia. Such melatonin disruption has been shown in animals, especially with exposure to electric and/or rapid on/off magnetic fields. Equivocal evidence has been obtained from controlled laboratory magnetic field exposures of volunteers, although the exposure conditions are generally atypical of neighborhood exposures. In contrast, support for the hypothesis is found in the body of studies showing magnetic field disruption of melatonin in human populations chronically exposed to both electric and magnetic fields associated with electricity distribution. Further support comes from the observation that melatonin is highly protective of oxidative damage to the human haemopoietic system. Aspects of the hypothesis are amenable to further investigation. Copyright 2005 Wiley-Liss, Inc

  1. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    He Liu

    2016-01-01

    Full Text Available Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.

  2. The role of adult neurogenesis in psychiatric and cognitive disorders.

    Science.gov (United States)

    Apple, Deana M; Fonseca, Rene Solano; Kokovay, Erzsebet

    2017-01-15

    Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Development and regulation of the V-SVZ and SGZ is unique to each brain region, but with several similar characteristics. Alterations to the production of new neurons in neurogenic regions have been linked to psychiatric and neurodegenerative disorders. Decline in neurogenesis in the SGZ correlates with affective and psychiatric disorders, and can be reversed by antidepressant and antipsychotic drugs. Likewise, neurogenesis in the V-SVZ can also be enhanced by antidepressant drugs. The regulation of neurogenesis by neurotransmitters, particularly monoamines, in both regions suggests that aberrant neurotransmitter signaling observed in psychiatric disease may play a role in the pathology of these mental health disorders. Similarly, the cognitive deficits that accompany neurodegenerative disease may also be exacerbated by decreased neurogenesis. This review explores the regulation and function of neural stem cells in rodents and humans, and the involvement of factors that contribute to psychiatric and cognitive deficits. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. G-Protein-Coupled Receptors in Adult Neurogenesis

    Science.gov (United States)

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  4. Effects of amphetamine administration on neurogenesis in adult rats

    Directory of Open Access Journals (Sweden)

    Tomasz Stępień

    2017-12-01

    Full Text Available In our study expression of phospho-(Ser-10-histone H3 (pH3S10, a marker for the early stage of neurogenesis, and cellular early response genes were investigated using c-Fos protein as an example of a transcription factor in the neurogenic process in rats. Neurogenesis in the adult brain is regulated by endo- and exogenous factors, which influence the proliferation potential of progenitor cells and accelerate the dendritic development of newborn neurons. D-amphetamine, a psychoactive substance, is one of the exogenous factors able to influence the process of neurogenesis. The rats were injected with D-amphetamine at a dose of 1.5 mg/kg/body weight (b.w. under one administration scheme. Analysis of the pH3S10 and c-Fos expression levels in the group of D-amphetamine administered rats provided evidence of enhanced expression of these proteins in the regions of neurogenesis occurrence in rats. However, conclusions concerning stimulant effects of amphetamine on neurogenesis should be formulated with great caution, taking into account amphetamine dosage and the administration scheme. It should also be remembered that doses of psychoactive substances used in animal models can be lethal to humans.

  5. New treatment options for infections caused by increasingly antimicrobial-resistant Neisseria gonorrhoeae.

    Science.gov (United States)

    Lee, Hyukmin; Lee, Kyungwon; Chong, Yunsop

    2016-01-01

    The emergence of high-level resistance to ceftriaxone is giving rise to serious concern about absence of effective treatment options to cure gonococcal infections. Increasing the dosage regimen can be applied to ceftriaxone and azithromycin, but the emergence of high-level resistance has already been reported. Spectinomycin is another active drug but has low efficacy in the treatment of pharyngeal gonorrhoea. Conventional antibiotics could be introduced for gonococcal treatment, but they have some limitations, such as the absence of clinical trials and breakpoint. Combining antibiotics is another promising method to cure patients and to prevent the emergence of resistance. The most important strategy to maintain the efficacy of antibiotics is rapid detection and dissemination control of novel resistant isolate.

  6. Prostaglandin E1 causes sedation and increases 5-hydroxytryptamine turnover in rat brain

    Science.gov (United States)

    Haubrich, D. R.; Perez-Cruet, J.; Reid, W. D.

    1973-01-01

    1. Administration of prostaglandin E1 (1 mg/kg, i.p.) to rats induced sedation and a decrease in muscular tone. Prostaglandin E1-induced sedation was accompanied by the low voltage-high frequency E.E.G. pattern characteristic of the waking animal. 2. Administration of prostaglandin E1 also increased the turnover rate of 5-hydroxytryptamine and raised the concentration of acetylcholine in brain. 3. The behavioural effects of prostaglandin were blocked by prior administration of p-chlorophenylalanine or pargyline, drugs which lowered the brain concentration of 5-hydroxyindoleacetic acid (5-HIAA), and was potentiated by pretreatment with probenecid, which elevated the 5-HIAA concentration. Pretreatment with atropine sulphate failed to alter prostaglandin E1-induced sedation. 4. The results are compatible with the possibility that prostaglandin E1 induces a state resembling paradoxical sleep through an action on 5-hydroxytryptamine metabolism in brain. PMID:4269288

  7. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells

    Science.gov (United States)

    Schatten, H.; Lewis, M. L.; Chakrabarti, A.

    2001-01-01

    The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985. c 2001. Elsevier Science Ltd. All rights reserved.

  8. Increased Denitrification Rates Associated with Shifts in Prokaryotic Community Composition Caused by Varying Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Abigail Tomasek

    2017-11-01

    Full Text Available While modern developments in agriculture have allowed for increases in crop yields and rapid human population growth, they have also drastically altered biogeochemical cycles, including the biotransformation of nitrogen. Denitrification is a critical process performed by bacteria and fungi that removes nitrate in surface waters, thereby serving as a potential natural remediation strategy. We previously reported that constant inundation resulted in a coupling of denitrification gene abundances with denitrification rates in sediments, but these relationships were not maintained in periodically-inundated or non-inundated environments. In this study, we utilized Illumina next-generation sequencing to further evaluate how the microbial community responds to these hydrologic regimes and how this community is related to denitrification rates at three sites along a creek in an agricultural watershed over 2 years. The hydrologic connectivity of the sampling location had a significantly greater influence on the denitrification rate (P = 0.010, denitrification gene abundances (P < 0.001, and the prokaryotic community (P < 0.001, than did other spatiotemporal factors (e.g., creek sample site or sample month within the same year. However, annual variability among denitrification rates was also observed (P < 0.001. Furthermore, the denitrification rate was significantly positively correlated with water nitrate concentration (Spearman's ρ = 0.56, P < 0.0001, denitrification gene abundances (ρ = 0.23–0.47, P ≤ 0.006, and the abundances of members of the families Burkholderiaceae, Anaerolinaceae, Microbacteriaceae, Acidimicrobineae incertae sedis, Cytophagaceae, and Hyphomicrobiaceae (ρ = 0.17–0.25, P ≤ 0.041. Prokaryotic community composition accounted for the least amount of variation in denitrification rates (22%, while the collective influence of spatiotemporal factors and gene abundances accounted for 37%, with 40% of the variation related to

  9. Polyplex exposure inhibits cell cycle, increases inflammatory response, and can cause protein expression without cell division.

    Science.gov (United States)

    Matz, Rebecca L; Erickson, Blake; Vaidyanathan, Sriram; Kukowska-Latallo, Jolanta F; Baker, James R; Orr, Bradford G; Banaszak Holl, Mark M

    2013-04-01

    We sought to evaluate the relationship between cell division and protein expression when using commercial poly(ethylenimine) (PEI)-based polyplexes. The membrane dye PKH26 was used to assess cell division, and cyan fluorescent protein (CFP) was used to monitor protein expression. When analyzed at the whole population level, a greater number of cells divided than expressed protein, regardless of the level of protein expression observed, giving apparent consistency with the hypothesis that protein expression requires cells to pass through mitosis in order for the transgene to overcome the nuclear membrane. However, when the polyplex-exposed population was evaluated for the amount of division in the protein-expressing subpopulation, it was observed that substantial amounts of expression had occurred in the absence of division. Indeed, in HeLa S3 cells, this represented the majority of expressing cells. Of interest, the doubling time for both cell lines was slowed by ~2-fold upon exposure to polyplexes. This change was not altered by the origin of the plasmid DNA (pDNA) transgene promoter (cytomegalovirus (CMV) or elongation factor-1 alpha (EF1α)). Gene expression arrays in polyplex-exposed HeLa S3 cells showed upregulation of cell cycle arrest genes and downregulation of genes related to mitosis. Chemokine, interleukin, and toll-like receptor genes were also upregulated, suggesting activation of proinflammatory pathways. In summary, we find evidence that a cell division-independent expression pathway exists, and that polyplex exposure slows cell division and increases inflammatory response.

  10. Acanthamoeba castellanii metabolites increase the intracellular calcium level and cause cytotoxicity in wish cells.

    Science.gov (United States)

    Mattana, A; Bennardini, F; Usai, S; Fiori, P L; Franconi, F; Cappuccinelli, P

    1997-08-01

    Previous studies have shown that trophozoites of the pathogenic free-living amoeba Acanthamoeba castellanii rapidly lyse a variety of cells in vitro. However, the role played by cytolitic molecules that may participate in Acanthamoebal cytopathogenicity has yet to be completely elucidated. The aim of this work was to study whether soluble molecules released by A. castellanii trophozoites could induce cytopathic effect in human epithelial cells in vitro. The results obtained indicate that A. castellanii trophozoites constitutively elaborate and release soluble factors that immediately elicit a cytosolic free-calcium increase in target cells. This phenomenon is induced by low molecular weight amoebic metabolites and depends on a transmembrane influx of extracellular calcium. Morphological changes, cytoskeletal damage, cell death and cytolysis followed the elevation of cytosolic free-calcium levels. Calcium ions are very important for cell homeostasis, in fact, they control the functions of a variety of cellular responses, including secretion, cell proliferation and apoptosis. Our results suggest that the substained elevation of the cytosolic free-calcium in response to A. castellanii metabolites might play a fundamental role in target cell damage during Acanthamoeba infections.

  11. Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria.

    Science.gov (United States)

    Morgan, S M; Ross, R P; Beresford, T; Hill, C

    2000-03-01

    The use of hydrostatic pressure and lacticin 3147 treatments were evaluated in milk and whey with a view to combining both treatments for improving the quality of minimally processed dairy foods. The system was evaluated using two foodborne pathogens: Staphylococcus aureus ATCC6538 and Listeria innocua DPC1770. Trials against Staph. aureus ATCC6538 were performed using concentrated lacticin 3147 prepared from culture supernatant. The results demonstrated a more than additive effect when both treatments were used in combination. For example, the combination of 250 MPa (2.2 log reduction) and lacticin 3147 (1 log reduction) resulted in more than 6 logs of kill. Similar results were obtained when a foodgrade powdered form of lacticin 3147 (developed from a spray dried fermentatation of reconstituted demineralized whey powder) was evaluated for the inactivation of L. innocua DPC1770. Furthermore, it was observed that treatment of lacticin 3147 preparations with pressures greater than 400 MPa yielded an increase in bacteriocin activity (equivalent to a doubling of activity). These results indicate that a combination of high pressure and lacticin 3147 may be suitable for improving the quality of minimally processed foods at lower hydrostatic pressure levels.

  12. Acute primary angle closure attack does not cause an increased cup-to-disc ratio.

    Science.gov (United States)

    Chew, Shenton S L; Vasudevan, Sushil; Patel, Hussain Y; Gurria, Lulu U; Kerr, Nathan M; Gamble, Greg; Crowston, Jonathan G; Danesh-Meyer, Helen V

    2011-02-01

    To determine if an increased cup-to-disc ratio (CDR) and retinal nerve fiber layer (RNFL) loss occur after acute primary angle closure (APAC). Prospective, observational case series. Twenty participants with unilateral APAC provided 20 affected eyes and 20 fellow eyes (controls) for analysis. After initial presentation, participants attended 3 further assessments over a 12-month period (visit 2, within 2 weeks; visit 3, 2-3 months; and visit 4, 6-12 months), in which they underwent the following investigations: Heidelberg Retinal Tomography (Heidelberg Engineering, Dossenheim, Germany), optical coherence tomography of the RNFL and macula, and automated perimetry. Cup-to-disc ratio, optic cup area, neuroretinal rim area, RNFL thickness, macular thickness, and volume. There was no change from visits 2 to 4 in CDR (0.46 ± 0.17 vs. 0.47 ± 0.20; P = 0.94), neuroretinal rim area (1.64 ± 0.55 vs. 1.64 ± 0.57; P = 0.96), or other optic nerve head parameters analyzed in eyes with APAC. The mean overall RNFL thickness decreased from 106.6 ± 17.9 μm to 92.9 ± 18.3 μm between visits 2 and 3 (PAPAC that is treated promptly, although RNFL loss does occur. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  13. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats.

    Science.gov (United States)

    Silva, Maísa; Silva, Marcelo E; de Paula, Heberth; Carneiro, Cláudia Martins; Pedrosa, Maria Lucia

    2008-06-01

    The objective of this study was to investigate the effect of iron overload with a hyperlipidemic diet on the histologic feature of hepatic tissue, the lipid and glycemic serum profiles, and the markers of oxidative damage and stress in a rat model. Twenty-four male Fischer rats, purchased from Experimental Nutrition Laboratory, Federal University of Ouro Preto, were assigned to 4 equal groups, 2 were fed a standard cholesterol-free diet (group C or control and CI or control with iron) containing 8.0% soybean oil and 2 were fed a hyperlipidemic diet (group H or hyperlipidemic and HI or hyperlipidemic with iron) containing 1.0% cholesterol and 25.0% soybean oil. A total of 50 mg of iron was administered to rats in groups CI and HI in 5 equal doses (1 every 3 weeks for a 16-week period) by intraperitoneal injections of 0.1 mL of iron dextran solution (100 g Fe(2+)/L; Sigma, St Louis, Mo). The other rats in groups C and H were treated in a similar manner but with sterile saline (0.1 mL). Irrespective of the diet, iron excess enhanced serum triacylglycerols (P .05) were observed in paraoxonase activities or in serum levels of free or total sulfhydryl radicals, malondialdehyde, or total antioxidants. The findings suggest that iron excess in the rat probably modifies lipid metabolism and, as a consequence, alters glucose homeostasis and increases the level of serum triacylglycerols but not of cholesterol.

  14. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II)

    International Nuclear Information System (INIS)

    Speranza, Anna; Leopold, Kerstin; Maier, Marina; Taddei, Anna Rita; Scoccianti, Valeria

    2010-01-01

    In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5-10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L -1 . Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level. - Nanoparticulate Pd - which resembles emissions from automobile catalysts - affects pollen to a higher extent than soluble Pd.

  15. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II)

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, Anna, E-mail: anna.speranza@unibo.i [Dipartimento di Biologia, Universita di Bologna, via Irnerio 42, 40126 Bologna (Italy); Leopold, Kerstin, E-mail: kerstin.leopold@lrz.tu-muenchen.d [Arbeitsgruppe fuer Analytische Chemie, Technische Universitaet Muenchen, Garching (Germany); Maier, Marina, E-mail: marina.maier@ch.tum.d [Arbeitsgruppe fuer Analytische Chemie, Technische Universitaet Muenchen, Garching (Germany); Taddei, Anna Rita, E-mail: artaddei@unitus.i [CIME, Universita della Tuscia, Viterbo (Italy); Scoccianti, Valeria, E-mail: valeria.scoccianti@uniurb.i [Dipartimento di Scienze dell' Uomo, dell' Ambiente e della Natura, Universita di Urbino ' Carlo Bo' , Urbino (Italy)

    2010-03-15

    In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5-10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L{sup -1}. Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level. - Nanoparticulate Pd - which resembles emissions from automobile catalysts - affects pollen to a higher extent than soluble Pd.

  16. Handling may cause increased shedding of Escherichia coli and total coliforms in pigs.

    Science.gov (United States)

    Dowd, Scot E; Callaway, Todd R; Morrow-Tesch, Julie

    2007-01-01

    Many common management practices such as transportation, weaning, handling, and changes in social groups are stressful to animals. The effects of stressors on the intestinal microbial ecosystem are still being investigated. This study was designed to evaluate the effect of handling on naturally occurring intestinal populations of Escherichia coli and total coliforms in swine. Finishing pigs were subjected to repeated handling, in which they were removed from their pens each day, moved down an alley to a scale, weighed individually, and moved back to their pens. This procedure was performed with the control groups once at the beginning and once at the end of the study, while treatment groups were herded and weighed each day for 8 days. Most probable numbers (MPN)/g of E. coli (a subset of the coliform group) and total coliforms were measured daily for treatment and control groups. Using repeated measures analyses, increased MPN/g of feces, for both E. coli and total coliforms, were seen in the treatment groups compared to the control groups (P coliforms, possibly due to stress, and these populations of bacteria may have potential utility as inexpensive, noninvasive indicators of handling-related stress in pigs.

  17. Acute cannabis use causes increased psychotomimetic experiences in individuals prone to psychosis.

    Science.gov (United States)

    Mason, O; Morgan, C J A; Dhiman, S K; Patel, A; Parti, N; Patel, A; Curran, H V

    2009-06-01

    Epidemiological evidence suggests a link between cannabis use and psychosis. A variety of factors have been proposed to mediate an individual's vulnerability to the harmful effects of the drug, one of which is their psychosis proneness. We hypothesized that highly psychosis-prone individuals would report more marked psychotic experiences under the acute influence of cannabis. A group of cannabis users (n=140) completed the Psychotomimetic States Inventory (PSI) once while acutely intoxicated and again when free of cannabis. A control group (n=144) completed the PSI on two parallel test days. All participants also completed a drug history and the Schizotypal Personality Questionnaire (SPQ). Highly psychosis-prone individuals from both groups were then compared with individuals scoring low on psychosis proneness by taking those in each group scoring above and below the upper and lower quartiles using norms for the SPQ. Smoking cannabis in a naturalistic setting reliably induced marked increases in psychotomimetic symptoms. Consistent with predictions, highly psychosis-prone individuals experienced enhanced psychotomimetic states following acute cannabis use. These findings suggest that an individual's response to acute cannabis and their psychosis-proneness scores are related and both may be markers of vulnerability to the harmful effects of this drug.

  18. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  19. Is disomic homozygosity at the APECED locus the cause of increased autoimmunity in Down's syndrome?

    Science.gov (United States)

    Shield, J.; Wadsworth, E.; Hassold, T.; Judis, L. A.; Jacobs, P.

    1999-01-01

    AIMS—To examine the age of onset of insulin dependent diabetes mellitus (IDDM) in children with Down's syndrome compared with non-trisomic individuals, and to assess whether differences might be related to disomic homozygosity at the autoimmune polyglandular disease type 1 (APECED) gene locus.
METHODS—Children with Down's syndrome and IDDM were identified through the Down's syndrome association newsletter and from paediatricians. DNA was extracted from mouthbrush preparations provided by the parents and patients using standard techniques. Mapping techniques were then used to identify areas of reduction to homozygosity, including a marker that overlaps the locus for APECED. The frequency of disomic homozygosity for all markers (n = 18) was compared with a control group of 99 patients with Down's syndrome and their parents. The families also answered a questionnaire concerning diabetes and related autoimmune conditions in the family. Details were compared with the British Paediatric Surveillance Group 1988diabetes study.
RESULTS—Children with Down's syndrome and IDDM were diagnosed significantly earlier than the general population (6.7 v 8.0 years) with a far higher proportion diagnosed in the first 2 years of life (22% v 7%). There was no evidence of increased disomic homozygosity in the region of the APECED locus in Down's syndrome patients with IDDM compared with simple Down's syndrome.
CONCLUSIONS—The natural history of IDDM in Down's syndrome is different from that of the general population. Although children with Down's syndrome have features similar to cases of APECED, disomic homozygosity in this region does not explain the predilection for autoimmune disease.

 PMID:10490523

  20. Spaceflight Causes Increased Virulence of Serratia Marcescens on a Drosophila Melanogaster Host

    Science.gov (United States)

    Bhattacharya, Sharmila; Wade, William; Clemens-Grisham, Rachel; Hosamani, Ravikumar; Bhardwaj, Shilpa R.; Lera, Matthew P.; Gresser, Amy L.

    2015-01-01

    Drosophila melanogaster, or the fruit fly, has long been an important organism for Earth-based research, and is now increasingly utilized as a model system to understand the biological effects of spaceflight. Studies in Drosophila melanogaster have shown altered immune responses in 3rd instar larvae and adult males following spaceflight, changes similar to those observed in astronauts. In addition, spaceflight has also been shown to affect bacterial physiology, as evidenced by studies describing altered virulence of Salmonella typhimurium following spaceflight and variation in biofilm growth patterns for the opportunistic pathogen Pseudomonas aeruginosa during flight. We recently sent Serratia marcescens Db11, a Drosophila pathogen and an opportunistic human pathogen, to the ISS on SpaceX-5 (Fruit Fly Lab-01). S. marcescens samples were stored at 4degC for 24 days on-orbit and then allowed to grow for 120 hours at ambient station temperature before being returned to Earth. Upon return, bacteria were isolated and preserved in 50% glycerol or RNAlater. Storage, growth, and isolation for ground control samples were performed using the same procedures. Spaceflight and ground samples stored in 50% glycerol were diluted and injected into 5-7-day-old ground-born adult D. melanogaster. Lethality was significantly greater in flies injected with the spaceflight samples compared to those injected with ground bacterial samples. These results indicate a shift in the virulence profile of the spaceflight S. marcescens Db11 and will be further assessed with molecular biological analyses. Our findings strengthen the conclusion that spaceflight impacts the virulence of bacterial pathogens on model host organisms such as the fruit fly. This research was supported by NASA's ISS Program Office (ISSPO) and Space Life and Physical Sciences Research and Applications (SLPSRA).

  1. Splenectomy Causes 10-Fold Increased Risk of Portal Venous System Thrombosis in Liver Cirrhosis Patients.

    Science.gov (United States)

    Qi, Xingshun; Han, Guohong; Ye, Chun; Zhang, Yongguo; Dai, Junna; Peng, Ying; Deng, Han; Li, Jing; Hou, Feifei; Ning, Zheng; Zhao, Jiancheng; Zhang, Xintong; Wang, Ran; Guo, Xiaozhong

    2016-07-19

    BACKGROUND Portal venous system thrombosis (PVST) is a life-threatening complication of liver cirrhosis. We conducted a retrospective study to comprehensively analyze the prevalence and risk factors of PVST in liver cirrhosis. MATERIAL AND METHODS All cirrhotic patients without malignancy admitted between June 2012 and December 2013 were eligible if they underwent contrast-enhanced CT or MRI scans. Independent predictors of PVST in liver cirrhosis were calculated in multivariate analyses. Subgroup analyses were performed according to the severity of PVST (any PVST, main portal vein [MPV] thrombosis >50%, and clinically significant PVST) and splenectomy. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported. RESULTS Overall, 113 cirrhotic patients were enrolled. The prevalence of PVST was 16.8% (19/113). Splenectomy (any PVST: OR=11.494, 95%CI=2.152-61.395; MPV thrombosis >50%: OR=29.987, 95%CI=3.247-276.949; clinically significant PVST: OR=40.415, 95%CI=3.895-419.295) and higher hemoglobin (any PVST: OR=0.974, 95%CI=0.953-0.996; MPV thrombosis >50%: OR=0.936, 95%CI=0.895-0.980; clinically significant PVST: OR=0.935, 95%CI=0.891-0.982) were the independent predictors of PVST. The prevalence of PVST was 13.3% (14/105) after excluding splenectomy. Higher hemoglobin was the only independent predictor of MPV thrombosis >50% (OR=0.952, 95%CI=0.909-0.997). No independent predictors of any PVST or clinically significant PVST were identified in multivariate analyses. Additionally, PVST patients who underwent splenectomy had a significantly higher proportion of clinically significant PVST but lower MELD score than those who did not undergo splenectomy. In all analyses, the in-hospital mortality was not significantly different between cirrhotic patient with and without PVST. CONCLUSIONS Splenectomy may increase by at least 10-fold the risk of PVST in liver cirrhosis independent of severity of liver dysfunction.

  2. Neuronal sources ofhedgehogmodulate neurogenesis in the adult planarian brain.

    Science.gov (United States)

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx , which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand ( Smed-hh ), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  3. Copernican stem cells: regulatory constellations in adult hippocampal neurogenesis.

    Science.gov (United States)

    Fabel, Klaus; Toda, Hiroki; Fabel, Konstanze; Palmer, Theo

    2003-01-01

    In the adult, neurogenesis occurs where constellations of signaling molecules are correctly orchestrated and where competent cells are present to interpret these signals. As the instruments used to observe adult neurogenesis become more sophisticated, the concept of a discrete competent "stem cell" has become less concrete. Neural progenitor cells once thought committed to a single lineage can be influenced to become multipotent and somatic tissues appear to yield cells capable of tremendous peripheral and central lineage potential. The variety of cell types that appear competent to generate neurons suggests that the "Hilios" of adult neurogenesis may not necessarily be a single cellular entity but rather the sum of signals that dictate, "Make a new neuron here." These signals may not be limited to the recruitment of preexisting neural stem cells but may also, in some subtle way, reprogram local precursors to create "stem-like cells," where needed. Copyright 2002 Wiley-Liss, Inc.

  4. Gene expression, neurogenesis, and healing: psychosocial genomics of therapeutic hypnosis.

    Science.gov (United States)

    Rossi, Ernest L

    2003-01-01

    The historical lineage of therapeutic hypnosis in James Braid's "psychophysiology", Pierre Janet's "physiological modification", and Milton Erickson's "neuro-psycho-physiology" is extended to include current neuroscience research on activity-dependent gene expression, neurogenesis, and stem cells in memory, learning, behavior change, and healing. Three conditions that optimize gene expression and neurogenesis--novelty, environmental enrichment, and exercise--could integrate fundamentals of the theory, research, and practice of therapeutic hypnosis. Continuing research on immediate-early, activity-dependent, behavior state-related, and clock gene expression could enhance our understanding of how relaxation, sleep, dreaming, consciousness, arousal, stress and trauma are modulated by therapeutic hypnosis. It is speculated that therapeutic and post-hypnotic suggestion could be focused more precisely with the time parameters of gene expression and neurogenesis that range from minutes and hours for synthesizing new synapses to weeks and months for the generation and maturation of new, functioning neurons in the adult brain.

  5. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy.

    Science.gov (United States)

    Zhou, Zhike; Liu, Tingting; Sun, Xiaoyu; Mu, Xiaopeng; Zhu, Gang; Xiao, Ting; Zhao, Mei; Zhao, Chuansheng

    2017-03-30

    It has been showed that enriched environment (EE) enhances the hippocampal neurogenesis and improves the cognitive impairments, accompanied by the increased expressions of stromal cell-derived factor-1 (SDF-1) in adult rats of temporal lobe epilepsy (TLE). We examined whether the enhanced neurogenesis and improved cognitive functions induced by EE following seizures were mediated by SDF-1/CXCR4 pathway. Therefore, we investigated the effects of the EE combined with CXCR4 antagonist AMD3100 on neurogenesis, cognitive functions and the long-term seizure activity in the TLE model. Adult rats were randomly assigned as control rats, rats treated with EE, rats subjected to status epilepticus (SE), post-SE rats treated with EE, AMD3100 or EE combined with AMD3100 respectively. We used immunofluorescence staining to analyze the hippocampal neurogenesis and Nissl staining to evaluate hippocampal damage. Electroencephalography was used to measure the frequency and mean duration of spontaneous seizures. Cognitive function was evaluated by Morris water maze test. EE treatment significantly, as well as improved cognitive impairments and decreased long-term seizure activity, and that these effects might be mediated through SDF-1/CXCR4 pathway during the chronic stage of TLE. Although AMD3100 reversed the effect of EE on neurogenesis, it did not abolish the cognitive improvement induced by EE following seizures. More importantly, EE combined with AMD3100 treatment significantly suppressed long-term seizure activity, which provided promising evidences to treat TLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2017-02-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF/tropomyosin-related kinase B (TrkB pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO, following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX, NeuN and glial fibrillary acidic protein (GFAP, and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.

  7. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective.

    Science.gov (United States)

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J

    2017-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Adult Neurogenesis and Neurodegenerative Diseases: A Systems Biology Perspective

    Science.gov (United States)

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J.

    2016-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. PMID:26879907

  9. The Effect of Serotonin-Targeting Antidepressants on Neurogenesis and Neuronal Maturation of the Hippocampus Mediated via 5-HT1A and 5-HT4 Receptors

    Directory of Open Access Journals (Sweden)

    Eri Segi-Nishida

    2017-05-01

    Full Text Available Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs specifically increase serotonin (5-HT levels in the synaptic cleft and are widely used to treat mood and anxiety disorders. There are 14 established subtypes of 5-HT receptors in rodents, each of which has regionally different expression patterns. Many preclinical studies have suggested that the hippocampus, which contains abundant 5-HT1A and 5-HT4 receptor subtypes in the dentate gyrus (DG, is critically involved in the mechanisms of action of antidepressants. This review article will analyze studies demonstrating regulation of hippocampal functions and hippocampus-dependent behaviors by SSRIs and similar serotonergic agents. Multiple studies indicate that 5-HT1A and 5-HT4 receptor signaling in the DG contributes to SSRI-mediated promotion of neurogenesis and increased neurotrophic factors expression. Chronic SSRI treatment causes functions and phenotypes of mature granule cells (GCs to revert to immature-like phenotypes defined as a “dematured” state in the DG, and to increase monoamine reactivity at the dentate-to-CA3 synapses, via 5-HT4 receptor signaling. Behavioral studies demonstrate that the 5-HT1A receptors on mature GCs are critical for expression of antidepressant effects in the forced swim test and in novelty suppressed feeding; such studies also note that 5-HT4 receptors mediate neurogenesis-dependent antidepressant activity in, for example, novelty-suppressed feeding. Despite their limitations, the collective results of these studies describe a potential new mechanism of action, in which 5-HT1A and 5-HT4 receptor signaling, either independently or cooperatively, modulates the function of the hippocampal DG at multiple levels, any of which could play a critical role in the antidepressant actions of 5-HT-enhancing drugs.

  10. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats.

    Science.gov (United States)

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h). In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role.

  11. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Song, Min; Wang, Yanyan [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Fan, Xiaotang [Department of Histology and Embryology, Third Military Medical University, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@yahoo.com.cn [Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Bai, Yun, E-mail: baiyungene@gmail.com [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China)

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  12. Evidence for Increased Aggressiveness in a Recent Widespread Strain of Puccinia striiformis f. sp. tritici Causing Stripe Rust of Wheat

    DEFF Research Database (Denmark)

    Milus, Eugene A; Kristensen, Kristian; Hovmøller, Mogens S

    2009-01-01

    Stripe rust (yellow rust) of wheat, caused by Puccinia striiformis f. sp. tritici, has become more severe in eastern United States, Australia, and elsewhere since 2000. Recent research has shown that this coincided with a global spread of two closely related strains that were similar based...... to the warm temperature regime for all variables. Based on these results and previously published models for stripe rust epidemics, recent severe stripe rust epidemics were most likely enhanced by the pathogen's increased aggressiveness, especially at higher temperature. Furthermore, these results demonstrate...... that wheat rust fungi can adapt to warmer temperatures and cause severe disease in previously unfavorable environments...

  13. Statin treatment prevents increased cardiovascular and all-cause mortality associated with clarithromycin in patients with stable coronary heart disease

    DEFF Research Database (Denmark)

    Jensen, Gorm B; Hilden, Jørgen; Als-Nielsen, Bodil

    2010-01-01

    In the CLARICOR trial, significantly increased cardiovascular (CV) and all-cause mortality in stable patients with coronary heart disease were observed after a short course of clarithromycin. We report on the impact of statin treatment at entry on the CV and all-cause mortality. The multicenter...... CLARICOR trial randomized patients to oral clarithromycin (500 mg daily; n = 2172) versus matching placebo (daily; n = 2201) for 2 weeks. Patients were followed through public databases. In the 41% patients on statin treatment at entry, no significant effect of clarithromycin was observed on CV (hazard.......0003; statin-clarithromycin interaction P = 0.0029) and all-cause mortality (HR, 1.33; 95% CI, 1.05-1.67; P = 0.016; statin-clarithromycin interaction P = 0.41). Multivariate analysis and 6-year follow up confirmed these results. Concomitant statin treatment in stable patients with coronary heart disease...

  14. A subtype-specific critical period for neurogenesis in the postnatal development of mouse olfactory glomeruli.

    Directory of Open Access Journals (Sweden)

    Yasuko Kato

    Full Text Available Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training.

  15. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice.

    Science.gov (United States)

    Schiavon, Angélica Pupin; Bonato, Jéssica Mendes; Milani, Humberto; Guimarães, Francisco Silveira; Weffort de Oliveira, Rúbia Maria

    2016-01-04

    Therapeutic effects of antidepressants and atypical antipsychotics may arise partially from their ability to stimulate neurogenesis. Cannabidiol (CBD), a phytocannabinoid present in Cannabis sativa, presents anxiolytic- and antipsychotic-like effects in preclinical and clinical settings. Anxiolytic-like effects of repeated CBD were shown in chronically stressed animals and these effects were parallel with increased hippocampal neurogenesis. However, antidepressant-like effects of repeated CBD administration in non-stressed animals have been scarcely reported. Here we investigated the behavioral consequences of single or repeated CBD administration in non-stressed animals. We also determined the effects of CBD on cell proliferation and neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ). Single CBD 3mg/kg administration resulted in anxiolytic-like effect in mice submitted to the elevated plus maze (EPM). In the tail suspension test (TST), single or repeated CBD administration reduced immobility time, an effect that was comparable to those of imipramine (20 mg/kg). Moreover, repeated CBD administration at a lower dose (3 mg/kg) increased cell proliferation and neurogenesis, as seen by an increased number of Ki-67-, BrdU- and doublecortin (DCX)-positive cells in both in DG and SVZ. Despite its antidepressant-like effects in the TST, repeated CBD administration at a higher dose (30 mg/kg) decreased cell proliferation and neurogenesis in the hippocampal DG and SVZ. Our findings show a dissociation between behavioral and proliferative effects of repeated CBD and suggest that the antidepressant-like effects of CBD may occur independently of adult neurogenesis in non-stressed Swiss mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis.

    Science.gov (United States)

    Reshef, Ronen; Kreisel, Tirzah; Beroukhim Kay, Dorsa; Yirmiya, Raz

    2014-10-01

    Recent studies demonstrate that microglia play an important role in cognitive and neuroplasticity processes, at least partly via microglial CX3C receptor 1 (CX3CR1) signaling. Furthermore, microglia are responsive to environmental enrichment (EE), which modulates learning, memory and neurogenesis. In the present study we examined the role of microglial CX3CR1 signaling in hippocampal- and olfactory-bulb (OB)-related memory and neurogenesis in homozygous mice with microglia-specific transgenic expression of GFP under the CX3CR1 promoter (CX3CR1(-/-) mice), in which the CX3CR1 gene is functionally deleted, as well as heterozygous CX3CR1(+/-) and WT controls. We report that the CX3CR1-deficient mice displayed better hippocampal-dependent memory functioning and olfactory recognition, along with increased number and soma size of hippocampal microglia, suggestive of mild activation status, but no changes in OB microglia. A similar increase in hippocampal-dependent memory functioning and microglia number was also induced by pharmacological inhibition of CX3CR1 signaling, using chronic (2weeks) i.c.v. administration of CX3CR1 blocking antibody. In control mice, EE improved hippocampal-dependent memory and neurogenesis, and increased hippocampal microglia number and soma size, whereas odor enrichment (OE) improved olfactory recognition and OB neurogenesis without changing OB microglia status. In CX3CR1-deficient mice, EE and OE did not produce any further improvement in memory functioning or neurogenesis and had no effect on microglial status. These results support the notion that in the hippocampus microglia and their interactions with neurons via the CX3CR1 play an important role in memory functioning and neurogenesis, whereas in the OB microglia do not seem to be involved in these processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761®) after permanent ischemic stroke in mice.

    Science.gov (United States)

    Nada, Shadia E; Tulsulkar, Jatin; Shah, Zahoor A

    2014-04-01

    Stroke is the fourth leading cause of death and a major cause of disability in stroke survivors. Studies have underlined the importance of repair mechanisms in the recovery phase of stroke. Neurogenesis in response to brain injury is one of the regeneration processes that, if enhanced, may offer better stroke treatment alternatives. Previously, we have demonstrated antioxidant, neuritogenic, and angiogenic properties of Ginkgo biloba/EGb 761® (EGb 761) in different mouse models of stroke. In the present study, we were interested to study whether EGb 761 could protect mice from permanent middle cerebral artery occlusion (pMCAO) and enhance neurogenesis. EGb 761 pre- and posttreated mice had lower infarct volume and improved motor skills with enhanced proliferation of neuronal stem/progenitor cells (NSPCs) at 24 h and 7 days posttreatment. Netrin-1 and its receptors (DCC and UNC5B) that mediate axonal attraction and repulsion were observed to be overexpressed in NSPCs only, implying that netrin-1 and its receptors might have partly played a role in enhanced neurogenesis. Interestingly, in heme oxygenase 1 knockout mice (HO1(-/-)), neurogenesis was significantly lower than in vehicle-treated mice at day 8. Furthermore, EGb 761 posttreated mice also demonstrated heme oxygenase 1 (HO1)-activated pathway of phosphorylated glycogen synthase kinase 3 α/β (p-GSK-3 α/β), collapsin response mediator protein 2 (CRMP-2), semaphorin3A (SEMA3A), and Wnt, suggesting probable signaling pathways involved in proliferation, differentiation, and migration of NSPCs. Together, these results propose that EGb 761 not only has antioxidant, neuritogenic, and angiogenic properties, but can also augment the repair and regeneration mechanisms following stroke.

  18. Low Serum Potassium Levels Increase the Infectious-Caused Mortality in Peritoneal Dialysis Patients: A Propensity-Matched Score Study.

    Science.gov (United States)

    Ribeiro, Silvia Carreira; Figueiredo, Ana Elizabeth; Barretti, Pasqual; Pecoits-Filho, Roberto; de Moraes, Thyago Proenca

    2015-01-01

    Hypokalemia has been consistently associated with high mortality rate in peritoneal dialysis. However, studies investigating if hypokalemia is acting as a surrogate marker of comorbidities or has a direct effect in the risk for mortality have not been studied. Thus, the aim of this study was to analyze the effect of hypokalemia on overall and cause-specific mortality. This is an analysis of BRAZPD II, a nationwide prospective cohort study. All patients on PD for longer than 90 days with measured serum potassium levels were used to verify the association of hypokalemia with overall and cause-specific mortality using a propensity match score to reduce selection bias. In addition, competing risks were also taken into account for the analysis of cause-specific mortality. There was a U-shaped relationship between time-averaged serum potassium and all-cause mortality of PD patients. Cardiovascular disease was the main cause of death in the normokalemic group with 133 events (41.8%) followed by PD-non related infections, n=105 (33.0%). Hypokalemia was associated with a 49% increased risk for CV mortality after adjustments for covariates and the presence of competing risks (SHR 1.49; CI95% 1.01-2.21). In contrast, in the group of patients with K mortality even after adjustments for competing risks. The causative nature of this association suggested by our study raises the need for intervention studies looking at the effect of potassium supplementation on clinical outcomes of PD patients.

  19. Modulation of Neurogenesis through the Promotion of Energy Production Activity Is behind the Antidepressant-Like Effect of Colonial Green Alga,Botryococcus braunii.

    Science.gov (United States)

    Sasaki, Kazunori; Othman, Mahmoud B; Demura, Mikihide; Watanabe, Makoto; Isoda, Hiroko

    2017-01-01

    Algae have been recognized as important resources providing functional components due to their capacity to exert beneficial effects on health. Therefore, there is increasing interest in investigating the biological activity of algae. In this study, we evaluated the antidepressant-like effect of the administration of 100 mg/kg/day of the ethanol extract of colonial green alga Botryococcus braunii (EEB) for 14 consecutive days in the forced swimming test (FST)-induced depression in imprinting control region (ICR) mice. Imipramine, a commercial antidepressant drug, was used as a positive control. In addition, we investigated the molecular mechanisms underlying the effect of EEB by measuring ATP production and by assessing any change in gene expression at the end of the treatment using real-time polymerase chain reaction (PCR) and microarray assays. We showed that the immobility time in the water-administered control (FST stress) group gradually increased from day 1 to day 14. However, treatment with EEB caused a significant decrease of immobility time in the FST compared with that in the FST stress group. Microarray and real-time PCR results revealed that EEB treatment induced variation in the expression of several genes associated with neurogenesis, energy metabolism, and dopamine synthesis. Interestingly, we revealed that only EEB treatment enhanced the promotion of energy production, while treatment with imipramine was ineffective. Our study provides the first evidence that B. braunii enhances energy production, which may contribute to the modulation of neurogenesis and to the enhancement of dopaminergic function, in turn potentially underlying the antistress- and antidepressant-like effects that we observed.

  20. Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape

    OpenAIRE

    Dubuis, Pierre-Henri; Marazzi, Cristina; Städler, Erich; Mauch, Felix

    2005-01-01

    The reduction of atmospheric sulphur dioxide pollution is causing increasing problems of sulphur deficiency in sulphur-demanding crop plants in northern Europe. Elemental sulphur and many sulphur containing compounds such as cysteine-rich antifungal proteins, glucosinolates (GSL) and phytoalexins play important roles in plant disease resistance. The aim of this work was to analyse the effect of inadequate sulphur supply on disease resistance of oilseed rape (Brassica napus). Compared with fer...

  1. Xenoestrogens may be the cause of high and increasing rates of hormone receptor positive breast cancer in the world.

    Science.gov (United States)

    Dey, Subhojit; Soliman, Amr S; Merajver, Sofia D

    2009-06-01

    Breast cancer rates are higher in the Western or industrialized world when compared to Africa or Asia. Within the developing world, breast cancer rates are higher in urban areas where people have a more Westernized lifestyle. In addition, there has been a steady increase in the breast cancer incidence across the world. It is already a known fact that the proportion of hormone receptor positive breast cancer cases is higher in the developed world. Evidence from developed countries also shows that most of the increase in breast cancer incidence has been due to an increase in hormone receptor positive breast cancer. Most of the breast cancer incidence can be explained by environmental factors and genetic causes. However, all known risk factors of breast cancer can explain only 30-50% of breast cancer incidence. In the past decade, a number of compounds that affect female hormone homeostasis have been discovered. These xenoestrogens have been shown to cause breast cancer and also induce the expression of hormone receptors in vitro and in vivo. Given the high use of substances containing xenoestrogens in developed regions of the world and their increasing use in urban parts of the developing world, xenoestrogens could be the important cause of high and increasing rates of hormone receptor positive breast cancer across the world. New research in the area of mammary stem cells provides added indication of the probable time period of exposure to xenoestrogens with chronic exposure later in life leading to hormone receptor positive breast cancer and most probable reason behind increasing breast cancer incidence.

  2. S 47445 Produces Antidepressant- and Anxiolytic-Like Effects through Neurogenesis Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Indira Mendez-David

    2017-07-01

    Full Text Available Glutamatergic dysfunctions are observed in the pathophysiology of depression. The glutamatergic synapse as well as the AMPA receptor’s (AMPAR activation may represent new potential targets for therapeutic intervention in the context of major depressive disorders. S 47445 is a novel AMPARs positive allosteric modulator (AMPA-PAM possessing procognitive, neurotrophic properties and enhancing synaptic plasticity. Here, we investigated the antidepressant/anxiolytic-like effects of S 47445 in a mouse model of anxiety/depression based on chronic corticosterone administration (CORT and in the Chronic Mild Stress (CMS model in rats. Four doses of S 47445 (0.3 to 10 mg/kg, oral route, 4 and 5 weeks, respectively were assessed in both models. In mouse, behavioral effects were tested in various anxiety-and depression-related behaviors : the elevated plus maze (EPM, open field (OF, splash test (ST, forced swim test (FST, tail suspension test (TST, fur coat state and novelty suppressed feeding (NSF as well as on hippocampal neurogenesis and dendritic arborization in comparison to chronic fluoxetine treatment (18 mg/kg, p.o.. In rats, behavioral effects of S 47445 were monitored using sucrose consumption and compared to those of imipramine or venlafaxine (10 mg/kg, i.p. during the whole treatment period and after withdrawal of treatments. In a mouse model of genetic ablation of hippocampal neurogenesis (GFAP-Tk model, neurogenesis dependent/independent effects of chronic S 47445 treatment were tested, as well as BDNF hippocampal expression. S 47445 reversed CORT-induced depressive-like state by increasing grooming duration and reversing coat state’s deterioration. S 47445 also decreased the immobility duration in TST and FST. The highest doses (3 and 10 mg/kg seem the most effective for antidepressant-like activity in CORT mice. Furthermore, S 47445 significantly reversed the anxiety phenotype observed in OF (at 1 mg/kg and EPM (from 1 mg/kg. In the CMS

  3. Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats.

    Science.gov (United States)

    Chen, Weiwei; Cheng, Xiang; Chen, Jinzhong; Yi, Xin; Nie, Dekang; Sun, Xiaohui; Qin, Jianbing; Tian, Meiling; Jin, Guohua; Zhang, Xinhua

    2014-01-01

    Lycium barbarum is used both as a food additive and as a medicinal herb in many countries, and L. barbarum polysaccharides (LBPs), a major cell component, are reported to have a wide range of beneficial effects including neuroprotection, anti-aging and anticancer properties, and immune modulation. The effects of LBPs on neuronal function, neurogenesis, and drug-induced learning and memory deficits have not been assessed. We report the therapeutic effects of LBPs on learning and memory and neurogenesis in scopolamine (SCO)-treated rats. LBPs were administered via gastric perfusion for 2 weeks before the onset of subcutaneous SCO treatment for a further 4 weeks. As expected, SCO impaired performance in novel object and object location recognition tasks, and Morris water maze. However, dual SCO- and LBP-treated rats spent significantly more time exploring the novel object or location in the recognition tasks and had significant shorter escape latency in the water maze. SCO administration led to a decrease in Ki67- or DCX-immunoreactive cells in the dentate gyrus and damage of dendritic development of the new neurons; LBP prevented these SCO-induced reductions in cell proliferation and neuroblast differentiation. LBP also protected SCO-induced loss of neuronal processes in DCX-immunoreactive neurons. Biochemical investigation indicated that LBP decreased the SCO-induced oxidative stress in hippocampus and reversed the ratio Bax/Bcl-2 that exhibited increase after SCO treatment. However, decrease of BDNF and increase of AChE induced by SCO showed no response to LBP administration. These results suggest that LBPs can prevent SCO-induced cognitive and memory deficits and reductions in cell proliferation and neuroblast differentiation. Suppression of oxidative stress and apoptosis may be involved in the above effects of LBPs that may be a promising candidate to restore memory functions and neurogenesis.

  4. Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia?

    Directory of Open Access Journals (Sweden)

    Laura Hertz

    2017-09-01

    Full Text Available For many hereditary disorders, although the underlying genetic mutation may be known, the molecular mechanism leading to hemolytic anemia is still unclear and needs further investigation. Previous studies revealed an increased intracellular Ca2+ in red blood cells (RBCs from patients with sickle cell disease, thalassemia, or Gardos channelopathy. Therefore we analyzed RBCs' Ca2+ content from 35 patients with different types of anemia (16 patients with hereditary spherocytosis, 11 patients with hereditary xerocytosis, 5 patients with enzymopathies, and 3 patients with hemolytic anemia of unknown cause. Intracellular Ca2+ in RBCs was measured by fluorescence microscopy using the fluorescent Ca2+ indicator Fluo-4 and subsequent single cell analysis. We found that in RBCs from patients with hereditary spherocytosis and hereditary xerocytosis the intracellular Ca2+ levels were significantly increased compared to healthy control samples. For enzymopathies and hemolytic anemia of unknown cause the intracellular Ca2+ levels in RBCs were not significantly different. These results lead us to the hypothesis that increased Ca2+ levels in RBCs are a shared component in the mechanism causing an accelerated clearance of RBCs from the blood stream in channelopathies such as hereditary xerocytosis and in diseases involving defects of cytoskeletal components like hereditary spherocytosis. Future drug developments should benefit from targeting Ca2+ entry mediating molecular players leading to better therapies for patients.

  5. N1-Src Kinase Is Required for Primary Neurogenesis in Xenopus tropicalis.

    Science.gov (United States)

    Lewis, Philip A; Bradley, Isobel C; Pizzey, Alastair R; Isaacs, Harry V; Evans, Gareth J O

    2017-08-30

    to delineate its function. Using antisense knockdown of the n1-src microexon, we have studied neuronal development in the Xenopus embryo in the absence of n1-src , while preserving c-src Loss of n1-src causes a striking absence of primary neurogenesis, implicating n1-src in the specification of neurons early in neural development. Copyright © 2017 Lewis, Bradley et al.

  6. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat.

    Science.gov (United States)

    Pingel, Jessica; Hultborn, Hans; Näslund-Koch, Lui; Jensen, Dennis B; Wienecke, Jacob; Nielsen, Jens Bo

    2017-10-01

    Botulinum toxin (Btx) is used in children with cerebral palsy and in other neurological patients to diminish spasticity and reduce the risk of development of contractures. We investigated changes in the central gain of the stretch reflex circuitry in response to Btx injection in the triceps surae muscle in rats. Experiments were performed in 21 rats. Eight rats were a control group, and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection, larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (noninjected) L4 + L5 ventral roots following stimulation of the corresponding dorsal roots. A similar increase on the left side was observed in response to stimulation of descending motor tracts, suggesting that increased excitability of spinal motor neurons may at least partly explain the increased reflexes. However, significant changes were also observed in postactivation depression of the MSR, suggesting that plastic changes in transmission from Ia afferent to the motor neurons also may be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations in the central stretch reflex circuitry, which counteract the antispastic effect of Btx. NEW & NOTEWORTHY Injection of botulinum toxin into ankle muscles causes increased gain of stretch reflex. This is caused by adaptive changes in regulation of transmitter release from Ia afferents and increased excitability of spinal motor neurons. Copyright © 2017 the American Physiological Society.

  7. Interaction between Neurogenesis and Hippocampal Memory System: New Vistas

    Science.gov (United States)

    Abrous, Djoher Nora; Wojtowicz, Jan Martin

    2015-01-01

    During the last decade, the questions on the functionality of adult neurogenesis have changed their emphasis from if to how the adult-born neurons participate in a variety of memory processes. The emerging answers are complex because we are overwhelmed by a variety of behavioral tasks that apparently require new neurons to be performed optimally. With few exceptions, the hippocampal memory system seems to use the newly generated neurons for multiple roles. Adult neurogenesis has given the dentate gyrus new capabilities not previously thought possible within the scope of traditional synaptic plasticity. Looking at these new developments from the perspective of past discoveries, the science of adult neurogenesis has emerged from its initial phase of being, first, a surprising oddity and, later, exciting possibility, to the present state of being an integral part of mainstream neuroscience. The answers to many remaining questions regarding adult neurogenesis will come along only with our growing understanding of the functionality of the brain as a whole. This, in turn, will require integration of multiple levels of organization from molecules and cells to circuits and systems, ultimately resulting in comprehension of behavioral outcomes. PMID:26032718

  8. CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS.

    Science.gov (United States)

    CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS. ME Gilbert1, ME Kelly2, S. Salant3, T Shafer1, J Goodman3 1Neurotoxicology Div, US EPA, RTP, NC, 27711, 2Children's Hospital, Philadelphia, PA, 19104, 3Helen Hayes Hospital, Haverstraw, NY, 10993. ...

  9. Sleep and adult neurogenesis : Implications for cognition and mood

    NARCIS (Netherlands)

    Mueller, Anka D.; Meerlo, Peter; McGinty, Dennis; Mistlberger, Ralph E.; Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    The hippocampal dentate gyrus plays a critical role in learning and memory throughout life, in part by the integration of adult born neurons into existing circuits. Neurogenesis in the adult hippocampus is regulated by numerous environmental, physiological and behavioral factors known to affect

  10. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    Science.gov (United States)

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. MicroRNA expression profiling in neurogenesis of adipose tissue ...

    Indian Academy of Sciences (India)

    [Cho J. A., Park H., Lim E. H. and Lee K. W. 2011 MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J. Genet. 90, 81–93] ... capability, however there are considerable challenges to the use of these cells for ... tissues including brain, blood, muscle, skin, bone marrow, umbilical cord blood ...

  12. Does developmental hypothyroidism produce lasting effects on adult neurogenesis?

    Science.gov (United States)

    The subgranular zone of the dentate gyrus (DO) of the adult hippocampus generates new neurons throughout life. Thyroid hormones (TH) are essential for brain development, but impaired neurogenesis with adult hypothyroidism has also been reported. We investigated the role of milder...

  13. Increased susceptibility for superinfection with Streptococcus pneumoniae during influenza virus infection is not caused by TLR7-mediated lymphopenia.

    Directory of Open Access Journals (Sweden)

    Sabine Stegemann

    Full Text Available Influenza A virus (IAV causes respiratory tract infections leading to recurring epidemics with high rates of morbidity and mortality. In the past century IAV induced several world-wide pandemics, the most aggressive occurring in 1918 with a death toll of 20-50 million cases. However, infection with IAV alone is rarely fatal. Instead, death associated with IAV is usually mediated by superinfection with bacteria, mainly Streptococcus pneumoniae. The reasons for this increased susceptibility to bacterial superinfection have not been fully elucidated. We previously demonstrated that triggering of TLR7 causes immune incompetence in mice by induction of lymphopenia. IAV is recognized by TLR7 and infections can lead to lymphopenia. Since lymphocytes are critical to protect from S. pneumoniae it has long been speculated that IAV-induced lymphopenia might mediate increased susceptibility to superinfection. Here we show that sub-lethal pre-infections of mice with IAV-PR8/A/34 strongly increased their mortality in non-lethal SP infections, surprisingly despite the absence of detectable lymphopenia. In contrast to SP-infection alone co-infected animals were unable to control the exponential growth of SP. However, lymphopenia forced by TLR7-triggering or antibody-mediated neutropenia did not increase SP-susceptibility or compromise the ability to control SP growth. Thus, the immune-incompetence caused by transient lympho- or leukopenia is not sufficient to inhibit potent antibacterial responses of the host and mechanisms distinct from leukodepletion must account for increased bacterial superinfection during viral defence.

  14. Evaluation of a C57BL/6J × 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis.

    Science.gov (United States)

    Hamilton, G F; Majdak, P; Miller, D S; Bucko, P J; Merritt, J R; Krebs, C P; Rhodes, J S

    2015-01-01

    New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and "hybrid vigor"). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice ( n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice ( n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.

  15. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats.

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    Full Text Available Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h. In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role.

  16. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Aranguiz, Florencia; Varela-Nallar, Lorena; Inestrosa, Nibaldo C

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD. © 2015 International Society of Neuropathology.

  17. Effects of rapamycin treatment after controlled cortical impact injury on neurogenesis and synaptic reorganization in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Corwin R Butler

    2015-11-01

    Full Text Available Post-traumatic epilepsy (PTE is one consequence of traumatic brain injury (TBI. A prominent cell signaling pathway activated in animal models of both TBI and epilepsy is the mammalian target of rapamycin (mTOR. Inhibition of mTOR with rapamycin has shown promise as a potential modulator of epileptogenesis in several animal models of epilepsy, but cellular mechanisms linking mTOR expression and epileptogenesis are unclear. In this study, the role of mTOR in modifying functional hippocampal circuit reorganization after focal TBI induced by controlled cortical impact was investigated. Rapamycin (3 or 10 mg/kg, an inhibitor of mTOR signaling, was administered by intraperitoneal injection beginning on the day of injury and continued daily until tissue collection. Relative to controls, rapamycin treatment reduced dentate granule cell area in the hemisphere ipsilateral to the injury two weeks post-injury. Brain injury resulted in a significant increase in doublecortin immunolabeling in the dentate gyrus ipsilateral to the injury, indicating increased neurogenesis shortly after TBI. Rapamycin treatment prevented the increase in doublecortin labeling, with no overall effect on Fluoro-Jade B staining in the ipsilateral hemisphere, suggesting that rapamycin treatment reduced posttraumatic neurogenesis but did not prevent cell loss after injury. At later times post-injury (8-13 weeks, evidence of mossy fiber sprouting and increased recurrent excitation of dentate granule cells was detected, which were attenuated by rapamycin treatment. Rapamycin treatment also diminished seizure prevalence relative to vehicle-treated controls after TBI. Collectively, these results support a role for adult neurogenesis in PTE development and suggest that suppression of epileptogenesis by mTOR inhibition includes effects on post-injury neurogenesis.

  18. Increased risk of all-cause mortality and renal graft loss in stable renal transplant recipients with hyperparathyroidism.

    Science.gov (United States)

    Pihlstrøm, Hege; Dahle, Dag Olav; Mjøen, Geir; Pilz, Stefan; März, Winfried; Abedini, Sadollah; Holme, Ingar; Fellström, Bengt; Jardine, Alan G; Holdaas, Hallvard

    2015-02-01

    Hyperparathyroidism is reported in 10% to 66% of renal transplant recipients (RTR). The influence of persisting hyperparathyroidism on long-term clinical outcomes in RTR has not been examined in a large prospective study. We investigated the association between baseline parathyroid hormone (PTH) levels and major cardiovascular events, renal graft loss, and all-cause mortality by Cox Proportional Hazard survival analyses in 1840 stable RTR derived from the Assessment of LEscol in Renal Transplantation trial. Patients were recruited in a mean of 5.1 years after transplantation, and follow-up time was 6 to 7 years. Significant associations between PTH and all 3 outcomes were found in univariate analyses. When adjusting for a range of plausible confounders, including measures of renal function and serum mineral levels, PTH remained significantly associated with all-cause mortality (4% increased risk per 10 units; P=0.004), and with graft loss (6% increased risk per 10 units; PHyperparathyroidism is an independent, potentially remediable, risk factor for renal graft loss and all-cause mortality in RTR.

  19. NEUROTOXIC EFFECTS OF AZT ON DEVELOPING AND ADULT NEUROGENESIS

    Directory of Open Access Journals (Sweden)

    Meryem eDemir

    2015-03-01

    Full Text Available Azidothymidine (AZT is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant levels of AZT sufficient to perturb normal cell functions. We employed in vitro and in vivo models of mouse neurogenesis in order to assess the effects of AZT on developing and adult neurogenesis. Using in vitro assays we show that AZT reduces the population expansion potential of neural stem/progenitor cells by inducing senescence. Additionally, in a model of in vitro neurogenesis AZT severely attenuates neuroblast production. These effects are mirrored in vivo by clinically-relevant animal models. We show that in utero AZT exposure perturbs both population expansion and neurogenesis among neural stem/progenitor cells. Additionally, a short-term AZT regimen in adult mice suppresses subependymal zone neurogenesis. These data reveal novel negative effects of AZT on neural stem cell biology. Given that the sequelae of HIV infection often include neurologic deficits –subsumed under AIDS Dementia Complex (Brew, 1999 - it is important to determine to what extent AZT negatively affects neurological function in ways that contribute to, or exacerbate, ADC in order to avoid attributing iatrogenic drug effects to the underlying disease process, and thereby skewing the risk/benefit analysis of AZT therapy.

  20. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    Directory of Open Access Journals (Sweden)

    Anne Klomp

    Full Text Available The antidepressant drug fluoxetine (Prozac has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b effects on tryptophan hydroxylase (TPH expression, a measure of serotonin synthesis; c whether treatment effects during adolescence differed from treatment at an adult age, and d whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+ cells and of the number of young migratory neurons (doublecortin+, revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  1. Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes.

    Science.gov (United States)

    Banda, Erin; McKinsey, Anna; Germain, Noelle; Carter, James; Anderson, Nickesha Camille; Grabel, Laura

    2015-04-15

    Embryonic stem cells (ESCs) undergoing neural differentiation form radial arrays of neural stem cells, termed neural rosettes. These structures manifest many of the properties associated with embryonic and adult neurogenesis, including cell polarization, interkinetic nuclear migration (INM), and a gradient of neuronal differentiation. We now identify novel rosette structural features that serve to localize key regulators of neurogenesis. Cells within neural rosettes have specialized basal as well as apical surfaces, based on localization of the extracellular matrix receptor β1 integrin. Apical processes of cells in mature rosettes terminate at the lumen, where adherens junctions are apparent. Primary cilia are randomly distributed in immature rosettes and tightly associated with the neural stem cell's apical domain as rosettes mature. Components of two signaling pathways known to regulate neurogenesis in vivo and in rosettes, Hedgehog and Notch, are apically localized, with the Hedgehog effector Smoothened (Smo) associated with primary cilia and the Notch pathway γ-secretase subunit Presenilin 2 associated with the adherens junction. Increased neuron production upon treatment with the Notch inhibitor DAPT suggests a major role for Notch signaling in maintaining the neural stem cell state, as previously described. A less robust outcome was observed with manipulation of Hedgehog levels, though consistent with a role in neural stem cell survival or proliferation. Inhibition of both pathways resulted in an additive effect. These data support a model by which cells extending a process to the rosette lumen maintain neural stem cell identity whereas release from this association, either through asymmetric cell division or apical abscission, promotes neuronal differentiation.

  2. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity.

    Science.gov (United States)

    Mertz, Tony M; Sharma, Sushma; Chabes, Andrei; Shcherbakova, Polina V

    2015-05-12

    Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway.

  3. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage

    DEFF Research Database (Denmark)

    Syljuåsen, Randi G; Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg

    2005-01-01

    by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose......-nuclear phosphorylation of histone H2AX, p53, Smc1, replication protein A, and Chk1 itself in human S-phase cells. These phosphorylations were inhibited by ATR siRNA and caffeine, but they occurred independently of ATM. Chk1 inhibition also caused an increased initiation of DNA replication, which was accompanied...... that Chk1 is required during normal S phase to avoid aberrantly increased initiation of DNA replication, thereby protecting against DNA breakage. These results may help explain why Chk1 is an essential kinase and should be taken into account when drugs to inhibit this kinase are considered for use...

  4. Music facilitate the neurogenesis, regeneration and repair of neurons.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2008-11-01

    Experience has shown that therapy using music for therapeutic purposes has certain effects on neuropsychiatric disorders (both functional and organic disorders). However, the mechanisms of action underlying music therapy remain unknown, and scientific clarification has not advanced. While that study disproved the Mozart effect, the effects of music on the human body and mind were not disproved. In fact, more scientific studies on music have been conducted in recent years, mainly in the field of neuroscience, and the level of interest among researchers is increasing. The results of past studies have clarified that music influences and affects cranial nerves in humans from fetus to adult. The effects of music at a cellular level have not been clarified, and the mechanisms of action for the effects of music on the brain have not been elucidated. We propose that listening to music facilitates the neurogenesis, the regeneration and repair of cerebral nerves by adjusting the secretion of steroid hormones, ultimately leading to cerebral plasticity. Music affects levels of such steroids as cortisol (C), testosterone (T) and estrogen (E), and we believe that music also affects the receptor genes related to these substances, and related proteins. In the prevention of Alzheimer's disease and dementia, hormone replacement therapy has been shown to be effective, but at the same time, side effects have been documented, and the clinical application of hormone replacement therapy is facing a serious challenge. Conversely, music is noninvasive, and its existence is universal and mundane. Thus, if music can be used in medical care, the application of such a safe and inexpensive therapeutic option is limitless.

  5. Amitriptyline-mediated cognitive enhancement in aged 3×Tg Alzheimer's disease mice is associated with neurogenesis and neurotrophic activity.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available Approximately 35 million people worldwide suffer from Alzheimer's disease (AD. Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Aβ oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several antidepressants have shown promise in improving cognition and alleviating oxidative stress in AD but have failed as long-term therapeutics. In this study, amitriptyline, an FDA-approved tricyclic antidepressant, was administered orally to aged and cognitively impaired transgenic AD mice (3×TgAD. After amitriptyline treatment, cognitive behavior testing demonstrated that there was a significant improvement in both long- and short-term memory retention. Amitriptyline treatment also caused a significant potentiation of non-toxic Aβ monomer with a concomitant decrease in cytotoxic dimer Aβ load, compared to vehicle-treated 3×TgAD controls. In addition, amitriptyline administration caused a significant increase in dentate gyrus neurogenesis as well as increases in expression of neurosynaptic marker proteins. Amitriptyline treatment resulted in increases in hippocampal brain-derived neurotrophic factor protein as well as increased tyrosine phosphorylation of its cognate receptor (TrkB. These results indicate that amitriptyline has significant beneficial actions in aged and damaged AD brains and that it shows promise as a tolerable novel therapeutic for the treatment of AD.

  6. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Swedena

    Directory of Open Access Journals (Sweden)

    Jaenson Thomas GT

    2012-08-01

    Full Text Available Abstract The highest annual incidence of human tick-borne encephalitis (TBE in Sweden ever recorded by the Swedish Institute for Communicable Disease Control (SMI occurred last year, 2011. The number of TBE cases recorded during 2012 up to 6th August 2012 indicates that the incidence for 2012 could exceed that of 2011. In this review of the ecology and epidemiology of TBE in Sweden our main aim is to analyse the possible reasons behind the gradually increasing incidence of human TBE during the last 20 years. The main TBE virus (TBEV vector to humans in Sweden is the nymphal stage of the common tick Ixodes ricinus. The main mode of transmission and maintenance of TBEV in the tick population is considered to be when infective nymphs co-feed with uninfected but infectible larvae on rodents. In most locations the roe deer, Capreolus capreolus is the main host for the reproducing adult I. ricinus ticks. The high number of roe deer for more than three decades has resulted in a very large tick population. Deer numbers have, however, gradually declined from the early 1990s to the present. This decline in roe deer numbers most likely made the populations of small rodents, which are reservoir-competent for TBEV, gradually more important as hosts for the immature ticks. Consequently, the abundance of TBEV-infected ticks has increased. Two harsh winters in 2009–2011 caused a more abrupt decline in roe deer numbers. This likely forced a substantial proportion of the “host-seeking” ticks to feed on bank voles (Myodes glareolus, which at that time suddenly had become very numerous, rather than on roe deer. Thus, the bank vole population peak in 2010 most likely caused many tick larvae to feed on reservoir-competent rodents. This presumably resulted in increased transmission of TBEV among ticks and therefore increased the density of infected ticks the following year. The unusually warm, humid weather and the prolonged vegetation period in 2011 permitted

  7. Oligodendrogenesis and neurogenesis in remyelination in the cuprizone model of multiple sclerosis: correlation with the degree of lesion

    Science.gov (United States)

    Pishchelko, A.; Khodanovich, M.; Pan, E.; Glazacheva, V.; Akulov, A.; Yarnykh, V.

    2017-08-01

    In this research, a cuprizone model of multiple sclerosis (MS) was used to study oligodendrogenesis and neurogenesis in remyelination. It has been shown that, with the administration of cuprizone, the amount of myelin in a number of structures of white and gray matter and the level of neurogenesis decrease, while the level of oligodendrogenesis increases. The withdrawal of cuprizone leads to the restoration of myelin content, the reduction of the excessive production of oligodendrocytes and to the restoration of the number of neurons to control values. The negative correlation between the number of oligodendrocyte precursors (OPCs) and the degree of demyelination of the corpus callosum indicates migration of OLG precursors from the subventricular zone (SVZ) to the structure during demyelination.

  8. Combination of aging and dimethylhydrazine treatment causes an increase in cancer-stem cell population of rat colonic crypts.

    Science.gov (United States)

    Levi, Edi; Misra, Sandhya; Du, Jianhua; Patel, Bhaumik B; Majumdar, Adhip P N

    2009-07-31

    Aging is associated with increased incidence of colon cancers. It is also becoming evident that cancer stem cells (CSC) play a vital role in the pathogenesis and prognosis of colon cancer. Recently, we reported the presence of colon cancer stem-like cells in macroscopically normal mucosa in patients with adenomatous polyps and that they increase with aging, suggesting that aging may predispose the colon to carcinogenesis. In the current study we have examined the combined effects of aging and carcinogen exposure on the status of colon CSCs in an experimental model. We used young (4-6 months) and aged (22-24 months) rats and exposed them to the carcinogen, dimethylhydroxide (DMH). We investigated the expression of colon cancer stem cell markers, CD44, CD166, EpCam, and ALDH1 as well as EGFR expression in normal colonic crypt epithelium following carcinogen treatment. Our results demonstrate that aging per se or carcinogen treatment alone causes an increase in the number of colon cancer stems cells, as evidenced by increased immunoreactive-CSC-markers positive cells in the colonic mucosa. In aged rats, carcinogen exposure results in a more pronounced increase in colon cancer stem cells. Our study shows that in aging colon the effects of carcinogens are more pronounced, and an increase in colon CSCs is one of the earliest changes preceding tumor development. Moreover, the current investigation of the use of a panel of immunohistochemical markers of colon CSC can potentially serve as a prognostic marker during screening for colon cancer.

  9. Stress-Induced Anxiety- and Depressive-Like Phenotype Associated with Transient Reduction in Neurogenesis in Adult Nestin-CreERT2/Diphtheria Toxin Fragment A Transgenic Mice

    Science.gov (United States)

    Yun, Sanghee; Donovan, Michael H.; Ross, Michele N.; Richardson, Devon R.; Reister, Robin; Farnbauch, Laure A.; Fischer, Stephanie J.; Riethmacher, Dieter; Gershenfeld, Howard K.; Lagace, Diane C.; Eisch, Amelia J.

    2016-01-01

    Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety

  10. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats.

    Science.gov (United States)

    Kim, Bo-Kyun; Shin, Mal-Soon; Kim, Chang-Ju; Baek, Sang-Bin; Ko, Yeong-Chan; Kim, Young-Pyo

    2014-02-01

    Alzheimer's disease is one of the most devastating neurodegenerative disorders, and this disease is characterized by severe memory impairment and decline of cognition. Hippocampal neurons are vulnerable to injury induced by Alzheimer's disease. Physical exercise is known to promote cell survival and functional recovery after brain injuries. In the present study, we investigated the effects of treadmill exercise on short-term memory in relation with neurogenesis in the rats with amyloid β25-35 (Aβ25-35)-induced Alzheimer's disease. The rat model of Alzheimer's disease was induced by the intracerebroventricular (ICV) injection of Aβ25-35, using a stereotaxic instrument. The rats in the exercise group were forced to run on a treadmill for 30 min once daily for 4 consecutive weeks, starting 2 days after Aβ25-35 injection. Presently, short-term memory was deteriorated and apical dendritic length in the hippocampus was shortened in the hippocampus by Aβ25-35 injection. In contrast, treadmill exercise alleviated memory impairment and increased apical dendritic length in the Aβ25-35-injected rats. Neurogenesis and brain-derived neurotorphic factor (BDNF) and tyrosine kinase B (trkB) in the hippocampal dentate gyrus were decreased by Aβ25-35 injection. Treadmill exercise increased neurogenesis and expressions of BDNF and trkB expressions. The present study shows that treadmill exercise may provide therapeutic value for the alleviating symptoms of Alzheimer's disease.

  11. A mutation in the centriole-associated protein centrin causes genomic instability via increased chromosome loss in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Marshall Wallace F

    2005-05-01

    Full Text Available Abstract Background The role of centrioles in mitotic spindle function remains unclear. One approach to investigate mitotic centriole function is to ask whether mutation of centriole-associated proteins can cause genomic instability. Results We addressed the role of the centriole-associated EF-hand protein centrin in genomic stability using a Chlamydomonas reinhardtii centrin mutant that forms acentriolar bipolar spindles and lacks the centrin-based rhizoplast structures that join centrioles to the nucleus. Using a genetic assay for loss of heterozygosity, we found that this centrin mutant showed increased genomic instability compared to wild-type cells, and we determined that the increase in genomic instability was due to a 100-fold increase in chromosome loss rates compared to wild type. Live cell imaging reveals an increased rate in cell death during G1 in haploid cells that is consistent with an elevated rate of chromosome loss, and analysis of cell death versus centriole copy number argues against a role for multipolar spindles in this process. Conclusion The increased chromosome loss rates observed in a centrin mutant that forms acentriolar spindles suggests a role for centrin protein, and possibly centrioles, in mitotic fidelity.

  12. Increased heart rate caused by atrial pacing with the closed-loop stimulation function prevented micturition syncope

    Directory of Open Access Journals (Sweden)

    Tatsuo Haraki, MD,PhD

    2013-10-01

    Full Text Available A 70-year-old man had been experiencing syncope several times a year. We implanted a DDD pacemaker with closed-loop stimulation (CLS function. When he urinated early in the morning, his increased atrial pacing rates elevated his heart rate (HR during and after micturition. After implantation of the DDD-CLS mode, he did not experience symptoms. In contrast, in the DDD-R mode, his intrinsic HR changed to atrial pacing after micturition but decreased to the basal rate within 2 min, and he experienced a sense of cold perspiration and presyncope. Increased HRs caused by atrial pacing with the CLS function were useful in the prevention of micturition syncope.

  13. Hybrid and electric low-noise cars cause an increase in traffic accidents involving vulnerable road users in urban areas.

    Science.gov (United States)

    Brand, Stephan; Petri, Maximilian; Haas, Philipp; Krettek, Christian; Haasper, Carl

    2013-01-01

    Due to resource scarcity, the number of low-noise and electric cars is expected to increase rapidly. The frequent use of these cars will lead to a significant reduction of traffic related noise and pollution. On the other hand, due to the adaption and conditioning of vulnerable road users the number of traffic accidents involving pedestrians and bicyclists is postulated to increase as well. Children, older people with reduced eyesight and the blind are especially reliant on a combination of acoustic and visual warning signals with approaching or accelerating vehicles. This is even more evident in urban areas where the engine sound is the dominating sound up to 30 kph (kilometres per hour). Above this, tyre-road interaction is the main cause of traffic noise. With the missing typical engine sound a new sound design is necessary to prevent traffic accidents in urban areas. Drivers should not be able to switch the sound generator off.

  14. Lifelong neurogenesis in the cerebral ganglion of the Chinese mud snail,Cipangopaludina chinensis.

    Science.gov (United States)

    Swart, Charles C; Wattenberger, Amelia; Hackett, Amy; Isaman, Danielle

    2017-04-01

    A small group of Gastropods possessing giant neurons have long been used to study a wide variety of fundamental neurophysiological phenomena. However, the majority of gastropods do not have large neurons but instead have large numbers of small neurons and remain largely unstudied. We explored neuron size and rate of increase in neuron numbers in the Chinese mud snail, Cipangopaludina chinensis . Using histological sections and whole mounts of the cerebral ganglia, we collected cross-sectional data on neuron number and size across the lifespan of this animal. Neurogenesis was verified using Click-it EdU staining. We found that total neuron number in the cerebral ganglia increases throughout the lifespan of this species at a constant rate. New neurons arise primarily near the nerve roots. Females live longer (up to 7 years) than males (up to 5 years) and thus achieve larger numbers of neurons in the cerebral ganglion. Neuron size is consistently small (cells in the posterior section of the cerebral ganglia are modestly but significantly larger than cells at the anterior. These features suggest that C. chinensis and similar species of Caenogastropoda are good candidates for studying gastropod neurogenesis, senescence, and sex differences in the nervous system.

  15. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females.

    Science.gov (United States)

    Workman, Joanna L; Raineki, Charlis; Weinberg, Joanne; Galea, Liisa A M

    2015-07-01

    Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Social isolation disrupts hippocampal neurogenesis in young non-human primates

    Directory of Open Access Journals (Sweden)

    Simone M Cinini

    2014-03-01

    Full Text Available Social relationships are crucial for the development and maintenance of normal behavior in non-human primates. Animals that are raised in isolation develop abnormal patterns of behavior that persist even when they are later reunited with their parents. In rodents, social isolation is a stressful event and is associated with a decrease in hippocampal neurogenesis but considerably less is known about the effects of social isolation in non-human primates during the transition from adolescence to adulthood. To investigate how social isolation affects young marmosets, these were isolated from other members of the colony for one or three weeks and evaluated for alterations in their behavior and hippocampal cell proliferation. We found that anxiety-related behaviors like scent-marking and locomotor activity increased after social isolation when compared to baseline levels. In agreement, grooming - an indicative of attenuation of tension - was reduced among isolated marmosets. These results were consistent with increased cortisol levels after one and three weeks of isolation. After social isolation (one or three weeks, reduced proliferation of neural cells in the subgranular zone of dentate granule cell layer was identified and a smaller proportion of BrdU-positive cells underwent neuronal fate (doublecortin labeling. Our data is consistent with the notion that social deprivation during the transition from adolescence to adulthood leads to stress and produces anxiety-like behaviors that in turn might affect neurogenesis and contribute to the deleterious consequences of prolonged stressful conditions.

  17. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1.

    Science.gov (United States)

    Sellner, Sabine; Paricio-Montesinos, Ricardo; Spieß, Alena; Masuch, Annette; Erny, Daniel; Harsan, Laura A; Elverfeldt, Dominik V; Schwabenland, Marius; Biber, Knut; Staszewski, Ori; Lira, Sergio; Jung, Steffen; Prinz, Marco; Blank, Thomas

    2016-09-17

    Homo and heterozygote cx3cr1 mutant mice, which harbor a green fluorescent protein (EGFP) in their cx3cr1 loci, represent a widely used animal model to study microglia and peripheral myeloid cells. Here we report that microglia in the dentate gyrus (DG) of cx3cr1 (-/-) mice displayed elevated microglial sirtuin 1 (SIRT1) expression levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 activation, despite unaltered morphology when compared to cx3cr1 (+/-) or cx3cr1 (+/+) controls. This phenotype was restricted to the DG and accompanied by reduced adult neurogenesis in cx3cr1 (-/-) mice. Remarkably, adult neurogenesis was not affected by the lack of the CX3CR1-ligand, fractalkine (CX3CL1). Mechanistically, pharmacological activation of SIRT1 improved adult neurogenesis in the DG together with an enhanced performance of cx3cr1 (-/-) mice in a hippocampus-dependent learning and memory task. The reverse condition was induced when SIRT1 was inhibited in cx3cr1 (-/-) mice, causing reduced adult neurogenesis and lowered hippocampal cognitive abilities. In conclusion, our data indicate that deletion of CX3CR1 from microglia under resting conditions modifies brain areas with elevated cellular turnover independent of CX3CL1.

  18. The role of genes involved in neuroplasticity and neurogenesis in the observation of a gene-environment interaction (GxE) in schizophrenia.

    Science.gov (United States)

    Le Strat, Yann; Ramoz, Nicolas; Gorwood, Philip

    2009-05-01

    Schizophrenia is a multifactorial disease characterized by a high heritability. Several candidate genes have been suggested, with the strongest evidences for genes encoding dystrobrevin binding protein 1 (DTNBP1), neuregulin 1 (NRG1), neuregulin 1 receptor (ERBB4) and disrupted in schizophrenia 1 (DISC1), as well as several neurotrophic factors. These genes are involved in neuronal plasticity and play also a role in adult neurogenesis. Therefore, the genetic basis of schizophrenia could involve different factors more or less specifically required for neuroplasticity, including the synapse maturation, potentiation and plasticity as well as neurogenesis. Following the model of Knudson in tumors, we propose a two-hit hypothesis of schizophrenia. In this model of gene-environment interaction, a variant in a gene related to neurogenesis is transmitted to the descent (first hit), and, secondarily, an environmental factor occurs during the development of the central nervous system (second hit). Both of these vulnerability and trigger factors are probably necessary to generate a deficit in neurogenesis and therefore to cause schizophrenia. The literature supporting this gene x environment hypothesis is reviewed, with emphasis on some molecular pathways, raising the possibility to propose more specific molecular medicine.

  19. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

    Directory of Open Access Journals (Sweden)

    Ana M Blázquez-Medela

    Full Text Available Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD eventually leading to end stage renal disease (ESRD and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner.Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR or L-NAME induced hypertension rendered hyperglycemic (or not as controls.Combination of hypertension and hyperglycemia (but not each of these factors independently causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors.Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

  20. Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London.

    Science.gov (United States)

    Halonen, Jaana I; Hansell, Anna L; Gulliver, John; Morley, David; Blangiardo, Marta; Fecht, Daniela; Toledano, Mireille B; Beevers, Sean D; Anderson, Hugh Ross; Kelly, Frank J; Tonne, Cathryn

    2015-10-14

    Road traffic noise has been associated with hypertension but evidence for the long-term effects on hospital admissions and mortality is limited. We examined the effects of long-term exposure to road traffic noise on hospital admissions and mortality in the general population. The study population consisted of 8.6 million inhabitants of London, one of Europe's largest cities. We assessed small-area-level associations of day- (7:00-22:59) and nighttime (23:00-06:59) road traffic noise with cardiovascular hospital admissions and all-cause and cardiovascular mortality in all adults (≥25 years) and elderly (≥75 years) through Poisson regression models. We adjusted models for age, sex, area-level socioeconomic deprivation, ethnicity, smoking, air pollution, and neighbourhood spatial structure. Median daytime exposure to road traffic noise was 55.6 dB. Daytime road traffic noise increased the risk of hospital admission for stroke with relative risk (RR) 1.05 [95% confidence interval (CI): 1.02-1.09] in adults, and 1.09 (95% CI: 1.04-1.14) in the elderly in areas >60 vs. 60 vs. road traffic noise was associated with small increased risks of all-cause mortality and cardiovascular mortality and morbidity in the general population, particularly for stroke in the elderly. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  1. Type 2 Neural Progenitor Cell Activation Drives Reactive Neurogenesis after Binge-Like Alcohol Exposure in Adolescent Male Rats

    Directory of Open Access Journals (Sweden)

    Chelsea R. Geil Nickell

    2017-12-01

    Full Text Available Excessive alcohol consumption during adolescence remains a significant health concern as alcohol drinking during adolescence increases the likelihood of an alcohol use disorder in adulthood by fourfold. Binge drinking in adolescence is a particular problem as binge-pattern consumption is the biggest predictor of neurodegeneration from alcohol and adolescents are particularly susceptible to the damaging effects of alcohol. The adolescent hippocampus, in particular, is highly susceptible to alcohol-induced structural and functional effects, including volume and neuron loss. However, hippocampal structure and function may recover with abstinence and, like in adults, a reactive burst in hippocampal neurogenesis in abstinence may contribute to that recovery. As the mechanism of this reactive neurogenesis is not known, the current study investigated potential mechanisms of reactive neurogenesis in binge alcohol exposure in adolescent, male rats. In a screen for cell cycle perturbation, a dramatic increase in the number of cells in all phases of the cycle was observed at 7 days following binge ethanol exposure as compared to controls. However, the proportion of cells in each phase was not different between ethanol-exposed rats and controls, indicating that cell cycle dynamics are not responsible for the reactive burst in neurogenesis. Instead, the marked increase in hippocampal proliferation was shown to be due to a twofold increase in proliferating progenitor cells, specifically an increase in cells colabeled with the progenitor cell marker Sox2 and S-phase (proliferation marker, BrdU, in ethanol-exposed rats. To further characterize the individual subtypes of neural progenitor cells (NPCs affected by adolescent binge ethanol exposure, a fluorescent quadruple labeling technique was utilized to differentiate type 1, 2a, 2b, and 3 progenitor cells simultaneously. At one week into abstinence, animals in the ethanol exposure groups had an increase in

  2. NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice.

    Science.gov (United States)

    Sharma, Sunita; Darland, Diane; Lei, Saobo; Rakoczy, Sharlene; Brown-Borg, Holly M

    2012-06-01

    In the current study, we investigated changes in N-methyl D-aspartate (NMDA) and kainate receptor expression, long-term potentiation (LTP), and neurogenesis in response to neurotoxic stress in long-living Ames dwarf mice. We hypothesized that Ames dwarf mice have enhanced neurogenesis that enables retention of spatial learning and memory with age and promotes neurogenesis in response to injury. Levels of the NMDA receptors (NR)1, NR2A, NR2B, and the kainate receptor (KAR)2 were increased in Ames dwarf mice, relative to wild-type littermates. Quantitative assessment of the excitatory postsynaptic potential in Schaffer collaterals in hippocampal slices from Ames dwarf mice showed an increased response in high-frequency induced LTP over time compared with wild type. Kainic acid (KA) injection was used to promote neurotoxic stress-induced neurogenesis. KA mildly increased the number of doublecortin-positive neurons in wild-type mice, but the response was significantly enhanced in the Ames dwarf mice. Collectively, these data support our hypothesis that the enhanced learning and memory associated with the Ames dwarf mouse may be due to elevated levels of NMDA and KA receptors in hippocampus and their ability to continue producing new neurons in response to neuronal damage.

  3. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity

    Science.gov (United States)

    Mertz, Tony M.; Sharma, Sushma; Chabes, Andrei; Shcherbakova, Polina V.

    2015-01-01

    Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway. PMID:25827231

  4. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes

    Science.gov (United States)

    O'Donnell, John C.; Jackson, Joshua G.

    2016-01-01

    Recently, mitochondria have been localized to astrocytic processes where they shape Ca2+ signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca2+ channel blocker), two inhibitors of reversed Na+/Ca2+ exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca2+ indicator Lck-GCaMP-6S, we observed two types of Ca2+ signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca2+ through reversed Na+/Ca2+ exchange triggers mitochondrial loss and dramatic increases in Ca2+ signaling in astrocytic processes. SIGNIFICANCE STATEMENT Astrocytes, the most abundant cell type in the

  5. Abrupt onset of large scale nonproton ion release in purple membranes caused by increasing pH or ionic strength.

    Science.gov (United States)

    Marinetti, T

    1987-06-01

    The abrupt onset of large scale nonproton ion release by photo-excited purple membrane suspensions has been observed near neutral pH using transient conductivity measurements. At pH 7 and low ionic strength, the conductivity transients due to proton and nonproton ions are of comparable magnitude but of opposite sign: fast proton release and ion uptake, followed by slow proton uptake and ion release. By increasing either the pH or the NaCl concentration, the amplitude of the conductivity transient increases sharply and the signal is then dominated by nonproton ion release. These results can be understood in terms of light-induced changes in the population of counterions condensed at the purple membrane surface caused by changes in the surface charge density. The critical charge density required for condensation to occur is evidently achieved near neutral pH by ionizing dissociable groups on the membrane by either titration (increasing the pH) or shifting their pKs (increasing the ionic strength).

  6. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.

    Science.gov (United States)

    Wang, Shanshan; Wang, Jun; Zhang, Zengdi; Miao, Hongjun

    2017-08-01

    Glomerular podocytes are injured in sepsis. We studied, in a sepsis patient, whether microRNAs (miRNAs) play a role in the podocyte injury. Podocytes were cultured and treated with lipopolysaccharide (LPS). Filtration barrier function of podocyte was analyzed with albumin influx assay. Nephrin level was analyzed with reverse transcription polymerase chain reaction (RT-PCR) and western blot. MiRNAs were detected using miRNAs PCR Array and in situ hybridization. MiRNA target sites were evaluated with luciferase reporter assays. LPS impaired the filtration barrier function of podocytes. MiR-128 level was decreased and miR-21 level was increased in podocytes in vitro and in the sepsis patient. The decrease in miR-128 was sufficient to induce the loss of nephrin and the impairment of filtration barrier function, while the increase of miR-21 exacerbated the process. Snail and phosphatase and tensin homolog (PTEN) were identified as the targets of miR-128 and miR-21. Decreased miR-128 induced Snail expression, and the increased miR-21 stabilized Snail by regulating the PTEN/Akt/GSK3β pathway. Supplementation of miR-128 and inhibition of miR-21 suppressed Snail expression and prevented the podocyte injury induced by LPS. Our study suggests that decreased miR-128 and increased miR-21 synergistically cause podocyte injury and are the potential therapeutic targets in sepsis.

  7. Ilex paraguariensis Extract Increases Lifespan and Protects Against the Toxic Effects Caused by Paraquat in Caenorhabditis elegans.

    Science.gov (United States)

    Lima, Maria E; Colpo, Ana C; Salgueiro, Willian G; Sardinha, Guilherme E; Avila, Daiana S; Folmer, Vanderlei

    2014-09-26

    Recent studies have shown that phenolic compounds present in yerba mate have antioxidant defense properties. To verify whether Ilex paraguariensis extracts are capable of increasing the lifespan of an organism, we have used the free-living nematode Caenorhabditis elegans. Notably, this is the first study that analyzes the effects of the extracts of yerba mate obtained from an extraction method that mimics the manner that the plant is consumed by the population by using a live organism. Yerba mate was purchased from commercial markets from Argentina, Brazil, and Uruguay. Ilex paraguariensis extracts significantly increased the life span of C. elegans. Moreover, the extracts reduced the ROS levels per se, and protected from the reduced survival and reproduction rate induced by paraquat exposure. Considering molecular aspects, we observed that the worms pretreated with the extracts depicted higher translocation of the transcription factor DAF-16::GFP to the nucleus. However, there was no increase in the levels of the DAF-16 target genes, SOD-3 and catalase. Our results suggest that the increase of lifespan caused by the different extracts is associated to the antioxidant potential of yerba mate, however this effect is not completely mediated by daf-16.

  8. TV viewing time is associated with increased all-cause mortality in Brazilian adults independent of physical activity.

    Science.gov (United States)

    Turi, B C; Monteiro, H L; Lemes, Í R; Codogno, J S; Lynch, K R; Asahi Mesquita, C A; Fernandes, R A

    2018-02-01

    The purpose of this study was to investigate the association between television (TV) viewing and all-cause mortality among Brazilian adults after 6 years of follow-up. This longitudinal study started in 2010 in the city of Bauru, SP, Brazil, and involved 970 adults aged ≥50 years. Mortality was reported by relatives and confirmed in medical records of the Brazilian National Health System. Physical activity (PA) and TV viewing were assessed by the Baecke questionnaire. Health status, sociodemographic and behavioral covariates were considered as potential confounders. After 6 years of follow-up, 89 deaths were registered (9.2% [95% CI=7.4%-11%]). Type 2 diabetes mellitus was associated with higher risk of mortality (P-value=.012). Deaths correlated significantly with age (ρ=.188; P-value=.001), overall PA score (ρ=-.128; P-value=.001) and TV viewing (ρ=.086; P-value=.007). Lower percentage of participants reported TV viewing time as often (16%) and very often (5.7%), but there was an association between higher TV viewing time ("often" and "very often" grouped together) and increased mortality after 6 years of follow-up (P-value=.006). The higher TV viewing time was associated with a 44.7% increase in all-cause mortality (HR=1.447 [1.019-2.055]), independently of other potential confounders. In conclusion, the findings from this cohort study identified increased risk of mortality among adults with higher TV viewing time, independently of PA and other variables. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Juvenile neurogenesis makes essential contributions to adult brain structure and plays a sex-dependent role in fear memories

    Directory of Open Access Journals (Sweden)

    Jesse Daniel Cushman

    2012-02-01

    Full Text Available Postnatal-neurogenesis (PNN contributes neurons to olfactory bulb (OB and dentate gyrus (DG throughout juvenile development, but the quantitative amount, temporal dynamics and functional roles of this contribution have not been defined. By using transgenic mouse models for cell lineage tracing and conditional cell ablation, we found that juvenile neurogenesis gradually increased the total number of granule neurons by approximately 40% in OB, and by 25% in DG, between two weeks and two months of age, and that total numbers remained stable thereafter. These findings indicate that the overwhelming majority of net postnatal neuronal addition in these regions occurs during the juvenile period and that adult neurogenesis contributes primarily to replacement of granule cells in both regions. Behavioral analysis in our conditional cell ablation mouse model showed that complete loss of PNN throughout both the juvenile and adult period produced a specific set of sex-dependent cognitive changes. We observed normal hippocampus-independent delay fear conditioning, but excessive generalization of fear to a novel auditory stimulus, which is consistent with a role for PNN in psychopathology. Standard contextual fear conditioning was intact, however, pre-exposure dependent contextual fear was impaired suggesting a specific role for PNN in incidental contextual learning. Contextual discrimination between two highly similar contexts was enhanced; suggesting either enhanced contextual pattern separation or impaired temporal integration. We also observed a reduced reliance on olfactory cues, consistent with a role for OB PNN in the efficient processing of olfactory information. Thus, juvenile neurogenesis adds substantively to the total numbers of granule neurons in OB and DG during periods of critical juvenile behavioral development, including weaning, early social interactions and sexual maturation, and plays a sex-dependent role in fear memories.

  10. Mice with conditional NeuroD1 knockout display reduced aberrant hippocampal neurogenesis but no change in epileptic seizures.

    Science.gov (United States)

    Brulet, Rebecca; Zhu, Jingfei; Aktar, Mahafuza; Hsieh, Jenny; Cho, Kyung-Ok

    2017-07-01

    Adult neurogenesis is significantly increased in the hippocampus of rodent models of temporal lobe epilepsy (TLE). These adult-generated neurons have recently been shown to play a contributing role in the development of spontaneous recurrent seizures (SRS). In order to eventually target pro-epileptic adult neurogenesis in the clinical setting, it will be important to identify molecular players involved in the control of aberrant neurogenesis after seizures. Here, we focused on NeuroD1 (ND1), a member of the bHLH family of transcription factors previously shown to play an essential role in the differentiation and maturation of adult-generated neurons in the hippocampus. Wild-type mice treated with pilocarpine to induce status epilepticus (SE) showed a significant up-regulation of NeuroD1+ immature neuroblasts located in both the granule cell layer (GCL), and ectopically localized to the hilar region of the hippocampus. As expected, conditional knockout (cKO) of NeuroD1 in Nestin-expressing stem/progenitors and their progeny led to a reduction in the number of NeuroD1+ adult-generated neurons after pilocarpine treatment compared to WT littermates. Surprisingly, there was no change in SRS in NeuroD1 cKO mice, suggesting that NeuroD1 cKO fails to reduce aberrant neurogenesis below the threshold needed to impact SRS. Consistent with this conclusion, the total number of adult-generated neurons in the pilocarpine model, especially the total number of Prox1+ hilar ectopic granule cells were unchanged after NeuroD1 cKO, suggesting strategies to reduce SRS will need to achieve a greater removal of aberrant adult-generated neurons. Published by Elsevier Inc.

  11. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats.

    Science.gov (United States)

    Zhang, Liying; Hu, Xiquan; Luo, Jing; Li, Lili; Chen, Xingyong; Huang, Ruxun; Pei, Zhong

    2013-04-08

    Physical exercise improves functional recovery after stroke through a complex mechanism that is not fully understood. Transient focal cerebral ischemia induces autophagy, apoptosis and neurogenesis in the peri-infarct region. This study is aimed to examine the effects of physical exercise on autophagy, apoptosis and neurogenesis in the peri-infarct region in a rat model of transient middle cerebral artery occlusion (MCAO). We found that autophagosomes, as labeled by microtubule-associated protein 1A light chain 3-II (LC3-II), were evident in the peri-infarct region at 3 days after 90-minute MCAO. Moreover, 44.6% of LC3-positive cells were also stained with TUNEL. The number of LC3 positive cells was significantly lower in physical exercise group than in control group at 14 and 21 days after MCAO. Suppression of autophagosomes by physical exercise was positively associated with improvement of neurological function. In addition, physical exercise significantly decreased the number of TUNEL-positive cells and increased the numbers of Ki67-positive, a proliferative marker, and insulin-like growth factor-1 (IGF-1) positive cells at 7, 14, and 21 days after MCAO. The present results demonstrate that physical exercise enhances neurological function possibly by reduction of autophagosome accumulation, attenuation of apoptosis and enhancement of neurogenesis in the peri-infarct region after transient MCAO in rats.

  12. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  13. Effects of enriched physical and social environments on motor performance, associative learning, and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Noelia Madroñal

    2010-06-01

    Full Text Available We have studied the motor abilities and associative learning capabilities of adult mice placed in different enriched environments. Three-month-old animals were maintained for a month alone (AL, alone in a physically enriched environment (PHY, and, finally, in groups in the absence (SO or presence (SOPHY of an enriched environment. The animals' capabilities were subsequently checked in the rotarod test, and for classical and instrumental learning. The PHY and SOPHY groups presented better performances in the rotarod test and in the acquisition of the instrumental learning task. In contrast, no significant differences between groups were observed for classical eyeblink conditioning. The four groups presented similar increases in the strength of field EPSPs (fEPSPs evoked at the hippocampal CA3-CA1 synapse across classical conditioning sessions, with no significant differences between groups. These trained animals were pulse-injected with bromodeoxyuridine (BrdU to determine hippocampal neurogenesis. No significant differences were found in the number of NeuN/BrdU double-labeled neurons. We repeated the same BrdU study in one-month-old mice raised for an additional month in the above-mentioned four different environments. These animals were not submitted to rotarod or conditioned tests. Non-trained PHY and SOPHY groups presented more neurogenesis than the other two groups. Thus, neurogenesis seems to be related to physical enrichment at early ages, but not to learning acquisition in adult mice.

  14. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair.

    Science.gov (United States)

    Li, Xing; Zhao, Yannan; Cheng, Shixiang; Han, Sufang; Shu, Muya; Chen, Bing; Chen, Xuyi; Tang, Fengwu; Wang, Nuo; Tu, Yue; Wang, Bin; Xiao, Zhifeng; Zhang, Sai; Dai, Jianwu

    2017-08-01

    Studies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI. These injury-activated NSCs then migrated into the lesion site. Cetuximab, an EGFR signaling antagonist, significantly increased neurogenesis in the lesion site. Meanwhile, implanting cetuximab modified linear ordered collagen scaffolds (LOCS) into SCI lesion sites in dogs resulted in neuronal regeneration, including neuronal differentiation, maturation, myelination, and synapse formation. The neuronal regeneration eventually led to a significant locomotion recovery. Furthermore, LOCS implantation could also greatly decrease chondroitin sulfate proteoglycan (CSPG) deposition at the lesion site. These findings suggest that endogenous neurogenesis following acute complete SCI is achievable in species ranging from rodents to large animals via functional scaffold implantation. LOCS-based Cetuximab delivery system has a promising therapeutic effect on activating endogenous neurogenesis, reducing CSPGs deposition and improving motor function recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    Directory of Open Access Journals (Sweden)

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  16. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease

    OpenAIRE

    Morello , Maria; Landel , Véréna; Lacassagne , Emmanuelle; Baranger , Kévin; Annweiler , Cedric; Féron , François; Millet , Pascal

    2018-01-01

    International audience; The impairment of hippocampal neurogenesis at the early stages of Alzheimer’s disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in fem...

  17. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  18. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging.

    Science.gov (United States)

    Stankiewicz, Alexander J; McGowan, Erin M; Yu, Lili; Zhdanova, Irina V

    2017-10-26

    Chronic high caloric intake (HCI) is a risk factor for multiple major human disorders, from diabetes to neurodegeneration. Mounting evidence suggests a significant contribution of circadian misalignment and sleep alterations to this phenomenon. An inverse temporal relationship between sleep, activity, food intake, and clock mechanisms in nocturnal and diurnal animals suggests that a search for effective therapeutic approaches can benefit from the use of diurnal animal models. Here, we show that, similar to normal aging, HCI leads to the reduction in daily amplitude of expression for core clock genes, a decline in sleep duration, an increase in scoliosis, and anxiety-like behavior. A remarkable decline in adult neurogenesis in 1-year old HCI animals, amounting to only 21% of that in age-matched Control, exceeds age-dependent decline observed in normal 3-year old zebrafish. This is associated with misalignment or reduced amplitude of daily patterns for principal cell cycle regulators, cyclins A and B , and p20 , in brain tissue. Together, these data establish HCI in zebrafish as a model for metabolically induced premature aging of sleep, circadian functions, and adult neurogenesis, allowing for a high throughput approach to mechanistic studies and drug trials in a diurnal vertebrate.

  19. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging

    Directory of Open Access Journals (Sweden)

    Alexander J. Stankiewicz

    2017-10-01

    Full Text Available Chronic high caloric intake (HCI is a risk factor for multiple major human disorders, from diabetes to neurodegeneration. Mounting evidence suggests a significant contribution of circadian misalignment and sleep alterations to this phenomenon. An inverse temporal relationship between sleep, activity, food intake, and clock mechanisms in nocturnal and diurnal animals suggests that a search for effective therapeutic approaches can benefit from the use of diurnal animal models. Here, we show that, similar to normal aging, HCI leads to the reduction in daily amplitude of expression for core clock genes, a decline in sleep duration, an increase in scoliosis, and anxiety-like behavior. A remarkable decline in adult neurogenesis in 1-year old HCI animals, amounting to only 21% of that in age-matched Control, exceeds age-dependent decline observed in normal 3-year old zebrafish. This is associated with misalignment or reduced amplitude of daily patterns for principal cell cycle regulators, cyclins A and B, and p20, in brain tissue. Together, these data establish HCI in zebrafish as a model for metabolically induced premature aging of sleep, circadian functions, and adult neurogenesis, allowing for a high throughput approach to mechanistic studies and drug trials in a diurnal vertebrate.

  20. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  1. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  2. Diet-induced obesity causes visceral, but not subcutaneous, lymph node hyperplasia via increases in specific immune cell populations.

    Science.gov (United States)

    Magnuson, A M; Regan, D P; Fouts, J K; Booth, A D; Dow, S W; Foster, M T

    2017-10-01

    The spatial proximity of adipose depots to secondary lymph nodes allows a unique relation between the two systems. Obesity, predominately visceral adiposity, links to numerous diseases; hence, we postulate that secondary lymphatics within this region contributes to disease risk. Male C57BL/6 mice were fed standard CHOW (18% kcal fat) or Western diet (45% kcal fat) for 7 weeks. Visceral and subcutaneous lymph nodes and associated adipose depots they occupy were excised. Lymph node morphology and resident immune cell populations were characterized via histopathology, immunofluorescence and flow cytometry. Adipose tissue immune cell populations were also characterized. Obesity caused lymph node expansion, increased viable cell number and deviations in immune cell populations. These alterations were exclusive to visceral lymph nodes. Notably, pro-inflammatory antigen presenting cells and regulatory T cells increased in number in the visceral lymph node. Obesity, however, reduced T regulatory cells in visceral lymph nodes. The visceral adipose depot also had greater reactivity towards HFD than subcutaneous, with a greater percent of macrophages, dendritic and CD8 + T cells. Immune cell number, in both the visceral and subcutaneous, however decreased as adipose depots enlarged. Overall, HFD has a greater influence on visceral cavity than the subcutaneous. In the visceral lymph node, but not subcutaneous, HFD-induced obesity decreased cell populations that suppressed immune function while increasing those that regulate/activate immune response. © 2017 John Wiley & Sons Ltd.

  3. Declines in Malaria Burden and All-Cause Child Mortality following Increases in Control Interventions in Senegal, 2005-2010.

    Science.gov (United States)

    Thwing, Julie; Eckert, Erin; Dione, Demba Anta; Tine, Roger; Faye, Adama; Yé, Yazoume; Ndiop, Medoune; Cisse, Moustapha; Ndione, Jacques Andre; Diouf, Mame Birame; Ba, Mady

    2017-09-01

    Malaria is endemic in Senegal. The national malaria control strategy focuses on achieving universal coverage for major interventions, with a goal of reaching preelimination status by 2018. Senegal began distribution of insecticide-treated nets (ITNs) and introduced artemisinin-based combination therapy in 2006, then introduced rapid diagnostic tests in 2007. We evaluated the impact of these efforts using a plausibility design based on malaria's contribution to all-cause under-five mortality (ACCM) and considering other contextual factors which may influence ACCM. Between 2005 and 2010, household ownership of ITNs increased from 20% to 63%, and the proportion of people sleeping under an ITN the night prior to the survey increased from 6% to 29%. Malaria parasite prevalence declined from 6% to 3% from 2008 to 2010 among children under five. Some nonmalaria indicators of child health improved, for example, increase of complete vaccination coverage from 58% to 64%; however, nutritional indicators deteriorated, with an increase in stunting from 16% to 26%. Although economic indicators improved, environmental conditions favored an increase in malaria transmission. ACCM decreased 40% between 2005 and 2010, from 121 (95% confidence interval [CI] 113-129) to 72 (95% CI 66-77) per 1,000, and declines were greater among age groups, epidemiologic zones, and wealth quintiles most at risk for malaria. After considering coverage of malaria interventions, trends in malaria morbidity, effects of contextual factors, and trends in ACCM, it is plausible that malaria control interventions contributed to a reduction in malaria mortality and to the impressive gains in child survival in Senegal.

  4. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  5. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  6. Modelling hippocampal neurogenesis across the lifespan in seven species

    OpenAIRE

    Lazic, Stanley E.

    2011-01-01

    The aim of this study was to estimate the number of new cells and neurons added to the dentate gyrus across the lifespan, and to compare the rate of age-associated decline in neurogenesis across species. Data from mice (Mus musculus), rats (Rattus norvegicus), lesser hedgehog tenrecs (Echinops telfairi), macaques (Macaca mulatta), marmosets (Callithrix jacchus), tree shrews (Tupaia belangeri), and humans (Homo sapiens) were extracted from twenty one data sets published in fourteen different p...

  7. Dynamic learning and memory, synaptic plasticity and neurogenesis: an update

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš

    2014-01-01

    Roč. 8, APR 1 (2014), s. 106 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : learning * memory * synaptic plasticity * neurogenesis Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  8. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  9. Using causal models to distinguish between neurogenesis-dependent and -independent effects on behaviour

    Science.gov (United States)

    Lazic, Stanley E.

    2012-01-01

    There has been a substantial amount of research on the relationship between hippocampal neurogenesis and behaviour over the past 15 years, but the causal role that new neurons have on cognitive and affective behavioural tasks is still far from clear. This is partly due to the difficulty of manipulating levels of neurogenesis without inducing off-target effects, which might also influence behaviour. In addition, the analytical methods typically used do not directly test whether neurogenesis mediates the effect of an intervention on behaviour. Previous studies may have incorrectly attributed changes in behavioural performance to neurogenesis because the role of known (or unknown) neurogenesis-independent mechanisms was not formally taken into consideration during the analysis. Causal models can tease apart complex causal relationships and were used to demonstrate that the effect of exercise on pattern separation is via neurogenesis-independent mechanisms. Many studies in the neurogenesis literature would benefit from the use of statistical methods that can separate neurogenesis-dependent from neurogenesis-independent effects on behaviour. PMID:21957118

  10. Contribution of adenosine to the increase in skeletal muscle blood flow caused by manual acupuncture in rats.

    Science.gov (United States)

    Shinbara, Hisashi; Nagaoka, Satomi; Izutani, Yasuyuki; Okubo, Masamichi; Kimura, Keisaku; Mizunuma, Kunio; Sumiya, Eiji

    2017-08-01

    Adenosine is believed to play an important role in local acupuncture analgesia. The aim of this study was to investigate the contribution of adenosine to the increase in skeletal muscle blood flow (MBF) caused by manual acupuncture (MA). Thirty-two male Sprague-Dawley rats (310-360 g) were anaesthetised and divided into four equal groups (n=8 each): Saline, Saline+MA, Theophylline, and Theophylline+MA. In the two MA groups, the sparrow-pecking MA technique was applied at 30 repetitions per min for 1 min to a depth of 15-18 mm using a stainless steel acupuncture needle (0.20×40 mm). The stimulus point was located on the right tibialis anterior (TA) muscle 7-8 mm below the knee. Animals in the two theophylline groups were intra-arterially injected with 8-(p-sulphophenyl) theophylline, a non-selective adenosine receptor antagonist, at a dose of 30 mg/kg before MA. Animals in the two saline groups received control saline. Fluorescent microspheres (15 µm in diameter, yellow-green fluorescent) were used for MBF measurement in all four groups. MA of the TA muscle significantly increased MBF (Saline+MA vs Saline: p=0.001; Saline+MA vs Theophylline: p=0.008). Pre-treatment with theophylline appeared to inhibit this increase (Theophylline vs Theophylline+MA; p=1.000). MBF in the Theophylline+MA group was 43% lower than in the Saline+MA group, although this was not significantly different (p=0.104). The results suggest that adenosine leads to an increase in MBF caused by MA. Adenosine may play a role in acupuncture analgesia by washing out algesic substances. Further studies are needed in order to elucidate the precise mechanism. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Addition of Cardiorespiratory Fitness Within an Obesity Risk Classification Model Identifies Men at Increased Risk of All-Cause Mortality.

    Science.gov (United States)

    Ricketts, T Alexander; Sui, Xuemei; Lavie, Carl J; Blair, Steven N; Ross, Robert

    2016-05-01

    Guidelines for identification of obesity-related risk which stratify disease risk using specific combinations of body mass index and waist circumference. Whether the addition of cardiorespiratory fitness, an independent predictor of disease risk, provides better risk prediction of all-cause mortality within current body mass index and waist circumference categories is unknown. The study objective was to determine whether the addition of cardiorespiratory fitness improves prediction of all-cause mortality risk classified by the combination of body mass index and waist circumference. We performed a prospective observational study using data from the Aerobics Center Longitudinal Study. A total of 31,267 men (mean age, 43.9 years; standard deviation, 9.4 years) who completed a baseline medical examination between 1974 and 2002 were included. The main outcome measure was all-cause mortality. Participants were grouped using body mass index- and waist circumference-specific threshold combinations: normal body mass index: 18.5 to 24.9 kg/m(2), waist circumference threshold of 90 cm; overweight body mass index: 25.0 to 29.9 kg/m(2), waist circumference threshold of 100 cm, and obese body mass index: 30.0 to 34.9 kg/m(2), waist circumference threshold of 110 cm. Participants were classified using cardiorespiratory fitness as unfit or fit, where unfit was the lowest fifth of the age-specified distribution of maximal exercise test time on the treadmill among the entire Aerobics Center Longitudinal Study population. A total of 1399 deaths occurred over a follow-up of 14.1 ± 7.4 years, for a total of 439,991 person-years of observation. Men who were unfit and had normal body mass index with waist circumference men who were fit, respectively (P Men who were unfit and overweight had 41% (HR, 1.41; 95% CI, 1.04-1.90) higher mortality risk with a waist circumference Men who were unfit and obese were not at increased mortality risk (HR, 1.37; 95% CI, 0.90-2.09) with a waist

  12. Modeling hippocampal neurogenesis across the lifespan in seven species.

    Science.gov (United States)

    Lazic, Stanley E

    2012-08-01

    The aim of this study was to estimate the number of new cells and neurons added to the dentate gyrus across the lifespan, and to compare the rate of age-associated decline in neurogenesis across species. Data from mice (Mus musculus), rats (Rattus norvegicus), lesser hedgehog tenrecs (Echinops telfairi), macaques (Macaca mulatta), marmosets (Callithrix jacchus), tree shrews (Tupaia belangeri), and humans (Homo sapiens) were extracted from 21 data sets published in 14 different reports. Analysis of variance (ANOVA), exponential, Weibull, and power models were fit to the data to determine which best described the relationship between age and neurogenesis. Exponential models provided a suitable fit and were used to estimate the relevant parameters. The rate of decrease of neurogenesis correlated with species longevity (r = 0.769, p = 0.043), but not body mass or basal metabolic rate. Of all the cells added postnatally to the mouse dentate gyrus, only 8.5% (95% confidence interval [CI], 1.0% to 14.7%) of these will be added after middle age. In addition, only 5.7% (95% CI 0.7% to 9.9%) of the existing cell population turns over from middle age and onward. Thus, relatively few new cells are added for much of an animal's life, and only a proportion of these will mature into functional neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Adult neurogenesis and acupuncture stimulation at ST36.

    Science.gov (United States)

    Nam, Min-Ho; Yin, Chang Shik; Soh, Kwang-Sup; Choi, Seung-hoon

    2011-09-01

    Although it was believed that the brain was incapable of regeneration after embryonic development, neurogenesis is now known to occur into adulthood. Adult neurogenesis has been demonstrated in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus. Acupuncture has long been used to treat neurologic conditions, and recent reports suggest that neurogenesis may account for its beneficial effects. ST36 was the most often used acupoint in previous reports and was shown to enhance cell proliferation and neuronal differentiation. This acupoint may be linked to the brain through the primo vascular system, an anatomic structure thought to correspond to acupuncture meridians. This primitive vascular-like system appears to be involved in physiologic and pathologic processes by circulating substances throughout the body. The role of the primo vascular system as the link between the skin and brain underlying the beneficial effects of acupuncture requires further investigation. Copyright © 2011. Published by Elsevier B.V.

  14. Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation.

    Science.gov (United States)

    Wadhwa, Meetu; Prabhakar, Amit; Ray, Koushik; Roy, Koustav; Kumari, Punita; Jha, Prabhash Kumar; Kishore, Krishna; Kumar, Sanjeev; Panjwani, Usha

    2017-11-15

    Sleep deprivation (SD) leads to cognitive impairment. Neuroinflammation could be a significant contributing factor in the same. An increase in regional brain pro-inflammatory cytokines induces cognitive deficits, however, the magnitude of the effect under SD is not apparent. It is plausible that microglia activation could be involved in the SD-induced cognitive impairment by modulation of neuronal cell proliferation, differentiation, and brain-derived neuronal factor (BDNF) level. The present study aimed to evaluate the possible beneficial effect of minocycline in amelioration of spatial memory decline during SD by its anti-inflammatory and neuroprotective actions. We scrutinized the effect of minocycline on the inflammatory cytokine levels associated with glial cells (microglia and astrocytes) activity and neurogenesis markers crucial for behavioral functions during SD. Male Sprague-Dawley rats weighing 230-250 g were sleep deprived for 48 h using automated cage shaking apparatus. The spatial memory was tested using MWM apparatus immediately after completion of SD with and without minocycline. The animals were euthanized, blood was collected, and brain was extracted for neuroinflammation and neurogenesis studies. The set of experiments were also conducted with use of temozolomide, a neurogenesis blocker. Minocycline treatment increased the body weight, food intake, and spatial memory performance which declined during SD. It reduced the pro-inflammatory and increased the anti-inflammatory cytokine levels in hippocampus and plasma and inhibited the reactive gliosis in the hippocampus evidenced by improved cell count, morphology, and immunoreactivity. Additionally, minocycline administration promoted neurogenesis at different stages: proliferation (BrdU, Ki-67), differentiation (DCX) cells and growth factor (BDNF). However, no significant change was observed in maturation (NeuN) during SD. In addition, molecules related to behavior, inflammation, and neurogenesis

  15. Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer's disease (AD induced by a combination of toxic amyloid-β peptide (Aβ and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret, an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1 mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU, doublecortin (DCX, and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.

  16. The mammalian adult neurogenesis gene ontology (MANGO provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available BACKGROUND: Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. CONCLUSIONS/SIGNIFICANCE: The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already

  17. Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease

    Directory of Open Access Journals (Sweden)

    Abhilash P. Appu

    2017-06-01

    Full Text Available Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA, a deacetylase that catabolizes N-acetylaspartate (NAA. The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydroph