Hydrodynamic response of viscous fluids under seismic excitation
International Nuclear Information System (INIS)
Ma, D.C.
1993-01-01
Hydrodynamic response of liquid-tank systems, such as reactor vessels, spent-fuel pools and liquid storage tanks have been studied extensively in the last decade (Chang et al. 1988; Ma et al. 1991). However, most of the studies are conducted with the assumption of an inviscid fluid. In recent years, the hydrodynamic response of viscous fluids has received increasing attention in high level waste storage tanks containing viscous waste material. This paper presents a numerical study on the hydrodynamic response of viscous fluids in a large 2-D fluid-tank system under seismic excitation. Hydrodynamic responses (i.e. sloshing wave height, fluid pressures, shear stress, etc.) are calculated for a fluid with various viscosities. Four fluid viscosities are considered. They are 1 cp, 120 cp, 1,000 cp and 12,000 cp (1 cp = 1.45 x 10 -7 lb-sec/in 2 ). Note that the liquid sodium of the Liquid-Metal Reactor (LMR) reactor has a viscosity of 1.38 x 10 -5 lb-sec/in 2 (about 95 cp) at an operational temperature of 900 degree F. Section 2 describes the pertinent features of the mathematical model. In Section 3, the fundamental sloshing phenomena of viscous fluid are examined. Sloshing wave height and shear stress for fluid with different viscosities are compared. The conclusions are given in Section 4
Viscous anisotropic hydrodynamics for the Gubser flow
Martinez, M.; McNelis, M.; Heinz, U.
2017-11-01
In this work we describe the dynamics of a highly anisotropic system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion (Gubser flow) for arbitrary shear viscosity to entropy density ratio. We derive the equations of motion of dissipative anisotropic hydrodynamics by applying to this situation the moments method recently derived by Molnár et al. (MNR) [E. Molnar, H. Niemi, and D. H. Rischke, "Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation," Phys. Rev. D93 no. 11, (2016) 114025, arxiv:arXiv:1602.00573 [nucl-th], E. Molnar, H. Niemi, and D. H. Rischke, "Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation," Phys. Rev. D94 no. 12, (2016) 125003, arxiv:arXiv:1606.09019 [nucl-th
Fluidic Channels Produced by Electro Hydrodynamic Viscous Fingering
Behler, Kristopher; Wetzel, Eric
2010-03-01
Viscous fingering is a term describing fingerlike extensions of liquid from a column of low viscosity liquid that has been injected into a more viscous liquid. The modification of viscous fingering, known as electro hydrodynamic viscous fingering (EHVF), utilizes large electrical potentials of 10-60 kV. The fingers see a reduction in size and increase in branching behavior due to the potential applied to the system. The resulting finely structured patterns are analogous to biological systems such as blood vessels and the lymphatic system. In this study silicone oils and water were studied in thin channel Hele-Shaw cells. The interfacial tension was optimized by altering the surfactant concentration in the silicone oils. EHVF of liquid filled packed beds consisting of beads and silicone oils showed retardation of the relaxation of the fingers after the voltage was turned off. Decreased relaxation provides a means to solidify patterns into a curable material, such as polydimethylsiloxane (PDMS). After the water is evacuated from the fingers, the cured materials then possess hollow channels that can be refilled and emptied, thus creating an artificial circulatory system.
Bulk viscous matter and recent acceleration of the universe based on causal viscous theory
Energy Technology Data Exchange (ETDEWEB)
Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2017-12-15
The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ{sup 1/2}. We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)
Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP
Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F
2013-01-01
We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...
Physical hydrodynamic propulsion model study on creeping viscous ...
Indian Academy of Sciences (India)
2017-02-16
Feb 16, 2017 ... Abstract. The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very ...
Shibata, Masaru; Kiuchi, Kenta
2017-06-01
Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.
Physical hydrodynamic propulsion model study on creeping viscous ...
Indian Academy of Sciences (India)
2017-02-16
Feb 16, 2017 ... The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated ... eter and Darcy number on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. It is found that with increasing ...
Dynamics of charged viscous dissipative cylindrical collapse with full causal approach
Energy Technology Data Exchange (ETDEWEB)
Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-11-15
The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations. (orig.)
Bianchi I cosmology in the presence of a causally regularized viscous fluid
Energy Technology Data Exchange (ETDEWEB)
Montani, Giovanni [ENEA, FSN-FUSPHY-TSM, R.C. Frascati, Frascati (Italy); Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Venanzi, Marta [Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); University of Southampton, Department of Physics and Astronomy, Southampton (United Kingdom)
2017-07-15
We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced. (orig.)
Viscous and Thermal Effects on Hydrodynamic Instability in Liquid-Propellant Combustion
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during the deflagration of liquid propellants in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case
Energy Technology Data Exchange (ETDEWEB)
Hogg, J. Drew; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)
2017-07-10
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.
Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek
2018-04-01
We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo
2018-01-01
In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.
A viscous quantum hydrodynamics model based on dynamic density functional theory.
Diaw, Abdourahmane; Murillo, Michael S
2017-11-10
Dynamic density functional theory (DDFT) is emerging as a useful theoretical technique for modeling the dynamics of correlated systems. We extend DDFT to quantum systems for application to dense plasmas through a quantum hydrodynamics (QHD) approach. The DDFT-based QHD approach includes correlations in the the equation of state self-consistently, satisfies sum rules and includes irreversibility arising from collisions. While QHD can be used generally to model non-equilibrium, heterogeneous plasmas, we employ the DDFT-QHD framework to generate a model for the electronic dynamic structure factor, which offers an avenue for measuring hydrodynamic properties, such as transport coefficients via x-ray Thomson scattering.
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)
2017-06-15
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions. (orig.)
Colagrossi, Andrea; Antuono, Matteo; Souto-Iglesias, Antonio; Le Touzé, David
2011-08-01
The theoretical formulation of the smoothed particle hydrodynamics (SPH) method deserves great care because of some inconsistencies occurring when considering free-surface inviscid flows. Actually, in SPH formulations one usually assumes that (i) surface integral terms on the boundary of the interpolation kernel support are neglected, (ii) free-surface conditions are implicitly verified. These assumptions are studied in detail in the present work for free-surface Newtonian viscous flow. The consistency of classical viscous weakly compressible SPH formulations is investigated. In particular, the principle of virtual work is used to study the verification of the free-surface boundary conditions in a weak sense. The latter can be related to the global energy dissipation induced by the viscous term formulations and their consistency. Numerical verification of this theoretical analysis is provided on three free-surface test cases including a standing wave, with the three viscous term formulations investigated.
Hydrodynamics of Highly Viscous Flow past a Compound Particle: Analytical Solution
Directory of Open Access Journals (Sweden)
Longhua Zhao
2016-11-01
Full Text Available To investigate the translation of a compound particle in a highly viscous, incompressible fluid, we carry out an analytic study on flow past a fixed spherical compound particle. The spherical object is considered to have a rigid kernel covered with a fluid coating. The fluid within the coating has a different viscosity from that of the surrounding fluid and is immiscible with the surrounding fluid. The inertia effect is negligible for flows both inside the coating and outside the object. Thus, flows are in the Stokes regime. Taking advantage of the symmetry properties, we reduce the problem in two dimensions and derive the explicit formulae of the stream function in the polar coordinates. The no-slip boundary condition for the rigid kernel and the no interfacial mass transfer and force equilibrium conditions at fluid interfaces are considered. Two extreme cases: the uniform flow past a sphere and the uniform flow past a fluid drop, are reviewed. Then, for the fluid coating the spherical object, we derive the stream functions and investigate the flow field by the contour plots of stream functions. Contours of stream functions show circulation within the fluid coating. Additionally, we compare the drag and the terminal velocity of the object with a rigid sphere or a fluid droplet. Moreover, the extended results regarding the analytical solution for a compound particle with a rigid kernel and multiple layers of fluid coating are reported.
Numerical simulation of viscous flow and hydrodynamic noise in surface ship
Directory of Open Access Journals (Sweden)
YU Han
2017-12-01
Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.
Stability analysis of inflation in systems with dissipation in a viscous radiation fluid
International Nuclear Information System (INIS)
Ramos, Rudnei O.; Vicente, Gustavo S.
2012-01-01
Full text: We perform a complete stability analysis for the background equations for inflation including both inflation dissipation and radiation bulk viscous effects. The resulting system of equations gives rise to a viscous warm inflation model. In the resulting physical system, the inflation field dissipates into radiation, resulting in a thermal bath as expected in warm inflation. But internal decays in the thermal bath itself give rise to a bulk viscous pressure. Three representative approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart non causal theory, the linear and causal theory of Israel-Stewart and a nonlinear and causal bulk viscous theory of Denicol et al. A comparison of the three theories in the context of cosmological warm inflation is then performed and the differences regarding the stability in each case are determined. We obtain stability conditions for each theory, which are shown to depend on the temperature powers of the hydrodynamic coefficients, on the viscous pressure and on the relaxational effect for the causal theories. We also point out differences in the outcome dynamics in each case, determining that the causal theories are more dynamically robust than the noncausal Eckart case. It is also shown that the causal theories tend to suppress the radiation production due to bulk viscous pressure, because of the presence of relaxation effects implicit in these theories. Consequences of our results for model building for warm inflation in the presence of bulk viscous effects are also considered. (author)
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
Energy Technology Data Exchange (ETDEWEB)
Stephen B. Margolis
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Czech Academy of Sciences Publication Activity Database
Petrov, A. G.; Kharlamov, Alexander A.
2013-01-01
Roč. 48, č. 5 (2013), s. 577-587 ISSN 0015-4628 R&D Projects: GA ČR(CZ) GA103/09/2066 Grant - others:Development of the Scientific Potential of the Higher Schoo(RU) 2.1.2/3604; Russian Foundation for Basic Research(RU) 11- 01-005355 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * vicinity of a contact * three-dimensional problems Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013
Gangadhar, K.; Kumar, Sathies; Lakshmi Narayana, K.; Subhakar, M. J.; Rushi Kumar, B.
2017-11-01
In this paper, MHD flow and heat transfer of electrically conducting micro polar fluid over a permeable stretching surface with slip flow in the existence of viscous dissipation and temperature dependent slip flow are investigated. With the help of similarity transformations, the fundamental equations have been altered into a system of ordinary differential equations. It is difficult to solve these equations methodically. That’s why we used bvp4c MATLAB solver. We found the Numerical values for the wall couple stress, skin-friction coefficient, and the local Nusselt number in addition to the micro rotation, velocity, and temperature reports for diverse values of the principal parameters like thermal slip parameter, material parameter, magnetic parameter, heat generation/absorption parameter, velocity slip parameter and Eckert number It is observed that the values of suction/injection parameters rise corresponding to the lessening in the values of velocity, angular velocity, and temperature. Moreover, the change in the values of the Eckert number is opposite to the change in the values of the local Nusselt number.
Zhang, X.; Zhang, Q.; Werner, A. D.
2017-12-01
Previous research has revealed complex hysteretic relationships between stage, storage volume and surface area of a lake-floodplain system, Poyang Lake (China), indicating that both the floodplain and the permanently inundated region contributed to the lake's volume-stage hysteresis. However, the causal factors for Poyang Lake hysteresis have not been clearly elucidated, and the reasons why both clockwise and counterclockwise hysteresis occurred in the same system remains unknown. This study aims to address these knowledge gaps by exploring further Poyang Lake's hysteretic behavior, partly by considering for the first time the hysteretic nature of stage-flow relationships. Remotely sensed imagery is used to verify water surface areas simulated within a hydrodynamic model, which shows good agreement in the stage-area relationship between the two methods. The new results show a three-phase hydrological regime in stage-flow relationships, which further interprets the occurrence of hysteretic stage-area relationships of the lake-floodplain system. That is, the clockwise stage-area relationship is caused by classic floodplain hydrological process, where restricted water volumes are retained on the floodplain during recession. The counterclockwise stage-area relationship is caused by the `river effect', otherwise known as the backwater effect. The river effect is enhanced by the time lag between the peaks of lake's catchment inflow and Yangtze discharge. The time lag also leads to hysteretic functions between the Yangtze discharge and the lake stage. Thus, the hysteretic hydrology regime of Poyang Lake is the combination of hydrological processes normally associated with rivers, floodplains and lakes, whereby the significant spatiotemporal variations in hysteresis can be attributed to clear factors. These factors dominate at different times, in different parts of the lake and during different phases of lake stage fluctuations, resulting in a unique tri-modal hysteretic
Lidocaine viscous, a local anesthetic, is used to treat the pain of a sore or irritated mouth ... associated with cancer chemotherapy and certain medical procedures. Lidocaine viscous is not normally used for sore throats ...
Czech Academy of Sciences Publication Activity Database
Petrov, A. G.; Kharlamov, Alexander
2013-01-01
Roč. 48, č. 2 (2013), s. 179-191 ISSN 0015-4628 R&D Projects: GA ČR GA103/09/2066 Grant - others:Russian Foundation for Basic Research(RU) 11-01-00535; Russian Foundation for Basic Research(RU) 11-01-00857; Target Analytical Program; Development of the Scientific Potential of the Higher School(RU) 2.1.2/3604 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * contact vicinity Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Langlois, William E
2014-01-01
Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." - from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...
Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...
Indian Academy of Sciences (India)
progress on hydrodynamic modelling, investigation on the flow data and the extraction of the QGP shear viscosity in relativistic heavy-ion collisions at RHIC and LHC. 2. Hydrodynamic modelling – a short introduction. 2.1 Viscous hydrodynamics. Relativistic hydrodynamics is a macroscopic tool to simulate the QGP fireball ...
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Steady flow on to a conveyor belt - Causal viscosity and shear shocks
Syer, D.; Narayan, Ramesh
1993-01-01
Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.
Hydrodynamic potentials for the micropolar Navier-Stokes problem
International Nuclear Information System (INIS)
Martynenko, M.D.; Dimian, M.
1995-01-01
An integral representation of linear and angular velocities and pressure for the description of linear stationary flows of micropolar viscous liquid media is obtained, and on its basis hydrodynamic potentials for the micropolar Navier-Stokes problem are introduced
Bounds on the phase velocity in the linear instability of viscous ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
parallel shear flow problem are extended to the problem of viscous parallel, shear flow problem in the beta plane and a sufficient condition for stability has also been derived. Keywords. Viscous shear flows; linear stability. 1. Introduction. Parallel shear flows problem is a classical hydrodynamic instability problem and contin ...
Hydrodynamic approach to electronic transport in graphene
Energy Technology Data Exchange (ETDEWEB)
Narozhny, Boris N. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Gornyi, Igor V. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Ioffe Physical Technical Institute, St. Petersburg (Russian Federation); Mirlin, Alexander D. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Schmalian, Joerg [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute for Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany)
2017-11-15
The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. In this paper we briefly review the recent advances, both theoretical and experimental, in the hydrodynamic approach to electronic transport in graphene, focusing on viscous phenomena, Coulomb drag, non-local transport measurements, and possibilities for observing nonlinear effects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Ellis, George FR; Pabjan, Tadeusz
2013-01-01
Written by philosophers, cosmologists, and physicists, this collection of essays deals with causality, which is a core issue for both science and philosophy. Readers will learn about different types of causality in complex systems and about new perspectives on this issue based on physical and cosmological considerations. In addition, the book includes essays pertaining to the problem of causality in ancient Greek philosophy, and to the problem of God's relation to the causal structures of nature viewed in the light of contemporary physics and cosmology.
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
terms of perfect fluid. However, for a realistic treatment of the problem one has to con- sider material distributions other than the perfect fluid. It is known that when neutrino decoupling occurred, the matter behaved like a viscous fluid in the early stage of the. Universe. From a hydrodynamics point of view this is somewhat ...
DEFF Research Database (Denmark)
Rasmussen, Lauge Baungaard
2006-01-01
The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...
Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2015-01-01
We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.
Relativistic conformal magneto-hydrodynamics from holography
International Nuclear Information System (INIS)
Buchbinder, Evgeny I.; Buchel, Alex
2009-01-01
We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.
Morabia, Alfredo
2005-01-01
Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.
Recent development of hydrodynamic modeling
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:
Energy Technology Data Exchange (ETDEWEB)
Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.
1980-01-15
A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.
Milne-Thomson, L M
2011-01-01
This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.
Viscous, Resistive Magnetorotational Modes
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2008-01-01
We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating...... background threaded by a vertical magnetic field when disturbances with wavenumbers perpendicular to the shear are considered. We provide a geometrical description of these viscous, resistive MRI modes and show how their physical structure is modified as a function of the Reynolds and magnetic Reynolds...... momentum transport is always directed outwards. We also find that, for any combination of the Reynolds and magnetic Reynolds numbers, magnetic disturbances dominate both the energetics and the transport of angular momentum and that the total mean energy density is an upper bound for the total mean stress...
Green, T. E.; Bramley, A.; Lue, L.; Grassia, P.
2006-11-01
Microscale models of foam structure traditionally incorporate a balance between bubble pressures and surface tension forces associated with curvature of bubble films. In particular, models for flowing foam microrheology have assumed this balance is maintained under the action of some externally imposed motion. Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble “lens.” The lens consists of a channel partly filled by a bubble (known as the “lens bubble”) which contacts one channel wall. An additional film (known as the “spanning film”) connects to this bubble spanning the distance from the opposite channel wall. This simple structure can be set in motion and deformed out of equilibrium by applying a pressure across the spanning film: a rich dynamical behavior results. Solutions for the lens structure steadily propagating along the channel can be computed by the viscous froth model. Perturbation solutions are obtained in the limit of a lens structure with weak applied pressures, while numerical solutions are available for higher pressures. These steadily propagating solutions suggest that small lenses move faster than large ones, while both small and large lens bubbles are quite resistant to deformation, at least for weak applied back pressures. As the applied back pressure grows, the structure with the small lens bubble remains relatively stiff, while that with the large lens bubble becomes much more compliant. However, with even further increases in the applied back pressure, a critical pressure appears to exist for which the steady-state structure loses stability and unsteady
Physical hydrodynamic propulsion model study on creeping viscous ...
Indian Academy of Sciences (India)
... Sciences and Technology, Islamabad, Pakistan; DBS&H, MCE, National University of Sciences and Technology, Islamabad, Pakistan; Department of Mechanical Engineering, Manipal University, Jaipur 303 007, India; GORT – Aerospace, Marine and Medical Engineering Sciences, Gabriel's Wing House, 11 Rooley Croft, ...
Physical hydrodynamic propulsion model study on creeping viscous
Indian Academy of Sciences (India)
The physical problem is linearized and exact solutions are developed for the differential equation problem. Mathematica software is used to compute and illustrate numerical results. The influence of slip parameter and Darcy number on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of ...
SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES
Directory of Open Access Journals (Sweden)
A. Osman KURBAN
1997-01-01
Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.
2011-01-01
We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....
Miscible Viscous Gravity Currents
Sutherland, Bruce; Cote, Kristen; Hong, Youn Sub; Steverango, Luke; Surma, Chris
2017-11-01
Full- and partial-depth lock-release laboratory experiments are performed examining the evolution of a glycerol solution being released into an ambient fluid of either fresh or salty water. The advance of the current front and the depth of the current from its head back to the lock are tracked over time. While the viscosity of pure glycerol is sufficiently high to retard mixing between the current and ambient fluid, where mixing does occur the viscosity reduces significantly so permitting more turbulent mixing to occur. Meanwhile viscous stresses at the bottom of the current introduces shear within the boundary layer which extends vertically over a significant fraction of the current's depth. Thus, even though there is no evidence of a lubrication layer below the current, the current nonetheless advances initially at speeds close to those of effectively inviscid gravity currents. As the viscous boundary layer depth becomes comparable to the current depth in the tail the fluid slows dramatically while the turbulent front continues to advance, slowing as it becomes depleted of fluid. NSERC Discovery Grant.
Viscous corrections to electromagnetic emissivities in QCD
Liu, Yizhuang; Zahed, Ismail
2017-12-01
We provide a general framework for the derivation of the hydrodynamical corrections to the QCD electromagnetic emissivities in a viscous fluid. Assuming that the emission times are short in comparison to the fluid evolution time, we show that the leading corrections in the fluid gradients are controlled by the bulk and shear tensors times pertinent response functions involving the energy-momentum tensor. In a hadronic fluid phase, we detail these contributions using spectral functions. Using the vector dominance approximation, we show that the bulk viscosity correction to the photon rate is sizable, while the shear viscosity is negligible for about all frequencies. In the partonic phase near the transition temperature, we provide an assessment of the viscous corrections to the photon and dilepton emissions, using a nonperturbative quark-gluon plasma with soft thermal gluonic corrections in the form of operators of leading mass dimension. Again, the thermal bulk viscosity corrections are found to be larger than the thermal shear viscosity corrections at all energies for both the photon and dilepton in the partonic phase.
DEFF Research Database (Denmark)
Park, Keunhwan; Tixier, A.; Christensen, A.H.
2018-01-01
experiments and theory on viscous flow in a simple bioinspired soft valve which illustrate essential features of interactions between hydrodynamic and elastic forces at low Reynolds numbers. The set-up comprises a sphere connected to a spring located inside a tapering cylindrical channel. The spring...... is aligned with the central axis of the channel and a pressure drop is applied across the sphere, thus forcing the liquid through the narrow gap between the sphere and the channel walls. The sphere's equilibrium position is determined by a balance between spring and hydrodynamic forces. Since the gap...... thickness h0, and viscosity η as Q ∼η-1 a1/2h05/2 (1 - Δp/Δpc)5/2Δp, where the critical pressure Δpc scales with spring constant k as Δpc ∼ kh0a-2. These predictions compared favourably to the results of our experiments with no free parameters....
Hydrodynamic instabilities in miscible fluids
Truzzolillo, Domenico; Cipelletti, Luca
2018-01-01
Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.
Hydrodynamic instabilities in miscible fluids.
Truzzolillo, Domenico; Cipelletti, Luca
2018-01-24
Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.
International Nuclear Information System (INIS)
Colgate, S.A.
1981-01-01
The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references
Renilson, Martin
2015-01-01
This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...
Thermo-hydrodynamic lubrication in hydrodynamic bearings
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.
2018-02-01
Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.
International Nuclear Information System (INIS)
Pryce, M.H.L.
1985-01-01
A dominant mechanism contributing to hydrodynamic dispersion in fluid flow through rocks is variation of travel speeds within the channels carrying the fluid, whether these be interstices between grains, in granular rocks, or cracks in fractured crystalline rocks. The complex interconnections of the channels ensure a mixing of those parts of the fluid which travel more slowly and those which travel faster. On a macroscopic scale this can be treated statistically in terms of the distribution of times taken by a particle of fluid to move from one surface of constant hydraulic potential to another, lower, potential. The distributions in the individual channels are such that very long travel times make a very important contribution. Indeed, while the mean travel time is related to distance by a well-defined transport speed, the mean square is effectively infinite. This results in an asymmetrical plume which differs markedly from a gaussian shape. The distribution of microscopic travel times is related to the distribution of apertures in the interstices, or in the microcracks, which in turn are affected in a complex way by the stresses acting on the rock matrix
Hydrodynamic interactions in concentrated solutions
International Nuclear Information System (INIS)
Walrand, Stephan
1986-01-01
This research thesis addresses the dynamics of concentrated solutions processed within the frame of the primitive model: charged spherical particles immersed in a viscous solvent. At high concentration, dynamics is determined by hydrodynamic interactions of n bodies. As a direct exploitation of these interactions is impossible, the author used an average field theory based on the use of effective mobility tensor, solution of the screened Navier-Stokes equation. The tensor is explicitly calculated by using the induced force formalism developed by Mazur and van Saarloos. The author also addressed the influence of chemical exchange on the diffusion coefficient. The Ackerson microscopic theory is generalized to include these exchanges. Thus, the mass action law is obtained through a kinetic way [fr
Causally nonseparable processes admitting a causal model
International Nuclear Information System (INIS)
Feix, Adrien; Araújo, Mateus; Brukner, Caslav
2016-01-01
A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities ) while others do not (they admit a ‘causal model’ analogous to a local model ). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties. (paper)
Ulrich, Elaine Schmid
Microfluidic networks and microporous materials have long been of interest in areas such as hydrology, petroleum engineering, chemical and electrochemical engineering, medicine and biochemical engineering. With the emergence of new processes in gas separation, cell sorting, ultrafiltration, and advanced materials synthesis, the importance of building a better qualitative and quantitative understanding of these key technologies has become apparent. However, microfluidic measurement and theory is still relatively underdeveloped, presenting a significant obstacle to the systematic design of microfluidic devices and materials. Theoretical challenges arise from the breakdown of classical viscous flow models as the flow dimensions approach the mean free path of individual molecules. Experimental challenges arise from the lack of flow profilometry techniques at sub-micron length scales. Here we present an extension of scanning probe microscopy techniques, which we have termed Hydrodynamic Force Microscopy (HFM). HFM exploits fluid drag to profile microflows and to map the permeability of microporous materials. In this technique, an atomic force microscope (AFM) cantilever is scanned close to a microporous sample surface. The hydrodynamic interactions arising from a pressure-driven flow through the sample are then detected by mapping the deflection of an AFM cantilever. For gas flows at atmospheric pressure, HFM has been shown to achieve a velocity sensitivity of 1 cm/s with a spatial resolution of ˜ 10 nm. This compares very favorably to established techniques such as hot-wire and laser Doppler anemometry, whose spatial resolutions typically exceed 1 mum and which may rely on the use of tracer particles or flow markers1. We demonstrate that HFM can successfully profile Poiseuille flows inside pores as small as 100 nm and can distinguish Poiseuille flow from uniform flow for short entry lengths. HFM detection of fluid jets escaping from porous samples can also reveal a
Directory of Open Access Journals (Sweden)
Cristina Puente Águeda
2011-10-01
Full Text Available Causality is a fundamental notion in every field of science. Since the times of Aristotle, causal relationships have been a matter of study as a way to generate knowledge and provide for explanations. In this paper I review the notion of causality through different scientific areas such as physics, biology, engineering, etc. In the scientific area, causality is usually seen as a precise relation: the same cause provokes always the same effect. But in the everyday world, the links between cause and effect are frequently imprecise or imperfect in nature. Fuzzy logic offers an adequate framework for dealing with imperfect causality, so a few notions of fuzzy causality are introduced.
Nonlinear waves in bipolar complex viscous astroclouds
Karmakar, P. K.; Haloi, A.
2017-05-01
A theoretical evolutionary model to analyze the dynamics of strongly nonlinear waves in inhomogeneous complex astrophysical viscous clouds on the gravito-electrostatic scales of space and time is procedurally set up. It compositionally consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neutral hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method reduces the inter-coupled structure equations into a pair of intermixed forced Korteweg-de Vries-Burgers (f-KdVB) equations. The force-terms are self-consistently sourced by inhomogeneous gravito-electrostatic interplay. A numerical illustrative shape-analysis based on judicious astronomical parametric platform shows the electrostatic waves evolving as compressive dispersive shock-like eigen-modes. A unique transition from quasi-monotonic to non-monotonic oscillatory compressive shock-like patterns is found to exist. In contrast, the self-gravitational and effective perturbations grow purely as non-monotonic compressive oscillatory shock-like structures with no such transitory features. It is seen that the referral frame velocity acts as amplitude-reducing agent (stabilizing source) for the electrostatic fluctuations solely. A comparison in the prognostic light of various earlier satellite-based observations and in-situ measurements is presented. The paper ends up with synoptic highlights on the main implications and non-trivial applications in the interstellar space and cosmic plasma environments leading to bounded structure formation.
Application of hydrodynamics to heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Felsberger, Lukas
2014-12-02
The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.
Long waves over a bi-viscous seabed: transverse patterns
Directory of Open Access Journals (Sweden)
J. M. Becker
2002-01-01
Full Text Available The coupled interaction of long standing hydrodynamic waves with a deformable non-Newtonian seabed is examined using a two-layer model for which the upper layer fluid is inviscid and the lower layer is bi-viscous. The two-dimensional response of the system to forcing by a predominantly longitudinal (cross-shore standing wave perturbed by a small transverse (along-shore component is determined. With a constant yield stress in the bi-viscous lower layer, there is little amplification of these transverse per-turbations and the model response typically remains quasi-one-dimensional. However, for a bi-viscous layer with a pressure-dependent yield stress (which represents the effect that the seabed deforms less readily under compression and hence renders the rheology history dependent, the initially small transverse motions are amplified in some parameter regimes and two-dimensional, permanent bedforms are formed in the lower layer. This simple dynamical model is, therefore, able to explain the formation of permanent bedforms with significant cross- and along-shore features by predominantly cross-shore standing wave forcing.
Causality in Europeanization Research
DEFF Research Database (Denmark)
Lynggaard, Kennet
2012-01-01
to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality...... of discursive causalities towards more substantive claims of causality between EU policy and institutional initiatives and domestic change....
Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2016-07-01
The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).
Viscous dissipation effect on the flow of a thermodependent Herschel-Bulkley fluid
Directory of Open Access Journals (Sweden)
Labsi Nabila
2015-01-01
Full Text Available The present study concerns the numerical analysis of both hydrodynamic and thermal properties of a Herschel-Bulkley fluid flow in a pipe. The flow, which involves forced heat transfer convection, is steady and takes place within a pipe of circular cross section with uniform wall temperature. The Herschel-Bulkley model with the Papanastasiou regularization is used and flow index values of 1 and 1.5 are considered. The study focuses on the effect of neglecting both viscous dissipation and temperature dependence of the fluid consistency on its hydrodynamic and thermal properties. For that purpose, we investigate both wall heating (Br0 as well as the exponential temperature dependence of the consistency. The results show that neglecting both of these parameters results in more than a 50% underestimation of the heat transfer due to the viscous nature of this kind of fluid.
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Viscous entrainment on hairy surfaces
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
Flow harmonics from self-consistent particlization of a viscous fluid
Wolff, Zack; Molnar, Denes
2017-10-01
The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity η /s , typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics + transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freeze-out to quantify the effects on anisotropic flow coefficients vn(pT) at the energies available at both the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Expanding upon our previous flow harmonics studies [D. Molnar and Z. Wolff, Phys. Rev. C 95, 024903 (2017), 10.1103/PhysRevC.95.024903; Z. Wolff and D. Molnar, J. Phys.: Conf. Ser. 535, 012020 (2014), 10.1088/1742-6596/535/1/012020], we calculate pion and proton v2(pT) , v4(pT) , and v6(pT) , but here we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations. For additive quark model cross sections and relative phase-space corrections with p3 /2 momentum dependence rather than the quadratic Grad form, we find at moderately high transverse momentum noticeably higher v4(pT) and v6(pT) for protons than for pions. In addition, the value of η /s deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive "democratic Grad" form of freeze-out distributions. To facilitate the use of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient parametrizations of the corrections for the various hadron species.
Pan, Ronghua; Zhou, Yi; Zhu, Yi
2018-02-01
In this paper, we study the global existence of classical solutions to the three dimensional incompressible viscous magneto-hydrodynamical system without magnetic diffusion on periodic boxes, that is, with periodic boundary conditions. We work in Eulerian coordinates and employ a time-weighted energy estimate to prove the global existence result, under the assumptions that the initial magnetic field is close enough to an equilibrium state and the initial data have some symmetries.
Elasto-hydrodynamic lubrication
Dowson, D; Hopkins, D W
1977-01-01
Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
The hydrodynamics of swimming microorganisms
Energy Technology Data Exchange (ETDEWEB)
Lauga, Eric [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411 (United States); Powers, Thomas R [Division of Engineering, Brown University, Providence, RI 02912-9104 (United States)], E-mail: elauga@ucsd.edu, E-mail: Thomas_Powers@brown.edu
2009-09-15
Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.
The hydrodynamics of swimming microorganisms
International Nuclear Information System (INIS)
Lauga, Eric; Powers, Thomas R
2009-01-01
Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.
Bouras, I.; El, A.; Fochler, O.; Lauciello, F.; Reining, F.; Uphoff, J.; Wesp, C.; Molnar, E.; Niemi, H.; Xu, Z.; Greiner, C.
2011-01-01
Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system η/s approx 0.005, leading to the observation of cone-like structures. Increasing the dissipation of the system to η/s approx 0.32 the Mach Cone structure vanishes. Furthermore, we investigate jet-associated particle correlations. A double-peak structure, as observed in experimental data, is even for low-dissipative systems not supported, because of the large influence of the head shock.
Energy Technology Data Exchange (ETDEWEB)
Bouras, I; El, A; Fochler, O; Lauciello, F; Reining, F; Uphoff, J; Wesp, C; Xu, Z; Greiner, C [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitat, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Molnar, E; Niemi, H, E-mail: bouras@th.physik.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany)
2011-01-01
Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system {eta}/s {approx} 0.005, leading to the observation of cone-like structures. Increasing the dissipation of the system to {eta}/s {approx} 0.32 the Mach Cone structure vanishes. Furthermore, we investigate jet-associated particle correlations. A double-peak structure, as observed in experimental data, is even for low-dissipative systems not supported, because of the large influence of the head shock.
International Nuclear Information System (INIS)
Bouras, I; El, A; Fochler, O; Lauciello, F; Reining, F; Uphoff, J; Wesp, C; Xu, Z; Greiner, C; Molnar, E; Niemi, H
2011-01-01
Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system η/s ∼ 0.005, leading to the observation of cone-like structures. Increasing the dissipation of the system to η/s ∼ 0.32 the Mach Cone structure vanishes. Furthermore, we investigate jet-associated particle correlations. A double-peak structure, as observed in experimental data, is even for low-dissipative systems not supported, because of the large influence of the head shock.
Causality in Classical Physics
Indian Academy of Sciences (India)
IAS Admin
Classical physics encompasses the study of phys- ical phenomena which range from local (a point) to nonlocal (a region) in space and/or time. We discuss the concept of spatial and temporal non- locality. However, one of the likely implications pertaining to nonlocality is non-causality. We study causality in the context of ...
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Directory of Open Access Journals (Sweden)
Sanghyeon Kim
2018-02-01
Full Text Available In this study, cavitation flow around a hydrofoil and its radiated hydro-acoustic fields were numerically investigated, with an emphasis on the effects of viscous flux vectors. The full three-dimensional unsteady compressible Reynolds-averaged Navier–Stokes equations were numerically solved. The mass transfer model was adopted to model phase changes between liquid water and vapor. To resolve the numerical instability problem arising from the rapid changes in local density and speed of sound of the mixture, the preconditioning and dual-time stepping methods were employed. The filter-based turbulent model was applied to resolve the unstable cavitation flow field more accurately. In splitting the viscous terms, three approaches for dealing with viscous flux vectors were considered: the so-called viscous lagging, full viscous, and thin-layer models. Radiated hydro-acoustic waves were predicted by applying the Ffowcs Williams and Hawkings equations. The effects of the viscous flux vectors on the predicted flow fields and its radiated noise were then examined by comparing the hydro-dynamic forces, velocity distribution, volume fraction, far-field sound directivities, and sound spectrum of the three approaches. The results revealed that the thin-layer model can provide predictions as accurate as the full viscous model, but required less computational time.
DEFF Research Database (Denmark)
Nielsen, Max; Jensen, Frank; Setälä, Jari
2011-01-01
to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological......This article focuses on causality in demand. A methodology where causality is imposed and tested within an empirical co-integrated demand model, not prespecified, is suggested. The methodology allows different causality of different products within the same demand system. The methodology is applied...... implication is that more explicit focus on causality in demand analyses provides improved information. The results suggest that frozen trout forms part of a large European whitefish market, where prices of fresh trout are formed on a relatively separate market. Redfish is a substitute on both markets...
Directory of Open Access Journals (Sweden)
Ämin Baumeler
2017-07-01
Full Text Available Computation models such as circuits describe sequences of computation steps that are carried out one after the other. In other words, algorithm design is traditionally subject to the restriction imposed by a fixed causal order. We address a novel computing paradigm beyond quantum computing, replacing this assumption by mere logical consistency: We study non-causal circuits, where a fixed time structure within a gate is locally assumed whilst the global causal structure between the gates is dropped. We present examples of logically consistent non-causal circuits outperforming all causal ones; they imply that suppressing loops entirely is more restrictive than just avoiding the contradictions they can give rise to. That fact is already known for correlations as well as for communication, and we here extend it to computation.
Moving least-squares corrections for smoothed particle hydrodynamics
Directory of Open Access Journals (Sweden)
Ciro Del Negro
2011-12-01
Full Text Available First-order moving least-squares are typically used in conjunction with smoothed particle hydrodynamics in the form of post-processing filters for density fields, to smooth out noise that develops in most applications of smoothed particle hydrodynamics. We show how an approach based on higher-order moving least-squares can be used to correct some of the main limitations in gradient and second-order derivative computation in classic smoothed particle hydrodynamics formulations. With a small increase in computational cost, we manage to achieve smooth density distributions without the need for post-processing and with higher accuracy in the computation of the viscous term of the Navier–Stokes equations, thereby reducing the formation of spurious shockwaves or other streaming effects in the evolution of fluid flow. Numerical tests on a classic two-dimensional dam-break problem confirm the improvement of the new approach.
Dynamic wetting with viscous Newtonian and non-Newtonian fluids
International Nuclear Information System (INIS)
Wei, Y; Garoff, S; Rame, E; Walker, L M
2009-01-01
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.
Thermodynamics from an observer's viewpoint (on the example of the viscous fluid)
Belevich, M.
2014-05-01
The development of the non-equilibrium thermodynamics without local equilibrium hypothesis is considered. The theory is based on the causal mechanics of the heat conducting continuum, which includes the 1st law of thermodynamics as a theorem. The conditions of applicability of the 2nd law of thermodynamics and the dissipation of the kinetic energy problem are discussed. The reasoning is carried out in the framework of the causal model of the viscous fluid. Main conclusions are illustrated using examples from the numerical analysis.
Viscous Design of TCA Configuration
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Causality and headache triggers
Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.
2013-01-01
Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872
Viscous forces and bulk viscoelasticity near jamming
Baumgarten, K.; Tighe, B.P.
2017-01-01
When weakly jammed packings of soft, viscous, non-Brownian spheres are probed mechanically, they respond with a complex admixture of elastic and viscous effects. While many of these effects are understood for specific, approximate models of the particles' interactions, there are a number of proposed
Low moduli elastomers with low viscous dissipation
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard
2012-01-01
A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema.......A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....
Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu
2015-09-01
The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.
Dynamics and causality constraints
International Nuclear Information System (INIS)
Sousa, Manoelito M. de
2001-04-01
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)
Dong, Guanyu
2018-03-01
In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.
Energy Technology Data Exchange (ETDEWEB)
Paatelainen, R.; Eskola, K.J. [Department of Physics, P.O.Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Holopainen, H. [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Niemi, H. [Department of Physics, P.O.Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Tuominen, K. [Department of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland)
2014-06-15
We calculate initial conditions for the hydrodynamical evolution in ultrarelativistic heavy-ion collisions at the LHC and RHIC in an improved next-to-leading order perturbative QCD + saturation framework. Using viscous relativistic hydrodynamics, we show that we obtain a good simultaneous description of the centrality dependence of charged particle multiplicities, transverse momentum spectra and elliptic flow at the LHC and at RHIC. In particular, we discuss how the temperature dependence of the shear viscosity is constrained by these data.
Rideout, D P
2001-01-01
The Causal Set approach to quantum gravity asserts that spacetime, at its smallest length scale, has a discrete structure. This discrete structure takes the form of a locally finite order relation, where the order, corresponding with the macroscopic notion of spacetime causality, is taken to be a fundamental aspect of nature. After an introduction to the Causal Set approach, this thesis considers a simple toy dynamics for causal sets. Numerical simulations of the model provide evidence for the existence of a continuum limit. While studying this toy dynamics, a picture arises of how the dynamics can be generalized in such a way that the theory could hope to produce more physically realistic causal sets. By thinking in terms of a stochastic growth process, and positing some fundamental principles, we are led almost uniquely to a family of dynamical laws (stochastic processes) parameterized by a countable sequence of coupling constants. This result is quite promising in that we now know how to speak of dynamics ...
A quantum causal discovery algorithm
Giarmatzi, Christina; Costa, Fabio
2018-03-01
Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.
Causal inference in econometrics
Kreinovich, Vladik; Sriboonchitta, Songsak
2016-01-01
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
Perceptual causality in children.
Schlottmann, Anne; Allen, Deborah; Linderoth, Carina; Hesketh, Sarah
2002-01-01
Three experiments considered the development of perceptual causality in children from 3 to 9 years of age (N = 176 in total). Adults tend to see cause and effect even in schematic, two-dimensional motion events: Thus, if square A moves toward B, which moves upon contact, they report that A launches B--physical causality. If B moves before contact, adults report that B tries to escape from A--social or psychological causality. A brief pause between movements eliminates such impressions. Even infants in the first year of life are sensitive to causal structure in both contact and no-contact events, but previous research with talking-age children found poor verbal reports. The present experiments used a picture-based forced-choice task to reduce linguistic demands. Observers saw eight different animations involving squares A and B. Events varied in whether or not these agents made contact; whether or not there was a delay at the closest point; and whether they moved rigidly or with a rhythmic, nonrigid "caterpillar" motion. Participants of all ages assigned events with contact to the physical domain and events without contact to the psychological domain. In addition, participants of all ages chose causality more often for events without delay than with delay, but these events became more distinct over the preschool range. The manipulation of agent motion had only minor and inconsistent effects across studies, even though children of all ages considered only the nonrigid motion to be animal-like. These results agree with the view that perceptual causality is available early in development.
Thermal rectification based on phonon hydrodynamics and thermomass theory
Directory of Open Access Journals (Sweden)
Dong Yuan
2016-06-01
Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.
Stabilization of miscible viscous fingering by a step-growth polymerization reaction
Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John
2017-11-01
Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
Hydrodynamic Vortex on Surfaces
Ragazzo, Clodoaldo Grotta; de Barros Viglioni, Humberto Henrique
2017-10-01
The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green's function on the surface. The uniqueness of the Green's function is established under hydrodynamic conditions at the surface's boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler's equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move ("Steady Vortex Metric"). Some examples of surfaces with steady vortex metric isometrically embedded in R^3 are presented.
Influence of viscous loads on motor planning.
Thoroughman, Kurt A; Wang, Wei; Tomov, Dimitre N
2007-08-01
Here we computationally investigate how encumbering the hand could alter predictions made by the minimum torque change (MTC) and minimum endpoint variance hypotheses (MEPV) of movement planning. After minutes of training, people have made arm trajectories in a robot-generated viscous force field that were similar to previous baseline trajectories without the force field. We simulate the human arm interacting with this viscous load. We found that the viscous forces clearly differentiated MTC and MEPV predictions from both minimum-jerk predictions and from human behavior. We conclude that learned behavior in the viscous environment could arise from minimizing kinematic costs but could not arise from a minimization of either torque change or endpoint variance.
A viscous blast-wave model for high energy heavy-ion collisions
Directory of Open Access Journals (Sweden)
Jaiswal Amaresh
2016-01-01
Full Text Available Employing a viscosity-based survival scale for initial geometrical perturbations formed in relativistic heavy-ion collisions, we model the radial flow velocity at freeze-out. Subsequently, we use the Cooper-Frye freeze-out prescription, with viscous corrections to the distribution function, to extract the transverse momentum dependence of particle yields and flow harmonics. We fit the model parameters for central collisions, by fitting the spectra of identified particles at the Large Hadron Collider (LHC, and estimate them for other centralities using simple hydrodynamic relations. We use the results of Monte Carlo Glauber model for initial eccentricities. We demonstrate that this improved viscous blast-wave model leads to good agreement with transverse momentum distribution of elliptic and triangular flow for all centralities and estimate the shear viscosity to entropy density ratio η/s ≃ 0.24 at the LHC.
Czech Academy of Sciences Publication Activity Database
Hvorecký, Juraj
2012-01-01
Roč. 19, Supp.2 (2012), s. 64-69 ISSN 1335-0668 R&D Projects: GA ČR(CZ) GAP401/12/0833 Institutional support: RVO:67985955 Keywords : conciousness * free will * determinism * causality Subject RIV: AA - Philosophy ; Religion
Explaining through causal mechanisms
Biesbroek, Robbert; Dupuis, Johann; Wellstead, Adam
2017-01-01
This paper synthesizes and builds on recent critiques of the resilience literature; namely that the field has largely been unsuccessful in capturing the complexity of governance processes, in particular cause–effects relationships. We demonstrate that absence of a causal model is reflected in the
Hydrodynamic Cavitation Reactors contd…
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Hydrodynamic Cavitation Reactors contd… Reservoir: 10 L capacity. Centrifugal Pump :1.5kW). Orifice plate (different configurations in terms of number and diameter of the holes). Bypass line (for controlling the inlet pressure and the flow rate into the cavitation ...
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
Initial value problem for Rayleigh--Taylor instability of viscous fluids
International Nuclear Information System (INIS)
Menikoff, R.; Mjolsness, R.C.; Sharp, D.H.; Zemach, C.; Doyle, B.J.
1978-01-01
The initial value problem associated with the development of small amplitude disturbances in Rayleigh--Taylor unstable, viscous, incompressible fluids is studied. Solutions to the linearized equations of motion which satisfy general initial conditions are obtained in terms of Fourier--Laplace transforms of the hydrodynamic variables, without restriction on the density or viscosity of either fluid. When the two fluids have equal kinematic viscosities, these transforms can be inverted explicitly to express the fluid variables as integrals of Green's functions multiplied by initial data. In addition to normal modes, a set of continuum modes, not treated explicitly in the literature, makes an important contribution to the development of the fluid motion
Optimal causal inference: estimating stored information and approximating causal architecture.
Still, Susanne; Crutchfield, James P; Ellison, Christopher J
2010-09-01
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.
Improvements of Critical Heat Flux Models Based on the Viscous Potential Flow Theory
International Nuclear Information System (INIS)
Kim, Byoung Jae; Lee, Jong Hyuk; Kim, Kyung Doo
2014-01-01
The absence of fluid viscosities in most existing models may be attributed to the fact that inviscid flow analyses are performed for the model development. For example, the hydrodynamic theory and macrolayer dryout models rely on the Rayleigh-Taylor, Kelvin-Helmholtz, and capillary instabilities for inviscid fluids. However, as the viscosities of two fluids become closer, none of them cannot be neglected. Moreover, the gas viscosity effect cannot be neglected on the condition that the gas layer is thin. Nevertheless, the previous studies neglected the viscous effect. Recently, Kim et al. showed that for the model development of critical heat flux and minimum film boiling, the Rayleigh-Taylor instability should be analyzed with a thin layer of viscous gas instead of a thick layer of inviscid gas. The decrease of the most unstable wavelength was shown to improve the prediction accuracy of critical heat flux models for various fluids, particularly at elevated pressures. In addition, the most dangerous wavelength and the most rapid growth rate for viscous thin films are shown to be applicable to the minimum heat flux condition. Kim et al. touch only the most unstable wavelength for developing critical heat flux models. The critical heat flux is inversely proportional to the square root of the most unstable wavelength (Zuber, Guan et al). Here, we notice that the existing critical heat flux models make use of the Kelvin-Helmholtz instability of inviscid flows. The Kelvin-Helmholtz instability determines the maximum vapor escape velocity (Zuber) and the initial liquid macrolayer thickness (Haramura and Katto). Therefore, there is a room for improving the prediction accuracy by the help of the Kelvin-Helmholtz instability of viscous fluids. The Kelvin-Helmholtz instability arises when the different fluid layers are in relative motion. Usually, a uniform flow is considered in each fluid layer, allowing a velocity discontinuity at the interface. Therefore, in general, the
International Nuclear Information System (INIS)
Lucas, J.R.
1984-01-01
Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)
Operator ordering and causality
Plimak, L. I.; Stenholm, S. T.
2011-01-01
It is shown that causality violations [M. de Haan, Physica 132A, 375, 397 (1985)], emerging when the conventional definition of the time-normal operator ordering [P.L.Kelley and W.H.Kleiner, Phys.Rev. 136, A316 (1964)] is taken outside the rotating wave approximation, disappear when the amended definition [L.P. and S.S., Annals of Physics, 323, 1989 (2008)] of this ordering is used.
A weakly-compressible Cartesian grid approach for hydrodynamic flows
Bigay, P.; Oger, G.; Guilcher, P.-M.; Le Touzé, D.
2017-11-01
The present article aims at proposing an original strategy to solve hydrodynamic flows. In introduction, the motivations for this strategy are developed. It aims at modeling viscous and turbulent flows including complex moving geometries, while avoiding meshing constraints. The proposed approach relies on a weakly-compressible formulation of the Navier-Stokes equations. Unlike most hydrodynamic CFD (Computational Fluid Dynamics) solvers usually based on implicit incompressible formulations, a fully-explicit temporal scheme is used. A purely Cartesian grid is adopted for numerical accuracy and algorithmic simplicity purposes. This characteristic allows an easy use of Adaptive Mesh Refinement (AMR) methods embedded within a massively parallel framework. Geometries are automatically immersed within the Cartesian grid with an AMR compatible treatment. The method proposed uses an Immersed Boundary Method (IBM) adapted to the weakly-compressible formalism and imposed smoothly through a regularization function, which stands as another originality of this work. All these features have been implemented within an in-house solver based on this WCCH (Weakly-Compressible Cartesian Hydrodynamic) method which meets the above requirements whilst allowing the use of high-order (> 3) spatial schemes rarely used in existing hydrodynamic solvers. The details of this WCCH method are presented and validated in this article.
Viscous investigation of a flapping foil propulsor
Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat
2018-01-01
Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.
Measurement of flow in viscous fluids
Energy Technology Data Exchange (ETDEWEB)
Mills, Chris [NEL Technology for Life (Mexico)
2011-07-01
Taking accurate flow measurements of viscous fluids can prove to be a difficult task. The process faces a number of challenges which include pressure losses, varying velocity profiles, higher viscous friction, and the presence of solids or gas. In this presentation NEL, holder of UK's National Standards for flow measurement, shares a test that was conducted to identify the influencing factors of flow measurements for viscous fluids. The test, which was conducted at NEL's National Standards oil flow facility, utilizes three test meters. The first test meter used was a multi-path ultrasonic meter, the other two were twin-tube coriolis meters of different sizes. Readings were taken from each meter for kerosene and primol at varying degrees of viscosity. Adjustments in flowrate and temperature were also made and recorded throughout the test. From the tests, NEL was able to generate data regarding the factors impacting mass flowrate, density, and pressure.
Hydrodynamics of insect spermatozoa
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
Ten themes of viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, J. C.
2007-01-01
Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields......, stress tensor fields, potential energy density field, and fields quantifying molecular orientations. One characteristic aspect of the theory is that density has the appearance of a non-conserved field. Another characteristic feature is the long-wavelength dominance of the dynamics, which not only...
A Blast Wave Model With Viscous Corrections
Yang, Z.; Fries, R. J.
2017-04-01
Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.
Numerical simulation of viscous transonic airfoil flows
Coakley, Thomas J.
1987-01-01
Numerical simulations of transonic airfoil flows using the Reynolds-averaged Navier-Stokes equations and various turbulence models are presented and compared with experimental data. Three different airfoils were investigated under varying flow conditions ranging from subcritical unseparated flows to supercritical separated flows. The turbulence models investigated consisted of three zero-equation models and one two-equation model. For unseparated flows involving weak viscous-inviscid interactions, the four models were comparable in their agreement with experiment. For separated flows involving strong viscous-inviscid interactions, the nonequilibrium zero-equation model of Johnson and King gave the best overall agreement with experiment.
A realistic 3+1D Viscous Hydro Algorithm
Energy Technology Data Exchange (ETDEWEB)
Romatschke, Paul [Univ. of Colorado, Boulder, CO (United States)
2015-05-31
DoE funds were used as bridge funds for the faculty position for the PI at the University of Colorado. The total funds for the Years 3-5 of the JET Topical Collaboration amounted to about 50 percent of the academic year salary of the PI.The PI contributed to the JET Topical Collaboration by developing, testing and applying algorithms for a realistic simulation of the bulk medium created in relativistic ion collisions.Specifically, two approaches were studied, one based on a new Lattice-Boltzmann (LB) framework, and one on a more traditional viscous hydro-dynamics framework. Both approaches were found to be viable in principle, with the LB approach being more elegant but needing still more time to develop.The traditional approach led to the super-hybrid model of ion collisions dubbed 'superSONIC', and has been successfully used for phenomenology of relativistic heavy-ion and light-on-heavy-ion collisions.In the time-frame of the JET Topical Collaboration, the Colorado group has published 15 articles in peer-reviewed journals, three of which were published in Physical Review Letters. The group graduated one Master student during this time-frame and two more PhD students are expected to graduate in the next few years. The PI has given more than 28 talks and presentations during this period.
Viscous constraints on squirmer microswimmers approaching suspended particles
Jabbarzadeh, Mehdi; Fu, Henry C.
2015-11-01
Microscopic self-propelled organisms often approach other particles to capture food, mate, or find new environments. The viscous Stokes flow around these small organisms push away particles, severely hindering approach. Previously, we investigated approach hydrodynamics by modeling a swimming organism as a sphere pushed by a constant force towards a force-free spherical target particle. We measured approach efficiency by examining how far the swimmer must travel before getting close to the target. For targets which are of bigger or comparable size to the swimmer, the swimmer travels less than 1.5 times the initial separation distance; for smaller targets the swimmer must travel farther, making approach infeasible. The constant force reliably models propulsion by a flagellum, but many microorganisms feed by using cilia-coated surfaces for propulsion or generation of feeding currents. Therefore, here we consider a force-free spherical squirmer model for the swimmer approaching a spherical force-free target particle. For squirmers, the ``squirmer parameter'' distinguishes whether the swimmer is a puller or pusher. We find that pullers can always approach any size target and a larger squirmer parameter will generate a stronger feeding current leading to less traveled distance. On the other hand, pushers approach targets only when the squirmer parameter is less than 1; for values larger than 1, the swimmer cannot get close to the target.
Wissner-Gross, A. D.; Freer, C. E.
2013-04-01
Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization, but no formal physical relationship between them has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can cause two defining behaviors of the human “cognitive niche”—tool use and social cooperation—to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a nonequilibrium process in open systems.
Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.
Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind
2018-01-26
Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Shape and stability of a viscous thread
DEFF Research Database (Denmark)
Bohr, Tomas; Senchenko, Sergey
2005-01-01
When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters. We discuss the shape of such liquid threads and their surprising stability...
Remarks on the brachistochrone with viscous friction
Jones, S. E.; Antanackovic, T. M.; Dehn, M.
1988-08-01
The classical brachistochrone with viscous friction is discussed within the context of some recent observations. It is pointed out that in certain instances the end-point conditions cannot be used directly to find the constants of integration. Additional formulae are provided which account for these exceptional cases.
Bulk viscous cosmology in early Universe
Indian Academy of Sciences (India)
the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe. Keywords. Cosmology; viscous Universe; radiation phase; inflationary ...
Hydrodynamic and hydromagnetic stability
Chandrasekhar, S
1981-01-01
Dr. Chandrasekhar's book received high praise when it first appeared in 1961 as part of Oxford University Press' International Series of Monographs on Physics. Since then it has been reprinted numerous times in its expensive hardcover format. This first lower-priced, sturdy paperback edition will be welcomed by graduate physics students and scientists familiar with Dr. Chandrasekhar's work, particularly in light of the resurgence of interest in the Rayleigh-Bénard problem. This book presents a most lucid introduction to the Rayleigh-Bénard problem: it has also been applauded for its thorough, clear coverage of the theory of instabilities causing convection. Dr. Chandrasekhar considers most of the typical problems in hydromagnetic stability, with the exception of viscous shear flow; a specialized domain deserving a book unto itself. Contents include: Rotation; Stability of More General Flows; Bénard Problem; Gravitational Equilibrium and Instability; Stability of a Magnetic Field; Thermal Instability of a L...
How to fake hydrodynamic signals
Energy Technology Data Exchange (ETDEWEB)
Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States)
2016-12-15
Flow signatures in experimental data from relativistic ion collisions, are usually interpreted as a fingerprint of the presence of a hydrodynamic phase during the evolution of these systems. I review some theoretical ideas to ‘fake’ this hydrodynamic behavior in p+A and A+A collisions. I find that transverse flow and femtoscopic measurements can easily be forged through non-hydrodynamic evolution, while large elliptic flow requires some non-vanishing interactions in the hot phase.
Foundations of radiation hydrodynamics
Mihalas, Dimitri
1999-01-01
Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,
Hydrodynamics of superfluid crystals
International Nuclear Information System (INIS)
Vardanyan, G.A.; Papoyan, K.V.; Sedrakyan, D.M.
1984-01-01
It is shown that three-velocity hydrodynamics equations describing the properties of a two-condensate crystal determine the low-frequency spectrum with allowance for superfluid drag. The drag on one superfluid component of density rho/sup( s/) 12 from another component of density rho/sup( s/) 22 , gives rise to two branches of vibrations of frequencies ω 1 and ω 2 , unlike the case of a one-condensate crystal. The absorption coefficient for transverse sound in a one-condensate crystal is expressed in terms of the quantum-mechanical characteristic quantity that describes the tunneling of atoms
Stokes’ and Lamb's viscous drag laws
Eames, I.; Klettner, C. A.
2017-03-01
Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.
Describing the dynamics of the Quark-Gluon Plasma using relativistic viscous hydrodynamics
Yarbrough, Katherine Michelle
Shock diamonds occur in over- or under- expanded supersonic flow. They occur in the unsteady jet of a pulse detonation engine, displaying an array of complex features. Due to the highly transient nature of the flow, it must be captured using high-speed cinematography. A study of image processing of shock reflection in unsteady flow is presented. Using a computer-based environment, a method was developed to process images of shock waves to pinpoint where the shock wave starts. Using mathematical methods, such as Abel transforms, a computer code, written in Matlab, was developed to accurately transform the images to detect density distributions in the form of shock waves. The Mach number and specific heat, pressure, temperature, and density ratios were found using shock polars. Evolution of the flow was examined by transforming images to follow the flow patterns. Seven images were selected and analyzed with the methods developed in this thesis. Then a comparison was done by tracking particles seeded in the flow. The particle tracking revealed velocities which were compared to the Mach numbers found using the shock polars.
DEFF Research Database (Denmark)
Park, Kidong; Shim, Jeong; Solovyeva, Vita
2012-01-01
geometries was characterized from resonant frequency and quality factor. In water, the damping increased linearly with the perimeter at 45.4 × 10 Ns/m , until the perforation's radius was 123% ± 13% of the depth of penetration of fluid's oscillation. The added mass effect decreased with perforations...
Energy Technology Data Exchange (ETDEWEB)
Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.
2008-04-21
The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.
Causal inference based on counterfactuals
Directory of Open Access Journals (Sweden)
Höfler M
2005-09-01
Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous ...
Causal Reasoning with Mental Models
2014-08-08
mreasoner/. 445 In broad terms, three strands of evidence corroborate the model theory of causal deductions. The 446 first strand of evidence bears ...models and causal reasoning Sangeet Khemlani et al. 13 She will not gain weight. 459 Will she not eat protein? 460 The results therefore bear out the... Adele Goldberg, Catrinel Haught, Max Lotstein, Marco Ragni, and Greg 821 Trafton for helpful criticisms. 822 Khemlani et al. Causal reasoning with
Anisotropic nonequilibrium hydrodynamic attractor
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
Nanoscale hydrodynamics near solids
Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid
2018-02-01
Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.
Load responsive hydrodynamic bearing
Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.
2002-01-01
A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.
International Nuclear Information System (INIS)
Johnston, Steven
2009-01-01
We describe a quantum mechanical model for particle propagation on a causal set. The model involves calculating a particle propagator by summing amplitudes assigned to trajectories within the causal set. This 'discrete path integral' is calculated using a matrix geometric series. Amplitudes are given which, when the causal set is generated by sprinkling points into 1+1 or 3+1 Minkowski spacetime, ensure the particle propagator agrees in a suitable sense, with the retarded causal propagator for the Klein-Gordon equation.
Causality Statistical Perspectives and Applications
Berzuini, Carlo; Bernardinell, Luisa
2012-01-01
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr
Modeling the hydrodynamics of Phloem sieve plates.
Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik
2012-01-01
Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons
Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro
2017-10-01
We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
Keywords. Anomalous hydrodynamics; gauge anomaly; gravitational anomaly. PACS No. 47.10.ab. The chiral anomaly has played a ubiquitous role in modern physics. It has found appli- cations in several diverse fields like quantum wires, quantum Hall effect, chiral magnetic effect and anomalous hydrodynamics, to name ...
Black brane entropy and hydrodynamics
Booth, I.; Heller, M.P.; Spaliński, M.
2010-01-01
A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics
Newton solution of inviscid and viscous problems
International Nuclear Information System (INIS)
Venkatakrishnan, V.
1988-01-01
The application of Newton iteration to inviscid and viscous airfoil calculations is examined. Spatial discretization is performed using upwind differences with split fluxes. The system of linear equations which arises as a result of linearization in time is solved directly using either a banded matrix solver or a sparse matrix solver. In the latter case, the solver is used in conjunction with the nested dissection strategy, whose implementation for airfoil calculations is discussed. The boundary conditions are also implemented in a fully implicit manner, thus yielding quadratic convergence. Complexities such as the ordering of cell nodes and the use of a far field vortex to correct freestream for a lifting airfoil are addressed. Various methods to accelerate convergence and improve computational efficiency while using Newton iteration are discussed. Results are presented for inviscid, transonic nonlifting and lifting airfoils and also for laminar viscous cases. 17 references
Solidity of viscous liquids. IV. Density fluctuations
DEFF Research Database (Denmark)
Dyre, J. C.
2006-01-01
This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle...... with Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields...... displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k space of the form C+Dk^2 with D>>C a^2 where a is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which...
Drop dispensing in a viscous outer liquid
Directory of Open Access Journals (Sweden)
Claudiu PATRASCU
2017-12-01
Full Text Available The formation and detachment of Newtonian drops in viscous external liquids is investigated. A global analysis of two necking processes is presented in order to highlight the behavior of such thinning phenomena, when controlled either by inertia or by viscous effects. Moving detached droplets in an immiscible outer liquid were studied in terms of velocity and drop-travel distance. Theoretical predictions are proposed and compared with experimental data for the volume of the drop and for the subsequent dynamics that follow after detachment. Our investigations point out that the drop rapidly achieves constant velocity, the value of it being in a satisfactory agreement with the model. Both the influence of the flow rate and that of the material properties on drop volume are pursued.
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Stability of a falling viscous sheet
Perdigou, Claude; Pfingstag, Gilles; Audoly, Basile; Boudaoud, Arezki
2013-03-01
Falling films can be found in various processes of the food, glass and polymer industry. We study thin viscous films flowing vertically under the action of gravity, when poured from a slit. The lateral sides are unconstrained and the stretching effect of gravity induces a narrowing of the film in the horizontal direction, by Poisson's effect. This leads to compressive stress for some range of parameters, and we study the associated viscous buckling instabilities. A local stability analysis is used to characterized the flow parameters leading to potential instabilities. A global stability analysis is carried out, and an eigenvalue problem is solved numerically. This is implemented using the finite-element method with high order derivatives.
Hydrodynamics of Peristaltic Propulsion
Athanassiadis, Athanasios; Hart, Douglas
2014-11-01
A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.
International Nuclear Information System (INIS)
Koehler, H.S.
1983-01-01
The Time-Dependent Hartree-Fock theory provides a microscopic approach to the scattering of heavy ions. Fundamental in this theory is a mean-(one-body) field. The calculation of this field from a two-body effective interaction makes the theory microscopic. Many-body effects are included by the Brueckner definition of this interaction; the reaction-matrix. In excited media it is in general complex allowing for decays. The imaginary part relates directly to the collision-term in a transport equation. We treat this term by the time-relaxation-method. This implies an extension of the TDHF-equation to include two-body collisions. Hydrodynamic equations are derived from this new equation. The solution of the two equations agree quantitatively for short-relaxation-times. Relaxation-times are calculated as a function of temperature. (orig.)
Hydrodynamic effects on coalescence.
Energy Technology Data Exchange (ETDEWEB)
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Hydrodynamic interactions between two forced objects of arbitrary shape. I. Effect on alignment
Goldfriend, Tomer; Diamant, Haim; Witten, Thomas A.
2015-12-01
We study the properties and symmetries governing the hydrodynamic interaction between two identical, arbitrarily shaped objects, driven through a viscous fluid. We treat analytically the leading (dipolar) terms of the pair-mobility matrix, affecting the instantaneous relative linear and angular velocities of the two objects at large separation. We prove that the instantaneous hydrodynamic interaction linearly degrades the alignment of asymmetric objects by an external time-dependent drive [B. Moths and T. A. Witten, "Full alignment of colloidal objects by programed forcing," Phys. Rev. Lett. 110, 028301 (2013)]. The time-dependent effects of hydrodynamic interactions are explicitly demonstrated through numerically calculated trajectories of model alignable objects composed of four stokeslets. In addition to the orientational effect, we find that the two objects usually repel each other. In this case, the mutual degradation weakens as the two objects move away from each other, and full alignment is restored at long times.
Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions
Floerchinger, Stefan
2013-01-01
Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy-ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wave length and that they can be propagated mode-by-mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.
Friederich, Simon
There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell's criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the
Expert Causal Reasoning and Explanation.
Kuipers, Benjamin
The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…
Introduction to causal dynamical triangulations
DEFF Research Database (Denmark)
Görlich, Andrzej
2013-01-01
The method of causal dynamical triangulations is a non-perturbative and background-independent approach to quantum theory of gravity. In this review we present recent results obtained within the four dimensional model of causal dynamical triangulations. We describe the phase structure of the mode...
Covariation in Natural Causal Induction.
Cheng, Patricia W.; Novick, Laura R.
1991-01-01
Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)
Waves of pressure in viscous incompressible fluid
Prosviryakov, E. Yu.
2017-12-01
A three-dimensional non-stationary flow of a viscous incompressible fluid in the infinite space is examined. The description of possible shapes of pressure is based on the equation for the axial component of velocity, which is an exact consequence of the basic equations. New analytical exact solutions to the Navier-Stokes equations for periodic and localized traveling waves have been found.
Time dependent viscous string cloud cosmological models
Tripathy, S. K.; Nayak, S. K.; Sahu, S. K.; Routray, T. R.
2009-09-01
Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.
Hydrodynamics of sediment threshold
Ali, Sk Zeeshan; Dey, Subhasish
2016-07-01
A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
Foam rheology: a model of viscous phenomena
International Nuclear Information System (INIS)
Kraynik, A.M.; Hansen, M.G.
1987-01-01
A theoretical model for foam rheology that includes viscous forces is developed by considering the deformation of two-dimensional, spatially periodic cells in simple shearing and planar extensional flow. The undeformed hexagonal cells are separated by thin liquid films. Plateau border curvature and liquid drainage between films is neglected. Interfacial tension and viscous tractions due to stretching lamellar liquid determine the individual film tensions. The network motion is described by a system of nonlinear ordinary differential equations for which numerical solutions are obtained. Coalescense and disproportionation of Plateau borders results in the relative separation of cells and provides a mechanism for yielding and flow. This process is assumed to occur when a film's length reduces to its thickness. The time and position dependence of the cell-scale dynamics are computed explicitly. The effective continuum stress of the foam is described by instantaneous and time-averaged quantities. The capillary number, a dimensionless deformation rate, represents the relative importance of viscous and surface tension effects. The small-capillary-number or quasistatic response determines a yield stress. The dependence of the shear and normal stress material functions upon deformation rate, foam structure and physical properties is determined. A plausible mechanism for shear-induced material failure, which would determine a shear strength, is revealed for large capillary numbers. The mechanism involves large cell distortion and film thinning, which provide favorable conditions for film rupture
Viscous Glass Sealants for SOFC Applications
Energy Technology Data Exchange (ETDEWEB)
Scott Misture
2012-09-30
Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850Â°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650Â°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.
Paradoxical Behavior of Granger Causality
Witt, Annette; Battaglia, Demian; Gail, Alexander
2013-03-01
Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen
International Nuclear Information System (INIS)
Crawford, G.N.
1981-01-01
The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm
Energy Technology Data Exchange (ETDEWEB)
Steinberg, Aephraim M. [Institute for Experimental Physics, University of Vienna, Vienna (Austria)
2003-12-01
Experiment confirms that information cannot be transmitted faster than the speed of light. Ever since Einstein stated that nothing can travel faster than light, physicists have delighted in finding exceptions. One after another, observations of such 'superluminal' propagation have been made. However, while some image or pattern- such as the motion of a spotlight projected on a distant wall - might have appeared to travel faster than light, it seemed that there was no way to use the superluminal effect to transmit energy or information. In recent years, the superluminal propagation of light pulses through certain media has led to renewed controversy. In 1995, for example, Guenther Nimtz of the University of Cologne encoded Mozart's 40th Symphony on a microwave beam, which he claimed to have transmitted at a speed faster than light. Others maintain that such a violation of Einstein's speed limit would wreak havoc on our most fundamental ideas about causality, allowing an effect to precede its cause. Relativity teaches us that sending a signal faster than light would be equivalent to sending it backwards in time. (U.K.)
Neural Correlates of Causal Power Judgments
Directory of Open Access Journals (Sweden)
Denise Dellarosa Cummins
2014-12-01
Full Text Available Causal inference is a fundamental component of cognition and perception. Probabilistic theories of causal judgment (most notably causal Bayes networks derive causal judgments using metrics that integrate contingency information. But human estimates typically diverge from these normative predictions. This is because human causal power judgments are typically strongly influenced by beliefs concerning underlying causal mechanisms, and because of the way knowledge is retrieved from human memory during the judgment process. Neuroimaging studies indicate that the brain distinguishes causal events from mere covariation, and between perceived and inferred causality. Areas involved in error prediction are also activated, implying automatic activation of possible exception cases during causal decision-making.
Principal stratification in causal inference.
Frangakis, Constantine E; Rubin, Donald B
2002-03-01
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.
SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)
2016-12-20
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Special Relativistic Hydrodynamics with Gravitation
Hwang, Jai-chan; Noh, Hyerim
2016-12-01
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Causal boundary for stably causal space-times
International Nuclear Information System (INIS)
Racz, I.
1987-12-01
The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs
Discrete causal theory emergent spacetime and the causal metric hypothesis
Dribus, Benjamin F
2017-01-01
This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Okazaki, A. T.; Bate, M. R.; Ogilvie, G. I.; Pringle, J. E.
2002-01-01
We study the viscous effects on the interaction between the coplanar Be-star disc and the neutron star in Be/X-ray binaries, using a three-dimensional, smoothed particle hydrodynamics code. For simplicity, we assume the Be disc to be isothermal at the temperature of half the stellar effective temperature. In order to mimic the gas ejection process from the Be star, we inject particles with the Keplerian rotation velocity at a radius just outside the star. Both Be star and neutron star are tre...
Engineering Hydrodynamic AUV Hulls
Allen, J.
2016-12-01
AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.
Advanced in Macrostatistical Hydrodynamics
International Nuclear Information System (INIS)
Graham, A.L.; Tetlow, N.; Abbott, J.R.; Mondy, L.S.; Brenner, H.
1993-01-01
An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small (Macrostatistical Hydrodynamics). First, we describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. We also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about the microstructure and boundary effects in concentrated suspensions
Lotic Water Hydrodynamic Model
Energy Technology Data Exchange (ETDEWEB)
Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-23
Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.
Hydrodynamics of electrons in graphene
Lucas, Andrew; Chung Fong, Kin
2018-02-01
Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.
Felderhof, B. U.
2017-09-01
Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.
Viscous hydrophilic injection matrices for serial crystallography
Directory of Open Access Journals (Sweden)
Gabriela Kovácsová
2017-07-01
Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new
Microjet Generator for Highly Viscous Fluids
Onuki, Hajime; Oi, Yuto; Tagawa, Yoshiyuki
2018-01-01
This paper describes a simple system for generating a highly viscous microjet. The jet is produced inside a wettable thin tube partially submerged in a liquid. The gas-liquid interface inside the tube, which is initially concave, is kept much deeper than that outside the tube. An impulsive force applied at the bottom of a liquid container leads to significant acceleration of the liquid inside the tube followed by flow focusing due to the concave interface. The jet generation process can be divided into two parts that occur in different time scales, i.e., the impact interval [impact duration ≤O (10-4) s ] and the focusing interval [focusing duration ≫O (10-4) s ]. During the impact interval, the liquid accelerates suddenly due to the impact. During the focusing interval, the microjet emerges due to flow focusing. In order to explain the sudden acceleration inside the tube during the impact interval, we develop a physical model based on a pressure impulse approach. Numerical simulations confirm the proposed model, indicating that the basic mechanism of the acceleration of the liquid due to the impulsive force is elucidated. Remarkably, the viscous effect is negligible during the impact interval. In contrast, during the focusing interval, the viscosity plays an important role in the microjet generation. We experimentally and numerically investigate the velocity of microjets with various viscosities. We find that higher viscosities lead to reduction of the jet velocity, which can be described by using the Reynolds number (the ratio between the inertia force and the viscous force). This device may be a starting point for next-generation technologies, such as high-viscosity inkjet printers including bioprinters and needle-free injection devices for minimally invasive medical treatments.
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
for understanding the structure of task-oriented dialogues. Such dialogues locate conversational acts in contexts containing both pending tasks and the acts which bring them about. The ability to infer causal implicatures lets us interleave decisions about "how to sequence actions" with decisions about "when......In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...
Hydrodynamic aspects of flotation separation
Directory of Open Access Journals (Sweden)
Peleka Efrosyni N.
2016-01-01
Full Text Available Flotation separation is mainly used for removing particulates from aqueous dispersions. It is widely used for ore beneficiation and recovering valuable materials. This paper reviews the hydrodynamics of flotation separations and comments on selected recent publications. Units are distinguished as cells of ideal and non-ideal flow. A brief introduction to hydrodynamics is included to explain an original study of the hybrid flotation-microfiltration cell, effective for heavy metal ion removal.
An introduction to astrophysical hydrodynamics
Shore, Steven N
1992-01-01
This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Numerical simulation of hydrodynamic performance of ship under oblique conditions
Directory of Open Access Journals (Sweden)
CHEN Zhiming
2018-02-01
Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.
Yadav, Pramod Kumar
2018-01-01
The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy's law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0, discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.
Zhuravlev, V. M.
2017-09-01
Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.
Directory of Open Access Journals (Sweden)
Ahmed Syed Uzair
2012-09-01
Full Text Available Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.
Viscous flows the practical use of theory
Brenner, Howard
1988-01-01
Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.
Consciousness and the "Causal Paradox"
Velmans, Max
1996-01-01
Viewed from a first-person perspective consciousness appears to be necessary for complex, novel human activity - but viewed from a third-person perspective consciousness appears to play no role in the activity of brains, producing a "causal paradox". To resolve this paradox one needs to distinguish consciousness of processing from consciousness accompanying processing or causing processing. Accounts of consciousness/brain causal interactions switch between first- and third-person perspectives...
Self-consistent Cooper-Frye freeze-out of a viscous fluid to particles
Wolff, Zack; Molnar, Denes
2014-09-01
Comparing hydrodynamic simulations to heavy-ion data inevitably requires the conversion of the fluid to particles. This conversion, typically done in the Cooper-Frye formalism, is ambiguous for viscous fluids. We compute self-consistent phase space corrections by solving the linearized Boltzmann equation and contrast the solutions to those obtained using the ad-hoc "democratic Grad" ansatz typically employed in the literature where coefficients are independent of particle dynamics. Solutions are calculated analytically for a massless gas and numerically for both a pion-nucleon gas and for the general case of a hadron resonance gas. We find that the momentum dependence of the corrections in all systems investigated is best fit by a power close to 3/2 rather than the typically used quadratic ansatz. The effects on harmonic flow coefficients v2 and v4 are substantial, and should be taken into account when extracting medium properties from experimental data.
Directory of Open Access Journals (Sweden)
Habibi Matin Meisam
2014-01-01
Full Text Available Forced convection boundary layer magneto-hydrodynamic (MHD flow of a nanofluid over a permeable stretching plate is studied in this paper. The effects of suction-injection and viscous dissi1pation are taken into account. The nanofluid model includes Brownian motion and thermophoresis effects. The governing momentum, energy and nanofluid solid volume fraction equations are solved numerically using an implicit finite difference scheme known as Keller-box method and the results are compared with available numerical data. The results for the dimensionless velocity, dimensionless temperature, dimensionless nanofluid solid volume fraction, reduced Nusselt and reduced Sherwood numbers are presented illustrating the effects of magnetic parameter, suction-injection parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, Eckert number and Lewis number.
Bundling of elastic filaments induced by hydrodynamic interactions
Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric
2017-12-01
Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long
Direct laser printing using viscous printer's ink
International Nuclear Information System (INIS)
Nasibov, A S; Bagramov, V G; Berezhnoi, K V
2006-01-01
The results of experiments on direct laser printing using viscous printer's ink with the help of a copper vapour laser (CVL)-based device are presented. The highly reflecting CVL cavity mirror was replaced by a spatial mirror modulator (SMM). Viscous printer's ink was used for printing. A pressure pulse produced at the boundary (on which an intensified and diminished image of the SMM was projected) between the ink and a transparency was used for transferring the ink to the plastic card. It was shown that the use of a CVL allowed a maximum printing speed of ∼80 cm 2 s -1 , a resolution of 625 dpi and up to 15 gradations. The dependence of the emission intensity of the element being projected (pixel) on its diameter is studied. It is shown that an increase in the brightness of this element with decreasing its size is caused by the summation of the laser and amplified radiation. (laser applications and other topics in quantum electronics)
Stress relaxation in viscous soft spheres.
Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P
2017-10-04
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Bacterial Swarming: social behaviour or hydrodynamics?
Vermant, Jan
2010-03-01
Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)
Modeling the response of a standard accretion disc to stochastic viscous fluctuations
Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir
2018-01-01
The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.
Causality and analyticity in optics
International Nuclear Information System (INIS)
Nussenzveig, H.M.
In order to provide an overall picture of the broad range of optical phenomena that are directly linked with the concepts of causality and analyticity, the following topics are briefly reviewed, emphasizing recent developments: 1) Derivation of dispersion relations for the optical constants of general linear media from causality. Application to the theory of natural optical activity. 2) Derivation of sum rules for the optical constants from causality and from the short-time response function (asymptotic high-frequency behavior). Average spectral behavior of optical media. Applications. 3) Role of spectral conditions. Analytic properties of coherence functions in quantum optics. Reconstruction theorem.4) Phase retrieval problems. 5) Inverse scattering problems. 6) Solution of nonlinear evolution equations in optics by inverse scattering methods. Application to self-induced transparency. Causality in nonlinear wave propagation. 7) Analytic continuation in frequency and angular momentum. Complex singularities. Resonances and natural-mode expansions. Regge poles. 8) Wigner's causal inequality. Time delay. Spatial displacements in total reflection. 9) Analyticity in diffraction theory. Complex angular momentum theory of Mie scattering. Diffraction as a barrier tunnelling effect. Complex trajectories in optics. (Author) [pt
Hierarchical organisation of causal graphs
International Nuclear Information System (INIS)
Dziopa, P.
1993-01-01
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
Entropy for theories with indefinite causal structure
International Nuclear Information System (INIS)
Markes, Sonia; Hardy, Lucien
2011-01-01
Any theory with definite causal structure has a defined past and future, be it defined by light cones or an absolute time scale. Entropy is a concept that has traditionally been reliant on a definite notion of causality. However, without a definite notion of causality, the concept of entropy is not all lost. Indefinite causal structure results from combining probabilistic predictions and dynamical space-time. The causaloid framework lays the mathematical groundwork to be able to treat indefinite causal structure. In this paper, we build on the causaloid mathematics and define a causally-unbiased entropy for an indefinite causal structure. In defining a causally-unbiased entropy, there comes about an emergent idea of causality in the form of a measure of causal connectedness, termed the Q factor.
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
In this paper, we study the null controllability of the viscous Camassa–. Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Keywords. Viscous Camassa–Holm equation; null controllability; moving control;.
Equivalent viscous damping procedure for multi-material systems
International Nuclear Information System (INIS)
Ahmed, H.; Ma, D.
1979-01-01
The inclusion of accurate viscous damping effects in the seismic analysis of nuclear power plants is discussed. A procedure to evaluate and use equivalent viscous damping coefficients in conjunction with the substructure method of finite element analysis is outlined in detail
Poloidal variation of viscous forces in the banana collisionality regime
International Nuclear Information System (INIS)
Wang, J.P.; Callen, J.D.
1992-12-01
The poloidal variation of the parallel viscous and heat viscous forces are determined for the first time using a rigorous Chapman- Enskog-like approach that has been developed recently. It is shown that the poloidal variation is approximately proportional to the poloidal distribution of the trapped particles, which are concentrated on the outer edge (large major radius side) of the tokamak
Analysis of hybrid viscous damper by real time hybrid simulations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker
2016-01-01
of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...
Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,
1983-09-01
Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
Abstract. In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk ...
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reﬂection of plane waves from the free ...
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 29 April 2002; revised 17 July 2003. Abstract. The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous ...
A Viscous-Inviscid Interaction Model for Rotor Aerodynamics
DEFF Research Database (Denmark)
Filippone, Antonino; Sørensen, Jens Nørkær
1994-01-01
A numerical model for the viscous-inviscid interactive computations ofrotor flows is presented. The basic methodology for deriving the outer inviscid solution is a fully three-dimensional boundary element method.The inner viscous domain, i.e. the boundary layer, is described by the two-dimensiona...
Influence of viscous dissipation and radiation on MHD Couette flow ...
African Journals Online (AJOL)
The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...
Directory of Open Access Journals (Sweden)
José Tomás Alvarado
2009-08-01
Full Text Available This work presents a causal conception of metaphysical modality in which a state of affairs is metaphysically possible if and only if it can be caused (in the past, the present or the future by current entities. The conception is contrasted with what is called the “combinatorial” conception of modality, in which everything can co-exist with anything else. This work explains how the notion of ‘causality’ should be construed in the causal theory, what difference exists between modalities thus defined from nomological modality, how accessibility relations between possible worlds should be interpreted, and what is the relation between the causal conception and the necessity of origin.
Introductive remarks on causal inference
Directory of Open Access Journals (Sweden)
Silvana A. Romio
2013-05-01
Full Text Available One of the more challenging issues in epidemiological research is being able to provide an unbiased estimate of the causal exposure-disease effect, to assess the possible etiological mechanisms and the implication for public health. A major source of bias is confounding, which can spuriously create or mask the causal relationship. In the last ten years, methodological research has been developed to better de_ne the concept of causation in epidemiology and some important achievements have resulted in new statistical models. In this review, we aim to show how a technique the well known by statisticians, i.e. standardization, can be seen as a method to estimate causal e_ects, equivalent under certain conditions to the inverse probability treatment weight procedure.
Numerical Hydrodynamics in Special Relativity
Directory of Open Access Journals (Sweden)
Martí José Maria
2003-01-01
Full Text Available This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD. Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.
Soliton Gases and Generalized Hydrodynamics
Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien
2018-01-01
We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.
Anomalous hydrodynamics of Weyl materials
Monteiro, Gustavo; Abanov, Alexander
Kinetic theory is a useful tool to study transport in Weyl materials when the band-touching points are hidden inside a Fermi surface. It accounts, for example, for the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations (SdH effect) in the magnetoresistance together within the same framework. As an alternative approach to kinetic theory we also consider the regime of strong interactions where hydrodynamics can be applicable. A variational principle of these hydrodynamic equations can be found in and provide a natural framework to study hydrodynamic surface modes which correspond to the strongly-interacting physics signature of Fermi arcs. G.M. acknowledges the financial support from FAPESP.
Quantum Plasmas An Hydrodynamic Approach
Haas, Fernando
2011-01-01
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...
Sloshing analysis of viscous liquid storage tanks
International Nuclear Information System (INIS)
Uras, R.Z.
1995-01-01
The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive
Experimental study of highly viscous impinging jets
International Nuclear Information System (INIS)
Gomon, M.
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established
Dynamics of amorphous solids and viscous liquids
DEFF Research Database (Denmark)
Dyre, Jeppe
of the equilibrium current fluctuations (while the ordinary linear response - the AC conductivity - is determined by the time autocorrelation function, a {\\it second order} cumulant average). P12 from 1989 discusses a maximum entropy ``ansatz'' for nonlinear response theory. This ``ansatz'' makes it possible...... the inverse Maxwell relaxation time. In the linear limit, the constitutive relation suggested in P13 predicts a frequency-dependent viscosity that varies as one over the universal AC conductivity studied in Chapter 1. Thus, it is proposed that the atoms in a viscous liquid have the same mean......This thesis consists of fifteen publications (P1-P15) published between 1987 and 1996 and a summary. In this abstract an overview of the main results is given by following the summary's three Chapters. The first Chapter with the title "AC Conduction in Disordered Solids" reviews and comments P1-P7...
Quantum theory and local causality
Hofer-Szabó, Gábor
2018-01-01
This book summarizes the results of research the authors have pursued in the past years on the problem of implementing Bell's notion of local causality in local physical theories and relating it to other important concepts and principles in the foundations of physics such as the Common Cause Principle, Bell's inequalities, the EPR (Einstein-Podolsky-Rosen) scenario, and various other locality and causality concepts. The book is intended for philosophers of science with an interest in the formal background of sciences, philosophers of physics and physicists working in foundation of physics.
Hydrodynamics of oceans and atmospheres
Eckart, Carl
1960-01-01
Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear
Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
Kjolsing, Eric J.; Todd, Michael D.
2017-04-01
To further the development of a downhole vibration based energy harvester, this study explores how fluid velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid. A linearized equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid. The system is solved in the frequency domain through the use of the spectral element method. The three independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary (using elastic springs), and the annulus fluid viscosity. It was found that, due to the hydrodynamic functions frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio. It was also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed fluid velocity was increased. The results indicate that overestimating the stiffness of a system can lead to underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus fluid viscosity is underestimated. A numeric example was provided to graphically illustrate these errors. Approved for publication, LA-UR-15-28006.
Viscous flow in and around a cavity surrounded by a concentric permeable patch
Palaniappan, D.
2017-11-01
Steady viscous incompressible fluid flow in and around a spherical fluid cavity of radius a surrounded by a permeable patch with thickness b - a is investigated in the limit of low-Reynolds number. Our model uses the Stokes equations in the pure fluid regions and the Darcy law in the concentric permeable patch. Analytic solutions for the velocity and pressure fields are derived in singularity form involving the key parameters such as the Darcy permeability coefficient k and the thickness of the permeable layer. The Faxen law for the hydrodynamical drag acting on the concentric spherical geometry due to an arbitrary incident flow is extracted from our singularity solutions. It is found that the thickness of the permeable layer and the permeability play a crucial role in controlling the drag. An expression for the mass of the fluid that enters the outer sphere is calculated by integrating the exterior radial velocity field. The hydrodynamic force on the concentric spherical shell due to the flow induced by a Stokeslet is also derived from our general expressions. Several special cases of interest are deduced from our exact analysis. The results are of some interest in the prediction of forces exerted on the walls in certain biological models with permeable layers. I request you to place my presentation on the 19th (Sunday) as I have to give final exams on Monday. Thank you.
Toro-Mendoza, Jhoan; Rodriguez-Lopez, Gieberth; Paredes-Altuve, Oscar
2017-03-29
Here, the effect of the elastic response of the surface on the translational diffusion coefficient of a partly submerged-in-water spherical Brownian particle is considered. The elastic nature of the surface, mediated by the surface tension, generates an additional dissipative mechanism. Therefore, the collisions at the surface contribute to the diffusion as the source of the driving force and the dissipation results from the combined action of both elastic reaction of the surface and viscous dissipation. However, it can be estimated that the surface elastic mechanism is several orders of magnitude greater than the viscous one. This simple yet physically plausible approach leads us to assume that the diffusion on the surface is proportional to a power of the number of collisions and, consequently, the dissipative mechanisms are proportional to an inverse power of it. The lowering in dimensionality from 3 (bulk) to 2 (surface) also contributes to the decrease of diffusion. This model allows the reproduction of the reported experimental values of the surface/bulk dissipative force ratio. Additionally, we also compared the traditional viscous approach with other theoretical hydrodynamic treatments of the problem, which drastically failed to explain the experiments.
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Department of Mathematics, Faculty of Sciences, South Valley University, Qena (Egypt); Hussein, Ahmed Kadhim, E-mail: ahmedkadhim7474@gmail.com [College of Engineering, Mechanical Engineering Department, Babylon University, Babylon City—Hilla (Iraq); Mohammed, H.A. [Department of Thermofluids, Faculty of Mechanical Engineering, University Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru (Malaysia); Adegun, I.K. [Department of Mechanical Engineering, University of Ilorin, Ilorin (Nigeria); Zhang, Xiaohui [School of Physics Science and Technology, School of Energy—Soochow University, Suzhou 215006, Jiangsu (China); Kolsi, Lioua [Unite de Metrologie en Mecanique des Fluides et Thermique, Ecole Nationale d’Ingenieurs, Monastir (Tunisia); Hasanpour, Arman [Department of Mechanical Engineering, Babol University of Technology, PO Box 484, Babol (Iran, Islamic Republic of); Sivasankaran, S. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603 (Malaysia)
2014-01-15
Highlights: • Ha decelerates the flow field. • Ha enhances conduction. • Magnetic field orientation is important. • Radiation parameter important. • Nu decreases as Ha increases. -- Abstract: Numerical two-dimensional analysis using finite difference approach with “line method” is performed on the laminar magneto-hydrodynamic natural convection in a square enclosure filled with a porous medium to investigate the effects of viscous dissipation and radiation. The enclosure heated from left vertical sidewall and cooled from an opposing right vertical sidewall. The top and bottom walls of the enclosure are considered adiabatic. The flow in the square enclosure is subjected to a uniform magnetic field at various orientation angles (φ = 0°, 30°, 45°, 60° and 90°). Numerical computations occur at wide ranges of Rayleigh number, viscous dissipation parameter, magnetic field orientation angles, Hartmann number and radiation parameter. Numerical results are presented with the aid of tables and graphical illustrations. The results of the present work explain that the local and average Nusselt numbers at the hot and cold sidewalls increase with increasing the radiation parameter. From the other side, the role of viscous dissipation parameter is to reduce the local and average Nusselt numbers at the hot left wall, while it improves them at the cold right wall. The results are compared with another published results and it found to be in a good agreement.
DEFF Research Database (Denmark)
Jensen, Kaare Hartvig; Valente, Andre X. C. N.; Stone, Howard A.
2014-01-01
We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results...... to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order...
Jensen, Kaare H.; Valente, André X. C. N.; Stone, Howard A.
2014-05-01
We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order of scaling.
Causal feedbacks in climate change
Nes, van E.H.; Scheffer, M.; Brovkin, V.; Lenton, T.M.; Ye, H.; Deyle, E.; Sugihara, G.
2015-01-01
The statistical association between temperature and greenhouse gases over glacial cycles is well documented1, but causality behind this correlation remains difficult to extract directly from the data. A time lag of CO2 behind Antarctic temperature—originally thought to hint at a driving role for
Granger Causality and Unit Roots
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir; Ventosa-Santaulària, Daniel
2014-01-01
, eventually rejecting the null hypothesis, even when the series are independent of each other. Moreover, controlling for these deterministic elements (in the auxiliary regressions of the test) does not preclude the possibility of drawing erroneous inferences. Granger-causality tests should not be used under...... stochastic nonstationarity, a property typically found in many macroeconomic variables....
Chaudhuri, A K
2000-01-01
We have analysed the direct photon data obtained by the WA80 collaboration in 200 A GeV S+Au collision at CERN SPS, in a one dimensional hydrodynamical model. Two scenario was considered: (i) formation of quark-gluon plasma and (ii) formation of hot hadronic gas. For both the scenario, ideal as well as extremely viscous fluid was considered. It was found that direct photon yield from QGP is not affected much whether the fluid is treated as ideal or extremely viscous. The yield however differ substantially if hadron gas is produced. Both the scenario do not give satisfactory description of the data.
Chemical Methods for Ugnu Viscous Oils
Energy Technology Data Exchange (ETDEWEB)
Kishore Mohanty
2012-03-31
The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
Abstract. A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, ...
Hydrodynamics of spatially ordered superfluids
Stoof, H.T.C.; Mullen, K.; Wallin, M.; Girvin, S.M.
1996-01-01
We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
2016-01-14
Jan 14, 2016 ... A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new ...
Numerical Hydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2003-01-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Radiation hydrodynamics in the laboratory
International Nuclear Information System (INIS)
1985-12-01
This report contains a collection of five preprints devoted to the subject of laser induced phenomena of radiation hydrodynamics. These preprints cover approximately the contents of the presentations made by the MPQ experimental laser-plasma group at the 17th European Conference on Laser Interaction with Matter (ECLIM), Rome, November 18-22, 1985. (orig.)
Hydrodynamics of a quark droplet
DEFF Research Database (Denmark)
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Hydrodynamic stability and stellar oscillations
Indian Academy of Sciences (India)
Chandrasekhar's monograph on Hydrodynamic and hydromagnetic stability, published in 1961, is a standard ... the Astrophysics Data System shows about 2500 citations to this monograph and what is remarkable is that ... form the bulk of the book are devoted to convection, or the thermal instability of a layer of fluid heated ...
Hydrodynamic instabilities in inertial fusion
International Nuclear Information System (INIS)
Hoffman, N.M.
1994-01-01
This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability
Hydrodynamic modeling of 3He–Au collisions at sNN=200 GeV
Directory of Open Access Journals (Sweden)
Piotr Bożek
2015-07-01
Full Text Available Collective flow and femtoscopy in ultrarelativistic 3He–Au collisions are investigated within the 3+1-dimensional (3+1D viscous event-by-event hydrodynamics. We evaluate elliptic and triangular flow coefficients as functions of the transverse momentum. We find the typical long-range ridge structures in the two-particle correlations in the relative azimuth and pseudorapidity, in the pseudorapidity directions of both Au and 3He. We also make predictions for the pionic interferometric radii, which decrease with the transverse momentum of the pion pair. All features found hint on collectivity of the dynamics of the system formed in 3He–Au collisions, with hydrodynamics leading to quantitative agreement with the up-to-now released data.
(3 +1 )D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions
Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael
2017-07-01
We present the first comparisons of experimental data with phenomenological results from (3 +1 )D quasiparticle anisotropic hydrodynamics (aHydroQP). We compare particle spectra, average transverse momentum, and elliptic flow. The dynamical equations used for the hydrodynamic stage utilize aHydroQP, which naturally includes both shear and bulk viscous effects. The (3 +1 )D aHydroQP evolution obtained is self-consistently converted to hadrons using anisotropic Cooper-Frye freeze-out. Hadron production and decays are modeled using a customized version of therminator 2. In this first study, we utilized smooth Glauber-type initial conditions and a single effective freeze-out temperature TFO=130 MeV with all hadronic species in full chemical equilibrium. With this rather simple setup, we find a very good description of many heavy-ion observables.
(3+1)D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions.
Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael
2017-07-28
We present the first comparisons of experimental data with phenomenological results from (3+1)D quasiparticle anisotropic hydrodynamics (aHydroQP). We compare particle spectra, average transverse momentum, and elliptic flow. The dynamical equations used for the hydrodynamic stage utilize aHydroQP, which naturally includes both shear and bulk viscous effects. The (3+1)D aHydroQP evolution obtained is self-consistently converted to hadrons using anisotropic Cooper-Frye freeze-out. Hadron production and decays are modeled using a customized version of therminator 2. In this first study, we utilized smooth Glauber-type initial conditions and a single effective freeze-out temperature T_{FO}=130 MeV with all hadronic species in full chemical equilibrium. With this rather simple setup, we find a very good description of many heavy-ion observables.
Hydrodynamic Limit of Multiple SLE
Hotta, Ikkei; Katori, Makoto
2018-04-01
Recently del Monaco and Schleißinger addressed an interesting problem whether one can take the limit of multiple Schramm-Loewner evolution (SLE) as the number of slits N goes to infinity. When the N slits grow from points on the real line R in a simultaneous way and go to infinity within the upper half plane H, an ordinary differential equation describing time evolution of the conformal map g_t(z) was derived in the N → ∞ limit, which is coupled with a complex Burgers equation in the inviscid limit. It is well known that the complex Burgers equation governs the hydrodynamic limit of the Dyson model defined on R studied in random matrix theory, and when all particles start from the origin, the solution of this Burgers equation is given by the Stieltjes transformation of the measure which follows a time-dependent version of Wigner's semicircle law. In the present paper, first we study the hydrodynamic limit of the multiple SLE in the case that all slits start from the origin. We show that the time-dependent version of Wigner's semicircle law determines the time evolution of the SLE hull, K_t \\subset H\\cup R, in this hydrodynamic limit. Next we consider the situation such that a half number of the slits start from a>0 and another half of slits start from -a < 0, and determine the multiple SLE in the hydrodynamic limit. After reporting these exact solutions, we will discuss the universal long-term behavior of the multiple SLE and its hull K_t in the hydrodynamic limit.
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2017-06-01
We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.
International Nuclear Information System (INIS)
R Paul Drake
2004-01-01
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves
Control of viscous fingering by nanoparticles
Sabet, Nasser; Hassanzadeh, Hassan; Abedi, Jalal
2017-12-01
A substantial viscosity increase by the addition of a low dose of nanoparticles to the base fluids can well influence the dynamics of viscous fingering. There is a lack of detailed theoretical studies that address the effect of the presence of nanoparticles on unstable miscible displacements. In this study, the impact of nonreactive nanoparticle presence on the stability and subsequent mixing of an originally unstable binary system is examined using linear stability analysis (LSA) and pseudospectral-based direct numerical simulations (DNS). We have parametrized the role of both nondepositing and depositing nanoparticles on the stability of miscible displacements using the developed static and dynamic parametric analyses. Our results show that nanoparticles have the potential to weaken the instabilities of an originally unstable system. Our LSA and DNS results also reveal that nondepositing nanoparticles can be used to fully stabilize an originally unstable front while depositing particles may act as temporary stabilizers whose influence diminishes in the course of time. In addition, we explain the existing inconsistencies concerning the effect of the nanoparticle diffusion coefficient on the dynamics of the system. This study provides a basis for further research on the application of nanoparticles for control of viscosity-driven instabilities.
Large scale structure from viscous dark matter
Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-01-01
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...
Singular limits in thermodynamics of viscous fluids
Feireisl, Eduard
2017-01-01
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...
Two roads to noncommutative causality
International Nuclear Information System (INIS)
Besnard, Fabien
2015-01-01
We review the physical motivations and the mathematical results obtained so far in the isocone-based approach to noncommutative causality. We also give a briefer account of the alternative framework of Franco and Eckstein which is based on Lorentzian spectral triples. We compare the two theories on the simple example of the product geometry of the Minkowski plane by the finite noncommutative space with algebra M 2 (C). (paper)
Concept of statistical causality and local martingales
Directory of Open Access Journals (Sweden)
Valjarević Dragana
2016-01-01
Full Text Available In this paper we consider a statistical concept of causality in continuous time in filtered probability spaces which is based on Granger's definitions of causality. The given causality concept is closely connected to the preservation of the property being a local martingale if the filtration is getting larger. Namely, the local martingale remains unpredictable if the amount of information is increased. We proved that the preservation of this property is equivalent with the concept of causality.
Obesity and infection: reciprocal causality.
Hainer, V; Zamrazilová, H; Kunešová, M; Bendlová, B; Aldhoon-Hainerová, I
2015-01-01
Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.
Crossflow and water banks in viscous dominant regimes of waterflooding
DEFF Research Database (Denmark)
Yuan, Hao; Zhang, Xuan; Shapiro, Alexander
2014-01-01
Understanding the crossflow in multilayered reservoirs is of great importance for designing mobility control methods for enhanced oil recovery. The authors reveal saturation profiles in stratified reservoirs to study the interlayer communication in the viscous dominant regime. The displacement...
Analysis of chemical composition of high viscous oils
Directory of Open Access Journals (Sweden)
Irina Germanovna Yashchenko
2014-07-01
Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.
Investigation of the viscous resistance components of catamaran forms
Utama, I. Ketut Aria Pria
Research into the breakdown of resistance components of catamaran hull forms has been carried out over a number of years. The components consist of viscous and wave resistance as well as viscous and wave resistance interference. Significant investigation of wave resistance has been carried out. Less effort, however, has been dedicated to determining viscous resistance and viscous interference resistance, which can be important elements in the estimation of power for a new design. Investigations into the components of viscous resistance have been carried out experimentally using a low-speed wind tunnel and numerically using a commercial CFD code (CFX). The investigations used representative reflex models of multihull ships and investigated the components of viscous resistance and viscous interaction effects between the hulls. The experimental work was carried out on a single ellipsoid and a pair of ellipsoids in proximity and the CFD investigations were carried out on (1)a single ellipse and a pair of ellipses in proximity, (2)a single ellipsoid and a pair of ellipsoids in proximity and (3)single and twinhull configurations of round bilge/transom stern ship forms. In the experimental work, the tests were carried out without and with turbulence transition strip at separation to length (S/L) ratios of 0.27, 0.37, 0.47 and 0.57, and at Reynolds number values of 1.6 × 106, 2.4 × 106 and 3.2 × 106. In the numerical work, the investigations were conducted at the same S/L ratios, two- and three-dimensional, under turbulent flow condition and at a Reynolds number of 2.4 × 106. The CFD work was extended to a higher Reynolds number in order to investigate the scale effect. The results of the experimental and CFD investigations are presented and discussed. Reasonable correlation between the approaches is achieved. Both approaches demonstrate form effect on the slender hull forms and the presence of viscous interaction in the catamaran mode. The investigation has
Hydrodynamics from Landau initial conditions
Energy Technology Data Exchange (ETDEWEB)
Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Behavioural Pattern of Causality Parameter of Autoregressive ...
African Journals Online (AJOL)
In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...
Causal knowledge and reasoning in decision making
Hagmayer, Y.; Witteman, C.L.M.
2017-01-01
Normative causal decision theories argue that people should use their causal knowledge in decision making. Based on these ideas, we argue that causal knowledge and reasoning may support and thereby potentially improve decision making based on expected outcomes, narratives, and even cues. We will
The argumentative impact of causal relations
DEFF Research Database (Denmark)
Nielsen, Anne Ellerup
1996-01-01
such as causality, explanation and justification. In certain types of discourse, causal relations also imply an intentional element. This paper describes the way in which the semantic and pragmatic functions of causal markers can be accounted for in terms of linguistic and rhetorical theories of argumentation....
Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications
Greve, Martin; Wöckner-Kluwe, Katja; Abdel-Maksoud, Moustafa; Rung, Thomas
2012-01-01
The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without comprom...
Hydrodynamic simulations of expanding shells
Czech Academy of Sciences Publication Activity Database
Wünsch, Richard; Palouš, Jan; Ehlerová, Soňa
2004-01-01
Roč. 289, 3-4 (2004), s. 35-36 ISSN 0004-640X. [From observation to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA AV ČR KSK1048102 Keywords : hydrodynamic simulations * ISM * star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004
Hydrodynamics of spatially ordered superfluids
Energy Technology Data Exchange (ETDEWEB)
Stoof, H.T. [Institute for Theoretical Physics, University of Utrecht, Princetonplein 5, P.O. Box 80.006, 3508 TA Utrecht (The Netherlands); Mullen, K. [Department of Physics, University of Oklahoma, Norman, Oklahoma 73019-0225 (United States); Wallin, M. [Department of Theoretical Physics, Royal Institute of Technology, S-100 44 Stockholm (Sweden); Girvin, S.M. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)
1996-03-01
We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional modes due to the superfluid motion of point defects (vacancies and interstitials). {copyright} {ital 1996 The American Physical Society.}
Laser driven hydrodynamic instability experiments
International Nuclear Information System (INIS)
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1993-01-01
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes
Particle hydrodynamics with tessellation techniques
Heß, Steffen; Springel, Volker
2010-08-01
Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. We find that the new `Voronoi Particle Hydrodynamics' (VPH) described here produces comparable results to SPH in shocks, and better ones in turbulent regimes of pure hydrodynamical simulations. We also discuss formulations of the artificial viscosity needed in this scheme and how judiciously chosen correction forces can be derived in order to maintain a high degree of particle order and hence a regular Voronoi mesh. This is especially helpful in simulating self-gravitating fluids with existing gravity solvers used for N-body simulations.
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.
Viscous Dissipation and Criticality of Subducting Slabs
Riedel, Mike; Karato, Shun; Yuen, Dave
2016-04-01
Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota
Norms and customs: causally important or causally impotent?
Jones, Todd
2010-01-01
In this article, I argue that norms and customs, despite frequently being described as being causes of behavior in the social sciences and ordinary conversation, cannot really cause behavior. Terms like "norms" and the like seem to refer to philosophically disreputable disjunctive properties. More problematically, even if they do not, or even if there can be disjunctive properties after all, I argue that norms and customs still cannot cause behavior. The social sciences would be better off without referring to properties like norms and customs as if they could be causal.
A theory of causal learning in children: causal maps and Bayes nets.
Gopnik, Alison; Glymour, Clark; Sobel, David M; Schulz, Laura E; Kushnir, Tamar; Danks, David
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net formalism.
A theory of causal learning in children: Causal maps and Bayes nets
Gopnik, A; Glymour, C; Sobel, D M; Schulz, L E; Kushnir, T; Danks, D
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computatio...
Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics
Guercilena, Federico; Radice, David; Rezzolla, Luciano
2017-07-01
We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.
Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics
Jiang, Yin; Shi, Shuzhe; Yin, Yi; Liao, Jinfeng
2018-01-01
The Chiral Magnetic Effect (CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics (AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGeV AuAu collisions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368 (SS and JL), by the National Science Foundation of China under Grant No. 11735007 (JL) and by the U.S. Department of Energy under grant Contract Number No. DE- SC0012704 (BNL)/DE-SC0011090 (MIT) (YY). JL is grateful to the Institute for Nuclear Theory for hospitality during the INT-16-3 Program. The computation of this research was performed on IU’s Big Red II cluster, supported in part by Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute) and in part by the Indiana METACyt
Identifying Causality from Alarm Observations
DEFF Research Database (Denmark)
Kirchhübel, Denis; Zhang, Xinxin; Lind, Morten
on an abstracted model of the mass and energy flows in the system. The application of MFM for root cause analysis based alarm grouping has been demonstrated and can be extended to reason about the direction of causality considering the entirety of the alarms present in the system for more comprehensive decision...... support. This contribution presents the foundation for combining the cause and consequence propagation of multiple observations from the system based on an MFM model. The proposed logical reasoning matches actually observed alarms to the propagation analysis in MFM to distinguish plausible causes...
Random number generators and causality
International Nuclear Information System (INIS)
Larrondo, H.A.; Martin, M.T.; Gonzalez, C.M.; Plastino, A.; Rosso, O.A.
2006-01-01
We advance a prescription to randomize physical or algorithmic Random Number Generators (RNG's) that do not pass Marsaglia's DIEHARD test suite and discuss a special physical quantifier, based on an intensive statistical complexity measure, that is able to adequately assess the improvements produced thereby. Eight RNG's are evaluated and the associated results are compared to those obtained by recourse to Marsaglia's DIEHARD test suite. Our quantifier, which is evaluated using causality arguments, can forecast whether a given RNG will pass the above mentioned test
CADDIS Volume 1. Stressor Identification: About Causal Assessment
An introduction to the history of our approach to causal assessment, A chronology of causal history and philosophy, An introduction to causal history and philosophy, References for the Causal Assessment Background section of Stressor Identification
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
Energy Technology Data Exchange (ETDEWEB)
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Probabilistic causality and radiogenic cancers
International Nuclear Information System (INIS)
Groeer, P.G.
1986-01-01
A review and scrutiny of the literature on probability and probabilistic causality shows that it is possible under certain assumptions to estimate the probability that a certain type of cancer diagnosed in an individual exposed to radiation prior to diagnosis was caused by this exposure. Diagnosis of this causal relationship like diagnosis of any disease - malignant or not - requires always some subjective judgments by the diagnostician. It is, therefore, illusory to believe that tables based on actuarial data can provide objective estimates of the chance that a cancer diagnosed in an individual is radiogenic. It is argued that such tables can only provide a base from which the diagnostician(s) deviate in one direction or the other according to his (their) individual (consensual) judgment. Acceptance of a physician's diagnostic judgment by patients is commonplace. Similar widespread acceptance of expert judgment by claimants in radiation compensation cases does presently not exist. Judicious use of the present radioepidemiological tables prepared by the Working Group of the National Institutes of Health or of updated future versions of similar tables may improve the situation. 20 references
MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER
Directory of Open Access Journals (Sweden)
A. S. Sidorenko
2015-01-01
Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The
Disruptive Innovation in Numerical Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Waltz, Jacob I. [Los Alamos National Laboratory
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Numerical Hydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2000-05-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented.
Laser driven hydrodynamic instability experiments
International Nuclear Information System (INIS)
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1992-01-01
We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented
Space and time in perceptual causality
Directory of Open Access Journals (Sweden)
Benjamin Straube
2010-04-01
Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.
The Functions of Danish Causal Conjunctions
Directory of Open Access Journals (Sweden)
Rita Therkelsen
2004-01-01
Full Text Available In the article I propose an analysis of the Danish causal conjunctions fordi, siden and for based on the framework of Danish Functional Grammar. As conjunctions they relate two clauses, and their semantics have in common that it indicates a causal relationship between the clauses. The causal conjunctions are different as far as their distribution is concerned; siden conjoins a subordinate clause and a main clause, for conjoins two main clauses, and fordi is able to do both. Methodologically I have based my analysis on these distributional properties comparing siden and fordi conjoining a subordinate and a main clause, and comparing for and fordi conjoining two main clauses, following the thesis that they would establish a causal relationship between different kinds of content. My main findings are that fordi establishes a causal relationship between the events referred to by the two clauses, and the whole utterance functions as a statement of this causal relationship. Siden presupposes such a general causal relationship between the two events and puts forward the causing event as a reason for assuming or wishing or ordering the caused event, siden thus establishes a causal relationship between an event and a speech act. For equally presupposes a general causal relationship between two events and it establishes a causal relationship between speech acts, and fordi conjoining two main clauses is able to do this too, but in this position it also maintains its event-relating ability, the interpretation depending on contextual factors.
Hydrodynamics and stellar winds an introduction
Maciel, Walter J
2014-01-01
Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.
Fluctuating hydrodynamics for ionic liquids
Energy Technology Data Exchange (ETDEWEB)
Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)
2017-04-25
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.
Hydrodynamic dispersion within porous biofilms.
Davit, Y; Byrne, H; Osborne, J; Pitt-Francis, J; Gavaghan, D; Quintard, M
2013-01-01
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport.
International Nuclear Information System (INIS)
Ferapontov, E.V.
2002-01-01
Hydrodynamic surfaces are solutions of hydrodynamic-type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants. (author)
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Violations of conservation laws in viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, Jeppe
2007-01-01
The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover,......, although particle number conservation applies strictly for any liquid, the solidity of viscous liquids implies that even this conservation law is apparently violated in coarse-grained descriptions of density fluctuations.......The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover...
Electromagnetic pulses, localized and causal
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
Hydrodynamic and elastic interactions of sedimenting flexible fibers
Ekiel-Jezewska, Maria L.; Bukowicki, Marek
2017-11-01
Dynamics of flexible micro and nano filaments in fluids is intensively investigated in many laboratories, with a perspective of numerous applications in biology, medicine or modern technology. In the literature, different theoretical models of elastic interactions between flexible fiber segments are applied. The task of this work is to examine the impact of a chosen elastic model on the dynamics of fibers settling in a viscous fluid under low Reynolds number. To this goal, we construct two trumbbells, each made of three beads connected by springs and with a bending resistance, and we describe hydrodynamic interactions of the beads in terms of the Rotne-Prager mobility tensors. Using the harmonic bending potential, and coupling it to the spring potential by the Young's modulus, we find simple benchmark solutions: stable stationary configurations of a single elastic trumbbell and a fast horizontal attraction of two elastic trumbbells towards a periodic long-lasting orbit. We show that for sufficiently large bending angles, other models of bending interactions can lead to qualitatively and quantitatively different spurious effects. We also demonstrate examples of essential differences between the dynamics of elastic dumbbells and trumbbells. This work was supported in part by Narodowe Centrum Nauki under Grant No. 2014/15/B/ST8/04359.
Hydrodynamical description of first-order phase transitions
International Nuclear Information System (INIS)
Skokov, V.
2010-01-01
Solutions of hydrodynamical equations are presented for an equation of state allowing for a first-order phase transition. The numerical analysis is supplemented by analytical treatment provided the system is close to the critical point. The processes of growth and dissolution of seeds of various sizes and shapes in meta-stable phases (like super-cooled vapor and super-heated liquid) are studied, as well as the dynamics of unstable modes in the spinodal region. We show that initially nonspherical seeds acquire spherical shape with passage of time. Applications to the description of the first-order phase transitions in nuclear systems, such as the nuclear gas-liquid transition occurring in low energy heavy-ion collisions and the hadron-quark transition in the high energy heavy-ion collisions are discussed. In both cases we point out the important role played by effects of viscosity and surface tension. It is shown that fluctuations dissolve and grow as if the fluid were effectively very viscous. Even in the spinodal region seeds may grow slowly due to viscosity and critical slowing down. This prevents the enhancement of fluctuations in the near-critical region, which is frequently considered as a signal of the critical point in heavy-ion collisions. (author)
International Nuclear Information System (INIS)
Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.
1987-01-01
We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit
Tools for Detecting Causality in Space Systems
Johnson, J.; Wing, S.
2017-12-01
Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.
Does causal action facilitate causal perception in infants younger than 6 months of age?
Rakison, David H; Krogh, Lauren
2012-01-01
Previous research has established that infants are unable to perceive causality until 6¼ months of age. The current experiments examined whether infants' ability to engage in causal action could facilitate causal perception prior to this age. In Experiment 1, 4½-month-olds were randomly assigned to engage in causal action experience via Velcro sticky mittens or not engage in causal action because they wore non-sticky mittens. Both groups were then tested in the visual habituation paradigm to assess their causal perception. Infants who engaged in causal action - but not those without this causal action experience - perceived the habituation events as causal. Experiment 2 used a similar design to establish that 4½-month-olds are unable to generalize their own causal action to causality observed in dissimilar objects. These data are the first to demonstrate that infants under 6 months of age can perceive causality, and have implications for the mechanisms underlying the development of causal perception. © 2011 Blackwell Publishing Ltd.
Shallow water equations: viscous solutions and inviscid limit
Chen, Gui-Qiang; Perepelitsa, Mikhail
2012-12-01
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.
Radiation and viscous dissipation effect on square porous annulus
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
The hydrodynamic description of pseudorapidity distributions at ...
Indian Academy of Sciences (India)
2017-03-15
Mar 15, 2017 ... hard to solve them analytically. From this point of view, hydrodynamics is tremendously complicated. This is the reason why from the time of ... erful calculation system, sophisticated skills are also needed for avoiding instabilities in solving partial dif- ferential hydrodynamic equations. Furthermore, as the.
Two-fluid hydrodynamic model for semiconductors
DEFF Research Database (Denmark)
Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn
2018-01-01
The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
International Nuclear Information System (INIS)
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
Energy Technology Data Exchange (ETDEWEB)
Neelamkavil, Raphael
2014-07-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Directory of Open Access Journals (Sweden)
Pairin Suwannasri
2016-06-01
Full Text Available The present numerically investigates the axisymmetric flow past a rotating torus in a viscous incompressible fluid. The surface of the torus rotates with constant velocity around its centerline. A numerical model has been developed for the governing equation in the toroidal coordinate system. The rotating boundary of a torus generates inertia in the surrounding fluid. There are two interesting regimes. In one of them, a rotation of torus surface generates a toroidal fluid region which envelopes the torus. In another one a rotation of torus surface generates the jet of fluid expelled from the hole downward. We focus on the hydrodynamics of a torus effected by a rotational rate ( and the aspect ratios (Ar. The numerical simulations are performed for three aspect ratios, Ar = 2, 3 and 5, where Ar is defined as ratio of torus radius (b to cross-section radius of torus (a and the range of rotational rate 4.0 2.0, where is defined as ratio of tangential tank-treading motion of torus surface to the uniform far-field velocity.
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.
Effect of Surface Roughness on Hydrodynamic Bearings
Majumdar, B. C.; Hamrock, B. J.
1981-01-01
A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.
Deterministic hydrodynamics: Taking blood apart
Davis, John A.; Inglis, David W.; Morton, Keith J.; Lawrence, David A.; Huang, Lotien R.; Chou, Stephen Y.; Sturm, James C.; Austin, Robert H.
2006-10-01
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 μm/sec and volume rates up to 1 μl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma. cells | plasma | separation | microfabrication
Integration of quantum hydrodynamical equation
Ulyanova, Vera G.; Sanin, Andrey L.
2007-04-01
Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.
Anomalous hydrodynamics kicks neutron stars
Energy Technology Data Exchange (ETDEWEB)
Kaminski, Matthias, E-mail: mski@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Uhlemann, Christoph F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt (Germany); Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany); Schaffner-Bielich, Jürgen [Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany)
2016-09-10
Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.
Hydrodynamics and phases of flocks
International Nuclear Information System (INIS)
Toner, John; Tu Yuhai; Ramaswamy, Sriram
2005-01-01
We review the past decade's theoretical and experimental studies of flocking: the collective, coherent motion of large numbers of self-propelled 'particles' (usually, but not always, living organisms). Like equilibrium condensed matter systems, flocks exhibit distinct 'phases' which can be classified by their symmetries. Indeed, the phases that have been theoretically studied to date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, liquid crystals). This analogy with equilibrium phases of matter continues in that all flocks in the same phase, regardless of their constituents, have the same 'hydrodynamic'-that is, long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium systems, due to the intrinsically nonequilibrium self-propulsion of the constituent 'organisms'. This difference between flocks and equilibrium systems is most dramatically manifested in the ability of the simplest phase of a flock, in which all the organisms are, on average moving in the same direction (we call this a 'ferromagnetic' flock; we also use the terms 'vector-ordered' and 'polar-ordered' for this situation) to exist even in two dimensions (i.e., creatures moving on a plane), in defiance of the well-known Mermin-Wagner theorem of equilibrium statistical mechanics, which states that a continuous symmetry (in this case, rotation invariance, or the ability of the flock to fly in any direction) can not be spontaneously broken in a two-dimensional system with only short-ranged interactions. The 'nematic' phase of flocks, in which all the creatures move preferentially, or are simply oriented preferentially, along the same axis, but with equal probability of moving in either direction, also differs dramatically from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows enormous number fluctuations, which
Fluctuating nonlinear hydrodynamics of flocking
Yadav, Sunil Kumar; Das, Shankar P.
2018-03-01
Starting from a microscopic model, the continuum field theoretic description of the dynamics of a system of active ingredients or "particles" is presented. The equations of motion for the respective collective densities of mass and momentum follow exactly from that of a single element in the flock. The single-particle dynamics has noise and anomalous momentum dependence in its frictional terms. The equations for the collective densities are averaged over a local equilibrium distribution to obtain the corresponding coarse grained equations of fluctuating nonlinear hydrodynamics (FNH). The latter are the equations used frequently for describing active systems on the basis of intuitive arguments. The transport coefficients which appear in the macroscopic FNH equations are determined in terms of the parameters of the microscopic dynamics.
Radiation hydrodynamics in solar flares
Energy Technology Data Exchange (ETDEWEB)
Fisher, G.H.
1985-10-18
Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.
Hydrodynamic dispersion within porous biofilms
Davit, Y.
2013-01-23
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.
The hydrodynamics of dolphin drafting
Directory of Open Access Journals (Sweden)
Weihs Daniel
2004-05-01
Full Text Available Abstract Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.
Assessment of underwater glider performance through viscous computational fluid dynamics
Lidtke, Artur Konrad; Turnock, Stephen; Downes, Jon
2016-01-01
The process of designing an apt hydrodynamic shape for a new underwater glider is discussed. Intermediate stages include selecting a suitable axi-symmetric hull shape, adding hydrofoils and appendages, and evaluating the performance of the final design. All of the hydrodynamic characteristics are obtained using computational fluid dynamics using the kT - kL - ω transition model. It is shown that drag reduction of the main glider hull is of crucial importance to the ultimate performance. Sugge...
Quasi-Experimental Designs for Causal Inference
Kim, Yongnam; Steiner, Peter
2016-01-01
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Causal random geometry from stochastic quantization
DEFF Research Database (Denmark)
Ambjørn, Jan; Loll, R.; Westra, W.
2010-01-01
in this short note we review a recently found formulation of two-dimensional causal quantum gravity defined through Causal Dynamical Triangulations and stochastic quantization. This procedure enables one to extract the nonperturbative quantum Hamiltonian of the random surface model including the...... the sum over topologies. Interestingly, the generally fictitious stochastic time corresponds to proper time on the geometries...
Special Relativity, Causality and Quantum Mechanics-2
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Special Relativity, Causality and Quantum Mechanics - 2. Guruprasad Kar Samir Kunkri Sujit K Choudhary. General Article Volume 11 Issue 9 ... Keywords. Causality; quantum entanglement; cloning; local realism; completely positive maps.
mediation: R Package for Causal Mediation Analysis
Directory of Open Access Journals (Sweden)
Dustin Tingley
2014-09-01
Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.
Causal Mediation Analysis: Warning! Assumptions Ahead
Keele, Luke
2015-01-01
In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…
Spatiotemporal resonances in mixing of open viscous fluids
DEFF Research Database (Denmark)
Okkels, Fridolin; Tabeling, Patrick
2004-01-01
In this Letter, we reveal a new dynamical phenomenon, called "spatiotemporal resonance," which is expected to take place in a broad range of viscous, periodically forced, open systems. The observation originates from a numerical and theoretical analysis of a micromixer, and is supported by prelim...
A finite element analysis of the distribution velocity in viscous ...
African Journals Online (AJOL)
In this work we use the finite element method to analyze the distribution of velocity in a viscous incompressible fluid flow using Lagrange interpolation function. The results obtained are highly accurate and converge fast to the exact solution as the number of elements increase.
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....
Second law analysis of a reacting temperature dependent viscous ...
African Journals Online (AJOL)
In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...
Existence of a secondary flow for a temperature dependent viscous ...
African Journals Online (AJOL)
We model a viscous fluid flowing between parallel plates. The viscosity depends on temperature. We investigate the properties of the velocity and we show that the temperature and velocity fields have two solutions. The existence of two velocity solutions is new. This means that there exist secondary flows. Journal of the ...
Mathematical Theory of Compressible Viscous, and Heat Conducting Fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2007-01-01
Roč. 33, č. 4 (2007), s. 461-490 ISSN 0898-1221 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible fluid * viscous fluid * entropy Subject RIV: BA - General Mathematics Impact factor: 0.720, year: 2007
Seismic pounding mitigation by using viscous and viscoelastic ...
African Journals Online (AJOL)
This paper examines the effects of viscous and viscoelastic dampers as an efficient technique for seismic pounding mitigation. To aim that, 15 steel frame models with different numbers of stories and bays and also with different types of ductility were analyzed under 10 different earthquake records for assigned values of link ...
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon
2017-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Crustal fingering: solidification on a viscously unstable interface
Fu, Xiaojing; Jimenez-Martinez, Joaquin; Cueto-Felgueroso, Luis; Porter, Mark; Juanes, Ruben
2017-11-01
Motivated by the formation of gas hydrates in seafloor sediments, here we study the volumetric expansion of a less viscous gas pocket into a more viscous liquid when the gas-liquid interfaces readily solidify due to hydrate formation. We first present a high-pressure microfluidic experiment to study the depressurization-controlled expansion of a Xenon gas pocket in a water-filled Hele-Shaw cell. The evolution of the pocket is controlled by three processes: (1) volumetric expansion of the gas; (2) rupturing of existing hydrate films on the gas-liquid interface; and (3) formation of new hydrate films. These result in gas fingering leading to a complex labyrinth pattern. To reproduce these observations, we propose a phase-field model that describes the formation of hydrate shell on viscously unstable interfaces. We design the free energy of the three-phase system to rigorously account for interfacial effects, gas compressibility and phase transitions. We model the hydrate shell as a highly viscous fluid with shear-thinning rheology to reproduce shell-rupturing behavior. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex crustal fingering patterns as a result of gas expansion dynamics modulated by hydrate growth at the interface.
Topological Fluid Dynamics For Free and Viscous Surfaces
DEFF Research Database (Denmark)
Balci, Adnan
In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given...
Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...
African Journals Online (AJOL)
This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
In this paper, we study the null controllability of the viscous Camassa–Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Author Affiliations. Peng Gao1. School of Mathematics and Statistics, and Center for ...
Reynolds number scaling of pocket events in the viscous sublayer
Metzger, M.; Fershtut, A.; Kunkel, C.; Klewicki, J.
2017-12-01
Recent findings [X. Wu et al., Proc. Natl. Acad. Sci. USA 114, E5292 (2017), 10.1073/pnas.1704671114] reinforce earlier assertions [e.g., R. Falco, Philos. Trans. R. Soc. London A 336, 103 (1991), 10.1098/rsta.1991.0069] that the sublayer pocket motions play a distinctly important role in near-wall dynamics. In the present study, smoke visualization and axial velocity measurements are combined in order to establish the scaling behavior of pocket events in the viscous sublayer of the turbulent boundary layer. In doing so, an identical analysis methodology is employed over an extensive range of friction Reynolds numbers 388 ≤δ+≤2.2 ×105 . Both the pocket width W and time interval between pocket events T increase logarithmically with Reynolds number when normalized by viscous units. Normalization of W and T by the Taylor microscales evaluated at a wall-normal location of about 100 viscous units, however, appears to successfully remove this Reynolds-number dependence. The present results are discussed in the context of motion formation owing to the three dimensionalization of the near-wall vorticity field and, concomitantly, the recurring perturbation of the viscous sublayer.
Viscous effect at an orthotropic micropolar boundary surface
Indian Academy of Sciences (India)
Steady state responses at viscous ﬂuid/ orthotropic micropolar solid interfaces to moving point loads have been studied. An eigenvalue approach using the Fourier transform has been employed to solve the problem. The displacement, microrotation and stress components for the orthotropic micropolar solids so obtained in ...
Bianchi Type-I bulk viscous fluid string dust magnetized ...
Indian Academy of Sciences (India)
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and ...
The effect of inertia, viscous damping, temperature and normal ...
Indian Academy of Sciences (India)
Nitish Sinha
2018-04-16
Apr 16, 2018 ... A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the ...
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic solutions for the steady velocity, temperature and concentration. The parameters ...
Bianchi Type-I bulk viscous fluid string dust magnetized ...
Indian Academy of Sciences (India)
Abstract. Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions σ ∝ θ and ζθ = constant where σ is the shear, θ the expansion in the model and ζ the coefficient of bulk viscosity. The behaviour of the model in the presence ...
Heterogeneous Causal Effects and Sample Selection Bias
DEFF Research Database (Denmark)
Breen, Richard; Choi, Seongsoo; Holm, Anders
2015-01-01
The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how...... causal effects might vary over individuals or groups. In this paper we point out one of the under-appreciated hazards of seeking to estimate heterogeneous causal effects: conventional selection bias (that is, selection on baseline differences) can easily be mistaken for heterogeneity of causal effects....... This might lead us to find heterogeneous effects when the true effect is homogenous, or to wrongly estimate not only the magnitude but also the sign of heterogeneous effects. We apply a test for the robustness of heterogeneous causal effects in the face of varying degrees and patterns of selection bias...
Repair of Partly Misspecified Causal Diagrams.
Oates, Chris J; Kasza, Jessica; Simpson, Julie A; Forbes, Andrew B
2017-07-01
Errors in causal diagrams elicited from experts can lead to the omission of important confounding variables from adjustment sets and render causal inferences invalid. In this report, a novel method is presented that repairs a misspecified causal diagram through the addition of edges. These edges are determined using a data-driven approach designed to provide improved statistical efficiency relative to de novo structure learning methods. Our main assumption is that the expert is "directionally informed," meaning that "false" edges provided by the expert would not create cycles if added to the "true" causal diagram. The overall procedure is cast as a preprocessing technique that is agnostic to subsequent causal inferences. Results based on simulated data and data derived from an observational cohort illustrate the potential for data-assisted elicitation in epidemiologic applications. See video abstract at, http://links.lww.com/EDE/B208.
Causal ubiquity in quantum physics a superluminal and local-causal physical ontology
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That
Causal systems categories: differences in novice and expert categorization of causal phenomena.
Rottman, Benjamin M; Gentner, Dedre; Goldwater, Micah B
2012-07-01
We investigated the understanding of causal systems categories--categories defined by common causal structure rather than by common domain content--among college students. We asked students who were either novices or experts in the physical sciences to sort descriptions of real-world phenomena that varied in their causal structure (e.g., negative feedback vs. causal chain) and in their content domain (e.g., economics vs. biology). Our hypothesis was that there would be a shift from domain-based sorting to causal sorting with increasing expertise in the relevant domains. This prediction was borne out: the novice groups sorted primarily by domain and the expert group sorted by causal category. These results suggest that science training facilitates insight about causal structures. Copyright © 2012 Cognitive Science Society, Inc.
Dileptons from transport and hydrodynamical models
International Nuclear Information System (INIS)
Huovinen, P.; Koch, V.
2000-01-01
Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball
Tuning bacterial hydrodynamics with magnetic fields
Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.
2017-06-01
Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.
A Simple Test for Causality in Volatility
Directory of Open Access Journals (Sweden)
Chia-Lin Chang
2017-03-01
Full Text Available An early development in testing for causality (technically, Granger non-causality in the conditional variance (or volatility associated with financial returns was the portmanteau statistic for non-causality in the variance of Cheng and Ng (1996. A subsequent development was the Lagrange Multiplier (LM test of non-causality in the conditional variance by Hafner and Herwartz (2006, who provided simulation results to show that their LM test was more powerful than the portmanteau statistic for sample sizes of 1000 and 4000 observations. While the LM test for causality proposed by Hafner and Herwartz (2006 is an interesting and useful development, it is nonetheless arbitrary. In particular, the specification on which the LM test is based does not rely on an underlying stochastic process, so the alternative hypothesis is also arbitrary, which can affect the power of the test. The purpose of the paper is to derive a simple test for causality in volatility that provides regularity conditions arising from the underlying stochastic process, namely a random coefficient autoregressive process, and a test for which the (quasi- maximum likelihood estimates have valid asymptotic properties under the null hypothesis of non-causality. The simple test is intuitively appealing as it is based on an underlying stochastic process, is sympathetic to Granger’s (1969, 1988 notion of time series predictability, is easy to implement, and has a regularity condition that is not available in the LM test.
Causal inference, probability theory, and graphical insights.
Baker, Stuart G
2013-11-10
Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.
Modeling of brittle-viscous flow using discrete particles
Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.
2017-04-01
Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the
Fluctuating hydrodynamics for ionic liquids
Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos
2017-04-01
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.
On the origin of Hill's causal criteria.
Morabia, A
1991-09-01
The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.
Causality and Time in Historical Institutionalism
DEFF Research Database (Denmark)
Mahoney, James; Mohamedali, Khairunnisa; Nguyen, Christoph
2016-01-01
This chapter explores the dual concern with causality and time in historical institutionalism using a graphical approach. The analysis focuses on three concepts that are central to this field: critical junctures, gradual change, and path dependence. The analysis makes explicit and formal the logic...... underlying studies that use these “causal-temporal” concepts. The chapter shows visually how causality and temporality are linked to one another in varying ways depending on the particular pattern of change. The chapter provides new tools for describing and understanding change in historical- institutional...
Dual Causality and the Autonomy of Biology.
Bock, Walter J
2017-03-01
Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.
Hydrodynamically driven colloidal assembly in dip coating.
Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A
2013-05-03
We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.
Hydrodynamic limit of interacting particle systems
International Nuclear Information System (INIS)
Landim, C.
2004-01-01
We present in these notes two methods to derive the hydrodynamic equation of conservative interacting particle systems. The intention is to present the main ideas in the simplest possible context and refer for details and references. (author)
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
International Nuclear Information System (INIS)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism
Hydrodynamics and heat transfer characteristics of liquid pools with bubble agitation
International Nuclear Information System (INIS)
Blottner, F.G.
1979-11-01
Estimates are given for the heat transfer coefficients at various interfaces which occur in molten pools on concrete. Previous simulant experiments and correlations are used to determine the hydrodynamic behavior of the pool and heat transfer coefficients for the liquids of interest. Other studies assume a gas film occurs between the concrete and molten pool, but the results of this investigation do not confirm this assumption. The results also indicate the significant influence the very viscous concrete slag has on the properties of the molten pool. Additional experiments and analysis are needed to improve the accuracy of the heat transfer coefficients estimated and to understand the behavior of the concrete slag at the interface between the pool and decomposing concrete
Uchida, Nariya; Golestanian, Ramin; Bennett, Rachel R.
2017-10-01
Cooperative motion of flagella and cilia faciliates swimming of microorganisms and material transport in the body of multicellular organisms. Using minimal models, we address the roles of hydrodynamic interaction in synchronization and collective dynamics of flagella and cilia. Collective synchronization of bacterial flagella is studied with a model of bacterial carpets. Cilia and eukaryotic flagella are characterized by periodic modulation of their driving forces, which produces various patterns of two-body synchronization and metachronal waves. Long-range nature of the interaction introduces novel features in the dynamics of these model systems. The flagella of a swimmer synchronize also by a viscous drag force mediated through the swimmer's body. Recent advance in experimental studies of the collective dynamics of flagella, cilia and related artificial systems are summarized.
Selecting appropriate cases when tracing causal mechanisms
DEFF Research Database (Denmark)
Beach, Derek; Pedersen, Rasmus Brun
2016-01-01
The last decade has witnessed resurgence in the interest in studying the causal mechanisms linking causes and outcomes in the social sciences. This article explores the overlooked implications for case selection when tracing mechanisms using in-depth case studies. Our argument is that existing case...... selection guidelines are appropriate for research aimed at making cross-case claims about causal relationships, where case selection is primarily used to control for other causes. However, existing guidelines are not in alignment with case-based research that aims to trace mechanisms, where the goal...... is to unpack the causal mechanism between X and Y, enabling causal inferences to be made because empirical evidence is provided for how the mechanism actually operated in a particular case. The in-depth, within-case tracing of how mechanisms operate in particular cases produces what can be termed mechanistic...
Causality Between Urban Concentration and Environmental Quality
Directory of Open Access Journals (Sweden)
Amin Pujiati
2015-08-01
Full Text Available Population is concentrated in urban areas can cause the external diseconomies on environment if it exceeds the carrying capacity of the space and the urban economy. Otherwise the quality of the environment is getting better, led to the concentration of population in urban areas are increasingly high. This study aims to analyze the relationship of causality between the urban concentration and environmental quality in urban agglomeration areas. The data used in the study of secondary data obtained from the Central Bureau of statistics and the City Government from 2000 to 2013. The analytical method used is the Granger causality and descriptive. Granger causality study results showed no pattern of reciprocal causality, between urban concentration and the quality of the environment, but there unidirectional relationship between the urban concentration and environmental quality. This means that increasing urban concentration led to decreased environmental quality.
Risk and causality in newspaper reporting.
Boholm, Max
2009-11-01
The study addresses the textual representation of risk and causality in news media reporting. The analytical framework combines two theoretical perspectives: media frame analysis and the philosophy of causality. Empirical data derive from selected newspaper articles on risks in the Göta älv river valley in southwest Sweden from 1994 to 2007. News media content was coded and analyzed with respect to causal explanations of risk issues. At the level of individual articles, this study finds that the media provide simple causal explanations of risks such as water pollution, landslides, and flooding. Furthermore, these explanations are constructed, or framed, in various ways, the same risk being attributed to different causes in different articles. However, the study demonstrates that a fairly complex picture of risks in the media emerges when extensive material is analyzed systematically.
Rate-Agnostic (Causal) Structure Learning.
Plis, Sergey; Danks, David; Freeman, Cynthia; Calhoun, Vince
2015-12-01
Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a "rate-agnostic" manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling.
Vibrations of a Shallow Cable with a Viscous Damper
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Søren R. K.
2002-01-01
The optimal tuning and effect in terms of modal damping of a viscous damper mounted near the end of a shallow cable are investigated. The damping properties of free vibrations are extracted from the complex wavenumber. The full solution for the lower modes is evaluated numerically, and an explicit...... and rather accurate analytical approximation is obtained, generalizing recent results for a taut cable. It is found that the effect of the damper on the nearly antisymmetric modes is independent of the sag and the stiffness parameter. In contrast, the nearly symmetric modes develop regions of reduced motion...... near the ends, with increasing cable stiffness, and this reduces the effect of the viscous damper. Explicit results are obtained for the modal damping radio and for optimal tuning of the damper....
Microfluidic System Simulation Including the Electro-Viscous Effect
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
A semi-elliptic analysis of internal viscous flows
International Nuclear Information System (INIS)
Ghia, U.; Ramamurti, R.; Ghia, K.N.
1986-01-01
The increased demands placed presently on the performance of compressors and turbines of gas-turbine engines have, for some time, pointed the need for accurate analysis of viscous flows in turbomachinery. With the recent developments of advanced computational facilities, much effort has been made to respond to this need. Various mathematical formulations, grid systems and numerical techniques have been developed for the numerical solution of the viscous flow equations (Refs. 1-4). The full Navier-Stokes equations as well as their corresponding thin-layer approximate form have been employed in H- as well as C-grids, using explicit or implicit methods, including convergence enhancement techniques based on multi-grid methodology. Nevertheless, obtaining converged solutions for general geometries on acceptably refined grids remains a computationally demanding task. The present paper discusses a reduced form on the governing equations which can capture much of the physics, while requiring less computer resources than the full Navier-Stokes equations
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
Nonlinear behaviour of self-excited microcantilevers in viscous fluids
Mouro, J.; Tiribilli, B.; Paoletti, P.
2017-09-01
Microcantilevers are increasingly being used to create sensitive sensors for rheology and mass sensing at the micro- and nano-scale. When operating in viscous liquids, the low quality factor of such resonant structures, translating to poor signal-to-noise ratio, is often manipulated by exploiting feedback strategies. However, the presence of feedback introduces poorly-understood dynamical behaviours that may severely degrade the sensor performance and reliability. In this paper, the dynamical behaviour of self-excited microcantilevers vibrating in viscous fluids is characterized experimentally and two complementary modelling approaches are proposed to explain and predict the behaviour of the closed-loop system. In particular, the delay introduced in the feedback loop is shown to cause surprising non-linear phenomena consisting of shifts and sudden-jumps of the oscillation frequency. The proposed dynamical models also suggest strategies for controlling such undesired phenomena.
USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Randall Seright
2011-09-30
This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be
IUTAM Symposium on Lubricated Transport of Viscous Materials
1998-01-01
The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...
Causales de ausencia de responsabilidad penal
Directory of Open Access Journals (Sweden)
Jaime Sandoval Fernández
2003-01-01
Full Text Available Este trabajo se ocupa de las causales de ausencia de responsabilidad penal, especialmente de aquellas que tienen efecto en el injusto. Como subtemas se delimita el concepto de responsabilidad penal y su ausencia. Se estudian las principales teorias a cerca de la relación tipicidad-antijuridicidad y su incidencia en el derecho penal colombiano. Por último contiene una propuesta acerca de cómo deberian agruparse las causales del arto 32 C. PlOO.
Computational modeling and analysis of the hydrodynamics of human swimming
von Loebbecke, Alfred
Computational modeling and simulations are used to investigate the hydrodynamics of competitive human swimming. The simulations employ an immersed boundary (IB) solver that allows us to simulate viscous, incompressible, unsteady flow past complex, moving/deforming three-dimensional bodies on stationary Cartesian grids. This study focuses on the hydrodynamics of the "dolphin kick". Three female and two male Olympic level swimmers are used to develop kinematically accurate models of this stroke for the simulations. A simulation of a dolphin undergoing its natural swimming motion is also presented for comparison. CFD enables the calculation of flow variables throughout the domain and over the swimmer's body surface during the entire kick cycle. The feet are responsible for all thrust generation in the dolphin kick. Moreover, it is found that the down-kick (ventral position) produces more thrust than the up-kick. A quantity of interest to the swimming community is the drag of a swimmer in motion (active drag). Accurate estimates of this quantity have been difficult to obtain in experiments but are easily calculated with CFD simulations. Propulsive efficiencies of the human swimmers are found to be in the range of 11% to 30%. The dolphin simulation case has a much higher efficiency of 55%. Investigation of vortex structures in the wake indicate that the down-kick can produce a vortex ring with a jet of accelerated fluid flowing through its center. This vortex ring and the accompanying jet are the primary thrust generating mechanisms in the human dolphin kick. In an attempt to understand the propulsive mechanisms of surface strokes, we have also conducted a computational analysis of two different styles of arm-pulls in the backstroke and the front crawl. These simulations involve only the arm and no air-water interface is included. Two of the four strokes are specifically designed to take advantage of lift-based propulsion by undergoing lateral motions of the hand
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
Directory of Open Access Journals (Sweden)
S. Bastelberger
2017-07-01
Full Text Available Field measurements indicating that atmospheric secondary organic aerosol (SOA particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas–particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4 is investigated in an electrodynamic balance at controlled relative humidity (RH and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes–Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10−14 cm2 s−1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol−1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs.
Steady fall of a rigid body in viscous fluid
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka
2005-01-01
Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005
Quasi-neutral limit for a model of viscous plasma
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Zhang, P.
2010-01-01
Roč. 197, č. 1 (2010), s. 271-295 ISSN 0003-9527 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes- Poisson system * quasi-neutral limit * viscous plasma Subject RIV: BA - General Mathematics Impact factor: 2.277, year: 2010 http://link.springer.com/article/10.1007%2Fs00205-010-0317-7
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc
2014-03-11
This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Equivalent Viscous Damping Models in Displacement Based Seismic Design
Directory of Open Access Journals (Sweden)
Raul Zaharia
2005-01-01
Full Text Available The paper reviews some equivalent viscous damping models used in the displacement based seismic design considering the equivalent linearization. The limits of application of the models are highlighted, based on comparison existing in the literature. The study is part of research developed by author, aimed to determine the equivalent linear parameters in order to predict the maximum displacement response for earthquakes compatible with given response spectra.
Viscous Flow with Large Fluid-Fluid Interface Displacement
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....
Effective description of dark matter as a viscous fluid
Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.
2016-10-28
Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Handbook of mathematical analysis in mechanics of viscous fluids
Novotný, Antonín
2018-01-01
Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.
Kant on causal laws and powers.
Henschen, Tobias
2014-12-01
The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.
Testing of viscous anti-HIV microbicides using Lactobacillus.
Moncla, B J; Pryke, K; Rohan, L C; Yang, H
2012-02-01
The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.
The viscous slip coefficient for a binary gas mixture
International Nuclear Information System (INIS)
Knackfuss, Rosenei F.
2009-01-01
For a moderately small rarefaction, the Navier-Stokes equations are associated with of the slip boundary condition, i e the velocity of the gas on the surface is different from zero at the surface, but its tangential component, depends on the profile distribution of velocity and temperature near the surface. The slip for the velocity profile near the surface is determined by the viscous slip coefficient. The viscous slip coefficient can be determined solving the equation of the Boltzmann or the kinetic equations which are simplified forms of Boltzmann equation with respect to the operator of collision. For this reason, in this work is presented the derivation of the solution of the viscous-slip problem for the mixtures of two noble gases, based on the McCormack model that is developed in terms of an analytical version of the discrete ordinates method has been applied with excellent results, to derive solutions to several problems in rarefied gas dynamics. To complete the problem, include the gas-surface interaction, based on the model of Cercignani-Lampis, which, unlike the model of Maxwell, has two accommodation coefficients: the coefficient of accommodation of tangential moment and the energy accommodation coefficient kinetics due to normal component of velocity. (author)
Alternating currents and shear waves in viscous electronics
Semenyakin, M.; Falkovich, G.
2018-02-01
Strong interaction among charge carriers can make them move like viscous fluid. Here we explore alternating current (ac) effects in viscous electronics. In the Ohmic case, incompressible current distribution in a sample adjusts fast to a time-dependent voltage on the electrodes, while in the viscous case, momentum diffusion makes for retardation and for the possibility of propagating slow shear waves. We focus on specific geometries that showcase interesting aspects of such waves: current parallel to a one-dimensional defect and current applied across a long strip. We find that the phase velocity of the wave propagating along the strip respectively increases/decreases with the frequency for no-slip/no-stress boundary conditions. This is so because when the frequency or strip width goes to zero (alternatively, viscosity go to infinity), the wavelength of the current pattern tends to infinity in the no-stress case and to a finite value in a general case. We also show that for dc current across a strip with a no-stress boundary, there are only one pair of vortices, while there is an infinite vortex chain for all other types of boundary conditions.
Investigation of the hydrodynamic model test of forced rolling for a barge using PIV
Directory of Open Access Journals (Sweden)
WANG Xiaoqiang
2017-03-01
Full Text Available In order to study the physical details of viscous flow in ship roll motions and improve the accuracy of ship roll damping numerical simulation, the application of the Particle Image Velocimetry (PIV technique is investigated in model tests of forced ship rolling in calm water. The hydrodynamic force and flow field at the bilge region are simultaneously measured for barges at different amplitudes and frequencies in which the self-made forced rolling facility was used. In the model test, the viscous flow variation with the time around the bilge region was studied during ship rolling motion. The changes in ship roll damping coefficients with the rolling amplitude and period were also investigated. A comparison of the model test results with the Computational Fluid Dynamics(CFDresults shows that the numerical ship roll damping coefficients agree well with the model test results, while the differences in the local flow details exist between the CFD results and model test results. Further research into the model test technique and CFD application is required.
Equilibration and hydrodynamics at strong and weak coupling
van der Schee, Wilke
2017-11-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.
Illness causal beliefs in Turkish immigrants.
Minas, Harry; Klimidis, Steven; Tuncer, Can
2007-07-24
People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different
Entanglement entropy in causal set theory
Sorkin, Rafael D.; Yazdi, Yasaman K.
2018-04-01
Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal sets, especially since they provide in a natural manner the UV cutoff needed to render entanglement entropy finite. Formulating a notion of entanglement entropy in a causal set is not straightforward because the type of canonical hypersurface-data on which its definition typically relies is not available. Instead, we appeal to the more global expression given in Sorkin (2012 (arXiv:1205.2953)) which, for a Gaussian scalar field, expresses the entropy of a spacetime region in terms of the field’s correlation function within that region (its ‘Wightman function’ W(x, x') ). Carrying this formula over to the causal set, one obtains an entropy which is both finite and of a Lorentz invariant nature. We evaluate this global entropy-expression numerically for certain regions (primarily order-intervals or ‘causal diamonds’) within causal sets of 1 + 1 dimensions. For the causal-set counterpart of the entanglement entropy, we obtain, in the first instance, a result that follows a (spacetime) volume law instead of the expected (spatial) area law. We find, however, that one obtains an area law if one truncates the commutator function (‘Pauli–Jordan operator’) and the Wightman function by projecting out the eigenmodes of the Pauli–Jordan operator whose eigenvalues are too close to zero according to a geometrical criterion which we describe more fully below. In connection with these results and the questions they raise, we also study the ‘entropy of coarse-graining’ generated by thinning out the causal set, and we compare it with what one obtains by similarly thinning out a chain of harmonic oscillators, finding the same, ‘universal’ behaviour in both cases.
Experimental evaluation of mechanical heart support system based on viscous friction disc pump
Directory of Open Access Journals (Sweden)
A. M. Chernyavskiy
2017-01-01
Full Text Available Aim. Experimental evaluation of the viscous friction disk pump efficiency, studying the relationship between inter-disk clearance and sizes of input and output ports and pump performance parameters.Materials and methods. To assess the characteristics and to optimize the disk friction pump design the pump model and experimental stand were created. Pump dimensions were set on the basis of medical and biological requirements for mechanical heart support systems and with due consideration of the experimental studies of our colleagues from Pennsylvania. Flow volume of the working fluid was measured by float rotameter Krohne VA-40 with measurement error of not more than 1%. The pressure values in the hydrodynamic circuit were measured using a monitor manufactured by Biosoft-M. Expansion device allowed changing the flow resistance of the system simulating the total peripheral resistance of the circulatory system.Results. Linear direct correlation between the pump performance and the pressure drop of liquid being created at the inlet and outlet of the pump was obtained. The required flow rate (5–7 l/min and pressure (90–100 mmHg were reached when the rotor speed was in the range of 2500–3000 rev/min. It has been shown that the increase of the inlet diameter to 15 mm has not resulted in a significant increase in the pump performance, and that the highest efficiency values can be obtained for the magnitude of inter-disk gap of 0.4–0.5 mm.Conclusion. Designed and manufactured experimental disc pump model for pumping fluid has showed the fundamental possibility to use this model as a system for mechanical support of the heart.
Swarming in viscous fluids: Three-dimensional patterns in swimmer- and force-induced flows
Chuang, Yao-Li; Chou, Tom; D'Orsogna, Maria R.
2016-04-01
We derive a three-dimensional theory of self-propelled particle swarming in a viscous fluid environment. Our model predicts emergent collective behavior that depends critically on fluid opacity, mechanism of self-propulsion, and type of particle-particle interaction. In "clear fluids" swimmers have full knowledge of their surroundings and can adjust their velocities with respect to the lab frame, while in "opaque fluids" they control their velocities only in relation to the local fluid flow. We also show that "social" interactions that affect only a particle's propensity to swim towards or away from neighbors induces a flow field that is qualitatively different from the long-ranged flow fields generated by direct "physical" interactions. The latter can be short-ranged but lead to much longer-ranged fluid-mediated hydrodynamic forces, effectively amplifying the range over which particles interact. These different fluid flows conspire to profoundly affect swarm morphology, kinetically stabilizing or destabilizing swarm configurations that would arise in the absence of fluid. Depending upon the overall interaction potential, the mechanism of swimming ( e.g., pushers or pullers), and the degree of fluid opaqueness, we discover a number of new collective three-dimensional patterns including flocks with prolate or oblate shapes, recirculating pelotonlike structures, and jetlike fluid flows that entrain particles mediating their escape from the center of mill-like structures. Our results reveal how the interplay among general physical elements influence fluid-mediated interactions and the self-organization, mobility, and stability of new three-dimensional swarms and suggest how they might be used to kinetically control their collective behavior.
A numerical study of viscous vortex rings using a spectral method
Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.
1988-01-01
Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.
The life cycles of Be viscous decretion discs: fundamental disc parameters of 54 SMC Be stars
Rímulo, L. R.; Carciofi, A. C.; Vieira, R. G.; Rivinius, Th; Faes, D. M.; Figueiredo, A. L.; Bjorkman, J. E.; Georgy, C.; Ghoreyshi, M. R.; Soszyński, I.
2018-02-01
Be stars are main-sequence massive stars with emission features in their spectrum, which originates in circumstellar gaseous discs. Even though the viscous decretion disc (VDD) model can satisfactorily explain most observations, two important physical ingredients, namely the magnitude of the viscosity (α) and the disk mass injection rate, remain poorly constrained. The light curves of Be stars that undergo events of disc formation and dissipation offer an opportunity to constrain these quantities. A pipeline was developed to model these events that uses a grid of synthetic light curves, computed from coupled hydrodynamic and radiative transfer calculations. A sample of 54 Be stars from the OGLE survey of the Small Magellanic Cloud (SMC) was selected for this study. Because of the way our sample was selected (bright stars with clear disc events), it likely represents the densest discs in the SMC. Like their siblings in the Galaxy, the mass of the disc in the SMC increases with the stellar mass. The typical mass and angular momentum loss rates associated with the disk events are of the order of ˜10-10 M⊙ yr-1 and ˜5 × 1036 g cm2 s-2, respectively. The values of α found in this work are typically of a few tenths, consistent with recent results in the literature and with the ones found in dwarf novae, but larger than current theory predicts. Considering the sample as a whole, the viscosity parameter is roughly two times larger at build-up (⟨αbu⟩ = 0.63) than at dissipation (⟨αd⟩ = 0.26). Further work is necessary to verify whether this trend is real or a result of some of the model assumptions.
On the definition of discrete hydrodynamic variables
Español, Pep; Zúñiga, Ignacio
2009-10-01
The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.
Preschoolers prefer to learn causal information
Directory of Open Access Journals (Sweden)
Aubry eAlvarez
2015-02-01
Full Text Available Young children, in general, appear to have a strong drive to explore the environment in ways that reveal its underlying causal structure. But are they really attuned specifically to casual information in this quest for understanding, or do they show equal interest in other types of non-obvious information about the world? To answer this question, we introduced 20 three-year-old children to two puppets who were anxious to tell the child about a set of novel artifacts and animals. One puppet consistently described causal properties of the items while the other puppet consistently described carefully matched non-causal properties of the same items. After a familiarization period in which children learned which type of information to expect from each informant, children were given the opportunity to choose which they wanted to hear describe each of eight pictured test items. On average, children chose to hear from the informant that provided causal descriptions on 72% of the trials. This preference for causal information has important implications for explaining the role of conceptual information in supporting early learning and may suggest means for maximizing interest and motivation in young children.
Psychiatric comorbidity and causal disease models.
van Loo, Hanna M; Romeijn, Jan-Willem; de Jonge, Peter; Schoevers, Robert A
2013-12-01
In psychiatry, comorbidity is the rule rather than the exception. Up to 45% of all patients are classified as having more than one psychiatric disorder. These high rates of comorbidity have led to a debate concerning the interpretation of this phenomenon. Some authors emphasize the problematic character of the high rates of comorbidity because they indicate absent zones of rarities. Others consider comorbid conditions to be a validator for a particular reclassification of diseases. In this paper we will show that those at first sight contrasting interpretations of comorbidity are based on similar assumptions about disease models. The underlying ideas are that firstly high rates of comorbidity are the result of the absence of causally defined diseases in psychiatry, and second that causal disease models are preferable to non-causal disease models. We will argue that there are good reasons to seek after causal understanding of psychiatric disorders, but that causal disease models will not rule out high rates of comorbidity--neither in psychiatry, nor in medicine in general. By bringing to the fore these underlying assumptions, we hope to clear the ground for a different understanding of comorbidity, and of models for psychiatric diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
The Relevance of Causal Social Construction
Directory of Open Access Journals (Sweden)
Marques Teresa
2017-02-01
Full Text Available Social constructionist claims are surprising and interesting when they entail that presumably natural kinds are in fact socially constructed. The claims are interesting because of their theoretical and political importance. Authors like Díaz-León argue that constitutive social construction is more relevant for achieving social justice than causal social construction. This paper challenges this claim. Assuming there are socially salient groups that are discriminated against, the paper presents a dilemma: if there were no constitutively constructed social kinds, the causes of the discrimination of existing social groups would have to be addressed, and understanding causal social construction would be relevant to achieve social justice. On the other hand, not all possible constitutively socially constructed kinds are actual social kinds. If an existing social group is constitutively constructed as a social kind K, the fact that it actually exists as a K has social causes. Again, causal social construction is relevant. The paper argues that (i for any actual social kind X, if X is constitutively socially constructed as K, then it is also causally socially constructed; and (ii causal social construction is at least as relevant as constitutive social construction for concerns of social justice. For illustration, I draw upon two phenomena that are presumed to contribute towards the discrimination of women: (i the poor performance effects of stereotype threat, and (ii the silencing effects of gendered language use.
Hydrodynamic interactions between two forced objects of arbitrary shape. II. Relative translation
Goldfriend, Tomer; Diamant, Haim; Witten, Thomas A.
2016-04-01
We study the relative translation of two arbitrarily shaped objects, caused by their hydrodynamic interaction as they are forced through a viscous fluid in the limit of zero Reynolds number. It is well known that in the case of two rigid spheres in an unbounded fluid, the hydrodynamic interaction does not produce relative translation. More generally, such an effective pair-interaction vanishes in configurations with spatial inversion symmetry; for example, an enantiomorphic pair in mirror image positions has no relative translation. We show that the breaking of inversion symmetry by boundaries of the system accounts for the interactions between two spheres in confined geometries, as observed in experiments. The same general principle also provides new predictions for interactions in other object configurations near obstacles. We examine the time-dependent relative translation of two self-aligning objects, extending the numerical analysis of our preceding publication [Goldfriend, Diamant, and Witten, Phys. Fluids 27, 123303 (2015)], 10.1063/1.4936894. The interplay between the orientational interaction and the translational one, in most cases, leads over time to repulsion between the two objects. The repulsion is qualitatively different for self-aligning objects compared to the more symmetric case of uniform prolate spheroids. The separation between the two objects increases with time t as t1 /3 in the former case, and more strongly, as t , in the latter.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the f......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...... propose to measure the near-field distribution of a hyperbolic metamaterial lens....
Development of hydrodynamic micro-bearings
Wang, P.; Zhang, J.; Spikes, H. A.; Reddyhoff, T.; Holmes, A. S.
2016-11-01
This paper describes the modelling and testing of mm-scale hydrodynamic bearings which are being developed to improve the efficiency of a cm-scale turbine energy harvester, whose efficiency was previously limited by poorly lubricated commercial jewel-bearings. The bearings were fabricated using DRIE and their performance was assessed using a custom built MEMS tribometer. Results demonstrate that acceptably low friction is achieved when low viscosity liquid lubricants are used in combination with an appropriate choice of friction modifier additive. Further reduction in friction is demonstrated when the step height of bearing is adjusted in accordance with hydrodynamic theory. In parallel with the experiments, hydrodynamic lubricant modelling has been carried out to predict and further optimize film thickness and friction performance. Modelling results are presented and validated against experimental friction data.
Hydrodynamic size and charge of polyelectrolyte complexes.
Böhme, Ute; Scheler, Ulrich
2007-07-26
Polyelectrolyte complexes have a wide range of applications for surface modification and flocculation and sorption of organic molecules from solutions. As an example, complexes between poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate) have been investigated by diffusion and electrophoresis NMR. The formation of primary or soluble complexes is monitored. The hydrodynamic size is characterized by the hydrodynamic radius, calculated from the diffusion coefficient determined by pulsed field gradient NMR. In the combination with electrophoresis NMR, the effective charge of the molecules and complexes is determined. The hydrodynamic size of the primary complex is smaller than that of the pure polyelectrolyte of the larger molecular weight, in the present case poly(styrene sulfonate), in solution, since charges are compensated by the oppositely charged polyelectrolyte and hence the repelling forces diminish. The effective charge of the complexes is drastically reduced.
The RAGE radiation-hydrodynamic code
Energy Technology Data Exchange (ETDEWEB)
Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale [Science Applications International Corp. MS A-1, 10260 Campus Point Drive, San Diego, CA 92121 (United States); Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob [Los Alamos National Laboratory, MS T087, PO Box 1663, Los Alamos, NM 87545 (United States); Stefan, Ryan [TaylorMade-adidas Golf, 5545 Fermi Court, Carlsbad, CA 92008-7324 (United States)], E-mail: michael.r.clover@saic.com
2008-10-01
We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.
The RAGE radiation-hydrodynamic code
International Nuclear Information System (INIS)
Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale; Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Stefan, Ryan
2008-01-01
We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm
Causal binding of actions to their effects.
Buehner, Marc J; Humphreys, Gruffydd R
2009-10-01
According to widely held views in cognitive science harking back to David Hume, causality cannot be perceived directly, but instead is inferred from patterns of sensory experience, and the quality of these inferences is determined by perceivable quantities such as contingency and contiguity. We report results that suggest a reversal of Hume's conjecture: People's sense of time is warped by the experience of causality. In a stimulus-anticipation task, participants' response behavior reflected a shortened experience of time in the case of target stimuli participants themselves had generated, relative to equidistant, equally predictable stimuli they had not caused. These findings suggest that causality in the mind leads to temporal binding of cause and effect, and extend and generalize beyond earlier claims of intentional binding between action and outcome.
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
Spatial hypersurfaces in causal set cosmology
International Nuclear Information System (INIS)
Major, Seth A; Rideout, David; Surya, Sumati
2006-01-01
Within the causal set approach to quantum gravity, a discrete analogue of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical sequential growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity
Modeling of laser-driven hydrodynamics experiments
di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul
2017-10-01
Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.
Impact of hydrodynamic stresses on bacterial flagella
Das, Debasish; Riley, Emily; Lauga, Eric
2017-11-01
The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.
FDTD for Hydrodynamic Electron Fluid Maxwell Equations
Directory of Open Access Journals (Sweden)
Yingxue Zhao
2015-05-01
Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.
Introduction to physics mechanics, hydrodynamics thermodynamics
Frauenfelder, P
2013-01-01
Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o
Universal brittle-viscous transition in magmatic liquids
Witcher, Taylor; Wadsworth, Fabian; Vasseur, Jeremie; Dingwell, Donald B.
2017-04-01
All explosive eruptions involve the transition in magma behaviour between dominantly viscous and transiently brittle. This can happen by exceeding a critical velocity or by exceeding a critical vesiculation rate in the volcanic conduit. In both cases the local shear rate exceeds the structural relaxation rate of the liquid, causing the liquid phase to become unrelaxed such that it may support fracture propagation. Here we collate a database of published observations in which natural, synthetic, and analogue magmas of a range of compositions were deformed by decompression-induced vesiculation or shear deformation under applied shear stresses. In all cases, a single characteristic structural relaxation timescale of the liquid is constrained and compared with the dominant timescale of deformation. We show that the ratio between these two timescales - a Deborah number (De) - can be used to scale the threshold between different behaviors. We find that irrespective of composition or experiment type, De = 0.01 defines the threshold between relaxed viscous flow and unrelaxed fracture propagation, and that De = 1 is a second threshold between fracture propagation and entirely brittle failure. These two thresholds are consistent with the onset of elasticity and peak elasticity, respectively, determined by rheological measurements in the frequency domain. When De is volcanic conduit, De is highest at the conduit margin, where the deformation timescale is lowest. Moving toward the conduit center De decreases, passing through the brittle threshold (De = 1), transitional behaviour (0.01 De De < 0.01) until reaching the center where the deformation timescale is highest and relaxed viscous flow dominates. We use these insights to explore the ratio between the two timescales for liquids of different compositions at typical eruptive temperatures to construct a universal deformation and relaxation map for different eruption styles.
Parallel discrete vortex methods for viscous flow simulation
Takeda, Kenji
In this thesis a parallel discrete vortex method is developed in order to investigate the long-time behaviour of bluff body wakes. The method is based on inviscid theory, and its extension to include viscous effects is a far from trivial problem. In this work four grid-free viscous models are directly compared to assess their accuracy and efficiency. The random walk, diffusion velocity, corrected core-spreading and vorticity redistribution methods are compared for simulating unbounded fluid flows, and for flows past an impulsively started cylinder at Reynolds numbers between 550 and 9500. The code uses a common core, so that the only free parameters are those directly related to the viscous models. The vorticity redistribution method encompasses all of the advantages of a purely Lagrangian method and incorporates a dynamic regridding scheme to maintain accurate discretisation of the vorticity field. This is used to simulate long-time flow past an impulsively started cylinder for Reynolds numbers 100, 150 and 1000. The code is fully parallel and achieves good speedup on both commodity and proprietary supercomputer systems. At Reynolds numbers below 150 the breakdown of the primary vortex street has been simulated. Results reveal a merging process, causing relaxation to a parallel shear flow. This itself sheds vortices, creating a secondary wake of increased wavelength. At Reynolds number 1000 the cylinder wake becomes chaotic, forming distinct vortex couples. These couples self-convect and can travel upstream. This has a destabilising effect on the vortex street, inducing merging, formation of tripolar and quadrupolar structures and, ultimately, spontaneous ejection of vortex couples upstream of the initial disturbance.
Differential invariants in nonclassical models of hydrodynamics
Bublik, Vasily V.
2017-10-01
In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with
Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion
Margolis, S. B.
1999-01-01
For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a significant modification of the pulsating boundary such that, for sufficiently large values of the temperature-sensitivity parameter, liquid-propellant combustion can become intrinsically unstable to this alternative form of hydrodynamic instability. For simplicity, further attention is confined here to the inviscid version
Morse theory on timelike and causal curves
International Nuclear Information System (INIS)
Everson, J.; Talbot, C.J.
1976-01-01
It is shown that the set of timelike curves in a globally hyperbolic space-time manifold can be given the structure of a Hilbert manifold under a suitable definition of 'timelike.' The causal curves are the topological closure of this manifold. The Lorentzian energy (corresponding to Milnor's energy, except that the Lorentzian inner product is used) is shown to be a Morse function for the space of causal curves. A fixed end point index theorem is obtained in which a lower bound for the index of the Hessian of the Lorentzian energy is given in terms of the sum of the orders of the conjugate points between the end points. (author)
Inferring causality from noisy time series data
DEFF Research Database (Denmark)
Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian
2016-01-01
Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...
Causal interpretation of stochastic differential equations
DEFF Research Database (Denmark)
Sokol, Alexander; Hansen, Niels Richard
2014-01-01
We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....
ΛCDM model with dissipative nonextensive viscous dark matter
Gimenes, H. S.; Viswanathan, G. M.; Silva, R.
2018-03-01
Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.
Hybrid viscous damper with filtered integral force feedback control
DEFF Research Database (Denmark)
Høgsberg, Jan; Brodersen, Mark L.
2016-01-01
In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...
On the viscous Burgers equation in unbounded domain
Directory of Open Access Journals (Sweden)
J. Limaco
2010-04-01
Full Text Available In this paper we investigate the existence and uniqueness of global solutions, and a rate stability for the energy related with a Cauchy problem to the viscous Burgers equation in unbounded domain $\\mathbb{R}\\times(0,\\infty$. Some aspects associated with a Cauchy problem are presented in order to employ the approximations of Faedo-Galerkin in whole real line $\\mathbb{R}$. This becomes possible due to the introduction of weight Sobolev spaces which allow us to use arguments of compactness in the Sobolev spaces.
Viscous fingering and channeling in chemical enhanced oil recovery
Daripa, Prabir; Dutta, Sourav
2017-11-01
We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.
Equivalent Viscous Damping for the Elasto-Plastic Hysteretic Model
Directory of Open Access Journals (Sweden)
Raul Zaharia
2005-01-01
Full Text Available The paper proposes some formulae to determine the equivalent linear parameters for spectral earthquake response of SDOF non-linear systems. The proposed formulae for the equivalent viscous damping and equivalent period are valid for the elasto-plastic hysteretic model and for earthquakes compatible with Eurocode 8 response spectra. This study is part of a research aimed to determine the equivalent linear parameters in order to predict the maximum displacement response for earthquake compatible with given response spectra, for different hysteretic models.
Viscous and thermal modelling of thermoplastic composites forming process
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Numerical solution of inviscid and viscous flow around the profile
Slouka, Martin; Kozel, Karel; Prihoda, Jaromir
2015-05-01
This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox's k-ω model. Calculations are done in GAMM channel computational domain with 10% DCA profile and in turbine cascade computational domain with 8% DCA profile. Numerical methods are based on a finite volume solution and compared with experimental measurements for 8% DCA profile.
Numerical solution of inviscid and viscous flow around the profile
Directory of Open Access Journals (Sweden)
Slouka Martin
2015-01-01
Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox’s k-ω model. Calculations are done in GAMM channel computational domain with 10% DCA profile and in turbine cascade computational domain with 8% DCA profile. Numerical methods are based on a finite volume solution and compared with experimental measurements for 8% DCA profile.
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
Study of the rise of gas bubbles in a viscous liquid. Stability and speed. Bibliographical study
International Nuclear Information System (INIS)
Dahan, Gilbert
1969-01-01
This short thesis reports a bibliographical study on the movement of gas bubbles in viscous liquids. The author addresses the formation of gas bubbles in liquids of different viscosity (devices used for the formation of bubbles in viscous liquids, formation of bubbles at a hole), and the behaviour of bubbles rising in viscous liquids and more particularly the speed and shape of these bubbles [fr
Natural Convection and Thermal State of High Viscous Oil by Heating
福地, 信義
1984-01-01
Recently, a large quantity of high-viscous crude oil is imported into Japan and oil consumed country. Oil tankers carrying high-viscous oil have to equip with the oil heating system taking account of characteristics of viscosity on temperature. In general, the viscosity of high-viscous crude oil changes rapidly according to a thermal change near a normal temperature. In order to investigate the natural convection and the thermal state in oil tank, the numerical analysis on velocity and temper...
CausalTrail: Testing hypothesis using causal Bayesian networks [version 1; referees: 2 approved
Directory of Open Access Journals (Sweden)
Daniel Stöckel
2015-12-01
Full Text Available Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administered drug. Whereas numerous packages for constructing causal Bayesian networks are available, hardly any program targeted at downstream analysis exists. In this paper we present CausalTrail, a tool for performing reasoning on causal Bayesian networks using the do-calculus. CausalTrail's features include multiple data import methods, a flexible query language for formulating hypotheses, as well as an intuitive graphical user interface. The program is able to account for missing data and thus can be readily applied in multi-omics settings where it is common that not all measurements are performed for all samples. Availability and Implementation CausalTrail is implemented in C++ using the Boost and Qt5 libraries. It can be obtained from https://github.com/dstoeckel/causaltrail
Groben, Sylvie; Hausteiner, Constanze
2011-03-01
Somatic causal illness attributions are being considered as potential positive criteria for somatoform disorders (SFDs) in DSM-V. The aim of this study was to investigate whether patients diagnosed with SFDs tend towards a predominantly somatic attribution style. We compared the causal illness attributions of 48 SFD and 149 non-somatoform disorder patients, in a sample of patients presenting for an allergy diagnostic work-up, and those of 47 controls hospitalised for allergen-specific venom immunotherapy. The SFD diagnosis was established by means of the Structured Clinical Interview for DSM-IV. Both spontaneous and prompted causal illness attributions were recorded through interview and by means of the causal dimension of the Revised Illness Perception Questionnaire (IPQ-R), respectively. Patients' spontaneous and prompted responses were assigned to a psychosocial, somatic, or mixed attribution style. Both in the free-response task and in their responses to the IPQ-R, SFD patients were no more likely than their nonsomatoform counterparts to focus on somatic explanations for their symptoms. They were just as likely to make psychosocial or mixed causal attributions. However, patients with SFDs were significantly more likely to find fault with medical care in the past. Our data do not support the use of somatic causal illness attributions as positive criteria for SFDs. They confirm the dynamic and multidimensional nature of causal illness attributions. Clinical implications of these findings are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar
2009-01-01
A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length
Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization Project
National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...
Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II
National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...
Hydrodynamics: Fluctuating initial conditions and two-particle correlations
Energy Technology Data Exchange (ETDEWEB)
Andrade, R.P.G.; Grassi, F. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Hama, Y., E-mail: hama@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Qian, W.-L. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)
2011-03-15
Event-by-event hydrodynamics (or hydrodynamics with fluctuating initial conditions) has been developed in the past few years. Here we discuss how it may help to understand the various structures observed in two-particle correlations.
Magnetic hydrodynamics with asymmetric stress tensor
Billig, Yuly
2005-04-01
In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an Abelian extension of the Lie algebra of vector fields with a nontrivial 2-cocycle. We use the Lie algebra approach to prove the energy conservation law and the conservation of cross-helicity.
Magnetic hydrodynamics with asymmetric stress tensor
Billig, Yuly
2004-01-01
In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an abelian extension of the Lie algebra of vector fields with a non-trivial 2-cocycle. We use the Lie algebra approach to prove the energy conservation law and the conservation of cross-helicity.
Microflow Cytometers with Integrated Hydrodynamic Focusing
Directory of Open Access Journals (Sweden)
Martin Schmidt
2013-04-01
Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.
does earthworms density really modify soil's hydrodynamic ...
African Journals Online (AJOL)
N. Ababsa,, M. Kribaa, D. Addad, L. Tamrabet and M. Baha
1 mai 2016 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. DOES EARTHWORMS DENSITY REALLY MODIFY SOIL'S HYDRODYNAMIC.
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code
Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe
2017-09-01
Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.
Hydrodynamic Lubrication Analysis Of Slider Bearings Lubricated ...
African Journals Online (AJOL)
Hydrodynamic Lubrication Analysis Of Slider Bearings Lubricated With Micropolar Fluids. ... In this paper, a theoretical study of the effect of micropolar lubricants on the performance characteristics of wide inclined slider bearings is presented. The finite element method and Gauss Seidel iterative procedure have been used ...
Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects
Indian Academy of Sciences (India)
This paper attempts to do that by critically reviewing published experimental and modelling studies on establishing and enhancing state-of-the-art thermodynamic, kinetic and hydrodynamic aspects of crystallization. Efforts are made to discuss and raise points for emerging modelling tools needed for a flexible design and ...
Hydrodynamic relaxations in dissipative particle dynamics
Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.
2018-01-01
This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.
Hydrodynamic states of phonons in insulators
Directory of Open Access Journals (Sweden)
S.A. Sokolovsky
2012-12-01
Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects
Indian Academy of Sciences (India)
understanding of the thermodynamic, kinetic and hydrodynamic aspects of the design methodologies are not yet well ...... The mixer design is finalized with mechanical design of the shaft, impeller blade thickness, baffle thickness and supports, ...... PhD-Thesis, Delft University of Technol- ogy, Delft. Dimonte J E, Szutowski H ...
Magneto-hydrodynamical model for plasma
Liu, Ruikuan; Yang, Jiayan
2017-10-01
Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.
Impact of Hydrodynamics on Oral Biofilm Strength
Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.
2009-01-01
Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of
An analytical model of flagellate hydrodynamics
DEFF Research Database (Denmark)
Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter
2017-01-01
Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical...
Hydrodynamic forces on inundated bridge decks
2009-05-01
The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...
Hydrodynamic simulations of the core helium flash
Mocák, Miroslav; Müller, Ewald; Weiss, Achim; Kifonidis, Konstantinos
2008-10-01
We desribe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M⊙ star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn et al. 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of the multi-dimensional hydrodynamic code HERAKLES, which is based on a direct Eulerian implementation of the piecewise parabolic method.
Modified Artificial Viscosity in Smooth Particle Hydrodynamics
Selhammar, Magnus
1996-01-01
Artificial viscosity is needed in Smooth Particle Hydrodynamics to prevent interparticle penetration, to allow shocks to form and to damp post shock oscillations. Artificial viscosity may, however, lead to problems such as unwanted heating and unphysical solutions. A modification of the standard artificial viscosity recipe is proposed which reduces these problems. Some test cases discussed.
Hydrodynamic erosion process of undisturbed clay
Zhao, G.; Visser, P.J.; Vrijling, J.K.
2011-01-01
This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from
Symmetry Approach and Exact Solutions in Hydrodynamics
Golovin, Sergey V.
2005-01-01
The application of symmetry analysis in hydrodynamics is illustrated by two examples. First is a description of all irrotational barochronous motions of ideal gas. The second is an exact solution of magnetohydrodynamics equations for infinitely conducting media, which describes the flow of so called “special vortex” type.
Hydrodynamics and Elasticity of Charged Black Branes
DEFF Research Database (Denmark)
Gath, Jakob
We consider long-wavelength perturbations of charged black branes to first order in a uidelastic derivative expansion. At first order the perturbations decouple and we treat the hydrodynamic and elastic perturbations separately. To put the results in a broader perspective, we present the rst...
The hydrodynamic description of pseudorapidity distributions at ...
Indian Academy of Sciences (India)
The hot and dense matter produced in nucleus–nucleus collisions is supposed to expand accordingto unified hydrodynamics, one of the few theoretical models that can be worked out exactly. The solutionis then used to formulate the rapidity distribution of charged particles frozen out from the fluid on thespace-like ...
Hydrodynamic modelling of hydrostatic magnesium extrusion
Moodij, Ellen; de Rooij, Matthias B.; Schipper, Dirk J.
2006-01-01
Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown
Hydrodynamic impact response, a flexible view
Vredeveldt, A.W.; Hoogeland, M.; Janssen, G.Th.M.
2001-01-01
The popularity of high-speed craft is steadily increasing. Until now, much attention has been focussed on the hydrodynamic aspects of these craft. The structural design of these vessels is usually considered in a quasi static sense. However, due to the requirement of light ship structures, fast ship
Hydrodynamic squeeze-film bearings for gyroscopes
Chiang, T.; Smith, R. L.
1970-01-01
Experimental tests are conducted on squeeze-film bearings by applying electricity to piezoelectric ceramics, causing vibrations at thousands or millions of Hz that are amplified and transmitted to the bearing. Rotor operation through 24,000 rpm without whirl instability proved bearing ability to support rotor weight without hydrodynamic action.
Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects
Indian Academy of Sciences (India)
In spite of the wide-spread use of crystallization, a clear understanding of the thermodynamic, kinetic and hydrodynamic aspects of the design methodologies are not yet well established. More often than not crystallization is still considered an art especially in fine-chemicals, pharmaceuticals and life-sciences sector.
Viscous Effect of Drop Impacting on Liquid Film
Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao
2017-11-01
Drop impacting a liquid film is commonly observed in many processes including inkjet printing and thermal sprays. The accumulation and growth of the film depend on the outcome of subsequent drop impact on the initially formed film. In our recent study (Tang, et al. Soft Matter 2016), we have proposed a regime diagram based on the Weber number We (ratio of impact inertia and surface tension) and the film thickness, characterizing non-monotonic transitions between the bouncing and merging outcomes and providing scaling analysis for the boundaries for a single liquid (n-tetradecane). Since liquid viscosity fundamentally affects the impact outcome, through its influence on the flow field and dissipation of the kinetic energy, here we extend the study for a number of alkanes and silicone oils, covering a wide range of viscosity, to evaluate its effect on the regime diagram. We will show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and eventually the non-monotonicity disappears. We will model the viscous effects and present a modified scaling. This new scaling attempts to unify all liquids and provides a useful tool to manipulate the outcome of drop impact on liquid film. The work at Princeton University is supported by the Army Research Office and the Xerox Corporation.
Rheology of granular flows immersed in a viscous fluid
International Nuclear Information System (INIS)
Amarsid, Lhassan
2015-01-01
We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)
Compressed gas domestic aerosol valve design using high viscous product
Directory of Open Access Journals (Sweden)
A Nourian
2016-10-01
Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.
Dynamics of flexible fibers transported in confined viscous flows
Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke
2017-11-01
The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).
Effect of external viscous load on head movement
Nam, M.-H.; Lakshminarayanan, V.; Stark, L. W.
1984-01-01
Quantitative measurements of horizontal head rotation were obtained from normal human subjects intending to make 'time optimal' trajectories between targets. By mounting large, lightweight vanes on the head, viscous damping B, up to 15 times normal could be added to the usual mechanical load of the head. With the added viscosity, the head trajectory was slowed and of larger duration (as expected) since fixed and maximal (for that amplitude) muscle forces had to accelerate the added viscous load. This decreased acceleration and velocity and longer duration movement still ensued in spite of adaptive compensation; this provided evidence that quasi-'time optimal' movements do indeed employ maximal muscle forces. The adaptation to this added load was rapid. Then the 'adapted state' subjects produced changed trajectories. The adaptation depended in part on the differing detailed instructions given to the subjects. This differential adaptation provided evidence for the existence of preprogrammed controller signals, sensitive to intended criterion, and neurologically ballistic or open loop rather than modified by feedback from proprioceptors or vision.
Viscous oil dynamics evaluation for better fluid sampling
Energy Technology Data Exchange (ETDEWEB)
Canas, J.A.; Low, S.; Adur, N.; Teixeira, V. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Sugar Land, TX (United States)
2005-11-01
The benefits that heavy oil producers can gain by sampling formation fluid early in the life of a well were discussed. Sampling provides the necessary information for reservoir completion planning and decision making, which is important in areas where flow assurance is a key concern. Most sampling problems are attributed to a sudden pressure change and the associated surge of fluids. The increased flow rate mobilizes sand grains and fines, which can plug flow lines, cause erosion of drilling parts and prevent proper operation of mechanical components in tools. In addition to the extremely low flow rates that are generally required for sampling highly viscous oils in unconsolidated sands, other factors should also be considered for optimum sampling, such as reservoir permeability, anisotropy, nearby upper and lower impermeable barriers, and location of the wireline formation tester (WFT) or modular formation tester (MDT) relative to the formation being samples. This paper presented the results of a study of near wellbore fluid flow during cleanup prior to sampling with a large diameter probe, a new extra large diameter probe, dual packer formation testers with customized gravel pack screens, an extra high-pressure displacement unit pump for low flow rates, advanced downhole flow analysis monitoring and special sampling methods. The intent of the study was to predict cleanup time with respect to viscous oils and the variables which make sampling feasible with respect to quality, operational time and reduction of associated risks. 11 refs., 32 figs.
Granular suspension avalanches. I. Macro-viscous behavior
Ancey, Christophe; Andreini, Nicolas; Epely-Chauvin, Gaël
2013-03-01
We experimentally studied the flow behavior of a fixed volume of granular suspension, initially contained in a reservoir and released down an inclined flume. Here "granular suspension" refers to a suspension of non-Brownian particles in a viscous fluid. Depending on the solids fraction, density mismatch, and particle size distribution, a wealth of behaviors can be observed. Here we report and interpret results obtained with granular suspensions, which consisted of neutrally buoyant particles with a solids fraction (ϕ = 0.575-0.595) close to the maximum random packing fraction (estimated at ϕm = 0.625). The particles had the same refractive index as the fluid, which made it possible to measure the velocity profiles inside the moving bulk and far from the sidewalls. Additional information such as the front position and the flow depth was also recorded. Three regimes were observed. At early times, the flow features were reminiscent of homogeneous Newtonian fluids (e.g., the same dependence of the front position on time). At later times, the free surface became more and more bumpy as fractures developed within the bulk. This fracture process ultimately gave rise to a stick-slip regime, in which the suspension moved intermittently. In this paper, we focus on the first regime referred to as the macro-viscous regime. Although the bulk flow properties looked like those of Newtonian fluids, the internal dynamics were much richer.
Shear-Induced Membrane Fusion in Viscous Solutions
Kogan, Maxim
2014-05-06
Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.
Viscous self interacting dark matter and cosmic acceleration
Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind
2018-02-01
Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.
Visualization of bacterial flagella dynamics in a viscous shear flow
Ali, Jamel; Kim, Minjun
2016-11-01
We report on the dynamics of tethered bacterial flagella in an applied viscous shear flow and analyze their behavior using image processing. Flagellin proteins were repolymerized into flagellar filaments functionalized with biotin at their proximal end, and allowed to self-assemble within a micro channel coated with streptavidin. It was observed that all attached flagellar filaments aligned with the steady shear flow of various polymeric solutions. Furthermore it was observed that many of the filaments were stretched, and at elevated flow rates began to undergo polymorphic transformations, which were initiated at one end of the flagellum. When undergoing a change to a different helical form the flagellum was observed to transform to an oppositely handed helix, as to counteract the viscous torque imparted by the shear flow. It was also observed that some flagellar filaments did not undergo polymorphic transformations, but rotated about their helical axis. The rate of this rotation appears to be a function of the applied flow rate. These results expand on previous experimental work and aid in the development of a novel platform that harnesses the autonomic response of a 'forest' of bacterial flagella for engineering applications. This work was funded by NSF Grant CMMI-1000255, KEIT MOTIE Grant No. 10052980, and with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
Localization and causality in relativistic quantum mechanics
International Nuclear Information System (INIS)
Perez, J.F.; Wilde, I.F.
It is shown that in relativistic quantum mechanics there is no criterion for the strict localization of a state in a bounded space-time region compatible with causality, translation covariance and the spectral condition (or positivity of energy together with Lorentz covariance) [pt
Catastrophizing and Causal Beliefs in Whiplash
Buitenhuis, J.; de Jong, P. J.; Jaspers, J. P. C.; Groothoff, J. W.
2008-01-01
Study Design. Prospective cohort study. Objective. This study investigates the role of pain catastrophizing and causal beliefs with regard to severity and persistence of neck complaints after motor vehicle accidents. Summary of Background Data. In previous research on low back pain, somatoform
Special Relativity, Causality and Quantum Mechanics - 1
Indian Academy of Sciences (India)
information theory in general and quantum non-locality and entanglement in particular. Right. S Kunkri - current research interest is the role of entanglement in quantum information processing and the connection between quantum operations and causality. Centre. S K Choudhary - current research interest is the study of ...
Marriage and Anomie: A Causal Argument
Lee, Gary R.
1974-01-01
A sample of 394 married couples is employed to test the possibility of an association between marital satisfaction and personal (attitudinal) anomie. The hypothesis is supported. Conclusions are offered relevant to anomie theory, and to utilization of marital and family phenomena as independent variables in causal explanations of nonfamily events.…
Causal Measurement Models: Can Criticism Stimulate Clarification?
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Causal Meta-Analysis : Methodology and Applications
Bax, L.J.
2009-01-01
Meta-analysis is a statistical method to summarize research data from multiple studies in a quantitative manner. This dissertation addresses a number of methodological topics in causal meta-analysis and reports the development and validation of meta-analysis software. In the first (methodological)
A Causal Model of Faculty Turnover Intentions.
Smart, John C.
1990-01-01
A causal model assesses the relative influence of individual attributes, institutional characteristics, contextual-work environment variables, and multiple measures of job satisfaction on faculty intentions to leave their current institutions. Factors considered include tenure status, age, institutional status, governance style, organizational…
Black Hole Complementarity and Violation of Causality
Rozenblit, Moshe
2017-01-01
Analysis of a massive shell collapsing on a solid sphere shows that black hole complementarity (BHC) violates causality in its effort to save information conservation. In particular, this note describes a hypothetical contraption based on BHC that would allow the transfer of information from the future to the present.
THE CAUSAL TEXTURE OF TRADE UNION ENVIRONMENTS
African Journals Online (AJOL)
Admin
This paper is an attempt to fill an important gap in the existing literature on trade unions by providing a more adequate theoretical formulation of trade union environments. The discussion suggests that unlike the environment of business and related organisations whose causal texture is understood in terms of uncertainty, ...
Are bruxism and the bite causally related?
Lobbezoo, F.; Ahlberg, J.; Manfredini, D.; Winocur, E.
2012-01-01
In the dental profession, the belief that bruxism and dental (mal-)occlusion (‘the bite’) are causally related is widespread. The aim of this review was to critically assess the available literature on this topic. A PubMed search of the English-language literature, using the query ‘Bruxism [Majr
Sequential causal learning in humans and rats
Lu, H.; Rojas, R.R.; Beckers, T.; Yuille, A.; Love, B.C.; McRae, K.; Sloutsky, V.M.
2008-01-01
Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005;Beckers, Miller, De Houwer, & Urushihara, 2006) have shown that pretraining with unrelated cues can dramatically influence the performance of humans in a causal learning paradigm and rats in a standard Pavlovian conditioning paradigm.
Dimensional reduction in causal set gravity
Carlip, S.
2015-12-01
Results from a number of different approaches to quantum gravity suggest that the effective dimension of spacetime may drop to d = 2 at small scales. I show that two different dimensional estimators in causal set theory display the same behavior, and argue that a third, the spectral dimension, may exhibit a related phenomenon of ‘asymptotic silence.’
The Causal Relationship between Financial Development and ...
African Journals Online (AJOL)
The study employs cointegration, vector error correction model and Granger causality test to ascertain causation between financial development and economic performance in Tanzania. Economic performance is measured by the real GDP, whereas proxies for financial development are: the ratio of money supply to nominal ...
Causal and Teleological Explanations in Biology
Yip, Cheng-Wai
2009-01-01
A causal explanation in biology focuses on the mechanism by which a biological process is brought about, whereas a teleological explanation considers the end result, in the context of the survival of the organism, as a reason for certain biological processes or structures. There is a tendency among students to offer a teleological explanation…
Special Relativity, Causality and Quantum Mechanics - 2
Indian Academy of Sciences (India)
Peaceful Coexistence of Special Relativity and. Quantum Mechanics. As discussed in Part 1, in the framework of the special theory of relativity, causality holds. This can be stated as follows: there is a finite speed for any signal, i.e. , for anything that carries information, and the highest speed for any signal is identical to the ...
Causal Relationship between Teachers' Job Performance and ...
African Journals Online (AJOL)
The study investigated teachers' job performance and students' academic achievement in secondary schools for the existence of bi-causal relationship in Nigeria. The ex-post facto research design was adopted in the study. The population of the study covered all the Economic teachers and senior school students in class ...
Introducing mechanics by tapping core causal knowledge
Klaassen, C.W.J.M.; Westra, A.S.; Emmett, K.M.; Eijkelhof, H.M.C.; Lijnse, P.L.
2008-01-01
This article concerns an outline of an introductory mechanics course. It is based on the argument that various uses of the concept of force (e.g. from Kepler, Newton and everyday life) share an explanatory strategy based on core causal knowledge. The strategy consists of (a) the idea that a force
Causality and analyticity in quantum fields theory
International Nuclear Information System (INIS)
Iagolnitzer, D.
1992-01-01
This is a presentation of results on the causal and analytical structure of Green functions and on the collision amplitudes in fields theories, for massive particles of one type, with a positive mass and a zero spin value. (A.B.)
Causality relationship between energy demand and economic ...
African Journals Online (AJOL)
This paper attempts to examine the causal relationship between electricity demand and economic growth in Nigeria using data for 1970 – 2003. The study uses the Johansen cointegration VAR approach. The ADF and Phillips – Perron test statistics were used to test for stationarity of the data. It was found that the data were ...
The Causal Priority of Form in Aristotle
Directory of Open Access Journals (Sweden)
Kathrin Koslicki
2014-12-01
Full Text Available In various texts (e.g., Met. Z.17, Aristotle assigns priority to form, in its role as a principle and cause, over matter and the matter-form compound. Given the central role played by this claim in Aristotle's search for primary substance in the Metaphysics, it is important to understand what motivates him in locating the primary causal responsibility for a thing's being what it is with the form, rather than the matter. According to Met. Theta.8, actuality [energeia/entelecheia] in general is prior to potentiality [dunamis] in three ways, viz., in definition, time and substance. I propose an explicitly causal reading of this general priority claim, as it pertains to the matter-form relationship. The priority of form over matter in definition, time and substance, in my view, is best explained by appeal to the role of form as the formal, efficient and final cause of the matter-form compound, respectively, while the posteriority of matter to form according to all three notions of priority is most plausibly accounted for by the fact that the causal contribution of matter is limited to its role as material cause. When approached from this angle, the work of Met. Theta.8 can be seen to lend direct support to the more specific and explicitly causal priority claim we encounter in Met. Z.17, viz., that form is prior to matter in its role as the principle and primary cause of a matter-form compound's being what it is.
A quantum probability model of causal reasoning
Directory of Open Access Journals (Sweden)
Jennifer S Trueblood
2012-05-01
Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.
Special Relativity, Causality and Quantum Mechanics - 1
Indian Academy of Sciences (India)
We discuss the significance of Einstein's second postulate of the special theory of relativity (STR) stipulating the constancy of the speed of light in vacuum. The causality that follows from the. STR may be a more general principle to orga- nize our knowledge of all phenomena. In partic- ular, quantum dynamics can be derived ...
Special Relativity, Causality and Quantum Mechanics - 2
Indian Academy of Sciences (India)
tum world. An example of a game which can be won exploiting quantum entanglement, but which can never be won classically, is described. Peaceful Coexistence of Special Relativity and. Quantum Mechanics. As discussed in Part 1, in the framework of the special theory of relativity, causality holds. This can be stated.