Causal Viscous Hydrodynamics for Relativistic Heavy Ion Collisions
Song, Huichao
2009-01-01
The viscosity of the QGP is a presently hotly debated subject. Since its computation from first principles is difficult, it is desirable to try to extract it from experimental data. Viscous hydrodynamics provides a tool that can attack this problem and which may work in regions where ideal hydrodynamics begins to fail. This thesis focuses on viscous hydrodynamics for relativistic heavy ion collisions. We first review the 2nd order viscous equations obtained from different approaches, and then report on the work of the Ohio State University group on setting up the equations for causal viscous hydrodynamics in 2+1 dimensions and solving them numerically for central and noncentral Cu+Cu and Au+Au collisions at RHIC energies and above. We discuss shear and bulk viscous effects on the hydrodynamic evolution of entropy density, temperature, collective flow, and flow anisotropies, and on the hadron multiplicity, single particle spectra and elliptic flow. Viscous entropy production and its influence on the centrality...
International Nuclear Information System (INIS)
A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author)
Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto
2013-01-01
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.
Relativistic hydrodynamics - causality and stability
Ván, P.; Biró, T. S.
2007-01-01
Causality and stability in relativistic dissipative hydrodynamics are important conceptual issues. We argue that causality is not restricted to hyperbolic set of differential equations. E.g. heat conduction equation can be causal considering the physical validity of the theory. Furthermore we propose a new concept of relativistic internal energy that clearly separates the dissipative and non-dissipative effects. We prove that with this choice we remove all known instabilities of the linear re...
Rapidity Correlation Structures from Causal Hydrodynamics
Gavin, Sean; Zin, Christopher
2016-01-01
Viscous diffusion can broaden the rapidity dependence of two-particle transverse momentum fluctuations. Surprisingly, measurements at RHIC by the STAR collaboration demonstrate that this broadening is accompanied by the appearance of unanticipated structure in the rapidity distribution of these fluctuations in the most central collisions. Although a first order classical Navier-Stokes theory can roughly explain the rapidity broadening, it cannot explain the additional structure. We propose that the rapidity structure can be explained using the second order causal Israel-Stewart hydrodynamics with stochastic noise.
Akamatsu, Yukinao; Inutsuka, Shu-ichiro; Nonaka, Chiho; Takamoto, Makoto
2013-01-01
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quark-gluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the ...
Bulk viscous cosmology with causal transport theory
International Nuclear Information System (INIS)
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10−11 || cb2 ∼−8
International Nuclear Information System (INIS)
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quark–gluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation
Causal dissipative hydrodynamics for heavy ion collisions
Chaudhuri, A K
2011-01-01
We briefly discuss the recent developments in causal dissipative hydrodynamic for relativistic heavy ion collisions. Phenomenological estimate of QGP viscosity over entropy ratio from several experimental data, e.g. STAR's $\\phi$ meson data, centrality dependence of elliptic flow, universal scaling elliptic flow etc. are discussed. QGP viscosity, extracted from hydrodynamical model analysis can have very large systematic uncertainty due to uncertain initial conditions.
Renormalization group approach to causal bulk viscous cosmological models
Energy Technology Data Exchange (ETDEWEB)
Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
2002-06-07
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.
Renormalization group approach to causal bulk viscous cosmological models
International Nuclear Information System (INIS)
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Hydrodynamic response of viscous fluids under seismic excitation
International Nuclear Information System (INIS)
Hydrodynamic response of liquid-tank systems, such as reactor vessels, spent-fuel pools and liquid storage tanks have been studied extensively in the last decade (Chang et al. 1988; Ma et al. 1991). However, most of the studies are conducted with the assumption of an inviscid fluid. In recent years, the hydrodynamic response of viscous fluids has received increasing attention in high level waste storage tanks containing viscous waste material. This paper presents a numerical study on the hydrodynamic response of viscous fluids in a large 2-D fluid-tank system under seismic excitation. Hydrodynamic responses (i.e. sloshing wave height, fluid pressures, shear stress, etc.) are calculated for a fluid with various viscosities. Four fluid viscosities are considered. They are 1 cp, 120 cp, 1,000 cp and 12,000 cp (1 cp = 1.45 x 10-7 lb-sec/in2). Note that the liquid sodium of the Liquid-Metal Reactor (LMR) reactor has a viscosity of 1.38 x 10-5 lb-sec/in2 (about 95 cp) at an operational temperature of 900 degree F. Section 2 describes the pertinent features of the mathematical model. In Section 3, the fundamental sloshing phenomena of viscous fluid are examined. Sloshing wave height and shear stress for fluid with different viscosities are compared. The conclusions are given in Section 4
Microscopic formula for transport coefficients of causal hydrodynamics
Koide, T.
2007-01-01
The Green-Kubo-Nakano formula should be modified in relativistic hydrodynamics because of the problem of acausality and the breaking of sum rules. In this work, we propose a formula to calculate the transport coefficients of causal hydrodynamics based on the projection operator method. As concrete examples, we derive the expressions for the diffusion coefficient, the shear viscosity coefficient, and corresponding relaxation times.
Evolution of a universe filled with a causal viscous fluid
Chimento, Luis P
2012-01-01
The behaviour of solutions to the Einstein equations with a causal viscous fluid source is investigated. In this model we consider a spatially flat Robertson-Walker metric, the bulk viscosity coefficient is related to the energy density as $\\zeta = \\alpha \\rho^{m}$, and the relaxation time is given by $\\zeta/\\rho$. In the case $m = 1/2$ we find the exact solutions and we verify whether they satisfy the energy conditions. Besides, we study analytically the asymptotic stability of several families of solutions for arbitrary $m$. We find that the qualitative asymptotic behaviour in the far future is not altered by relaxation processes, but they change the behaviour in the past, introducing singular instead of deflationary evolutions or making the Universe bounce due to the violation of the energy conditions.
Microscopic formula of transport coefficients for causal hydrodynamics
Koide, T
2007-01-01
The Green-Kubo-Nakano formula should be modified in relativistic hydrodynamics, because of the problem of acausality and the breaking of sum rules. In this work, we propose a new formula to calculate the transport coefficients of causal hydrodynamics based on the projection operator method. As concrete examples, we derive the expressions for the diffusion coefficient, the shear viscosity coefficient and corresponding relaxation times.
Fluidic Channels Produced by Electro Hydrodynamic Viscous Fingering
Behler, Kristopher; Wetzel, Eric
2010-03-01
Viscous fingering is a term describing fingerlike extensions of liquid from a column of low viscosity liquid that has been injected into a more viscous liquid. The modification of viscous fingering, known as electro hydrodynamic viscous fingering (EHVF), utilizes large electrical potentials of 10-60 kV. The fingers see a reduction in size and increase in branching behavior due to the potential applied to the system. The resulting finely structured patterns are analogous to biological systems such as blood vessels and the lymphatic system. In this study silicone oils and water were studied in thin channel Hele-Shaw cells. The interfacial tension was optimized by altering the surfactant concentration in the silicone oils. EHVF of liquid filled packed beds consisting of beads and silicone oils showed retardation of the relaxation of the fingers after the voltage was turned off. Decreased relaxation provides a means to solidify patterns into a curable material, such as polydimethylsiloxane (PDMS). After the water is evacuated from the fingers, the cured materials then possess hollow channels that can be refilled and emptied, thus creating an artificial circulatory system.
Relativistic quantum transport coefficients for second-order viscous hydrodynamics
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw; Strickland, Michael
2015-01-01
We express the transport coefficients appearing in the second-order evolution equations for bulk viscous pressure and shear stress tensor using Bose-Einstein, Boltzmann, and Fermi-Dirac statistics for the equilibrium distribution function and Grad's 14-moment approximation as well as the method of Chapman-Enskog expansion for the non-equilibrium part. Specializing to the case of boost-invariant and transversally homogeneous longitudinal expansion of the viscous medium, we compare the results obtained using the above methods with those obtained from the exact solution of massive 0+1d Boltzmann equation in the relaxation-time approximation. We show that compared to the 14-moment approximation, the hydrodynamic transport coefficients obtained using the Chapman-Enskog method result in better agreement with the exact solution of the Boltzmann equation in relaxation-time approximation.
3+1 dimensional viscous hydrodynamics at high baryon densities
Karpenko, Iu; Huovinen, P; Petersen, H
2013-01-01
We apply a 3+1D viscous hydrodynamic + cascade model to the heavy ion collision reactions with $\\sqrt{s_{NN}}=6.3\\dots39$ GeV. To accommodate the model for a given collision energy range, the initial conditions for hydrodynamic phase are taken from UrQMD, and the equation of state at finite baryon density is based on Chiral model coupled to the Polyakov loop. We study the collision energy dependence of pion and kaon rapidity distributions and $m_T$-spectra, as well as charged hadron elliptic flow and how shear viscosity affects them. The model calculations are compared to the data for Pb-Pb collisions at CERN SPS, as well as for Au-Au collisions in the Beam Energy Scan (BES) program energies at BNL RHIC. The data favours the value of shear viscosity $\\eta/s\\gtrsim0.2$ for this collision energy range.
Two-pion interferometry for viscous hydrodynamic sources
Institute of Scientific and Technical Information of China (English)
Efaaf M.J.; SU Zhong-Qian; ZHANG Wei-Ning
2012-01-01
The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quarkgluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically.The particleemitting sources undergo a crossover transition from the QGP to hadronic gas.We take into account a usual shear viscosity for the strongly coupled QGP as well as the bulk viscosity which increases significantly in the crossover region.The two-pion Hanbury-Brown-Twiss (HBT) interferometry for the viscous hydrodynamic sources is performed.The HBT analyses indicate that the viscosity effect on the two-pion HBT results is small if only the shear viscosity is taken into consideration in the calculations.The bulk viscosity leads to a larger transverse freeze-out configuration of the pion-emitting sources,and thus increases the transverse HBT radii.The results of the longitudinal HBT radius for the source with Bjorken longitudinal scaling are consistent with the experimental data.
Transport coefficients in second-order non-conformal viscous hydrodynamics
Ryblewski, Radoslaw
2014-01-01
Based on the exact solution of Boltzmann kinetic equation in the relaxation-time approximation, the precision of the two most recent formulations of relativistic second-order non-conformal viscous hydrodynamics (14-moment approximation and causal Chapman-Enskog method), standard Israel-Stewart theory, and anisotropic hydrodynamics framework, in the simple case of one-dimensional Bjorken expansion, is tested. It is demonstrated that the failure of Israel-Stewart theory in reproducing exact solutions of the Boltzmann kinetic equation occurs due to neglecting and/or choosing wrong forms of some of the second-order transport coefficients. In particular, the importance of shear--bulk couplings in the evolution equations for dissipative quantities is shown. One finds that, in the case of the bulk viscous pressure correction, such coupling terms are as important as the corresponding first-order Navier-Stokes term and must be included in order to obtain, at least qualitative, overall agreement with the kinetic theory...
3+1 dimensional viscous hydrodynamics at high baryon densities
Karpenko, Iu; Bleicher, M.; Huovinen, P.; Petersen, H.
2015-05-01
A 3+1 dimensional event-by-event viscous hydrodynamic + cascade model is applied for the simulation of heavy ion collision reactions at \\sqrt{sNN} = 6.3... 200 GeV. UrQMD cascade is used for the pre-thermal (pre-hydro) and final (post-hydro) stages of the reaction. The baryon, as well as electric charge densities are consistently taken into account in the model. For this aim the equation of state based on a Chiral model coupled to the Polyakov loop is used in hydrodynamic phase of evolution. As a result of the model adjustment to the experimental data, the effective values of the shear viscosity over entropy density η/s are obtained for different collision energies in the BES region. A decrease of the effective values of η/s from 0.2 to 0.08 is observed as collision energy increases from \\sqrt{s} ≈ 7 to 39 GeV.
Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization
Cornejo-Pérez, O.; Belinchón, J. A.
2012-01-01
We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method shows that there exists a relationship between the viscosity parameter $s$ and the parameter $\\gamma$ entering the equations of state of the model. Also, the factorization method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model adm...
On the regularity criterion of weak solution for the 3D viscous Magneto-hydrodynamics equations
Chen, Qionglei; Miao, Changxing; Zhang, Zhifei
2007-01-01
We improve and extend some known regularity criterion of weak solution for the 3D viscous Magneto-hydrodynamics equations by means of the Fourier localization technique and Bony's para-product decomposition.
Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP
Energy Technology Data Exchange (ETDEWEB)
Del Zanna, L. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy); INAF, Osservatorio Astrofisico di Arcetri, Firenze (Italy); Chandra, V. [INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Inghirami, G. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Rolando, V.; Pagliara, G.; Drago, A. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Sezione di Ferrara, Ferrara (Italy); Beraudo, A. [Theory Unit, CERN, Physics Department, Geneve (Switzerland); De Pace, A. [INFN, Sezione di Torino, Torino (Italy); Becattini, F. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany)
2013-08-15
We present ECHO-QGP, a numerical code for (3+1)-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high-energy nuclear collisions. The code has been built on top of the Eulerian Conservative High-Order astrophysical code for general relativistic magneto-hydrodynamics (Del Zanna et al. in Astron. Astrophys. 473:11, 2007) and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects both in Minkowskian and in Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by the combination of the conservative (shock-capturing) approach and the high-order methods employed. ECHO-QGP can be extended to include evolution of the electromagnetic fields coupled to the plasma. (orig.)
Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP
Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F
2013-01-01
We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...
Relativistic quantum transport coefficients for second-order viscous hydrodynamics
Florkowski, Wojciech; Jaiswal, Amaresh; Maksymiuk, Ewa; Ryblewski, Radoslaw; Strickland, Michael
2015-01-01
We express the transport coefficients appearing in the second-order evolution equations for bulk viscous pressure and shear stress tensor using Bose-Einstein, Boltzmann, and Fermi-Dirac statistics for the equilibrium distribution function and Grad's 14-moment approximation as well as the method of Chapman-Enskog expansion for the non-equilibrium part. Specializing to the case of transversally homogeneous and boost-invariant longitudinal expansion of the viscous medium, we compare the results ...
Viscous hydrodynamical model for relativistic heavy-ion reactions
International Nuclear Information System (INIS)
In one-dimensional hydrodynamical model the dynamics of heavy-ion collision is described. The density and temperature increase and the width of the evolving shock front is evaluated in the initial phase. The differential cross section and the rapidity spectrum of the nucleons emitted from the explosion, caused both by the flow and by the thermal energy, are calculated. The description of phase transitions occurring in shock waves is also discussed. (author)
The general relativistic equations of radiation hydrodynamics in the viscous limit
Coughlin, Eric R
2014-01-01
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit, with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that, as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable...
Erkut, M Hakan; Alpar, M Ali
2008-01-01
The observational characteristics of quasi-periodic oscillations (QPOs) from accreting neutron stars strongly indicate the oscillatory modes in the innermost regions of accretion disks as a likely source of the QPOs. The inner regions of accretion disks around neutron stars can harbor very high frequency modes related to the radial epicyclic frequency $\\kappa $. The degeneracy of $\\kappa $ with the orbital frequency $\\Omega $ is removed in a non-Keplerian boundary or transition zone near the magnetopause between the disk and the compact object. We show, by analyzing the global hydrodynamic modes of long wavelength in the boundary layers of viscous accretion disks, that the fastest growing mode frequencies are associated with frequency bands around $\\kappa $ and $\\kappa \\pm \\Omega $. The maximum growth rates are achieved near the radius where the orbital frequency $\\Omega $ is maximum. The global hydrodynamic parameters such as the surface density profile and the radial drift velocity determine which modes of ...
Rebusco, Paola; Kluzniak, Wlodek; Regev, Oded
2009-01-01
Thin viscous Keplerian accretion disks are considered asymptotically stable, even though they can show significant dynamic activity on short timescales. In this paper the dynamics of non-axisymmetric hydrodynamical disturbances of disks are investigated analytically building upon the steady state three-dimensional structure and evolution of axisymmetric perturbations explored in previous work. Assuming a polytropic equation of state solutions are found by means of an asymptotic expansion in the small parameter measuring the ratio of the disk thickness to characteristic radius. In-depth analysis shows that every perturbation that disturbs the radial velocity induces significant transient growth in the (acoustic) energy of the evolving disturbance. This effect is most evident in the density and vertical velocity. The transient growth observed is tied to the non-separable nature of the solutions where, in particular, pattern evolution is controlled by a similarity variable composed of the radial coordinate and t...
THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT
Energy Technology Data Exchange (ETDEWEB)
Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309 (United States)
2014-12-20
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.
The General Relativistic Equations of Radiation Hydrodynamics in the Viscous Limit
Coughlin, Eric R.; Begelman, Mitchell C.
2014-12-01
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.
THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT
International Nuclear Information System (INIS)
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers
Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji
2015-10-01
We derive the second-order hydrodynamic equation and the microscopic formulas of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the nonrelativistic second-order hydrodynamic equation. Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Furthermore, we show that the microscopic expressions of the relaxation times have natural and physically plausible forms. We prove that the propagating velocities of the fluctuations of the hydrodynamical variables do not exceed the light velocity, and hence our second-order equation ensures the desired causality. It is also confirmed that the equilibrium state is stable for any perturbation described by our equation.
Song, Huichao
2009-01-01
Bulk viscosity suppresses elliptic flow v_2, as does shear viscosity. It can thus not be neglected when extracting the shear viscosity from elliptic flow data. We here explore uncertainties in the bulk viscous contribution to viscous v_2 suppression that arise from presently uncontrolled uncertainties in the initial value of the bulk viscous pressure and its microscopic relaxation time.
Kumar, Pardeep; Singh, Mahinder
2007-01-01
The Rayleigh‐Taylor instability of a Newtonian viscous fluid overlying an Oldroydian viscoelastic fluid containing suspended particles is considered. As in both Newtonian viscous-viscous fluids, the system is stable in the potentially stable case and unstable in the potentially unstable case, this holds for the present problem also. The effect of a variable horizontal magnetic field is also considered. The presence of magnetic field stabilizes a certain wavenumber band, whereas the system is ...
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
The applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions
Huovinen, Pasi
2008-01-01
We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart dissipative hydrodynamics (IS) and Navier-Stokes theory (NS) for relativistic heavy ion physics applications. A massless ideal gas with 2->2 interactions is considered in a 0+1D Bjorken scenario, appropriate for the early longitudinal expansion stage of the collision. In the scale invariant case of a constant shear viscosity to entropy density ratio eta/s ~ const, we find that Israel-Stewart theory is 10% accurate in calculating dissipative effects if initially the expansion timescale exceeds half the transport mean free path tau0/lambda0 > ~2. The same accuracy with Navier-Stokes requires three times larger tau0/lambda0 > ~6. For dynamics driven by a constant cross section, on the other hand, about 50% larger tau0/lambda0 > ~3 (IS) and ~9 (NS) are needed. For typical applications at RHIC energies s_{NN}**(1/2) ~ 100-200 GeV, these limits imply that even the Israel-Stewart approach becomes margina...
Relaxation-time approximation and relativistic third-order viscous hydrodynamics from kinetic theory
International Nuclear Information System (INIS)
Using the iterative solution of Boltzmann equation in the relaxation-time approximation, the derivation of a third-order evolution equation for shear stress tensor is presented. To this end we first derive the expression for viscous corrections to the phase-space distribution function, f(x,p), up to second-order in derivative expansion. The expression for δf(x,p) obtained in this method does not lead to violation of the experimentally observed 1/√(mT) scaling of the femtoscopic radii, as opposed to the widely used Grad's 14-moment approximation. Subsequently, we present the derivation of a third-order viscous evolution equation and demonstrate the significance of this derivation within one-dimensional scaling expansion. We show that results obtained using third-order evolution equations are in excellent accordance with the exact solution of Boltzmann equation as well as with transport results
International Nuclear Information System (INIS)
The paper describes the results of mathematical modelling of acoustic processes, hydrodynamics and heat exchange in case of oil products transportation in pipelines with constant and variable cross-section. The turbulence model features of RANS approach and intensification of heat exchange in substances with anomalous rheology are reviewed. It is shown that statistic second order models are appropriate to use for forecasting details of the pulsating flows. The paper states the numerical integration features of determining equations. The properties of vibratory effect influence are determined. Vortex and heat perturbations, rheological changes impact on resistance regularities and intensity of heat exchange are analyzed
Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji
2015-01-01
We derive the second-order hydrodynamic equation and the microscopic formulae of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the non-relativistic second-order hydrodynamic equation Our theory nicely gives a compact expression of the deviation of...
Molteni, Diego; Battaglia, Onofrio Rosario
2016-01-01
We study the phenomenon of the "walking droplet", by means of numerical fluid dynamics simulations using a standard version of the Smoothed Particle Hydrodynamics method. The phenomenon occurs when a millimetric drop is released on the surface of an oil of the same composition contained in a container subjected to vertical oscillations of frequency and amplitude close to the Faraday instability threshold. At appropriate values of the parameters of the system under study, the liquid drop jumps permanently on the surface of the vibrating fluid forming a localized wave-particle system, reminding the behavior of a wave particle quantum system as suggested by de Broglie. In the simulations, the drop and the wave travel at nearly constant speed, as observed in experiments. In our study we made relevant simplifying assumptions, however we observe that the wave-drop coupling is easily obtained. This fact suggests that the phenomenon may occur in many contexts and opens the possibility to study the phenomenon in an ex...
International Nuclear Information System (INIS)
In this paper, we investigate underwater energy harvesting of a parallel array of nominally identical ionic polymer metal composites (IPMCs) subjected to low frequency base excitation in water. The IPMCs are connected in parallel and shunted with a varying resistor. We model the IPMCs as slender beams with uniform cross section undergoing small oscillations in an otherwise quiescent viscous fluid. We utilize a boundary element approach to compute the hydrodynamic loading on each structure, which is due to the oscillations of the whole array. Leveraging recent findings on sensing in ionic polymer metal composites, we propose a coupled electromechanical model for predicting energy harvesting as a function of the IPMCs’ impedance and the base excitation. To validate our theoretical predictions, we perform experiments on an in-house-fabricated array of five centimeter-size composites, which we characterize on a dedicated test rig. We experimentally determine the power harvested by varying the excitation frequency in the broad range 2–35 Hz and the shunting resistance from 1 to 1000 Ω. (paper)
Directory of Open Access Journals (Sweden)
Liushuai CAO
2016-01-01
Full Text Available To estimate the maneuverability of a submarine at the early design stage, an accurate evaluation of the hydrodynamic coefficients is important. In a collaborative exercise, the authors performed calculations on the bare hull DRAPA SUBOFF submarine to investigate the capability of viscous-flow solvers to predict the forces and moments as well as flow field around the body. A typical simulation program was performed for both the steady drift tests and rotating arm tests. The same grid topology based on multi-block mesh strategy was used to discretize the computational domain. A procedure designated drift sweep was implemented to automatically increment the drift angle during the simulation of steady drift tests. The rotating coordinate system was adopted to perform the simulation of rotating arm tests. The Coriolis force and centrifugal force due to the computation in a rotating frame of reference were treated explicitly and added to momentum equations as source terms. Lastly, the computed forces and moment as a function of angles of drift in both conditions are compared with experimental results and literature values. They always show the correct trend. Flow field quantities including pressure coefficients and vorticity and axial velocity contours are also visualized to vividly describe the evolution of flow motions along the hull.
Tsumura, Kyosuke; Kunihiro, Teiji
2015-01-01
We derive the second-order hydrodynamic equation and the microscopic formulae of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the non-relativistic second-order hydrodynamic equation Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Furthermore, we show that the microscopic expressions of the relaxation times have natural and physically plausible forms. We prove that the propagating velocities of the fluctuations of the hydrodynamica...
Energy Technology Data Exchange (ETDEWEB)
Martikka, H. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Kuosa, M. [Lappeenranta University of Technology, Department of Energy and Environmental Engineering (Finland)
2003-07-01
The goal of this paper is to present results of analysing the functionality of a power transmission III system. In the present case study the power is input from a motor to a hydrodynamic torque converter. It actuates a machinery consisting of a variator, a compound gear train, a planetary gear train, clutch alternatives and a load machine. The purpose of the converter is to obtain high startup torque. The aim of the variator is to obtain stepless speed transmission. Various clutch alternatives are considered and possibilities of an optimal synthesis to obtain optimal transmission of power and speed. Electro-rheological fluid poser and clutch components are studied for obtaining optimal torque transmission. The design variables of the ER-clutch are number of activated plates, disk spacing and the shear stress of the fluid. The torque capacity of the ER-clutch depends on the ER shear stress of the fluid which depends on the electric field and temperature. Dry and wet friction clutches are considered and also a viscoelastic clutch. One conclusion is that this model is useful for starting a conceptual concurrent design to obtain an optimal power transmission with a novel hybrid clutch. (orig.)
Zhu, Xiangrong
2016-01-01
Using the (2+1)-dimensional ultrarelativistic viscous hydrodynamics+hadron cascade, VISHNU, hybrid model, we study the $p_{\\rm T}$-spectra and elliptic flow of $\\Lambda$, $\\Xi$, and $\\Omega$ in Au+Au collisions at $\\sqrt{s_{NN}}$=200 GeV and in Pb+Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV. Comparing our model results with the data measurements, we find that the VISHNU model gives general descriptions of the measurements of these strange and multi-strange hadrons at several centrality classes at RHIC and LHC. Mass ordering of elliptic flow $v_{2}$ among $\\pi$, $K$, $p$, $\\Lambda$, $\\Xi$, and $\\Omega$ are further investigated and discussed at the two collision systems. We find, at both RHIC and LHC, the $v_{2}$ mass ordering among $\\pi$, $K$, $p$, and $\\Omega$ are fairly reproduced within the VISHNU hybrid model, and more improvements are needed to implement for well describing the $v_{2}$ mass ordering among $p$, $\\Lambda$, and $\\Xi$.
The Relativistic Rindler Hydrodynamics
Eling, Christopher; Oz, Yaron
2012-01-01
We consider a (d+2)-dimensional class of Lorentzian geometries holographically dual to a relativistic fluid flow in (d+1) dimensions. The fluid is defined on a (d+1)-dimensional time-like surface which is embedded in the (d+2)-dimensional bulk space-time and equipped with a flat intrinsic metric. We find two types of geometries that are solutions to the vacuum Einstein equations: the Rindler metric and the Taub plane symmetric vacuum. These correspond to dual perfect fluids with vanishing and negative energy densities respectively. While the Rindler geometry is characterized by a causal horizon, the Taub geometry has a timelike naked singularity, indicating pathological behavior. We construct the Rindler hydrodynamics up to the second viscous order and show the positivity of its entropy current divergence.
Czech Academy of Sciences Publication Activity Database
Petrov, A. G.; Kharlamov, Alexander
2013-01-01
Roč. 48, č. 2 (2013), s. 179-191. ISSN 0015-4628 R&D Projects: GA ČR GA103/09/2066 Grant ostatní: Russian Foundation for Basic Research(RU) 11-01-00535; Russian Foundation for Basic Research(RU) 11-01-00857; Target Analytical Program; Development of the Scientific Potential of the Higher School(RU) 2.1.2/3604 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * contact vicinity Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013
Lauga, Eric
2015-01-01
Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.
Latest developments in anisotropic hydrodynamics
Tinti, Leonardo
2015-01-01
We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1) and (1+1)-dimensional cases it is consistent with the second order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the second order viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.
Barbosa, C M S; Piattella, O F; Velten, H E S; Zimdahl, W
2015-01-01
We discuss the possibility to implement a viscous cosmological model, attributing to the dark matter component a behaviour described by bulk viscosity. Since bulk viscosity implies negative pressure, this rises the possibility to unify the dark sector. At the same time, the presence of dissipative effects may alleviate the so called small scale problems in the $\\Lambda$CDM model. While the unified viscous description for the dark sector does not lead to consistent results, the non-linear behaviour indeed improves the situation with respect to the standard cosmological model.
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Lectures on hydrodynamic fluctuations in relativistic theories
International Nuclear Information System (INIS)
These are pedagogical lecture notes on hydrodynamic fluctuations in normal relativistic fluids. The lectures discuss correlation functions of conserved densities in thermal equilibrium, interactions of the hydrodynamic modes, an effective action for viscous fluids and the breakdown of the derivative expansion in hydrodynamics. (topical review)
Hirano, Tetsufumi; Bilandzic, Ante
2008-01-01
In this lecture note, we present several topics on relativistic hydrodynamics and its application to relativistic heavy ion collisions. In the first part we give a brief introduction to relativistic hydrodynamics in the context of heavy ion collisions. In the second part we present the formalism and some fundamental aspects of relativistic ideal and viscous hydrodynamics. In the third part, we start with some basic checks of the fundamental observables followed by discussion of collective flow, in particular elliptic flow, which is one of the most exciting phenomenon in heavy ion collisions at relativistic energies. Next we discuss how to formulate the hydrodynamic model to describe dynamics of heavy ion collisions. Finally, we conclude the third part of the lecture note by showing some results from ideal hydrodynamic calculations and by comparing them with the experimental data.
Langlois, William E
2014-01-01
Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." - from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...
DEFF Research Database (Denmark)
Rasmussen, Lauge Baungaard
2006-01-01
The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...
Membrane Paradigm and Holographic Hydrodynamics
Eling, Christopher; Oz, Yaron
2010-01-01
We discuss recent work showing that in certain cases the membrane paradigm equations governing the dynamics of black hole horizons can be recast as relativistic conservation law equations. In the context of gauge/gravity dualities, these equations are interpreted as defining the viscous hydrodynamics of a holographically dual relativistic field theory. Using this approach, one can derive the viscous transport coefficients and the form of the entropy current for field theories dual to gravity plus matter fields.
Anisotropic hydrodynamics: Motivation and methodology
International Nuclear Information System (INIS)
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches
Quasiparticle anisotropic hydrodynamics for central collisions
Alqahtani, Mubarak; Strickland, Michael
2016-01-01
We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...
A discretized integral hydrodynamics
Romero-Rochin, Victor; Rubi, J. Miguel
1997-01-01
Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how these equations can give rise to th...
Highly-anisotropic hydrodynamics for central collisions
Ryblewski, Radoslaw
2016-01-01
The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.
Chi, Do Minh
2001-01-01
We advance a famous principle - causality principle - but under a new view. This principle is a principium automatically leading to most fundamental laws of the nature. It is the inner origin of variation, rules evolutionary processes of things, and the answer of the quest for ultimate theories of the Universe.
New formulation of leading order anisotropic hydrodynamics
Tinti, Leonardo
2014-01-01
Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)--dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)--dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, {the new form of anisotropic hydrodynamics leads to better agree...
Testing different formulations of leading-order anisotropic hydrodynamics
Tinti, Leonardo; Florkowski, Wojciech; Strickland, Michael
2015-01-01
A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform the detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general, formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.
Testing different formulations of leading-order anisotropic hydrodynamics
Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael
2016-02-01
A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.
Relativistic fluctuating hydrodynamics with memory functions and colored noises
Murase, Koichi
2013-01-01
Relativistic dissipative hydrodynamics including hydrodynamic fluctuations is formulated by putting an emphasis on non-linearity and causality. As a consequence of causality, dissipative currents become dynamical variables and noises appeared in an integral form of constitutive equations should be colored ones from fluctuation-dissipation relations. Nevertheless noises turn out to be white ones in its differential form when noises are assumed to be Gaussian. The obtained ifferential equations are very useful in numerical implementation of relativistic fluctuating hydrodynamics.
Collision-dominated nonlinear hydrodynamics in graphene
Briskot, U.; Schütt, M.; Gornyi, I. V.; Titov, M.; Narozhny, B. N.; Mirlin, A. D.
2015-09-01
We present an effective hydrodynamic theory of electronic transport in graphene in the interaction-dominated regime. We derive the emergent hydrodynamic description from the microscopic Boltzmann kinetic equation taking into account dissipation due to Coulomb interaction and find the viscosity of Dirac fermions in graphene for arbitrary densities. The viscous terms have a dramatic effect on transport coefficients in clean samples at high temperatures. Within linear response, we show that viscosity manifests itself in the nonlocal conductivity as well as dispersion of hydrodynamic plasmons. Beyond linear response, we apply the derived nonlinear hydrodynamics to the problem of hot-spot relaxation in graphene.
Pressure development due to viscous fluid flow through a converging gap
Imhamed, Ahmed
2004-01-01
The behaviour of fluid flow in industrial processes is essential for numerous applications and there have been vast amount of work on the hydrodynamic pressure generated due to the flow of viscous fluid. One major manifestation of hydrodynamic pressure application is the wire coating/drawing process, where the wire is pulled through a unit either conical or cylindrical bore filled with a polymer melt that gives rise to the hydrodynamic pressure inside the unit. The hydrodynamic pressure distr...
Nagatsu, Yuichiro; Hayashi, Atsushi; Kato, Yoshihito; Tada, Yutaka
2006-11-01
When a less-viscous fluid displaces a more-viscous fluid in a radial Hele-Shaw cell, viscous fingering pattern is believed to develop in a radial direction. We performed experiments on viscous fingering in a radial Hele-Shaw cell when a polymer solution, a sodium polyacrylate (SPA) solution is used as the more-viscous fluid and the trivalent iron (Fe^3+) solution is as the less-viscous fluid. The experiment was done by varying the concentration of Fe^3+, cFe3+. We have found that viscous fingering pattern develops spirally when cFe3+ is larger than a threshold value, while the pattern develops in a radial direction for small cFe3+. We confirmed from different experiments that an instantaneous chemical reaction takes place between SPA solution and Fe^3+ solution. The chemical reaction produces precipitation and significantly reduces the viscosity of the SPA solution. The quantity of the precipitation is increased with cFe3+. We will make a discussion on the relationship between the formation of spiral viscous fingering and the chemical reaction taking place between the two fluids.
Hydrodynamical noise and Gubser flow
Yan, Li
2015-01-01
Hydrodynamical noise is introduced on top of Gubser's analytical solution to viscous hydrodynamics. With respect to the ultra-central collision events of Pb-Pb, p-Pb and p-p at the LHC energies, we solve the evolution of noisy fluid systems and calculate the radial flow velocity correlations. We show that the absolute amplitude of the hydrodynamical noise is determined by the multiplicity of the collision event. The evolution of azimuthal anisotropies, which is related to the generation of harmonic flow, receives finite enhancements from hydrodynamical noise. Although it is strongest in the p-p systems, the effect of hydrodynamical noise on flow harmonics is found to be negligible, especially in the ultra-central Pb-Pb collisions. For the short-range correlations, hydrodynamical noise contributes to the formation of a near-side peak on top of the correlation structure originated from initial state fluctuations. The shape of the peak is affected by the strength of hydrodynamical noise, whose height and width g...
Synchronization of rotating helices by hydrodynamic interactions
Reichert, M.; H. Stark
2004-01-01
Some types of bacteria use rotating helical flagella to swim. The motion of such organisms takes place in the regime of low Reynolds numbers where viscous effects dominate and where the dynamics is governed by hydrodynamic interactions. Typically, rotating flagella form bundles, which means that their rotation is synchronized. The aim of this study is to investigate whether hydrodynamic interactions can be at the origin of such a bundling and synchronization. We consider two stiff helices tha...
Relativistic Conformal Magneto-Hydrodynamics from Holography
Buchbinder, Evgeny I.; Buchel, Alex
2009-01-01
We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1) dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in e...
Integrable viscous conservation laws
Arsie, Alessandro; Lorenzoni, Paolo; Moro, Antonio
2015-06-01
We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named the viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlevé I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe.
HYDRODYNAMIC INTERACTIONS BETWEEN TWO BODIES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.
Hydrodynamic fluctuations and dissipation in an integrated dynamical model
Murase, Koichi
2016-01-01
We develop a new integrated dynamical model to investigate the effects of the hydrodynamic fluctuations on observables in high-energy nuclear collisions. We implement hydrodynamic fluctuations in a fully 3-D dynamical model consisting of the hydrodynamic initialization models of the Monte-Carlo Kharzeev-Levin-Nardi model, causal dissipative hydrodynamics and the subsequent hadronic cascades. By analyzing the hadron distributions obtained by massive event-by-event simulations with both of hydrodynamic fluctuations and initial-state fluctuations, we discuss the effects of hydrodynamic fluctuations on the flow harmonics, $v_n$ and their fluctuations.
Nonlinear waves in second order conformal hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Fogaça, D.A., E-mail: david@if.usp.br; Marrochio, H.; Navarra, F.S.; Noronha, J.
2015-02-15
In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations corresponding to Israel–Stewart theory. Small amplitude waves are studied within the linearization approximation while waves with large amplitude are investigated using the reductive perturbation method, which is generalized to the case of 2nd order relativistic hydrodynamics. Our results indicate the presence of a “soliton-like” wave solution in Israel–Stewart hydrodynamics despite the presence of dissipation and relaxation effects.
International Nuclear Information System (INIS)
Implosion hydrodynamics are examined, from the conditions in the imploded target to the initial target configuration and the driver performance. The subject is discussed under the topic headings: inertial configuration, thermonuclear fusion processes, ignition model, shock waves, acceleration by a constant pressure, spherical shock waves and imploding flows, drive pressure requirements, pulse shaping, pressure generation by lasers and ion beams, symmetry and hydrodynamic stability and typical target designs. (U.K.)
Frisch, Mathias
2014-01-01
Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.
Recent development of hydrodynamic modeling
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
DEFF Research Database (Denmark)
Dyre, Jeppe
1999-01-01
Recent NMR experiments on supercooled toluene and glycerol by Hinze and Böhmer show that small rotation angles dominate with only a few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solidlike on short length scales. A characteristic length, the...
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models should note carefully both their models’ identifying assumptions and which causal attributions can safely be concluded from their analysis....
Chi, Do Minh
1999-01-01
We research the natural causality of the Universe. We find that the equation of causality provides very good results on physics. That is our first endeavour and success in describing a quantitative expression of the law of causality. Hence, our theoretical point suggests ideas to build other laws including the law of the Universe's evolution.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Robinson, Alex P. L.
The main aim of this lecture is to provide a broad overview of the area of hydrodynamic simulation. The provision of introductions to a couple of basic algorithms for solving the equations of gas dynamics is a secondary objective. Hydrodynamic simulation in the context of laser-plasma physics and inertial fusion is now a large and mature field, deserving of an entire book (or books…) for a proper treatment. Individual topics will not be treated in great depth, and mathematical detail is avoided where possible. It is hoped that the reader will understand the key aspects of hydrodynamic simulation and the ability to write a very simple 1D hydro-solver with a view to using this knowledge as a "springboard" for more in-depth study.
Horava-Lifshitz Black Hole Hydrodynamics
Eling, Christopher
2014-01-01
We consider the holographic hydrodynamics of black holes in generally covariant gravity theories with a preferred time foliation. Gravitational perturbations in these theories have spin two and spin zero helicity modes with generically different speeds. The black hole solutions possess a spacelike causal boundary called the universal horizon. We relate the flux of the spin zero perturbation across the universal horizon to the new dissipative transport in Lifshitz field theory hydrodynamics found in arXiv:1304.7481. We construct in detail the hydrodynamics of one such black hole solution, and calculate the ratio of the shear viscosity to the entropy density.
Lafrance, Pierre
1978-01-01
Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.
Milne-Thomson, L M
2011-01-01
This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.
Lauga, Eric; 10.1017/jfm.2011.484
2012-01-01
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
Hydrodynamic interactions between rotating helices
Kim, Munju; Powers, Thomas R.
2004-06-01
Escherichia coli bacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia, and there are significant hydrodynamic interactions between nearby helices. These interactions cause the flagella to bundle during the “runs” of bacterial chemotaxis. Here we use slender-body theory to solve for the flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or repulsive force between the helices.
Hydrodynamic interactions between rotating helices.
Kim, MunJu; Powers, Thomas R
2004-06-01
Escherichia coli bacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia, and there are significant hydrodynamic interactions between nearby helices. These interactions cause the flagella to bundle during the "runs" of bacterial chemotaxis. Here we use slender-body theory to solve for the flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or repulsive force between the helices. PMID:15244620
Mihalas, Dimitri
Basic Radiation Theory Specific Intensity Photon Number Density Photon Distribution Function Mean Intensity Radiation Energy Density Radiation Energy Flux Radiation Momentum Density Radiation Stress Tensor (Radiation Pressure Tensor) Thermal Radiation Thermodynamics of Thermal Radiation and a Perfect Gas The Transfer Equation Absorption, Emission, and Scattering The Equation of Transfer Moments of the Transfer Equation Lorentz Transformation of the Transfer Equation Lorentz Transformation of the Photon 4-Momentum Lorentz Transformation of the Specific Intensity, Opacity, and - Emissivity Lorentz Transformation of the Radiation Stress Energy Tensor The Radiation 4-Force Density Vector Covariant Form of the Transfer Equation Inertial-Frame Equations of Radiation Hydrodynamics Inertial-Frame Radiation Equations Inertial-Frame Equations of Radiation Hydrodynamics Comoving-Frame Equation of Transfer Special Relativistic Derivation (D. Mihalas) Consistency Between Comoving-Frame and Inertial-Frame Equations Noninertial Frame Derivation (J. I. Castor) Analysis of O (v/c) Terms Lagrangian Equations of Radiation Hydrodynamics Momentum Equation Gas Energy Equation First Law of Thermodynamics for the Radiation Field First Law of Thermodynamics for the Radiating Fluid Mechanical Energy Equation Total Energy Equation Consistency of Different Forms of the Radiating-Fluid Energy - and Momentum Equations Consistency of Inertial-Frame and Comoving-Frame Radiation Energy - and Momentum Equations Radiation Diffusion Radiation Diffusion Nonequilibrium Diffusion The Problem of Flux Limiting Shock Propagation: Numerical Methods Acoustic Waves Numerical Stability Systems of Equations Implications of Shock Development Implications of Diffusive Energy Transport Illustrative Example Numerical Radiation Hydrodynamics Radiating Fluid Energy and Momentum Equations Computational Strategy Energy Conservation Formal Solution Multigroup Equations An Astrophysical Example Adaptive-Grid Radiation
Relativistic Viscous Universe Models
Brevik, Iver; Grøn, Øyvind
2014-01-01
The research on relativistic universe models with viscous fluids is reviewed. Viscosity may have been of significance during the early inflationary era, and may also be of importance for the late time evolution of the Universe. Bulk viscosity and shear viscosity cause exponential decay of anisotropy, while nonlinear viscosity causes power-law decay of anisotropy. We consider also the influence from turbulence, in connection with future singularities of the universe (Big Rip and Little Rip). F...
Energy Technology Data Exchange (ETDEWEB)
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is
Davidson, Russell
2013-01-01
The understanding of causal chains and mechanisms is an essential part of any scientific activity that aims at better explanation of its subject matter, and better understanding of it. While any account of causality requires that a cause should precede its effect, accounts of causality inphysics are complicated by the fact that the role of time in current theoretical physics has evolved very substantially throughout the twentieth century. In this article, I review the status of time and causa...
Causality in Europeanization Research
DEFF Research Database (Denmark)
Lynggaard, Kennet
2012-01-01
Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours to......, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This chapter deals with the question of how we may move from the...
Viscous fingering patterns in ferrofluids
Widom, Michael; Miranda, Jose A.
1998-01-01
Viscous fingering occurs in the flow of two immiscible, viscous fluids between the plates of a Hele-Shaw cell. Due to pressure gradients or gravity, the initially planar interface separating the two fluids undergoes a Saffman-Taylor instability and develops finger-like structures. When one of the fluids is a ferrofluid and a perpendicular magnetic field is applied, the labyrinthine instability supplements the usual viscous fingering instability, resulting in visually striking, complex pattern...
Lattice-Boltzmann hydrodynamics of anisotropic active matter
de Graaf, Joost; Menke, Henri; Mathijssen, Arnold J. T. M.; Fabritius, Marc; Holm, Christian; Shendruk, Tyler N.
2016-04-01
A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Hoyos, Carlos; Oz, Yaron
2013-01-01
We construct the hydrodynamics of quantum field theories with a Lifshitz scaling symmetry. New transport coefficients are allowed by the absence of boost invariance, however, only one is compatible with a local increase of the entropy density. The formulation is applicable, in general, to fluids with an explicit breaking of boost symmetry. We use a Drude model of a strange metal to study the physical effects of the new transport coefficient. It can be measured using electric fields with non-zero gradients, or via the heat production when an external force is turned on. Scaling arguments fix the resistivity to be linear in the temperature.
DEFF Research Database (Denmark)
Nielsen, Max; Jensen, Frank; Setälä, Jari;
2011-01-01
to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological......This article focuses on causality in demand. A methodology where causality is imposed and tested within an empirical co-integrated demand model, not prespecified, is suggested. The methodology allows different causality of different products within the same demand system. The methodology is applied...... implication is that more explicit focus on causality in demand analyses provides improved information. The results suggest that frozen trout forms part of a large European whitefish market, where prices of fresh trout are formed on a relatively separate market. Redfish is a substitute on both markets. The...
Causality and Composite Structure
Joglekar, Satish D
2007-01-01
We study the question of whether a composite structure of elementary particles, with a length scale $1/\\Lambda$, can leave observable effects of non-locality and causality violation at higher energies (but $\\lesssim \\Lambda$). We formulate a model-independent approach based on Bogoliubov-Shirkov formulation of causality. We analyze the relation between the fundamental theory (of finer constituents) and the derived theory (of composite particles). We assume that the fundamental theory is causal and formulate a condition which must be fulfilled for the derived theory to be causal. We analyze the condition and exhibit possibilities which fulfil and which violate the condition. We make comments on how causality violating amplitudes can arise.
Directory of Open Access Journals (Sweden)
Thomas eWidlok
2014-11-01
Full Text Available Cognitive Scientists interested in causal cognition increasingly search for evidence from non-WEIRD people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition.
Viscous pumping inspired by flexible propulsion
International Nuclear Information System (INIS)
Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance, ciliated organisms rely on the collective motion of flexible appendages to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such a fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measured experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flexible impellers in mixing operations at low Reynolds numbers. (paper)
Viscous pumping inspired by flexible propulsion
Arco, Roger M; Lauga, Eric; Zenit, Roberto
2014-01-01
Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance ciliated organisms rely on the collective motion of flexible appendices to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measure experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flex...
Bouncing cosmologies with viscous fluids
Singh, T.; Chaubey, R.; Singh, Ashutosh
2016-03-01
The bounce in viscous fluid cosmology with inhomogeneous viscous fluids in Friedman-Robertson-Walker (FRW) space-time has been investigated. Different forms for the scale factor have been considered. The general features of the fluids which realize them and the possibility to have an acceleration after the bounce have been discussed.
Viscous, Resistive Magnetorotational Modes
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2008-01-01
numbers. We demonstrate that when finite dissipative effects are considered, velocity and magnetic field disturbances are no longer orthogonal (as it is the case in the ideal MHD limit) unless the magnetic Prandtl number is unity. We generalize previous results found in the ideal limit and show that a...... series of key properties of the mean Reynolds and Maxwell stresses also hold for the viscous, resistive MRI. In particular, we show that the Reynolds stress is always positive and the Maxwell stress is always negative. Therefore, even in the presence of viscosity and resistivity, the total mean angular...... momentum transport is always directed outwards. We also find that, for any combination of the Reynolds and magnetic Reynolds numbers, magnetic disturbances dominate both the energetics and the transport of angular momentum and that the total mean energy density is an upper bound for the total mean stress...
Chakrabarti, Brato
2015-01-01
This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...
Renilson, Martin
2015-01-01
This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...
International Nuclear Information System (INIS)
The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references
Guyon, Etienne; Petit, Luc; Mitescu, Catalin D
2015-01-01
This new edition is an enriched version of the textbook of fluid dynamics published more than 10 years ago. It retains the same physically oriented pedagogical perspective. This book emphasizes, as in the first edition, experimental inductive approaches and relies on the study of the mechanisms at play and on dimensional analysis rather than more formal approaches found in many classical textbooks in the field. The need for a completely new version also originated from the increase, over the last few decades, of the cross-overs between the mechanical and physical approaches, as is visible in international meetings and joint projects. Hydrodynamics is more widely linked today to other fields of experimental sciences: materials, environment, life sciences and earth sciences, as well as engineering sciences.
Acceleration of hydrodynamic vortices in open systems
Pashitskii, E; Naryshkin, R
2007-01-01
A new class of exact solutions of hydrodynamic equations for an incompressible fluid (gas) at the presence of a bulk sink and uprising vertical flows of matter is considered. The acceleration of the rotation velocity of classical non-stationary vortices is conditioned by the joint action of the convective and Coriolis hydrodynamic forces (accelerations), which appear due to the converging radial flows of the matter in the region of a bulk sink. It is shown that there exist velocity profiles that nullify viscous terms in the Navier-Stokes equations and represent a vortex structure with a "rigid-body" rotation of its core and converging radial flows. The concept of non-stationary vortices in open systems is applied to description of origination of power atmospheric vortices (whirlwinds, tornados, and typhoons). In the classical hydrodynamics a favorable condition for the origination and existence of such vortices is the exact nullification of the terms, which describe kinematic viscosity of an incompressible fl...
Hydrodynamic instability in warped astrophysical discs
Ogilvie, Gordon I
2013-01-01
Warped astrophysical discs are usually treated as laminar viscous flows, which have anomalous properties when the disc is nearly Keplerian and the viscosity is small: fast horizontal shearing motions and large torques are generated, which cause the warp to evolve rapidly, in some cases at a rate that is inversely proportional to the viscosity. However, these flows are often subject to a linear hydrodynamic instability, which may produce small-scale turbulence and modify the large-scale dynamics of the disc. We use a warped shearing sheet to compute the oscillatory laminar flows in a warped disc and to analyse their linear stability by the Floquet method. We find widespread hydrodynamic instability deriving from the parametric resonance of inertial waves. Even very small, unobservable warps in nearly Keplerian discs of low viscosity can be expected to generate hydrodynamic turbulence, or at least wave activity, by this mechanism.
Dynamics and causality constraints
International Nuclear Information System (INIS)
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)
Dynamics and causality constraints
De Souza, M M
2000-01-01
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Local causality are kinematical constraints dynamically implemented via solutions of the field equations, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away and implies on deep implications to the nature of physical interactions.
Thermo-hydrodynamic lubrication in hydrodynamic bearings
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.
Arrighi, Pablo
2016-01-01
Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangula...
Causal Inference and Causal Explanation with Background Knowledge
Meek, Christopher
2013-01-01
This paper presents correct algorithms for answering the following two questions; (i) Does there exist a causal explanation consistent with a set of background knowledge which explains all of the observed independence facts in a sample? (ii) Given that there is such a causal explanation what are the causal relationships common to every such causal explanation?
Pontoon Bridge Hydrodynamic Computations by Multi-block Grid Generation Technique
Institute of Scientific and Technical Information of China (English)
PAN Xiao-qiang; SHEN Qing
2006-01-01
To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.
Simulation of vortex sound using the viscous/acoustic splitting approach
DEFF Research Database (Denmark)
Zheng, Ting H.; Tang, Shiu K.; Shen, Wen Zhong
2011-01-01
A numerical viscous/acoustic splitting approach for the calculation of an acoustic field is applied to study the sound generation by a pair of spinning vortices and by the unsteady interaction between an inviscid vortex and a finite length flexible boundary. Based on the unsteady hydrodynamic inf...
Chabchoub, A; Onorato, M; Genty, G; Dudley, J M; Akhmediev, N
2013-01-01
We demonstrate experimentally multi-bound-soliton solutions of the Nonlinear Schr\\"odinger equation (NLS) in the context of surface gravity waves. In particular, the Satsuma-Yajima N-soliton solution with N=2,3,4 is investigated in detail. Such solutions, also known as breathers on zero background, lead to periodic self-focussing in the wave group dynamics, and the consequent generation of a steep localized carrier wave underneath the group envelope. Our experimental results are compared with predictions from the NLS for low steepness initial conditions where wave-breaking does not occur, with very good agreement. We also show the first detailed experimental study of irreversible massive spectral broadening of the water wave spectrum, which we refer to by analogy with optics as the first controlled observation of hydrodynamic supercontinuum a process which is shown to be associated with the fission of the initial multi-soliton bound state into individual fundamental solitons similar to what has been observe i...
Improving longitudinal motion prediction of hybrid monohulls with the viscous effect
Institute of Scientific and Technical Information of China (English)
ZHANG Heng; LI Ji-de
2007-01-01
A new method improves prediction of the motion of a hybrid monohull in regular waves. Stem section hydrodynamic coefficients of a hybrid monohull with harmonic oscillation were computed using the Reynolds Averaged Navier-Stokes Equations (RANSE). The governing equations were solved using the finite volume method. The VOF method was used for free surface treatment, and RNGK-ε turbulence model was employed in viscous flow calculation. The whole computational domain was divided into many blocks each with structured grids, and the dynamic process was treated with moving grids. Using a 2-D strip method and 2.5D theory with the correction hydrodynamic coefficients allows consideration of the viscous effect when predicting longitudinal motion of a hybrid monohull in regular waves. The method is effective at predicting motion of a hybrid monohull, showing that the viscous effect on a semi-submerged body cannot be ignored.
Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics
Monnai, Akihiko
2015-01-01
We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that these coefficients provide important constraints on initial state fluctuations and the transport properties of the quark gluon plasma.
Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics
Monnai, Akihiko; Schenke, Björn
2016-01-01
We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, an,m, in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that the an,m provide important constraints on initial state fluctuations in heavy ion collisions.
Causality and the Doppler Peaks
Turok, Neil
1996-01-01
Could cosmic structure have formed by the action of causal physics within the standard hot big bang, or was a prior period of inflation required? Recently there has been some discussion of whether causal sources could reproduce the pattern of Doppler peaks of the standard scale-invariant adiabatic theory. This paper gives a rigorous definition of causality, and a causal decomposition of a general source. I present an example of a simple causal source which mimics the standard adiabatic theory...
Rideout, D
2002-01-01
The Causal Set approach to quantum gravity asserts that spacetime, at its smallest length scale, has a discrete structure. This discrete structure takes the form of a locally finite order relation, where the order, corresponding with the macroscopic notion of spacetime causality, is taken to be a fundamental aspect of nature. After an introduction to the Causal Set approach, this thesis considers a simple toy dynamics for causal sets. Numerical simulations of the model provide evidence for the existence of a continuum limit. While studying this toy dynamics, a picture arises of how the dynamics can be generalized in such a way that the theory could hope to produce more physically realistic causal sets. By thinking in terms of a stochastic growth process, and positing some fundamental principles, we are led almost uniquely to a family of dynamical laws (stochastic processes) parameterized by a countable sequence of coupling constants. This result is quite promising in that we now know how to speak of dynamics ...
Rideout, D P
2001-01-01
The Causal Set approach to quantum gravity asserts that spacetime, at its smallest length scale, has a discrete structure. This discrete structure takes the form of a locally finite order relation, where the order, corresponding with the macroscopic notion of spacetime causality, is taken to be a fundamental aspect of nature. After an introduction to the Causal Set approach, this thesis considers a simple toy dynamics for causal sets. Numerical simulations of the model provide evidence for the existence of a continuum limit. While studying this toy dynamics, a picture arises of how the dynamics can be generalized in such a way that the theory could hope to produce more physically realistic causal sets. By thinking in terms of a stochastic growth process, and positing some fundamental principles, we are led almost uniquely to a family of dynamical laws (stochastic processes) parameterized by a countable sequence of coupling constants. This result is quite promising in that we now know how to speak of dynamics ...
Biased causal inseparable game
Bhattacharya, Some Sankar
2015-01-01
Here we study the \\emph{causal inseparable} game introduced in [\\href{http://www.nature.com/ncomms/journal/v3/n10/full/ncomms2076.html}{Nat. Commun. {\\bf3}, 1092 (2012)}], but it's biased version. Two separated parties, Alice and Bob, generate biased bits (say input bit) in their respective local laboratories. Bob generates another biased bit (say decision bit) which determines their goal: whether Alice has to guess Bob's bit or vice-verse. Under the assumption that events are ordered with respect to some global causal relation, we show that the success probability of this biased causal game is upper bounded, giving rise to \\emph{biased causal inequality} (BCI). In the \\emph{process matrix} formalism, which is locally in agreement with quantum physics but assume no global causal order, we show that there exist \\emph{inseparable} process matrices that violate the BCI for arbitrary bias in the decision bit. In such scenario we also derive the maximal violation of the BCI under local operations involving tracele...
International Nuclear Information System (INIS)
We discuss the geometry of trees endowed with a causal structure using the conventional framework of equilibrium statistical mechanics. We show how this ensemble is related to popular growing network models. In particular we demonstrate that on a class of afine attachment kernels the two models are identical but they can differ substantially for other choice of weights. We show that causal trees exhibit condensation even for asymptotically linear kernels. We derive general formulae describing the degree distribution, the ancestor--descendant correlation and the probability that a randomly chosen node lives at a given geodesic distance from the root. It is shown that the Hausdorff dimension dH of the causal networks is generically infinite. (author)
Bialas, Piotr
2003-10-01
We discuss the geometry of trees endowed with a causal structure using the conventional framework of equilibrium statistical mechanics. We show how this ensemble is related to popular growing network models. In particular we demonstrate that on a class of afine attachment kernels the two models are identical but they can differ substantially for other choice of weights. We show that causal trees exhibit condensation even for asymptotically linear kernels. We derive general formulae describing the degree distribution, the ancestor--descendant correlation and the probability that a randomly chosen node lives at a given geodesic distance from the root. It is shown that the Hausdorff dimension dH of the causal networks is generically infinite.
Arrighi, Pablo
2012-01-01
We generalize the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these `causal graph dynamics' is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. Keywords: Dynamical networks, Boolean network...
Causal inference in econometrics
Kreinovich, Vladik; Sriboonchitta, Songsak
2016-01-01
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
Brustein, Ram
2000-01-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso's holographic bound are stronger than Bekenstein's, while naive holography is too tight, and hence typically wrong.
Brustein, R; Veneziano, G
1999-01-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso...
Czech Academy of Sciences Publication Activity Database
Hvorecký, Juraj
2012-01-01
Roč. 19, Supp.2 (2012), s. 64-69. ISSN 1335-0668 R&D Projects: GA ČR(CZ) GAP401/12/0833 Institutional support: RVO:67985955 Keywords : conciousness * free will * determinism * causality Subject RIV: AA - Philosophy ; Religion
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-01-01
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Method for producing viscous hydrocarbons
Poston, Robert S.
1982-01-01
A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.
Solidity of viscous liquids. II
DEFF Research Database (Denmark)
Dyre, Jeppe
1999-01-01
Recent findings on displacements in the surroundings of isotropic flow events in viscous liquids [Phys. Rev. E 59, 2458 (1999)] are generalized to the anisotropic case. Also, it is shown that a flow event is characterized by a dimensionless number reflecting the degree of anisotropy.......Recent findings on displacements in the surroundings of isotropic flow events in viscous liquids [Phys. Rev. E 59, 2458 (1999)] are generalized to the anisotropic case. Also, it is shown that a flow event is characterized by a dimensionless number reflecting the degree of anisotropy....
Solidity of viscous liquids. III
DEFF Research Database (Denmark)
Dyre, Jeppe
2005-01-01
It is suggested that the omega^{-1/2} high-frequency decay of the alpha loss in highly viscous liquids, which appears to be generic, is a manifestation of a negative long-time tail as typically encountered in stochastic dynamics. The proposed mechanism requires that the coherent diffusion constant...... is much larger than estimated from the alpha relaxation time. This is shown to follow from the solidity of viscous liquids in an argument which, utilizing the irrelevance of momentum conservation at high viscosity, predicts that at high viscosity the coherent diffusion constant is much larger than...
Causal mechanisms in airfoil-circulation formation
Zhu, J. Y.; Liu, T. S.; Liu, L. Q.; Zou, S. F.; Wu, J. Z.
2015-12-01
In this paper, we trace the dynamic origin, rather than any kinematic interpretations, of lift in two-dimensional flow to the physical root of airfoil circulation. We show that the key causal process is the vorticity creation by tangent pressure gradient at the airfoil surface via no-slip condition, of which the theoretical basis has been given by Lighthill ["Introduction: Boundary layer theory," in Laminar Boundary Layers, edited by L. Rosenhead (Clarendon Press, 1963), pp. 46-113], which we further elaborate. This mechanism can be clearly revealed in terms of vorticity formulation but is hidden in conventional momentum formulation, and hence has long been missing in the history of one's efforts to understand lift. By a careful numerical simulation of the flow around a NACA-0012 airfoil, and using both Eulerian and Lagrangian descriptions, we illustrate the detailed transient process by which the airfoil gains its circulation and demonstrate the dominating role of relevant dynamical causal mechanisms at the boundary. In so doing, we find that the various statements for the establishment of Kutta condition in steady inviscid flow actually correspond to a sequence of events in unsteady viscous flow.
Dissipation in ferrofluids Mesoscopic versus hydrodynamic theory
Müller, H W; Müller, Hanns Walter; Engel, Andreas
1999-01-01
Part of the field dependent dissipation in ferrofluids occurs due to the rotational motion of the ferromagnetic grains relative to the viscous flow of the carrier fluid. The classical theoretical description due to Shliomis uses a mesoscopic treatment of the particle motion to derive a relaxation equation for the non-equilibrium part of the magnetization. Complementary, the hydrodynamic approach of Liu involves only macroscopic quantities and results in dissipative Maxwell equations for the magnetic fields in the ferrofluid. Different stress tensors and constitutive equations lead to deviating theoretical predictions in those situations, where the magnetic relaxation processes cannot be considered instantaneous on the hydrodynamic time scale. We quantify these differences for two situations of experimental relevance namely a resting fluid in an oscillating oblique field and the damping of parametrically excited surface waves. The possibilities of an experimental differentiation between the two theoretical app...
Tachyon Kinematics and causality
International Nuclear Information System (INIS)
The chronological order of the events along a space-like path is not invariant under Lorentz transformations, as wellknown. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stuckelberg-Feynman switching procedure (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the SWP does eliminate the motions backwards in time, but interchanges the roles of source and dector. This fact triggered the proposal of a host of causal paradoxes. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least in microphysics) only after having properly developed the tachyon relativistic mechanics. We start by showing how to apply the SWP, both in the case of ordiry Special Relativity, and in the case with tachyons. Then, we carefully exploit the kinematics of the tachyon-exchange between to (ordinary) bodies. Being finally able to tackle the tachyon-causality problem, we successively solve the paradoxes: (i) by Tolman-Regge; (ii) by Pirani; (iii) by Edmonds; (iv) by Bell. At last, we discuss a further, new paradox associated with the transmission of signals by modulated tachyon beams
Liang, X San
2014-01-01
Given two time series, can one tell, in a rigorous and quantitative way, the cause and effect between them? Based on a recently rigorized physical notion namely information flow, we arrive at a concise formula and give this challenging question, which is of wide concern in different disciplines, a positive answer. Here causality is measured by the time rate of change of information flowing from one series, say, X2, to another, X1. The measure is asymmetric between the two parties and, particularly, if the process underlying X1 does not depend on X2, then the resulting causality from X2 to X1 vanishes. The formula is tight in form, involving only the commonly used statistics, sample covariances. It has been validated with touchstone series purportedly generated with one-way causality. It has also been applied to the investigation of real world problems; an example presented here is the cause-effect relation between two climate modes, El Ni\\~no and Indian Ocean Dipole, which have been linked to the hazards in f...
Subleading harmonic flows in hydrodynamic simulations of heavy ion collisions
Mazeliauskas, Aleksas
2015-01-01
We perform a Principal Component Analysis (PCA) of $v_3(p_T)$ in event-by-event hydrodynamic simulations of Pb+Pb collisions at the LHC. The PCA procedure identifies two dominant contributions to the two particle correlation function, which together capture 99.9% of the squared variance. We find that the subleading flow (which is the largest source of flow factorization breaking in hydrodynamics) is predominantly a response to the radial excitations of a third-order eccentricity. We present a systematic study of the hydrodynamic response to these radial excitations in 2+1D viscous hydrodynamics. Finally, we construct a good geometrical predictor for the orientation angle and magnitude of the leading and subleading flows using two Fourier modes of the initial geometry.
Long waves over a bi-viscous seabed: transverse patterns
Directory of Open Access Journals (Sweden)
J. M. Becker
2002-01-01
Full Text Available The coupled interaction of long standing hydrodynamic waves with a deformable non-Newtonian seabed is examined using a two-layer model for which the upper layer fluid is inviscid and the lower layer is bi-viscous. The two-dimensional response of the system to forcing by a predominantly longitudinal (cross-shore standing wave perturbed by a small transverse (along-shore component is determined. With a constant yield stress in the bi-viscous lower layer, there is little amplification of these transverse per-turbations and the model response typically remains quasi-one-dimensional. However, for a bi-viscous layer with a pressure-dependent yield stress (which represents the effect that the seabed deforms less readily under compression and hence renders the rheology history dependent, the initially small transverse motions are amplified in some parameter regimes and two-dimensional, permanent bedforms are formed in the lower layer. This simple dynamical model is, therefore, able to explain the formation of permanent bedforms with significant cross- and along-shore features by predominantly cross-shore standing wave forcing.
Note on the stability of viscous roll-waves
Barker, Blake; Noble, Pascal; Rodrigues, L Miguel; Zumbrun, Kevin
2015-01-01
The viscous shallow water equations with bottom drag are used to study the stability of roll-waves. In [17], the authors provided a set of spectral assumptions under which periodic wave trains of rather general viscous conservation laws were proved to be nonlinearly stable. Here, we focus on the spectral stability of viscous roll-waves and give a {\\it complete} description of the set of stable roll-waves from their onset at Froude number $\\approx 2$ up to the infinite-Froude limit. This paper is a physically oriented companion paper that extracts the physically relevant content from the rather long and technical paper [6]. We formulate stability results at the onset of the hydrodynamic instability and provide numerical results for intermediate and large Froude numbers. In particular, stable roll-waves at onset have asymptotically large periods whereas there are no stable roll-waves for large Froude numbers. Moreover, the stability region in parameter space for intermediate Froude numbers seems to be governed ...
Three dimensional simulations of viscous folding in diverging microchannels
Xu, Bingrui; Shin, Seungwon; Juric, Damir
2016-01-01
Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L_1 is injected into the channel from the center inlet, and the less viscous liquid L_2 from two side inlets. Liquid L_1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L_2. Given the long computation time, we were limited to a parameter study comprising five simulations in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow di...
Thermodynamics, Hydrodynamics and Damping in Ultracold Gases
Chafin, Clifford
Ultracold gases have provided experimental systems that span microscopic to macroscopic regimes of behavior and over a range of internal energy scales and interaction strengths that drive behavior from ballistic to hydrodynamic and degenerate to correlated. Here we will examine these systems from several points of view. First, we present a discussion from the standpoint of the evolution of a single many body wavefunction. In support of this picture we examine the longstanding vagueness surrounding measurement and thermalization and show the situation here is significantly better from this point of view than generally presented. The implications for how well defined a temperature can be achieved by various trap manipulation is discussed along with proposed experiments to distinguish these cases. Since hydrodynamic methods have worked well in some cases we then discuss the unitary limit for fermions with contact limited interactions. The scale invariance of the system implies limits on hydrodynamic behavior from which we extract bounds on viscous damping from free expansion and trap oscillation experiments. Linear response theory is used to probe the effect of quantum fluctuations on the viscosity and some nonuniversal contributions are derived. These show that the classical gradient expansion of hydrodynamics breaks down at lower than Burnett order, where problems with the classical expansions typically occur.
Revisiting Causality in Markov Chains
Shojaee, Abbas
2016-01-01
Identifying causal relationships is a key premise of scientific research. The growth of observational data in different disciplines along with the availability of machine learning methods offers the possibility of using an empirical approach to identifying potential causal relationships, to deepen our understandings of causal behavior and to build theories accordingly. Conventional methods of causality inference from observational data require a considerable length of time series data to capture cause-effect relationship. We find that potential causal relationships can be inferred from the composition of one step transition rates to and from an event. Also known as Markov chain, one step transition rates are a commonly available resource in different scientific disciplines. Here we introduce a simple, effective and computationally efficient method that we termed 'Causality Inference using Composition of Transitions CICT' to reveal causal structure with high accuracy. We characterize the differences in causes,...
Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation.
Heller, Michal P; Spaliński, Michał
2015-08-14
Consistent formulations of relativistic viscous hydrodynamics involve short-lived modes, leading to asymptotic rather than convergent gradient expansions. In this Letter we consider the Müller-Israel-Stewart theory applied to a longitudinally expanding quark-gluon plasma system and identify hydrodynamics as a universal attractor without invoking the gradient expansion. We give strong evidence for the existence of this attractor and then show that it can be recovered from the divergent gradient expansion by Borel summation. This requires careful accounting for the short-lived modes which leads to an intricate mathematical structure known from the theory of resurgence. PMID:26317715
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs. PMID:23745844
Inferring deterministic causal relations
Daniusis, Povilas; Janzing, Dominik; Mooij, Joris; Zscheischler, Jakob; Steudel, Bastian; Zhang, Kun; Schoelkopf, Bernhard
2012-01-01
We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noise-free) case, there are asymmetries that can be exploited for causal inference. Our method is based on the idea that if the function and the probability density of the cause are chosen independently, then the ...
Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2016-01-01
The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly-interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1D viscous hydrodynamic simulation (MUSIC).
Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2016-07-01
The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).
Nonlinear Front Evolution of Hydrodynamic Chemical Waves in Vertical Cylinders
Wilder, J. W.; Vasquez, D.A.; Edwards, Boyd F.
1997-01-01
The nonlinear stability of three-dimensional reaction-diffusion fronts in vertical cylinders is considered using the viscous hydrodynamic fluid equations in the limit of infinite thermal diffusivity. A nonlinear front evolution equation is presented and used to examine the transition from nonaxisymmetric to axisymmetric convection observed in experiments performed in cylinders. Comparisons with experiments show excellent agreement in both the shape and speed of the front.
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Frequency downshift in a viscous fluid
Carter, J D
2016-01-01
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This "viscous Dysthe" system models the evolution of a weakly viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data f...
Viscous dissipation effect on the flow of a thermodependent Herschel-Bulkley fluid
Directory of Open Access Journals (Sweden)
Labsi Nabila
2015-01-01
Full Text Available The present study concerns the numerical analysis of both hydrodynamic and thermal properties of a Herschel-Bulkley fluid flow in a pipe. The flow, which involves forced heat transfer convection, is steady and takes place within a pipe of circular cross section with uniform wall temperature. The Herschel-Bulkley model with the Papanastasiou regularization is used and flow index values of 1 and 1.5 are considered. The study focuses on the effect of neglecting both viscous dissipation and temperature dependence of the fluid consistency on its hydrodynamic and thermal properties. For that purpose, we investigate both wall heating (Br0 as well as the exponential temperature dependence of the consistency. The results show that neglecting both of these parameters results in more than a 50% underestimation of the heat transfer due to the viscous nature of this kind of fluid.
Fluid Mixing from Viscous Fingering
Jha, Birendra; Juanes, Ruben
2010-01-01
We study, by means of numerical simulation, the mixing of two fluids of different viscosities in advection-dominated flows in a porous medium. It is well known that when a less viscous fluid displaces a more viscous fluid, the displacement front is unstable and leads to the formation of a pattern known as viscous fingering. We present a high-resolution simulation approach that is stable for arbitrary viscosity ratios, and study mixing under different configurations with viscosity contrasts up to M = 400. We observe, in agreement with lab experiments, that for high-M displacements, the growth of new fingers follows the trace of previous ones. This channeling effect, which is a result of the nonlocal coupling through the pressure field, greatly reduces mixing. A two-equation mixing model using the scalar variance and its dissipation rate is derived from the advection-diffusion equation. It provides a measure of effective diffusivity due to convective and diffusive mixing processes. Our analysis predicts the opt...
Causal inference based on counterfactuals
Directory of Open Access Journals (Sweden)
Höfler M
2005-09-01
Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Beam energy scan using a viscous hydro+cascade model
Karpenko, Iu A; Huovinen, P; Petersen, H
2013-01-01
Following the experimental program at BNL RHIC, we perform a similar "energy scan" using 3+1D viscous hydrodynamics coupled to the UrQMD hadron cascade, and study the collision energy dependence of pion and kaon rapidity distributions and $m_T$-spectra, as well as charged hadron elliptic flow. To this aim the equation of state for finite baryon density from a Chiral model coupled to the Polyakov loop is employed for hydrodynamic stage. 3D initial conditions from UrQMD are used to study gradual deviation from boost-invariant scaling flow. We find that the inclusion of shear viscosity in the hydrodynamic stage of evolution consistently improves the description of the data for Pb-Pb collisions at CERN SPS, as well as of the elliptic flow measurements for Au-Au collisions in the Beam Energy Scan (BES) program at BNL RHIC. The suggested value of shear viscosity is $\\eta/s\\ge0.2$ for $\\sqrt{s_{NN}}=6.3\\dots39$ GeV.
Relationship of causal effects in a causal chain and related inference
Institute of Scientific and Technical Information of China (English)
GENG; Zhi; HE; Yangbo; WANG; Xueli
2004-01-01
This paper discusses the relationship among the total causal effect and local causal effects in a causal chain and identifiability of causal effects. We show a transmission relationship of causal effects in a causal chain. According to the relationship, we give an approach to eliminating confounding bias through controlling for intermediate variables in a causal chain.
Dilepton emission in high-energy heavy-ion collisions with dissipative hydrodynamics
Vujanovic, Gojko; Denicol, Gabriel S.; Shen, Chun; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyoung; Gale, Charles
2015-01-01
In this contribution we study the effects of three transport coefficients of dissipative hydrodynamics on thermal dilepton anisotropic flow observables. The first two transport coefficients investigated influence the overall size and growth rate of shear viscous pressure, while the last transport coefficient governs the magnitude of net baryon number diffusion in relativistic dissipative fluid dynamics. All calculations are done using state-of-the-art 3+1D hydrodynamical simulations. We show ...
Kikuchi, Yuta; Tsumura, Kyosuke; Kunihiro, Teiji
2016-01-01
We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\\tau_i$ that admit ph...
Causality Statistical Perspectives and Applications
Berzuini, Carlo; Bernardinell, Luisa
2012-01-01
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr
Elasto-hydrodynamic lubrication
Dowson, D; Hopkins, D W
1977-01-01
Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Small systems and regulator dependence in relativistic hydrodynamics
Spalinski, Michal
2016-01-01
Consistent theories of hydrodynamics necessarily include nonhydrodynamic modes, which can be viewed as a regulator necessary to ensure causality. Under many circumstances the choice of regulator is not relevant, but this is not always the case. In particular, for sufficiently small systems (such as those arising in pA or pp collisions) such dependence may be inevitable. We address this issue in the context of M\\"uller-Israel-Stewart theory of relativistic hydrodynamics. In this case, by demanding that the nonhydrodynamic modes do not dominate, we find that regulator dependence becomes inevitable only for multiplicities $dN/dY$ of the order of a few. This conclusion supports earlier studies based on hydrodynamic simulations of small systems, at the same time providing a simple physical picture of how hydrodynamics can be reliable even in such seemingly extreme conditions.
Inferring deterministic causal relations
Daniusis, Povilas; Mooij, Joris; Zscheischler, Jakob; Steudel, Bastian; Zhang, Kun; Schoelkopf, Bernhard
2012-01-01
We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noise-free) case, there are asymmetries that can be exploited for causal inference. Our method is based on the idea that if the function and the probability density of the cause are chosen independently, then the distribution of the effect will, in a certain sense, depend on the function. We provide a theoretical analysis of this method, showing that it also works in the low noise regime, and link it to information geometry. We report strong empirical results on various real-world data sets from different domains.
The hydrodynamics of swimming microorganisms
International Nuclear Information System (INIS)
Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.
Causal Inference and Developmental Psychology
Foster, E. Michael
2010-01-01
Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…
Friederich, Simon
2015-01-01
There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell's criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the es
Expert Causal Reasoning and Explanation.
Kuipers, Benjamin
The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…
Synchronization of rotating helices by hydrodynamic interactions
Reichert, M.; Stark, H.
2005-08-01
Some types of bacteria use rotating helical flagella to swim. The motion of such organisms takes place in the regime of low Reynolds numbers where viscous effects dominate and where the dynamics is governed by hydrodynamic interactions. Typically, rotating flagella form bundles, which means that their rotation is synchronized. The aim of this study is to investigate whether hydrodynamic interactions can be at the origin of such a bundling and synchronization. We consider two stiff helices that are modelled by rigidly connected beads, neglecting any elastic deformations. They are driven by constant and equal torques, and they are fixed in space by anchoring their terminal beads in harmonic traps. We observe that, for finite trap strength, hydrodynamic interactions do indeed synchronize the helix rotations. The speed of phase synchronization decreases with increasing trap stiffness. In the limit of infinite trap stiffness, the speed is zero and the helices do not synchronize. Two movies, comparing the dynamics for strong and weak anchoring, are only available in electronic form at http://dx.doi.org/10.1140/epje/i2004-10152-7 and are accessible for authorised users.
Hydrodynamics on graphic cards
International Nuclear Information System (INIS)
In the field of high-energetic nucleus-nucleus collisions at RHIC and LHC ideal and dissipative relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. A large body of current numerical tools employs relativistic hydrodynamics in various facets. The acceleration of relativistic hydrodynamics using graphic cards (GPUs) is therefore of highest relevance to this fields. The results reported here are based on the Sharp And Smooth Transport Algorithm SHASTA, which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
The Visual Causality Analyst: An Interactive Interface for Causal Reasoning.
Wang, Jun; Mueller, Klaus
2016-01-01
Uncovering the causal relations that exist among variables in multivariate datasets is one of the ultimate goals in data analytics. Causation is related to correlation but correlation does not imply causation. While a number of casual discovery algorithms have been devised that eliminate spurious correlations from a network, there are no guarantees that all of the inferred causations are indeed true. Hence, bringing a domain expert into the casual reasoning loop can be of great benefit in identifying erroneous casual relationships suggested by the discovery algorithm. To address this need we present the Visual Causal Analyst-a novel visual causal reasoning framework that allows users to apply their expertise, verify and edit causal links, and collaborate with the causal discovery algorithm to identify a valid causal network. Its interface consists of both an interactive 2D graph view and a numerical presentation of salient statistical parameters, such as regression coefficients, p-values, and others. Both help users in gaining a good understanding of the landscape of causal structures particularly when the number of variables is large. Our framework is also novel in that it can handle both numerical and categorical variables within one unified model and return plausible results. We demonstrate its use via a set of case studies using multiple practical datasets. PMID:26529703
Moving least-squares corrections for smoothed particle hydrodynamics
Directory of Open Access Journals (Sweden)
Ciro Del Negro
2011-12-01
Full Text Available First-order moving least-squares are typically used in conjunction with smoothed particle hydrodynamics in the form of post-processing filters for density fields, to smooth out noise that develops in most applications of smoothed particle hydrodynamics. We show how an approach based on higher-order moving least-squares can be used to correct some of the main limitations in gradient and second-order derivative computation in classic smoothed particle hydrodynamics formulations. With a small increase in computational cost, we manage to achieve smooth density distributions without the need for post-processing and with higher accuracy in the computation of the viscous term of the Navier–Stokes equations, thereby reducing the formation of spurious shockwaves or other streaming effects in the evolution of fluid flow. Numerical tests on a classic two-dimensional dam-break problem confirm the improvement of the new approach.
Dynamic wetting with viscous Newtonian and non-Newtonian fluids.
Wei, Y; Rame, E; Walker, L M; Garoff, S
2009-11-18
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior. PMID:21715890
Generation and Stability of Toroidal Droplets in a Viscous Liquid
Pairam, E.; Fernández-Nieves, A.
2009-06-01
We use a simple method to generate toroidal droplets and study how they transform into spherical droplets. The method relies on the viscous forces exerted by a rotating continuous phase over a liquid which is extruded from an injection needle; the resultant jet is forced to close into a torus due to the imposed rotation. Once formed, the torus transforms into single or multiple spheres. Interestingly, we find there are two routes for this process depending on the aspect ratio of the torus. For thin tori, classical hydrodynamic instabilities induce its breakup into a precise number of droplets. By contrast, for sufficiently fat tori, unstable modes are unable to grow, and the torus evolves through a different route; it shrinks towards its center to coalesce onto itself, to finally form a single spherical droplet.
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
["Karoshi" and causal relationships].
Hamajima, N
1992-08-01
This paper aims to introduce a measure for use by physicians for stating the degree of probable causal relationship for "Karoshi", ie, a sudden death from cerebrovascular diseases or ischemic heart diseases under occupational stresses, as well as to give a brief description for legal procedures associated with worker's compensation and civil trial in Japan. It is a well-used measure in epidemiology, "attributable risk percent (AR%)", which can be applied to describe the extent of contribution to "Karoshi" of the excess occupational burdens the deceased worker was forced to bear. Although several standards such as average occupational burdens for the worker, average occupational burdens for an ordinary worker, burdens in a nonoccupational life, and a complete rest, might be considered for the AR% estimation, the average occupational burdens for an ordinary worker should normally be utilized as a standard for worker's compensation. The adoption of AR% could be helpful for courts to make a consistent judgement whether "Karoshi" cases are compensatable or not. PMID:1392028
Dilepton emission in high-energy heavy-ion collisions with dissipative hydrodynamics
Vujanovic, Gojko; Shen, Chun; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyoung; Gale, Charles
2015-01-01
In this contribution we study the effects of three transport coefficients of dissipative hydrodynamics on thermal dilepton anisotropic flow observables. The first two transport coefficients investigated influence the overall size and growth rate of shear viscous pressure, while the last transport coefficient governs the magnitude of net baryon number diffusion in relativistic dissipative fluid dynamics. All calculations are done using state-of-the-art 3+1D hydrodynamical simulations. We show that thermal dileptons are sensitive probes of the transport coefficients of dissipative hydrodynamics.
Principal stratification in causal inference.
Frangakis, Constantine E; Rubin, Donald B
2002-03-01
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority. PMID:11890317
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important for...... generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate the...
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Ten themes of viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, J. C.
2007-01-01
Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields...
On causality of extreme events
Zanin, Massimiliano
2016-01-01
Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect both linear and non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task.
Hydrodynamic effects in proteins
Szymczak, Piotr; Cieplak, Marek
2011-01-01
Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.
Hydrodynamic effects in proteins
Energy Technology Data Exchange (ETDEWEB)
Szymczak, Piotr [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Cieplak, Marek, E-mail: piotr.szymczak@fuw.edu.pl [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)
2011-01-26
Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins. (topical review)
Causal reasoning with mental models
Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews e...
Consciousness and the "Causal Paradox"
Velmans, Max
1996-01-01
Viewed from a first-person perspective consciousness appears to be necessary for complex, novel human activity - but viewed from a third-person perspective consciousness appears to play no role in the activity of brains, producing a "causal paradox". To resolve this paradox one needs to distinguish consciousness of processing from consciousness accompanying processing or causing processing. Accounts of consciousness/brain causal interactions switch between first- and third-person perspectives...
Realist Magic : Objects, Ontology, Causality
Morton, Timothy
2013-01-01
Object-oriented ontology offers a startlingly fresh way to think about causality that takes into account developments in physics since 1900. Causality, argues, Object Oriented Ontology (OOO), is aesthetic. In this book, Timothy Morton explores what it means to say that a thing has come into being, that it is persisting, and that it has ended. Drawing from examples in physics, biology, ecology, art, literature and music, Morton demonstrates the counterintuitive yet elegant explanatory power of...
Conformal Anomalies in Hydrodynamics
Eling, Christopher; Theisen, Stefan; Yankielowicz, Shimon
2013-01-01
We study the effect of conformal anomalies on the hydrodynamic description of conformal field theories in four spacetime dimensions. We consider equilibrium curved backgrounds characterized by a time-like Killing vector and construct a local low energy effective action that captures the conformal anomalies. Using as a special background the Rindler spacetime we derive a formula for the effect of the anomaly on the hydrodynamic pressure.
Modeling the hydrodynamics of Phloem sieve plates
DEFF Research Database (Denmark)
Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele;
2012-01-01
Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a...... crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly...... understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are...
Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics
International Nuclear Information System (INIS)
The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks
Correlation Measure Equivalence in Dynamic Causal Structures
Gyongyosi, Laszlo
2016-01-01
We prove an equivalence transformation between the correlation measure functions of the causally-unbiased quantum gravity space and the causally-biased standard space. The theory of quantum gravity fuses the dynamic (nonfixed) causal structure of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity space, the events are causally nonseparable and all time bias vanishes, which makes it no possible to use the standard causally-biased entropy and the correlation measure functions. Since a corrected causally-unbiased entropy function leads to an undefined, obscure mathematical structure, in our approach the correction is made in the data representation of the causally-unbiased space. We prove that the standard causally-biased entropy function with a data correction can be used to identify correlations in dynamic causal structures. As a corollary, all mathematical properties of the causally-biased correlation measure functions are preserved in the causally-unbiased space. The eq...
Bed of polydisperse viscous spherical drops under thermocapillary effects
Sharanya, V.; Raja Sekhar, G. P.; Rohde, Christian
2016-08-01
Viscous flow past an ensemble of polydisperse spherical drops is investigated under thermocapillary effects. We assume that the collection of spherical drops behaves as a porous media and estimates the hydrodynamic interactions analytically via the so- called cell model that is defined around a specific representative particle. In this method, the hydrodynamic interactions are assumed to be accounted by suitable boundary conditions on a fictitious fluid envelope surrounding the representative particle. The force calculated on this representative particle will then be extended to a bed of spherical drops visualized as a Darcy porous bed. Thus, the "effective bed permeability" of such a porous bed will be computed as a function of various parameters and then will be compared with Carman-Kozeny relation. We use cell model approach to a packed bed of spherical drops of uniform size (monodisperse spherical drops) and then extend the work for a packed bed of polydisperse spherical drops, for a specific parameters. Our results show a good agreement with the Carman-Kozeny relation for the case of monodisperse spherical drops. The prediction of overall bed permeability using our present model agrees well with the Carman-Kozeny relation when the packing size distribution is narrow, whereas a small deviation can be noted when the size distribution becomes broader.
Causality, causality, causality: the view of education inputs and outputs from economics
Lisa Barrow; Cecilia Elena Rouse
2005-01-01
Educators and policy makers are increasingly intent on using scientifically-based evidence when making decisions about education policy. Thus, education research today must necessarily be focused on identifying the causal relationships between education inputs and student outcomes. In this paper we discuss methodologies for estimating the causal effect of resources on education outcomes; we also review what we believe to be the best evidence from economics on a few important inputs: spending,...
Self-Consistent Conversion of a Viscous Fluid to Particles and Heavy-Ion Physics Applications
Wolff, Zack J.
The most widely used theoretical framework to model the early stages of a heavy-ion collision is viscous hydrodynamics. Comparing hydrodynamic simulations to heavy-ion data inevitably requires the conversion of the fluid to particles. This conversion, typically done in the Cooper-Frye formalism, is ambiguous for viscous fluids. In this thesis work, self-consistent phase space corrections are calculated by solving the linearized Boltzmann equation. These species-dependent solutions are contrasted with those obtained using the ad-hoc ''democratic Grad'' ansatz typically employed in the literature in which coefficients are independent of particle dynamics. Solutions are calculated analytically for a massless gas and numerically for the general case of a hadron resonance gas. For example, it is found that for a gas of massless particles interacting via isotropic, energy-independent 2 → 2 scatterings, the shear viscous corrections variationally prefer a momentum dependence close to p3/2 rather than the quadratic dependence assumed in the Grad ansatz. The self-consistent phase space distributions are then used to calculate transverse momentum spectra and differential flow coefficients, v n(pT), to study the effects on heavy-ion identified particle observables. Using additive quark model cross sections, it is found that proton flow coefficients are higher than those for pions at moderately high pT in Pb + Pb collisions at LHC, especially for the coefficients v 4 and v6.
Causality in physiological signals.
Müller, Andreas; Kraemer, Jan F; Penzel, Thomas; Bonnemeier, Hendrik; Kurths, Jürgen; Wessel, Niels
2016-05-01
Health is one of the most important non-material assets and thus also has an enormous influence on material values, since treating and preventing diseases is expensive. The number one cause of death worldwide today originates in cardiovascular diseases. For these reasons the aim of understanding the functions and the interactions of the cardiovascular system is and has been a major research topic throughout various disciplines for more than a hundred years. The purpose of most of today's research is to get as much information as possible with the lowest possible effort and the least discomfort for the subject or patient, e.g. via non-invasive measurements. A family of tools whose importance has been growing during the last years is known under the headline of coupling measures. The rationale for this kind of analysis is to identify the structure of interactions in a system of multiple components. Important information lies for example in the coupling direction, the coupling strength, and occurring time lags. In this work, we will, after a brief general introduction covering the development of cardiovascular time series analysis, introduce, explain and review some of the most important coupling measures and classify them according to their origin and capabilities in the light of physiological analyses. We will begin with classical correlation measures, go via Granger-causality-based tools, entropy-based techniques (e.g. momentary information transfer), nonlinear prediction measures (e.g. mutual prediction) to symbolic dynamics (e.g. symbolic coupling traces). All these methods have contributed important insights into physiological interactions like cardiorespiratory coupling, neuro-cardio-coupling and many more. Furthermore, we will cover tools to detect and analyze synchronization and coordination (e.g. synchrogram and coordigram). As a last point we will address time dependent couplings as identified using a recent approach employing ensembles of time series. The
Cohesiveness and hydrodynamic properties of young drinking water biofilms.
Abe, Yumiko; Skali-Lami, Salaheddine; Block, Jean-Claude; Francius, Grégory
2012-03-15
Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm. PMID:22221338
International Nuclear Information System (INIS)
The author discusses the applicability of a hydrodynamic description of high energy hadronic collisions. The author reviews the results of recent computations of the mean free paths of quarks and gluons in a quark-gluon plasma, and the corresponding results for viscous coefficients. These quantities are employed to evaluate the limits to the application of perfect fluid hydrodynamics as a description of time evolution of matter produced in various hadronic collisions. 22 references
Hierarchical organisation of causal graphs
International Nuclear Information System (INIS)
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
Hydrodynamic stability of high-viscosity cylindrical liquid bridges
Nicolás, J. A.
1992-08-01
The hydrodynamic stability of cylindrical liquid bridges is studied in the asymptotic limit when viscosity is paramount. The problem has been solved analytically in terms of a series of biorthogonal eigenfunctions (the Papkovich-Fadle functions), by using an orthogonalization method devised by Smith [Aust. J. Sci. Res. 5, 227 (1952)] for solving elasticity problems. It is found that the growth factor is real for all the values of the slenderness, leading to pure damping or growing motions for the stable or the unstable modes, respectively. This analysis is also valid when the viscous to capillary forces ratio is of order unity and the slenderness is close to the static stability limit. The results are compared with previous ones obtained from Rayleigh's viscous model for jets or from Cosserat's one-dimensional model, showing a very good agreement for long columns.
Resurgence in extended hydrodynamics
Aniceto, Inês
2015-01-01
It has recently been understood that the hydrodynamic series generated by the M\\"uller-Israel-Stewart theory is divergent, and that this large order behaviour is consistent with the theory of resurgence. Furthermore, it was observed, that the physical origin of this is the presence of a purely damped nonhydrodynamic mode. It is very interesting to ask whether this picture persists in cases where the spectrum of nonhydrodynamic modes is richer. We take the first step in this direction by considering the simplest hydrodynamic theory which, instead of the purely damped mode, contains a pair of nonhydrodynamic modes of complex conjugate frequencies. This mimics the pattern of black brane quasinormal modes which appear on the gravity side of the AdS/CFT description of \\symm\\ plasma. We find that the resulting hydrodynamic series is divergent in a way consistent with resurgence and precisely encodes information about the nonhydrodynamic modes of the theory.
Resurgence in extended hydrodynamics
Aniceto, Inês; Spaliński, Michał
2016-04-01
It has recently been understood that the hydrodynamic series generated by the Müller-Israel-Stewart theory is divergent and that this large-order behavior is consistent with the theory of resurgence. Furthermore, it was observed that the physical origin of this is the presence of a purely damped nonhydrodynamic mode. It is very interesting to ask whether this picture persists in cases where the spectrum of nonhydrodynamic modes is richer. We take the first step in this direction by considering the simplest hydrodynamic theory which, instead of the purely damped mode, contains a pair of nonhydrodynamic modes of complex conjugate frequencies. This mimics the pattern of black brane quasinormal modes which appear on the gravity side of the AdS/CFT description of N =4 supersymmetric Yang-Mills plasma. We find that the resulting hydrodynamic series is divergent in a way consistent with resurgence and precisely encodes information about the nonhydrodynamic modes of the theory.
Hydrodynamics of micropipette aspiration.
Drury, J L; Dembo, M
1999-01-01
The dynamics of human neutrophils during micropipette aspiration are frequently analyzed by approximating these cells as simple slippery droplets of viscous fluid. Here, we present computations that reveal the detailed predictions of the simplest and most idealized case of such a scheme; namely, the case where the fluid of the droplet is homogeneous and Newtonian, and the surface tension of the droplet is constant. We have investigated the behavior of this model as a function of surface tensi...
Causal reasoning with mental models.
Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398
Causal reasoning with mental models
Directory of Open Access Journals (Sweden)
Sangeet eKhemlani
2014-10-01
Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Causal Models for Risk Management
Directory of Open Access Journals (Sweden)
Neysis Hernández Díaz
2013-12-01
Full Text Available In this work a study about the process of risk management in major schools in the world. The project management tools worldwide highlights the need to redefine risk management processes. From the information obtained it is proposed the use of causal models for risk analysis based on information from the project or company, say risks and the influence thereof on the costs, human capital and project requirements and detect the damages of a number of tasks without tribute to the development of the project. A study on the use of causal models as knowledge representation techniques causal, among which are the Fuzzy Cognitive Maps (DCM and Bayesian networks, with the most favorable MCD technique to use because it allows modeling the risk information witho ut having a knowledge base either itemize.
Viscous damping for base isolated structures
Energy Technology Data Exchange (ETDEWEB)
Lee, D. [Taylor Devices, Santa Monica, CA (United States). West Coast Division; Hussain, S. [Saif Hussain and Associates, Woodland Hills, CA (United States); Retamal, E. [Law Crandall, Northridge, CA (United States)
1995-12-01
Seismic Base Isolation can use elastomeric pads, sliding plates or inverted pendulums. Each method can include an energy dissipation means, but only as some kind of hysteretic damping. Hysteretic damping has limitations in terms of energy absorption and may tend to excite higher modes in some cases. It`s possible to avoid these problems with viscous dampers. Viscous damping adds energy dissipation through loads that are 900 out of phase with bending and shear loads so even with damping levels as high as 40% of critical adverse side effects tend to be minimal. This paper presents basic theory of viscous damping, and also describes a sample project. Viscous dampers being built for the new San Bernardino Medical Center reduce both deflections and loads by 50% compared with high damping elastomer base isolation bearings by themselves.
Dufty, James W.; Brey, J. Javier
2011-01-01
Continuum mechanics (e.g., hydrodynamics, elasticity theory) is based on the assumption that a small set of fields provides a closed description on large space and time scales. Conditions governing the choice for these fields are discussed in the context of granular fluids and multi-component fluids. In the first case, the relevance of temperature or energy as a hydrodynamic field is justified. For mixtures, the use of a total temperature and single flow velocity is compared with the use of m...
On Causality in Dynamical Systems
Harnack, Daniel
2016-01-01
Identification of causal links is fundamental for the analysis of complex systems. In dynamical systems, however, nonlinear interactions may hamper separability of subsystems which poses a challenge for attempts to determine the directions and strengths of their mutual influences. We found that asymmetric causal influences between parts of a dynamical system lead to characteristic distortions in the mappings between the attractor manifolds reconstructed from respective local observables. These distortions can be measured in a model-free, data-driven manner. This approach extends basic intuitions about cause-effect relations to deterministic dynamical systems and suggests a mathematically well defined explanation of results obtained from previous methods based on state space reconstruction.
Cohomology with causally restricted supports
Khavkine, Igor
2014-01-01
De Rham cohomology with spacelike compact and timelike compact supports has recently been noticed to be of importance for understanding the structure of classical and quantum field theories on curved spacetimes. We compute these cohomology groups for globally hyperbolic spacetimes in terms of their standard de Rham cohomologies. The calculation exploits the fact that the de Rham-d'Alambert wave operator can be extended to a chain map that is homotopic to zero and that its causal Green function fits into a convenient exact sequence. This method extends also to the Calabi (or Killing-Riemann-Bianchi) complex and possibly other differential complexes. We also discuss generalized causal structures and functoriality.
Investigating viscous damping using a webcam
Shamim, Sohaib; Zia, Wasif; Anwar, Muhammad Sabieh
2011-01-01
We describe an experiment involving a mass oscillating in a viscous fluid and analyze viscous damping of harmonic motion. The mechanical oscillator is tracked using a simple webcam and an image processing algorithm records the position of the geometrical center as a function of time. Interesting information can be extracted from the displacement-time graphs, in particular for the underdamped case. For example, we use these oscillations to determine the viscosity of the fluid. Our mean value o...
A viscous blast-wave model for high energy heavy-ion collisions
Jaiswal, Amaresh; Koch, Volker
2016-07-01
Employing a viscosity-based survival scale for initial geometrical perturbations formed in relativistic heavy-ion collisions, we model the radial flow velocity at freeze-out. Subsequently, we use the Cooper-Frye freeze-out prescription, with viscous corrections to the distribution function, to extract the transverse momentum dependence of particle yields and flow harmonics. We fit the model parameters for central collisions, by fitting the spectra of identified particles at the Large Hadron Collider (LHC), and estimate them for other centralities using simple hydrodynamic relations. We use the results of Monte Carlo Glauber model for initial eccentricities. We demonstrate that this improved viscous blast-wave model leads to good agreement with transverse momentum distribution of elliptic and triangular flow for all centralities and estimate the shear viscosity to entropy density ratio η/s ≃ 0.24 at the LHC.
Doorwar, Shashvat; Mohanty, Kishore K.
2014-07-01
Immiscible displacement of viscous oil by water in a petroleum reservoir is often hydrodynamically unstable. Due to similarities between the physics of dielectric breakdown and immiscible flow in porous media, we extend the existing dielectric breakdown model to simulate viscous fingering patterns for a wide range of viscosity ratios (μr). At low values of power-law index η, the system behaves like a stable Eden growth model and as the value of η is increased to unity, diffusion limited aggregation-like fractals appear. This model is compared with our two-dimensional (2D) experiments to develop a correlation between the viscosity ratio and the power index, i.e., η = 10-5μr0.8775. The 2D and three-dimensional (3D) simulation data appear scalable. The fingering pattern in 3D simulations at finite viscosity ratios appear qualitatively similar to the few experimental results published in the literature.
Viscous boundary layers of radiation-dominated, relativistic jets. II. The free-streaming jet model
Coughlin, Eric R
2015-01-01
We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model -- where a narrow stream of fluid is injected into a static medium -- and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look "down the barrel of the jet." These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.
International Nuclear Information System (INIS)
The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)
Energy Technology Data Exchange (ETDEWEB)
Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)
2011-01-15
The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)
Gale, Charles; Jeon, Sangyong; Schenke, Bjoern; Tribedy, Prithwish; Venugopalan, Raju
2012-01-01
Anisotropic flow coefficients v_1-v_5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The glasma dynamics, as realized in the IP-Glasma model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic sub-nucleon scale color charge fluctuations; the pre-equilibrium fl...
On the Axioms of Causal Set Theory
Dribus, Benjamin F
2013-01-01
This paper offers suggested improvements to the causal sets program in discrete gravity, which treats spacetime geometry as an emergent manifestation of causal structure at the fundamental scale. This viewpoint, which I refer to as the causal metric hypothesis, is summarized by Rafael Sorkin's phrase, "order plus number equals geometry." Proposed improvements include recognition of a generally nontransitive causal relation more fundamental than the causal order, an improved local picture of causal structure, development and use of relation space methods, and a new background-independent version of the histories approach to quantum theory. Besides causal set theory, \\`a la Bombelli, Lee, Meyer, and Sorkin, this effort draws on Isham's topos-theoretic framework for physics, Sorkin's quantum measure theory, Finkelstein's causal nets, and Grothendieck's structural principles. This approach circumvents undesirable structural features in causal set theory, such as the permeability of maximal antichains, studied by ...
Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt.
Martinez-Pedrero, Fernando; Ortiz-Ambriz, Antonio; Pagonabarraga, Ignacio; Tierno, Pietro
2015-09-25
We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters. PMID:26451584
Regularity criterion for the 3D Hall-magneto-hydrodynamics
Dai, Mimi
2016-07-01
This paper studies the regularity problem for the 3D incompressible resistive viscous Hall-magneto-hydrodynamic (Hall-MHD) system. The Kolmogorov 41 phenomenological theory of turbulence [14] predicts that there exists a critical wavenumber above which the high frequency part is dominated by the dissipation term in the fluid equation. Inspired by this idea, we apply an approach of splitting the wavenumber combined with an estimate of the energy flux to obtain a new regularity criterion. The regularity condition presented here is weaker than conditions in the existing criteria (Prodi-Serrin type criteria) for the 3D Hall-MHD system.
Hydrodynamics of Ship Propellers
DEFF Research Database (Denmark)
Breslin, John P.; Andersen, Poul
This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation) and a...
Directory of Open Access Journals (Sweden)
Franci Gabrovsek
2008-01-01
Full Text Available From a hydrological point of view, active caves are a series of connected conduits which drain water through an aquifer. Water tends to choose the easiest way through the system but different geological and morphological barriers act as flow restrictions. The number and characteristics of restrictions depends on the particular speleogenetic environment, which is a function of geological, geomorphological, climatological and hydrological settings. Such a variety and heterogeneity of underground systems has presented a challenge for human understanding for many centuries. Access to many underground passages, theoretical knowledge and recent methods (modeling, water pressure-resistant dataloggers, precise sensors etc. give us the opportunity to get better insight into the hydrodynamic aspect of caves. In our work we tried to approach underground hydrodynamics from both theoretical and practical points of view. We present some theoretical background of open surface and pressurized flow in underground rivers and present results of some possible scenarios. Moreover, two case studies from the Ljubljanica river basin are presented in more detail: the cave system between Planinsko polje and Ljubljansko barje, and the cave system between Bloško polje and Cerkniško polje. The approach and methodology in each case is somewhat different, as the aims were different at the beginning of exploration. However, they both deal with temporal and spatial hydrodynamics of underground waters. In the case of Bloško polje-Cerkniško polje system we also explain the feedback loop between hydrodynamics and Holocene speleogenesis.
Granger Causality and Unit Roots
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir; Ventosa-Santaulària, Daniel
2014-01-01
The asymptotic behavior of the Granger-causality test under stochastic nonstationarity is studied. Our results confirm that the inference drawn from the test is not reliable when the series are integrated to the first order. In the presence of deterministic components, the test statistic diverges...
Causal feedbacks in climate change
Nes, van E.H.; Scheffer, M.; Brovkin, V.; Lenton, T.M.; Ye, H.; Deyle, E.; Sugihara, G.
2015-01-01
The statistical association between temperature and greenhouse gases over glacial cycles is well documented1, but causality behind this correlation remains difficult to extract directly from the data. A time lag of CO2 behind Antarctic temperature—originally thought to hint at a driving role for tem
Causal Behaviour on Carter spacetime
Blanco, Oihane F
2015-01-01
In this work we will focus on the causal character of Carter Spacetime (see B. Carter, Causal structure in space-time, Gen. Rel. Grav. 1 4 337-406, 1971). The importance of this spacetime is the following: for the causally best well behaved spacetimes (the globally hyperbolic ones), there are several characterizations or alternative definitions. In some cases, it has been shown that some of the causal properties required in these characterizations can be weakened. But Carter spacetime provides a counterexample for an impossible relaxation in one of them. We studied the possibility of Carter spacetime to be a counterexample for impossible lessening in another characterization, based on the previous results. In particular, we will prove that the time-separation or Lorentzian distance between two chosen points in Carter spacetime is infinite. Although this spacetime turned out not to be the counterexample we were looking for, the found result is interesting per se and provides ideas for alternate approaches to t...
Causality problem in Economic Science
Directory of Open Access Journals (Sweden)
JOSÉ LUIS RETOLAZA
2007-12-01
Full Text Available The main point of the paper is the problem of the economy to be consider like a science in the most strict term of the concept. In the first step we are going to tackle a presentation about what we understand by science to subsequently present some of the fallacies which have bring certain scepticism about the scientific character of the investigation in economy, to know: 1 The differences between hard and weak sciences -physics and social; 2 The differences between paradigm, —positivist and phenomenological— 3 The differences between physic causalityand historic causality. In the second step we are going to talk about two fundamental problems which are questioned: 1 the confusion between ontology and gnoseology and, 2 the erroneous concept of causality that commonly is used. In the last step of the paper we are going over the recent models of «causal explanation» and we suggest the probabilistic casualty development next with a more elaborated models of causal explanation, like a way to conjugate the scientific severity with the possibility to tackle complex economic realities.
Dynamics Models of Interacting Torques of Hydrodynamic Retarder Braking Process
Directory of Open Access Journals (Sweden)
Wenhao Shen
2013-01-01
Full Text Available Hydrodynamic retarder is a kind of assist braking device, which can transfer the vehicle kinetic energy into the heat energy of working medium. There are complicated three-dimensional viscous incompressible turbulent flows in hydrodynamic retarder, so that it is difficult to represent the parameters changing phenomenon and investigate the interactional law. In order to develop a kind of reliable theoretical model for internal flow field, in this study, the dynamics models of interacting torques between impellers and working fluid were constructed based on braking energy transfer principle by using Euler theory to describe the flow state in view of time scale. The model can truly represent the dynamic braking process.
Yrova A. A.; Yrov A. V.; Lukinyh I. V.
2013-01-01
We propose a simple algebraic method for constructing exact solutions of equations of two-dimensional hydrodynamics of an incompressible fluids.The problem reduces to consecutively solution three linear partial differential equations for a nonviscous fluid and to solving three linear partial differential equations and one first-order ordinary differential equation for a viscous fluid.
Initial value problem for Rayleigh--Taylor instability of viscous fluids
International Nuclear Information System (INIS)
The initial value problem associated with the development of small amplitude disturbances in Rayleigh--Taylor unstable, viscous, incompressible fluids is studied. Solutions to the linearized equations of motion which satisfy general initial conditions are obtained in terms of Fourier--Laplace transforms of the hydrodynamic variables, without restriction on the density or viscosity of either fluid. When the two fluids have equal kinematic viscosities, these transforms can be inverted explicitly to express the fluid variables as integrals of Green's functions multiplied by initial data. In addition to normal modes, a set of continuum modes, not treated explicitly in the literature, makes an important contribution to the development of the fluid motion
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Effect of slip boundary conditions on interfacial stability of two-layer viscous fluids under shear
Patlazhan, Stanislav
2015-01-01
The traditional approach in the study of hydrodynamic stability of stratified fluids includes the stick boundary conditions between layers. However, this rule may be violated in polymer systems and as a consequence various instabilities may arise. The main objective of this paper is to analyze theoretically the influence of slip boundary conditions on the hydrodynamic stability of the interface between two immiscible viscous layers subjected to simple shear flow. It is found that the growth rate of long-wave disturbances is fairly sensitive to the slip at the interface between layers as well as at the external boundary. These phenomena are shown to give different contributions to the stability of shear flow depending on viscosity, thickness, and density ratios of the layers. Particularly, the interfacial slip can increase the perturbation growth rate and lead to unstable flow. An important consequence of this effect is the violation of stability for sheared layers with equal viscosities and densities in a bro...
Numerical Simulation of the Sedimentation of a Tripole-like Body in an Incompressible Viscous Fluid
Energy Technology Data Exchange (ETDEWEB)
Juarez, L H.(Universidad Autonoma Metropolitana); Glowinski, R (University of Houston); Pettitt, Bernard M.(University of Houston)
2002-08-01
In this note, we discuss the application of a methodology combining distributed Lagrange multiplier based fictitious domain techniques, finite-element approximations and operator splitting, to the numerical simulation of the motion of a tripole-like rigid body falling in a Newtonian incompressible viscous fluid. The motion of the body is driven by the hydrodynamical forces and gravity. The numerical simulation shows that the distribution of mass of this rigid body and added moment of inertia compared to a simple cylinder (circular or elliptic) plays a significant role on the particle-fluid interaction. Apparently, for the parameters examined, the action of the moving rigid body on the fluid is stronger than the hydrodynamic forces acting on the rigid body.
Improvements of Critical Heat Flux Models Based on the Viscous Potential Flow Theory
Energy Technology Data Exchange (ETDEWEB)
Kim, Byoung Jae; Lee, Jong Hyuk; Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
The absence of fluid viscosities in most existing models may be attributed to the fact that inviscid flow analyses are performed for the model development. For example, the hydrodynamic theory and macrolayer dryout models rely on the Rayleigh-Taylor, Kelvin-Helmholtz, and capillary instabilities for inviscid fluids. However, as the viscosities of two fluids become closer, none of them cannot be neglected. Moreover, the gas viscosity effect cannot be neglected on the condition that the gas layer is thin. Nevertheless, the previous studies neglected the viscous effect. Recently, Kim et al. showed that for the model development of critical heat flux and minimum film boiling, the Rayleigh-Taylor instability should be analyzed with a thin layer of viscous gas instead of a thick layer of inviscid gas. The decrease of the most unstable wavelength was shown to improve the prediction accuracy of critical heat flux models for various fluids, particularly at elevated pressures. In addition, the most dangerous wavelength and the most rapid growth rate for viscous thin films are shown to be applicable to the minimum heat flux condition. Kim et al. touch only the most unstable wavelength for developing critical heat flux models. The critical heat flux is inversely proportional to the square root of the most unstable wavelength (Zuber, Guan et al). Here, we notice that the existing critical heat flux models make use of the Kelvin-Helmholtz instability of inviscid flows. The Kelvin-Helmholtz instability determines the maximum vapor escape velocity (Zuber) and the initial liquid macrolayer thickness (Haramura and Katto). Therefore, there is a room for improving the prediction accuracy by the help of the Kelvin-Helmholtz instability of viscous fluids. The Kelvin-Helmholtz instability arises when the different fluid layers are in relative motion. Usually, a uniform flow is considered in each fluid layer, allowing a velocity discontinuity at the interface. Therefore, in general, the
Improvements of Critical Heat Flux Models Based on the Viscous Potential Flow Theory
International Nuclear Information System (INIS)
The absence of fluid viscosities in most existing models may be attributed to the fact that inviscid flow analyses are performed for the model development. For example, the hydrodynamic theory and macrolayer dryout models rely on the Rayleigh-Taylor, Kelvin-Helmholtz, and capillary instabilities for inviscid fluids. However, as the viscosities of two fluids become closer, none of them cannot be neglected. Moreover, the gas viscosity effect cannot be neglected on the condition that the gas layer is thin. Nevertheless, the previous studies neglected the viscous effect. Recently, Kim et al. showed that for the model development of critical heat flux and minimum film boiling, the Rayleigh-Taylor instability should be analyzed with a thin layer of viscous gas instead of a thick layer of inviscid gas. The decrease of the most unstable wavelength was shown to improve the prediction accuracy of critical heat flux models for various fluids, particularly at elevated pressures. In addition, the most dangerous wavelength and the most rapid growth rate for viscous thin films are shown to be applicable to the minimum heat flux condition. Kim et al. touch only the most unstable wavelength for developing critical heat flux models. The critical heat flux is inversely proportional to the square root of the most unstable wavelength (Zuber, Guan et al). Here, we notice that the existing critical heat flux models make use of the Kelvin-Helmholtz instability of inviscid flows. The Kelvin-Helmholtz instability determines the maximum vapor escape velocity (Zuber) and the initial liquid macrolayer thickness (Haramura and Katto). Therefore, there is a room for improving the prediction accuracy by the help of the Kelvin-Helmholtz instability of viscous fluids. The Kelvin-Helmholtz instability arises when the different fluid layers are in relative motion. Usually, a uniform flow is considered in each fluid layer, allowing a velocity discontinuity at the interface. Therefore, in general, the
Bulk viscous cosmology: statefinder and entropy
He, X
2006-01-01
The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With t...
Anticipation of physical causality guides eye movements
Wende, Kim; Theunissen, Laetitia; Missal, Marcus
2016-01-01
Causality is a unique feature of human perception. We present here a behavioral investigation of the influence of physical causality during visual pursuit of object collisions. Pursuit and saccadic eye movements of human subjects were recorded during ocular pursuit of two concurrently launched targets, one that moved according to the laws of Newtonian mechanics (the causal target) and the other one that moved in a physically implausible direction (the non-causal target). We found that anticip...
Causal discovery from medical textual data.
Mani, S.; Cooper, G. F.
2000-01-01
Medical records usually incorporate investigative reports, historical notes, patient encounters or discharge summaries as textual data. This study focused on learning causal relationships from intensive care unit (ICU) discharge summaries of 1611 patients. Identification of the causal factors of clinical conditions and outcomes can help us formulate better management, prevention and control strategies for the improvement of health care. For causal discovery we applied the Local Causal Discove...
Estimating causal structure using conditional DAG models
Oates, Chris J.; Smith, Jim Q.; Mukherjee, Sach
2014-01-01
This paper considers inference of causal structure in a class of graphical models called "conditional DAGs". These are directed acyclic graph (DAG) models with two kinds of variables, primary and secondary. The secondary variables are used to aid in estimation of causal relationships between the primary variables. We give causal semantics for this model class and prove that, under certain assumptions, the direction of causal influence is identifiable from the joint observational distribution ...
Hydrodynamic drift ratchet scalability
Herringer, James; Dorrington, Graham E; Mitchell, James G; Rosengarten, Gary
2016-01-01
The rectilinear "drift" of particles in a hydrodynamic drift ratchet arises from a combination of diffusive motion and particle-wall hydrodynamic interactions, and is therefore dependent on particle diffusivity, particle size, the amplitude and frequency of fluid oscillation and pore geometry. Using numerical simulations, we demonstrate that the drift velocity relative to the pore size is constant across different sized drift ratchet pores, if all the relevant non-dimensional groups (Peclet number, Strouhal number and ratio of particle to pore size) remain constant. These results clearly indicate for the first time the scaling parameters under which the drift ratchet achieves dynamic similarity, and so facilitates design, fabrication and testing of drift ratchets for experiments and eventually as commercial micro/nano fluidic separation devices.
Hydrodynamics of Turning Flocks
Yang, Xingbo; Marchetti, M. Cristina
2015-12-01
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.
Spin-Electromagnetic Hydrodynamics
Koide, T
2013-01-01
The hydrodynamic model including the spin degree of freedom and the electromagnetic field was discussed. In this derivation, we applied electromagnetism for macroscopic medium proposed by Minkowski. For the equation of motion of spin, we assumed that the hydrodynamic equation of the Pauli equation is reproduced when the many-body effect is neglected. The fluid and spin stress tensors induced by the many-body effect were obtained by employing the algebraic positivity of the entropy production in the framework of linear irreversible thermodynamics. In our model, the effect of the spin-magnetic interaction is absorbed into the magnetic polarization so as to satisfy the momentum and angular momentum conservations. We further compared our result with other existing models.
Representing Personal Determinants in Causal Structures.
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
The argumentative impact of causal relations
DEFF Research Database (Denmark)
Nielsen, Anne Ellerup
1996-01-01
causality, explanation and justification. In certain types of discourse, causal relations also imply an intentional element. This paper describes the way in which the semantic and pragmatic functions of causal markers can be accounted for in terms of linguistic and rhetorical theories of argumentation....
Expectations and Interpretations during Causal Learning
Luhmann, Christian C.; Ahn, Woo-kyoung
2011-01-01
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…
Nonlinear hydrodynamic stability
Isichenko, M B
1998-01-01
The variational principle of V. I. Arnold [J. Appl. Math. Mech. Vol. 29, P. 1002 (1965)] is extended to the general conservative inhomogeneous, compressible, and conducting fluid. The concept of iso-vortical flows is generalized to an "invariant foliation" of the phase space. The foliation, which may or may not correspond to explicit conservation laws, is derived from the equations of motion and used for Lyapunov stability. A nonlinear three-dimensional (magneto-) hydrodynamic stability criterion is formulated.
Jiang, Yimin; Liu, Mario
2008-01-01
Granular elasticity, an elasticity theory useful for calculating static stress distribution in granular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular temperatures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanne...
Determining the hydrodynamic forces on a planing hull in steady motion
Institute of Scientific and Technical Information of China (English)
HASSAN Ghassemi; SU Yu-min
2008-01-01
A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion. Firstly, a potential-based boundary-element method was used to calculate the hydrodynamic pressure, induced resistance and lift. Then the frictional resistance component was determined by the viscous boundary layer theory. Finally, a particular empirical technique was applied to determine the region of upwash geometry and determine spray resistance. Case studies involving four models of Series 62 planing craft were run. These showed that the suggested method is efficient and capable, with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.
Atomizer design for viscous-melt atomization
Energy Technology Data Exchange (ETDEWEB)
Czisch, C. [Chemical Engineering Department, University Bremen, Badgasteiner Str. 3, 28359 Bremen (Germany); Fritsching, U. [Chemical Engineering Department, University Bremen, Badgasteiner Str. 3, 28359 Bremen (Germany)], E-mail: ufri@iwt.uni-bremen.de
2008-03-25
The development of a gas atomization unit is introduced, which utilizes characteristic flow effects for efficient fragmentation of viscous liquids and melts. The proposed device combines a classical rotary atomizer with an external mixing gas atomizer. Here, the liquid stream is first transformed into a thin liquid sheet before disintegration. Thereby the specific surface energy is increased without breakup. The movement of the free flowing liquid film is controlled by the local gas flow field in order to transport the film into the most effective atomization region. The fragmentation process itself is caused by a perpendicular impinging gas stream. Numerical flow simulations are used for the development of the hybrid atomizer construction. Experiments using viscous model liquids show that for constant air-to-liquid mass-flow ratio the particle size is reduced using the hybrid atomizer compared with a conventional gas atomizer. Results of model experiments as well as of experiments with a viscous mineral melt are discussed.
Atomizer design for viscous-melt atomization
International Nuclear Information System (INIS)
The development of a gas atomization unit is introduced, which utilizes characteristic flow effects for efficient fragmentation of viscous liquids and melts. The proposed device combines a classical rotary atomizer with an external mixing gas atomizer. Here, the liquid stream is first transformed into a thin liquid sheet before disintegration. Thereby the specific surface energy is increased without breakup. The movement of the free flowing liquid film is controlled by the local gas flow field in order to transport the film into the most effective atomization region. The fragmentation process itself is caused by a perpendicular impinging gas stream. Numerical flow simulations are used for the development of the hybrid atomizer construction. Experiments using viscous model liquids show that for constant air-to-liquid mass-flow ratio the particle size is reduced using the hybrid atomizer compared with a conventional gas atomizer. Results of model experiments as well as of experiments with a viscous mineral melt are discussed
One-dimensional reduction of viscous jets
Pitrou, Cyril
2015-01-01
We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model, since it amounts to selectively discard some corrections. However, in a fast...
Principal Stratification in Causal Inference
Frangakis, Constantine E.; Rubin, Donald B.
2002-01-01
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential valu...
Entanglement, Holography and Causal Diamonds
de Boer, Jan; Heller, Michal P; Myers, Robert C
2016-01-01
We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the va...
Simultaneous viscous-inviscid coupling via transpiration
International Nuclear Information System (INIS)
In viscous-inviscid coupling analysis, the direct coupling technique and the inverse coupling technique are commonly adopted. However, stability and convergence of the algorithms derived are usually very unsatisfactory. Here, by using the transpiration technique to simulate the effect of the displacement thickness, a new simultaneous coupling method is derived. The integral boundary layer equations and the full potential equation are chosen to be the viscous-inviscid coupled system. After discretization, the Newton-Raphson technique is proposed to solve the coupled nonlinear system. Several numerical results are used to demonstrate the accuracy and efficiency of the proposed method. 15 refs., 23 figs
Motion of a hot particle in viscous fluids
Oppenheimer, Naomi; Navardi, Shahin; Stone, Howard A.
2016-05-01
We study the motion of a hot particle in a viscous liquid at low Reynolds numbers, which is inspired by recent experiments with Brownian particles heated by a laser. The difference in temperature between a particle and the ambient fluid causes a spatial variation of the viscosity in the vicinity of the solid body. We derive a general analytical expression determining the force and the torque on a particle for low Péclet numbers by exploiting the Lorentz reciprocal theorem. For small temperature and viscosity variations, a perturbation analysis is implemented to evaluate the leading-order correction to the hydrodynamic force and torque on the particle. The results are applied to describe dynamics of a uniformly hot spherical particle and to spherical particles with a nonuniform surface temperature described by dipole and quadrupole moments. Among other results, we find for dipolar thermal fields that there is coupling of the translational and rotational motions when there are local viscosity variations; such coupling is absent in an isothermal fluid.
A realistic 3+1D Viscous Hydro Algorithm
Energy Technology Data Exchange (ETDEWEB)
Romatschke, Paul [Univ. of Colorado, Boulder, CO (United States)
2015-05-31
DoE funds were used as bridge funds for the faculty position for the PI at the University of Colorado. The total funds for the Years 3-5 of the JET Topical Collaboration amounted to about 50 percent of the academic year salary of the PI.The PI contributed to the JET Topical Collaboration by developing, testing and applying algorithms for a realistic simulation of the bulk medium created in relativistic ion collisions.Specifically, two approaches were studied, one based on a new Lattice-Boltzmann (LB) framework, and one on a more traditional viscous hydro-dynamics framework. Both approaches were found to be viable in principle, with the LB approach being more elegant but needing still more time to develop.The traditional approach led to the super-hybrid model of ion collisions dubbed 'superSONIC', and has been successfully used for phenomenology of relativistic heavy-ion and light-on-heavy-ion collisions.In the time-frame of the JET Topical Collaboration, the Colorado group has published 15 articles in peer-reviewed journals, three of which were published in Physical Review Letters. The group graduated one Master student during this time-frame and two more PhD students are expected to graduate in the next few years. The PI has given more than 28 talks and presentations during this period.
Numerical simulation of soil-water jet interaction with smoothed particle hydrodynamics
Guo, Zhiming; Shao, Jiaru; Shen, Yongxing; Liu, Moubin
2013-01-01
Smoothed particle hydrodynamics (SPH) is a meshfree, Lagrangian particle method, which has been applied to different areas in sciences and industrial applications. In this work, SPH is used to simulate the soil-water jet interaction and erosion. In the simulation, water is modelled as a viscous fluid with weak compressibility and the soil is assumed to be an elastic-perfectly plastic material. The stress states of soil in the plastic flow regime follow the Drucker-Prager failure criterion. Bo...
Hydrodynamics of Rotating Stars and Close Binary Interactions: Compressible Ellipsoid Models
Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.
1994-01-01
We develop a new formalism to study the dynamics of fluid polytropes in three dimensions. The stars are modeled as compressible ellipsoids and the hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. Both viscous dissipation and the gravitational radiation reaction are incorporated. We establish the validity of our approximations and demonstrate the simplicity and power of the method by rederiving a...
Effect of shear heat on hydrodynamic lift of brush seals in oil sealing
Duran, Ertuğrul Tolga; Duran, Ertugrul Tolga; Akşit, Mahmut Faruk; Aksit, Mahmut Faruk; Doğu, Yahya; Dogu, Yahya
2006-01-01
Due to their superior performance and stable leakage characteristics, brush seals are one of the dynamic seals used in oil and oil mist applications in aero-engines and turbines. The viscous medium between the high speed rotor surface and bearing surfaces formed by brush seal bristles generates a hydrodynamic lifting force that determines seal clearance and leakage rate in oil sealing applications. The analytical solution to bristle lifting force can be found by using Reynolds formulation. Fo...
Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite
International Nuclear Information System (INIS)
In this paper, we study the thrust performance of a biomimetic robotic swimmer that uses ionic polymer–metal composite (IPMC) as a flexible actuator in viscous and inertial flow, for a comprehensive understanding of IPMC swimmers at different scales. A hydrodynamic model based on the elongated body theory was developed. Based on image analysis, the parameters of the model were identified and simulation results were obtained. To obtain the hydrodynamic thrust performance of the robotic swimmer, we implemented a novel experimental apparatus. Systematic tests were conducted in the servo towing system to measure the self-propelled speed and thrust efficiency under different actuation of IPMC. The undulatory motions of the IPMC swimmer were identified. Experimental results demonstrated that the theoretical model can accurately predict the speed and thrust efficiency of the robotic swimmer. When the Reynolds number of the robotic swimmer was reduced to approximately 0.1%, its speed and thrust efficiency were reduced by 95.22% and 87.33% respectively. It was concluded that the robotic swimmer has a low speed and thrust efficiency when it swims in a viscous flow. Generally, the thrust performance of the robotic swimmer is determined by the kinematics and Reynolds number. In addition, the optimal actuation frequency for the thrust efficiency is greater in a viscous fluid. These results may contribute to a better understanding of the swimming performance of IPMC actuated swimmers in a distinct flow regime (viscous and inertial regime). (paper)
Hydrodynamics of circulating and bubbling fluidized beds
International Nuclear Information System (INIS)
This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments
Interactions of three viscous point vortices
International Nuclear Information System (INIS)
The dynamics of viscous point vortices in two dimensions is studied both analytically and numerically. We consider a core-growth model based on the Lamb–Oseen vortices, the so-called multi-Gaussian model, to describe the evolution of viscous vortices. We focus mainly on the interaction of three viscous vortices. It is found that for three vortices, there are no self-similar motion except rigid rotation, and no collapse of the vortex centers, unlike the inviscid point vortices. We perform numerical computations for the Navier–Stokes equation and the multi-Gaussian model for the collapsing case of the inviscid three point vortices and examine in detail the viscous evolutions of the vortices from the models. The motions of the vortices are little influenced by viscosity, when their mutual distances are fairly large, but the dynamics is altered by viscosity as the vortices get close to each other and the cores of the vortices overlap. The multi-Gaussian model demonstrates the prevention of the total collapse of the vortices by the viscosity effect, and the merging process of two vortices, which are the main qualitative features of the Navier–Stokes solutions. (paper)
Shape and stability of a viscous thread
DEFF Research Database (Denmark)
Bohr, Tomas; Senchenko, Sergey
2005-01-01
When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters. We discuss the shape of such liquid threads and their surprising stability...
Microcantilever mechanics in flowing viscous fluids
Jana, A; Raman, A.; Dhayal, B.; Tripp, S L; Reifenberger, R. G.
2007-01-01
Microcantilevers are often deployed in flowing fluids to measure local flow velocities or to detect rapidly the nanomechanical binding of trace quantities of target analytes. The authors investigate the flow-induced mechanics of microcantilevers by deriving a semianalytical theoretical model for the nanoscale deflections of an elastic microcantilever due to a laminar viscous flow incident upon it. Conversely, the ...
Constraints on Rindler Hydrodynamics
Meyer, Adiel
2013-01-01
We study uncharged Rindler hydrodynamics at second order in the derivative expansion. The equation of state of the theory is given by a vanishing equilibrium energy density. We derive relations among the transport coefficients by employing two frameworks. First, by the requirement of having an entropy current with a non-negative divergence, second by studying the thermal partition function on stationary backgrounds. The relations derived by these two methods are consistent with each other. However, we find that the entropy current yields stronger constraints than the thermal partition function. We verify the results by studying explicit examples in flat and curved space-time geometries.
Incompressible smoothed particle hydrodynamics
International Nuclear Information System (INIS)
We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Poisson equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These Lagrange multipliers play the role of non-thermodynamic pressures whose actual values are fixed through the kinematic restriction. We use the SHAKE methodology familiar in constrained molecular dynamics as an efficient method for finding the non-thermodynamic pressure satisfying the constraints. The model is tested for several flow configurations
Foundations of radiation hydrodynamics
Mihalas, Dimitri
1999-01-01
Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,
Xu, Xiaoyang; Deng, Xiao-Long
2016-04-01
In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.
Finitary Spacetime Sheaves of Quantum Causal Sets Curving Quantum Causality
Mallios, A
2001-01-01
A locally finite, causal and quantal substitute for a locally Minkowskian principal fiber bundle $\\cal{P}$ of modules of Cartan differential forms $\\omg$ over a bounded region $X$ of a curved $C^{\\infty}$-smooth differential manifold spacetime $M$ with structure group ${\\bf G}$ that of orthochronous Lorentz transformations $L^{+}:=SO(1,3)^{\\uparrow}$, is presented. ${\\cal{P}}$ is the structure on which classical Lorentzian gravity, regarded as a Yang-Mills type of gauge theory of a $sl(2,\\com)$-valued connection 1-form $\\cal{A}$, is usually formulated. The mathematical structure employed to model this replacement of ${\\cal{P}}$ is a principal finitary spacetime sheaf $\\vec{\\cal{P}}_{n}$ of quantum causal sets $\\amg_{n}$ with structure group ${\\bf G}_{n}$, which is a finitary version of the group ${\\bf G}$ of local symmetries of General Relativity, and a finitary Lie algebra ${\\bf g}_{n}$-valued connection 1-form ${\\cal{A}}_{n}$ on it, which is a section of its sub-sheaf $\\amg^{1}_{n}$. ${\\cal{A}}_{n}$ is phys...
Interfacial hydrodynamics: a microscopic approach
Baus, Marc; Fernández Tejero, Carlos
1983-01-01
Linearized hydrodynamic equations for a nonuniform anisotropic fluid are obtained from the exact Mori-Zwanzig equations for the conserved densities. In the particular case of a two-phase system with a planar equilibrium interface, these equations can be reduced to the ordinary hydrodynamic equations inside each bulk phase and to surface hydrodynamic equations for the interfacial layer. Surface transport coefficients and surface thermodynamic parameters are hereby obtained as Gibbs surface exc...
Viscous Potential Flow Analysis of Electrohydrodynamic Rayleigh-Taylor Instability
Awasthi Mukesh Kumar; Yadav Dhananjay; G.S. Agrawal
2014-01-01
A linear analysis of Rayleigh-Taylor instability in the presence of tangential electric field has been carried out using viscous potential flow theory. In viscous potential flow theory, viscosity is not zero but viscous term in the Navier- Stokes equation is zero as vorticity is zero. Viscosity enters through normal stress balance and tangential stresses are not considered in viscous flow theory. A dispersion relation has been obtained and stability criterion has been given in the terms of cr...
The Impossibility of Causality Testing
Conway, Roger K.; P. A. V. B. Swamy; Yanagida, John F.; Muehlen, Peter von zur
1984-01-01
Causality tests developed by Sims and Granger are fatally flawed for several reasons First, when two variables, X and Y, are uncorrelated, X has no linear predictive value for Y, but X,and Y may be nonlinearly related unless they are statistically Independent, In which case X and Y are not related at all The light-hand side variables In a regression equation are exogenous If they are mean Independent of the disturbance term Mean Independence IS stronger than uncorrelatedness The proofs for de...
Breaking the arrows of causality
DEFF Research Database (Denmark)
Valsiner, Jaan
2014-01-01
Theoretical models of catalysis have proven to bring with them major breakthroughs in chemistry and biology, from the 1830s onward. It can be argued that the scientific status of chemistry has become established through the move from causal to catalytic models. Likewise, the central explanatory...... role of cyclical models in biology has made it possible to move from the idea of genetic determination to that of epigenetic negotiation as the core of biological theory. In psychology, catalytic thinking has been outside of the realm of accepted scientific schemes, as the axiomatic dependence upon the...
Molecular Hydrodynamics from Memory Kernels
Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin
2016-04-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t-3 /2 . We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius.
Hydrodynamic modes for granular gases.
Dufty, James W; Brey, J Javier
2003-09-01
The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum, assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the velocity distribution in the reference homogeneous cooling state. PMID:14524742
Molecular hydrodynamics from memory kernels
Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin
2016-01-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.
Hydrodynamic causes and effects of air bubbles rising in very viscous media
Ravinuthala, Sharad Chand
2013-01-01
Detailed understanding of two-phase gas liquid flows is imperative for developing efficient multi-phase reactors through precise control of mixing and reaction kinetics. The bubble column is a good apparatus for elementary studies of such flows. In the current study experiments are conducted to assess the effect of liquid viscosity on flow dynamics inside a bubble column. Corn oil and water are used as the continuous media, and air was the dispersed media. The objective of this effort is to use the results for a qualitative validation of the numerical simulations.
Solutions of equations of viscous hydrodynamics via stochastic perturbations of inviscid flows
Gliklikh, Yuri E
2009-01-01
We introduce a special stochastic perturbation of the flow of diffuse matter as a curve in the group of diffeomorphisms of flat n-dimensional torus such that the perturbed system yields a solution of Burgers equation in the tangent space at unit of the diffeomorphism group. The same perturbation of the flow of perfect incompressible fluid yields a solution of Reynolds type equation but under some special external force on the diffeomorphism group it transforms into a solution of Navier-Stokes equation without external force.
DEFF Research Database (Denmark)
Park, Kidong; Shim, Jeong; Solovyeva, Vita; Corbin, E.; Banerjee, Sutanuka; Bashir, R.
2012-01-01
geometries was characterized from resonant frequency and quality factor. In water, the damping increased linearly with the perimeter at 45.4 × 10 Ns/m , until the perforation's radius was 123% ± 13% of the depth of penetration of fluid's oscillation. The added mass effect decreased with perforations and...
The Functions of Danish Causal Conjunctions
Directory of Open Access Journals (Sweden)
Rita Therkelsen
2004-01-01
Full Text Available In the article I propose an analysis of the Danish causal conjunctions fordi, siden and for based on the framework of Danish Functional Grammar. As conjunctions they relate two clauses, and their semantics have in common that it indicates a causal relationship between the clauses. The causal conjunctions are different as far as their distribution is concerned; siden conjoins a subordinate clause and a main clause, for conjoins two main clauses, and fordi is able to do both. Methodologically I have based my analysis on these distributional properties comparing siden and fordi conjoining a subordinate and a main clause, and comparing for and fordi conjoining two main clauses, following the thesis that they would establish a causal relationship between different kinds of content. My main findings are that fordi establishes a causal relationship between the events referred to by the two clauses, and the whole utterance functions as a statement of this causal relationship. Siden presupposes such a general causal relationship between the two events and puts forward the causing event as a reason for assuming or wishing or ordering the caused event, siden thus establishes a causal relationship between an event and a speech act. For equally presupposes a general causal relationship between two events and it establishes a causal relationship between speech acts, and fordi conjoining two main clauses is able to do this too, but in this position it also maintains its event-relating ability, the interpretation depending on contextual factors.
Space and time in perceptual causality
Directory of Open Access Journals (Sweden)
Benjamin Straube
2010-04-01
Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.
Astrophysical Smooth Particle Hydrodynamics
Rosswog, Stephan
2009-01-01
In this review the basic principles of smooth particle hydrodynamics (SPH) are outlined in a pedagogical fashion. To start, a basic set of SPH equations that is used in many codes throughout the astrophysics community is derived explicitly. Much of SPH's success relies on its excellent conservation properties and therefore the numerical conservation of physical invariants receives much attention throughout this review. The self-consistent derivation of the SPH equations from the Lagrangian of an ideal fluid is the common theme of the remainder of the text. Such a variational approach is applied to derive a modern SPH version of Newtonian hydrodynamics. It accounts for gradients in the local resolution lengths which result in corrective, so-called "grad-h-terms". This strategy naturally carries over to the special-relativistic case for which we derive the corresponding grad-h set of equations. This approach is further generalized to the case of a fluid that evolves on a curved, but fixed background space-time.
Energy Technology Data Exchange (ETDEWEB)
Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.
2008-04-21
The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.
Probabilistic causality and radiogenic cancers
International Nuclear Information System (INIS)
A review and scrutiny of the literature on probability and probabilistic causality shows that it is possible under certain assumptions to estimate the probability that a certain type of cancer diagnosed in an individual exposed to radiation prior to diagnosis was caused by this exposure. Diagnosis of this causal relationship like diagnosis of any disease - malignant or not - requires always some subjective judgments by the diagnostician. It is, therefore, illusory to believe that tables based on actuarial data can provide objective estimates of the chance that a cancer diagnosed in an individual is radiogenic. It is argued that such tables can only provide a base from which the diagnostician(s) deviate in one direction or the other according to his (their) individual (consensual) judgment. Acceptance of a physician's diagnostic judgment by patients is commonplace. Similar widespread acceptance of expert judgment by claimants in radiation compensation cases does presently not exist. Judicious use of the present radioepidemiological tables prepared by the Working Group of the National Institutes of Health or of updated future versions of similar tables may improve the situation. 20 references
Dissipative hydrodynamics in 2+1 dimension
Chaudhuri, A K
2006-01-01
In 2+1 dimension, we have simulated the hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity. Comparison of evolution of ideal and viscous fluid, both initialised under the same conditions e.g. same equilibration time, energy density and velocity profile, reveal that the dissipative fluid evolve slowly, cooling at a slower rate. Cooling get still slower for higher viscosity. The fluid velocities on the otherhand evolve faster in a dissipative fluid than in an ideal fluid. The transverse expansion is also enhanced in dissipative evolution. For the same decoupling temperature, freeze-out surface for a dissipative fluid is more extended than an ideal fluid. Dissipation produces entropy as a result of which particle production is increased. Particle production is increased due to (i) extension of the freeze-out surface and (ii) change of the equilibrium distribution function to a non-equilibrium one, the last effect being prominent at large transverse momentum. Compared to ideal fluid, tran...
Modeling the hydrodynamics of phloem sieve plates
Directory of Open Access Journals (Sweden)
Kaare Hartvig Jensen
2012-07-01
Full Text Available Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.
Cochlear perfusion with a viscous fluid.
Wang, Yi; Olson, Elizabeth S
2016-07-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and
Causal relationship: a new tool for the causal characterization of Lorentzian manifolds
International Nuclear Information System (INIS)
We define and study a new kind of relation between two diffeomorphic Lorentzian manifolds called a causal relation, which is any diffeomorphism characterized by mapping every causal vector of the first manifold onto a causal vector of the second. We perform a thorough study of the mathematical properties of causal relations and prove in particular that two given Lorentzian manifolds (say V and W) may be causally related only in one direction (say from V to W, but not from W to V). This leads us to the concept of causally equivalent (or isocausal in short) Lorentzian manifolds as those mutually causally related and to a definition of causal structure over a differentiable manifold as the equivalence class formed by isocausal Lorentzian metrics upon it. Isocausality is a more general concept than the conformal relationship, because we prove the remarkable result that a conformal relation φ is characterized by the fact of being a causal relation of the particular kind in which both φ and φ-1 are causal relations. Isocausal Lorentzian manifolds are mutually causally compatible, they share some important causal properties, and there are one-to-one correspondences, which are sometimes non-trivial, between several classes of their respective future (and past) objects. A more important feature is that they satisfy the same standard causality constraints. We also introduce a partial order for the equivalence classes of isocausal Lorentzian manifolds providing a classification of all the causal structures that a given fixed manifold can have. By introducing the concept of causal extension we put forward a new definition of causal boundary for Lorentzian manifolds based on the concept of isocausality, and thereby we generalize the traditional Penrose constructions of conformal infinity, diagrams and embeddings. In particular, the concept of causal diagram is given. Many explicit clarifying examples are presented throughout the paper
FDI and growth: a causal relationship
Chowdhury, Abdur; Mavrotas, George
2005-01-01
The paper examines the causal relationship between FDI and economic growth by using an innovative econometric methodology to study the direction of causality between the two variables. We apply our methodology, based on the Toda-Yamamoto test for causality, to time-series data covering the period 1969-2000 for three developing countries, namely Chile, Malaysia and Thailand, all of them major recipients of FDI with a different history of macroeconomic episodes, policy regimes and growth patter...
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
The problem of causality in cultivation research
Rossmann, Constanze; Brosius, Hans-Bernd
2004-01-01
This paper offers an up-to-date review of problems in determining causal relationships in cultivation research, and considers the research rationales of various approaches with special reference to causal interpretation. It describes in turn a number of methodologies for addressing the problem and resolving it as far as this is possible. The issue of causal inference arises not only in cultivation research, however, but is basic to all media effects theories and approaches primarily at the ma...
Causal inference in economics and marketing.
Varian, Hal R
2016-07-01
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144
Causal inference in economics and marketing
Varian, Hal R.
2016-01-01
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144
Heterogeneous Causal Effects and Sample Selection Bias
DEFF Research Database (Denmark)
Breen, Richard; Choi, Seongsoo; Holm, Anders
2015-01-01
The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how...... causal effects might vary over individuals or groups. In this paper we point out one of the under-appreciated hazards of seeking to estimate heterogeneous causal effects: conventional selection bias (that is, selection on baseline differences) can easily be mistaken for heterogeneity of causal effects...
Lifshitz Superfluid Hydrodynamics
Chapman, Shira; Oz, Yaron
2014-01-01
We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.
Hydrodynamic effects on coalescence.
Energy Technology Data Exchange (ETDEWEB)
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Hydrodynamics, resurgence, and transasymptotics
Başar, Gökçe; Dunne, Gerald V.
2015-12-01
The second order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost-invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the nonhydrodynamic modes that are exponentially suppressed at late times, analogous to the quasinormal modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semiclassical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these nonhydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with initial conditions.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Solidity of viscous liquids. IV. Density fluctuations
DEFF Research Database (Denmark)
Dyre, J. C.
2006-01-01
This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle...... displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k space of the form C+Dk^2 with D>>C a^2 where a is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which...... Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields, is...
Investigating viscous damping using a webcam
Shamim, Sohaib; Anwar, Muhammad Sabieh
2011-01-01
We describe an experiment involving a mass oscillating in a viscous fluid and analyze viscous damping of harmonic motion. The mechanical oscillator is tracked using a simple webcam and an image processing algorithm records the position of the geometrical center as a function of time. Interesting information can be extracted from the displacement-time graphs, in particular for the underdamped case. For example, we use these oscillations to determine the viscosity of the fluid. Our mean value of 1.08 \\pm 0.07 mPa s for distilled water is in good agreement with the accepted value at 20\\circC. This experiment has been successfully employed in the freshman lab setting.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
Energy Technology Data Exchange (ETDEWEB)
Neelamkavil, Raphael
2014-07-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
International Nuclear Information System (INIS)
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Viscous fluid dynamics in Au+Au collisions at RHIC
Chaudhuri, A K
2008-01-01
We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$...
Chemical evolution of viscously evolving galactic discs
Clarke, Catherine J.
1989-01-01
The ability of the Lin-Pringle (1987) model of galactic disk formation to reproduce the observed radial distributions of total gas surface density and metals in disk galaxies is investigated. It is found that a satisfactory fit is obtained provided that there exists an outer cut-off to the star-forming disk beyond which gas is allowed to viscously evolve. The metallicity gradient is then established by radial inflow of gas from beyond this cut-off.
Injection well logging using viscous EOR fluids
International Nuclear Information System (INIS)
A new tool has been developed that overcomes problems associated with logging injection wells in the presence of viscous fluids. The tool was evaluated in the laboratory and the field in water and polymer injection wells. Results indicate that the tool provides better information than conventional equipment. Special attention to log interpretation is required in zones where the flow pattern changes from turbulent to transition flow. A method is suggested to improve log interpretation that considers changes in flow regime
Viscous Cosmology and Thermodynamics of Apparent Horizon
Akbar, M.
2008-01-01
It is shown that the differential form of Friedmann equations of FRW universe can be recast as a similar form of the first law, $T_{h}dS_{h} = dE + WdV$, of thermodynamics at the apparent horizon of FRW universe filled with the viscous fluid. It is also shown that the generalized second law of thermodynamics holds at the apparent horizon of FRW universe and preserves dominant energy condition.
Floppy swimming: Viscous locomotion of actuated elastica
Lauga, Eric
2006-01-01
Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell's scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices - which we call "elastic swimmers" - where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical...
Dissipative hydrodynamics and heavy ion collisions
Chaudhuri, A. K.
2008-01-01
Space-time evolution and subsequent particle production from minimally viscous ($\\eta/s$=0.08) QGP fluid is studied using the 2nd order Israel-Stewart's theory of dissipative relativistic fluid. Compared to ideal fluid, energy density or temperature evolves slowly in viscous dynamics. Particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases in viscous dynamics. Minimally viscous QGP fluid found to be consistent with a large number of experimental data.
The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect
Lelea, Dorin; Cioabla, Adrian Eugen
2011-07-01
The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.
Hydrodynamic Interactions between Two Forced Objects of Arbitrary Shape: I Effect on Alignment
Goldfriend, Tomer; Witten, Thomas A
2015-01-01
We study the properties and symmetries governing the hydrodynamic interaction between two identical, arbitrarily shaped objects, driven through a viscous fluid. We treat analytically the leading (dipolar) terms of the pair-mobility matrix, affecting the instantaneous relative linear and angular velocities of the two objects at large separation. We find that the ability to align asymmetric objects by an external time-dependent drive [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)] is degraded by the hydrodynamic interaction. The effects of hydrodynamic interactions are explicitly demonstrated through numerically calculated time-dependent trajectories of model alignable objects composed of four stokeslets. In addition to the orientational effect, we find that the two objects generally repel each other, thus restoring full alignment at long times.
Hydrodynamic entrapment, scattering, and escape of swimming bodies near colloidal particles
Spagnolie, Saverio; Moreno Flores, Gregorio; Bartolo, Denis; Lauga, Eric
2014-11-01
Microorganisms and other self-propelling bodies in viscous fluids are known to traverse complex trajectories in the presence of boundaries, due to passive hydrodynamic and other physical effects. Motivated by the experimental findings of Takagi et al.. on self-propulsion in a field of colloidal particles, we derive the far-field hydrodynamic interaction between model ``pusher'' and ``puller'' dipole swimmers and no-slip spherical bodies of varying size. Using the analytical estimates for the swimming trajectories, we predict the critical colloid size or dipole strength for which hydrodynamic entrapment occurs, the scattering dynamics for near-obstacle interactions, and the consequences of Brownian fluctuations. The dynamics include billiard-like motion between colloids, intermittent periods of entrapped/orbiting states near single colloids, and apparently randomized escape behavior. We envision applications of the theory to techniques for sorting microorganisms or other self-propelled swimmers, and to the behavior of motile suspensions in inhomogeneous environments.
Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions
Floerchinger, Stefan
2013-01-01
Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy-ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wave length and that they can be propagated mode-by-mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.
Quantum retrodiction and causality principle
International Nuclear Information System (INIS)
Quantum mechanics is factually a predictive science. But quantum retrodiction may also be needed, e.g., for the experimental verification of the validity of the Schroedinger equation for the wave function in the past if the present state is given. It is shown that in the retrodictive analog of the prediction the measurement must be replaced by another physical process called the retromeasurement. In this process, the reduction of a state vector into eigenvectors of a measured observable must proceed in the opposite direction of time as compared to the usual reduction. Examples of such processes are unknown. Moreover, they are shown to be forbidden by the causality principle stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and F.Belinfante must be considered as an unsatisfactory ersatz of retrodicting. 20 refs., 3 figs
Comparison theorems for causal diamonds
Berthiere, Clement; Solodukhin, Sergey N
2015-01-01
We formulate certain inequalities for the geometric quantities characterizing causal diamonds in curved and Minkowski spacetimes. These inequalities involve the red-shift factor which, as we show explicitly in the spherically symmetric case, is monotonic in the radial direction and it takes its maximal value at the centre. As a byproduct of our discussion we re-derive Bishop's inequality without assuming the positivity of the spatial Ricci tensor. We then generalize our considerations to arbitrary, static and not necessarily spherically symmetric, asymptotically flat spacetimes. In the case of spacetimes with a horizon our generalization involves the so-called {\\it domain of dependence}. The respective volume, expressed in terms of the duration measured by a distant observer compared with the volume of the domain in Minkowski spacetime, exhibits behaviours which differ if $d=4$ or $d>4$. This peculiarity of four dimensions is due to the logarithmic subleading term in the asymptotic expansion of the metric nea...
Viscous Glass Sealants for SOFC Applications
Energy Technology Data Exchange (ETDEWEB)
Scott Misture
2012-09-30
Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850Â°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650Â°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.
A hyperbolic model for viscous Newtonian flows
Peshkov, Ilya; Romenski, Evgeniy
2016-03-01
We discuss a pure hyperbolic alternative to the Navier-Stokes equations, which are of parabolic type. As a result of the substitution of the concept of the viscosity coefficient by a microphysics-based temporal characteristic, particle settled life (PSL) time, it becomes possible to formulate a model for viscous fluids in a form of first-order hyperbolic partial differential equations. Moreover, the concept of PSL time allows the use of the same model for flows of viscous fluids (Newtonian or non-Newtonian) as well as irreversible deformation of solids. In the theory presented, a continuum is interpreted as a system of material particles connected by bonds; the internal resistance to flow is interpreted as elastic stretching of the particle bonds; and a flow is a result of bond destructions and rearrangements of particles. Finally, we examine the model for simple shear flows, arbitrary incompressible and compressible flows of Newtonian fluids and demonstrate that Newton's viscous law can be obtained in the framework of the developed hyperbolic theory as a steady-state limit. A basic relation between the viscosity coefficient, PSL time, and the shear sound velocity is also obtained.
Computation of viscous blast wave flowfields
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
The Power of Causal Beliefs and Conflicting Evidence on Causal Judgments and Decision Making
Garcia-Retamero, Rocio; Muller, Stephanie M.; Catena, Andres; Maldonado, Antonio
2009-01-01
In two experiments, we investigated the relative impact of causal beliefs and empirical evidence on both decision making and causal judgments, and whether this relative impact could be altered by previous experience. 2. Selected groups of participants in both experiments received pre-training with either causal or neutral cues, or no pre-training…
Numerical Prediction of Hydrodynamic Forces on A Ship Passing Through A Lock
Institute of Scientific and Technical Information of China (English)
王宏志; 邹早建
2014-01-01
While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k-εturbulence model. User-defined function (UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock.
Numerical prediction of hydrodynamic forces on a ship passing through a lock
Wang, Hong-zhi; Zou, Zao-jian
2014-06-01
While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k- ɛ turbulence model. User-defined function (UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock.
Bagchi, Biman
2001-01-01
The usual explanation for the observed inverse relation between the orientational correlation time (\\tau R) and the self-diffusion (DS) of a tagged solute probe in a viscous liquid is in terms of the hydrodynamic relations which are known to have dubious conceptual validity for small molecules. Here, we present a microscopic derivation of the relation between \\tau R and DS. This derivation is based on the general ideas of the mode coupling theory, but uses the time-dependent density functiona...
Spin foam models as energetic causal sets
Cortês, Marina; Smolin, Lee
2016-04-01
Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014); Phys. Rev. D 90, 044035 (2014)]. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced in parallel by Wolfgang Wieland in [Classical Quantum Gravity 32, 015016 (2015)]. What makes a spin foam model also an energetic causal set is Wieland's identification of new degrees of freedom analogous to momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model. Our formulation also makes use of Markopoulou's causal formulation of spin foams [arXiv:gr-qc/9704013]. These are generated by evolving spin networks with dual Pachner moves. This endows the spin foam history with causal structure given by a partial ordering of the events which are dual to four-simplices.
Controlling for causally relevant third variables.
Goodie, Adam S; Williams, Cristina C; Crooks, C L
2003-10-01
In 3 experiments, the authors tested the conditions under which 3rd variables are controlled for in making causal judgments. The authors hypothesized that 3rd variables are controlled for when the 3rd variables are themselves perceived as causal. In Experiment 1, the participants predicted test performance after seeing information about wearing a lucky garment, taking a test-preparation course, and staying up late. The course (perceived as more causally relevant) was controlled for more than was the garment (perceived as less causally relevant) in assessing the effectiveness of staying up late. In Experiments 2 and 3, to obviate the many alternative accounts that arise from the realistic cover story of Experiment 1, participants predicted flowers' blooming after the presentation or nonpresentation of liquids. When one liquid was trained as causal, it was controlled for more in judging another liquid than when it was trained as neutral. Overall, stimuli perceived as causal were controlled for more when judging other stimuli. The authors concluded that the effect of perceived causal relevance on causal conditionalizing is real and normatively reasonable. PMID:14672103
Causal processes and propensities in quantum mechanics
Directory of Open Access Journals (Sweden)
Mauricio SUÁREZ
2010-01-01
Full Text Available I offer an alternative interpretation of Van Fraassen's influential arguments against causal realism in quantum mechanics. These arguments provide in fact a good guide to the different causal models available for the Einstein-Podolsky-Rosen correlations, which in turn shed light on the nature of quantum propensities.
Compact Representations of Extended Causal Models
Halpern, Joseph Y.; Hitchcock, Christopher
2013-01-01
Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…
mediation: R Package for Causal Mediation Analysis
Directory of Open Access Journals (Sweden)
Dustin Tingley
2014-09-01
Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.
Causalities of the Taiwan Stock Market
Juhi-Lian Julian Ting
2003-01-01
Volatility, fitting with first order Landau expansion, stationarity, and causality of the Taiwan stock market (TAIEX) are investigated based on daily records. Instead of consensuses that consider stock market index change as a random time series we propose the market change as a dual time series consists of the index and the corresponding volume. Therefore, causalities between these two time series are investigated.
Campbell's and Rubin's Perspectives on Causal Inference
West, Stephen G.; Thoemmes, Felix
2010-01-01
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
Unpacking the causal chain of financial literacy
Carpena, Fenella; Cole, Shawn; Shapiro, Jeremy; Zia, Bilal
2011-01-01
A growing body of literature examines the causal impact of financial literacy on individual, household, and firm level outcomes. This paper unpacks the mechanism of impact by focusing on the first link in the causal chain. Specifically, it studies the experimental impact of financial literacy on three distinct dimensions of financial knowledge. The analysis finds that financial literacy do...
Causal random geometry from stochastic quantization
DEFF Research Database (Denmark)
Ambjørn, Jan; Loll, R.; Westra, W.; Zohren, S.
2010-01-01
in this short note we review a recently found formulation of two-dimensional causal quantum gravity defined through Causal Dynamical Triangulations and stochastic quantization. This procedure enables one to extract the nonperturbative quantum Hamiltonian of the random surface model including the...
Granger causality in wall-bounded turbulence
International Nuclear Information System (INIS)
Granger causality is based on the idea that if a variable helps to predict another one, then they are probably involved in a causality relationship. This technique is based on the identification of a predictive model for causality detection. The aim of this paper is to use Granger causality to study the dynamics and the energy redistribution between scales and components in wall-bounded turbulent flows. In order to apply it on flows, Granger causality is generalized for snapshot-based observations of large size using linear-model identification methods coming from model reduction. Optimized DMD, a variant of the Dynamic Mode Decomposition, is considered for building a linear model based on snapshots. This method is used to link physical events and extract physical mechanisms associated to the bursting process in the logarithmic layer of a turbulent channel flow.
Quantum-coherent mixtures of causal relations
MacLean, Jean-Philippe W; Spekkens, Robert W; Resch, Kevin J
2016-01-01
Understanding the causal influences that hold among the parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common cause acting on both. Here, we show that it is possible to have a coherent mixture of these two possibilities. We realize such a nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's paradox. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, such as Bell's theorem and the search for quantum gravity, but could also provide a resource for novel quantum technologies.
Causal ubiquity in quantum physics a superluminal and local-causal physical ontology
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That
Advanced in Macrostatistical Hydrodynamics
International Nuclear Information System (INIS)
An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small (Macrostatistical Hydrodynamics). First, we describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. We also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about the microstructure and boundary effects in concentrated suspensions
Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.
2016-01-01
Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.
Bosonization and quantum hydrodynamics
Indian Academy of Sciences (India)
Girish S Setlur
2006-03-01
It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.
Directory of Open Access Journals (Sweden)
Ime J. Uwanta
2016-01-01
Full Text Available The problem of unsteady as well as steady hydromagnetic natural convection and mass transfer flow of viscous reactive, incompressible and electrically conducting fluid between two vertical walls in the presence of uniform magnetic field applied normal to the flow region is studied. Thermal diffusion, temperature dependent variable viscosity and thermal conductivity are assumed to exist within the channel. The governing partial differential equations are solved numerically using implicit finite difference scheme. Results of the computations for velocity, temperature, concentration, skin friction, rate of heat and mass transfer are presented graphically to study the hydrodynamic behavior of fluid in the channel.
Institute of Scientific and Technical Information of China (English)
麻绍钧; 周明贵; 邹早建
2013-01-01
By applying a CFD tool to solve the RANS equations, the viscous flow around a model of hull-rudder system towed along a bank in shallow water is numerically simulated. Hydrodynamic forces and moments acting on the ship are calculated for different ship-bank distances and rudder angles. A container ship, KCS, is taken as an example for the numerical study. Under the assumption of low ship speed, the influences of free surface elevation and ship squat are assumed to be negligible. Based on the calculation results, the hydrodynamic interaction among the hull, rudder and bank is analyzed.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
Variational approach to supersolid hydrodynamics
International Nuclear Information System (INIS)
On the basis of the consistent unification of the principles of non-equilibrium thermodynamics and classical mechanics, we construct a Lagrangian, describing the Hamiltonian dynamics of supersolids. This Lagrangian enables to obtain the closed algebra of the Poisson brackets for the local thermodynamic variables and to derive the Hamilton equations of motion. These equations, in the leading order in spatial gradients of the local thermodynamic variables, result in the non-dissipative supersolid hydrodynamics. The derived hydrodynamic equations do not assume any dynamic symmetry associated with Galilean or Lorentz invariance. The constraint on the thermodynamic potential related to Galilean invariance leads to Andreev-Lifshitz hydrodynamics. We also require relativistic invariance of a constructed theory and obtain a relativistically-invariant supersolid hydrodynamics. (author)
An introduction to astrophysical hydrodynamics
Shore, Steven N
1992-01-01
This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Holographic hydrodynamics: models and methods
Banerjee, Nabamita; Dutta, Suvankar(Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal, India)
2011-01-01
We review recent developments in holographic hydrodynamics. We start from very basic discussion on hydrodynamic systems and motivate why string theory is an essential tool to deal with these systems when they are strongly coupled. The main purpose of this review article is to understand different holographic techniques to compute transport coefficients (first order and higher order) and their corrections in presence of higher derivative terms in the bulk Lagrangian. We also mention some open ...
Hydrodynamic equations for granular mixtures
Garzo, V.; Dufty, J. W.
2003-01-01
Many features of granular media can be modeled by a fluid of hard spheres with inelastic collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations accounting for dissipation among the interacting particles. A basis for the derivation of hydrodynamic equations and explicit expressions appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary collisions. The goal of this r...
Hydrodynamic Modes for Granular Gases
Dufty, James W.; Brey, J. Javier
2003-01-01
The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes, are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from ...
Boltzmann equation and hydrodynamic fluctuations.
Colangeli, Matteo; Kröger, Martin; Ottinger, Hans Christian
2009-11-01
We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics. PMID:20364972
Boltzmann equation and hydrodynamic fluctuations
Colangeli, M.; Kroger, M.; Ottinger, H. C.
2009-01-01
We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics.
Hydrodynamic Interactions in Protein Folding
Cieplak, Marek; Niewieczerzał, Szymon
2008-01-01
We incorporate hydrodynamic interactions (HI) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HI facilitate folding. We also study HIV-1 protease and show that HI make the flap closing dynamics faster. The HI are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations ...
Width effects on hydrodynamics of pendulum wave energy converter
Institute of Scientific and Technical Information of China (English)
王冬姣; 邱守强; 叶家玮
2014-01-01
Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three-dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.
Viscous flows the practical use of theory
Brenner, Howard
1988-01-01
Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.
Short time dynamics of viscous drop spreading
Eddi, Antonin; Winkels, Koen G.; Snoeijer, Jacco H.
2012-01-01
Liquid drops start spreading directly after coming into contact with a solid sub- strate. Although this phenomenon involves a three-phase contact line, the spread- ing motion can be very fast. We experimentally study the initial spreading dy- namics, characterized by the radius of the wetted area, for viscous drops. Using high-speed imaging with synchronized bottom and side views gives access to 6 decades of time resolution. We show that short time spreading does not exhibit a pure power-law ...
Viscous Coefficients of a Hot Pion Gas
Directory of Open Access Journals (Sweden)
Sourav Sarkar
2013-01-01
Full Text Available The steps essentially involved in the evaluation of transport coefficients in linear response theory using Kubo formulas are to relate the defining retarded correlation function to the corresponding time-ordered one and to evaluate the latter in the conventional perturbation expansion. Here we evaluate the viscosities of a pion gas carrying out both the steps in the real-time formulation. We also obtain the viscous coefficients by solving the relativistic transport equation in the Chapman-Enskog approximation to leading order. An in-medium π π cross-section is used in which spectral modifications are introduced in the propagator of the exchanged ρ .
Homogeneous viscous universes with magnetic field
International Nuclear Information System (INIS)
In this thesis homogeneous universes are studied containing a large scale magnetic field. In the evolution three different phases are distinguished: the lepton, the plasma and the matter dominated eras. During the lepton and plasma eras, which form the radiation dominated phase, the material contents of the universe are taken to consist of a viscous fluid. The transport properties taking place during this radiation dominated period are described with the help of relativistic kinetic theory, thereby taking into account the effect of the magnetic field on the shear viscosity. In the matter dominated phase the contents of the universe mainly consists of dust and, therefore, viscosity is absent during this period. (Auth.)
Hydrodynamics and beyond in the strongly coupled N=4 plasma
Amado, Irene; Landsteiner, Karl; Montero, Sergio
2008-01-01
We continue our investigations on the relation between hydrodynamic and higher quasinormal modes in the AdS black hole background started in arXiv:0710.4458 [hep-th]. As is well known, the quasinormal modes can be interpreted as the poles of the retarded Green functions of the dual N=4 gauge theory at finite temperature. The response to a generic perturbation is determined by the residues of the poles. We compute these residues numerically for energy-momentum and R-charge correlators. We find that the diffusion modes behave in a similar way: at small wavelengths the residues go over into a form of a damped oscillation and therefore these modes decouple at short distances. The sound mode behaves differently: its residue does not decay and at short wavelengths this mode behaves as the higher quasinormal modes. Applications of our findings include the definition of hydrodynamic length and time scales. We also show that the quasinormal modes, including the hydrodynamic diffusion modes, obey causality.
Hydrodynamics and beyond in the strongly coupled N = 4 plasma
International Nuclear Information System (INIS)
We continue our investigations on the relation between hydrodynamic and higher quasinormal modes in the AdS black hole background started in arXiv:0710.4458 [hep-th]. As is well known, the quasinormal modes can be interpreted as the poles of the retarded Green functions of the dual N = 4 gauge theory at finite temperature. The response to a generic perturbation is determined by the residues of the poles. We compute these residues numerically for energy-momentum and R-charge correlators. We find that the diffusion modes behave in a similar way: at small wavelengths the residues go over into a form of a damped oscillation and therefore these modes decouple at short distances. The sound mode behaves differently: its residue does not decay and at short wavelengths this mode behaves as the higher quasinormal modes. Applications of our findings include the definition of hydrodynamic length and time scales. We also show that the quasinormal modes, including the hydrodynamic diffusion modes, obey causality.
Causal localizations in relativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de [Fakultät für Mathematik, TU München, Boltzmannstraße 3, 85747 Garching (Germany)
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Mining Causality for Explanation Knowledge from Text
Institute of Scientific and Technical Information of China (English)
Chaveevan Pechsiri; Asanee Kawtrakul
2007-01-01
Mining causality is essential to provide a diagnosis. This research aims at extracting the causality existing within multiple sentences or EDUs (Elementary Discourse Unit). The research emphasizes the use of causality verbs because they make explicit in a certain way the consequent events of a cause, e.g., "Aphids suck the sap from rice leaves. Then leaves will shrink. Later, they will become yellow and dry.". A verb can also be the causal-verb link between cause and effect within EDU(s), e.g., "Aphids suck the sap from rice leaves causing leaves to be shrunk" ("causing" is equivalent to a causal-verb link in Thai). The research confronts two main problems: identifying the interesting causality events from documents and identifying their boundaries. Then, we propose mining on verbs by using two different machine learning techniques, Naive Bayes classifier and Support Vector Machine. The resulted mining rules will be used for the identification and the causality extraction of the multiple EDUs from text. Our multiple EDUs extraction shows 0.88 precision with 0.75 recall from Na'ive Bayes classifier and 0.89 precision with 0.76 recall from Support Vector Machine.
Causal localizations in relativistic quantum mechanics
International Nuclear Information System (INIS)
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states
Runge-Kutta methods and viscous wave equations
Verwer, Jan
2008-01-01
We study the numerical time integration of a class of viscous wave equations by means of Runge-Kutta methods. The viscous wave equation is an extension of the standard second-order wave equation including advection-diffusion terms differentiated in time. The viscous wave equation can be very stiff so that for time integration traditional explicit methods are no longer efficient. A-stable Runge-Kutta methods are then very good candidates for time integration, in particular diagonally implicit ...
International Nuclear Information System (INIS)
This document gathers 6 articles whose common point is to deal with radiation hydrodynamics in the context of inertial fusion. 2 indirect drive inertial fusion targets driven by heavy ions beams for fusion energy production are presented. Target physics issues as will as the implications for the accelerator from each design are discussed. Recent advances in the ignition design for the laser Megajoule (LMJ) facility is briefly described. A robustness study concerning LMJ has been achieved, this study aims at specifying the sensitivity of the yield to power imbalances, laser beam pointing and target fabrication errors. We have computed and validated a Monte-Carlo calculation that provides, from standard deviations of these parameters values, the probability of failing to reach ignition. An article discusses how images recorded at different x-ray frequencies, combined with spatially-integrated spectroscopic information, can be manipulated to extract the space-dependent matter temperature, mass density and mix friction of LTE (local thermodynamic equilibrium) implosions. In another article the interaction of soft x-ray thermal radiation with foam-layered metal targets is studied. The x-ray radiation was produced by focusing a high energy laser inside a small size hohlraum. An increment in shock pressure was observed with the foam layer as compared to bare metal targets. The last article is dedicated to the measurement of x-ray absorption by nickel and aluminium, the knowledge of the absorption coefficients is necessary in order to estimate the energy transfer efficiency to the cavity and to the target. (A.C.)
Causality and momentum conservation from relative locality
Amelino-Camelia, Giovanni; Bianco, Stefano; Brighenti, Francesco; Buonocore, Riccardo Junior
2015-04-01
Theories involving curved momentum space, which recently became a topic of interest in the quantum-gravity literature, can, in general, violate many apparently robust aspects of our current description of the laws of physics, including relativistic invariance, locality, causality, and global momentum conservation. Here, we explore some aspects of the pathologies arising in generic theories involving curved momentum space for what concerns causality and momentum conservation. However, we also report results suggesting that when momentum space is maximally symmetric, and the theory is formulated relativistically, most notably including translational invariance with the associated relativity of spacetime locality, momentum is globally conserved and there is no violation of causality.
Causal localizations in relativistic quantum mechanics
International Nuclear Information System (INIS)
Sufficient and necessary conditions for causal localizations of massive relativistic systems are developed. It is proven that the Dirac- and the Dirac tensor-system are up to unitary equivalence the only irreducible causal localizations with finite spinor dimension which have a massive relativistic extension. A formula for this extension is given. The existence of arbitrarily good localized states of positive energy is shown. In the context of the causality condition a Paley-Wiener theorem for bounded measurable matrix-valued functions is proven.
The CMB in a Causal Set Universe
Zuntz, Joe
2007-01-01
We discuss Cosmic Microwave Background constraints on the causal set theory of quantum gravity, which has made testable predictions about the nature of dark energy. We flesh out previously discussed heuristic constraints by showing how the power spectrum of causal set dark energy fluctuations can be found from the overlap volumes of past light cones of points in the universe. Using a modified Boltzmann code we put constraints on the single parameter of the theory that are somewhat stronger than previous ones. We conclude that causal set theory cannot explain late-time acceleration without radical alterations to General Relativity.
Causality in 3D Massive Gravity Theories
Edelstein, Jose D; Kilicarslan, Ercan; Leoni, Matias; Tekin, Bayram
2016-01-01
We study the constraints coming from local causality requirement in various 2+1 dimensional dynamical theories of gravity. In Topologically Massive Gravity, with a single parity noninvariant massive degree of freedom, and in New Massive Gravity, with two massive spin-$2$ degrees of freedom, causality and unitarity are compatible with each other and they both require the Newton's constant to be negative. In their extensions, such as the Born-Infeld gravity and the minimal massive gravity the situation is similar and quite different from their higher dimensional counterparts, such as quadratic (e.g., Einstein-Gauss-Bonnet) or cubic theories, where causality and unitarity are in conflict.
Causal hydrodynamics from kinetic theory by doublet scheme in renormalization-group method
Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji
2013-01-01
We develop a general framework in the renormalization-group (RG) method for extracting a mesoscopic dynamics from an evolution equation by incorporating some excited (fast) modes as additional components to the invariant manifold spanned by zero modes. We call this framework the doublet scheme. The validity of the doublet scheme is first tested and demonstrated by taking the Lorenz model as a simple three-dimensional dynamical system; it is shown that the two-dimensional reduced dynamics on t...
The gravo-magneto disc instability with a viscous dead zone
Martin, Rebecca G
2013-01-01
We consider the evolution of accretion discs that contain some turbulence within a disc dead zone, a region about the disc midplane of a disc that is not sufficiently ionised for the magneto-rotational instability (MRI) to drive turbulence. In particular, we determine whether additional sources of turbulence within a dead zone are capable of suppressing gravo-magneto (GM) disc outbursts that arise from a rapid transition from gravitationally produced to MRI produced turbulence. With viscous $\\alpha$ disc models we consider two mechanisms that may drive turbulence within the dead zone. First, we examine a constant $\\alpha$ parameter within the dead zone. This may be applicable to hydrodynamical instability, such as baroclinic instability, where the turbulence level is independent of the MRI active surface layer properties. In this case, we find that the disc will not become stable to the outbursts unless the dead zone turbulent viscosity is comparable to that in the MRI active surface layers. Under such condit...
Viscous boundary layers of radiation-dominated, relativistic jets. I. The two-stream model
Coughlin, Eric R
2015-01-01
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.
Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions
International Nuclear Information System (INIS)
This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases
Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions
Energy Technology Data Exchange (ETDEWEB)
Hussain, T. [Faculty of Computing, Mohammad Ali Jinnah University, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2015-08-15
This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases.
Direct laser printing using viscous printer's ink
International Nuclear Information System (INIS)
The results of experiments on direct laser printing using viscous printer's ink with the help of a copper vapour laser (CVL)-based device are presented. The highly reflecting CVL cavity mirror was replaced by a spatial mirror modulator (SMM). Viscous printer's ink was used for printing. A pressure pulse produced at the boundary (on which an intensified and diminished image of the SMM was projected) between the ink and a transparency was used for transferring the ink to the plastic card. It was shown that the use of a CVL allowed a maximum printing speed of ∼80 cm2 s-1, a resolution of 625 dpi and up to 15 gradations. The dependence of the emission intensity of the element being projected (pixel) on its diameter is studied. It is shown that an increase in the brightness of this element with decreasing its size is caused by the summation of the laser and amplified radiation. (laser applications and other topics in quantum electronics)
Bacterial Swarming: social behaviour or hydrodynamics?
Vermant, Jan
2010-03-01
Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)
$U(1)$ current from the AdS/CFT: diffusion, conductivity and causality
Bu, Yanyan; Sharon, Amir
2015-01-01
For a holographically defined finite temperature theory, we derive an off-shell constitutive relation for a global $U(1)$ current driven by a weak external non-dynamical electromagnetic field. The constitutive relation involves an all order gradient expansion resummed into three momenta-dependent transport coefficient functions: diffusion, electric conductivity, and "magnetic" conductivity. These transport functions are first computed analytically in the hydrodynamic limit, up to third order in the derivative expansion, and then numerically for generic values of momenta. We also compute a diffusion memory function, which, as a result of all order gradient resummation, is found to be causal.
Causality, Knowledge and Coordination in Distributed Systems
Ben-Zvi, Ido
2011-01-01
Effecting coordination across remote sites in a distributed system is an essential part of distributed computing, and also an inherent challenge. In 1978, an analysis of communication in asynchronous systems was suggested by Leslie Lamport. Lamport's analysis determines a notion of temporal precedence, a sort of weak notion of time, which is otherwise missing in asynchronous systems. This notion has been extensively utilized in various applications. Yet the analysis is limited to systems that are asynchronous. In this thesis we go beyond by investigating causality in synchronous systems. In such systems, the boundaries of causal influence are not charted out exclusively by message passing. Here time itself, passing at a uniform (or almost uniform) rate for all processes, is also a medium by which causal influence may fan out. This thesis studies, and characterizes, the combinations of time and message passing that govern causal influence in synchronous systems. It turns out that knowledge based analysis [FHMV...
Wuthrich, Christian
2015-01-01
Unlike the relativity theory it seeks to replace, causal set theory has been interpreted to leave space for a substantive, though perhaps 'localized', form of 'becoming'. The possibility of fundamental becoming is nourished by the fact that the analogue of Stein's theorem from special relativity does not hold in causal set theory. Despite this, we find that in many ways, the debate concerning becoming parallels the well-rehearsed lines it follows in the domain of relativity. We present, however, some new twists and challenges. In particular, we show that a novel and exotic notion of becoming is compatible with causal sets. In contrast to the 'localized' becoming considered compatible with the dynamics of causal set theory by its advocates, our novel kind of becoming, while not answering to the typical A-theoretic demands, is 'global' and objective.
Causality Between Urban Concentration and Environmental Quality
Directory of Open Access Journals (Sweden)
Amin Pujiati
2015-08-01
Full Text Available Population is concentrated in urban areas can cause the external diseconomies on environment if it exceeds the carrying capacity of the space and the urban economy. Otherwise the quality of the environment is getting better, led to the concentration of population in urban areas are increasingly high. This study aims to analyze the relationship of causality between the urban concentration and environmental quality in urban agglomeration areas. The data used in the study of secondary data obtained from the Central Bureau of statistics and the City Government from 2000 to 2013. The analytical method used is the Granger causality and descriptive. Granger causality study results showed no pattern of reciprocal causality, between urban concentration and the quality of the environment, but there unidirectional relationship between the urban concentration and environmental quality. This means that increasing urban concentration led to decreased environmental quality.
Granger-causality maps of diffusion processes
Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A.
2016-02-01
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.
The Gravity Dual of Boundary Causality
Engelhardt, Netta
2016-01-01
In gauge/gravity duality, points which are not causally related on the boundary cannot be causally related through the bulk; this is the statement of boundary causality. By the Gao-Wald theorem, the averaged null energy condition in the bulk is sufficient to ensure this property. Here we proceed in the converse direction: we derive a necessary as well as sufficient condition for the preservation of boundary causality under perturbative (quantum or stringy) corrections to the bulk. The condition that we find is a (background-dependent) constraint on the amount by which light cones can "open" over all null bulk geodesics. We show that this constraint is weaker than the averaged null energy condition.
Selecting appropriate cases when tracing causal mechanisms
DEFF Research Database (Denmark)
Beach, Derek; Pedersen, Rasmus Brun
2016-01-01
, ontological determinism, causal asymmetry and causal homogeneity and the importance of context. We then develop a set of case selection guidelines that are in methodological alignment with these underlying assumptions. Section 4 develops guidelines for research where the mechanism is the primary focus......The last decade has witnessed resurgence in the interest in studying the causal mechanisms linking causes and outcomes in the social sciences. This article explores the overlooked implications for case selection when tracing mechanisms using in-depth case studies. Our argument is that existing case...... selection guidelines are appropriate for research aimed at making cross-case claims about causal relationships, where case selection is primarily used to control for other causes. However, existing guidelines are not in alignment with case-based research that aims to trace mechanisms, where the goal is to...
Quantum probability assignment limited by relativistic causality.
Han, Yeong Deok; Choi, Taeseung
2016-01-01
Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717
The Temporal Logic of Causal Structures
Kleinberg, Samantha
2012-01-01
Computational analysis of time-course data with an underlying causal structure is needed in a variety of domains, including neural spike trains, stock price movements, and gene expression levels. However, it can be challenging to determine from just the numerical time course data alone what is coordinating the visible processes, to separate the underlying prima facie causes into genuine and spurious causes and to do so with a feasible computational complexity. For this purpose, we have been developing a novel algorithm based on a framework that combines notions of causality in philosophy with algorithmic approaches built on model checking and statistical techniques for multiple hypotheses testing. The causal relationships are described in terms of temporal logic formulae, reframing the inference problem in terms of model checking. The logic used, PCTL, allows description of both the time between cause and effect and the probability of this relationship being observed. We show that equipped with these causal f...
Causality and the semantics of provenance
Cheney, James
2010-01-01
Provenance, or information about the sources, derivation, custody or history of data, has been studied recently in a number of contexts, including databases, scientific workflows and the Semantic Web. Many provenance mechanisms have been developed, motivated by informal notions such as influence, dependence, explanation and causality. However, there has been little study of whether these mechanisms formally satisfy appropriate policies or even how to formalize relevant motivating concepts such as causality. We contend that mathematical models of these concepts are needed to justify and compare provenance techniques. In this paper we review a theory of causality based on structural models that has been developed in artificial intelligence, and describe work in progress on a causal semantics for provenance graphs.
Causality and the Semantics of Provenance
Directory of Open Access Journals (Sweden)
James Cheney
2010-06-01
Full Text Available Provenance, or information about the sources, derivation, custody or history of data, has been studied recently in a number of contexts, including databases, scientific workflows and the Semantic Web. Many provenance mechanisms have been developed, motivated by informal notions such as influence, dependence, explanation and causality. However, there has been little study of whether these mechanisms formally satisfy appropriate policies or even how to formalize relevant motivating concepts such as causality. We contend that mathematical models of these concepts are needed to justify and compare provenance techniques. In this paper we review a theory of causality based on structural models that has been developed in artificial intelligence, and describe work in progress on using causality to give a semantics to provenance graphs.
Causality and the Semantics of Provenance
Cheney, James
2010-01-01
Provenance, or information about the sources, derivation, custody or history of data, has been studied recently in a number of contexts, including databases, scientific workflows and the Semantic Web. Many provenance mechanisms have been developed, motivated by informal notions such as influence, dependence, explanation and causality. However, there has been little study of whether these mechanisms formally satisfy appropriate policies or even how to formalize relevant motivating concepts such as causality. We contend that mathematical models of these concepts are needed to justify and compare provenance techniques. In this paper we review a theory of causality based on structural models that has been developed in artificial intelligence, and describe work in progress on using causality to give a semantics to provenance graphs.
Ten simple rules for dynamic causal modeling.
Stephan, K.E.; Penny, W.D.; Moran, R.J.; Ouden, H.E.M. den; Daunizeau, J.; Friston, K.J.
2010-01-01
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and
A Causal Model for Diagnostic Reasoning
Institute of Scientific and Technical Information of China (English)
PENG Guoqiang; CHENG Hu
2000-01-01
Up to now, there have been many methods for knowledge representation and reasoning in causal networks, but few of them include the research on the coactions of nodes. In practice, ignoring these coactions may influence the accuracy of reasoning and even give rise to incorrect reasoning. In this paper, based on multilayer causal networks, the definitions on coaction nodes are given to construct a new causal network called Coaction Causal Network, which serves to construct a model of neural network for diagnosis followed by fuzzy reasoning, and then the activation rules are given and neural computing methods are used to finish the diagnostic reasoning. These methods are proved in theory and a method of computing the number of solutions for the diagnostic reasoning is given. Finally, the experiments and the conclusions are presented.
Causal Structure and Birefringence in Nonlinear Electrodynamics
de Melo, C. A. M.; Medeiros, L. G.; Pompeia, P. J.(Instituto de Fomento e Coordenação Industrial, Departamento de Ciência e Tecnologia Aeroespacial, Praça Mal. Eduardo Gomes 50, 12228-901, São José dos Campos, SP , Brazil)
2014-01-01
We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.
Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael
2015-03-01
One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.
The Causal Effects of Father Absence
McLanahan, Sara; TACH, LAURA; Schneider, Daniel
2013-01-01
The literature on father absence is frequently criticized for its use of cross-sectional data and methods that fail to take account of possible omitted variable bias and reverse causality. We review studies that have responded to this critique by employing a variety of innovative research designs to identify the causal effect of father absence, including studies using lagged dependent variable models, growth curve models, individual fixed effects models, sibling fixed effects models, natural ...
Inter-causal Independence and Heterogeneous Factorization
Zhang, Nevin Lianwen; Poole, David L
2013-01-01
It is well known that conditional independence can be used to factorize a joint probability into a multiplication of conditional probabilities. This paper proposes a constructive definition of inter-causal independence, which can be used to further factorize a conditional probability. An inference algorithm is developed, which makes use of both conditional independence and inter-causal independence to reduce inference complexity in Bayesian networks.
Catastrophizing and Causal Beliefs in Whiplash
Buitenhuis, J.; de Jong, P J; Jaspers, J. P. C.; Groothoff, J. W.
2008-01-01
Study Design. Prospective cohort study. Objective. This study investigates the role of pain catastrophizing and causal beliefs with regard to severity and persistence of neck complaints after motor vehicle accidents. Summary of Background Data. In previous research on low back pain, somatoform disorders and chronic fatigue syndrome, pain catastrophizing and causal beliefs were found to be related to perceived disability and prognosis. Furthermore, it has been argued with respect to whiplash t...
Causal Inference in Urban and Regional Economics
Nathaniel Baum-Snow; Fernando Ferreira
2014-01-01
Recovery of causal relationships in data is an essential part of scholarly inquiry in the social sciences. This chapter discusses strategies that have been successfully used in urban and regional economics for recovering such causal relationships. Essential to any successful empirical inquiry is careful consideration of the sources of variation in the data that identify parameters of interest. Interpretation of such parameters should take into account the potential for their heterogeneity as ...
Causal transmission in reduced-form models
Vassili Bazinas; Bent Nielsen
2015-01-01
We propose a method to explore the causal transmission of a catalyst variable through two endogenous variables of interest. The method is based on the reduced-form system formed from the conditional distribution of the two endogenous variables given the catalyst. The method combines elements from instru- mental variable analysis and Cholesky decomposition of structural vector autoregressions. We give conditions for uniqueness of the causal transmission.
Invited Commentary: Causal Diagrams and Measurement Bias
Hernán, Miguel A.; Cole, Stephen R.
2009-01-01
Causal inferences about the effect of an exposure on an outcome may be biased by errors in the measurement of either the exposure or the outcome. Measurement errors of exposure and outcome can be classified into 4 types: independent nondifferential, dependent nondifferential, independent differential, and dependent differential. Here the authors describe how causal diagrams can be used to represent these 4 types of measurement bias and discuss some problems that arise when using measured expo...
A Definition and Graphical Representation for Causality
Heckerman, David; Shachter, Ross D.
2013-01-01
We present a precise definition of cause and effect in terms of a fundamental notion called unresponsiveness. Our definition is based on Savage's (1954) formulation of decision theory and departs from the traditional view of causation in that our causal assertions are made relative to a set of decisions. An important consequence of this departure is that we can reason about cause locally, not requiring a causal explanation for every dependency. Such local reasoning can be beneficial because i...
Causales de ausencia de responsabilidad penal
Directory of Open Access Journals (Sweden)
Jaime Sandoval Fernández
2003-01-01
Full Text Available Este trabajo se ocupa de las causales de ausencia de responsabilidad penal, especialmente de aquellas que tienen efecto en el injusto. Como subtemas se delimita el concepto de responsabilidad penal y su ausencia. Se estudian las principales teorias a cerca de la relación tipicidad-antijuridicidad y su incidencia en el derecho penal colombiano. Por último contiene una propuesta acerca de cómo deberian agruparse las causales del arto 32 C. PlOO.
Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell
Bunton, P.; Marin, D.; Stewart, S.; Meiburg, E.; De Wit, A.
2016-02-01
Interfaces between different fluids can be unstable with regard to hydrodynamic instabilities such as viscous fingering or buoyancy-driven convection. To study such instabilities experimentally for transparent fluids, dyes or chemical indicators are most often used to track the dynamics. While the interfacial deformation can easily be tracked by color changes, it is difficult to have access to the internal flow structure for comparison with theoretical predictions. To overcome this problem, a modification of a Schlieren technique is introduced to image 3D flows during viscously driven instabilities in a horizontal Hele-Shaw cell without using any dye or chemical indicator. The method is exquisitely sensitive, readily yielding information about 3D flows in gaps under a millimeter and allowing imaging of the flow structure internal to the fingers, rather than merely imaging the flow boundary. Following a description of the technique, visualization of dynamics for nonreactive water-glycerol and reactive displacements is presented revealing previously unobserved internal flows. These flows are tentatively interpreted in terms of known theoretical predictions.
Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers
Bagchi, Prosenjit; Balachandar, S.
2003-04-01
The focus of this paper is the effect of spatial non-uniformity in the ambient flow on the forces acting on a rigid sphere when the sphere Reynolds number, Re, is in the range 10 to 300. Direct numerical simulations (DNS) based on a pseudospectral methodology are carried out to solve for the unsteady three-dimensional flow field around a sphere which is either held stationary or allowed to translate freely under the hydrodynamic forces. The various components of the total force, namely the inertial, steady viscous, and history forces, are systematically estimated in the context of linearly varying straining flows. The inertial forces are isolated by computing the rapid changes in the drag and lift forces in response to a rapid acceleration of the ambient flow. It is shown that the inertial forces arising due to convective acceleration at moderate Reynolds numbers follow the inviscid flow result. While the effect of temporal acceleration depends only on the sign and magnitude of the acceleration, the effect of convective acceleration is shown to depend also on the initial state of the ambient flow. A simple theoretical argument is presented to support the numerical observations. It is also shown that the effect of convective acceleration on the steady viscous force can be realized on a slower time scale. The results show that the history kernels currently available in the literature are not adequate to represent the effect of non-uniformity on the history force.
Mean-field diffusion-limited aggregation: a "density" model for viscous fingering phenomena.
Bogoyavlenskiy, V A
2001-12-01
We explore a universal "density" formalism to describe nonequilibrium growth processes, specifically, the immiscible viscous fingering in Hele-Shaw cells (usually referred to as the Saffman-Taylor problem). For that we develop an alternative approach to the viscous fingering phenomena, whose basic concepts have been recently published in a Rapid Communication [Phys. Rev. E 63, 045305(R) (2001)]. This approach uses the diffusion-limited aggregation (DLA) paradigm as a core: we introduce a mean-field DLA generalization in stochastic and deterministic formulations. The stochastic model, a quasicontinuum DLA, simulates Monte Carlo patterns, which demonstrate a striking resemblance to natural Hele-Shaw fingers and, for steady-state growth regimes, follow precisely the Saffman-Taylor analytical solutions in channel and sector configurations. The relevant deterministic theory, a complete set of differential equations for a time development of density fields, is derived from that stochastic model. As a principal conclusion, we prove an asymptotic equivalency of both the stochastic and deterministic mean-field DLA formulations to the classic Saffman-Taylor hydrodynamics in terms of an interface evolution. PMID:11736272
Associative foundation of causal learning in rats.
Polack, Cody W; McConnell, Bridget L; Miller, Ralph R
2013-03-01
Are humans unique in their ability to interpret exogenous events as causes? We addressed this question by observing the behavior of rats for indications of causal learning. Within an operant motor-sensory preconditioning paradigm, associative surgical techniques revealed that rats attempted to control an outcome (i.e., a potential effect) by manipulating a potential exogenous cause (i.e., an intervention). Rats were able to generate an innocuous auditory stimulus. This stimulus was then paired with an aversive stimulus. The animals subsequently avoided potential generation of the predictive cue, but not if the aversive stimulus was subsequently devalued or the predictive cue was extinguished (Exp. 1). In Experiment 2, we demonstrated that the aversive stimulus we used was in fact aversive, that it was subject to devaluation, that the cue-aversive stimulus pairings did make the cue a conditioned stimulus, and that the cue was subject to extinction. In Experiments 3 and 4, we established that the decrease in leverpressing observed in Experiment 1 was goal-directed instrumental behavior rather than purely a product of Pavlovian conditioning. To the extent that interventions suggest causal reasoning, it appears that causal reasoning can be based on associations between contiguous exogenous events. Thus, contiguity appears capable of establishing causal relationships between exogenous events. Our results challenge the widely held view that causal learning is uniquely human, and suggest that causal learning is explicable in an associative framework. PMID:22562460
Group-invariant solutions of hydrodynamics and radiation hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Coggeshall, S.V.
1993-08-01
Using the property of invariance under Lie groups of transformations, the equations of hydrodynamics are transformed from partial differential equations to ordinary differential equations, for which special analytic solutions can be found. These particular solutions can be used for (1) numerical benchmarks, (2) the basis for analytic models, and (3) insight into more general solutions. Additionally, group transformations can be used to construct new solutions from existing ones. A space-time projective group is used to generate complicated solutions from simpler solutions. Discussion of these procedures is presented along with examples of analytic of 1,2 and 3-D hydrodynamics.
Multiscale flow in an electro-hydrodynamically driven oil-in-oil emulsion.
Varshney, Atul; Gohil, Smita; Sathe, Mayur; R V, Seshagiri Rao; Joshi, J B; Bhattacharya, S; Yethiraj, Anand; Ghosh, Shankar
2016-02-14
Efficient mixing strategies in a fluid involve generation of multi-scale flows which are strongly suppressed in highly viscous systems. In this work, we report a novel form of multi-scale flow, driven by an external electric field, in a highly viscous (η∼ 1 Pa s) oil-in-oil emulsion system consisting of micron-size droplets. This electro-hydrodynamic flow leads to dynamical organization at spatial scales much larger than that of the individual droplets. We characterize the dynamics associated with these structures by measuring the time variation of the bulk Reynolds stress in a rheometer, as well as through a micro-scale rheometric measurement by probing the spectrum of fluctuations of a thin fiber cantilever driven by these flows. The results display scale invariance in the energy spectra over three decades with a power law reminiscent of turbulent convection. We also demonstrate the mixing efficiency in such micro-scale systems. PMID:26693675
ANALYSIS OF HYDRODYNAMICS FOR TWO-DIMENSIONAL FLOW AROUND WAVING PLATES
Institute of Scientific and Technical Information of China (English)
ZHANG Cheng; ZHUANG Li-Xian; LU Xi-Yun
2007-01-01
Hydrodynamic characteristics for two-dimensional flow around a waving plate are investigated. Under large Reynolds number approximation, the flow is assumed to be a combination of the outer potential flow and a thin vortex layer, which consists of a boundary layer and a shed free shear layer. A nonlinear mathematical formulation for describing the outer unsteady potential flow coupled with an unsteady boundary layer equation for the inner viscous flow adjacent to the waving plate is developed. A semi-analytical method with a nonlinear Kutta condition imposed at the trailing edge is used to solve the velocity field of the outer flow and the evolution of wake vortex induced by a large-amplitude waving plate. The unsteady boundary layer equation is solved by extending Pohlhausen's method to its unsteady counterpart. The thrust and viscous drag coefficients, propulsive efficiency, and the pattern of wake vortex sheet are discussed.
Viscous dark energy and phantom evolution
Energy Technology Data Exchange (ETDEWEB)
Cataldo, Mauricio [Departamento de Fisica, Facultad de Ciencias, Universidad del Bio-Bio, Avenida Collao 1202, Casilla 5-C, Concepcion (Chile)]. E-mail: mcataldo@ubiobio.cl; Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl
2005-07-14
In order to study if the bulk viscosity may induce a big rip singularity on the flat FRW cosmologies, we investigate dissipative processes in the universe within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, and in the full causal Israel-Stewart-Hiscock theory. We have found cosmological solutions which exhibit, under certain constraints, a big rip singularity. We show that the negative pressure generated by the bulk viscosity cannot avoid that the dark energy of the universe to be phantom energy.
A Viscous-Inviscid Interaction Model for Rotor Aerodynamics
DEFF Research Database (Denmark)
Filippone, Antonino; Sørensen, Jens Nørkær
1994-01-01
A numerical model for the viscous-inviscid interactive computations ofrotor flows is presented. The basic methodology for deriving the outer inviscid solution is a fully three-dimensional boundary element method.The inner viscous domain, i.e. the boundary layer, is described by the two-dimensiona...
Comparative hydrodynamics of bacterial polymorphism
Spagnolie, Saverio E
2011-01-01
Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymorphic shapes. The most common helical waveform is the "normal" form, used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin - a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. The hydrodynamic optimality of the normal polymorph suggests that, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.
Smoothed Particle Hydrodynamics in Astrophysics
Springel, Volker
2011-01-01
This review discusses Smoothed Particle Hydrodynamics (SPH) in the astrophysical context, with a focus on inviscid gas dynamics. The particle-based SPH technique allows an intuitive and simple formulation of hydrodynamics that has excellent conservation properties and can be coupled to self-gravity easily and highly accurately. The Lagrangian character of SPH allows it to automatically adjust its resolution to the clumping of matter, a property that makes the scheme ideal for many applications in astrophysics, where often a large dynamic range in density is encountered. We discuss the derivation of the basic SPH equations in their modern formulation, and give an overview about extensions of SPH developed to treat physics such as radiative transfer, thermal conduction, relativistic dynamics or magnetic fields. We also briefly describe some of the most important applications areas of SPH in astrophysical research. Finally, we provide a critical discussion of the accuracy of SPH for different hydrodynamical prob...
Viscous Cosmology and Thermodynamics of Apparent Horizon
Institute of Scientific and Technical Information of China (English)
M. Akbar
2008-01-01
@@ It is shown that the differential form of Friedmann equations of Friedman-Robertson-Walker (FRW) universe can be recast as a similar form of the first law ThdSh=dE + W dV of thermodynamics at the apparent horizon of FRW universe filled with the viscous fluid.It is also shown that by employing the general expression of temperature Th=|k|/2π=1/2π(r)A(1-(r)A/2H(r)A) associated with the apparent horizon of an FRW universe and assumed that the temperature Tm of the energy inside the apparent horizon is proportional to the horizon temperature Tm = bTh,we are able to show that the generalized second law of thermodynamics holds in the Einstein gravity provided Th-Tm/(r)A≤(p+(P)).
Transport Properties Of Viscous Vortex Rings
International Nuclear Information System (INIS)
This study involves the transport or stirring properties of viscous vortex rings. In order to take into account the Reynolds - number dependence, the method of entrainment diagrams is applied. The system for path lines of fluid particles is developed with the help of obtained analytical solution for a vortex ring. The idea of such approach is based on the property of this dynamical system to include complicated Reynolds - number dependence despite the fact that the linear solution of Navier-Stokes equations is used. Unsteady particle trajectories are examined as a bifurcation of an autonomous system with the initial Reynolds number as a parameter. It is shown that for small ratio of external and internal radiuses of the ring, three regimes of particle motion exist and the pattern bifurcates at a two Reynolds numbers of 140 and 640
Electromagnetic instabilities in rotating magnetized viscous objects
Nekrasov, Anatoly
2009-01-01
We study electromagnetic streaming instabilities in thermal viscous regions of rotating astrophysical objects, such as, magnetized accretion disks, molecular clouds, their cores, and elephant trunks. The obtained results can also be applied to any regions of interstellar medium, where different equilibrium velocities between charged species can arise. We consider a weakly ionized multicomponent plasma consisting of neutrals and magnetized electrons, ions, and dust grains. The effect of perturbation of collisional frequencies due to density perturbations of species is taken into account. We obtain general expressions for perturbed velocities of species involving the thermal pressure and viscosity in the case in which perturbations propagate perpendicular to the background magnetic field. The dispersion relation is derived and investigated for axisymmetric perturbations. New compressible instabilities generated due to different equilibrium velocities of different charged species are found in the cold and therma...
Sloshing analysis of viscous liquid storage tanks
International Nuclear Information System (INIS)
The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive
Surfactant Spreading on Thin Viscous Fluid Films
Bonilla, Caitlyn; Leslie, Nathaniel; Liu, Jeanette; Sinclair, Dina; Levy, Rachel
2014-11-01
We examine the spreading of insoluble lipids on a viscous Newtonian thin fluid film. This spreading can be modeled as two coupled nonlinear fourth-order partial differential equations, though inconsistencies between the timescale of experiments and simulations have been reported in recent research. In simulations, we replace traditional models for the equation of state relating surfactant concentration to surface tension with an empirical equation of state. Isotherms collected via a Langmuir-Pockels scale provide data for the equation of state. We compare the timescale of simulation results to measurements of the fluorescently tagged lipid (NBD-PC) spreading as well as the height profile, captured with laser profilometry. Research supported by NSF-DMS-FRG 9068154, RCSA-CCS-19788, HHMI.
Dynamics of amorphous solids and viscous liquids
DEFF Research Database (Denmark)
Dyre, Jeppe
exhibit the same AC conductivity independent of the energy barrier probability distribution; the AC conductivity is "universal". This result is confirmed by computer simulations in two and three dimensions. The universal AC conductivity is very close to that of the phenomenological model studied in P1. P5...... for viscous liquids is studied. It is argued that at low temperatures this model is well described by the simple model of P8. Thus, a clear physical picture of the low-temperature behavior of B„ssler's random walk model is established. In P10 published in 1996, an alternative model for explaining the...... experiment on a number of organic molecular liquids. The third Chapter with the title ``Extensions of Linear Response Theory'' reviews and comments P11-P15. P11 from 1988 deals with electrical 1/f noise. This, in a sense, is a linear phenomenon, but as shown in P11 the magnitude of the noise is determined by...
Viscous Potential Flow Analysis of Electrohydrodynamic Rayleigh-Taylor Instability
Directory of Open Access Journals (Sweden)
Awasthi Mukesh Kumar
2014-01-01
Full Text Available A linear analysis of Rayleigh-Taylor instability in the presence of tangential electric field has been carried out using viscous potential flow theory. In viscous potential flow theory, viscosity is not zero but viscous term in the Navier- Stokes equation is zero as vorticity is zero. Viscosity enters through normal stress balance and tangential stresses are not considered in viscous flow theory. A dispersion relation has been obtained and stability criterion has been given in the terms of critical value of electric field. It has been observed that tangential electric field influences stability of the system. A comparison between the results obtained by viscous potential analysis and inviscid potential flow has been made and found that viscosity reduces the growth of instability.
Gale, Charles; Jeon, Sangyong; Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju
2013-01-01
Anisotropic flow coefficients v1-v5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time Glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The Glasma dynamics, as realized in the impact parameter dependent Glasma (IP-Glasma) model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic subnucleon scale color charge fluctuations; the preequilibrium flow of matter is then matched to the music algorithm describing viscous hydrodynamic flow and particle production at freeze-out. The IP-Glasma+MUSIC model describes well both transverse momentum dependent and integrated vn data measured at the Large Hadron Collider and the Relativistic Heavy Ion Collider. The model also reproduces the event-by-event distributions of v2, v3 and v4 measured by the ATLAS Collaboration. The implications of our results for better understanding of the dynamics of the Glasma and for the extraction of transport properties of the quark-gluon plasma are outlined.
Gale, Charles; Schenke, Bjoern; Tribedy, Prithwish; Venugopalan, Raju
2012-01-01
Anisotropic flow coefficients v_1-v_5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The glasma dynamics, as realized in the IP-Glasma model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic sub-nucleon scale color charge fluctuations; the pre-equilibrium flow of matter is then matched to the MUSIC algorithm describing viscous hydrodynamic flow and particle production at freeze-out. The IP-Glasma+MUSIC model describes well both transverse momentum dependent and integrated v_n data measured at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC). The model also reproduces the event-by-event distributions of v_2, v_3 and v_4 measured by the ATLAS collaboration. The implications of our results for better understanding of the dynamics of the glasma as w...
On the dynamics of viscous masonry beams
Lucchesi, M.; Pintucchi, B.; Šilhavý, M.; Zani, N.
2015-05-01
In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler-Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999) and Zani (Eur J Mech A/Solids 23:467-484, 2004). The viscous part amounts to the Kelvin-Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88-105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.
Electrohydrodynamics of a viscous drop with inertia
Nganguia, H.; Young, Y.-N.; Layton, A. T.; Lai, M.-C.; Hu, W.-F.
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number CaE. Below the critical CaE, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed CaE, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical CaE, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
Hydrodynamic constants from cosmic censorship
International Nuclear Information System (INIS)
We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)
Hydrodynamics of oceans and atmospheres
Eckart, Carl
1960-01-01
Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear
Hydrodynamic interactions in protein folding
Cieplak, Marek; Niewieczerzał, Szymon
2009-03-01
We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.
Yang, Jing; Ren, Yan-Yu
2016-01-01
We examine the evolution of quark-gluon plasma (QGP) droplets with viscous hydrodynamics and analyze pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss (HBT) interferometry in a granular source model consisting of the viscous QGP droplets. The shear viscosity of the QGP droplet speeds up the droplet evolution and the effect of the bulk viscosity on the evolution is negligible. Although there are viscous effects on the droplet evolution, the pion momentum spectrum and elliptic flow change little for the granular sources with and without viscosity. On the other hand, the influence of viscosity on HBT radius $R_{\\rm out}$ is significant. It makes $R_{\\rm out}$ decrease in the granular source model. We determine the model parameters of granular sources by the experimental data of pion transverse-momentum spectrum, elliptic flow, and HBT radii together, and investigate the effects of viscosity on the model parameters. The results indicate that the granular source model may reproduce the expe...
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Department of Mathematics, Faculty of Sciences, South Valley University, Qena (Egypt); Hussein, Ahmed Kadhim, E-mail: ahmedkadhim7474@gmail.com [College of Engineering, Mechanical Engineering Department, Babylon University, Babylon City—Hilla (Iraq); Mohammed, H.A. [Department of Thermofluids, Faculty of Mechanical Engineering, University Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru (Malaysia); Adegun, I.K. [Department of Mechanical Engineering, University of Ilorin, Ilorin (Nigeria); Zhang, Xiaohui [School of Physics Science and Technology, School of Energy—Soochow University, Suzhou 215006, Jiangsu (China); Kolsi, Lioua [Unite de Metrologie en Mecanique des Fluides et Thermique, Ecole Nationale d’Ingenieurs, Monastir (Tunisia); Hasanpour, Arman [Department of Mechanical Engineering, Babol University of Technology, PO Box 484, Babol (Iran, Islamic Republic of); Sivasankaran, S. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603 (Malaysia)
2014-01-15
Highlights: • Ha decelerates the flow field. • Ha enhances conduction. • Magnetic field orientation is important. • Radiation parameter important. • Nu decreases as Ha increases. -- Abstract: Numerical two-dimensional analysis using finite difference approach with “line method” is performed on the laminar magneto-hydrodynamic natural convection in a square enclosure filled with a porous medium to investigate the effects of viscous dissipation and radiation. The enclosure heated from left vertical sidewall and cooled from an opposing right vertical sidewall. The top and bottom walls of the enclosure are considered adiabatic. The flow in the square enclosure is subjected to a uniform magnetic field at various orientation angles (φ = 0°, 30°, 45°, 60° and 90°). Numerical computations occur at wide ranges of Rayleigh number, viscous dissipation parameter, magnetic field orientation angles, Hartmann number and radiation parameter. Numerical results are presented with the aid of tables and graphical illustrations. The results of the present work explain that the local and average Nusselt numbers at the hot and cold sidewalls increase with increasing the radiation parameter. From the other side, the role of viscous dissipation parameter is to reduce the local and average Nusselt numbers at the hot left wall, while it improves them at the cold right wall. The results are compared with another published results and it found to be in a good agreement.
International Nuclear Information System (INIS)
Highlights: • Ha decelerates the flow field. • Ha enhances conduction. • Magnetic field orientation is important. • Radiation parameter important. • Nu decreases as Ha increases. -- Abstract: Numerical two-dimensional analysis using finite difference approach with “line method” is performed on the laminar magneto-hydrodynamic natural convection in a square enclosure filled with a porous medium to investigate the effects of viscous dissipation and radiation. The enclosure heated from left vertical sidewall and cooled from an opposing right vertical sidewall. The top and bottom walls of the enclosure are considered adiabatic. The flow in the square enclosure is subjected to a uniform magnetic field at various orientation angles (φ = 0°, 30°, 45°, 60° and 90°). Numerical computations occur at wide ranges of Rayleigh number, viscous dissipation parameter, magnetic field orientation angles, Hartmann number and radiation parameter. Numerical results are presented with the aid of tables and graphical illustrations. The results of the present work explain that the local and average Nusselt numbers at the hot and cold sidewalls increase with increasing the radiation parameter. From the other side, the role of viscous dissipation parameter is to reduce the local and average Nusselt numbers at the hot left wall, while it improves them at the cold right wall. The results are compared with another published results and it found to be in a good agreement
Numerical simulation of the hydrodynamic instability experiments and flow mixing
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI),a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly,the MVPPM code is verified and validated by simulating three instability cases:The first one is a Riemann problem of viscous flow on the shock tube; the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability,which is conducted on the AWE’s shock tube. By comparing the numerical results with experimental data,good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models acceler-ated by explosion products of a gaseous explosive mixture (GEM),which are adopted in our experi-ments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces,and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer ex-periment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface,and presents the displacement of front face of jelly layer,bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images,and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely,especially at late times.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows. PMID:27176524
CALCULATION OF VISCOUS FLOW AROUND CIRCULAR CYLINDER WITH THREE-DIMENSIONAL NUMERICAL SIMULATION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Three-dimensional numerical simulation of a uniform incompressible viscous flow around a stationary circular cylinder was conducted. The CFX-4 software was used to calculate the hydrodynamic characteristics of the flow and the finite volume method for incompressible Navier-Stokes equations was employed in the program. The simulation of the flow was performed for Re=103 and Re=104 respectively within the sub-critical region. In order to overcome numerical instability for the high Reynolds number flows, a quadratic upwind scheme was incorporated for the Navier-Stokes equations. The periodicity boundary condition was used at the ends of the cylinder. It was found that the evolution of the lift and drag coefficients in each plane along the cylinder span is different. Comparison between the predicted results based on the three-dimensional and the two-dimensional analysis was also given. It is concluded that at the high Reynolds number the effect of three-dimensionality of the flow around the circular cylinder is remarkable, and in addition hydrodynamic coefficients with of 3-D simulation are less than those given by 2-D simulation.
Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system
Arichetogaray, Marion; Degond, Pierre; Frouvelle, Amic; Liu, Jian-guo
2011-01-01
International audience This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistiv...
Preschoolers prefer to learn causal information
Directory of Open Access Journals (Sweden)
Aubry eAlvarez
2015-02-01
Full Text Available Young children, in general, appear to have a strong drive to explore the environment in ways that reveal its underlying causal structure. But are they really attuned specifically to casual information in this quest for understanding, or do they show equal interest in other types of non-obvious information about the world? To answer this question, we introduced 20 three-year-old children to two puppets who were anxious to tell the child about a set of novel artifacts and animals. One puppet consistently described causal properties of the items while the other puppet consistently described carefully matched non-causal properties of the same items. After a familiarization period in which children learned which type of information to expect from each informant, children were given the opportunity to choose which they wanted to hear describe each of eight pictured test items. On average, children chose to hear from the informant that provided causal descriptions on 72% of the trials. This preference for causal information has important implications for explaining the role of conceptual information in supporting early learning and may suggest means for maximizing interest and motivation in young children.
Quantum causality in closed timelike curves
Korotaev, S. M.; Kiktenko, E. O.
2015-08-01
Although general relativity allows the existence of closed timelike curves (CTCs), self-consistency problems arise (the ‘grandfather paradox’ among others). It is known that quantum mechanical consideration of the matter formally removes all the paradoxes, but the questions about causal structure remain. On the other hand, the idea of postselected CTCs (P-CTC) in quantum teleportation has know been put forward and experimentally implemented. We consider these problems with the aid of quantum causal analysis, where causality is defined without invoking the time relation. It implements the Cramer principle of weak causality, which admits time reversal in entangled states. We analyze Deutsch CTCs (D-CTC) with different kinds of interactions between the chronology-violating and chronology-respecting particles, with refined inferences about mixedness, quantum/classical correlations, entanglement and thermodynamics in the D-CTC. The main result is that time reversal causality can really exist, however, the final quantum state does not place retrospective constraints on the initial state, instead the final state can influence the state inside the D-CTC. This is effectively the implementation of Novikov self-consistency principle. The P-CTC has radically different properties; in particular, if the initial state was pure, the final state is always pure too. Self-consistency is controlled by the initial state-dependent traversability of the P-CTC.
Radiation hydrodynamics in the laboratory
International Nuclear Information System (INIS)
This report contains a collection of five preprints devoted to the subject of laser induced phenomena of radiation hydrodynamics. These preprints cover approximately the contents of the presentations made by the MPQ experimental laser-plasma group at the 17th European Conference on Laser Interaction with Matter (ECLIM), Rome, November 18-22, 1985. (orig.)
Hydrodynamics of a quark droplet
DEFF Research Database (Denmark)
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
Rabin Banerjee
2016-02-01
A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, in the absence of the gauge sector, reproduce the results found by the gradient expansion approach.
Chemical Methods for Ugnu Viscous Oils
Energy Technology Data Exchange (ETDEWEB)
Kishore Mohanty
2012-03-31
The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation
Some exact solutions of magnetized viscous model in string cosmology
Indian Academy of Sciences (India)
C P Singh
2014-07-01
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.
Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions
Yin, Yi
2015-01-01
Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction --- a phenomenon known as the Chiral Magnetic Effect (CME). The quark-gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from...
Lifshitz field theories at non-zero temperature, hydrodynamics and gravity
Energy Technology Data Exchange (ETDEWEB)
Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy,Tel-Aviv University, Tel-Aviv 69978 (Israel)
2014-03-05
We consider a covariant formulation of field theories with Lifshitz scaling, and analyze the energy-momentum tensor and the scale symmetry Ward identity. We derive the equation of state and the ideal Lifshitz hydrodynamics in agreement with arXiv:1304.7481, where they were determined by using thermodynamics and symmetry properties. We construct the charged ideal Lifshitz hydrodynamics in the generating functional framework as well as in the gravitational holographic dual description. At the first viscous order, an analysis of the entropy current reveals two additional transport coefficients (one dissipative and one dissipationless) compared to the neutral case, contributing to the charge current and to the asymmetric part of the energy-momentum tensor.
Lifshitz Field Theories at Non-Zero Temperature, Hydrodynamics and Gravity
Hoyos, Carlos; Oz, Yaron
2014-01-01
We consider a covariant formulation of field theories with Lifshitz scaling, and analyze the energy-momentum tensor and the scale symmetry Ward identity. We derive the equation of state and the ideal Lifshitz hydrodynamics in agreement with arXiv:1304.7481, where they were determined by using thermodynamics and symmetry properties. We construct the charged ideal Lifshitz hydrodynamics in the generating functional framework as well as in the gravitational holographic dual description. At the first viscous order, an analysis of the entropy current reveals a new dissipationless transport coefficient, in addition to a dissipative one, contributing to the charge current and to the asymmetric part of the energy-momentum tensor.
Lifshitz field theories at non-zero temperature, hydrodynamics and gravity
International Nuclear Information System (INIS)
We consider a covariant formulation of field theories with Lifshitz scaling, and analyze the energy-momentum tensor and the scale symmetry Ward identity. We derive the equation of state and the ideal Lifshitz hydrodynamics in agreement with arXiv:1304.7481, where they were determined by using thermodynamics and symmetry properties. We construct the charged ideal Lifshitz hydrodynamics in the generating functional framework as well as in the gravitational holographic dual description. At the first viscous order, an analysis of the entropy current reveals two additional transport coefficients (one dissipative and one dissipationless) compared to the neutral case, contributing to the charge current and to the asymmetric part of the energy-momentum tensor
Hydrodynamic models of self-organized dynamics: derivation and existence theory
Degond, Pierre; Motsch, Sébastien; Panferov, Vladislav
2011-01-01
This paper is concerned with the derivation and analysis of hydrodynamic models for systems of self-propelled particles subject to alignment interaction and attraction-repulsion. The starting point is the kinetic model considered in earlier work of Degond & Motsch with the addition of an attraction-repulsion interaction potential. Introducing different scalings than in Degond & Motsch, the non-local effects of the alignment and attraction-repulsion interactions can be kept in the hydrodynamic limit and result in extra pressure, viscosity terms and capillary force. The systems are shown to be symmetrizable hyperbolic systems with viscosity terms. A local-in-time existence result is proved in the 2D case for the viscous model and in the 3D case for the inviscid model. The proof relies on the energy method.
Hydrodynamic Interactions between Two Forced Objects of Arbitrary Shape: II Relative Translation
Goldfriend, Tomer; Witten, Thomas A
2015-01-01
We study the relative translation of two arbitrarily shaped objects, caused by their hydrodynamic interaction as they are forced through a viscous fluid in the limit of zero Reynolds number. It is well known that in the case of two rigid spheres in an unbounded fluid, the hydrodynamic interaction does not produce relative translation. More generally such an effective pair-interaction vanishes in configurations with spatial inversion symmetry, for example, an enantiomorphic pair in mirror image positions has no relative translation. We show that the breaking of inversion symmetry by boundaries of the system accounts for the interactions between two spheres in confined geometries, as observed in experiments. The same general principle also provides new predictions for interactions in other object configurations near obstacles. We examine the time-dependent relative translation of two self-aligning objects, extending the numerical analysis of our preceding publication [Goldfriend, Diamant and Witten, arXiv:1502....
Causality, initial conditions and inflationary magnetogenesis
Tsagas, Christos G
2016-01-01
The post-inflationary evolution of inflation-produced magnetic fields, conventional or not, can change dramatically when two fundamental issues are accounted for. The first is causality, which demands that local physical processes can never affect superhorizon perturbations. The second is the nature of the transition from inflation to reheating and then to the radiation era, which determine the initial conditions at the start of these epochs. Technically, the latter issue can be addressed by appealing to Israel's junction conditions. Causality implies that inflationary magnetic fields dot not freeze into the matter until they have re-entered the causal horizon. The nature of cosmological transitions and the associated initial conditions, on the other hand, determine the large-scale magnetic evolution after inflation. Put together, the two can slow down the adiabatic decay of superhorizon-sized magnetic fields throughout their post-inflationary life and thus lead to considerably stronger residual strengths. Th...
Causal Mediation Analyses for Randomized Trials.
Lynch, Kevin G; Cary, Mark; Gallop, Robert; Ten Have, Thomas R
2008-01-01
In the context of randomized intervention trials, we describe causal methods for analyzing how post-randomization factors constitute the process through which randomized baseline interventions act on outcomes. Traditionally, such mediation analyses have been undertaken with great caution, because they assume that the mediating factor is also randomly assigned to individuals in addition to the randomized baseline intervention (i.e., sequential ignorability). Because the mediating factors are typically not randomized, such analyses are unprotected from unmeasured confounders that may lead to biased inference. We review several causal approaches that attempt to reduce such bias without assuming that the mediating factor is randomized. However, these causal approaches require certain interaction assumptions that may be assessed if there is enough treatment heterogeneity with respect to the mediator. We describe available estimation procedures in the context of several examples from the literature and provide resources for software code. PMID:19484136
The causal meaning of Hamilton's rule.
Okasha, Samir; Martens, Johannes
2016-03-01
Hamilton's original derivation of his rule for the spread of an altruistic gene (rb>c) assumed additivity of costs and benefits. Recently, it has been argued that an exact version of the rule holds under non-additive pay-offs, so long as the cost and benefit terms are suitably defined, as partial regression coefficients. However, critics have questioned both the biological significance and the causal meaning of the resulting rule. This paper examines the causal meaning of the generalized Hamilton's rule in a simple model, by computing the effect of a hypothetical experiment to assess the cost of a social action and comparing it to the partial regression definition. The two do not agree. A possible way of salvaging the causal meaning of Hamilton's rule is explored, by appeal to R. A. Fisher's 'average effect of a gene substitution'. PMID:27069669
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
Causal inheritence in plane wave quotients
Energy Technology Data Exchange (ETDEWEB)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-11-24
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality.
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Hume’s understanding of causal explanation
Directory of Open Access Journals (Sweden)
Stefanović Igor
2015-01-01
Full Text Available This article deals with actuality of Hume’s positive thesis about causality, specifically in modern science. According to Dauer, Hume in his Treatise of Human Nature does not deal with scientific theory which allows us, in modern times, to come to the truth, and then necessity. Also, he claims that observation alone, without theory is useless, which is the reason why we need science to predict future events. I intend to show that all three claims are incorrect, and to show an intimate connection of causality and our intuitions.
A causally connected superluminal Warp Drive spacetime
Loup, F; Waite, D; Halerewicz, E F; Stabno, M; Kuntzman, M; Sims, R
2002-01-01
It will be shown that while horizons do not exist for warp drive spacetimes traveling at subluminal velocities horizons begin to develop when a warp drive spacetime reaches luminal velocities. However it will be shown that the control region of a warp drive ship lie within the portion of the warped region that is still causally connected to the ship even at superluminal velocities, therefore allowing a ship to slow to subluminal velocities. Further it is shown that the warped regions which are causally disconnected from a warp ship have no correlation to the ship velocity.
Causal interpretation of stochastic differential equations
DEFF Research Database (Denmark)
Sokol, Alexander; Hansen, Niels Richard
2014-01-01
We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....
Causal Entropy Bound for a Spacelike Region
Brustein, R.; Veneziano, G.
2000-06-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic spacelike region. This ``causal entropy bound,'' scaling as EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various ``critical'' situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso's holographic bound are stronger than Bekenstein's, while naive holography is too tight, and hence typically wrong.
Integration of viscous effects into inviscid computational methods
Katz, Joseph
1990-01-01
A variety of practical fluid dynamic problems related to the low-speed, high Reynolds number flow over aircraft and ground vehicles fall in a category where some simplified mathematical models become applicable. This provides the fluid dynamicists with a more economical computational tool, compared to the alternative solution of the Navier Stokes equations. The objective was to provide a brief survey of some of the viscous boundary layer solution methods and to propose a method for coupling between the inviscid outer flow and the viscous boundary layer solutions. Results of this survey and details of the viscous/inviscid flow coupling efforts are presented.
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
Baljeet Singh
2004-02-01
The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reﬂection of plane waves from the free surface of a thermally conducting viscous liquid half-space is studied. The results are obtained in terms of amplitude ratios and are compared with those without viscosity and thermal disturbances.
International Nuclear Information System (INIS)
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves
Large scale structure from viscous dark matter
Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-01-01
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...
Bulk viscous cosmology in early Universe
Indian Academy of Sciences (India)
C P Singh
2008-07-01
The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.
The meandering instability of a viscous thread
Morris, Stephen W; Ribe, Neil M; Lister, John R
2007-01-01
A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving with speed $U$, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed [See S. Chiu-Webster and J. R. Lister, J. Fluid Mech., {\\bf 569}, 89 (2006)]. We experimentally studied this "fluid mechanical sewing machine" in a new, more precise apparatus. As $U$ is reduced, the steady catenary thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitude and frequency $\\omega$ of the meandering close to the bifurcation. For smaller $U$, single-frequency meandering bifurcates to a two-frequency "figure eight" state, which contains a significant $2\\omega$ component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller $U$. More complex, ...
Stability, Causality, and Shock Waves in the Israel - Theory of Relativistic Dissipative Fluids.
Olson, Timothy Scott
1990-08-01
The stability, causality, and hyperbolicity properties were analyzed for the Israel-Stewart theory of relativistic dissipative fluids formulated in the energy frame. The equilibria of the theory which are stable for small perturbations were found by constructing a Liapunov functional. The conditions which guarantee that small perturbations about equilibrium will propagate with velocities less than the speed of light and will obey a system of hyperbolic differential equations were determined by calculating the characteristic velocities. It was shown that the stability conditions are equivalent to the causality and hyperbolicity conditions. The behavior of the theory far from equilibrium was studied by considering the plane symmetric motions of an inviscid ultrarelativistic Boltzmann gas. The theory was shown to be hyperbolic for large deviations from equilibrium, and acausality implies instability in this example. The plane steady shock wave solutions were also studied for the Israel-Stewart theory formulated in the Eckart frame. The theory was shown to fail to adequately describe the structure of strong shock waves. Physically acceptable solutions do not exist above a maximum upstream Mach number in any thermally nonconducting and viscous fluid described by the theory because the solutions become multiple-valued when the characteristic velocity is exceeded. It was also proven that physically acceptable solutions do not exist for thermally conducting and viscous fluids above either a maximum upstream Mach number, or else below a minimum downstream Mach number (or both). These limiting Mach numbers again correspond to the characteristic velocities of the fluid. Only extremely weak plane steady shock solutions can be single-valued in the Israel-Stewart theory for the ultrarelativistic Boltzmann gas or for the degenerate free Fermi gas.
Institute of Scientific and Technical Information of China (English)
王宏志; 邹早建
2014-01-01
A CFD method is used to numerically predict the hydrodynamic forces and moments acting on a ship passing through a lock with a constant speed. By solving the RANS equations in combination with the RNG k-e turbulence model, the unsteady viscous flow around the ship is simulated and the hydrodynamic forces and moments acting on the ship are calculated. UDF is com-piled to define the ship motion. Meanwhile, grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Under the assumption of low ship speed, the effects of free surface elevation are neglected in the numerical simulation. A bulk carrier ship model is taken as an example for the numerical study. The numerical results are presented and compared with the available experimental results. By analyzing the numerical results obtained for locks with different configurations, the influences of approach wall configuration, lock configuration symmetry and lock chamber breadth on the hydrodynamic forces and moments are demonstrated. The numerical method applied in this paper can qualitatively predict the ship-lock hydrodynamic interaction and pro-vide certain guidance on lock design.
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of
Some Exact Solutions of Magnetized viscous model in String Cosmology
Singh, C P
2012-01-01
In this paper we study anisotropic Bianchi-V universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state for a cloud of strings and a relationship between bulk viscous coefficient and expansion scalar. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of the evolution of the universe. This paper investigates the different string models like geometrical(Nambu string), Takabayashi (p-string) and Reddy string models by taking certain physical conditions. The introduction of magnetic field or bulk viscosity or both results in rapid change in scale factors as well as in the classical potential. The presence of viscosity prevents the universe to be empty in its future evolution. The physical and geometrical aspects of each string model are discussed in detail.
A Causal Construction of Diffusion Processes
Banek, Tadeusz
2010-01-01
A simple nonlinear integral equation for Ito's map is obtained. Although, it does not include stochastic integrals, it does give causal construction of diffusion processes which can be easily implemented by iteration systems. Applications in financial modelling and extension to fBm are discussed.
Causality and analyticity in quantum fields theory
International Nuclear Information System (INIS)
This is a presentation of results on the causal and analytical structure of Green functions and on the collision amplitudes in fields theories, for massive particles of one type, with a positive mass and a zero spin value. (A.B.)
Manipulation and the causal Markov condition
Hausman, Daniel; Woodward, James
2004-01-01
This paper explores the relationship between a manipulability conception of causation and the causal Markov condition (CM). We argue that violations of CM also violate widely shared expectations—implicit in the manipulability conception—having to do with the absence of spontaneous correlations. They also violate expectations concerning the connection between independence or dependence relationships in the presence and absence of interventions.
Escaping Myopia: Teaching Students about Historical Causality
Waring, Scott M.
2010-01-01
There are so many aspects to teaching history that are vital to creating well-rounded historical thinkers, but one of the most fundamental and most overlooked elements is the idea of causality. Far too many students do not understand the idea of causation, that there are multiple reasons for why historical events occurred and transpired in the way…
Causality and Teleology in High School Biology.
Tamir, Pinchas
1985-01-01
Ability to distinguish between causal (cause-effect) and teleological (means-ends) explanations was measured in 1905 twelfth-grade biology students and found to be dependent on student knowledge. Although the inability to make these distinctions contributes to misconceptions in biology, appropriate instruction can easily remedy the problem. Sample…
Causal and Teleological Explanations in Biology
Yip, Cheng-Wai
2009-01-01
A causal explanation in biology focuses on the mechanism by which a biological process is brought about, whereas a teleological explanation considers the end result, in the context of the survival of the organism, as a reason for certain biological processes or structures. There is a tendency among students to offer a teleological explanation…
Comments: Causal Interpretations of Mediation Effects
Jo, Booil; Stuart, Elizabeth A.
2012-01-01
The authors thank Dr. Lindsay Page for providing a nice illustration of the use of the principal stratification framework to define causal effects, and a Bayesian model for effect estimation. They hope that her well-written article will help expose education researchers to these concepts and methods, and move the field of mediation analysis in…
Heterogeneous Causal Effects and Sample Selection Bias
DEFF Research Database (Denmark)
Breen, Richard; Choi, Seongsoo; Holm, Anders
2015-01-01
The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how cau...
Inferring causality from noisy time series data
DEFF Research Database (Denmark)
Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian;
2016-01-01
even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...
Linear Response Laws and Causality in Electrodynamics
Yuffa, Alex J.; Scales, John A.
2012-01-01
Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…
Entropy current in conformal hydrodynamics
International Nuclear Information System (INIS)
In recent work [1, 2], the energy-momentum tensor for the N = 4 SYM fluid was computed up to second derivative terms using holographic methods. The aim of this note is to propose an entropy current (accurate up to second derivative terms) consistent with this energy-momentum tensor and to explicate its relation with the existing theories of relativistic hydrodynamics. In order to achieve this, we first develop a Weyl-covariant formalism which simplifies the study of conformal hydrodynamics. This naturally leads us to a proposal for the entropy current of an arbitrary conformal fluid in any spacetime (with d>3). In particular, this proposal translates into a definite expression for the entropy flux in the case of N = 4 SYM fluid. We conclude this note by comparing the formalism presented here with the conventional Israel-Stewart formalism.
Hydrodynamic Processes in Massive Stars
Meakin, Casey A
2008-01-01
The hydrodynamic processes operating within stellar interiors are far richer than represented by the best stellar evolution model available. Although it is now widely understood, through astrophysical simulation and relevant terrestrial experiment, that many of the basic assumptions which underlie our treatments of stellar evolution are flawed, we lack a suitable, comprehensive replacement. This is due to a deficiency in our fundamental understanding of the transport and mixing properties of a turbulent, reactive, magnetized plasma; a deficiency in knowledge which stems from the richness and variety of solutions which characterize the inherently non-linear set of governing equations. The exponential increase in availability of computing resources, however, is ushering in a new era of understanding complex hydrodynamic flows; and although this field is still in its formative stages, the sophistication already achieved is leading to a dramatic paradigm shift in how we model astrophysical fluid dynamics. We high...
Hydrodynamics from Landau initial conditions
Energy Technology Data Exchange (ETDEWEB)
Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Brain vascular and hydrodynamic physiology
Tasker, Robert C
2013-01-01
Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high can we let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics? Alternatively, in almost all such cases, we have t...
Hydrodynamic Model for Charge Carriers
Choquet, Isabelle; Degond, Pierre; Schmeiser, Christian
2003-01-01
A set of hydrodynamic equations modeling strong ionization in semiconductors is formally derived from a kinetic framework. To that purpose, a system of Boltzmann transport equations governing the distribution functions of conduction electrons and holes is considered. Apart from impact ionization, the model accounts for phonon, lattice defects, and particle-particle scattering. Also degeneracy effects are included. The band diagram models are approximations close to the extre...
Hydrodynamics of catheter biofilm formation
Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio
2009-01-01
A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.
Hydrodynamics for inelastic Maxwell model
Hayakawa, Hisao
2002-01-01
Hydrodynamic equations for an inelastic Maxwell model are derived from the inelastic Boltzmann equation based on a systematic Chapman-Enskog perturbative scheme. Transport coefficients appear in Navier-Stokes order have been determined as a function of the restitution coefficient $e$, which cannot be defined for small $e$ as a result of the high energy tail of the velocity distribution function obeying a power law. The dispersion relations for the linearized equation around a homogeneous cool...
HYDRODYNAMIC CHARACTERISTICS OF LAKE YANAKA
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
As part of a major effort to undersand and quantify the cnvironmental conditions in Lake Yanaka, the circulation patterns in Lake Yanaka were analyzed through the application of a three-dimensional hydrodynamic model. The model was validated with field observation, and then used to study the response of the lake to different forcing. The information on flow structures obtained in the present study is useful for further study of water quality in the lake.
Laser driven hydrodynamic instability experiments
International Nuclear Information System (INIS)
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes
Hydrodynamics of mine impact burial
Evans, Ashley D.
2002-01-01
A general physics based hydrodynamic flow model is developed that predicts the three-dimensional six degrees of freedom free fall time history of a circular cylinder through the water column to impact with an unspecified bottom. Accurate vertical impact velocity and impact angle parameters are required inputs to subsequent portions of any Impact Mine Burial Model. The model vertical impact velocity and impact angle are compared with experimental data, vertical impact velocities and impact ang...
Differential criterion of a bubble collapse in viscous liquids
Bogoyavlenskiy, V A
1999-01-01
The present work is devoted to a model of bubble collapse in a Newtonian viscous liquid caused by an initial bubble wall motion. The obtained bubble dynamics described by an analytic solution significantly depends on the liquid and bubble parameters. The theory gives two types of bubble behavior: collapse and viscous damping. This results in a general collapse condition proposed as the sufficient differential criterion. The suggested criterion is discussed and successfully applied to the analysis of the void and gas bubble collapses.
Transport coefficients of solid particles immersed in a viscous gas
Garzó, Vicente; Fullmer, William D.; Hrenya, Christine M.; Yin, Xiaolong
2015-01-01
Transport properties of a suspension of solid particles in a viscous gas are studied. The dissipation in such systems arises from two sources: inelasticity in particle collisions and viscous dissipation due to the effect of the gas phase on the particles. Here, we consider a simplified case in which the mean relative velocity between the gas and solid phases is taken to be zero, such that "thermal drag" is the only remaining gas-solid interaction. Unlike the previous more general treatment of...
Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications
Martin Greve; Katja Wöckner-Kluwe; Moustafa Abdel-Maksoud; Thomas Rung
2012-01-01
The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without comprom...
Sequential linearization method for viscous/elastic heterogeneous materials
Kowalczyk-Gajewska, Katarzyna; Petryk, Henryk
2011-01-01
Abstract The paper addresses the problem of suitable approximation of the interaction between phases in heterogeneous materials that exhibit both viscous and elastic properties. A novel approach is proposed in which linearized subproblems for an inhomogeneity-matrix system with viscous or elastic interaction rules are solved sequentially within one incremental step. It is demonstrated that in the case of a self-consistent averaging scheme, an additional accommodation subproblem, be...
Viscous Dissipation and Criticality of Subducting Slabs
Riedel, Mike; Karato, Shun; Yuen, Dave
2016-04-01
Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ ‑h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota
Institute of Scientific and Technical Information of China (English)
Yuan-ze Xu; Yu-zhe Wu; Jian-mao Yang
2006-01-01
The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological properties,conductivity, and particle size measurements reveal the micro-structural transition amid emulsification. It is revealed that strong flow causes water drop to burst with the formation of droplets and huge interface. Phase inversion corresponds to an abrupt rheological transition from a type of viscous melt with weak elasticity to a highly elastic type of aqueous gel. This implies that the phase inversion equivalent to a curvature inversion. Based on this, a geometric model is postulated to correlate process variables to the particle size. The coverage and conformation of the surfactant plays key role for the particle size of the final emulsion. The interactions of thermodynamic and hydrodynamic effects are also discussed. It is concluded that the thermodynamics control the PIE while the hydrodynamics drives the creation of interface and involves every step of PIE.
Kikuchi, Yuta; Kunihiro, Teiji
2016-01-01
We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\\tau_i$ that admit physically natural interpretations. As an example, we apply our microscopic expressions to calculate the transport coefficients and the relaxation times of the cold fermionic atoms in a quantitative way, where the transition probability in the collision term is given explicitly in terms of the $s$-wave scattering length $a_s$. We thereby discuss the quantum statistical effects, temperature dependence, and scattering-length dependence of the first-order transport coefficients and the viscous relaxation times: It is shown tha...
The causal link between energy and output growth: Evidence from Markov switching Granger causality
International Nuclear Information System (INIS)
In this paper we empirically investigate the causal link between energy consumption and economic growth employing a Markov switching Granger causality analysis. We carry out our investigation using annual U.S. real GDP, total final energy consumption and total primary energy consumption data which cover the period between 1968 and 2010. We find that there are significant changes in the causal relation between energy consumption and economic growth over the sample period under investigation. Our results show that total final energy consumption and total primary energy consumption have significant predictive content for real economic activity in the U.S. economy. Furthermore, the causality running from energy consumption to output growth seems to be strongly apparent particularly during the periods of economic downturn and energy crisis. We also document that output growth has predictive power in explaining total energy consumption. Furthermore, the power of output growth in predicting total energy consumption is found to diminish after the mid of 1980s. - Highlights: • Total energy consumption has predictive content for real economic activity. • The causality from energy to output growth is apparent in the periods of recession. • The causality from energy to output growth is strong in the periods of energy crisis. • Output growth has predictive power in explaining total energy consumption. • The power of output growth in explaining energy diminishes after the mid of 1980s
Controlling Wavebreaking in a Viscous Fluid Conduit
Anderson, Dalton; Maiden, Michelle; Hoefer, Mark
2015-11-01
This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can be resolved by a dispersive shock wave (DSW). In this work, an experimental method to control the location of DSW formation (gradient catastrophe) is explained. The central idea is to convert an initial value problem (Riemann problem) into an equivalent boundary value problem. The system to which this technique is applied is a fluid conduit resulting from high viscosity contrast between a buoyant interior and heavier exterior fluid. The conduit cross-sectional area is modeled by a nonlinear, conservative, dispersive, third order partial differential equation. Using this model, the aim is to predict the breaking location of a DSW by controlling one boundary condition. An analytical expression for this boundary condition is derived by solving the dispersionless equation backward in time from the desired step via the method of characteristics. This is used in experiment to generate an injection rate profile for a high precision piston pump. This translates to the desired conduit shape. Varying the jump height and desired breaking location indicates good control of DSW formation. This result can be improved by deriving a conduit profile by numerical simulation of the full model equation. Controlling the breaking location of a DSW allows for the investigation of dynamics independent of the boundary. Support provided by NSF CAREER DMS-1255422 , NSF EXTREEMS.
Identification, Inference and Sensitivity Analysis for Causal Mediation Effects
Imai, Kosuke; Keele, Luke; Yamamoto, Teppei
2010-01-01
Causal mediation analysis is routinely conducted by applied researchers in a variety of disciplines. The goal of such an analysis is to investigate alternative causal mechanisms by examining the roles of intermediate variables that lie in the causal paths between the treatment and outcome variables. In this paper we first prove that under a particular version of sequential ignorability assumption, the average causal mediation effect (ACME) is nonparametrically identified. We compare our ident...
Institutional Investors and Stock Market Development: A Causality Study
Guler Aras; Alovsat Muslumov
2008-01-01
This article examines causality relationships between institutional investors and stock market development based on the panel data compiled from 23 OECD countries for the years 1982 through 2000. In order to test causality relationship, Sims’ causality test based on Granger definition of causality was used in our study. Our empirical results provide evidence that there are statistically significant positive relationship between institutional investors and stock market development. The develop...
Trimmed Granger causality between two groups of time series
Hung, Ying-Chao; Tseng, Neng-Fang; Balakrishnan, Narayanaswamy
2014-01-01
The identification of causal effects between two groups of time series has been an important topic in a wide range of applications such as economics, engineering, medicine, neuroscience, and biology. In this paper, a simplified causal relationship (called trimmed Granger causality) based on the context of Granger causality and vector autoregressive (VAR) model is introduced. The idea is to characterize a subset of “important variables” for both groups of time series so that the underlying cau...
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer
Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L.
2016-01-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…
Causality and Nonlocality as Axioms for Quantum Mechanics
Popescu, Sandu; Rohrlich, Daniel
1997-01-01
Quantum mechanics permits nonlocality - both nonlocal correlations and nonlocal equations of motion - while respecting relativistic causality. Is quantum mechanics the unique theory that reconciles nonlocality and causality? We consider two models, going beyond quantum mechanics, of nonlocality: "superquantum" correlations, and nonlocal "jamming" of correlations. These models are consistent with some definitions of nonlocality and causality.
Mind and Meaning: Piaget and Vygotsky on Causal Explanation.
Beilin, Harry
1996-01-01
Piaget's theory has been characterized as descriptive and not explanatory, not qualifying as causal explanation. Piaget was consistent in showing how his theory was both explanatory and causal. Vygotsky also endorsed causal-genetic explanation but, on the basis of knowledge of only Piaget's earliest works, he claimed that Piaget's theory was not…
NACHOS2, Incompressible Viscous Fluid Dynamic
International Nuclear Information System (INIS)
1 - Description of program or function: NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems in which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes, e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow: forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations. 2 - Method of solution: NACHOS2 is based on the Galerkin form of the finite element method. It utilizes an element library consisting of six-node triangular elements, and eight-, and nine-node quadrilateral elements. The fluid velocity and temperature are approximated using quadratic interpolation. The pressure is represented using either linear or bilinear functions. The frontal solution method is used for direct solution of the matrix problem. All equations in a problem are solved in a fully coupled manner. For steady-state simulations the standard Picard method is augmented with a full Newton method and a quasi-Newton procedure. Transient analyses are performed using either a backward Euler or a trapezoidal rule integration procedure. Either method can be run with a fixed time step or a dynamic time step selection procedure. 3 - Restrictions on the complexity of the