Neutron oscillations and the primordial magnetic field
International Nuclear Information System (INIS)
Sarkar, S.
1988-01-01
It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)
Inflating Kahler moduli and primordial magnetic fields
Directory of Open Access Journals (Sweden)
Luis Aparicio
2017-05-01
Full Text Available We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.
Inflating Kahler moduli and primordial magnetic fields
International Nuclear Information System (INIS)
Aparicio, Luis; Maharana, Anshuman
2017-01-01
We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.
Inflating Kahler moduli and primordial magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Aparicio, Luis, E-mail: laparici@ictp.it [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Maharana, Anshuman, E-mail: anshumanmaharana@hri.res.in [Harish Chandra Research Institute, HBNI, Chattnag Road, Jhunsi, Allahabad 211019 (India)
2017-05-10
We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.
The origin, evolution and signatures of primordial magnetic fields.
Subramanian, Kandaswamy
2016-07-01
The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak ∼ 10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.
Reduced bispectrum seeded by helical primordial magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Hortúa, Héctor Javier [Universidad Nacional de Colombia-Bogotá, Facultad de Ciencias, Departamento de Física, Carrera 30 Calle 45-03, C.P. 111321 Bogotá (Colombia); Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co [Grupo de Gravitación y Cosmología, Observatorio Astronómico Nacional, Universidad Nacional de Colombia, cra 45 No 26-85, Edificio Uriel Gutierréz, Bogotá, D.C. (Colombia)
2017-06-01
In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlation case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.
Cosmic microwave background trispectrum and primordial magnetic field limits.
Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy
2012-06-08
Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
Chameleon-photon mixing in a primordial magnetic field
International Nuclear Information System (INIS)
Schelpe, Camilla A. O.
2010-01-01
The existence of a sizable, O(10 -10 -10 -9 G), cosmological magnetic field in the early Universe has been postulated as a necessary step in certain formation scenarios for the large-scale O(μG) magnetic fields found in galaxies and galaxy clusters. If this field exists then it may induce significant mixing between photons and axion-like particles (ALPs) in the early Universe. The resonant conversion of photons into ALPs in a primordial magnetic field has been studied elsewhere by Mirizzi, Redondo and Sigl (2009). Here we consider the nonresonant mixing between photons and scalar ALPs with masses much less than the plasma frequency along the path, with specific reference to the chameleon scalar field model. The mixing would alter the intensity and polarization state of the cosmic microwave background (CMB) radiation. We find that the average modification to the CMB polarization modes is negligible. However the average modification to the CMB intensity spectrum is more significant and we compare this to high-precision measurements of the CMB monopole made by the far infrared absolute spectrophotometer on board the COBE satellite. The resulting 95% confidence limit on the scalar-photon conversion probability in the primordial field (at 100 GHz) is P γ↔φ -2 . This corresponds to a degenerate constraint on the photon-scalar coupling strength, g eff , and the magnitude of the primordial magnetic field. Taking the upper bound on the strength of the primordial magnetic field derived from the CMB power spectra, B λ ≤5.0x10 -9 G, this would imply an upper bound on the photon-scalar coupling strength in the range g eff -13 GeV -1 to g eff -14 GeV -1 , depending on the power spectrum of the primordial magnetic field.
Magnification bias as a novel probe for primordial magnetic fields
International Nuclear Information System (INIS)
Camera, S.; Fedeli, C.; Moscardini, L.
2014-01-01
In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10 −4 nG for values of the PMF power spectral index n B ∼ 0
Planck 2015 results. XIX. Constraints on primordial magnetic fields
Ade, P.A.R.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Chluba, J.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Shiraishi, M.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.
2016-01-01
We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB spectra; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities; and the magnetically-induced breaking of statistical isotropy. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are $B_{1\\,\\mathrm{Mpc}}< 4.4$ nG (where $B_{1\\,\\mathrm{Mpc}}$ is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity, and $B_{1\\,\\mathrm{Mpc}}< 5.6$ nG when we consider a maximally helical field. For nearly scale-invariant PMFs we obtain $B_{1\\,\\mathrm{Mpc}}<2.1$ nG and $B_{1\\,\\mathrm{Mpc}}<0.7$ nG if the impact of PMFs on the ionization history of the Universe is included in the analysis...
International Nuclear Information System (INIS)
Finelli, Fabio; Paci, Francesco; Paoletti, Daniela
2008-01-01
We study the impact of a stochastic background of primordial magnetic fields on the scalar contribution of cosmic microwave background (CMB) anisotropies and on the matter power spectrum. We give the correct initial conditions for cosmological perturbations and the exact expressions for the energy density and Lorentz force associated to the stochastic background of primordial magnetic fields, given a power-law for their spectra cut at a damping scale. The dependence of the CMB temperature and polarization spectra on the relevant parameters of the primordial magnetic fields is illustrated.
Time evolution of primordial magnetic fields and present day extragalactic magnetism
International Nuclear Information System (INIS)
Saveliev, Andrey
2014-05-01
The topic of the present thesis is the time evolution of Primordial Magnetic Fields which have been generated in the Early Universe. Assuming this so-called Cosmological Scenario of magnetogenesis to be true, it is shown in the following that this would account for the present day Extragalactic Magnetic Fields. This is particularly important in light of recent gamma ray observations which are used to derive a lower limit for the corresponding magnetic field strength, even though also an alternative approach, claiming instead that these observations are due to interactions with the Intergalactic Medium, is possible and will be tested here with Monte Carlo simulations. In order to describe the aforementioned evolution of Primordial Magnetic Fields, a set of general Master Equations for the spectral magnetic, kinetic and helical components of the system are derived and then solved numerically for the Early Universe. This semianalytical method allows it to perform a full quantitative study for the time development of the power spectra, in particular by fully taking into account the backreaction of the turbulent medium onto the magnetic fields. Applying the formalism to non-helical Primordial Magnetic Fields created on some characteristic length measure, it is shown that on large scales L their spectrum 5 builds up a slope which behaves as B∝L -(5)/(2) and governs the evolution of the coherence (or integral) scale. In addition, the claim of equipartition between the magnetic and the kinetic energy is found to be true. Extending the analysis to helical magnetic fields, it is observed that the time evolution changes dramatically, hence confirming quantitatively that an Inverse Cascade, i.e. an efficient transport of energy from small to large scales, as predicted in previous works, indeed does take place.
Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.
Seshadri, T R; Subramanian, Kandaswamy
2009-08-21
Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.
Numerical simulations of the decay of primordial magnetic turbulence
International Nuclear Information System (INIS)
Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.; Ratra, Bharat
2010-01-01
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
Planck 2015 results: XIX. Constraints on primordial magnetic fields
DEFF Research Database (Denmark)
Ade, P. A R; Aghanim, N.; Arnaud, M.
2016-01-01
of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc ... to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc Mpc 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc
Primordial magnetic fields from a non-singular bouncing cosmology
Membiela, Federico Agustín
2014-08-01
Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f2(ϕ)FμνF (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>-ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f2(ϕ)F2-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.
Primordial magnetic fields from a non-singular bouncing cosmology
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustín, E-mail: membiela@mdp.edu.ar [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud, 150, Rio de Janeiro (Brazil); Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, 7600 Mar del Plata (Argentina)
2014-08-15
Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f{sup 2}(ϕ)F{sub μν}F{sup μν} (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>−ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f{sup 2}(ϕ)F{sup 2}-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.
Primordial magnetic fields from a non-singular bouncing cosmology
International Nuclear Information System (INIS)
Membiela, Federico Agustín
2014-01-01
Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f 2 (ϕ)F μν F μν (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>−ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f 2 (ϕ)F 2 -instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials
Detection of Primordial Magnetic Fields in TeV gamma-ray data
Wingler, A.
The analysis of the time-variable flux of γ-ray photons from extragalactic sources is currently the only proposed way to directly determine the magnetic field strengths in intergalactic space - far away from galaxies and clusters (in the cosmological "voids") - in the range below about 10,10 Gauss (Plaga 1995). Remnant magnetic fields with field strengths much below this, which may well have formed in early cosmological times, could exist in these voids. Due to their interaction with infrared photons TeV gamma-rays induce pair production in intergalactic space. The electrons and positrons are deflected by ambient magnetic fields and produce γ-rays via inverse Compton scattering that are delayed with respect to the original photons in an energy-dependent, characteristic manner. A standard method to identify these delayed events in a data sample of a source with a variable VHE γ-ray flux (as available from several Cherenkov telescope experiments for the high-emission phase of the AGN Mrk 501 in 1997) is described. Monte-Carlo simulations of existing data sets (taking into backgrounds and instrumental limitations) are used to explore how sensitive data sets similar to the existing ones are to primordial magnetic fields. We find that about 22000 (15000) events from a source with characteristics similar to Mrk 501 are needed to detect a primordial B field of 3 (10) atto Gauss (10,18 G) with a 3 significance.
The influence of primordial magnetic fields on the spherical collapse model in cosmology
International Nuclear Information System (INIS)
Shibusawa, Y.; Ichiki, K.; Kadota, K.
2014-01-01
Despite the ever growing observational evidence for the existence of the large scale magnetic fields, their origin and the evolution are not fully understood. If the magnetic fields are of primordial origin, they result in the generation of the secondary matter density perturbations and the previous studies show that such density perturbations enhance the number of dark matter halos. We extend the conventional spherical collapse model by including the Lorentz force which has not been implemented in the previous analysis to study the evolution of density perturbations produced by primordial magnetic fields. The critical over-density δ c characterizing the halo mass function turns out to be a bigger value, δ c ≅ 1.78, than the conventional one δ c ≅ 1.69 for the perturbations evolved only by the gravitational force. The difference in δ c between our model and the fully matter dominated cosmological model is small at a low redshift and, hence, only the high mass tail of the mass function is affected by the magnetic fields. At a high redshift, on the other hand, the difference in δ c becomes large enough to suppress the halo abundance over a wide range of mass scales. The halo abundance is reduced for instance by as large a factor as ∼10 5 at z=9
Thermal Sunyaev-Zel'dovich effect in the intergalactic medium with primordial magnetic fields
Minoda, Teppei; Hasegawa, Kenji; Tashiro, Hiroyuki; Ichiki, Kiyotomo; Sugiyama, Naoshi
2017-12-01
The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zel'dovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as P (k )∝B1Mpc 2knB , we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton y -parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton y -parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast on small scale just after the recombination epoch. These facts result in making the anisotropies of the CMB temperature on small scales, and we find that the signal goes up to 10 μ K2 around ℓ˜106 with B1 Mpc=0.1 nG and nB=0.0 . Therefore, CMB measurements on such small scales may provide a hint for the existence of the PMFs.
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
International Nuclear Information System (INIS)
Yamazaki, Dai G.; Ichiki, Kiyotomo; Takahashi, Keitaro
2011-01-01
We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at k≅10 -2.5 Mpc -1 with the upper limit B < or approx. 3 nG.
Poltis, Robert; Stojkovic, Dejan
2010-10-15
The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.
Primordial black holes as seeds of magnetic fields in the universe
Safarzadeh, Mohammadtaher
2018-06-01
Although it is assumed that magnetic fields in accretion disks are dragged from the interstellar medium, the idea is likely not applicable to primordial black holes (PBHs) formed in the early universe. Here we show that magnetic fields can be generated in initially unmagnetized accretion disks around PBHs through the Biermann battery mechanism, and therefore provide the small scale seeds of magnetic field in the universe. The radial temperature and vertical density profiles of these disks provide the necessary conditions for the battery to operate naturally. The generated seed fields have a toroidal structure with opposite sign in the upper and lower half of the disk. In the case of a thin accretion disk around a rotating PBH, the field generation rate increases with increasing PBH spin. At a fixed r/risco, where r is the radial distance from the PBH and risco is the radius of the innermost stable circular orbit, the battery scales as M-9/4, where M is the PBH's mass. The very weak dependency of the battery on accretion rate, makes this mechanism a viable candidate to provide seed fields in an initially unmagnetized accretion disk, following which the magnetorotational instability could take over.
Primordial Magnetic Field Effects on the CMB and Large-Scale Structure
Directory of Open Access Journals (Sweden)
Dai G. Yamazaki
2010-01-01
Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.
The New BBN Model with the Photon Cooling, X Particle, and the Primordial Magnetic Field
Yamazaki, Dai G.; Kusakabe, Motohiko; Kajino, Toshitaka; Mathews, Grant. J.; Cheoun, Myung-Ki
The Big bang nucleosynthesis theory accurately reproduces the abundances of light elements in the Universe, except for 7Li abundance. Calculated 7Li abundance with the baryon to photon ratio fixed by the observations of the cosmic microwave background (CMB) is inconsistent with the observed 7Li abundance on the surface of metal-poor halo stars, and this problem is called "Li problem". Previous studies proposing solutions of this 7Li problem include photon cooling (possibly via the Bose-Einstein condensation of a scalar particle), the decay of a long-lived X particle (possibly the next-to-lightest supersymmetric particle), or an energy density of a primordial magnetic field (PMF). We mention analyzed results of these solutions both separately and in concert, and the constraint on the X particles and the PMF parameters from observed light element abundances with likelihood analysis. We can discover parameter ranges of the X particles which can solve the Li problem and constrain the energy density of the PMF.
Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario
Directory of Open Access Journals (Sweden)
Asuka Ito
2017-08-01
Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.
... Topics Gait & Motion Analysis Genetic Disorders Limb Length Discrepancy Orthopedics Orthotics Primordial Dwarfism Locations & Doctors About Primordial ... Sign-In » Patient-Family Resources Insurance We Accept Pay My Bill Financial Assistance Medical Records Support Services ...
Impact of a primordial magnetic field on cosmic microwave background B modes with weak lensing
Yamazaki, Dai G.
2018-05-01
We discuss the manner in which the primordial magnetic field (PMF) suppresses the cosmic microwave background (CMB) B mode due to the weak-lensing (WL) effect. The WL effect depends on the lensing potential (LP) caused by matter perturbations, the distribution of which at cosmological scales is given by the matter power spectrum (MPS). Therefore, the WL effect on the CMB B mode is affected by the MPS. Considering the effect of the ensemble average energy density of the PMF, which we call "the background PMF," on the MPS, the amplitude of MPS is suppressed in the wave number range of k >0.01 h Mpc-1 . The MPS affects the LP and the WL effect in the CMB B mode; however, the PMF can damp this effect. Previous studies of the CMB B mode with the PMF have only considered the vector and tensor modes. These modes boost the CMB B mode in the multipole range of ℓ>1000 , whereas the background PMF damps the CMB B mode owing to the WL effect in the entire multipole range. The matter density in the Universe controls the WL effect. Therefore, when we constrain the PMF and the matter density parameters from cosmological observational data sets, including the CMB B mode, we expect degeneracy between these parameters. The CMB B mode also provides important information on the background gravitational waves, inflation theory, matter density fluctuations, and the structure formations at the cosmological scale through the cosmological parameter search. If we study these topics and correctly constrain the cosmological parameters from cosmological observations, including the CMB B mode, we need to correctly consider the background PMF.
Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves
International Nuclear Information System (INIS)
Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi
2010-01-01
We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.
Primordial inflation and the monopole problem
International Nuclear Information System (INIS)
Olive, K.A.; Seckel, D.
1984-01-01
This chapter discusses the cosmological abundance of magnetic monopoles in locally supersymmetry grand unified theories (GUTs) and primordial inflation. It is shown how the magnetic monopole problem can be solved in variants of broken N=1 supergravity primordial inflation. The monopole problem and its solution in inflationary models is reviewed. It is demonstrated that the monopole problem can be solved by coupling primordial inflation to supersymmetric SU(5) breaking
Schramm, D N
1998-01-06
With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-alpha clouds, x-ray gas in clusters, and the microwave anisotropy are made.
International Nuclear Information System (INIS)
Coc, Alain
2013-01-01
Primordial nucleosynthesis, or Big Bang Nucleosynthesis (BBN), is one of the three evidences for the Big-Bang model, together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4 He, D, 3 He and 7 Li deduced from observations, and calculated in primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. However, there remain, a yet unexplained, discrepancy of a factor 3-5, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. We review here the nuclear physics aspects of BBN for the production of 4 He, D, 3 He and 7 Li, but also 6 Li, 9 Be, 11 B and up to CNO isotopes. These are, for instance, important for the initial composition of the matter at the origin of the first stars. Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic density, and the number of neutrino families, remains, a valuable tool to probe the physics of the early Universe, like variation of ''constants'' or alternative theories of gravity.
Constraints on the production of primordial magnetic seeds in pre-big bang cosmology
Energy Technology Data Exchange (ETDEWEB)
Gasperini, M., E-mail: gasperini@ba.infn.it [Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari (Italy)
2017-06-01
We study the amplification of the electromagnetic fluctuations, and the production of 'seeds' for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
Constraints on the production of primordial magnetic seeds in pre-big bang cosmology
Gasperini, M.
2017-06-01
We study the amplification of the electromagnetic fluctuations, and the production of "seeds" for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
Coc, Alain
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Most solutions to this lithium problem involve a source of extra neutrons that inevitably leads to an increase of the deuterium abundance. This seems now to be excluded by recent deuterium observations that have drastically reduced the uncertainty on D/H and also calls for improved precision on thermonuclear reaction rates.
International Nuclear Information System (INIS)
Anon.
1995-01-01
The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to
Directory of Open Access Journals (Sweden)
Kees Waaijman
2010-11-01
Full Text Available This article explores the primordial spirituality of the Bible, as expressed in names, narratives and prayers. It looks at the nomadic families of Abraham and Sarah, Isaac and Rebecca, Jacob, Lea and Rachel, moving around from Mesopotamia via Canaan into Egypt and vice versa (see Gn 11:31–32; 12:4–5; 27:43; 28:10; 29:4; Gn 24 and 29–31. It analyses their experiences, covering the span between birth and death and listens to their parental concerns about education as survival. It also follows their journeys along the margins of the deserts. It shares their community life as it takes shape in mutual solidarity, mercy and compassion.
DEFF Research Database (Denmark)
Leitao, Joana; Thielscher, Axel; Lee, Hweeling
2017-01-01
-parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... affect participants' performance accuracy, it affected how observers adjusted their response times after making an error. We therefore suggest that activation increases in superior frontal gyri for misses relative to correct responses may not be critical for signal detection performance, but rather...
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M
2012-01-01
Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.
International Nuclear Information System (INIS)
Gustavino, C.; Anders, M.; Bemmerer, D.; Elekes, Z.; Trezzi, D.
2016-01-01
Big Bang nucleosynthesis (BBN) describes the production of light nuclei in the early phases of the Universe. For this, precise knowledge of the cosmological parameters, such as the baryon density, as well as the cross section of the fusion reactions involved are needed. In general, the energies of interest for BBN are so low (E < 1 MeV) that nuclear cross section measurements are practically unfeasible at the Earth's surface. As of today, LUNA (Laboratory for Underground Nuclear Astrophysics) has been the only facility in the world available to perform direct measurements of small cross section in a very low background radiation. Owing to the background suppression provided by about 1400 meters of rock at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and to the high current offered by the LUNA accelerator, it has been possible to investigate cross sections at energies of interest for Big Bang nucleosynthesis using protons, 3 He and alpha particles as projectiles. The main reaction studied in the past at LUNA is the 2 H( 4 He, γ) 6 Li. Its cross section was measured directly, for the first time, in the BBN energy range. Other processes like 2 H(p, γ) 3 He, 3 He( 2 H, p) 4 He and 3 He( 4 He, γ) 7 Be were also studied at LUNA, thus enabling to reduce the uncertainty on the overall reaction rate and consequently on the determination of primordial abundances. The improvements on BBN due to the LUNA experimental data will be discussed and a perspective of future measurements will be outlined. (orig.)
The primordial nucleosynthesis
International Nuclear Information System (INIS)
Audouze, J.
1984-01-01
This review of the primordial nucleosynthesis is divided in three chapters. In the first the author attempts to determine the primordial abundances of the lightest elements which can be formed by the Big Bang nucleosynthesis. The second is a summary of the Standard Big Bang nucleosynthesis. This simple and attractive model might be found in difficulty in the case of a primordial abundance of He <= 0.24 and/or in the case of models of galactic evolution allowing infall of external matter having a primordial composition. Finally, in the third, two alternative proposals to the Standard Big Bang nucleosynthesis are summarized. (Auth.)
Causal impact of magnetic fluctuations in slow and fast L–H transitions at TJ-II
Energy Technology Data Exchange (ETDEWEB)
Milligen, B. Ph. van; Estrada, T.; Ascasíbar, E.; Hidalgo, C.; Pastor, I.; Fontdecaba, J. M. [Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); Balbín, R. [Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca (Spain)
2016-07-15
This work focuses on the relationship between L–H (or L–I) transitions and MHD activity in the low magnetic shear TJ-II stellarator. It is shown that the presence of a low order rational surface in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed near the confinement transition. We apply a causality detection technique (based on the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to “fast” and “slow” transitions. With the “slow” transitions, the developing Zonal Flow prior to the transition is associated with the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of “information transfer” from magnetic to velocity oscillations, suggesting that the magnetic drive may play a role in setting up the final sheared flow responsible for the H-mode transport barrier. Similar observations were made for the “fast” transitions. Thus, it is shown that magnetic oscillations associated with rational surfaces play an important and active role in confinement transitions, so that electromagnetic effects should be included in any complete transition model.
Primordial chemistry: an overview
International Nuclear Information System (INIS)
Signore, Monique; Puy, Denis
1999-01-01
In the standard Big Bang model, the light elements in the cosmos -hydrogen and helium but also deuterium and lithium- were created in the very early Universe. The main problem is to connect what we can actually observe to day with the standard Big Bang nucleosynthesis predictions essentially because of uncertainties in modeling their evolution since the Big Bang. After a brief review of the primordial nucleosynthesis -predictions and observations of the primordial abundances- we present the preliminary studies of the primordial chemistry: molecular formation and evolution in the early Universe
Primordial dwarfism: an update.
Alkuraya, Fowzan S
2015-02-01
To review the recent advances in the clinical and molecular characterization of primordial dwarfism, an extreme growth deficiency disorder that has its onset during embryonic development and persists throughout life. The last decade has witnessed an unprecedented acceleration in the discovery of genes mutated in primordial dwarfism, from one gene to more than a dozen genes. These genetic discoveries have confirmed the notion that primordial dwarfism is caused by defects in basic cellular processes, most notably centriolar biology and DNA damage response. Fortunately, the increasing number of reported clinical primordial dwarfism subtypes has been accompanied by more accurate molecular classification. Qualitative defects of centrioles with resulting abnormal mitosis dynamics, reduced proliferation, and increased apoptosis represent the predominant molecular pathogenic mechanism in primordial dwarfism. Impaired DNA damage response is another important mechanism, which we now know is not mutually exclusive to abnormal centrioles. Molecular characterization of primordial dwarfism is helping families by enabling more reproductive choices and may pave the way for the future development of therapeutics.
Primordial nucleosynthesis: A cosmological point of view
International Nuclear Information System (INIS)
Mathews, G. J.; Kajino, T.; Yamazaki, D.; Kusakabe, M.; Cheoun, M.-K.
2014-01-01
Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the test-ing ground upon which all cosmological models must ultimately rest. It is our only probe of the universe during the first few minutes of cosmic expansion and in particular during the important radiation-dominated epoch. These lectures review the basic equations of space-time, cosmology, and big bang nucleosynthesis. We will then review the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measure-ments are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we summarize the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field
Di, Xin; Biswal, Bharat B
2014-02-01
The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. © 2013.
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Nanopoulos, D. V.; Srednicki, M.
1983-12-01
We show that, before the onset of primordial inflation, there is plenty of time for fields with very flat potentials and very weak couplings (such as the local supersymmetry breaking field and the axion field) to roll to the global minima of their potentials. Thus there is no energy stored in these fields today and hence no constraint (such as faxion USA.
Photinos and primordial nucleosynthesis
International Nuclear Information System (INIS)
Salati, P.
1986-07-01
Photinos are among the most interesting particles predicted by supersymmetric theories. If they exist they should influence in many ways the results of the primordial nucleosynthesis i.e. the predicted primordial abundances of D, 3 He, 4 He (and 7 Li). If photinos are stable, cosmological constraints restrict their possible mass to be either very light (M∼ γ γ > a few GeV), depending on the slepton and squark masses. In the case where photinos are unstable, they could create high energy photons able to photodisintegrate the light elements. The comparison between the predicted and the observed abundances allows to restrict significantly the photino mass-lifetime range: roughly speaking photinos of relatively high mass (M∼ γ > 150 MeV) and low time scale ( 3 sec) are compatible with these abundances
The Primordial Inflation Explorer
Kogut, Alan J.
2012-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.
Corrections to primordial nucleosynthesis
International Nuclear Information System (INIS)
Dicus, D.A.; Kolb, E.W.; Gleeson, A.M.; Sudarshan, E.C.G.; Teplitz, V.L.; Turner, M.S.
1982-01-01
The changes in primordial nucleosynthesis resulting from small corrections to rates for weak processes that connect neutrons and protons are discussed. The weak rates are corrected by improved treatment of Coulomb and radiative corrections, and by inclusion of plasma effects. The calculations lead to a systematic decrease in the predicted 4 He abundance of about ΔY = 0.0025. The relative changes in other primoridal abundances are also 1 to 2%
Searching for Primordial Antimatter
2008-10-01
Scientists are on the hunt for evidence of antimatter - matter's arch nemesis - leftover from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult. Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2. According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe. Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe. How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second. "If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility." X-rayChandra X-ray Image In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot
Ellis, George FR; Pabjan, Tadeusz
2013-01-01
Written by philosophers, cosmologists, and physicists, this collection of essays deals with causality, which is a core issue for both science and philosophy. Readers will learn about different types of causality in complex systems and about new perspectives on this issue based on physical and cosmological considerations. In addition, the book includes essays pertaining to the problem of causality in ancient Greek philosophy, and to the problem of God's relation to the causal structures of nature viewed in the light of contemporary physics and cosmology.
Causal and causally separable processes
Oreshkov, Ognyan; Giarmatzi, Christina
2016-09-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and
Causal and causally separable processes
International Nuclear Information System (INIS)
Oreshkov, Ognyan; Giarmatzi, Christina
2016-01-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B , either A is in the causal past of B , B is in the causal past of A , or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B , an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A ’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...
Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: membiela@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar
2009-04-20
We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant {lambda}{sub 0}. Using the gravitoelectromagnetic inflationary formalism with A{sub 0}=0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.
Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation
Membiela, Federico Agustín; Bellini, Mauricio
2009-04-01
We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.
Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation
International Nuclear Information System (INIS)
Membiela, Federico Agustin; Bellini, Mauricio
2009-01-01
We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ 0 . Using the gravitoelectromagnetic inflationary formalism with A 0 =0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.
Morabia, Alfredo
2005-01-01
Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.
Electroweak baryogenesis with primordial hypermagnetic fields
International Nuclear Information System (INIS)
Ayala, Alejandro; Pallares, Gabriel; Besprosvany, Jaime; Piccinelli, Gabriella
2002-01-01
Primordial magnetic fields, independently of their origin, could have had a significant influence over several physical processes that took place during the evolution of the early universe, in particular baryogenesis. Recall that for temperatures above the electroweak phase transition (T > 100 GeV), the symmetry of the standard model corresponded to the U(1)y hypercharge group, instead of the U(1)em electromagnetic group and are therefore properly called hypermagnetic fields. In this work, we show that during a first order electroweak phase transition, the presence of hypermagnetic fields produces an axial charge segregation in the reflection and transmission of fermions off the true vacuum bubbles. We also comment on the possible consequences that these processes have for the generation of baryon number during the phase transition
Super-horizon primordial black holes
International Nuclear Information System (INIS)
Harada, Tomohiro; Carr, B.J.
2005-01-01
We discuss a new class of solutions to the Einstein equations which describe a primordial black hole (PBH) in a flat Friedmann background. Such solutions arise if a Schwarzschild black hole is patched onto a Friedmann background via a transition region. They are possible providing the black hole event horizon is larger than the cosmological apparent horizon. Such solutions have a number of strange features. In particular, one has to define the black hole and cosmological horizons carefully and one then finds that the mass contained within the black hole event horizon decreases when the black hole is larger than the Friedmann cosmological apparent horizon, although its area always increases. These solutions involve two distinct future null infinities and are interpreted as the conversion of a white hole into a black hole. Although such solutions may not form from gravitational collapse in the same way as standard PBHs, there is nothing unphysical about them, since all energy and causality conditions are satisfied. Their conformal diagram is a natural amalgamation of the Kruskal diagram for the extended Schwarzschild solution and the conformal diagram for a black hole in a flat Friedmann background. In this paper, such solutions are obtained numerically for a spherically symmetric universe containing a massless scalar field, but it is likely that they exist for more general matter fields and less symmetric systems
Late baryogenesis faces primordial nucleosynthesis
International Nuclear Information System (INIS)
Delbourgo-Salvador, P.; Audouze, J.; Salati, P.
1991-11-01
Since the sphalleron mechanism present in the standard theory of electro-weak interactions violates B+L, models have been suggested where baryogenesis takes place at late epochs and is concomitant with primordial nucleosynthesis. The possibility for the baryon asymmetry to be generated was numerically investigated at the same time as the light elements are cooked. The primordial yields of D, 3 He, 4 He and 7 Li were shown to exceed the upper limits inferred from observation, unless baryogenesis is anterior to the freeze-out of the weak interactions. This implies strong constraints on scenarios where the baryon asymmetry originates from the late decay of massive gravitinos. (author) 18 refs., 6 figs
Primordial Kaluza-Klein inflation
International Nuclear Information System (INIS)
Gonzalez-Diaz, P.F.
1986-01-01
In a higher-dimensional version of the gravitational action with higher-derivative terms and logarithmic dependence on the curvature scalar, in addition to the four-dimensional gravitational action integral, the non-gravitational Coleman-Weinberg effective potential that governs primordial inflation is obtained. Also, it is obtained that the length scale for the internal space decreases monotonously during the inflationary era, at a similar rate as the three spacelike dimensions grow. (orig.)
Schutter, D.J.L.G.; Honk, E.J. van; Panksepp, J.
2004-01-01
Transcranial magnetic stimulation (TMS) is a method capable of transiently modulating neural excitability. Depending on the stimulation parameters information processing in the brain can be either enhanced or disrupted. This way the contribution of different brain areas involved in mental processes
RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans.
Shamseldin, Hanan; Alazami, Anas M; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A Micheil; Parboosingh, Jillian S; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P; Alkuraya, Fowzan S
2015-12-03
Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Effect of accretion on primordial black holes in Brans-Dicke theory
International Nuclear Information System (INIS)
Nayak, B.; Singh, L. P.; Majumdar, A. S.
2009-01-01
We consider the effect of accretion of radiation in the early Universe on primordial black holes in Brans-Dicke theory. The rate of growth of a primordial black hole due to accretion of radiation in Brans-Dicke theory is considerably smaller than the rate of growth of the cosmological horizon, thus making available sufficient radiation density for the black hole to accrete causally. We show that accretion of radiation by Brans-Dicke black holes overrides the effect of Hawking evaporation during the radiation dominated era. The subsequent evaporation of the black holes in later eras is further modified due to the variable gravitational 'constant', and they could survive up to longer times compared to the case of standard cosmology. We estimate the impact of accretion on modification of the constraint on their initial mass fraction obtained from the γ-ray background limit from presently evaporating primordial black holes.
QCD pairing in primordial nuggets
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
Resonant primordial gravitational waves amplification
Directory of Open Access Journals (Sweden)
Chunshan Lin
2016-01-01
Full Text Available We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.
Primordial gravitational waves and cosmology.
Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan
2010-05-21
The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.
Cosmology with primordial black holes
International Nuclear Information System (INIS)
Lindley, D.
1981-09-01
Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)
The Primordial Inflation Explorer (PIXIE)
Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David
2016-01-01
The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 degrees and sensitivity 70 nK per 1degree square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r inflation to the nature of the first stars and the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture required to measure the CMB to the limits imposed by astrophysical foregrounds.
Fluctuations in models with primordial inflation
International Nuclear Information System (INIS)
Kahn, R.; Brandenberger, R.
1984-01-01
The recently proposed general framework for calculating the growth of primordial energy density fluctuations in cosmological models is applied to two models of phenomenological interest in which the cosmological evolution differs crucially from that in new inflationary universe models. Both in a model of primordial supersymmetric inflation and in Linde's proposal of chaotic inflation we verify the conjectured results. (orig.)
Causally nonseparable processes admitting a causal model
International Nuclear Information System (INIS)
Feix, Adrien; Araújo, Mateus; Brukner, Caslav
2016-01-01
A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities ) while others do not (they admit a ‘causal model’ analogous to a local model ). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties. (paper)
Primordial nucleosynthesis: Beyond the standard model
International Nuclear Information System (INIS)
Malaney, R.A.
1991-01-01
Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs
Primordial black holes from fifth forces
Amendola, Luca; Rubio, Javier; Wetterich, Christof
2018-04-01
Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.
Directory of Open Access Journals (Sweden)
Long-Biao eCui
2015-11-01
Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.
Neutrino mass and the origin of galactic magnetic fields
International Nuclear Information System (INIS)
Enqvist, K.; Semikoz, V.; Shukurov, A.; Sokoloff, D.
1993-01-01
We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting 4 He production at primordial nucleosynthesis, we can obtain a guaranteed upper limit on the strength of the relic magnetic field in the protogalaxy, B c approx-lt 4x10 -9 --3x10 -13 G, depending on the neutrino magnetic moment, if we adopt the MSW explanation of the GALLEX results. On the other hand, models of the dynamo in the Milky Way indicate that the seed magnetic field should be at least 10 -11 --10 -13 G at the protogalaxy scale L=100 kpc. These upper and lower limiting ranges are marginally consistent provided the electron neutrino mass is below 0.3 eV. The results apply to a relic magnetic field produced in the early Universe by any causal mechanism before the nucleosynthesis
The Primordial Inflation Explorer (PIXIE)
Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David
2016-07-01
The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6° and sensitivity 70 nK per 1° square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r complements anticipated ground-based polarization measurements such as CMB- S4, providing a cosmic-variance-limited determination of the large-scale E-mode signal to measure the optical depth, constrain models of reionization, and provide a firm detection of the neutrino mass (the last unknown parameter in the Standard Model of particle physics). In addition, PIXIE will measure the absolute frequency spectrum to characterize deviations from a blackbody with sensitivity 3 orders of magnitude beyond the seminal COBE/FIRAS limits. The sky cannot be black at this level; the expected results will constrain physical processes ranging from inflation to the nature of the first stars and the
Running of featureful primordial power spectra
Gariazzo, Stefano; Mena, Olga; Miralles, Victor; Ramírez, Héctor; Boubekeur, Lotfi
2017-06-01
Current measurements of the temperature and polarization anisotropy power spectra of the cosmic microwave background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectrum with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. From a model comparison perspective, and assuming that nature has chosen a featureless primordial power spectrum, we find that, while with mock Planck data there is only weak evidence against a model with localized features, upcoming CMB missions may provide compelling evidence against such a nonstandard primordial power spectrum. This evidence could be reinforced if a featureless primordial power spectrum is independently confirmed from bispectrum and/or galaxy clustering measurements.
Microcephalic osteodysplastic primordial dwarfism (MOPD) type I ...
African Journals Online (AJOL)
Rabah M. Shawky
2017-05-02
May 2, 2017 ... Seckel syndrome, microcephalic osteodysplastic primordial dwarf- ism (MOPD) type ... tures of elbow and knee joints, thin dry skin with marked decreased ... lashes and eyebrows, protruding eyes, prominent nose with a flat.
Primordial gravitational waves, BICEP2 and beyond
Indian Academy of Sciences (India)
2016-01-07
Jan 7, 2016 ... Observations of the imprints of primordial gravitational waves on the ... the cosmic microwave background can provide us with unambiguous clues to the ... by the stress–energy tensor) can be classified, for instance, based on ...
Frisch, Mathias
2014-01-01
Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.
Jones, Robert
2010-03-01
There are a wide range of views on causality. To some (e.g. Karl Popper) causality is superfluous. Bertrand Russell said ``In advanced science the word cause never occurs. Causality is a relic of a bygone age.'' At the other extreme Rafael Sorkin and L. Bombelli suggest that space and time do not exist but are only an approximation to a reality that is simply a discrete ordered set, a ``causal set.'' For them causality IS reality. Others, like Judea Pearl and Nancy Cartwright are seaking to build a complex fundamental theory of causality (Causality, Cambridge Univ. Press, 2000) Or perhaps a theory of causality is simply the theory of functions. This is more or less my take on causality.
Directory of Open Access Journals (Sweden)
Cristina Puente Águeda
2011-10-01
Full Text Available Causality is a fundamental notion in every field of science. Since the times of Aristotle, causal relationships have been a matter of study as a way to generate knowledge and provide for explanations. In this paper I review the notion of causality through different scientific areas such as physics, biology, engineering, etc. In the scientific area, causality is usually seen as a precise relation: the same cause provokes always the same effect. But in the everyday world, the links between cause and effect are frequently imprecise or imperfect in nature. Fuzzy logic offers an adequate framework for dealing with imperfect causality, so a few notions of fuzzy causality are introduced.
On the non-Gaussian correlation of the primordial curvature perturbation with vector fields
DEFF Research Database (Denmark)
Kumar Jain, Rajeev; Sloth, Martin Snoager
2013-01-01
We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...
Rehder, Bob
2017-01-01
This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…
Galaxy bias and primordial non-Gaussianity
Energy Technology Data Exchange (ETDEWEB)
Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)
2015-12-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.
Galaxy bias and primordial non-Gaussianity
International Nuclear Information System (INIS)
Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian
2015-01-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation
Primordial Black Holes from First Principles (Overview)
Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan
2017-01-01
Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.
Loop corrections to primordial non-Gaussianity
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Causal imprinting in causal structure learning.
Taylor, Eric G; Ahn, Woo-Kyoung
2012-11-01
Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.
Repeated causal decision making.
Hagmayer, York; Meder, Björn
2013-01-01
Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
BHDD: Primordial black hole binaries code
Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco
2018-06-01
BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.
Primordial spectra from sudden turning trajectory
Noumi, Toshifumi; Yamaguchi, Masahide
2013-12-01
Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.
Primordial Prevention of Cardiometabolic Risk in Childhood.
Tanrikulu, Meryem A; Agirbasli, Mehmet; Berenson, Gerald
2017-01-01
Fetal life and childhood are important in the development of cardiometabolic risk and later clinical disease of atherosclerosis, hypertension and diabetes mellitus. Molecular and environmental conditions leading to cardiometabolic risk in early life bring us a challenge to develop effective prevention and intervention strategies to reduce cardiovascular (CV) risk in children and later disease. It is important that prevention strategies begin at an early age to reduce future CV morbidity and mortality. Pioneering work from longitudinal studies such as Bogalusa Heart Study (BHS), the Finnish Youth Study and other programs provide an awareness of the need for public and health services to begin primordial prevention. The impending CV risk beginning in childhood has a significant socioeconomic burden. Directions to achieve primordial prevention of cardiometabolic risk in children have been developed by prior longitudinal studies. Based on those studies that show risk factors in childhood as precursors of adult CV risk, implementation of primordial prevention will have effects at broad levels. Considering the epidemic of obesity, the high prevalence of hypertension and cardiometabolic risk, prevention early in life is valuable. Comprehensive health education, such as 'Health Ahead/Heart Smart', for all elementary school age children is one approach to begin primordial prevention and can be included in public education beginning in kindergarten along with the traditional education subject matter.
Primordial braneworld black holes: significant enhancement of ...
Indian Academy of Sciences (India)
Abstract. The Randall-Sundrum (RS-II) braneworld cosmological model with a frac- tion of the total energy density in primordial black holes is considered. Due to their 5d geometry, these black holes undergo modified Hawking evaporation. It is shown that dur- ing the high-energy regime, accretion from the surrounding ...
Primordial tensor modes from quantum corrected inflation
DEFF Research Database (Denmark)
Joergensen, Jakob; Sannino, Francesco; Svendsen, Ole
2014-01-01
. Finally we confront these theories with the Planck and BICEP2 data. We demonstrate that the discovery of primordial tensor modes by BICEP2 require the presence of sizable quantum departures from the $\\phi^4$-Inflaton model for the non-minimally coupled scenario which we parametrize and quantify. We...
International Nuclear Information System (INIS)
Crawford, G.N.
1981-01-01
The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm
Primordial vorticity and gradient expansion
Giovannini, Massimo
2012-01-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...
Repeated Causal Decision Making
Hagmayer, York; Meder, Bjorn
2013-01-01
Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.; Torres, J.; Oliveira, H.P. de
1989-01-01
A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author) [pt
Causal Analysis After Haavelmo
Heckman, James; Pinto, Rodrigo
2014-01-01
Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123
Brandenburg, J. E.
2010-01-01
In The GEM (Brandenburg, 2006) theory, direct manipulation of space-time geometry is possible leading to the possibility of transformation of a starship into a tachyon moving Faster Than Light (FTL). The GEM theory is reviewed and Causality in terms of the time ordering of experienced events is considered as well as examining the space-time curvature signature of such FTL particles. Time ordering and time flow is found to be determined by the 2nd law of thermodynamics and is used to derive a Cosmic time flow in terms of the expansion of the universe. The rate of increase of cosmic entropy is approximately dS/dt = c3/(Gmp), the rate that light transits from a proton-mass Black Hole, reminiscent of the Dirac Larger Number Hypothesis relating Cosmic and subatomic quantities. It is found that the tachyon FTL method, rather than allowing reversal of time ordering of experienced events, actually makes the cosmos age faster by contributing to an increase in ``Dark Energy'' and thus FTL travel via tachyons irreversibly changes the cosmos. Therefore, it appears that FTL travel can be accomplished without violation of Causality.
Causality in Europeanization Research
DEFF Research Database (Denmark)
Lynggaard, Kennet
2012-01-01
to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality......Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours......, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This chapter deals with the question of how we may move from the study...
Directory of Open Access Journals (Sweden)
Thomas eWidlok
2014-11-01
Full Text Available Cognitive Scientists interested in causal cognition increasingly search for evidence from non-WEIRD people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition.
Directory of Open Access Journals (Sweden)
Ämin Baumeler
2017-07-01
Full Text Available Computation models such as circuits describe sequences of computation steps that are carried out one after the other. In other words, algorithm design is traditionally subject to the restriction imposed by a fixed causal order. We address a novel computing paradigm beyond quantum computing, replacing this assumption by mere logical consistency: We study non-causal circuits, where a fixed time structure within a gate is locally assumed whilst the global causal structure between the gates is dropped. We present examples of logically consistent non-causal circuits outperforming all causal ones; they imply that suppressing loops entirely is more restrictive than just avoiding the contradictions they can give rise to. That fact is already known for correlations as well as for communication, and we here extend it to computation.
Are cometary nuclei primordial rubble piles?
Weissman, P. R.
1986-01-01
Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.
Shapes and features of the primordial bispectrum
Energy Technology Data Exchange (ETDEWEB)
Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Cheongam-ro 67, Pohang, 37673 (Korea, Republic of); Palma, Gonzalo A.; Sypsas, Spyros, E-mail: jinn-ouk.gong@apctp.org, E-mail: gpalmaquilod@ing.uchile.cl, E-mail: s.sypsas@gmail.com [Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago, 837.0415 Chile (Chile)
2017-05-01
If time-dependent disruptions from slow-roll occur during inflation, the correlation functions of the primordial curvature perturbation should have scale-dependent features, a case which is marginally supported from the cosmic microwave background (CMB) data. We offer a new approach to analyze the appearance of such features in the primordial bispectrum that yields new consistency relations and justifies the search of oscillating patterns modulated by orthogonal and local templates. Under the assumption of sharp features, we find that the cubic couplings of the curvature perturbation can be expressed in terms of the bispectrum in two specific momentum configurations, for example local and equilateral. This allows us to derive consistency relations among different bispectrum shapes, which in principle could be tested in future CMB surveys. Furthermore, based on the form of the consistency relations, we construct new two-parameter templates for features that include all the known shapes.
Finite temperature effects in primordial inflation
Gelmini, G. B.; Nanopoulos, D. V.; Olive, K. A.
1983-11-01
We present a detailed study of a recently proposed model for primordial inflation based on an N=1 locally supersymmetric potential. For a large class of parameters with which all cosmological constraints are satisfied, the temperature corrections can be neglected during the inflation period. At higher temperatures, the minimum is not at the origin, but very close to it. Address after July 1, 1983: Theory Group, Fermilab, PO Box 500, Batavia, IL 60510, USA.
Primordial Inflation Polarization Explorer: Status and Plans
Kogut, Alan
2009-01-01
The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.
Primordial anisotropies in gauged hybrid inflation
Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan
2014-05-01
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.
Primordial anisotropies in gauged hybrid inflation
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan
2014-01-01
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations
Nuclear reaction rates and primordial 6Li
International Nuclear Information System (INIS)
Nollett, K.M.; Schramm, D.N.; Lemoine, M.; Schramm, D.N.; Lemoine, M.; Schramm, D.N.
1997-01-01
We examine the possibility that big-bang nucleosynthesis (BBN) may produce nontrivial amounts of 6 Li. If a primordial component of this isotope could be observed, it would provide a new fundamental test of big-bang cosmology, as well as new constraints on the baryon density of the universe. At present, however, theoretical predictions of the primordial 6 Li abundance are extremely uncertain due to difficulties in both theoretical estimates and experimental determinations of the 2 H(α,γ) 6 Li radiative capture reaction cross section. We also argue that present observational capabilities do not yet allow the detection of primeval 6 Li in very metal-poor stars of the galactic halo. However, if the critical cross section is very high in its plausible range and the baryon density is relatively low, then improvements in 6 Li detection capabilities may allow the establishment of 6 Li as another product of BBN. It is also noted that a primordial 6 Li detection could help resolve current concerns about the extragalactic D/H determination. copyright 1997 The American Physical Society
Quantum inflaton, primordial perturbations, and CMB fluctuations
International Nuclear Information System (INIS)
Cao, F.J.; Vega, H.J. de; Sanchez, N.G.
2004-01-01
We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m 2 /NH 2 ), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it
Primordial nucleosynthesis revisited via Trojan Horse Results
Directory of Open Access Journals (Sweden)
Pizzone R.G.
2016-01-01
Full Text Available Big Bang Nucleosynthesis (BBN requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,pt, d(d,n3He and 3He(d,p4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM to study reactions of relevance for the BBN and measure their astrophysical S(E-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01
The primordial helium abundance from updated emissivities
International Nuclear Information System (INIS)
Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L.
2013-01-01
Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y p . The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y p . In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y p = 0.2465 ± 0.0097, in good agreement with the BBN result, Y p = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination
Causality and headache triggers
Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.
2013-01-01
Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872
D'Ariano, Giacomo Mauro
2018-07-13
Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
On the Magnetic Evolution in Friedmann Universes and the Question of Cosmic Magnetogenesis
Directory of Open Access Journals (Sweden)
Christos G. Tsagas
2016-11-01
Full Text Available We analyse the evolution of primordial magnetic fields in spatially flat Friedmann universes and reconsider the belief that, after inflation, these fields decay adiabatically on all scales. Without abandoning classical electromagnetism or standard cosmology, we demonstrate that this is not necessarily the case for superhorizon-sized magnetic fields. The underlying reason for this is causality, which confines the post-inflationary process of electric-current formation, electric-field elimination and magnetic-flux freezing within the horizon. As a result, the adiabatic magnetic decay is not a priori guaranteed on super-Hubble scales. Instead, after inflation, large-scale magnetic fields obey a power-law solution, where one of the modes drops at a rate slower than the adiabatic. Whether this slowly decaying mode can dominate and dictate the post-inflationary magnetic evolution depends on the initial conditions. These are determined by the evolution of the field during inflation and by the nature of the transition from the de Sitter phase to the reheating era and then to the subsequent epochs of radiation and dust. We discuss two alternative and complementary scenarios to illustrate the role and the implications of the initial conditions for cosmic magnetogenesis. Our main claim is that magnetic fields can be superadiabatically amplified after inflation, as long as they remain outside the horizon. This means that inflation-produced fields can reach astrophysically relevant residual strengths without breaking away from standard physics. Moreover, using the same causality arguments, one can constrain (or in some cases assist the non-conventional scenarios of primordial magnetogenesis that amplify their fields during inflation. Finally, we show that our results extend naturally to the marginally open and the marginally closed Friedmann universes.
International Nuclear Information System (INIS)
Maund, J.B.
1979-01-01
Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity
Dynamics and causality constraints
International Nuclear Information System (INIS)
Sousa, Manoelito M. de
2001-04-01
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)
Chiral primordial gravitational waves from a Lifshitz point.
Takahashi, Tomohiro; Soda, Jiro
2009-06-12
We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.
Fingerprints of primordial universe paradigms as features in density perturbations
International Nuclear Information System (INIS)
Chen Xingang
2011-01-01
Experimentally distinguishing different primordial universe paradigms that lead to the Big Bang model is an outstanding challenge in modern cosmology and astrophysics. We show that a generic type of signals that exist in primordial universe models can be used for such purpose. These signals are induced by tiny oscillations of massive fields and manifest as features in primordial density perturbations. They are capable of recording the time-dependence of the scale factor of the primordial universe, and therefore provide direct evidence for specific paradigm. These signals present special opportunities and challenges for experiments and data analyses.
Primordial black holes from passive density fluctuations
International Nuclear Information System (INIS)
Lin, Chia-Min; Ng, Kin-Wang
2013-01-01
In this Letter, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses ≲10 15 g depending on the number of e-folds when the scale of our observable universe leaves horizon. These PBHs are likely to have evaporated and cannot be a candidate for dark matter but they may still affect the early universe.
Primordial black holes from passive density fluctuations
Lin, Chia-Min; Ng, Kin-Wang
2013-01-01
In this paper, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses $\\lesssim 10^{15}g$ depending on the number of e-folds when the scale of our observable universe leaves horizon...
Identifying the inflaton with primordial gravitational waves.
Easson, Damien A; Powell, Brian A
2011-05-13
We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves.
Primordial hadrosynthesis in the Little Bang
Heinz, Ulrich W
1999-01-01
The present status of soft hadron production in high energy heavy-ion collisions is summarized. In spite of strong evidence for extensive dynamical evolution and collective expansion of the fireball before freeze-out I argue that its chemical composition is hardly changed by hadronic final state interactions. The measured hadron yields thus reflect the primordial conditions at hadronization. The observed production pattern is consistent with statistical hadronization at the Hagedorn temperature from a state of uncorrelated, color deconfined quarks and antiquarks, but requires non-trivial chemical evolution of the fireball in a prehadronic (presumably QGP) stage before hadron formation.
Resolving primordial physics through correlated signatures
Enqvist, Kari; Mulryne, David J.; Nurmi, Sami
2014-01-01
We discuss correlations among spectral observables as a new tool for differentiating between models for the primordial perturbation. We show that if generated in the isocurvature sector, a running of the scalar spectral index is correlated with the statistical properties of non-Gaussianities. In particular, we find a large running will inevitably be accompanied by a large running of $f_{\\rm NL}$ and enhanced $g_{\\rm NL}$, with $g_{\\rm NL}\\gg f_{\\rm NL}^2$. If the tensor to scalar ratio is lar...
Causality discovery technology
Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.
2012-11-01
Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.
A quantum causal discovery algorithm
Giarmatzi, Christina; Costa, Fabio
2018-03-01
Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.
Gravitational waves from primordial black hole mergers
Energy Technology Data Exchange (ETDEWEB)
Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi, E-mail: martti.raidal@cern.ch, E-mail: ville.vaskonen@kbfi.ee, E-mail: hardi.veermae@cern.ch [NICPB, Rävala 10, 10143 Tallinn (Estonia)
2017-09-01
We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5−30 M {sub ⊙}. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.
Jupiter's evolution with primordial composition gradients
Vazan, Allona; Helled, Ravit; Guillot, Tristan
2018-02-01
Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org
The statistical clustering of primordial black holes
International Nuclear Information System (INIS)
Carr, B.J.
1977-01-01
It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10 5 M(sun). If the mass spectrum of primordial black holes falls off more slowly than m -3 (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10 -4 s or if something prevented black hole formation before 1 s. (orig.) [de
Summary of Recent Developments in Primordial Nucleosynthesis.
Schramm, D N
1993-06-01
This paper summarizes the recent observational and theoretical results on Big Bang Nucleosynthesis. In particular, it is shown that the new Pop II (6)Li results strongly support the argument that the Spite Plateau lithium is a good estimate of the primordial value. The (6)Li is consistent with the Be and Be found in Pop II stars, assuming those elements are cosmic ray produced. The HST (2)D value tightens the (2)D arguments and the observation of the (3)He in planetary nebula strengthens the (3)He +(2)D argument as a lower bound on Ωb. The new low metalicity (4)He determinations slightly raise the best primordial (4)He number and thus make a better fit and avoid a potential problem. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ωb are possible vis-à-vis the homogeneous model; hence, the robustness of Ωb∼ 0.05 is now apparent. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ωb∼ 1 seems to be definitely excluded, so, if Ω= 1, as some recent observations may hint, then non-baryonic dark matter is required.
Inflation and dark matter primordial black holes
International Nuclear Information System (INIS)
Erfani, Encieh
2012-09-01
In this thesis a broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs) to serve as candidates for Dark Matter. To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative α S of the spectral index n S (k pivot ) is negative at the pivot scale k pivot , PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') β S . Among the three small-field and five large-field inflation models we analyze, only one small-field model, the ''running-mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of α S , which is weakly preferred by current data. Similarly, proving conclusively that the second derivative of the spectral index is positive would exclude all the large-field models we investigated.
Inflation and dark matter primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Erfani, Encieh
2012-09-15
In this thesis a broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs) to serve as candidates for Dark Matter. To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative {alpha}{sub S} of the spectral index n{sub S}(k{sub pivot}) is negative at the pivot scale k{sub pivot}, PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') {beta}{sub S}. Among the three small-field and five large-field inflation models we analyze, only one small-field model, the ''running-mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of {alpha}{sub S}, which is weakly preferred by current data. Similarly, proving conclusively that the second derivative of the spectral index is positive would exclude all the large-field models we investigated.
Cosmological implications of primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Luis Bernal, José; Bellomo, Nicola; Raccanelli, Alvise; Verde, Licia, E-mail: joseluis.bernal@icc.ub.edu, E-mail: nicola.bellomo@icc.ub.edu, E-mail: alvise@icc.ub.edu, E-mail: liciaverde@icc.ub.edu [ICC, University of Barcelona, IEEC-UB, Martí i Franquès, 1, E08028 Barcelona (Spain)
2017-10-01
The possibility that a relevant fraction of the dark matter might be comprised of Primordial Black Holes (PBHs) has been seriously reconsidered after LIGO's detection of a ∼ 30 M {sub ⊙} binary black holes merger. Despite the strong interest in the model, there is a lack of studies on possible cosmological implications and effects on cosmological parameters inference. We investigate correlations with the other standard cosmological parameters using cosmic microwave background observations, finding significant degeneracies, especially with the tilt of the primordial power spectrum and the sound horizon at radiation drag. However, these degeneracies can be greatly reduced with the inclusion of small scale polarization data. We also explore if PBHs as dark matter in simple extensions of the standard ΛCDM cosmological model induces extra degeneracies, especially between the additional parameters and the PBH's ones. Finally, we present cosmic microwave background constraints on the fraction of dark matter in PBHs, not only for monochromatic PBH mass distributions but also for popular extended mass distributions. Our results show that extended mass distribution's constraints are tighter, but also that a considerable amount of constraining power comes from the high-ℓ polarization data. Moreover, we constrain the shape of such mass distributions in terms of the correspondent constraints on the PBH mass fraction.
Statistical clustering of primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Carr, B J [Cambridge Univ. (UK). Inst. of Astronomy
1977-04-01
It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10/sup 5/ M(sun). If the mass spectrum of primordial black holes falls off more slowly than m/sup -3/ (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10/sup -4/ s or if something prevented black hole formation before 1 s.
Olafsson, Gestur; Helgason, Sigurdur
1996-01-01
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Causal inference in econometrics
Kreinovich, Vladik; Sriboonchitta, Songsak
2016-01-01
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
Angular momentum transfer in primordial discs and the rotation of the first stars
Hirano, Shingo; Bromm, Volker
2018-05-01
We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.
Saga, Shohei; Tashiro, Hiroyuki; Yokoyama, Shuichiro
2018-02-01
We provide a new bound on the amplitude of primordial magnetic fields (PMFs) by using a novel mechanism, magnetic reheating. The damping of the magnetohydrodynamics fluid motions in a primordial plasma brings the dissipation of the PMFs. In the early Universe with z ≳ 2 × 106, cosmic microwave background (CMB) photons are quickly thermalized with the dissipated energy and shift to a different Planck distribution with a new temperature. In other words, the PMF dissipation changes the baryon-to-photon number ratio, and we name such a process magnetic reheating. From the current baryon-to-photon number ratio obtained from the big bang nucleosynthesis and CMB observations, we put the strongest constraint on the PMFs on small scales which CMB observations cannot access, B0 ≲ 1.0 μG at the scales 104 generation mechanisms of PMFs in the early Universe.
Electromagnetic pulses, localized and causal
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
Maximally causal quantum mechanics
International Nuclear Information System (INIS)
Roy, S.M.
1998-01-01
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)
DEFF Research Database (Denmark)
Nielsen, Max; Jensen, Frank; Setälä, Jari
2011-01-01
to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological...
Czech Academy of Sciences Publication Activity Database
Hvorecký, Juraj
2012-01-01
Roč. 19, Supp.2 (2012), s. 64-69 ISSN 1335-0668 R&D Projects: GA ČR(CZ) GAP401/12/0833 Institutional support: RVO:67985955 Keywords : conciousness * free will * determinism * causality Subject RIV: AA - Philosophy ; Religion
Explaining through causal mechanisms
Biesbroek, Robbert; Dupuis, Johann; Wellstead, Adam
2017-01-01
This paper synthesizes and builds on recent critiques of the resilience literature; namely that the field has largely been unsuccessful in capturing the complexity of governance processes, in particular cause–effects relationships. We demonstrate that absence of a causal model is reflected in the
Schwinger-Keldysh diagrammatics for primordial perturbations
Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi
2017-12-01
We present a systematic introduction to the diagrammatic method for practical calculations in inflationary cosmology, based on Schwinger-Keldysh path integral formalism. We show in particular that the diagrammatic rules can be derived directly from a classical Lagrangian even in the presence of derivative couplings. Furthermore, we use a quasi-single-field inflation model as an example to show how this formalism, combined with the trick of mixed propagator, can significantly simplify the calculation of some in-in correlation functions. The resulting bispectrum includes the lighter scalar case (mcase (m>3H/2) that has not been explicitly computed for this model. The latter provides a concrete example of quantum primordial standard clocks, in which the clock signals can be observably large.
Primordial Evolution in the Finitary Process Soup
Görnerup, Olof; Crutchfield, James P.
A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.
The Search for Primordial Molecular Cloud Matter
DEFF Research Database (Denmark)
van Kooten, Elishevah M M E
evolution. Some of the least altered, most primitive meteorites can give us clues to the original make-up of the interstellar molecular cloud from which the Sun and its surrounding planets formed, thus, permitting us to trace Solar System formation from its most early conditions. Using state......Our Solar System today presents a somewhat static picture compared to the turbulent start of its existence. Meteorites are the left-over building blocks of planet formation and allow us to probe the chemical and physical processes that occurred during the first few million years of Solar System...... prebiotic species such as amino acids, determining the formation pathways of this organic matter is of utmost importance to understanding the habitability of Earth as well as exoplanetary systems. Hence, further detailed analyses of organic matter in some of the meteorites with primordial signatures have...
Microcephalic osteodysplastic primordial dwarfism type 1.
Ferrell, Steven; Johnson, Aaron; Pearson, Waylon
2016-06-16
Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1) is an uncommon cause of microcephaly and intrauterine growth retardation in a newborn. Early identifying features include but are not limited to sloping forehead, micrognathia, sparse hair, including of eyebrows and short limbs. Immediate radiological findings may include partial or complete agenesis of the corpus callosum, interhemispheric cyst and shallow acetabula leading to dislocation. Genetic testing displaying a mutation in RNU4ATAC gene is necessary for definitive diagnosis. Early identification is important as MOPD1 is an autosomal recessive condition and could present in subsequent pregnancies. The purpose of this case is to both identify and describe some common physical findings related to MOPD1. We present a case of MOPD1 in a girl born to non-consanguineous parents that was distinct for subglottic stenosis and laryngeal cleft. 2016 BMJ Publishing Group Ltd.
Spectrum evolution of primordial cosmic turbulence
International Nuclear Information System (INIS)
Futamase, T.; Matsuda, T.
1980-01-01
The evolution of primordial cosmic turbulence prior to the epoch of plasma recombination is investigated numerically using the Wiener-Hermite expansion technique which gives reasonable results for laboratory turbulence. It is found that the Kolmogorov spectrum is established only within a narrow range of wavenumber space for reasonable parameter sets, because the expansion of the Universe has a tendency to suppress an energy cascade from larger eddies to smaller ones. The present result does not agree with that obtained by Kurskov and Ozernoi, who computed the decay of turbulence in a fictitious non-expanding frame using the Heisenberg closure hypothesis, while it was done in a physical frame in the present work. (author)
Primordial beryllium as a big bang calorimeter.
Pospelov, Maxim; Pradler, Josef
2011-03-25
Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.
Primordial nucleosynthesis in the new cosmology
International Nuclear Information System (INIS)
Cyburt, R.H.
2003-01-01
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies independently predict the universal baryon density. Comparing their predictions will provide a fundamental test on cosmology. Using BBN and the CMB together, we will be able to constrain particle physics, and predict the primordial, light element abundances. These future analyses hinge on new experimental and observational data. New experimental data on nuclear cross sections will help reduce theoretical uncertainties in BBN's predictions. New observations of light element abundances will further sharpen BBN's probe of the baryon density. Observations from the MAP and PLANCK satellites will measure the fluctuations in the CMB to unprecedented accuracy, allowing the precise determination of the baryon density. When combined, this data will present us with the opportunity to perform precision cosmology
Optimal causal inference: estimating stored information and approximating causal architecture.
Still, Susanne; Crutchfield, James P; Ellison, Christopher J
2010-09-01
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.
Operator ordering and causality
Plimak, L. I.; Stenholm, S. T.
2011-01-01
It is shown that causality violations [M. de Haan, Physica 132A, 375, 397 (1985)], emerging when the conventional definition of the time-normal operator ordering [P.L.Kelley and W.H.Kleiner, Phys.Rev. 136, A316 (1964)] is taken outside the rotating wave approximation, disappear when the amended definition [L.P. and S.S., Annals of Physics, 323, 1989 (2008)] of this ordering is used.
International Nuclear Information System (INIS)
Lucas, J.R.
1984-01-01
Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)
Grand unification scale primordial black holes: consequences and constraints.
Anantua, Richard; Easther, Richard; Giblin, John T
2009-09-11
A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the present Universe. These black holes may lead to a transient period of matter-dominated expansion. In this case the primordial Universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.
From causal dynamical triangulations to astronomical observations
Mielczarek, Jakub
2017-09-01
This letter discusses phenomenological aspects of dimensional reduction predicted by the Causal Dynamical Triangulations (CDT) approach to quantum gravity. The deformed form of the dispersion relation for the fields defined on the CDT space-time is reconstructed. Using the Fermi satellite observations of the GRB 090510 source we find that the energy scale of the dimensional reduction is E* > 0.7 \\sqrt{4-d\\text{UV}} \\cdot 1010 \\text{GeV} at (95% CL), where d\\text{UV} is the value of the spectral dimension in the UV limit. By applying the deformed dispersion relation to the cosmological perturbations it is shown that, for a scenario when the primordial perturbations are formed in the UV region, the scalar power spectrum PS \\propto kn_S-1 , where n_S-1≈ \\frac{3 r (d\\text{UV}-2)}{(d\\text{UV}-1)r-48} . Here, r is the tensor-to-scalar ratio. We find that within the considered model, the predicted from CDT deviation from the scale invariance (n_S=1) is in contradiction with the up to date Planck and BICEP2.
Primordial Noble Gases from Earth's Core
Wang, K.; Lu, X.; Brodholt, J. P.
2016-12-01
Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas
Cosmic microwave background constraints on primordial black hole dark matter
Energy Technology Data Exchange (ETDEWEB)
Aloni, Daniel; Blum, Kfir [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl 234, Rehovot (Israel); Flauger, Raphael, E-mail: daniel.aloni@weizmann.ac.il, E-mail: kfir.blum@weizmann.ac.il, E-mail: flauger@physics.ucsd.edu [University of California, 9500 Gilman Drive 0319, La Jolla, San Diego, CA, 92093 (United States)
2017-05-01
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with m {sub BH}∼> 5 M {sub ⊙} are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.
Primordial black holes survive SN lensing constraints
García-Bellido, Juan; Clesse, Sébastien; Fleury, Pierre
2018-06-01
It has been claimed in [arxiv:1712.02240] that massive primordial black holes (PBH) cannot constitute all of the dark matter (DM), because their gravitational-lensing imprint on the Hubble diagram of type Ia supernovae (SN) would be incompatible with present observations. In this note, we critically review those constraints and find several caveats on the analysis. First of all, the constraints on the fraction α of PBH in matter seem to be driven by a very restrictive choice of priors on the cosmological parameters. In particular, the degeneracy between Ωm and α was ignored and thus, by fixing Ωm, transferred the constraining power of SN magnitudes to α. Furthermore, by considering more realistic physical sizes for the type-Ia supernovae, we find an effect on the SN lensing magnification distribution that leads to significantly looser constraints. Moreover, considering a wide mass spectrum of PBH, such as a lognormal distribution, further softens the constraints from SN lensing. Finally, we find that the fraction of PBH that could constitute DM today is bounded by fPBH < 1 . 09(1 . 38) , for JLA (Union 2.1) catalogs, and thus it is perfectly compatible with an all-PBH dark matter scenario in the LIGO band.
Primordial non-Gaussianity from LAMOST surveys
International Nuclear Information System (INIS)
Gong Yan; Wang Xin; Chen Xuelei; Zheng Zheng
2010-01-01
The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of different magnitude limits are considered. We find that the Main1 sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r NL are |f NL | NL | NL | is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g NL | < 43 (2σ). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.
Primordial black hole detection through diffractive microlensing
Naderi, T.; Mehrabi, A.; Rahvar, S.
2018-05-01
Recent observations of gravitational waves motivate investigations for the existence of primordial black holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch≃λ ) is the detection of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics optical-depth, also calculate the rate of ˜0.1 to ˜0.3 event per year per a quasar, assuming that hundred percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.
The Primordial Inflation Explorer (PIXIE) Mission
Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer
Causal events enter awareness faster than non-causal events
Directory of Open Access Journals (Sweden)
Pieter Moors
2017-01-01
Full Text Available Philosophers have long argued that causality cannot be directly observed but requires a conscious inference (Hume, 1967. Albert Michotte however developed numerous visual phenomena in which people seemed to perceive causality akin to primary visual properties like colour or motion (Michotte, 1946. Michotte claimed that the perception of causality did not require a conscious, deliberate inference but, working over 70 years ago, he did not have access to the experimental methods to test this claim. Here we employ Continuous Flash Suppression (CFS—an interocular suppression technique to render stimuli invisible (Tsuchiya & Koch, 2005—to test whether causal events enter awareness faster than non-causal events. We presented observers with ‘causal’ and ‘non-causal’ events, and found consistent evidence that participants become aware of causal events more rapidly than non-causal events. Our results suggest that, whilst causality must be inferred from sensory evidence, this inference might be computed at low levels of perceptual processing, and does not depend on a deliberative conscious evaluation of the stimulus. This work therefore supports Michotte’s contention that, like colour or motion, causality is an immediate property of our perception of the world.
Shaheen, Ranad; Abdel-Salam, Ghada M H; Guy, Michael P; Alomar, Rana; Abdel-Hamid, Mohamed S; Afifi, Hanan H; Ismail, Samira I; Emam, Bayoumi A; Phizicky, Eric M; Alkuraya, Fowzan S
2015-09-28
Primordial dwarfism is a state of extreme prenatal and postnatal growth deficiency, and is characterized by marked clinical and genetic heterogeneity. Two presumably unrelated consanguineous families presented with an apparently novel form of primordial dwarfism in which severe growth deficiency is accompanied by distinct facial dysmorphism, brain malformation (microcephaly, agenesis of corpus callosum, and simplified gyration), and severe encephalopathy with seizures. Combined autozygome/exome analysis revealed a novel missense mutation in WDR4 as the likely causal variant. WDR4 is the human ortholog of the yeast Trm82, an essential component of the Trm8/Trm82 holoenzyme that effects a highly conserved and specific (m(7)G46) methylation of tRNA. The human mutation and the corresponding yeast mutation result in a significant reduction of m(7)G46 methylation of specific tRNA species, which provides a potential mechanism for primordial dwarfism associated with this lesion, since reduced m(7)G46 modification causes a growth deficiency phenotype in yeast. Our study expands the number of biological pathways underlying primordial dwarfism and adds to a growing list of human diseases linked to abnormal tRNA modification.
The Formation of Primordial Luminous Objects
International Nuclear Information System (INIS)
Ripamonti, Emanuele; Kapteyn Astron. Inst., Groningen; Abel, Tom; KIPAC, Menlo Park
2005-01-01
The scientific belief that the universe evolves in time is one of the legacies of the theory of the Big Bang. The concept that the universe has an history started to attract the interest of cosmologists soon after the first formulation of the theory: already Gamow (1948; 1949) investigated how and when galaxies could have been formed in the context of the expanding Universe. However, the specific topic of the formation (and of the fate) of the first objects dates to two decades later, when no objects with metallicities as low as those predicted by primordial nucleosynthesis (Z ∼ -10 ∼ 10 -8 Z # circle d ot#) were found. Such concerns were addressed in two seminal papers by Peebles and Dicke (1968; hereafter PD68) and by Doroshkevich, Zel'Dovich and Novikov (1967; hereafter DZN67), introducing the idea that some objects could have formed before the stars we presently observe. (1) Both PD68 and DZN67 suggest a mass of ∼ 10 5 M # circle d ot# for the first generation of bound systems, based on the considerations on the cosmological Jeans length (Gamow 1948; Peebles 1965) and the possible shape of the power spectrum. (2) They point out the role of thermal instabilities in the formation of the proto-galactic bound object, and of the cooling of the gas inside it; in particular, PD68 introduces H 2 cooling and chemistry in the calculations about the contraction of the gas. (3) Even if they do not specifically address the occurrence of fragmentation, these papers make two very different assumptions: PD68 assumes that the gas will fragment into ''normal'' stars to form globular clusters, while DZN67 assumes that fragmentation does not occur, and that a single ''super-star'' forms. (4) Finally, some feedback effects as considered (e.g. Peebles and Dicke considered the effects of supernovae). Today most of the research focuses on the issues when fragmentation may occur, what objects are formed and how they influence subsequent structure formation. In these notes we will
Causal inference based on counterfactuals
Directory of Open Access Journals (Sweden)
Höfler M
2005-09-01
Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.
Causal inference in public health.
Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M
2013-01-01
Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.
Primordial power spectrum features and consequences
Goswami, G.
2014-03-01
The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we have attempted to calculate quantum radiative corrections to the Fourier transform of the 2-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we have considered the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes through a dip in power at a certain scale. The mode functions of the field (whose power spectrum is to be evaluated) are chosen such that they undergo the kind of dynamics that leads to a sharp dip in the tree level power spectrum. Next, we have considered the situation in which this field has quartic self interactions, and found one loop correction in a suitably chosen renormalization scheme. Thus, we have attempted to answer the following key question in the context of this toy model (which is as important in the realistic case): In the chosen renormalization scheme, can quantum radiative corrections be enhanced relative to tree-level power spectrum at scales, at which sharp dips appear in the tree-level spectrum?
The Primordial Inflation Polarization Explorer (PIPER)
Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James;
2014-01-01
The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.
Some cosmological consequences of primordial black-hole evaporations
International Nuclear Information System (INIS)
Carr, B.J.
1976-01-01
According to Hawking, primordial black holes of less than 10 15 g would have evaporated by now. This paper examines the way in which small primordial black holes could thereby have contributed to the background density of photons, nucleons, neutrinos, electrons, and gravitons in the universe. Any photons emitted late enough should maintain their emission temperature apart from a redshift effect: it is shown that the biggest contribution should come from primordial black holes of about 10 15 g, which evaporate in the present era, and it is argued that observations of the γ-ray background indicate that primordial black holes of this size must have a mean density less than 10 -8 times the critical density. Photons which were emitted sufficiently early to be thermalized could, in principle, have generated the 3 K background in an initially cold universe, but only if the density fluctuations in the early universe had a particular form and did not extend up to a mass scale of 10 15 g. Primordial black holes of less than 10 14 g should emit nucleons: it is shown that such nucleons could not contribute appreciably to the cosmic-ray background. However, nucleon emission could have generated the observed number density of baryons in an initially baryon-symmetric universe, provided some CP-violating process operates in black hole evaporations such that more baryons are always produced than antibaryons. We predict the spectrum of neutrinos, electrons, and gravitons which should result from primordial black-hole evaporations and show that the observational limits on the background electron flux might place a stronger limitation on the number of 10 15 g primordial black holes than the γ-ray observations. Finally, we examine the limits that various observations place on the strength of any long-range baryonic field whose existence might be hypothesized as a means of preserving baryon number in black-hole evaporations
Causal Diagrams for Empirical Research
Pearl, Judea
1994-01-01
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifiying causal effects from non-experimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in ter...
Causality Statistical Perspectives and Applications
Berzuini, Carlo; Bernardinell, Luisa
2012-01-01
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr
Causal electromagnetic interaction equations
International Nuclear Information System (INIS)
Zinoviev, Yury M.
2011-01-01
For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
Morphological anomaly of primordial follicle in {gamma}-irradiated mice
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Kyu; Lee, Chang Joo; Lee, Young Dal [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-08-01
Ovarian follicles are faced with one of two fates, atresia or development. Up to 99% of follicles become degenerated rather than ovulated in female life span. Thus, atresia occurs at all stages of follicle development in mammalian ovaries. In the present experiment, the effect of {gamma}-radiation on primordial follicles was morphologically analyzed in a mouse ovary. Thirty-seven percent of the primordial follicles in the non-irradiated control mice ovaries were abnormal. At day 8 post irradiation, most of primordial follicles became atretic. They lost their integrity of architecture in the follicular shape. Then, all the oocytes disappeared from the follicles. And only 3 to 4 granulosa cells lay down onto the basement membrane. Disappearance of granulosa cells or oocytes resulted from the radiation-induced apoptotic process. It is definitely clear that {gamma}-radiation induces rapid apoptotic degeneration of the primordial follicles. The morphological degeneration induced by radiation in the primordial follicles can be used as an experimental model to draw out a deeper insight for radioprotectant researches. (author). 22 refs., 4 figs.
Kılıç, Esra; Utine, Eda; Unal, Sule; Haliloğlu, Göknur; Oğuz, Kader Karli; Cetin, Mualla; Boduroğlu, Koray; Alanay, Yasemin
2012-10-01
We report an infant diagnosed with Majewski osteodysplastic primordial dwarfism type II at age 8 months, who experienced cerebrovascular morbidities related to this entity. Molecular analysis identified c.2609+1 G>A, intron 14, homozygous splice site mutation in the pericentrin gene. At age 18 months, she developed recurrent strokes and hemiparesis. Brain magnetic resonance imaging and magnetic resonance angiography showed abnormal gyral pattern, cortical acute infarcts, bilateral stenosis of the internal carotid arteries and reduced flow on the cerebral arteries, consistent with moyamoya disease. In Majewski osteodysplastic primordial dwarfism type II, life expectancy is reduced because of high risk of stroke secondary to cerebral vascular anomalies (aneurysms, moyamoya disease). Periodic screening for vascular events is recommended in individuals with Majewski osteodysplastic primordial dwarfism type II every 12-18 months following diagnosis. Our patient was medically managed with low molecular weight heparin followed with aspirin prophylaxis, in addition to carbamazepine and physical rehabilitation. We report an infant with moyamoya disease and recurrent stroke presenting 10 months after diagnosis (at age 18 months), and discuss the outcome of nonsurgical medical management. The presented case is the second youngest case developing stroke and moyamoya disease.
Cortical hierarchies perform Bayesian causal inference in multisensory perception.
Directory of Open Access Journals (Sweden)
Tim Rohe
2015-02-01
Full Text Available To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the "causal inference problem." Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI, and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation. At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion. Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world.
International Nuclear Information System (INIS)
Young, I.R.
1984-01-01
A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)
Expert Causal Reasoning and Explanation.
Kuipers, Benjamin
The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…
Friederich, Simon
There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell's criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the
Covariation in Natural Causal Induction.
Cheng, Patricia W.; Novick, Laura R.
1991-01-01
Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)
Mechanisms and pathways of growth failure in primordial dwarfism.
Klingseisen, Anna; Jackson, Andrew P
2011-10-01
The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.
[Persistence of the primordial vitreous body and buphthalmos].
Cernea, P; Simionescu, C; Bosun, I
1995-01-01
Persistence of the hyperplasic primordial vitreous body is determined by a deletion of embryonal development of the vitreous body and of the hyaloid vascular system. Infant aged 3.5 years presents persistence of primordial vitreous body with crystalline dislocation in the camera aquosa and secondary buphthalmos of the left eye and microphthalmos with dislocation of the crystalline in the vitreous body of the right eye. At the back of the right eye we noticed a whitish mass, richly vascularized with vestiges from the hyaloid artery, but the posterior half of the vitreous cavity is filled with microscopic blood; the fibrovascular membrane is made of conjunctive tissue set in parallel layers and vessels with macrolipophagic degeneration. Microscopic investigation of retina reveals glial hyperplasia zones in the neighbourhood of the vitreous body. In the present paper the authors show the persistence of the primordial vitreous body in the left eye and bilateral dislocation of the crystalline, revealing multiple ocular malformations.
Direct search for features in the primordial bispectrum
Directory of Open Access Journals (Sweden)
Stephen Appleby
2016-09-01
Full Text Available We study features in the bispectrum of the primordial curvature perturbation correlated with the reconstructed primordial power spectrum from the observed cosmic microwave background temperature data. We first show how the bispectrum can be completely specified in terms of the power spectrum and its first two derivatives, valid for any configuration of interest. Then using a model-independent reconstruction of the primordial power spectrum from the Planck angular power spectrum of temperature anisotropies, we compute the bispectrum in different triangular configurations. We find that in the squeezed limit at k∼0.06 Mpc−1 and k∼0.014 Mpc−1 there are marginal 2σ deviations from the standard featureless bispectrum, which meanwhile is consistent with the reconstructed bispectrum in the equilateral configuration.
Standard Clock in primordial density perturbations and cosmic microwave background
International Nuclear Information System (INIS)
Chen, Xingang; Namjoo, Mohammad Hossein
2014-01-01
Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a(t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building
Paradoxical Behavior of Granger Causality
Witt, Annette; Battaglia, Demian; Gail, Alexander
2013-03-01
Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen
On causality of extreme events
Directory of Open Access Journals (Sweden)
Massimiliano Zanin
2016-06-01
Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.
Neural Correlates of Causal Power Judgments
Directory of Open Access Journals (Sweden)
Denise Dellarosa Cummins
2014-12-01
Full Text Available Causal inference is a fundamental component of cognition and perception. Probabilistic theories of causal judgment (most notably causal Bayes networks derive causal judgments using metrics that integrate contingency information. But human estimates typically diverge from these normative predictions. This is because human causal power judgments are typically strongly influenced by beliefs concerning underlying causal mechanisms, and because of the way knowledge is retrieved from human memory during the judgment process. Neuroimaging studies indicate that the brain distinguishes causal events from mere covariation, and between perceived and inferred causality. Areas involved in error prediction are also activated, implying automatic activation of possible exception cases during causal decision-making.
Energy Technology Data Exchange (ETDEWEB)
Steinberg, Aephraim M. [Institute for Experimental Physics, University of Vienna, Vienna (Austria)
2003-12-01
Experiment confirms that information cannot be transmitted faster than the speed of light. Ever since Einstein stated that nothing can travel faster than light, physicists have delighted in finding exceptions. One after another, observations of such 'superluminal' propagation have been made. However, while some image or pattern- such as the motion of a spotlight projected on a distant wall - might have appeared to travel faster than light, it seemed that there was no way to use the superluminal effect to transmit energy or information. In recent years, the superluminal propagation of light pulses through certain media has led to renewed controversy. In 1995, for example, Guenther Nimtz of the University of Cologne encoded Mozart's 40th Symphony on a microwave beam, which he claimed to have transmitted at a speed faster than light. Others maintain that such a violation of Einstein's speed limit would wreak havoc on our most fundamental ideas about causality, allowing an effect to precede its cause. Relativity teaches us that sending a signal faster than light would be equivalent to sending it backwards in time. (U.K.)
Directory of Open Access Journals (Sweden)
A. Jackson Stenner
2013-08-01
Full Text Available Rasch’s unidimensional models for measurement show how to connect object measures (e.g., reader abilities, measurement mechanisms (e.g., machine-generated cloze reading items, and observational outcomes (e.g., counts correct on reading instruments. Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct. We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.
Stenner, A Jackson; Fisher, William P; Stone, Mark H; Burdick, Donald S
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726
["Karoshi" and causal relationships].
Hamajima, N
1992-08-01
This paper aims to introduce a measure for use by physicians for stating the degree of probable causal relationship for "Karoshi", ie, a sudden death from cerebrovascular diseases or ischemic heart diseases under occupational stresses, as well as to give a brief description for legal procedures associated with worker's compensation and civil trial in Japan. It is a well-used measure in epidemiology, "attributable risk percent (AR%)", which can be applied to describe the extent of contribution to "Karoshi" of the excess occupational burdens the deceased worker was forced to bear. Although several standards such as average occupational burdens for the worker, average occupational burdens for an ordinary worker, burdens in a nonoccupational life, and a complete rest, might be considered for the AR% estimation, the average occupational burdens for an ordinary worker should normally be utilized as a standard for worker's compensation. The adoption of AR% could be helpful for courts to make a consistent judgement whether "Karoshi" cases are compensatable or not.
Structure and Strength in Causal Induction
Griffiths, Thomas L.; Tenenbaum, Joshua B.
2005-01-01
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Astrochemistry: From primordial gas to present-day clouds
Schleicher, Dominik R. G.; Bovino, Stefano; Körtgen, Bastian; Grassi, Tommaso; Banerjee, Robi
2017-01-01
Astrochemistry plays a central role during the process of star formation, both in the primordial regime as well as in the present-day Universe. We revisit here the chemistry in both regimes, focusing first on the chemistry under close to primordial conditions, as observed in the so-called Caffau star SDSS J102915+172927, and subsequently discuss deuteration processes in present-day star-forming cores. In models of the high-redshift Universe, the chemistry is particularly relevant to determine...
Chirality oscillation of primordial gravitational waves during inflation
Energy Technology Data Exchange (ETDEWEB)
Cai, Yong; Wang, Yu-Tong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)
2017-03-06
We show that if the gravitational Chern-Simons term couples to a massive scalar field (m>H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.
Primordial lithium and the standard model(s)
International Nuclear Information System (INIS)
Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.
1989-01-01
We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios
Dynamics of Quantum Causal Structures
Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2018-01-01
It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Dynamics of Quantum Causal Structures
Directory of Open Access Journals (Sweden)
Esteban Castro-Ruiz
2018-03-01
Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Principal stratification in causal inference.
Frangakis, Constantine E; Rubin, Donald B
2002-03-01
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.
Discrete causal theory emergent spacetime and the causal metric hypothesis
Dribus, Benjamin F
2017-01-01
This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.
Causal boundary for stably causal space-times
International Nuclear Information System (INIS)
Racz, I.
1987-12-01
The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs
Causal boundary for strongly causal spacetimes: Pt. 1
International Nuclear Information System (INIS)
Szabados, L.B.
1989-01-01
In a previous paper an analysis of the general structure of the causal boundary constructions and a new explicit identification rule, built up from elementary TIP-TIF gluings, were presented. In the present paper we complete our identification by incorporating TIP-TIP and TIF-TIF gluings as well. An asymptotic causality condition is found which, for physically important cases, ensures the uniqueness of the endpoints of the non-spacelike curves in the completed spacetime. (author)
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Sazonov, S.; Sunyaev, R.
2015-12-01
The 21-cm signal from the cosmic reionization epoch can shed light on the history of heating of the primordial intergalactic medium (IGM) at z ˜ 30-10. It has been suggested that X-rays from the first accreting black holes could significantly heat the Universe at these early epochs. Here we propose another IGM heating mechanism associated with the first stars. As known from previous work, the remnants of powerful supernovae (SNe) ending the lives of massive Population III stars could readily expand out of their host dark matter minihaloes into the surrounding IGM, aided by the preceding photo-evaporation of the halo's gas by the UV radiation from the progenitor star. We argue that during the evolution of such a remnant, a significant fraction of the SN kinetic energy can be put into low-energy (E ≲ 30 MeV) cosmic rays that will eventually escape into the IGM. These subrelativistic cosmic rays could propagate through the Universe and heat the IGM by ˜10-100 K by z ˜ 15, before more powerful reionization/heating mechanisms associated with the first galaxies and quasars came into play. Future 21-cm observations could thus constrain the energetics of the first SNe and provide information on the magnetic fields in the primordial IGM.
Mishra, Abhilash; Hirata, Christopher M.
2018-05-01
In the first paper of this series, we showed that the CMB quadrupole at high redshifts results in a small circular polarization of the emitted 21 cm radiation. In this paper we forecast the sensitivity of future radio experiments to measure the CMB quadrupole during the era of first cosmic light (z ˜20 ). The tomographic measurement of 21 cm circular polarization allows us to construct a 3D remote quadrupole field. Measuring the B -mode component of this remote quadrupole field can be used to put bounds on the tensor-to-scalar ratio r . We make Fisher forecasts for a future Fast Fourier Transform Telescope (FFTT), consisting of an array of dipole antennas in a compact grid configuration, as a function of array size and observation time. We find that a FFTT with a side length of 100 km can achieve σ (r )˜4 ×10-3 after ten years of observation and with a sky coverage fsky˜0.7 . The forecasts are dependent on the evolution of the Lyman-α flux in the pre-reionization era, that remains observationally unconstrained. Finally, we calculate the typical order of magnitudes for circular polarization foregrounds and comment on their mitigation strategies. We conclude that detection of primordial gravitational waves with 21 cm observations is in principle possible, so long as the primordial magnetic field amplitude is small, but would require a very futuristic experiment with corresponding advances in calibration and foreground suppression techniques.
Molecular mechanisms governing primordial germ cell migration in zebrafish
Doitsidou, M.
2005-01-01
In most sexually reproducing organisms primordial germ cells (pGCs) are specified early in development in places that are distinct from the region where the somatic part of the gonad develops. From their places of specification they have to migrate towards the site where they associate with somatic
Primordial germ cells and amnion development in the avian embryo
De Melo Bernardo, Ana
2016-01-01
Primordial germ cells (PGCs) are the progenitors of the gametes, responsible for transmitting genetic information from generation to generation. Although there is a long history of gamete biology research, there is still a lot to be learned about many of the mechanisms underlying germ cell
Lifting Primordial Non-Gaussianity Above the Noise
Welling, Yvette; Woude, Drian van der; Pajer, Enrico
2016-01-01
Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen
Mutations in the pericentrin (PCNT) gene cause primordial dwarfism
Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André
2008-01-01
Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism
Mutations in the pericentrin (PCNT) gene cause primordial dwarfism
Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Doerfler, Arnd; Kinning, Esther; Megarbane, Andre; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Doerr, Helmuth-Guenther; Reis, Andre
2008-01-01
Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss- of- function mutations in the centrosomal pericentrin ( PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial
Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry.
Saladino, Raffaele; Šponer, Judit E; Šponer, Jiří; Di Mauro, Ernesto
2018-01-04
A short history of Campbell's primordial soup: In this essay we try to disclose some of the historical connections between the studies that have contributed to our current understanding of the emergence of catalytic RNA molecules and their components from an inanimate matter. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity
DEFF Research Database (Denmark)
Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.
2013-01-01
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordiallocal, equilateral, an...
Causal Modelling in Evaluation Research.
Winteler, Adolf
1983-01-01
A study applied path analysis methods, using new techniques of causal analysis, to the problem of predicting the achievement, dropout rate, and satisfaction of university students. Besides providing explanations, the technique indicates possible remedial measures. (MSE)
Consciousness and the "Causal Paradox"
Velmans, Max
1996-01-01
Viewed from a first-person perspective consciousness appears to be necessary for complex, novel human activity - but viewed from a third-person perspective consciousness appears to play no role in the activity of brains, producing a "causal paradox". To resolve this paradox one needs to distinguish consciousness of processing from consciousness accompanying processing or causing processing. Accounts of consciousness/brain causal interactions switch between first- and third-person perspectives...
Selections from 2016: Primordial Black Holes as Dark Matter
Kohler, Susanna
2016-12-01
Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background AnisotropiesPublished May2016Main takeaway:A study by Alexander Kashlinsky (NASA Goddard SFC) proposes that the cold dark matter that makes up the majority of the universes matter may be made of black holes. These black holes, Kashlinsky suggests, are primordial: they collapsed directly from dense regions of the universe soon after the Big Bang.Why its interesting:This model would simultaneously explain several observations. In particular, we see similarities in patterns between the cosmic infrared and X-ray backgrounds. This would make sense if accretion onto primordial black holes in halos produced the X-ray background in the same regions where the first stars also formed, producing the infrared background.What this means for current events:In Kashlinskys model, primordial black holes would occasionally form binary pairs and eventually spiral in and merge. The release of energy from such an event would then be observable by gravitational-wave detectors. Could the gravitational-wave signal that LIGO detected last year have been two primordial black holes merging? More observations will be needed to find out.CitationA. Kashlinsky 2016 ApJL 823 L25. doi:10.3847/2041-8205/823/2/L25
Increasing fMRI sampling rate improves Granger causality estimates.
Directory of Open Access Journals (Sweden)
Fa-Hsuan Lin
Full Text Available Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI is increased 20-fold. Specifically, healthy volunteers performed a simple visuomotor task during blood oxygenation level dependent (BOLD contrast based whole-head inverse imaging (InI. Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of InI improves the Granger causality connectivity analysis of the human brain.
Regression to Causality : Regression-style presentation influences causal attribution
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
Putting a cap on causality violations in causal dynamical triangulations
International Nuclear Information System (INIS)
Ambjoern, Jan; Loll, Renate; Westra, Willem; Zohren, Stefan
2007-01-01
The formalism of causal dynamical triangulations (CDT) provides us with a non-perturbatively defined model of quantum gravity, where the sum over histories includes only causal space-time histories. Path integrals of CDT and their continuum limits have been studied in two, three and four dimensions. Here we investigate a generalization of the two-dimensional CDT model, where the causality constraint is partially lifted by introducing branching points with a weight g s , and demonstrate that the system can be solved analytically in the genus-zero sector. The solution is analytic in a neighborhood around weight g s = 0 and cannot be analytically continued to g s = ∞, where the branching is entirely geometric and where one would formally recover standard Euclidean two-dimensional quantum gravity defined via dynamical triangulations or Liouville theory
by B. Curé
2011-01-01
The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...
Bayesian networks improve causal environmental ...
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value
Causality and analyticity in optics
International Nuclear Information System (INIS)
Nussenzveig, H.M.
In order to provide an overall picture of the broad range of optical phenomena that are directly linked with the concepts of causality and analyticity, the following topics are briefly reviewed, emphasizing recent developments: 1) Derivation of dispersion relations for the optical constants of general linear media from causality. Application to the theory of natural optical activity. 2) Derivation of sum rules for the optical constants from causality and from the short-time response function (asymptotic high-frequency behavior). Average spectral behavior of optical media. Applications. 3) Role of spectral conditions. Analytic properties of coherence functions in quantum optics. Reconstruction theorem.4) Phase retrieval problems. 5) Inverse scattering problems. 6) Solution of nonlinear evolution equations in optics by inverse scattering methods. Application to self-induced transparency. Causality in nonlinear wave propagation. 7) Analytic continuation in frequency and angular momentum. Complex singularities. Resonances and natural-mode expansions. Regge poles. 8) Wigner's causal inequality. Time delay. Spatial displacements in total reflection. 9) Analyticity in diffraction theory. Complex angular momentum theory of Mie scattering. Diffraction as a barrier tunnelling effect. Complex trajectories in optics. (Author) [pt
Hierarchical organisation of causal graphs
International Nuclear Information System (INIS)
Dziopa, P.
1993-01-01
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
Entropy for theories with indefinite causal structure
International Nuclear Information System (INIS)
Markes, Sonia; Hardy, Lucien
2011-01-01
Any theory with definite causal structure has a defined past and future, be it defined by light cones or an absolute time scale. Entropy is a concept that has traditionally been reliant on a definite notion of causality. However, without a definite notion of causality, the concept of entropy is not all lost. Indefinite causal structure results from combining probabilistic predictions and dynamical space-time. The causaloid framework lays the mathematical groundwork to be able to treat indefinite causal structure. In this paper, we build on the causaloid mathematics and define a causally-unbiased entropy for an indefinite causal structure. In defining a causally-unbiased entropy, there comes about an emergent idea of causality in the form of a measure of causal connectedness, termed the Q factor.
mediation: R package for causal mediation analysis
Tingley, Dustin; Yamamoto, Teppei; Hirose, Kentaro; Keele, Luke; Imai, Kosuke
2012-01-01
In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting su...
Primordial statistical anisotropy generated at the end of inflation
International Nuclear Information System (INIS)
Yokoyama, Shuichiro; Soda, Jiro
2008-01-01
We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum
Primordial statistical anisotropy generated at the end of inflation
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Shuichiro [Department of Physics and Astrophysics, Nagoya University, Aichi 464-8602 (Japan); Soda, Jiro, E-mail: shu@a.phys.nagoya-u.ac.jp, E-mail: jiro@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8501 (Japan)
2008-08-15
We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.
Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency.
Saito, Shinta; Kurosawa, Aya; Adachi, Noritaka
2016-08-01
In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.
Constraints on amplitudes of curvature perturbations from primordial black holes
International Nuclear Information System (INIS)
Bugaev, Edgar; Klimai, Peter
2009-01-01
We calculate the primordial black hole (PBH) mass spectrum produced from a collapse of the primordial density fluctuations in the early Universe using, as an input, several theoretical models giving the curvature perturbation power spectra P R (k) with large (∼10 -2 -10 -1 ) values at some scale of comoving wave numbers k. In the calculation we take into account the explicit dependence of gravitational (Bardeen) potential on time. Using the PBH mass spectra, we further calculate the neutrino and photon energy spectra in extragalactic space from evaporation of light PBHs, and the energy density fraction contained in PBHs today (for heavier PBHs). We obtain the constraints on the model parameters using available experimental data (including data on neutrino and photon cosmic backgrounds). We briefly discuss the possibility that the observed 511 keV line from the Galactic center is produced by annihilation of positrons evaporated by PBHs.
Microcephalic Osteodysplastic Primordial Dwarfism, Type II: a Clinical Review.
Bober, Michael B; Jackson, Andrew P
2017-04-01
This review will provide an overview of the microcephalic primordial dwarfism (MPD) class of disorders and provide the reader comprehensive clinical review with suggested care guidelines for patients with microcephalic osteodysplastic primordial dwarfism, type II (MOPDII). Over the last 15 years, significant strides have been made in the diagnosis, natural history, and management of MOPDII. MOPDII is the most common and well described form of MPD. The classic features of the MPD group are severe pre- and postnatal growth retardation, with marked microcephaly. In addition to these features, individuals with MOPDII have characteristic facies, skeletal dysplasia, abnormal dentition, and an increased risk for cerebrovascular disease and insulin resistance. Biallelic loss-of-function mutations in the pericentrin gene cause MOPDII, which is inherited in an autosomal recessive manner.
Primordial helium abundance determination using sulphur as metallicity tracer
Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.
2018-05-01
The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.
Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos
Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.
2005-09-01
We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.
Inflation, Reionization, and All That: The Primordial Inflation Explorer
Kogut, Alan J.
2012-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.
Testing the Standard Model with the Primordial Inflation Explorer
Kogut, Alan J.
2011-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10A{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.
On the evolution of the primordial cosmic turbulence
International Nuclear Information System (INIS)
Tanabe, Kenji.
1980-09-01
The evolution of the primordial cosmic turbulence in the big-bang universe is studied by numerical integration of the spectral equation derived by Nariai and closed by Heisenberg's hypothesis. In order to examine whether the turbulence can survive by the epoch of the plasma recombination, the equation is dealt with by taking full account of the viscosity effect. The main conclusion is that the resulting spectrum survived against the viscous decay depends on the initial spectral shape which is assumed at the epoch t sub(eq) when the density of matter is equal to that of radiation. The Taylor's micro-scale is also calculated which is available to determine the fate of the primordial cosmic turbulence. (author)
Primordial non-Gaussian features from DBI Galileon inflation
International Nuclear Information System (INIS)
Choudhury, Sayantan; Pal, Supratik
2015-01-01
We have studied primordial non-Gaussian features of a model of potential-driven single field DBI Galileon inflation. We have computed the bispectrum from the three-point correlation function considering all possible cross correlations between the scalar and tensor modes of the proposed setup. Further, we have computed the trispectrum from a four-point correlation function considering the contribution from contact interaction, and scalar and graviton exchange diagrams in the in-in picture. Finally we have obtained the non-Gaussian consistency conditions from the four-point correlator, which results in partial violation of the Suyama-Yamaguchi four-point consistency relation. This further leads to the conclusion that sufficient primordial non-Gaussianities can be obtained from DBI Galileon inflation. (orig.)
Primordial Regular Black Holes: Thermodynamics and Dark Matter
Directory of Open Access Journals (Sweden)
José Antonio de Freitas Pacheco
2018-05-01
Full Text Available The possibility that dark matter particles could be constituted by extreme regular primordial black holes is discussed. Extreme black holes have zero surface temperature, and are not subjected to the Hawking evaporation process. Assuming that the common horizon radius of these black holes is fixed by the minimum distance that is derived from the Riemann invariant computed from loop quantum gravity, the masses of these non-singular stable black holes are of the order of the Planck mass. However, if they are formed just after inflation, during reheating, their initial masses are about six orders of magnitude higher. After a short period of growth by the accretion of relativistic matter, they evaporate until reaching the extreme solution. Only a fraction of 3.8 × 10−22 of relativistic matter is required to be converted into primordial black holes (PBHs in order to explain the present abundance of dark matter particles.
Directory of Open Access Journals (Sweden)
José Tomás Alvarado
2009-08-01
Full Text Available This work presents a causal conception of metaphysical modality in which a state of affairs is metaphysically possible if and only if it can be caused (in the past, the present or the future by current entities. The conception is contrasted with what is called the “combinatorial” conception of modality, in which everything can co-exist with anything else. This work explains how the notion of ‘causality’ should be construed in the causal theory, what difference exists between modalities thus defined from nomological modality, how accessibility relations between possible worlds should be interpreted, and what is the relation between the causal conception and the necessity of origin.
Introductive remarks on causal inference
Directory of Open Access Journals (Sweden)
Silvana A. Romio
2013-05-01
Full Text Available One of the more challenging issues in epidemiological research is being able to provide an unbiased estimate of the causal exposure-disease effect, to assess the possible etiological mechanisms and the implication for public health. A major source of bias is confounding, which can spuriously create or mask the causal relationship. In the last ten years, methodological research has been developed to better de_ne the concept of causation in epidemiology and some important achievements have resulted in new statistical models. In this review, we aim to show how a technique the well known by statisticians, i.e. standardization, can be seen as a method to estimate causal e_ects, equivalent under certain conditions to the inverse probability treatment weight procedure.
Causal reasoning with mental models
Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398
Causal reasoning with mental models.
Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Causal reasoning with mental models
Directory of Open Access Journals (Sweden)
Sangeet eKhemlani
2014-10-01
Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Tracing primordial black holes in nonsingular bouncing cosmology
Energy Technology Data Exchange (ETDEWEB)
Chen, Jie-Wen, E-mail: chjw@mail.ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Junyu, E-mail: junyu@mail.ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, California Institute of Technology, Pasadena, California 91125 (United States); Xu, Hao-Lan, E-mail: xhl1995@mail.ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Cai, Yi-Fu, E-mail: yifucai@ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2017-06-10
We in this paper investigate the formation and evolution of primordial black holes (PBHs) in nonsingular bouncing cosmologies. We discuss the formation of PBH in the contracting phase and calculate the PBH abundance as a function of the sound speed and Hubble parameter. Afterwards, by taking into account the subsequent PBH evolution during the bouncing phase, we derive the density of PBHs and their Hawking radiation. Our analysis shows that nonsingular bounce models can be constrained from the backreaction of PBHs.
Dark energy and dark matter from primordial QGP
Energy Technology Data Exchange (ETDEWEB)
Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)
2015-07-31
Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.
Granger Causality and Unit Roots
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir; Ventosa-Santaulària, Daniel
2014-01-01
The asymptotic behavior of the Granger-causality test under stochastic nonstationarity is studied. Our results confirm that the inference drawn from the test is not reliable when the series are integrated to the first order. In the presence of deterministic components, the test statistic diverges......, eventually rejecting the null hypothesis, even when the series are independent of each other. Moreover, controlling for these deterministic elements (in the auxiliary regressions of the test) does not preclude the possibility of drawing erroneous inferences. Granger-causality tests should not be used under...
Quantum theory and local causality
Hofer-Szabó, Gábor
2018-01-01
This book summarizes the results of research the authors have pursued in the past years on the problem of implementing Bell's notion of local causality in local physical theories and relating it to other important concepts and principles in the foundations of physics such as the Common Cause Principle, Bell's inequalities, the EPR (Einstein-Podolsky-Rosen) scenario, and various other locality and causality concepts. The book is intended for philosophers of science with an interest in the formal background of sciences, philosophers of physics and physicists working in foundation of physics.
[Causal analysis approaches in epidemiology].
Dumas, O; Siroux, V; Le Moual, N; Varraso, R
2014-02-01
Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the
Calculating the mass fraction of primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Young, Sam; Byrnes, Christian T. [Department of Physics and Astronomy, University of Sussex, North-South Road, Brighton (United Kingdom); Sasaki, Misao, E-mail: sy81@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2014-07-01
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R{sub c} in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k{sup 2}. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.
Calculating the mass fraction of primordial black holes
International Nuclear Information System (INIS)
Young, Sam; Byrnes, Christian T.; Sasaki, Misao
2014-01-01
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k 2 . We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes
Assumptions of the primordial spectrum and cosmological parameter estimation
International Nuclear Information System (INIS)
Shafieloo, Arman; Souradeep, Tarun
2011-01-01
The observables of the perturbed universe, cosmic microwave background (CMB) anisotropy and large structures depend on a set of cosmological parameters, as well as the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well-motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best-fit-parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best-fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free-form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS. (paper)
Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions
Energy Technology Data Exchange (ETDEWEB)
Tellarini, Matteo; Ross, Ashley J.; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Tasinato, Gianmassimo, E-mail: matteo.tellarini@port.ac.uk, E-mail: ross.1333@osu.edu, E-mail: g.tasinato@swansea.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)
2016-06-01
Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f {sub NL}, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f {sub NL}. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f {sub NL} from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ {sub f} {sub N{sub L}}—the accuracy of the determination of local non-linear parameter f {sub NL}—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f {sub NL} constraints competitive with Planck , and future surveys could improve them further.
Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions
International Nuclear Information System (INIS)
Tellarini, Matteo; Ross, Ashley J.; Wands, David; Tasinato, Gianmassimo
2016-01-01
Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f NL , which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f NL . We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f NL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ f NL —the accuracy of the determination of local non-linear parameter f NL —from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f NL constraints competitive with Planck , and future surveys could improve them further.
Quantum inflaton, primordial metric perturbations and CMB fluctuations
International Nuclear Information System (INIS)
Cao, F J
2007-01-01
We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current WMAP observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of m 2 /[NH 2 ] where m is the inflaton mass and H the Hubble constant at horizon crossing. This turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it
Reconstructing the size distribution of the primordial Main Belt
Tsirvoulis, G.; Morbidelli, A.; Delbo, M.; Tsiganis, K.
2018-04-01
In this work we aim to constrain the slope of the size distribution of main-belt asteroids, at their primordial state. To do so we turn out attention to the part of the main asteroid belt between 2.82 and 2.96 AU, the so-called "pristine zone", which has a low number density of asteroids and few, well separated asteroid families. Exploiting these unique characteristics, and using a modified version of the hierarchical clustering method we are able to remove the majority of asteroid family members from the region. The remaining, background asteroids should be of primordial origin, as the strong 5/2 and 7/3 mean-motion resonances with Jupiter inhibit transfer of asteroids to and from the neighboring regions. The size-frequency distribution of asteroids in the size range 17 size distribution slope q = - 1.43 . In addition, applying the same 'family extraction' method to the neighboring regions, i.e. the middle and outer belts, and comparing the size distributions of the respective background populations, we find statistical evidence that no large asteroid families of primordial origin had formed in the middle or pristine zones.
Benoit Curé
2010-01-01
Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...
B. Curé
2012-01-01
The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...
B. Curé
2012-01-01
Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...
Causal Reasoning with Mental Models
2014-08-08
The initial rubric is equivalent to an exclusive disjunction between the two causal assertions. It 488 yields the following two mental models: 489...are 575 important, whereas the functions of artifacts are important (Ahn, 1998). A genetic code is 576 accordingly more critical to being a goat than
Identity, causality, and pronoun ambiguity.
Sagi, Eyal; Rips, Lance J
2014-10-01
This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs. Copyright © 2014 Cognitive Science Society, Inc.
Charged singularities: the causality violation
Energy Technology Data Exchange (ETDEWEB)
De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia
1980-12-01
A search is made for examples of particle trajectories which, approaching a naked singularity from infinity, make up for lost time before going back to infinity. In the Kerr-Newman metric a whole family of such trajectories is found showing that the causality violation is indeed a non-avoidable pathology.
Observational constraints on the primordial curvature power spectrum
Emami, Razieh; Smoot, George F.
2018-01-01
CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would
B. Curé
2012-01-01
The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...
B. Curé
2013-01-01
The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...
Benoit Curé
2010-01-01
The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...
B. Curé
2011-01-01
The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...
Entanglement, holography and causal diamonds
de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.
2016-08-01
We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Entanglement, holography and causal diamonds
Energy Technology Data Exchange (ETDEWEB)
Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2016-08-29
We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
The argumentative impact of causal relations
DEFF Research Database (Denmark)
Nielsen, Anne Ellerup
1996-01-01
such as causality, explanation and justification. In certain types of discourse, causal relations also imply an intentional element. This paper describes the way in which the semantic and pragmatic functions of causal markers can be accounted for in terms of linguistic and rhetorical theories of argumentation.......The semantic relations between and within utterances are marked by the use of connectors and adverbials. One type of semantic relations is causal relations expressed by causal markers such as because, therefore, so, for, etc. Some of these markers cover different types of causal relations...
Effect of vacuum energy on evolution of primordial black holes in Einstein gravity
International Nuclear Information System (INIS)
Nayak, Bibekananda; Jamil, Mubasher
2012-01-01
We study the evolution of primordial black holes by considering present universe is no more matter dominated rather vacuum energy dominated. We also consider the accretion of radiation, matter and vacuum energy during respective dominance period. In this scenario, we found that radiation accretion efficiency should be less than 0.366 and accretion rate is much larger than previous analysis by Nayak et al. (2009) . Thus here primordial black holes live longer than previous works Nayak and Singh (2011). Again matter accretion slightly increases the mass and lifetime of primordial black holes. However, the vacuum energy accretion is slightly complicated one, where accretion is possible only up to a critical time. If a primordial black hole lives beyond critical time, then its' lifespan increases due to vacuum energy accretion. But for presently evaporating primordial black holes, critical time comes much later than their evaporating time and thus vacuum energy could not affect those primordial black holes.
B. Curé
2011-01-01
The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....
Spectral dimension in causal set quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Mizera, Sebastian
2014-01-01
We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)
On causal nonrelativistic classical electrodynamics
International Nuclear Information System (INIS)
Goedecke, G.H.
1984-01-01
The differential-difference (DD) motion equations of the causal nonrelativistic classical electrodynamics developed by the author in 1975 are shown to possess only nonrunaway, causal solutions with no discontinuities in particle velocity or position. As an example, the DD equation solution for the problem of an electromagnetic shock incident on an initially stationary charged particle is contrasted with the standard Abraham-Lorentz equation solution. The general Cauchy problem for these DD motion equations is discussed. In general, in order to uniquely determine a solution, the initial data must be more detailed than the standard Cauchy data of initial position and velocity. Conditions are given under which the standard Cauchy data will determine the DD equation solutions to sufficient practical accuracy
Quantum mechanics, relativity and causality
International Nuclear Information System (INIS)
Tati, Takao.
1975-07-01
In quantum mechanics, the state is prepared by a measurement on a space-like surface sigma. What is that determines the surface sigma on which the measurement prepares the state It is considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning causality or conservation of probability due to that the velocity of reduction of wave-packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing causal relations. We propose an experiment to discriminate between the above-mentioned two cases and to test the existence of the universal time-like vector. (auth.)
The Cosmochemistry of Pluto: A Primordial Origin of Volatiles?
Glein, C. R.; Waite, J. H., Jr.
2017-12-01
Pluto is a wonderland of volatiles. Nitrogen, methane, and carbon monoxide are the principal volatiles that maintain its tenuous atmosphere, and they have also created a mesmerizing landscape of icy geological features, including Pluto's iconic "heart". Recent data, particularly those returned by the New Horizons mission [1-3], allow us to begin testing hypotheses for the cosmochemical origins of these world-shaping species on Pluto. Here, we investigate if Pluto's volatiles could have been accreted in its building blocks. We take both bottom-up and top-down approaches in testing this hypothesis in terms of mass balance. We estimate Pluto's primordial inventory of volatiles by scaling a range of cometary abundances up to the ice mass fraction of Pluto. We also make estimates of the present and lost inventories of volatiles based on surface observations and interpretations, as well as different scenarios of atmospheric photochemistry and escape. We find that, if primordial Pluto resembled a giant comet with respect to volatile abundances, then the initial volatile inventory would have been sufficient to account for the estimated present and lost inventories. This consistency supports a primordial origin for Pluto's volatiles. However, the observed ratio of CO/N2 in Pluto's atmosphere [4] is several orders of magnitude lower than the nominal cometary value. We are currently using phase equilibrium and rate models to explore if volatile layering in Sputnik Planitia, or the destruction of CO in a past or present subsurface ocean of liquid water could explain the apparent depletion of CO on Pluto. References: [1] Moore et al. (2016) Science 351, 1284. [2] Grundy et al. (2016) Science 351, aad9189. [3] Gladstone et al. (2016) Science 351, aad8866. [4] Lellouch et al. (2017) Icarus 286, 289.
Causal Set Generator and Action Computer
Cunningham, William; Krioukov, Dmitri
2017-01-01
The causal set approach to quantum gravity has gained traction over the past three decades, but numerical experiments involving causal sets have been limited to relatively small scales. The software suite presented here provides a new framework for the generation and study of causal sets. Its efficiency surpasses previous implementations by several orders of magnitude. We highlight several important features of the code, including the compact data structures, the $O(N^2)$ causal set generatio...
The statistics of maxima in primordial density perturbations
International Nuclear Information System (INIS)
Peacock, J.A.; Heavens, A.F.
1985-01-01
An investigation has been made of the hypothesis that protogalaxies/protoclusters form at the sites of maxima in a primordial field of normally distributed density perturbations. Using a mixture of analytic and numerical techniques, the properties of the maxima, have been studied. The results provide a natural mechanism for biased galaxy formation in which galaxies do not necessarily follow the large-scale density. Methods for obtained the true autocorrelation function of the density field and implications for Microwave Background studies are discussed. (author)
Bicycling to Work and Primordial Prevention of Cardiovascular Risk
DEFF Research Database (Denmark)
Grøntved, Anders; Koivula, Robert W; Johansson, Ingegerd
2016-01-01
of incident obesity, hypertension, hypertriglyceridemia, and impaired glucose tolerance, comparing individuals who commuted to work by bicycle with those who used passive modes of transportation. We also examined the relationship of change in commuting mode with incidence of these clinical risk factors......% CI 0.74-0.91) compared with participants not cycling to work at both times points or who switched from cycling to other modes of transport during follow-up. CONCLUSIONS: These data suggest that commuting by bicycle to work is an important strategy for primordial prevention of clinical cardiovascular...... risk factors among middle-aged men and women....
Les Houches 1999 Summer School, Session 71 : The Primordial Universe
Schäffer, R; Silk, J; David, F
2000-01-01
This book reviews the interconnection of cosmology and particle physics over the last decade. It provides introductory courses in supersymmetry, superstring and M-theory, responding to an increasing interest to evaluate the cosmological consequences of these theories. Based on a series of extended courses providing an introduction to the physics of the very early universe, in the light of the most recent advances in our understanding of the fundamental interactions, it reviews all the classical issues (inflation, primordial fluctuations, dark matter, baryogenesis), but also introduces the most
Primordial gravitational waves measurements and anisotropies of CMB polarization rotation
Directory of Open Access Journals (Sweden)
Si-Yu Li
2015-12-01
Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
1987-01-01
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
Cosmic gamma radiation of ultra high energy of primordial origin
International Nuclear Information System (INIS)
Aquino Filho, F.G. de.
1984-01-01
The quantum mechanical effects near a collapsing black hole as shown by Stephen W.Hawking in 1974 to produce streaming particles through tunneling effect was explored in the context of cosmic gamma ray production. In this thesis, we show the possible production of gamma rays of high energies (ν approx 10 41 Hz) in the initial stages of the formation of the Universe by the explosion of primordial mini black holes. These mini black hole explosions happening at 10 -43 s to 10 -37 s after the start perhaps may account for the existing universal cosmic background radiation of 2.7 0 K. (Author) [pt
Baryogenesis in extended inflation. II. Baryogenesis via primordial black holes
International Nuclear Information System (INIS)
Barrow, J.D.; Copeland, E.J.; Kolb, E.W.; Liddle, A.R.
1991-01-01
This is the second of two papers devoted to the study of baryogenesis at the end of extended inflation. Extended inflation is brought to an end by the collisions of bubble walls surrounding regions of true vacuum, a process which produces particles well out of thermal equilibrium. In the first paper we considered baryogenesis via direct production and subsequent decay of baryon-number-violating bosons. In this paper we consider the further possibility that the wall collisions may provide a significant density of primordial black holes and examine their possible role in generating a baryon asymmetry
Modeling of causality with metamaterials
International Nuclear Information System (INIS)
Smolyaninov, Igor I
2013-01-01
Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space–time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space–time. While this model may be used to build interesting space–time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space–time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler–Feynman absorber theory of causality. (paper)
THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...
CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc
Causal structure of analogue spacetimes
International Nuclear Information System (INIS)
Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt
2004-01-01
The so-called 'analogue models of general relativity' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of perturbations in these condensed matter systems is described by 'effective metrics' that carry with them notions of 'causal structure' as determined by an exchange of quasi-particles. These quasi-particle-induced causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying analogue model is governed by its own specific physics, not necessarily by the Einstein equations.) In this paper we take a careful look at what can be said about the causal structure of analogue spacetimes, focusing on those containing quasi-particle horizons, both with a view to seeing what is different from standard general relativity, and what the similarities might be. For definiteness, and because the physics is particularly simple to understand, we will phrase much of the discussion in terms of acoustic disturbances in moving fluids, where the underlying physics is ordinary fluid mechanics, governed by the equations of traditional hydrodynamics, and the relevant quasi-particles are the phonons. It must however be emphasized that this choice of example is only for the sake of pedagogical simplicity and that our considerations apply generically to wide classes of analogue spacetimes
Obesity and infection: reciprocal causality.
Hainer, V; Zamrazilová, H; Kunešová, M; Bendlová, B; Aldhoon-Hainerová, I
2015-01-01
Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.
Behavioural Pattern of Causality Parameter of Autoregressive ...
African Journals Online (AJOL)
In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...
Exploring Individual Differences in Preschoolers' Causal Stance
Alvarez, Aubry; Booth, Amy E.
2016-01-01
Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…
Representing Personal Determinants in Causal Structures.
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
Causal inference in economics and marketing.
Varian, Hal R
2016-07-05
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.
Causal knowledge and reasoning in decision making
Hagmayer, Y.; Witteman, C.L.M.
2017-01-01
Normative causal decision theories argue that people should use their causal knowledge in decision making. Based on these ideas, we argue that causal knowledge and reasoning may support and thereby potentially improve decision making based on expected outcomes, narratives, and even cues. We will
Benoit Curé
2010-01-01
The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...
B. Curé
MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...
Benoit Curé.
The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...
B. Curé
2013-01-01
The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...
Takikawa, Keiko Miyachi; Kikuchi, Akihiko; Yokoyama, Akiko; Ono, Kyoko; Iwasawa, Yuki; Sunagawa, Sorahiro; Takagi, Kimiyo; Kawame, Hiroshi; Nakamura, Tomohiko
2008-01-01
Seckel syndrome is a rare form of primordial dwarfism and most of the previous reports have been limited to postnatal findings. We report on a fetus showing severe microcephaly, intrauterine growth restriction and a few gyri with shallow sulci on the fetal brain suggesting cortical dysplasia, followed by ultrasound and magnetic resonance imaging in the prenatal period. Cardiotocograph revealed a reassuring fetal status throughout the whole pregnancy period. A male infant weighing 1,556 g was delivered at 39 weeks' gestation, and a diagnosis of Seckel syndrome was made based on postnatal typical findings. Although previous reports on prenatal findings of Seckel syndrome are quite limited, we think that our case presents typical features of a fetus affected by this syndrome. When prenatal ultrasound shows severe microcephaly and intrauterine growth restriction, this rare syndrome should be included in the differential diagnosis. Moreover, magnetic resonance imaging of the affected fetal brain provides further diagnostic clues. Copyright 2008 S. Karger AG, Basel.
Effects of causality on the fluidity and viscous horizon of quark-gluon plasma
Rahaman, Mahfuzur; Alam, Jan-e.
2018-05-01
The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.
A theory of causal learning in children: causal maps and Bayes nets.
Gopnik, Alison; Glymour, Clark; Sobel, David M; Schulz, Laura E; Kushnir, Tamar; Danks, David
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net formalism.
Norms and customs: causally important or causally impotent?
Jones, Todd
2010-01-01
In this article, I argue that norms and customs, despite frequently being described as being causes of behavior in the social sciences and ordinary conversation, cannot really cause behavior. Terms like "norms" and the like seem to refer to philosophically disreputable disjunctive properties. More problematically, even if they do not, or even if there can be disjunctive properties after all, I argue that norms and customs still cannot cause behavior. The social sciences would be better off without referring to properties like norms and customs as if they could be causal.
Kalogera, Vassiliki; Webbink, Ronald F.
1998-01-01
We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible
Non-standard primordial fluctuations and nongaussianity in string inflation
International Nuclear Information System (INIS)
Burgess, C.P.; Cicoli, M.; Gomez-Reino, M.; Tasinato, G.; Zavala, I.
2010-05-01
Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kaehler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, f NL ≅O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realization of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe. (orig.)
Non-Standard Primordial Fluctuations and Nongaussianity in String Inflation
International Nuclear Information System (INIS)
Burgess, C.P.; Cicoli, M.; Gomez-Reino, M.; Quevedo, F.; Tasinato, G.; Zavala, I.
2010-05-01
Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kaehler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, f NL ≅ O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realization of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe. (author)
Primordial linkage of β2-microglobulin to the MHC.
Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F
2011-03-15
β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.
Single field double inflation and primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Kannike, K.; Marzola, L.; Raidal, M.; Veermäe, H., E-mail: kristjan.kannike@cern.ch, E-mail: luca.marzola@cern.ch, E-mail: martti.raidal@cern.ch, E-mail: hardi.veermae@cern.ch [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)
2017-09-01
Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by a polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.
Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites
Taylor, G. J.
2016-03-01
The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Smith, K.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNL^local= 2.7+/-5.8, fNL^equil= -42+/-75, and fNL^ortho= -25+\\-39 (68% CL statistical). NG is detected in the data; using skew-C_l statistics we find a nonzero bispectrum from residual point sources, and the ISW-lensing bispectrum at a level expected in the LambdaCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C_l, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, 3-dimensional...
Constraining the primordial power spectrum from SNIa lensing dispersion
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kalaydzhyan, Tigran [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy
2013-09-15
The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the non-linear regime, 1 Mpc{sup -1}
Towards Forming a Primordial Protostar in a Cosmological AMR Simulation
Turk, Matthew J.; Abel, Tom; O'Shea, Brian W.
2008-03-01
Modeling the formation of the first stars in the universe is a well-posed problem and ideally suited for computational investigation.We have conducted high-resolution numerical studies of the formation of primordial stars. Beginning with primordial initial conditions appropriate for a ΛCDM model, we used the Eulerian adaptive mesh refinement code (Enzo) to achieve unprecedented numerical resolution, resolving cosmological scales as well as sub-stellar scales simultaneously. Building on the work of Abel, Bryan and Norman (2002), we followed the evolution of the first collapsing cloud until molecular hydrogen is optically thick to cooling radiation. In addition, the calculations account for the process of collision-induced emission (CIE) and add approximations to the optical depth in both molecular hydrogen roto-vibrational cooling and CIE. Also considered are the effects of chemical heating/cooling from the formation/destruction of molecular hydrogen. We present the results of these simulations, showing the formation of a 10 Jupiter-mass protostellar core bounded by a strongly aspherical accretion shock. Accretion rates are found to be as high as one solar mass per year.
Primordial-like enzymes from bacteria with reduced genomes.
Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M
2017-08-01
The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.
A theory of causal learning in children: Causal maps and Bayes nets
Gopnik, A; Glymour, C; Sobel, D M; Schulz, L E; Kushnir, T; Danks, D
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computatio...
Computation of Probabilities in Causal Models of History of Science
Directory of Open Access Journals (Sweden)
Osvaldo Pessoa Jr.
2006-12-01
Full Text Available : The aim of this paper is to investigate the ascription of probabilities in a causal model of an episode in the history of science. The aim of such a quantitative approach is to allow the implementation of the causal model in a computer, to run simulations. As an example, we look at the beginning of the science of magnetism, “explaining” — in a probabilistic way, in terms of a single causal model — why the field advanced in China but not in Europe (the difference is due to different prior probabilities of certain cultural manifestations. Given the number of years between the occurrences of two causally connected advances X and Y, one proposes a criterion for stipulating the value pY=X of the conditional probability of an advance Y occurring, given X. Next, one must assume a specific form for the cumulative probability function pY=X(t, which we take to be the time integral of an exponential distribution function, as is done in physics of radioactive decay. Rules for calculating the cumulative functions for more than two events are mentioned, involving composition, disjunction and conjunction of causes. We also consider the problems involved in supposing that the appearance of events in time follows an exponential distribution, which are a consequence of the fact that a composition of causes does not follow an exponential distribution, but a “hypoexponential” one. We suggest that a gamma distribution function might more adequately represent the appearance of advances.
Benoit Curé
The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...
B. Curé
During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...
Causal mediation analysis with multiple causally non-ordered mediators.
Taguri, Masataka; Featherstone, John; Cheng, Jing
2018-01-01
In many health studies, researchers are interested in estimating the treatment effects on the outcome around and through an intermediate variable. Such causal mediation analyses aim to understand the mechanisms that explain the treatment effect. Although multiple mediators are often involved in real studies, most of the literature considered mediation analyses with one mediator at a time. In this article, we consider mediation analyses when there are causally non-ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect effects through the two mediators considered separately may diverge from the joint natural indirect effect when there are additive interactions between the effects of the two mediators on the outcome. Therefore, we derive an equation for the joint natural indirect effect based on the individual mediation effects and their interactive effect, which helps us understand how the mediation effect works through the two mediators and relative contributions of the mediators and their interaction. We also discuss an extension for three mediators. The proposed method is illustrated using data from a randomized trial on the prevention of dental caries.
Perry, Luke D; Robertson, Fergus; Ganesan, Vijeya
2013-04-01
Microcephalic osteodysplastic primordial dwarfism type II (OMIM 210720) is a rare autosomal recessive condition frequently associated with early-onset cerebrovascular disease. Presymptomatic detection and intervention could prevent the adverse consequences associated with this. We reviewed published cases of microcephalic osteodysplastic primordial dwarfism type II to ascertain prevalence and characteristics of cerebrovascular disease and use these data to propose an evidence-based approach to cerebrovascular screening. Of 147 cases identified, 47 had cerebrovascular disease (32%), including occlusive arteriopathy (including moyamoya) and cerebral aneurysmal disease. Occlusive disease occurred in younger individuals, and progression can be both rapid and clinically silent. A reasonable screening approach would be magnetic resonance imaging and angiography of the cervical and intracranial circulation at diagnosis, repeated at yearly intervals until 10 years, and every 2 years thereafter, unless clinical concerns occur earlier. At present it would appear that this needs to be life-long. Families and professionals should be alerted to the potential significance of neurologic symptoms and measures should be taken to maintain good vascular health in affected individuals. Copyright © 2013 Elsevier Inc. All rights reserved.
The Functions of Danish Causal Conjunctions
Directory of Open Access Journals (Sweden)
Rita Therkelsen
2004-01-01
Full Text Available In the article I propose an analysis of the Danish causal conjunctions fordi, siden and for based on the framework of Danish Functional Grammar. As conjunctions they relate two clauses, and their semantics have in common that it indicates a causal relationship between the clauses. The causal conjunctions are different as far as their distribution is concerned; siden conjoins a subordinate clause and a main clause, for conjoins two main clauses, and fordi is able to do both. Methodologically I have based my analysis on these distributional properties comparing siden and fordi conjoining a subordinate and a main clause, and comparing for and fordi conjoining two main clauses, following the thesis that they would establish a causal relationship between different kinds of content. My main findings are that fordi establishes a causal relationship between the events referred to by the two clauses, and the whole utterance functions as a statement of this causal relationship. Siden presupposes such a general causal relationship between the two events and puts forward the causing event as a reason for assuming or wishing or ordering the caused event, siden thus establishes a causal relationship between an event and a speech act. For equally presupposes a general causal relationship between two events and it establishes a causal relationship between speech acts, and fordi conjoining two main clauses is able to do this too, but in this position it also maintains its event-relating ability, the interpretation depending on contextual factors.
Space and time in perceptual causality
Directory of Open Access Journals (Sweden)
Benjamin Straube
2010-04-01
Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.
Causal diagrams in systems epidemiology
Directory of Open Access Journals (Sweden)
Joffe Michael
2012-03-01
Full Text Available Abstract Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s. Transmitted causes ("causes of causes" tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.
Causal diagrams in systems epidemiology.
Joffe, Michael; Gambhir, Manoj; Chadeau-Hyam, Marc; Vineis, Paolo
2012-03-19
Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed.The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties.The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets.Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.
Probabilistic causality and radiogenic cancers
International Nuclear Information System (INIS)
Groeer, P.G.
1986-01-01
A review and scrutiny of the literature on probability and probabilistic causality shows that it is possible under certain assumptions to estimate the probability that a certain type of cancer diagnosed in an individual exposed to radiation prior to diagnosis was caused by this exposure. Diagnosis of this causal relationship like diagnosis of any disease - malignant or not - requires always some subjective judgments by the diagnostician. It is, therefore, illusory to believe that tables based on actuarial data can provide objective estimates of the chance that a cancer diagnosed in an individual is radiogenic. It is argued that such tables can only provide a base from which the diagnostician(s) deviate in one direction or the other according to his (their) individual (consensual) judgment. Acceptance of a physician's diagnostic judgment by patients is commonplace. Similar widespread acceptance of expert judgment by claimants in radiation compensation cases does presently not exist. Judicious use of the present radioepidemiological tables prepared by the Working Group of the National Institutes of Health or of updated future versions of similar tables may improve the situation. 20 references
Issues on generating primordial anisotropies at the end of inflation
Energy Technology Data Exchange (ETDEWEB)
Emami, Razieh; Firouzjahi, Hassan, E-mail: emami@mail.ipm.ir, E-mail: firouz@mail.ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2012-01-01
We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.
Issues on generating primordial anisotropies at the end of inflation
International Nuclear Information System (INIS)
Emami, Razieh; Firouzjahi, Hassan
2012-01-01
We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background
Sterile neutrinos, lepton asymmetries, primordial elements: How much of each?
International Nuclear Information System (INIS)
Chu Yizen; Cirelli, Marco
2006-01-01
We investigate quantitatively the extent to which having a primordial leptonic asymmetry (n ν ≠n ν ) relaxes the bounds on light sterile neutrinos imposed by BBN and LSS. We adopt a few assumptions that allow us to solve the neutrino evolution equations over a broad range of mixing parameters and asymmetries. For the general cases of sterile mixing with the electron or muon neutrino, we identify the regions that can be reopened. For the particular case of a LSND-like sterile neutrino, soon to be rejected or confirmed by MiniBooNE, we find that an asymmetry of the order of 10 -4 is needed to lift the conflicts with cosmology
Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies
International Nuclear Information System (INIS)
Chiosi, Cesare
2010-01-01
Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.
Running-mass inflation model and primordial black holes
International Nuclear Information System (INIS)
Drees, Manuel; Erfani, Encieh
2011-01-01
We revisit the question whether the running-mass inflation model allows the formation of Primordial Black Holes (PBHs) that are sufficiently long-lived to serve as candidates for Dark Matter. We incorporate recent cosmological data, including the WMAP 7-year results. Moreover, we include ''the running of the running'' of the spectral index of the power spectrum, as well as the renormalization group ''running of the running'' of the inflaton mass term. Our analysis indicates that formation of sufficiently heavy, and hence long-lived, PBHs still remains possible in this scenario. As a by-product, we show that the additional term in the inflaton potential still does not allow significant negative running of the spectral index
Lifting primordial non-Gaussianity above the noise
International Nuclear Information System (INIS)
Welling, Yvette; Woude, Drian van der; Pajer, Enrico
2016-01-01
Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approach and discuss the details of its implementation in Fisher forecasts.
The Primordial Role of Stories in Human Self-Creation
Directory of Open Access Journals (Sweden)
Arran Gare
2007-08-01
Full Text Available We now have a paradoxical situation where the place and status of stories is in decline within the humanities, while scientists are increasingly recognizing their importance. Here the attitude towards narratives of these scientists is defended. It is argued that stories play a primordial role in human self-creation, underpinning more abstract discourses such as mathematics, logic and science. To uphold the consistency of this claim, this thesis is defended by telling a story of the evolution of European culture from Ancient Greece to the present, including an account of the rise of the notion of culture and its relation to the development of history, thereby showing how stories function to justify beliefs, situate people as agents within history and orient them to create the future.
The standard and degenerate primordial nucleosynthesis versus recent experimental data
International Nuclear Information System (INIS)
Esposito, S.; Mangano, G.; Miele, G.; Pisanti, O.
2000-01-01
We report the results on Big Bang Nucleosynthesis (BBN) based on an updated code, with accuracy of the order of 0.1% on He4 abundance, compared with the predictions of other recent similar analysis. We discuss the compatibility of the theoretical results, for vanishing neutrino chemical potentials, with the observational data. Bounds on the number of relativistic neutrinos and baryon abundance are obtained by a likelihood analysis. We also analyze the effect of large neutrino chemical potentials on primordial nucleosynthesis, motivated by the recent results on the Cosmic Microwave Background Radiation spectrum. The BBN exclusion plots for electron neutrino chemical potential and the effective number of relativistic neutrinos are reported. We find that the standard BBN seems to be only marginally in agreement with the recent BOOMERANG and MAXIMA-1 results, while the agreement is much better for degenerate BBN scenarios for large effective number of neutrinos, N ν ∼ 10. (author)
Primordial Pb, radiogenic Pb and lunar soil maturity
International Nuclear Information System (INIS)
Reed, G.W. Jr.; Jovanovic, S.
1978-01-01
The soil maturity index I/sub s//FeO does not apply to either 204 Pb/sub r/ or C/sub hyd/; both are directly correlated with the submicron Fe 0 (I/sub s/) content. They act as an index of soil maturity which is independent of soil composition. In contrast to primordial Pb, radiogenic Pb is lost during soil maturation. Radiogenic Pb is present in mineral grains and may be lost by solar wind sputtering (or volatilization) and not resupplied. 204 Pb coating grain surfaces acts as a reservoir to provide the 204 Pb being extracted in the Fe 0 formation process. Venting or some other volatile source may replenish the surface 204 Pb. 1 figure
Globular cluster seeding by primordial black hole population
Energy Technology Data Exchange (ETDEWEB)
Dolgov, A. [ITEP, Bol. Cheremushkinsaya ul., 25, 117218 Moscow (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr., 13, Moscow 119234 (Russian Federation)
2017-04-01
Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. In this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.
Nonthermal production of dark matter from primordial black holes
Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek
2018-03-01
We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.
Nuclear Physics Solutions to the Primordial Lithium Problem
Directory of Open Access Journals (Sweden)
Williams E.
2012-10-01
Full Text Available The primordial lithium problem is one of the major outstanding issues in the standard model of the Big Bang. Measurements of the baryon to photon ratio in the cosmic microwave background constrain model predictions, giving abundances of 7Li two to four times larger than observed via spectroscopic measurements of metal-poor stars. In an attempt to reconcile this discrepancy, significant effort has been directed at measuring reaction cross sections of light nuclei at astrophysically relevant energies. However, there remain reaction cross sections with large uncertainties, and some that have not yet been measured. Particularly relevant are those involving the destruction of 7Be, a progenitor of 7Li. Key issues that can be improved by nuclear physics input will be highlighted, and the applicability of detectors and event reconstruction techniques recently developed at the ANU will be discussed.
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.
Effect of nuclear reaction rates on primordial abundances
International Nuclear Information System (INIS)
Mishra, Abhishek; Basu, D.N.
2011-01-01
The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. The effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight has been investigated. Also the study have been taken of these yields as functions of evolution time or temperature. Here it has been found that using these new reaction rates results in only a little increase in helium mass fraction over that obtained previously in BBN calculations. This allows insights into the role of the nuclear reaction rates in the setting of the neutron-to-proton ratio during the BBN epoch. We observe that most of these nuclear reactions have minimal effect on the standard BBN abundance yields of 6 Li and 7 Li
Primordial Black Holes from Supersymmetry in the Early Universe.
Cotner, Eric; Kusenko, Alexander
2017-07-21
Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar condensate can form and fragment into Q balls before decaying. If the Q balls dominate the energy density for some period of time, the relatively large fluctuations in their number density can lead to formation of primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a general charged scalar field, this robust mechanism can generate black holes over the entire mass range allowed by observational constraints, with a sufficient abundance to account for all dark matter in some parameter ranges. In the case of supersymmetry the mass range is limited from above by 10^{23} g. We also comment on the role that topological defects can play for PBH formation in a similar fashion.
Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.
2015-06-01
The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.
Benoit Curé
The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...
B. Curé
The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...
Benoit Curé
2013-01-01
Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...
One Percent Determination of the Primordial Deuterium Abundance
Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.
2018-03-01
We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Primordial dwarfism: overview of clinical and genetic aspects.
Khetarpal, Preeti; Das, Satrupa; Panigrahi, Inusha; Munshi, Anjana
2016-02-01
Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders
Cosmological cosmic rays: Sharpening the primordial lithium problem
International Nuclear Information System (INIS)
Prodanovic, Tijana; Fields, Brian D.
2007-01-01
Cosmic structure formation leads to large-scale shocked baryonic flows which are expected to produce a cosmological population of structure-formation cosmic rays (SFCRs). Interactions between SFCRs and ambient baryons will produce lithium isotopes via α+α→ 6,7 Li. This pre-galactic (but nonprimordial) lithium should contribute to the primordial 7 Li measured in halo stars and must be subtracted in order to arrive to the true observed primordial lithium abundance. In this paper we point out that the recent halo star 6 Li measurements can be used to place a strong constraint to the level of such contamination, because the exclusive astrophysical production of 6 Li is from cosmic-ray interactions. We find that the putative 6 Li plateau, if due to pre-galactic cosmic-ray interactions, implies that SFCR-produced lithium represents Li SFCR /Li plateau ≅15% of the observed elemental Li plateau. Taking the remaining plateau Li to be cosmological 7 Li, we find a revised (and slightly worsened) discrepancy between the Li observations and big bang nucleosynthesis predictions by a factor of 7 Li BBN / 7 Li plateau ≅3.7. Moreover, SFCRs would also contribute to the extragalactic gamma-ray background (EGRB) through neutral pion production. This gamma-ray production is tightly related to the amount of lithium produced by the same cosmic rays; the 6 Li plateau limits the pre-galactic (high-redshift) SFCR contribution to be at the level of I γ π SFCR /I EGRB < or approx. 5% of the currently observed EGRB
Primordial nucleosynthesis as a probe of particle physics and cosmology
International Nuclear Information System (INIS)
Walker, T.P.
1987-01-01
In this dissertation, the author uses the success of the standard model of big-bang nucleosynthesis to examine the effects of interacting particle species and the effect of varying coupling constants, predicted by theories set in extra dimensions, on primordial nucleosynthesis. A review is given of the standard model and of the abundances of the light elements expected to be produced in the early Universe. The weakest piece of the concordance between the standard model of big-bang nucleosynthesis and observation is the production and primordial abundance of 7 Li. Therefore he discusses the production of 7 Li in astrophysical environments other than the early Universe and shows that the predictions of big-bang nucleosynthesis, when supplemented by those due to astrophysical sources, are in good agreement with observation. He then shows that the effect on big-bang nucleosynthesis of an additional particle species which remains coupled to either photons or light neutrinos can be quite different from that predicted by the equivalent number of neutrino species parameterization, which does work for decoupled additional species. In particular he considers the case of an additional axion-like particle and shows that its effect is to decrease the amount of 4 He produced in the big-bang. In addition, he considers the effects of varying coupling constants on 4 He production in the big-bang and shows that constraining Y p = 0.24 ± 0.01 leads to a constraint on the time variation of the fine-structure constant of |dln α/dt| ≤ x 10 -14
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Causal relationship: a new tool for the causal characterization of Lorentzian manifolds
International Nuclear Information System (INIS)
Garcia-Parrado, Alfonso; Senovilla, Jose M M
2003-01-01
We define and study a new kind of relation between two diffeomorphic Lorentzian manifolds called a causal relation, which is any diffeomorphism characterized by mapping every causal vector of the first manifold onto a causal vector of the second. We perform a thorough study of the mathematical properties of causal relations and prove in particular that two given Lorentzian manifolds (say V and W) may be causally related only in one direction (say from V to W, but not from W to V). This leads us to the concept of causally equivalent (or isocausal in short) Lorentzian manifolds as those mutually causally related and to a definition of causal structure over a differentiable manifold as the equivalence class formed by isocausal Lorentzian metrics upon it. Isocausality is a more general concept than the conformal relationship, because we prove the remarkable result that a conformal relation φ is characterized by the fact of being a causal relation of the particular kind in which both φ and φ -1 are causal relations. Isocausal Lorentzian manifolds are mutually causally compatible, they share some important causal properties, and there are one-to-one correspondences, which are sometimes non-trivial, between several classes of their respective future (and past) objects. A more important feature is that they satisfy the same standard causality constraints. We also introduce a partial order for the equivalence classes of isocausal Lorentzian manifolds providing a classification of all the causal structures that a given fixed manifold can have. By introducing the concept of causal extension we put forward a new definition of causal boundary for Lorentzian manifolds based on the concept of isocausality, and thereby we generalize the traditional Penrose constructions of conformal infinity, diagrams and embeddings. In particular, the concept of causal diagram is given. Many explicit clarifying examples are presented throughout the paper
Profound microcephaly, primordial dwarfism with developmental brain malformations: a new syndrome.
Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Saleem, Sahar N; Ahmed, Mahmoud K H; Issa, Mahmoud; Effat, Laila K; Kayed, Hisham F; Zaki, Maha S; Gaber, Khaled R
2012-08-01
We describe two sibs with a lethal form of profound congenital microcephaly, intrauterine and postnatal growth retardation, subtle skeletal changes, and poorly developed brain. The sibs had striking absent cranial vault with sloping of the forehead, large beaked nose, relatively large ears, and mandibular micro-retrognathia. Brain magnetic resonance imaging (MRI) revealed extremely simplified gyral pattern, large interhemispheric cyst and agenesis of corpus callosum, abnormally shaped hippocampus, and proportionately affected cerebellum and brainstem. In addition, fundus examination showed foveal hypoplasia with optic nerve atrophy. No abnormalities of the internal organs were found. This profound form of microcephaly was identified at 17 weeks gestation by ultrasound and fetal brain MRI helped in characterizing the developmental brain malformations in the second sib. Molecular analysis excluded mutations in potentially related genes such as RNU4ATAC, SLC25A19, and ASPM. These clinical and imaging findings are unlike that of any recognized severe forms of microcephaly which is believed to be a new microcephalic primordial dwarfism (MPD) with developmental brain malformations with most probably autosomal recessive inheritance based on consanguinity and similarly affected male and female sibs. Copyright © 2012 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.
1987-01-01
We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit
Amodal causal capture in the tunnel effect.
Bae, Gi Yeul; Flombaum, Jonathan I
2011-01-01
In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.
Quantum retrodiction and causality principle
International Nuclear Information System (INIS)
Shirokov, M.I.
1994-01-01
Quantum mechanics is factually a predictive science. But quantum retrodiction may also be needed, e.g., for the experimental verification of the validity of the Schroedinger equation for the wave function in the past if the present state is given. It is shown that in the retrodictive analog of the prediction the measurement must be replaced by another physical process called the retromeasurement. In this process, the reduction of a state vector into eigenvectors of a measured observable must proceed in the opposite direction of time as compared to the usual reduction. Examples of such processes are unknown. Moreover, they are shown to be forbidden by the causality principle stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and F.Belinfante must be considered as an unsatisfactory ersatz of retrodicting. 20 refs., 3 figs
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
International Nuclear Information System (INIS)
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
Energy Technology Data Exchange (ETDEWEB)
Neelamkavil, Raphael
2014-07-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Primordial blackholes and gravitational waves for an inflection-point model of inflation
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sayantan [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108 (India); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University, LA1 4YB (United Kingdom)
2014-06-02
In this article we provide a new closed relationship between cosmic abundance of primordial gravitational waves and primordial blackholes that originated from initial inflationary perturbations for inflection-point models of inflation where inflation occurs below the Planck scale. The current Planck constraint on tensor-to-scalar ratio, running of the spectral tilt, and from the abundance of dark matter content in the universe, we can deduce a strict bound on the current abundance of primordial blackholes to be within a range, 9.99712×10{sup −3}<Ω{sub PBH}h{sup 2}<9.99736×10{sup −3}.
A Theory of Causal Learning in Children: Causal Maps and Bayes Nets
Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…
International Nuclear Information System (INIS)
Garcia-Parrado, Alfonso; Sanchez, Miguel
2005-01-01
Recently (Garcia-Parrado and Senovilla 2003 Class. Quantum Grav. 20 625-64) the concept of causal mapping between spacetimes, essentially equivalent in this context to the chronological map defined in abstract chronological spaces, and the related notion of causal structure, have been introduced as new tools to study causality in Lorentzian geometry. In the present paper, these tools are further developed in several directions such as (i) causal mappings-and, thus, abstract chronological ones-do not preserve two levels of the standard hierarchy of causality conditions (however, they preserve the remaining levels as shown in the above reference), (ii) even though global hyperbolicity is a stable property (in the set of all time-oriented Lorentzian metrics on a fixed manifold), the causal structure of a globally hyperbolic spacetime can be unstable against perturbations; in fact, we show that the causal structures of Minkowski and Einstein static spacetimes remain stable, whereas that of de Sitter becomes unstable, (iii) general criteria allow us to discriminate different causal structures in some general spacetimes (e.g. globally hyperbolic, stationary standard); in particular, there are infinitely many different globally hyperbolic causal structures (and thus, different conformal ones) on R 2 (iv) plane waves with the same number of positive eigenvalues in the frequency matrix share the same causal structure and, thus, they have equal causal extensions and causal boundaries
Campbell's and Rubin's Perspectives on Causal Inference
West, Stephen G.; Thoemmes, Felix
2010-01-01
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
mediation: R Package for Causal Mediation Analysis
Directory of Open Access Journals (Sweden)
Dustin Tingley
2014-09-01
Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.
Causal Mediation Analysis: Warning! Assumptions Ahead
Keele, Luke
2015-01-01
In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…
A General Approach to Causal Mediation Analysis
Imai, Kosuke; Keele, Luke; Tingley, Dustin
2010-01-01
Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…
A Causal Model of Faculty Research Productivity.
Bean, John P.
A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…
Counterfactual overdetermination vs. the causal exclusion problem.
Sparber, Georg
2005-01-01
This paper aims to show that a counterfactual approach to causation is not sufficient to provide a solution to the causal exclusion problem in the form of systematic overdetermination. Taking into account the truthmakers of causal counterfactuals provides a strong argument in favour of the identity of causes in situations of translevel, causation.
Causal Indicators Can Help to Interpret Factors
Bentler, Peter M.
2016-01-01
The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…
Quasi-Experimental Designs for Causal Inference
Kim, Yongnam; Steiner, Peter
2016-01-01
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Determining Directional Dependency in Causal Associations
Pornprasertmanit, Sunthud; Little, Todd D.
2012-01-01
Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…
Shaheen, Ranad; Al Tala, Saeed; Almoisheer, Agaadir; Alkuraya, Fowzan S
2014-12-01
Primordial dwarfism (PD) is a heterogeneous clinical entity characterised by severe prenatal and postnatal growth deficiency. Despite the recent wave of disease gene discovery, the causal mutations in many PD patients remain unknown. To describe a PD family that maps to a novel locus. Clinical, imaging and laboratory phenotyping of a new family with PD followed by autozygosity mapping, linkage analysis and candidate gene sequencing. We describe a multiplex consanguineous Saudi family in which two full siblings and one half-sibling presented with classical features of Seckel syndrome in addition to optic nerve hypoplasia. We were able to map the phenotype to a single novel locus on 4q25-q28.2, in which we identified a five base-pair deletion in PLK4, which encodes a master regulator of centriole duplication. Our discovery further confirms the role of genes involved in centriole biology in the pathogenesis of PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Heterogeneous Causal Effects and Sample Selection Bias
DEFF Research Database (Denmark)
Breen, Richard; Choi, Seongsoo; Holm, Anders
2015-01-01
The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how...... causal effects might vary over individuals or groups. In this paper we point out one of the under-appreciated hazards of seeking to estimate heterogeneous causal effects: conventional selection bias (that is, selection on baseline differences) can easily be mistaken for heterogeneity of causal effects....... This might lead us to find heterogeneous effects when the true effect is homogenous, or to wrongly estimate not only the magnitude but also the sign of heterogeneous effects. We apply a test for the robustness of heterogeneous causal effects in the face of varying degrees and patterns of selection bias...
Repair of Partly Misspecified Causal Diagrams.
Oates, Chris J; Kasza, Jessica; Simpson, Julie A; Forbes, Andrew B
2017-07-01
Errors in causal diagrams elicited from experts can lead to the omission of important confounding variables from adjustment sets and render causal inferences invalid. In this report, a novel method is presented that repairs a misspecified causal diagram through the addition of edges. These edges are determined using a data-driven approach designed to provide improved statistical efficiency relative to de novo structure learning methods. Our main assumption is that the expert is "directionally informed," meaning that "false" edges provided by the expert would not create cycles if added to the "true" causal diagram. The overall procedure is cast as a preprocessing technique that is agnostic to subsequent causal inferences. Results based on simulated data and data derived from an observational cohort illustrate the potential for data-assisted elicitation in epidemiologic applications. See video abstract at, http://links.lww.com/EDE/B208.
Causality, spin, and equal-time commutators
International Nuclear Information System (INIS)
Abdel-Rahman, A.M.
1975-01-01
We study the causality constraints on the structure of the Lorentz-antisymmetric component of the commutator of two conserved isovector currents between fermion states of equal momenta. We discuss the sum rules that follow from causality and scaling, using the recently introduced refined infinite-momentum technique. The complete set of sum rules is found to include the spin-dependent fixed-mass sum rules obtained from light-cone commutators. The causality and scaling restrictions on the structure of the electromagnetic equal-time commutators are discussed, and it is found, in particular, that causality requires the spin-dependent part of the matrix element for the time-space electromagnetic equal-time commutator to vanish identically. It is also shown, in comparison with the electromagnetic case, that the corresponding matrix element for the time-space isovector current equal-time commutator is required, by causality, to have isospin-antisymmetric tensor and scalar operator Schwinger terms
An MCMC determination of the primordial helium abundance
Aver, Erik; Olive, Keith A.; Skillman, Evan D.
2012-04-01
Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement
An MCMC determination of the primordial helium abundance
International Nuclear Information System (INIS)
Aver, Erik; Olive, Keith A.; Skillman, Evan D.
2012-01-01
Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, and Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ 2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Y p = 0.2534 ± 0.0083, in broad
Production of high stellar-mass primordial black holes in trapped inflation
Energy Technology Data Exchange (ETDEWEB)
Cheng, Shu-Lin; Lee, Wolung [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Ng, Kin-Wang [Institute of Physics, Academia Sinica,Taipei 11529, Taiwan (China); Institute of Astronomy and Astrophysics, Academia Sinica,Taipei 11529, Taiwan (China)
2017-02-01
Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.
Directory of Open Access Journals (Sweden)
Zhengpin Wang
Full Text Available In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β family member activin (ACT contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST, during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.
The Effect of Aqueous Alteration on Primordial Noble Gases in CM Chondrites
Weimer, D.; Busemann, H.; Alexander, C. M. O'D.; Maden, C.
2017-07-01
We have analyzed 32 CM chondrites for their noble gas contents and isotopic compositions and calculated CRE ages. Correlated effects of parent body aqueous alteration with primordial noble gas contents were detected.
Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Issa, Mahmoud; Magdy, Ahmed; El-Kotoury, Ahmed; Amr, Khalda
2012-06-01
Mutations in the RNU4ATAC gene cause microcephalic osteodysplastic primordial dwarfism type I. It encodes U4atac, a small nuclear RNA that is a component of the minor spliceosome. Six distinct mutations in 30 patients diagnosed as microcephalic osteodysplastic primordial dwarfism type I have been described. We report on three additional patients from two unrelated families presenting with a milder phenotype of microcephalic osteodysplastic primordial dwarfism type I and metopic synostosis. Patient 1 had two novel heterozygous mutations in the 3' prime stem-loop, g.66G > C and g.124G > A while Patients 2 and 3 had a homozygous mutation g.55G > A in the 5' prime stem-loop. Although they manifested the known spectrum of clinical features of microcephalic osteodysplastic primordial dwarfism type I, they lacked evidence of severe developmental delay and neurological symptoms. These findings expand the mutational and phenotypic spectrum of this syndrome. Copyright © 2012 Wiley Periodicals, Inc.
Bang, Genie M; Kirmani, Salman; Patton, Alice; Pulido, Jose S; Brodsky, Michael C
2013-02-01
Primordial dwarfism refers to severely impaired growth beginning early in fetal life. There are many genetic causes of primordial dwarfism, including disorders classified as microcephalic osteodysplastic primordial dwarfism. Microcephalic osteodysplastic primordial dwarfism type II is an autosomal-recessive disease characterized by small stature, bone and dental anomalies, and characteristic facies. Affected patients have a high risk of stroke secondary to progressive cerebral vascular anomalies, which often are classified as moyamoya disease. We present the case of a boy with features suggestive of MOPD II with unilateral moyamoya cerebrovascular changes and correlative moyamoya collaterals involving the iris of the ipsilateral eye. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Evelyn Rabelo Andrade
2011-01-01
Full Text Available The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA, Epidermal Growth Factor (EGF, and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro.
Causal ubiquity in quantum physics a superluminal and local-causal physical ontology
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That
Causality violations in Lovelock theories
Brustein, Ram; Sherf, Yotam
2018-04-01
Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.
Terlemez, Arslan; Altunsoy, Mustafa; Çelebi, Hakkı
2015-01-01
Majewski osteodysplastic primordial dwarfism type II (MOPD II) is an unusual autosomal recessive inherited form of primordial dwarfism, which is characterized by a small head diameter at birth, but which also progresses to severe microcephaly, progressive bony dysplasia, and characteristic facies and personality. This report presents a case of a five-year-old girl with MOPD II syndrome. The patient was referred to our clinic with the complaint of severe tooth pain at the left mandibular prima...
Primordial nucleosynthesis in inhomogeneous cosmologies: Ω = 1 with baryonic dark matter
International Nuclear Information System (INIS)
Mathews, G.J.; Sale, K.E.
1986-09-01
We consider the constraints on Ω from primordial nucleosynthesis in inhomogeneous cosmologies. We find that allowance for isothermal fluctuations significantly weakens the upper bound on the average value of Ω derived from the standard big bang. Under the plausible additional assumption that regions of high baryon density are preferentially absorbed into cold dark matter, the constraints from primordial nucleosynthesis can be satisfied for large values of Ω, including Ω = 1. 22 refs., 2 figs
Pregnancy in a woman with proportionate (primordial) dwarfism: a case report and literature review
Vance, C E; Desmond, M; Robinson, A; Johns, J; Zacharin, M; Savarirayan, R; König, K; Warrillow, S; Walker, S P
2012-01-01
Primordial dwarfism is a rare form of severe proportionate dwarfism which poses significant challenges in pregnancy. A 27-year-old with primordial dwarfism (height 97 cm, weight 22 kg) and coexisting morbidities of familial hypercholesterolaemia and hypertension presented to our unit. Early pregnancy was complicated by difficult blood pressure control, sinus tachycardia, biochemical hyperthyroidism and insulin-requiring gestational diabetes. Delivery was indicated at 24 weeks with uncontrolla...
Primordial lithium: New reaction rates, new abundances, new constraints
International Nuclear Information System (INIS)
Kawano, L.; Schramm, D.; Steigman, G.
1986-12-01
Newly measured nuclear reaction rates for 3 H(α,γ) 7 Li (higher than previous values) and 7 Li(p,α) 4 He (lower than previous values) are shown to increase the 7 Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta ≤ 4 x 10 -10 ); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of 7 Li in big bang baryon density determinations. The new 7 Li constraints imply a lower limit on eta of 2 x 10 -10 and an upper limit of 5 x 10 -10 . This lower limit to eta is concordant with that obtained from considerations of D + 3 He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10 -10 would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,γ) 4 He reaction. 28 refs., 1 fig
Primordial black holes from single field models of inflation
Garcia-Bellido, Juan
Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a ...
Gravitational wave bursts from Primordial Black Hole hyperbolic encounters
Garcia-Bellido, Juan
2017-01-01
We propose that Gravitational Wave (GW) bursts with millisecond durations can be explained by the GW emission from the hyperbolic encounters of Primordial Black Holes in dense clusters. These bursts are single events, with the bulk of the released energy happening during the closest approach, and emitted in frequencies within the AdvLIGO sensitivity range. We provide expressions for the shape of the GW emission in terms of the peak frequency and amplitude, and estimate the rates of these events for a variety of mass and velocity configurations. We study the regions of parameter space that will allow detection by both AdvLIGO and, in the future, LISA. We find for realistic configurations, with total mass M∼60 M⊙, relative velocities v∼0.01c, and impact parameters b∼10−3 AU, for AdvLIGO an expected event rate is O(10) events/yr/Gpc^3 with millisecond durations. For LISA, the typical duration is in the range of minutes to hours and the event-rate is O(10^3) events/yr/Gpc^3 for both 10^3 M⊙ IMBH and 1...
Curvature profiles as initial conditions for primordial black hole formation
International Nuclear Information System (INIS)
Polnarev, Alexander G; Musco, Ilia
2007-01-01
This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations
Primordial black holes formation from particle production during inflation
International Nuclear Information System (INIS)
Erfani, Encieh
2016-01-01
We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations
Microcephalic primordial dwarfism in an Emirati patient with PNKP mutation.
Nair, Pratibha; Hamzeh, Abdul Rezzak; Mohamed, Madiha; Saif, Fatima; Tawfiq, Nafisa; El Halik, Majdi; Al-Ali, Mahmoud Taleb; Bastaki, Fatma
2016-08-01
Microcephaly is a rare neurological condition, both in isolation and when it occurs as part of a syndrome. One of the syndromic forms of microcephaly is microcephaly, seizures and developmental delay (MCSZ) (OMIM #613402), a rare autosomal recessive neurodevelopmental disorder with a range of phenotypic severity, and known to be caused by mutations in the polynucleotide kinase 3' phosphatase (PNKP) gene. The PNK protein is a key enzyme involved in the repair of single and double stranded DNA breaks, a process which is particularly important in the nervous system. We describe an Emirati patient who presented with microcephaly, short stature, uncontrollable tonic-clonic seizures, facial dysmorphism, and developmental delay, while at the same time showing evidence of brain atrophy and agenesis of the corpus callosum. We used whole exome sequencing to identify homozygosity for a missense c.1385G > C (p.Arg462Pro) mutation in PNKP in the patient and heterozygosity for this mutation in her consanguineous parents. The Arg 462 residue forms a part of the lid subdomain helix of the P-loop Kinase domain. Although our patient's phenotype resembled that of MCSZ, the short stature and evidence of brain atrophy distinguished it from other classic cases of the condition. The report raises the question of whether to consider this case as an atypical variant of MCSZ or as a novel form of microcephalic primordial dwarfism. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Quantum diffusion during inflation and primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Pattison, Chris; Assadullahi, Hooshyar; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Vennin, Vincent, E-mail: hooshyar.assadullahi@port.ac.uk, E-mail: christopher.pattison@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: david.wands@port.ac.uk [Laboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7, 75013 Paris (France)
2017-10-01
We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. In the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ∼ 1 e -fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.
Primordial Terrestrial Xe from the Viewpoint of CFF-Xe
Meshik, A. P.; Shukolyukov, Yu. A.; Jessberger, E. K.
1995-09-01
We have already reported [7, 23] on the non-linear isotope mass-fractionation of fission Xe by migration of the precursors I, Te, Sn, and Sb and simultaneous fission of heavy nuclei. Xe with anomalous isotopic pattern was found in a number of meteorites and terrestrial materials and was named CFF-Xe (Chemically Fractionated Fission Xe). It is characterized by an up eightfold ^132Xe and ^131Xe excesses coupled with smaller ^134Xe and ^129Xe excesses. The present work is aimed to estimate the role of CFF-Xe in the terrestrial lithosphere and specifically deals with the problem of the isotopic composition of primordial terrestrial Xe. Due to variations of the migration conditions the isotopic structure of CFF-Xe is not well established and is even not reproducible in the same rock [2]. Nevertheless, we have tried to estimate the composition of CFF-Xe by investigating all available isotopic data of Xe of presumable mantle origin. This is Xe in MORB [29, 1, 12] and ocean island glasses [1, 28], in diamonds [17], in volcanic rocks [29, 8, 9, 21], in volcanic glasses from pillow basalts [16, 6], continental igneous rocks [1, 24, 10, 22], carbonatites and granitoids [1] as well as Xe in natural gases [3, 24, 11, 4, 15]. All data are plotted Fig. 1 where we also suggest end members of the observed scattering. Optimized slopes of CFF-lines are shown as well as the position of the initial points which we regard as primordial terrestrial Xe (Xe0). The isotopic composition of CFF-Xe and Xe0 are given in Tab. 1. The abundances of ^124Xe and ^126Xe in mantle derived samples are very uncertain, but since ^128Xe/^130Xe in Xea and Xe0 is very similar we propose the same ^124Xe/^130Xe and ^126Xe/^130Xe ratios for both Xea and Xe0. If so, AVCC-Xe is simply Xe0 with an admixture of L-Xe, and atmospheric xenon Xea consists of Xe0, CFF-Xe and a small amount of fission Xe (92.5%Xe0 + 5.3%CFF-Xe + 2.2%XeF). Thus, a number of old problems in xenology are removed. The hypothetic components U
Primordial Black Holes and r-Process Nucleosynthesis.
Fuller, George M; Kusenko, Alexander; Takhistov, Volodymyr
2017-08-11
We show that some or all of the inventory of r-process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10^{-14} M_{⊙}
Primordial black holes from polynomial potentials in single field inflation
Hertzberg, Mark P.; Yamada, Masaki
2018-04-01
Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to overshoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.
Primordial Black Holes as Generators of Cosmic Structures
Carr, Bernard; Silk, Joseph
2018-05-01
Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.
Testing for new physics: neutrinos and the primordial power spectrum
Energy Technology Data Exchange (ETDEWEB)
Canac, Nicolas; Abazajian, Kevork N. [Department of Physics, University of California at Irvine, Irvine, CA 92697 (United States); Aslanyan, Grigor [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Easther, Richard [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Price, Layne C., E-mail: ncanac@uci.edu, E-mail: aslanyan@berkeley.edu, E-mail: kevork@uci.edu, E-mail: r.easther@auckland.ac.nz, E-mail: laynep@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)
2016-09-01
We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H{sub 0} and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k . Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H{sub 0}. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H{sub 0} measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.
A pilgrim's progress: Seeking meaning in primordial germ cell migration.
Cantú, Andrea V; Laird, Diana J
2017-10-01
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Genomic analysis of primordial dwarfism reveals novel disease genes.
Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S
2014-02-01
Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.
Primordial black hole formation during the QCD epoch
International Nuclear Information System (INIS)
Jedamzik, K.
1997-01-01
We consider the formation of horizon-size primordial black holes (PBH close-quote s) from pre-existing density fluctuations during cosmic phase transitions. It is pointed out that the formation of PBH close-quote s should be particularly efficient during the QCD epoch due to a substantial reduction of pressure forces during adiabatic collapse, or equivalently, a significant decrease in the effective speed of sound during the color-confinement transition. Our considerations imply that for generic initial density perturbation spectra PBH mass functions are expected to exhibit a pronounced peak on the QCD-horizon mass scale ∼1M circle-dot . This mass scale is roughly coincident with the estimated masses for compact objects recently observed in our galactic halo by the MACHO Collaboration. Black holes formed during the QCD epoch may offer an attractive explanation for the origin of halo dark matter evading possibly problematic nucleosynthesis and luminosity bounds on baryonic halo dark matter. copyright 1997 The American Physical Society
New cosmic microwave background constraint to primordial gravitational waves.
Smith, Tristan L; Pierpaoli, Elena; Kamionkowski, Marc
2006-07-14
Primordial gravitational waves (GWs) with frequencies > or approximately equal to 10(-15) Hz contribute to the radiation density of the Universe at the time of decoupling of the cosmic microwave background (CMB). This affects the CMB and matter power spectra in a manner identical to massless neutrinos, unless the initial density perturbation for the GWs is nonadiabatic, as may occur if such GWs are produced during inflation or some post-inflation phase transition. In either case, current observations provide a constraint to the GW amplitude that competes with that from big-bang nucleosynthesis (BBN), although it extends to much lower frequencies (approximately 10(-15) Hz rather than the approximately 10(-10) Hz from BBN): at 95% confidence level, omega(gw)h(2)
Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution
Directory of Open Access Journals (Sweden)
Massimo De Felici
2011-01-01
Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.
Quantum origin of the primordial fluctuation spectrum and its statistics
Landau, Susana; León, Gabriel; Sudarsky, Daniel
2013-07-01
The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a physical mechanism capable of generating the inhomogeneity and anisotropy of our Universe, from an exactly homogeneous and isotropic initial state associated with the early inflationary regime. The proposal in [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006)] considers the spontaneous dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly the difficulties facing the standard approach, as well as the answers provided by the above proposal and explore their relevance to the investigations concerning the characterization of the primordial spectrum and other statistical aspects of the cosmic microwave background and large-scale matter distribution. We will see that the new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct characterizations of the non-Gaussianities that might have left imprints on the available data.
Relic gravitational waves from light primordial black holes
International Nuclear Information System (INIS)
Dolgov, Alexander D.; Ejlli, Damian
2011-01-01
The energy density of relic gravitational waves (GWs) emitted by primordial black holes (PBHs) is calculated. We estimate the intensity of GWs produced at quantum and classical scattering of PBHs, the classical graviton emission from the PBH binaries in the early Universe, and the graviton emission due to PBH evaporation. If nonrelativistic PBHs dominated the cosmological energy density prior to their evaporation, the probability of formation of dense clusters of PBHs and their binaries in such clusters would be significant and the energy density of the generated gravitational waves in the present-day universe could exceed that produced by other known mechanisms. The intensity of these gravitational waves would be maximal in the GHz frequency band of the spectrum or higher and makes their observation very difficult by present detectors but also gives a rather good possibility to investigate it by present and future high-frequency gravitational waves electromagnetic detectors. However, the low-frequency part of the spectrum in the range f∼0.1-10 Hz may be detectable by the planned space interferometers DECIGO/BBO. For sufficiently long duration of the PBH matter-dominated stage, the cosmological energy fraction of GWs from inflation would be noticeably diluted.
Planck 2015 results. XVII. Constraints on primordial non-Gaussianity
Ade, P.A.R.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Shiraishi, M.; Smith, K.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Troja, A.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-01-01
The Planck full mission cosmic microwave background(CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity(NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone fNL^local=2.5+\\-5.7, fNL^equil=-16+\\-70 and fNL^ortho=-34+\\-33(68%CL). Combining temperature and polarization data we obtain fNL^local=0.8+\\-5.0, fNL^equil=-4+\\-43 and fNL^ortho=-26+\\-21 (68%CL). The results are based on cross-validation of these estimators on simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with Minkowski functionals based measurements. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization da...
The origin and migration of primordial germ cells in sturgeons.
Directory of Open Access Journals (Sweden)
Taiju Saito
Full Text Available Primordial germ cells (PGCs arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts.
On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt
International Nuclear Information System (INIS)
Verde, Licia; Peiris, Hiranya
2008-01-01
The latest cosmological data seem to indicate a significant deviation from scale invariance of the primordial power spectrum when parameterized either by a power law or by a spectral index with non-zero 'running'. This deviation, by itself, serves as a powerful tool for discriminating among theories for the origin of cosmological structures such as inflationary models. Here, we use a minimally parametric smoothing spline technique to reconstruct the shape of the primordial power spectrum. This technique is well suited to searching for smooth features in the primordial power spectrum such as deviations from scale invariance or a running spectral index, although it would recover sharp features of high statistical significance. We use the WMAP three-year results in combination with data from a suite of higher resolution cosmic microwave background experiments (including the latest ACBAR 2008 release), as well as large-scale structure data from SDSS and 2dFGRS. We employ cross-validation to assess, using the data themselves, the optimal amount of smoothness in the primordial power spectrum consistent with the data. This minimally parametric reconstruction supports the evidence for a power law primordial power spectrum with a red tilt, but not for deviations from a power law power spectrum. Smooth variations in the primordial power spectrum are not significantly degenerate with the other cosmological parameters
Causal localizations in relativistic quantum mechanics
Castrigiano, Domenico P. L.; Leiseifer, Andreas D.
2015-07-01
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Causal inference, probability theory, and graphical insights.
Baker, Stuart G
2013-11-10
Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.
International Nuclear Information System (INIS)
Madsen, M.S.
1989-01-01
The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)
Can chance cause cancer? A causal consideration.
Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai
2017-04-01
The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dual Causality and the Autonomy of Biology.
Bock, Walter J
2017-03-01
Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.
Mathematical implications of Einstein-Weyl causality
International Nuclear Information System (INIS)
Borchers, H.J.; Sen, R.N.
2006-01-01
The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics. (orig.)
The mistake of the causal relationship
Directory of Open Access Journals (Sweden)
О. Д. Комаров
2015-03-01
Full Text Available The article deals with issues of the mistake of the causal relationship. The modern criminal law science approaches to the content of the mistake of the causal relationship and its significance to the qualification of the crime are described. It is proved that in cases of dolus generalis different mental attitude of the guilty person to two separate acts of his conduct exist. Consequently, in mentioned above cases mistake of the causal relationship does not have place. The rules of qualification of the crimes commited with the mistake of causation and in cases of dolus generalis are proposed .
Volatile inventories in clathrate hydrates formed in the primordial nebula.
Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel
2010-01-01
The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances
Assessing students' beliefs, emotions and causal attribution ...
African Journals Online (AJOL)
Keywords: academic emotion; belief; causal attribution; statistical validation; students' conceptions of learning ... Sadi & Lee, 2015), through their effect on motivation and learning strategies .... to understand why they may or may not be doing.
Granger Causality Testing with Intensive Longitudinal Data.
Molenaar, Peter C M
2018-06-01
The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.
Causality Between Urban Concentration and Environmental Quality
Directory of Open Access Journals (Sweden)
Amin Pujiati
2015-08-01
Full Text Available Population is concentrated in urban areas can cause the external diseconomies on environment if it exceeds the carrying capacity of the space and the urban economy. Otherwise the quality of the environment is getting better, led to the concentration of population in urban areas are increasingly high. This study aims to analyze the relationship of causality between the urban concentration and environmental quality in urban agglomeration areas. The data used in the study of secondary data obtained from the Central Bureau of statistics and the City Government from 2000 to 2013. The analytical method used is the Granger causality and descriptive. Granger causality study results showed no pattern of reciprocal causality, between urban concentration and the quality of the environment, but there unidirectional relationship between the urban concentration and environmental quality. This means that increasing urban concentration led to decreased environmental quality.
Selecting appropriate cases when tracing causal mechanisms
DEFF Research Database (Denmark)
Beach, Derek; Pedersen, Rasmus Brun
2016-01-01
The last decade has witnessed resurgence in the interest in studying the causal mechanisms linking causes and outcomes in the social sciences. This article explores the overlooked implications for case selection when tracing mechanisms using in-depth case studies. Our argument is that existing case...... selection guidelines are appropriate for research aimed at making cross-case claims about causal relationships, where case selection is primarily used to control for other causes. However, existing guidelines are not in alignment with case-based research that aims to trace mechanisms, where the goal...... is to unpack the causal mechanism between X and Y, enabling causal inferences to be made because empirical evidence is provided for how the mechanism actually operated in a particular case. The in-depth, within-case tracing of how mechanisms operate in particular cases produces what can be termed mechanistic...
Rate-Agnostic (Causal) Structure Learning.
Plis, Sergey; Danks, David; Freeman, Cynthia; Calhoun, Vince
2015-12-01
Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a "rate-agnostic" manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling.
K-causality and degenerate spacetimes
Dowker, H. F.; Garcia, R. S.; Surya, S.
2000-11-01
The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.
Probing Primordial Black Hole Dark Matter with Gravitational Waves.
Kovetz, Ely D
2017-09-29
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_{⊙}≲M_{PBH}≲100 M_{⊙} mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ∼30 M_{⊙} by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ∼5 yr of aLIGO data can be used to detect a contribution of >20 M_{⊙} PBHs to dark matter down to f_{PBH}99.9% confidence level. Combined with other probes that already suggest tension with f_{PBH}=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
On the Maximum Mass of Accreting Primordial Supermassive Stars
Energy Technology Data Exchange (ETDEWEB)
Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)
2017-06-10
Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.
Mutations in the NHEJ component XRCC4 cause primordial dwarfism.
Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S
2015-03-05
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Primordial black holes in linear and non-linear regimes
Energy Technology Data Exchange (ETDEWEB)
Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2017-06-01
We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.
Hip pathology in Majewski osteodysplastic primordial dwarfism type II.
Karatas, Ali F; Bober, Michael B; Rogers, Kenneth; Duker, Angela L; Ditro, Colleen P; Mackenzie, William G
2014-09-01
Majewski osteodysplastic primordial dwarfism type II (MOPDII) is characterized by severe prenatal and postnatal growth failure with microcephaly, characteristic skeletal dysplasia, an increased risk for cerebrovascular disease, and insulin resistance. MOPDII is caused by mutations in the pericentrin (PCNT) gene and is inherited in an autosomal-recessive manner. This study aimed to determine the incidence of hip pathology in patients with molecularly confirmed MOPDII and to describe the functional outcomes of surgical treatment. Thirty-three enrolled patients had a clinical diagnosis of MOPDII. Biallelic PCNT mutations or absent pericentrin protein was confirmed in 25 of these patients. Twelve patients (7 female) had appropriate clinical and radiographic records at this institution and were included in this study. The data collected included age at presentation, age at surgery, sex, body weight and height, weight-bearing status at diagnosis, and the clinical examination. Four patients (31%) had coxa vara: 3 unilateral and 1 bilateral. Three unilateral patients had in situ pinning at a mean age 4 years. The patient with bilateral coxa vara had valgus osteotomy at the age of 5 years. Two children had bilateral hip dysplasia and subluxation with no surgery. One patient had bilateral developmental hip dislocations. The patient was treated by open reduction-spica cast and 2 years after surgery, coxa valga was noted. Another patient was diagnosed at an age of 12 years with bilateral avascular necrosis of the hips. Four patients did not have hip pathology. Hip pathology is common among children with MOPDII; coxa vara is the most frequent diagnosis. Routine clinical and radiographic hip evaluation is important. The capital femoral epiphysis appears to slip down along the shaft, giving the appearance of a proximal femoral epiphysiolysis. A hip diagnosed with slipped capital femoral epiphysis in early life may progress to severe coxa vara. Level IV.
Merger rate of primordial black-hole binaries
Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc
2017-12-01
Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.
Primordial black hole production in Critical Higgs Inflation
Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester
2018-01-01
Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.
Primordial black hole production in Critical Higgs Inflation
Directory of Open Access Journals (Sweden)
Jose María Ezquiaga
2018-01-01
Full Text Available Primordial Black Holes (PBH arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI, where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ(μ and its non-minimal coupling to gravity ξ(μ. We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01–100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.
Specification of primordial germ cells in medaka (Oryzias latipes
Directory of Open Access Journals (Sweden)
Raz Erez
2007-01-01
Full Text Available Abstract Background Primordial germ cells (PGCs give rise to gametes that are responsible for the development of a new organism in the next generation. Two modes of germ line specification have been described: the inheritance of asymmetrically-localized maternally provided cytoplasmic determinants and the induction of the PGC fate by other cell types. PGCs specification in zebrafish appears to depend on inheritance of germ plasm in which several RNA molecules such as vasa and nanos reside. Whether the specification mode of PGCs found in zebrafish is general for other fish species was brought into question upon analysis of olvas expression – the vasa homologue in another teleost, medaka (Oryzias latipes. Here, in contrast to the findings in zebrafish, the PGCs are found in a predictable position relative to a somatic structure, the embryonic shield. This finding, coupled with the fact that vasa mRNA, which is localized to the germ plasm of zebrafish but does not label a similar structure in medaka opened the possibility of fundamentally different mechanisms governing PGC specification in these two fish species. Results In this study we addressed the question concerning the mode of PGC specification in medaka using embryological experiments, analysis of RNA stability in the PGCs and electron microscopy observations. Dramatic alterations in the somatic environment, i.e. induction of a secondary axis or mesoderm formation alteration, did not affect the PGC number. Furthermore, the PGCs of medaka are capable of protecting specific RNA molecules from degradation and could therefore exhibit a specific mRNA expression pattern controlled by posttrancriptional mechanisms. Subsequent analysis of 4-cell stage medaka embryos using electron microscopy revealed germ plasm-like structures located at a region corresponding to that of zebrafish germ plasm. Conclusion Taken together, these results are consistent with the idea that in medaka the inheritance of
Formation of primordial supermassive stars by rapid mass accretion
Energy Technology Data Exchange (ETDEWEB)
Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2013-12-01
Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.
Efficient nonparametric estimation of causal mediation effects
Chan, K. C. G.; Imai, K.; Yam, S. C. P.; Zhang, Z.
2016-01-01
An essential goal of program evaluation and scientific research is the investigation of causal mechanisms. Over the past several decades, causal mediation analysis has been used in medical and social sciences to decompose the treatment effect into the natural direct and indirect effects. However, all of the existing mediation analysis methods rely on parametric modeling assumptions in one way or another, typically requiring researchers to specify multiple regression models involving the treat...
Inference of Boundaries in Causal Sets
Cunningham, William
2017-01-01
We investigate the extrinsic geometry of causal sets in $(1+1)$-dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons-Hawking-York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space...
The Continuum Limit of Causal Fermion Systems
Finster, Felix
2016-01-01
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries." The dynamics is described by...
Causal strength induction from time series data.
Soo, Kevin W; Rottman, Benjamin M
2018-04-01
One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kant on causal laws and powers.
Henschen, Tobias
2014-12-01
The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.
Causality violation, gravitational shockwaves and UV completion
Energy Technology Data Exchange (ETDEWEB)
Hollowood, Timothy J.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)
2016-03-18
The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of “time machines”, i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.
On the primordial monopole problem in grand unified theories
International Nuclear Information System (INIS)
Salomonson, P.; Stern, A.; Skagerstam, B.S.
1984-11-01
It is shown that spontaneously broken gauge symmetries are not necessarily restored at very high temperatures in which case an unacceptably large production of magnetic monopoles may be prohibited. (orig.)
No-hair conjectures, primordial shear and protoinflationary initial conditions
Giovannini, Massimo
2014-01-01
Anisotropic inflationary background geometries are analyzed in the context of an extended gauge action where the electric and magnetic susceptibilities are not bound to coincide and depend on the inflaton field. After deriving various classes of solutions with electric and magnetic hairs, we discuss the problem of the initial boundary conditions of the shear parameter and consider a globally neutral plasma as a possible relic of a preinflationary stage of expansion. While electric hairs are washed out by the finite value of the protoinflationary conductivity, magnetic hairs can persist and introduce a tiny amount of shear causing a different inflationary rate of expansion along orthogonal spatial directions. The plasma interactions are a necessary criterion to discriminate between physical and unphysical initial conditions but they are not strictly sufficient to warrant the stability of a given magnetic solution.
Illness causal beliefs in Turkish immigrants
Directory of Open Access Journals (Sweden)
Klimidis Steven
2007-07-01
Full Text Available Abstract Background People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Methods Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Results Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Conclusion Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes
Illness causal beliefs in Turkish immigrants.
Minas, Harry; Klimidis, Steven; Tuncer, Can
2007-07-24
People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different
Sánchez Almeida, J.; Martínez González, M. J.
2018-05-01
Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.
The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum
Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas;
2011-01-01
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.
THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Hlozek, Renee; Dunkley, Joanna; Addison, Graeme [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Carvalho, C. Sofia [IPFN, IST, Av. RoviscoPais, 1049-001Lisboa, Portugal and RCAAM, Academy of Athens, Soranou Efessiou 4, 11-527 Athens (Greece); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando; Gallardo, Patricio [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others
2012-04-10
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.
Directory of Open Access Journals (Sweden)
Mengmeng Xu
2017-01-01
Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.
Entanglement entropy in causal set theory
Sorkin, Rafael D.; Yazdi, Yasaman K.
2018-04-01
Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal sets, especially since they provide in a natural manner the UV cutoff needed to render entanglement entropy finite. Formulating a notion of entanglement entropy in a causal set is not straightforward because the type of canonical hypersurface-data on which its definition typically relies is not available. Instead, we appeal to the more global expression given in Sorkin (2012 (arXiv:1205.2953)) which, for a Gaussian scalar field, expresses the entropy of a spacetime region in terms of the field’s correlation function within that region (its ‘Wightman function’ W(x, x') ). Carrying this formula over to the causal set, one obtains an entropy which is both finite and of a Lorentz invariant nature. We evaluate this global entropy-expression numerically for certain regions (primarily order-intervals or ‘causal diamonds’) within causal sets of 1 + 1 dimensions. For the causal-set counterpart of the entanglement entropy, we obtain, in the first instance, a result that follows a (spacetime) volume law instead of the expected (spatial) area law. We find, however, that one obtains an area law if one truncates the commutator function (‘Pauli–Jordan operator’) and the Wightman function by projecting out the eigenmodes of the Pauli–Jordan operator whose eigenvalues are too close to zero according to a geometrical criterion which we describe more fully below. In connection with these results and the questions they raise, we also study the ‘entropy of coarse-graining’ generated by thinning out the causal set, and we compare it with what one obtains by similarly thinning out a chain of harmonic oscillators, finding the same, ‘universal’ behaviour in both cases.
Consistency relation for cosmic magnetic fields
DEFF Research Database (Denmark)
Jain, R. K.; Sloth, M. S.
2012-01-01
If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...
Effects of rotation on the evolution of primordial stars
Ekström, S.; Meynet, G.; Chiappini, C.; Hirschi, R.; Maeder, A.
2008-10-01
Context: Although still beyond our observational abilities, Population III stars are interesting objects from many perspectives. They are responsible for the re-ionisation of the inter-galactic medium. They also left their chemical imprint in the early Universe, which can be deciphered in the most metal-poor stars in the halo of our Galaxy. Aims: Rotation has been shown to play a determinant role at very low metallicity, bringing heavy mass loss where almost none was expected. Is this still true when the metallicity strictly equals zero? The aim of our study is to answer this question, and to determine how rotation changes the evolution and the chemical signature of the primordial stars. Methods: We have calculated seven differentially-rotating stellar models at zero metallicity, with masses between 9 and 200 M⊙. For each mass, we also calculated a corresponding model without rotation. The evolution is followed up to the pre-supernova stage. Results: We find that Z=0 models rotate with an internal profile Ω(r) close to local angular momentum conservation, because of a very weak core-envelope coupling. Rotational mixing drives an H-shell boost due to a sudden onset of the CNO cycle in the shell. This boost leads to a high 14N production, which can be as much as 106 times higher than the production of the non-rotating models. Generally, the rotating models produce much more metal than their non-rotating counterparts. The mass loss is very low, even for the models that reach critical velocity during the main sequence. It may however have an impact on the chemical enrichment of the Universe, because some of the stars are supposed to collapse directly into black holes. They would contribute to the enrichment only through their winds. While in that case non-rotating stars would not contribute at all, rotating stars may leave an imprint on their surrounding. Due to the low mass loss and the weak coupling, the core retains a high angular momentum at the end of the
The Relevance of Causal Social Construction
Directory of Open Access Journals (Sweden)
Marques Teresa
2017-02-01
Full Text Available Social constructionist claims are surprising and interesting when they entail that presumably natural kinds are in fact socially constructed. The claims are interesting because of their theoretical and political importance. Authors like Díaz-León argue that constitutive social construction is more relevant for achieving social justice than causal social construction. This paper challenges this claim. Assuming there are socially salient groups that are discriminated against, the paper presents a dilemma: if there were no constitutively constructed social kinds, the causes of the discrimination of existing social groups would have to be addressed, and understanding causal social construction would be relevant to achieve social justice. On the other hand, not all possible constitutively socially constructed kinds are actual social kinds. If an existing social group is constitutively constructed as a social kind K, the fact that it actually exists as a K has social causes. Again, causal social construction is relevant. The paper argues that (i for any actual social kind X, if X is constitutively socially constructed as K, then it is also causally socially constructed; and (ii causal social construction is at least as relevant as constitutive social construction for concerns of social justice. For illustration, I draw upon two phenomena that are presumed to contribute towards the discrimination of women: (i the poor performance effects of stereotype threat, and (ii the silencing effects of gendered language use.
Preschoolers prefer to learn causal information
Directory of Open Access Journals (Sweden)
Aubry eAlvarez
2015-02-01
Full Text Available Young children, in general, appear to have a strong drive to explore the environment in ways that reveal its underlying causal structure. But are they really attuned specifically to casual information in this quest for understanding, or do they show equal interest in other types of non-obvious information about the world? To answer this question, we introduced 20 three-year-old children to two puppets who were anxious to tell the child about a set of novel artifacts and animals. One puppet consistently described causal properties of the items while the other puppet consistently described carefully matched non-causal properties of the same items. After a familiarization period in which children learned which type of information to expect from each informant, children were given the opportunity to choose which they wanted to hear describe each of eight pictured test items. On average, children chose to hear from the informant that provided causal descriptions on 72% of the trials. This preference for causal information has important implications for explaining the role of conceptual information in supporting early learning and may suggest means for maximizing interest and motivation in young children.
Gravity and matter in causal set theory
International Nuclear Information System (INIS)
Sverdlov, Roman; Bombelli, Luca
2009-01-01
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x) for a set of fields f is recast into a quasilocal expression L 0 (f;p,q) that depends on pairs of causally related points pprq and is a function of the values of f in the Alexandrov set defined by those points, and whose limit as p and q approach a common point x is L(f;x). We then describe how to discretize L 0 (f;p,q) and use it to define a causal-set-based action.
A frequency domain subspace algorithm for mixed causal, anti-causal LTI systems
Fraanje, Rufus; Verhaegen, Michel; Verdult, Vincent; Pintelon, Rik
2003-01-01
The paper extends the subspacc identification method to estimate state-space models from frequency response function (FRF) samples, proposed by McKelvey et al. (1996) for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method
arXiv Light Primordial Exotic Compact Objects as All Dark Matter
Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi
2018-06-13
The radiation emitted by horizonless exotic compact objects (ECOs), such as wormholes, 2-2-holes, fuzzballs, gravastars, boson stars, collapsed polymers, superspinars etc., is expected to be strongly suppressed when compared to the radiation of black holes. If large primordial curvature fluctuations collapse into such objects instead of black holes, they do not evaporate or evaporate much slower than black holes and could thus constitute all of the dark matter with masses below $M < 10^{-16}M_\\odot.$ We reevaluate the relevant experimental constraints for light ECOs in this mass range and show that very large new parameter space down to ECO masses $M\\sim 10\\,{\\rm TeV}$ opens up for light primordial dark matter. A new dedicated experimental program is needed to test this mass range of primordial dark matter.
Imprint of primordial non-Gaussianity on dark matter halo profiles
Energy Technology Data Exchange (ETDEWEB)
Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio
2013-09-01
We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.
Relativistic effects and primordial non-Gaussianity in the galaxy bias
International Nuclear Information System (INIS)
Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio
2011-01-01
When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated
Searching for Primordial Black Holes in the Radio and X-Ray Sky.
Gaggero, Daniele; Bertone, Gianfranco; Calore, Francesca; Connors, Riley M T; Lovell, Mark; Markoff, Sera; Storm, Emma
2017-06-16
We model the accretion of gas onto a population of massive primordial black holes in the Milky Way and compare the predicted radio and x-ray emission with observational data. We show that, under conservative assumptions on the accretion process, the possibility that O(10)M_{⊙} primordial black holes can account for all of the dark matter in the Milky Way is excluded at 5σ by a comparison with a Very Large Array radio catalog at 1.4 GHz and at ≃40σ by a comparison with a Chandra x-ray catalog (0.5-8 keV). We argue that this method can be used to identify such a population of primordial black holes with more sensitive future radio and x-ray surveys.
Pregnancy in a woman with proportionate (primordial) dwarfism: a case report and literature review.
Vance, C E; Desmond, M; Robinson, A; Johns, J; Zacharin, M; Savarirayan, R; König, K; Warrillow, S; Walker, S P
2012-09-01
Primordial dwarfism is a rare form of severe proportionate dwarfism which poses significant challenges in pregnancy. A 27-year-old with primordial dwarfism (height 97 cm, weight 22 kg) and coexisting morbidities of familial hypercholesterolaemia and hypertension presented to our unit. Early pregnancy was complicated by difficult blood pressure control, sinus tachycardia, biochemical hyperthyroidism and insulin-requiring gestational diabetes. Delivery was indicated at 24 weeks with uncontrollable hypertension, progressive renal impairment and intrauterine growth restriction. A caesarean section was performed under general anaesthesia, resulting in the delivery of a 486 g male infant. This case highlights the difficulties of managing pregnancy in a woman with primordial dwarfism. Her limited capacity to respond to the physiological demands of pregnancy created a life-threatening situation, culminating in profound preterm birth.
SPRAI: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics
Jaura, O.; Glover, S. C. O.; Klessen, R. S.; Paardekooper, J.-P.
2018-04-01
In this paper, we introduce a new radiative transfer code SPRAI (Simplex Photon Radiation in the Arepo Implementation) based on the SIMPLEX radiation transfer method. This method, originally used only for post-processing, is now directly integrated into the AREPO code and takes advantage of its adaptive unstructured mesh. Radiated photons are transferred from the sources through the series of Voronoi gas cells within a specific solid angle. From the photon attenuation, we derive corresponding photon fluxes and ionization rates and feed them to a primordial chemistry module. This gives us a self-consistent method for studying dynamical and chemical processes caused by ionizing sources in primordial gas. Since the computational cost of the SIMPLEX method does not scale directly with the number of sources, it is convenient for studying systems such as primordial star-forming haloes that may form multiple ionizing sources.
DEFF Research Database (Denmark)
Andrade, Evelyn Rabelo; Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz
2011-01-01
The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured...... in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6¿d were ultrastructurally normal. They had oocyte with intact nucleus...... and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion...
Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites
DEFF Research Database (Denmark)
van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin
2016-01-01
product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last......)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25......-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...
Features in the primordial power spectrum of double D-term inflation
International Nuclear Information System (INIS)
Lesgourgues, Julien
2000-01-01
Recently, there has been some interest for building supersymmetric models of double inflation. These models, realistic from a particle physics point of view, predict a broken-scale-invariant power spectrum of primordial cosmological perturbations, that may explain eventual nontrivial features in the present matter power spectrum. In previous works, the primordial spectrum was calculated using analytic slow-roll approximations. However, these models involve a fast second-order phase transition during inflation, with a stage of spinodal instability, and an interruption of slow-roll. For our previous model of double D-term inflation, we simulate numerically the evolution of quantum fluctuations, taking into account the spinodal modes, and we show that the semiclassical approximation can be employed even during the transition, due to the presence of a second inflaton field. The primordial power spectrum possesses a rich structure, and possibly, a non-Gaussian spike on observable scales
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
Inference of boundaries in causal sets
Cunningham, William J.
2018-05-01
We investigate the extrinsic geometry of causal sets in (1+1) -dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons–Hawking–York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space. We discuss algorithms to differentiate between different types of regions, consider when these distinctions are possible, and then apply the algorithms to several spacetime regions. Numerical results indicate the volumes of timelike boundaries can be measured to within 0.5% accuracy for flat boundaries and within 10% accuracy for highly curved boundaries for medium-sized causal sets with N = 214 spacetime elements.
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Spatial hypersurfaces in causal set cosmology
International Nuclear Information System (INIS)
Major, Seth A; Rideout, David; Surya, Sumati
2006-01-01
Within the causal set approach to quantum gravity, a discrete analogue of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical sequential growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity
Testing the causal theory of reference.
Domaneschi, Filippo; Vignolo, Massimiliano; Di Paola, Simona
2017-04-01
Theories of reference are a crucial research topic in analytic philosophy. Since the publication of Kripke's Naming and Necessity, most philosophers have endorsed the causal/historical theory of reference. The goal of this paper is twofold: (i) to discuss a method for testing experimentally the causal theory of reference for proper names by investigating linguistic usage and (ii) to present the results from two experiments conducted with that method. Data collected in our experiments confirm the causal theory of reference for people proper names and for geographical proper names. A secondary but interesting result is that the semantic domain affects reference assignment: while with people proper names speakers tend to assign the semantic reference, with geographical proper names they are prompted to assign the speaker's reference. Copyright © 2016 Elsevier B.V. All rights reserved.
Bulk viscous cosmology with causal transport theory
International Nuclear Information System (INIS)
Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried
2011-01-01
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8
Causal inheritance in plane wave quotients
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2004-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.
Bozkaya, O Giray
2013-01-01
This review critically examines the findings which characterize the dysmorphic, radiologic and behavioral phenotype of Microcephalic Osteodysplastic Primordial Dwarfism (MOPD) and has an historical perspective on it. MOPD is a group of primordial dwarfism syndromes with prenatal onset growth retardation, a typical craniofacial appearance and behavioral phenotype. In 1959, Mann and Russell have described the first case in a detailed report, and named "microcephalic midget of extreme type". In their report; based on historical records and a small painting, they pointed "Mademoiselle Crachami" as the oldest known case.
Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.
Copi, C J; Olive, K A; Schramm, D N
1998-03-17
We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (approximately 1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints.
Laboratory approaches of nuclear reactions involved in primordial and stellar nucleosynthesis
International Nuclear Information System (INIS)
Rolfs, C.; California Inst. of Tech., Pasadena
1986-01-01
Laboratory-based studies of primordial and stellar nucleosynthesis are reviewed, with emphasis on the nuclear reactions induced by charged particles. The analytical approach used to investigate nuclear reactions associated with stellar reactions is described, as well as the experimental details and procedures used to investigate nuclear reactions induced by charged particles. The present knowledge of some of the key reactions involved in primordial nucleosynthesis is discussed, along with the progress and problems of nuclear reactions involved in the hydrogen and helium burning phases of a star. Finally, a description is given of new experimental techniques which might be useful for future experiments in the field of nuclear astrophysics. (U.K.)
Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S
2017-04-14
The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.
International Nuclear Information System (INIS)
Pandolfi, Stefania; Giusarma, Elena; Lattanzi, Massimiliano; Melchiorri, Alessandro
2010-01-01
We consider cosmological models with a non-scale-invariant spectrum of primordial perturbations and assess whether they represent a viable alternative to the concordance ΛCDM model. We find that in the framework of a model selection analysis, the WMAP and 2dF data do not provide any conclusive evidence in favor of one or the other kind of model. However, when a marginalization over the entire space of nuisance parameters is performed, models with a modified primordial spectrum and Ω Λ =0 are strongly disfavored.
Microwave background anisotropies and the primordial spectrum of cosmological density fluctuations
International Nuclear Information System (INIS)
Suto, Yasushi; Gouda, Naoteru; Sugiyama, Naoshi
1990-01-01
Microwave background anisotropies in various cosmological scenarios are studied. In particular, the extent to which nonscale-invariant spectra of the primordial density fluctuations are consistent with the observational upper limits is examined. The resultant constraints are summarized as contours on (n, Omega)-plane, where n is the power-law index of the primordial spectrum of density fuctuations and Omega is the cosmological density parameter. They are compared also with the constraints from the cosmic Mach number test, recently proposed by Ostriker and Suto (1990). The parameter regions which pass both tests are not consistent with the theoretical prejudice inspired by the inflationary model. 44 refs
Energy Technology Data Exchange (ETDEWEB)
Ealet, A
2004-12-15
Particle physic is based on a theory which can be tested on the current large colliders. Measurements are in a very good agreement with this electroweak theory and no deviation is observed to indicate new physics. What is surprising today is that none of its results agrees with what is known from our universe, neither to explain the primordial baryogenesis, neither to explain the acceleration of the expansion of the Universe. In this work, I come back on some results obtained in the Lep collider, to test the electroweak theory (Higgs and W boson production) and on some measurements of CP violation. I compare them with what can be extrapolated in term of primordial baryogenesis and dark energy density and show that there is no possible agreement in the Standard Model. I finish by some experimental and theoretical views to answer this fundamental question. (author)
Neural correlates of continuous causal word generation.
Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne
2012-09-01
Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.
BOLD Granger causality reflects vascular anatomy.
Directory of Open Access Journals (Sweden)
J Taylor Webb
Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.
Seminal magnetic fields from inflato-electromagnetic inflation
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustin; Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Buenos Aires (Argentina)
2012-10-15
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B{sub ij} in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)
Seminal magnetic fields from inflato-electromagnetic inflation
Membiela, Federico Agustín; Bellini, Mauricio
2012-10-01
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.
Seminal magnetic fields from inflato-electromagnetic inflation
International Nuclear Information System (INIS)
Membiela, Federico Agustin; Bellini, Mauricio
2012-01-01
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)
DEFF Research Database (Denmark)
Wiedemann, C; Hribal, R; Ringleb, J
2012-01-01
follicles within the ovarian cortex survived culture when the original sample was from a young healthy lion collected immediately after euthanasia. Within the xenotransplants, the number of primordial follicles decreased after 28 days by 20%, but the relation between primordial and growing follicles changed...
Causal interpretation of stochastic differential equations
DEFF Research Database (Denmark)
Sokol, Alexander; Hansen, Niels Richard
2014-01-01
We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....
Morse theory on timelike and causal curves
International Nuclear Information System (INIS)
Everson, J.; Talbot, C.J.
1976-01-01
It is shown that the set of timelike curves in a globally hyperbolic space-time manifold can be given the structure of a Hilbert manifold under a suitable definition of 'timelike.' The causal curves are the topological closure of this manifold. The Lorentzian energy (corresponding to Milnor's energy, except that the Lorentzian inner product is used) is shown to be a Morse function for the space of causal curves. A fixed end point index theorem is obtained in which a lower bound for the index of the Hessian of the Lorentzian energy is given in terms of the sum of the orders of the conjugate points between the end points. (author)
Inferring causality from noisy time series data
DEFF Research Database (Denmark)
Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian
2016-01-01
Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...
Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman
2013-01-01
Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.
Causal Meta-Analysis : Methodology and Applications
Bax, L.J.
2009-01-01
Meta-analysis is a statistical method to summarize research data from multiple studies in a quantitative manner. This dissertation addresses a number of methodological topics in causal meta-analysis and reports the development and validation of meta-analysis software. In the first (methodological)
Information-causality and extremal tripartite correlations
International Nuclear Information System (INIS)
Yang, Tzyh Haur; Cavalcanti, Daniel; Almeida, Mafalda L; Teo, Colin; Scarani, Valerio
2012-01-01
We study the principle of information-causality (IC) in the presence of extremal no-signaling correlations on a tripartite scenario. We prove that all, except one, of the non-local correlations lead to violation of IC. The remaining non-quantum correlation is shown to satisfy any bipartite physical principle. (paper)
The causal structure of utility conditionals.
Bonnefon, Jean-François; Sloman, Steven A
2013-01-01
The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ''if p then q'' statements where the realization of p or q or both is valued by some agents. Various approaches to utility conditionals share the assumption that reasoners make inferences from utility conditionals based on the comparison between the utility of p and the expected utility of q. This article introduces a new parameter in this analysis, the underlying causal structure of the conditional. Four experiments showed that causal structure moderated utility-informed conditional reasoning. These inferences were strongly invited when the underlying structure of the conditional was causal, and significantly less so when the underlying structure of the conditional was diagnostic. This asymmetry was only observed for conditionals in which the utility of q was clear, and disappeared when the utility of q was unclear. Thus, an adequate account of utility-informed inferences conditional reasoning requires three components: utility, probability, and causal structure. Copyright © 2012 Cognitive Science Society, Inc.
Comments: Causal Interpretations of Mediation Effects
Jo, Booil; Stuart, Elizabeth A.
2012-01-01
The authors thank Dr. Lindsay Page for providing a nice illustration of the use of the principal stratification framework to define causal effects, and a Bayesian model for effect estimation. They hope that her well-written article will help expose education researchers to these concepts and methods, and move the field of mediation analysis in…
Inductive reasoning about causally transmitted properties.
Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B
2008-11-01
Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.
Exploring Causal Models of Educational Achievement.
Parkerson, Jo Ann; And Others
1984-01-01
This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…
Sequential causal learning in humans and rats
Lu, H.; Rojas, R.R.; Beckers, T.; Yuille, A.; Love, B.C.; McRae, K.; Sloutsky, V.M.
2008-01-01
Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005;Beckers, Miller, De Houwer, & Urushihara, 2006) have shown that pretraining with unrelated cues can dramatically influence the performance of humans in a causal learning paradigm and rats in a standard Pavlovian conditioning paradigm.
The Causal Foundations of Structural Equation Modeling
2012-02-16
and Baumrind (1993).” This, together with the steady influx of statisticians into the field, has left SEM re- searchers in a quandary about the...considerations. Journal of Personality and Social Psychology 51 1173–1182. Baumrind , D. (1993). Specious causal attributions in social sciences: The
Causal Measurement Models: Can Criticism Stimulate Clarification?
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
A quantum probability model of causal reasoning
Directory of Open Access Journals (Sweden)
Jennifer S Trueblood
2012-05-01
Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.
A Causal Model of Faculty Turnover Intentions.
Smart, John C.
1990-01-01
A causal model assesses the relative influence of individual attributes, institutional characteristics, contextual-work environment variables, and multiple measures of job satisfaction on faculty intentions to leave their current institutions. Factors considered include tenure status, age, institutional status, governance style, organizational…
Catastrophizing and Causal Beliefs in Whiplash
Buitenhuis, J.; de Jong, P. J.; Jaspers, J. P. C.; Groothoff, J. W.
2008-01-01
Study Design. Prospective cohort study. Objective. This study investigates the role of pain catastrophizing and causal beliefs with regard to severity and persistence of neck complaints after motor vehicle accidents. Summary of Background Data. In previous research on low back pain, somatoform
Probable autoimmune causal relationship between periodontitis and ...
African Journals Online (AJOL)
Periodontitis is a multifactorial disease with microbial dental plaque as the initiator of periodontal disease. However, the manifestation and progression of the disease is influenced by a wide variety of determinants and factors. The strongest type of causal relationship is the association of systemic and periodontal disease.