Exploring Torus Universes in Causal Dynamical Triangulations
DEFF Research Database (Denmark)
Budd, Timothy George; Loll, R.
2013-01-01
Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global...... shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large....... Apart from setting the stage for the analysis of shape dynamics on the torus, the new set-up highlights the role of nontrivial boundaries and topology....
Putting a cap on causality violations in causal dynamical triangulations
International Nuclear Information System (INIS)
Ambjoern, Jan; Loll, Renate; Westra, Willem; Zohren, Stefan
2007-01-01
The formalism of causal dynamical triangulations (CDT) provides us with a non-perturbatively defined model of quantum gravity, where the sum over histories includes only causal space-time histories. Path integrals of CDT and their continuum limits have been studied in two, three and four dimensions. Here we investigate a generalization of the two-dimensional CDT model, where the causality constraint is partially lifted by introducing branching points with a weight g s , and demonstrate that the system can be solved analytically in the genus-zero sector. The solution is analytic in a neighborhood around weight g s = 0 and cannot be analytically continued to g s = ∞, where the branching is entirely geometric and where one would formally recover standard Euclidean two-dimensional quantum gravity defined via dynamical triangulations or Liouville theory
From causal dynamical triangulations to astronomical observations
Mielczarek, Jakub
2017-09-01
This letter discusses phenomenological aspects of dimensional reduction predicted by the Causal Dynamical Triangulations (CDT) approach to quantum gravity. The deformed form of the dispersion relation for the fields defined on the CDT space-time is reconstructed. Using the Fermi satellite observations of the GRB 090510 source we find that the energy scale of the dimensional reduction is E* > 0.7 \\sqrt{4-d\\text{UV}} \\cdot 1010 \\text{GeV} at (95% CL), where d\\text{UV} is the value of the spectral dimension in the UV limit. By applying the deformed dispersion relation to the cosmological perturbations it is shown that, for a scenario when the primordial perturbations are formed in the UV region, the scalar power spectrum PS \\propto kn_S-1 , where n_S-1≈ \\frac{3 r (d\\text{UV}-2)}{(d\\text{UV}-1)r-48} . Here, r is the tensor-to-scalar ratio. We find that within the considered model, the predicted from CDT deviation from the scale invariance (n_S=1) is in contradiction with the up to date Planck and BICEP2.
Quantum gravity from simplices: analytical investigations of causal dynamical triangulations
Benedetti, D.
2007-01-01
A potentially powerful approach to quantum gravity has been developed over the last few years under the name of Causal Dynamical Triangulations. Although these models can be solved exactly in a variety of ways in the case of pure gravity in (1+1) dimensions,it is difficult to extend any of the
(2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations
International Nuclear Information System (INIS)
Benedetti, D.; Loll, R.; Zamponi, F.
2007-01-01
We perform a nonperturbative sum over geometries in a (2+1)-dimensional quantum gravity model given in terms of causal dynamical triangulations. Inspired by the concept of triangulations of product type introduced previously, we impose an additional notion of order on the discrete, causal geometries. This simplifies the combinatorial problem of counting geometries just enough to enable us to calculate the transfer matrix between boundary states labeled by the area of the spatial universe, as well as the corresponding quantum Hamiltonian of the continuum theory. This is the first time in dimension larger than 2 that a Hamiltonian has been derived from such a model by mainly analytical means, and it opens the way for a better understanding of scaling and renormalization issues
Scaling analyses of the spectral dimension in 3-dimensional causal dynamical triangulations
Cooperman, Joshua H.
2018-05-01
The spectral dimension measures the dimensionality of a space as witnessed by a diffusing random walker. Within the causal dynamical triangulations approach to the quantization of gravity (Ambjørn et al 2000 Phys. Rev. Lett. 85 347, 2001 Nucl. Phys. B 610 347, 1998 Nucl. Phys. B 536 407), the spectral dimension exhibits novel scale-dependent dynamics: reducing towards a value near 2 on sufficiently small scales, matching closely the topological dimension on intermediate scales, and decaying in the presence of positive curvature on sufficiently large scales (Ambjørn et al 2005 Phys. Rev. Lett. 95 171301, Ambjørn et al 2005 Phys. Rev. D 72 064014, Benedetti and Henson 2009 Phys. Rev. D 80 124036, Cooperman 2014 Phys. Rev. D 90 124053, Cooperman et al 2017 Class. Quantum Grav. 34 115008, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151, Kommu 2012 Class. Quantum Grav. 29 105003). I report the first comprehensive scaling analysis of the small-to-intermediate scale spectral dimension for the test case of the causal dynamical triangulations of 3-dimensional Einstein gravity. I find that the spectral dimension scales trivially with the diffusion constant. I find that the spectral dimension is completely finite in the infinite volume limit, and I argue that its maximal value is exactly consistent with the topological dimension of 3 in this limit. I find that the spectral dimension reduces further towards a value near 2 as this case’s bare coupling approaches its phase transition, and I present evidence against the conjecture that the bare coupling simply sets the overall scale of the quantum geometry (Ambjørn et al 2001 Phys. Rev. D 64 044011). On the basis of these findings, I advance a tentative physical explanation for the dynamical reduction of the spectral dimension observed within causal dynamical triangulations: branched polymeric quantum geometry on sufficiently small scales. My analyses should facilitate attempts to employ the spectral
Dynamical triangulated fermionic surfaces
International Nuclear Information System (INIS)
Ambjoern, J.; Varsted, S.
1990-12-01
We perform Monte Carlo simulations of randomly triangulated random surfaces which have fermionic world-sheet scalars θ i associated with each vertex i in addition to the usual bosonic world-sheet scalar χ i μ . The fermionic degrees of freedom force the internal metrics of the string to be less singular than the internal metric of the pure bosonic string. (orig.)
Mixed Methods, Triangulation, and Causal Explanation
Howe, Kenneth R.
2012-01-01
This article distinguishes a disjunctive conception of mixed methods/triangulation, which brings different methods to bear on different questions, from a conjunctive conception, which brings different methods to bear on the same question. It then examines a more inclusive, holistic conception of mixed methods/triangulation that accommodates…
Dynamically triangulated surfaces - some analytical results
International Nuclear Information System (INIS)
Kostov, I.K.
1987-01-01
We give a brief review of the analytical results concerning the model of dynamically triangulated surfaces. We will discuss the possible types of critical behaviour (depending on the dimension D of the embedding space) and the exact solutions obtained for D=0 and D=-2. The latter are important as a check of the Monte Carlo simulations applyed to study the model in more physical dimensions. They give also some general insight of its critical properties
Dynamics and causality constraints
International Nuclear Information System (INIS)
Sousa, Manoelito M. de
2001-04-01
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)
The ising model on the dynamical triangulated random surface
International Nuclear Information System (INIS)
Aleinov, I.D.; Migelal, A.A.; Zmushkow, U.V.
1990-01-01
The critical properties of Ising model on the dynamical triangulated random surface embedded in D-dimensional Euclidean space are investigated. The strong coupling expansion method is used. The transition to thermodynamical limit is performed by means of continuous fractions
Dynamics of Quantum Causal Structures
Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2018-01-01
It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Dynamics of Quantum Causal Structures
Directory of Open Access Journals (Sweden)
Esteban Castro-Ruiz
2018-03-01
Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Summing Feynman graphs by Monte Carlo: Planar φ3-theory and dynamically triangulated random surfaces
International Nuclear Information System (INIS)
Boulatov, D.V.
1988-01-01
New combinatorial identities are suggested relating the ratio of (n-1)th and nth orders of (planar) perturbation expansion for any quantity to some average over the ensemble of all planar graphs of the nth order. These identities are used for Monte Carlo calculation of critical exponents γ str (string susceptibility) in planar φ 3 -theory and in the dynamically triangulated random surface (DTRS) model near the convergence circle for various dimensions. In the solvable case D=1 the exact critical properties of the theory are reproduced numerically. (orig.)
Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order?
International Nuclear Information System (INIS)
Rindlisbacher, Tobias; Forcrand, Philippe de
2015-01-01
The transition between the two phases of 4D Euclidean Dynamical Triangulation (http://dx.doi.org/10.1016/0370-2693(92)90709-D) was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems (http://dx.doi.org/10.1016/0550-3213(96)00214-3, http://dx.doi.org/10.1016/S0370-2693(96)01277-4). However, one may wonder if this finding was affected by the numerical methods used: to control volume fluctuations, in both studies (http://dx.doi.org/10.1016/0550-3213(96)00214-3, http://dx.doi.org/10.1016/S0370-2693(96)01277-4) an artificial harmonic potential was added to the action and in (http://dx.doi.org/10.1016/S0370-2693(96)01277-4) measurements were taken after a fixed number of accepted instead of attempted moves which introduces an additional error. Finally the simulations suffer from strong critical slowing down which may have been underestimated. In the present work, we address the above weaknesses: we allow the volume to fluctuate freely within a fixed interval; we take measurements after a fixed number of attempted moves; and we overcome critical slowing down by using an optimized parallel tempering algorithm (http://dx.doi.org/10.1088/1742-5468/2010/01/P01020). With these improved methods, on systems of size up to N_4=64k 4-simplices, we confirm that the phase transition is 1"s"t order. In addition, we discuss a local criterion to decide whether parts of a triangulation are in the elongated or crumpled state and describe a new correspondence between EDT and the balls in boxes model. The latter gives rise to a modified partition function with an additional, third coupling. Finally, we propose and motivate a class of modified path-integral measures that might remove the metastability of the Markov chain and turn the phase transition into 2"n"d order.
Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation
International Nuclear Information System (INIS)
Agishtein, M.E.; Migdal, A.A.
1992-01-01
In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 x 10 4 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths
Dynamic Causal Models and Autopoietic Systems
Directory of Open Access Journals (Sweden)
OLIVIER DAVID
2007-01-01
Full Text Available Dynamic Causal Modelling (DCM and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated
CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY
DEFF Research Database (Denmark)
Ambjørn, Jan; Görlich, Andrzej; Jurkiewicz, J.
2013-01-01
High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)......High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)...
International Nuclear Information System (INIS)
May, R.P.
1983-01-01
Label Triangulation (LT) with neutrons allows the investigation of the quaternary structure of biological multicomponent complexes under native conditions. Provided that the complex can be fully separated into and reconstituted from its single - protonated and deuterated - components, small angle neutron scattering (SANS) can give selective information on shapes and pair distances of these components. Following basic geometrical rules, the spatial arrangement of the components can be reconstructed from these data. LT has so far been successfully applied to the small and large ribosomal subunits and the transcriptase of E. coli. (author)
Scenario development, qualitative causal analysis and system dynamics
Directory of Open Access Journals (Sweden)
Michael H. Ruge
2009-02-01
Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
Causal relations among events and states in dynamic geographical phenomena
Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan
2007-06-01
There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst
Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.
2018-04-01
Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.
Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*
Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan
2017-01-01
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111
Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.
Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan
2017-05-01
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.
Causal dissipation for the relativistic dynamics of ideal gases.
Freistühler, Heinrich; Temple, Blake
2017-05-01
We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.
Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions
Directory of Open Access Journals (Sweden)
Malte Henkel
2015-11-01
Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations
Directory of Open Access Journals (Sweden)
Yuan Yang
2017-09-01
Full Text Available Mechanical perturbations applied to the wrist joint typically evoke a stereotypical sequence of cortical and muscle responses. The early cortical responses (<100 ms are thought be involved in the “rapid” transcortical reaction to the perturbation while the late cortical responses (>100 ms are related to the “slow” transcortical reaction. Although previous studies indicated that both responses involve the primary motor cortex, it remains unclear if both responses are engaged by the same effective connectivity in the cortical network. To answer this question, we investigated the effective connectivity cortical network after a “ramp-and-hold” mechanical perturbation, in both the early (<100 ms and late (>100 ms periods, using dynamic causal modeling. Ramp-and-hold perturbations were applied to the wrist joint while the subject maintained an isometric wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram (EEG. We investigated how the perturbation modulated the effective connectivity for the early and late periods. Bayesian model comparisons suggested that different effective connectivity networks are engaged in these two periods. For the early period, we found that only a few cortico-cortical connections were modulated, while more complicated connectivity was identified in the cortical network during the late period with multiple modulated cortico-cortical connections. The limited early cortical network likely allows for a rapid muscle response without involving high-level cognitive processes, while the complexity of the late network may facilitate coordinated responses.
The causal structure of dynamical charged black holes
International Nuclear Information System (INIS)
Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han
2010-01-01
We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.
Development of face recognition: Dynamic causal modelling of MEG data.
He, Wei; Johnson, Blake W
2018-04-01
Electrophysiological studies of adults indicate that brain activity is enhanced during viewing of repeated faces, at a latency of about 250 ms after the onset of the face (M250/N250). The present study aimed to determine if this effect was also present in preschool-aged children, whose brain activity was measured in a custom-sized pediatric MEG system. The results showed that, unlike adults, face repetition did not show any significant modulation of M250 amplitude in children; however children's M250 latencies were significantly faster for repeated than non-repeated faces. Dynamic causal modelling (DCM) of the M250 in both age groups tested the effects of face repetition within the core face network including the occipital face area (OFA), the fusiform face area (FFA), and the superior temporal sulcus (STS). DCM revealed that repetition of identical faces altered both forward and backward connections in children and adults; however the modulations involved inputs to both FFA and OFA in adults but only to OFA in children. These findings suggest that the amplitude-insensitivity of the immature M250 may be due to a weaker connection between the FFA and lower visual areas. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of face recognition: Dynamic causal modelling of MEG data
Directory of Open Access Journals (Sweden)
Wei He
2018-04-01
Full Text Available Electrophysiological studies of adults indicate that brain activity is enhanced during viewing of repeated faces, at a latency of about 250 ms after the onset of the face (M250/N250. The present study aimed to determine if this effect was also present in preschool-aged children, whose brain activity was measured in a custom-sized pediatric MEG system. The results showed that, unlike adults, face repetition did not show any significant modulation of M250 amplitude in children; however children’s M250 latencies were significantly faster for repeated than non-repeated faces. Dynamic causal modelling (DCM of the M250 in both age groups tested the effects of face repetition within the core face network including the occipital face area (OFA, the fusiform face area (FFA, and the superior temporal sulcus (STS. DCM revealed that repetition of identical faces altered both forward and backward connections in children and adults; however the modulations involved inputs to both FFA and OFA in adults but only to OFA in children. These findings suggest that the amplitude-insensitivity of the immature M250 may be due to a weaker connection between the FFA and lower visual areas. Keywords: MEG, Face recognition, Repetition, DCM, M250, M170
The causal structure of dynamical charged black holes
Energy Technology Data Exchange (ETDEWEB)
Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han, E-mail: eostm@muon.kaist.ac.k, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)
2010-02-21
We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.
Triangulated categories (AM-148)
Neeman, Amnon
2014-01-01
The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown''s classical representability theorem. In addition, the author introduces a class of triangulated categories""--the ""well generated triangulated categories""--and studies their properties. This
Exploring manual asymmetries during grasping: a dynamic causal modeling approach.
Directory of Open Access Journals (Sweden)
Chiara eBegliomini
2015-02-01
Full Text Available Recording of neural activity during grasping actions in macaques showed that grasp-related sensorimotor transformations are accomplished in a circuit constituted by the anterior part of the intraparietal sulcus (AIP, the ventral (F5 and the dorsal (F2 region of the premotor area. In humans, neuroimaging studies have revealed the existence of a similar circuit, involving the putative homolog of macaque areas AIP, F5 and F2. These studies have mainly considered grasping movements performed with the right dominant hand and only a few studies have measured brain activity associated with a movement performed with the left non-dominant hand. As a consequence of this gap, how the brain controls for grasping movement performed with the dominant and the non-dominant hand still represents an open question. A functional resonance imaging experiment (fMRI has been conducted, and effective connectivity (Dynamic Causal Modelling, DCM was used to assess how connectivity among grasping-related areas is modulated by hand (i.e., left and right during the execution of grasping movements towards a small object requiring precision grasping. Results underlined boosted inter-hemispheric couplings between dorsal premotor cortices during the execution of movements performed with the left rather than the right dominant hand. More specifically, they suggest that the dorsal premotor cortices may play a fundamental role in monitoring the configuration of fingers when grasping movements are performed by either the right and the left hand. This role becomes particularly evident when the hand less-skilled (i.e., the left hand to perform such action is utilized. The results are discussed in light of recent theories put forward to explain how parieto-frontal connectivity is modulated by the execution of prehensile movements.
International Nuclear Information System (INIS)
Jahangir Alam, Mohammad; Ara Begum, Ismat; Buysse, Jeroen; Van Huylenbroeck, Guido
2012-01-01
The paper investigates the possible existence of dynamic causality between energy consumption, electricity consumption, carbon emissions and economic growth in Bangladesh. First, we have tested cointegration relationships using the Johansen bi-variate cointegration model. This is complemented with an analysis of an auto-regressive distributed lag model to examine the results' robustness. Then, the Granger short-run, the long-run and strong causality are tested with a vector error correction modelling framework. The results indicate that uni-directional causality exists from energy consumption to economic growth both in the short and the long-run while a bi-directional long-run causality exists between electricity consumption and economic growth but no causal relationship exists in short-run. The strong causality results indicate bi-directional causality for both the cases. A uni-directional causality runs from energy consumption to CO 2 emission for the short-run but feedback causality exists in the long-run. CO 2 Granger causes economic growth both in the short and in the long-run. An important policy implication is that energy (electricity as well) can be considered as an important factor for the economic growth in Bangladesh. Moreover, as higher energy consumption also means higher pollution in the long-run, policy makers should stimulate alternative energy sources for meeting up the increasing energy demand. - Highlights: ► Dynamic causality among energy and electricity consumption, CO 2 and economic growth. ► Uni-directional causality exists from energy consumption to economic growth. ► Bi-directional causality exists between electricity consumption and economic growth. ► Feedback causality exists between CO 2 emission to energy consumption. ► CO 2 Granger causes economic growth both in the short and in the long-run.
Observation, innovation and triangulation
DEFF Research Database (Denmark)
Hetmar, Vibeke
2007-01-01
on experiences from a pilot project in three different classrooms methodological possibilities and problems are presented and discussed: 1) educational criticism, including the concepts of positions, perspectives and connoisseurship, 2) classroom observations and 3) triangulation as a methodological tool....
Causality analysis in business performance measurement system using system dynamics methodology
Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah
2014-07-01
One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.
Causality and Information Dynamics in Networked Systems with Many Agents
2017-05-11
algorithms. 6 Future Perspectives Causal graph reconstruction from noisy data is a problem of central importance. In our research we have shown how the idea ...thrust of the research was to develop methods for GCG sparsification using ideas from Tikhonov regularization and ADMM based proximal algorithms...not vary with time. The notion of Granger-causality is captured in the following definition . Definition 2.1 If ξ̂[xi(t) |Ht] < ξ̂[xi(t) |H−jt ] , (2.2
Oostrom, V. van; Zantema, Hans
2012-01-01
We introduce a process, dubbed triangulation, turning any rewrite relation into a confluent one. It is more direct than usual completion, in the sense that objects connected by a peak are directly oriented rather than their normal forms. We investigate conditions under which this process preserves
Triangulation positioning system network
Directory of Open Access Journals (Sweden)
Sfendourakis Marios
2017-01-01
Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.
Indications of de Sitter spacetime from classical sequential growth dynamics of causal sets
International Nuclear Information System (INIS)
Ahmed, Maqbool; Rideout, David
2010-01-01
A large class of the dynamical laws for causal sets described by a classical process of sequential growth yields a cyclic universe, whose cycles of expansion and contraction are punctuated by single 'origin elements' of the causal set. We present evidence that the effective dynamics of the immediate future of one of these origin elements, within the context of the sequential growth dynamics, yields an initial period of de Sitter-like exponential expansion, and argue that the resulting picture has many attractive features as a model of the early universe, with the potential to solve some of the standard model puzzles without any fine-tuning.
An example of numerical simulation in causal set dynamics
International Nuclear Information System (INIS)
Krugly, Alexey L; Tserkovnikov, Ivan A
2013-01-01
The model of a discrete pregeometry on a microscopic scale is an x-graph. This is a directed acyclic graph. An outdegree and an indegree of each vertex are not more than 2. The sets of vertices and edges of x-graph are particular cases of causal sets. The sequential growth of a graph is an addition of new vertices one by one. A simple stochastic algorithm of sequential growth of x-graph are considered. It is based on a random walk at the x-graph. The particles in this model must be self-organized repetitive structures. We introduce the method of search of such repetitive structures. It is based on a discrete Fourier transformation. An example of numerical simulation is introduced.
Detecting dynamic causal inference in nonlinear two-phase fracture flow
Faybishenko, Boris
2017-08-01
Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash
2018-04-24
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Molenaar, P.C.M.
1987-01-01
Outlines a frequency domain analysis of the dynamic factor model and proposes a solution to the problem of constructing a causal filter of lagged factor loadings. The method is illustrated with applications to simulated and real multivariate time series. The latter applications involve topographic
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen
2017-04-01
Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
Wolfinger, Donna M.
The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.
The use of triangulation in qualitative research.
Carter, Nancy; Bryant-Lukosius, Denise; DiCenso, Alba; Blythe, Jennifer; Neville, Alan J
2014-09-01
Triangulation refers to the use of multiple methods or data sources in qualitative research to develop a comprehensive understanding of phenomena (Patton, 1999). Triangulation also has been viewed as a qualitative research strategy to test validity through the convergence of information from different sources. Denzin (1978) and Patton (1999) identified four types of triangulation: (a) method triangulation, (b) investigator triangulation, (c) theory triangulation, and (d) data source triangulation. The current article will present the four types of triangulation followed by a discussion of the use of focus groups (FGs) and in-depth individual (IDI) interviews as an example of data source triangulation in qualitative inquiry.
Energy Technology Data Exchange (ETDEWEB)
Lindstrom, P
2009-12-23
We describe a simple and efficient algorithm for two-view triangulation of 3D points from approximate 2D matches based on minimizing the L2 reprojection error. Our iterative algorithm improves on the one by Kanatani et al. by ensuring that in each iteration the epipolar constraint is satisfied. In the case where the two cameras are pointed in the same direction, the method provably converges to an optimal solution in exactly two iterations. For more general camera poses, two iterations are sufficient to achieve convergence to machine precision, which we exploit to devise a fast, non-iterative method. The resulting algorithm amounts to little more than solving a quadratic equation, and involves a fixed, small number of simple matrixvector operations and no conditional branches. We demonstrate that the method computes solutions that agree to very high precision with those of Hartley and Sturm's original polynomial method, though achieves higher numerical stability and 1-4 orders of magnitude greater speed.
Causal knowledge promotes behavioral self-regulation: An example using climate change dynamics.
Directory of Open Access Journals (Sweden)
David K Sewell
Full Text Available Adopting successful climate change mitigation policies requires the public to choose how to balance the sometimes competing goals of managing CO2 emissions and achieving economic growth. It follows that collective action on climate change depends on members of the public to be knowledgeable of the causes and economic ramifications of climate change. The existing literature, however, shows that people often struggle to correctly reason about the fundamental accumulation dynamics that drive climate change. Previous research has focused on using analogy to improve people's reasoning about accumulation, which has been met with some success. However, these existing studies have neglected the role economic factors might play in shaping people's decisions in relation to climate change. Here, we introduce a novel iterated decision task in which people attempt to achieve a specific economic goal by interacting with a causal dynamic system in which human economic activities, CO2 emissions, and warming are all causally interrelated. We show that when the causal links between these factors are highlighted, people's ability to achieve the economic goal of the task is enhanced in a way that approaches optimal responding, and avoids dangerous levels of warming.
Causal and causally separable processes
Oreshkov, Ognyan; Giarmatzi, Christina
2016-09-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and
Causal and causally separable processes
International Nuclear Information System (INIS)
Oreshkov, Ognyan; Giarmatzi, Christina
2016-01-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B , either A is in the causal past of B , B is in the causal past of A , or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B , an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A ’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and
Directory of Open Access Journals (Sweden)
Kaustubh Supekar
2012-02-01
Full Text Available Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI, resting-state fMRI and diffusion tensor imaging (DTI to investigate the maturation of control processes underlying problem solving skills in 7-9 year-old children. Our analysis focused on two key neurocognitive networks implicated in a wide range of cognitive tasks including control: the insula-cingulate salience network, anchored in anterior insula (AI, ventrolateral prefrontal cortex and anterior cingulate cortex, and the fronto-parietal central executive network, anchored in dorsolateral prefrontal cortex and posterior parietal cortex (PPC. We found that, by age 9, the AI node of the salience network is a major causal hub initiating control signals during problem solving. Critically, despite stronger AI activation, the strength of causal regulatory influences from AI to the PPC node of the central executive network was significantly weaker and contributed to lower levels of behavioral performance in children compared to adults. These results were validated using two different analytic methods for estimating causal interactions in fMRI data. In parallel, DTI-based tractography revealed weaker AI-PPC structural connectivity in children. Our findings point to a crucial role of AI connectivity, and its causal cross-network influences, in the maturation of dynamic top-down control signals underlying cognitive development. Overall, our study demonstrates how a unified neurocognitive network model when combined with multimodal imaging enhances our ability to generalize beyond individual task-activated foci and provides a common framework for elucidating key features of brain and cognitive
Cho, Soohyun; Metcalfe, Arron W S; Young, Christina B; Ryali, Srikanth; Geary, David C; Menon, Vinod
2012-09-01
Children's gains in problem-solving skills during the elementary school years are characterized by shifts in the mix of problem-solving approaches, with inefficient procedural strategies being gradually replaced with direct retrieval of domain-relevant facts. We used a well-established procedure for strategy assessment during arithmetic problem solving to investigate the neural basis of this critical transition. We indexed behavioral strategy use by focusing on the retrieval frequency and examined changes in brain activity and connectivity associated with retrieval fluency during arithmetic problem solving in second- and third-grade (7- to 9-year-old) children. Children with higher retrieval fluency showed elevated signal in the right hippocampus, parahippocampal gyrus (PHG), lingual gyrus (LG), fusiform gyrus (FG), left ventrolateral PFC (VLPFC), bilateral dorsolateral PFC (DLPFC), and posterior angular gyrus. Critically, these effects were not confounded by individual differences in problem-solving speed or accuracy. Psychophysiological interaction analysis revealed significant effective connectivity of the right hippocampus with bilateral VLPFC and DLPFC during arithmetic problem solving. Dynamic causal modeling analysis revealed strong bidirectional interactions between the hippocampus and the left VLPFC and DLPFC. Furthermore, causal influences from the left VLPFC to the hippocampus served as the main top-down component, whereas causal influences from the hippocampus to the left DLPFC served as the main bottom-up component of this retrieval network. Our study highlights the contribution of hippocampal-prefrontal circuits to the early development of retrieval fluency in arithmetic problem solving and provides a novel framework for studying dynamic developmental processes that accompany children's development of problem-solving skills.
Neural pathways in processing of sexual arousal: a dynamic causal modeling study.
Seok, J-W; Park, M-S; Sohn, J-H
2016-09-01
Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.
Dynamics of charged viscous dissipative cylindrical collapse with full causal approach
Energy Technology Data Exchange (ETDEWEB)
Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-11-15
The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations. (orig.)
Optimization of a dynamic uncertain causality graph for fault diagnosis in nuclear power plant
Institute of Scientific and Technical Information of China (English)
Yue Zhao; Francesco Di Maio; Enrico Zio; Qin Zhang; Chun-Ling Dong; Jin-Ying Zhang
2017-01-01
Fault diagnostics is important for safe operation of nuclear power plants (NPPs).In recent years,data-driven approaches have been proposed and implemented to tackle the problem,e.g.,neural networks,fuzzy and neurofuzzy approaches,support vector machine,K-nearest neighbor classifiers and inference methodologies.Among these methods,dynamic uncertain causality graph (DUCG)has been proved effective in many practical cases.However,the causal graph construction behind the DUCG is complicate and,in many cases,results redundant on the symptoms needed to correctly classify the fault.In this paper,we propose a method to simplify causal graph construction in an automatic way.The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree (FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT.Genetic algorithm (GA) is,then,used for the optimization of the FDT,by performing a wrapper search around the FDT:the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system.The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation.The results show that the FDT,with GA-optimized symptoms and diagnosis strategy,can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis.
Optimization of a dynamic uncertain causality graph for fault diagnosis in nuclear power plant
Institute of Scientific and Technical Information of China (English)
Yue Zhao; Francesco Di Maio; Enrico Zio; Qin Zhang; Chun-Ling Dong; Jin-Ying Zhang
2017-01-01
Fault diagnostics is important for safe operation of nuclear power plants (NPPs).In recent years,data-driven approaches have been proposed and implemented to tackle the problem,e.g.,neural networks,fuzzy and neurofuzzy approaches,support vector machine,K-nearest neighbor classifiers and inference methodologies.Among these methods,dynamic uncertain causality graph (DUCG) has been proved effective in many practical cases.However,the causal graph construction behind the DUCG is complicate and,in many cases,results redundant on the symptoms needed to correctly classify the fault.In this paper,we propose a method to simplify causal graph construction in an automatic way.The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree (FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT.Genetic algorithm (GA) is,then,used for the optimization of the FDT,by performing a wrapper search around the FDT:the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system.The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation.The results show that the FDT,with GA-optimized symptoms and diagnosis strategy,can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis.
Challenges to inferring causality from viral information dispersion in dynamic social networks
Ternovski, John
2014-06-01
Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.
Freistühler, Heinrich; Temple, Blake
2014-06-08
CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.
Triangulating and guarding realistic polygons
Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.
2008-01-01
We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards in the interior of the object. In this abstract, we describe a simple algorithm for triangulating k-guardable polygons. Our algorithm, which is easily implementable, takes
Triangulating and guarding realistic polygons
Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.
2014-01-01
We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating
Triangulation in Friedmann's cosmological model
International Nuclear Information System (INIS)
Fagundes, H.V.
1977-01-01
In Friedmann's model, physical 3-space has a curvature K = constant. In the cases of greatest interest (K different from 0) triangulation for the measurement of great distances should be based on non-Euclidean geometries: Riemannian (or doubly elliptic) geometry for a closed universe and Bolyai-Lobatchevsky's (or hiperbolic) geometry for an open universe [pt
Directory of Open Access Journals (Sweden)
Sasipa Pojanavatee
2014-12-01
Full Text Available The existing literature finds conflicting results on the magnitude of price linkages between equity mutual funds and the stock market. The study contends that in an optimal lagged model, the expectations of future prices using knowledge of past price behaviour in a particular equity mutual fund category will improve forecasts of prices of other equity mutual fund categories and the stock market index. The evidence shows that the long-run pricing of equity mutual funds is cointegrated with the stock market index. In the short run, the results indicate that some equity mutual fund categories possess both long-run and short-run exogeneity with the stock market. Therefore, the short-run dynamic indicates short-run Granger causal links running between different equity mutual fund categories.
Fixed-topology Lorentzian triangulations: Quantum Regge Calculus in the Lorentzian domain
Tate, Kyle; Visser, Matt
2011-11-01
A key insight used in developing the theory of Causal Dynamical Triangu-lations (CDTs) is to use the causal (or light-cone) structure of Lorentzian manifolds to restrict the class of geometries appearing in the Quantum Gravity (QG) path integral. By exploiting this structure the models developed in CDTs differ from the analogous models developed in the Euclidean domain, models of (Euclidean) Dynamical Triangulations (DT), and the corresponding Lorentzian results are in many ways more "physical". In this paper we use this insight to formulate a Lorentzian signature model that is anal-ogous to the Quantum Regge Calculus (QRC) approach to Euclidean Quantum Gravity. We exploit another crucial fact about the structure of Lorentzian manifolds, namely that certain simplices are not constrained by the triangle inequalities present in Euclidean signa-ture. We show that this model is not related to QRC by a naive Wick rotation; this serves as another demonstration that the sum over Lorentzian geometries is not simply related to the sum over Euclidean geometries. By removing the triangle inequality constraints, there is more freedom to perform analytical calculations, and in addition numerical simulations are more computationally efficient. We first formulate the model in 1 + 1 dimensions, and derive scaling relations for the pure gravity path integral on the torus using two different measures. It appears relatively easy to generate "large" universes, both in spatial and temporal extent. In addition, loopto-loop amplitudes are discussed, and a transfer matrix is derived. We then also discuss the model in higher dimensions.
Frisch, Mathias
2014-01-01
Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.
Matsumoto, Atsushi; Kakigi, Ryusuke
2014-01-01
Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.
Kenzie, Erin S; Parks, Elle L; Bigler, Erin D; Wright, David W; Lim, Miranda M; Chesnutt, James C; Hawryluk, Gregory W J; Gordon, Wayne; Wakeland, Wayne
2018-01-01
Despite increasing public awareness and a growing body of literature on the subject of concussion, or mild traumatic brain injury, an urgent need still exists for reliable diagnostic measures, clinical care guidelines, and effective treatments for the condition. Complexity and heterogeneity complicate research efforts and indicate the need for innovative approaches to synthesize current knowledge in order to improve clinical outcomes. Methods from the interdisciplinary field of systems science, including models of complex systems, have been increasingly applied to biomedical applications and show promise for generating insight for traumatic brain injury. The current study uses causal-loop diagramming to visualize relationships between factors influencing the pathophysiology and recovery trajectories of concussive injury, including persistence of symptoms and deficits. The primary output is a series of preliminary systems maps detailing feedback loops, intrinsic dynamics, exogenous drivers, and hubs across several scales, from micro-level cellular processes to social influences. Key system features, such as the role of specific restorative feedback processes and cross-scale connections, are examined and discussed in the context of recovery trajectories. This systems approach integrates research findings across disciplines and allows components to be considered in relation to larger system influences, which enables the identification of research gaps, supports classification efforts, and provides a framework for interdisciplinary collaboration and communication-all strides that would benefit diagnosis, prognosis, and treatment in the clinic.
Directory of Open Access Journals (Sweden)
Erin S. Kenzie
2018-04-01
Full Text Available Despite increasing public awareness and a growing body of literature on the subject of concussion, or mild traumatic brain injury, an urgent need still exists for reliable diagnostic measures, clinical care guidelines, and effective treatments for the condition. Complexity and heterogeneity complicate research efforts and indicate the need for innovative approaches to synthesize current knowledge in order to improve clinical outcomes. Methods from the interdisciplinary field of systems science, including models of complex systems, have been increasingly applied to biomedical applications and show promise for generating insight for traumatic brain injury. The current study uses causal-loop diagramming to visualize relationships between factors influencing the pathophysiology and recovery trajectories of concussive injury, including persistence of symptoms and deficits. The primary output is a series of preliminary systems maps detailing feedback loops, intrinsic dynamics, exogenous drivers, and hubs across several scales, from micro-level cellular processes to social influences. Key system features, such as the role of specific restorative feedback processes and cross-scale connections, are examined and discussed in the context of recovery trajectories. This systems approach integrates research findings across disciplines and allows components to be considered in relation to larger system influences, which enables the identification of research gaps, supports classification efforts, and provides a framework for interdisciplinary collaboration and communication—all strides that would benefit diagnosis, prognosis, and treatment in the clinic.
Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.
Zeller, Daniel; Friston, Karl J; Classen, Joseph
2016-09-01
The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. Copyright © 2016 Elsevier Inc. All rights reserved.
Identifying abnormal connectivity in patients using Dynamic Causal Modelling of fMRI responses.
Directory of Open Access Journals (Sweden)
Mohamed L Seghier
2010-08-01
Full Text Available Functional imaging studies of brain damaged patients offer a unique opportunity to understand how sensori-motor and cognitive tasks can be carried out when parts of the neural system that support normal performance are no longer available. In addition to knowing which regions a patient activates, we also need to know how these regions interact with one another, and how these inter-regional interactions deviate from normal. Dynamic Causal Modelling (DCM offers the opportunity to assess task-dependent interactions within a set of regions. Here we review its use in patients when the question of interest concerns the characterisation of abnormal connectivity for a given pathology. We describe the currently available implementations of DCM for fMRI responses, varying from the deterministic bilinear models with one-state equation to the stochastic nonlinear models with two-state equations. We also highlight the importance of the new Bayesian model selection and averaging tools that allow different plausible models to be compared at the single subject and group level. These procedures allow inferences to be made at different levels of model selection, from features (model families to connectivity parameters. Following a critical review of previous DCM studies that investigated abnormal connectivity we propose a systematic procedure that will ensure more flexibility and efficiency when using DCM in patients. Finally, some practical and methodological issues crucial for interpreting or generalising DCM findings in patients are discussed.
Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆
Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank
2013-01-01
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study
Directory of Open Access Journals (Sweden)
Soha Saleh
2017-01-01
Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with
Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne
2015-01-01
Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.
Directory of Open Access Journals (Sweden)
Philippe eAlbouy
2015-02-01
Full Text Available Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in Different trials and to its equivalent (original tone in Same trials were compared between groups using Dynamic Causal Modeling (DCM. DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with an increase in Same trials and a decrease in Different trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.
Directory of Open Access Journals (Sweden)
Liangsuo Ma
2015-01-01
Full Text Available Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD subjects studied with functional magnetic resonance imaging (fMRI. However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM to study the effective (directional neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard. The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced during the NoGo conditions for both groups. The effective connectivity from left (L anterior cingulate cortex (ACC to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R dorsolateral prefrontal cortex (DLPFC to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition.
Li, Liang; Li, Baojuan; Bai, Yuanhan; Liu, Wenlei; Wang, Huaning; Leung, Hoi-Chung; Tian, Ping; Zhang, Linchuan; Guo, Fan; Cui, Long-Biao; Yin, Hong; Lu, Hongbing; Tan, Qingrong
2017-07-01
Understanding the neural basis underlying major depressive disorder (MDD) is essential for the diagnosis and treatment of this mental disorder. Aberrant activation and functional connectivity of the default mode network (DMN) have been consistently found in patients with MDD. It is not known whether effective connectivity within the DMN is altered in MDD. The primary object of this study is to investigate the effective connectivity within the DMN during resting state in MDD patients before and after eight weeks of antidepressant treatment. We defined four regions of the DMN (medial frontal cortex, posterior cingulate cortex, left parietal cortex, and right parietal cortex) for each participant using a group independent component analysis. The coupling parameters reflecting the causal interactions among the DMN regions were estimated using spectral dynamic causal modeling (DCM). Twenty-seven MDD patients and 27 healthy controls were included in the statistical analysis. Our results showed declined influences from the left parietal cortex to other DMN regions in the pre-treatment patients as compared with healthy controls. After eight weeks of treatment, the influence from the right parietal cortex to the posterior cingulate cortex significantly decreased. These findings suggest that the reduced excitatory causal influence of the left parietal cortex is the key alteration of the DMN in patients with MDD, and the disrupted causal influences that parietal cortex exerts on the posterior cingulate cortex is responsive to antidepressant treatment.
Directory of Open Access Journals (Sweden)
Ioana RADU
2013-06-01
Full Text Available The paper tests and evaluates the causality between the dynamics of the Romanian mutual fund market and the economy. Using the Granger causality test, a regression analysis has been developed on quarterly data during 2004Q3 – 2012Q2 for the Romanian economy. Based on this relationship, we can emphasize that the controversial debate upon the economic growth and the mutual fund market has became a complex research subject. Therefore, due to its complexity, the timeliness and the continuous growth of the investment funds area, this paper complements the existing literature by identifying the causal linkage between the mutual fund market and the economy. The paper is organized as it follows. First part presents the main premises that have emphasized our research. Second part presents a brief literature review and extracts the studies that appreciate best the relationship between the analyzed variables. Next section is set on defining the potential correlation between the analyzed variables. Then, section 4 tests the causality by using the R facility. The last part concludes.
Comparison of two integration methods for dynamic causal modeling of electrophysiological data.
Lemaréchal, Jean-Didier; George, Nathalie; David, Olivier
2018-06-01
Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g. modulation of connectivity) and infer architectural properties of the most plausible model (i.e. model selection). When modeling electrophysiological event-related responses, the estimation of the model relies on the integration of the system of delay differential equations (DDEs) that describe the dynamics of the system. In this technical note, we compared two numerical schemes for the integration of DDEs. The first, and standard, scheme approximates the DDEs (more precisely, the state of the system, with respect to conduction delays among brain regions) using ordinary differential equations (ODEs) and solves it with a fixed step size. The second scheme uses a dedicated DDEs solver with adaptive step sizes to control error, making it theoretically more accurate. To highlight the effects of the approximation used by the first integration scheme in regard to parameter estimation and Bayesian model selection, we performed simulations of local field potentials using first, a simple model comprising 2 regions and second, a more complex model comprising 6 regions. In these simulations, the second integration scheme served as the standard to which the first one was compared. Then, the performances of the two integration schemes were directly compared by fitting a public mismatch negativity EEG dataset with different models. The simulations revealed that the use of the standard DCM integration scheme was acceptable for Bayesian model selection but underestimated the connectivity parameters and did not allow an accurate estimation of conduction delays. Fitting to empirical data showed that the models systematically obtained an increased accuracy when using the second
Interferometer predictions with triangulated images
DEFF Research Database (Denmark)
Brinch, Christian; Dullemond, C. P.
2014-01-01
the synthetic model images. To get the correct values of these integrals, the model images must have the right size and resolution. Insufficient care in these choices can lead to wrong results. We present a new general-purpose scheme for the computation of visibilities of radiative transfer images. Our method...... requires a model image that is a list of intensities at arbitrarily placed positions on the image-plane. It creates a triangulated grid from these vertices, and assumes that the intensity inside each triangle of the grid is a linear function. The Fourier integral over each triangle is then evaluated...... with an analytic expression and the complex visibility of the entire image is then the sum of all triangles. The result is a robust Fourier transform that does not suffer from aliasing effects due to grid regularities. The method automatically ensures that all structure contained in the model gets reflected...
Directory of Open Access Journals (Sweden)
Chaido Dritsaki
2014-04-01
Full Text Available Energy plays an important role in economic development worldwide. The increase of energy consumption showed that CO2 emissions in the atmosphere have increased dramatically, and these lead many scientists to push governments of the developing countries to take action for the formulation of environmental policies. Many studies have attempted to look for the direction of causality between energy consumption (EC, economic growth (GDP and CO2 emissions mainly on developing countries. This paper, therefore, applies the panel unit root tests, panel cointegration methods and panel causality test to investigate the relationship between energy consumption (EC, economic growth (GDP and CO2 emissions for three countries of Southern Europe (Greece, Spain, and Portugal covering the annual period 1960-2009. The FMOLS and DOLS are then used to estimate the long run relationship between the variables. The findings of this study reveal that there is a short-run bilateral causal link between the examined variables. However, in the long run, there is a unidirectional causality running from CO2 emissions to energy consumption (EC, and economic growth (GDP and a bilateral causality between energy consumption and economic growth. This indicates that energy is a force for economic growth both in short and long run as it is driven from economic growth. Moreover, to face the heterogeneity on the three countries of Southern Europe we use the FMOLS and DOLS estimation methods.
The causal dynamics between coal consumption and growth: Evidence from emerging market economies
International Nuclear Information System (INIS)
Apergis, Nicholas; Payne, James E.
2010-01-01
This study examines the relationship between coal consumption and economic growth for 15 emerging market economies within a multivariate panel framework over the period 1980-2006. The heterogeneous panel cointegration results indicate there is a long-run equilibrium relationship between real GDP, coal consumption, real gross fixed capital formation, and the labor force. While in the long-run both real gross fixed capital formation and the labor force have a significant positive impact on real GDP, coal consumption has a significant negative impact. The panel causality tests show bidirectional causality between coal consumption and economic growth in both the short- and long-run. (author)
Hamiltonian Cycles on Random Eulerian Triangulations
DEFF Research Database (Denmark)
Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard
1998-01-01
. Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...
Simulating triangulations. Graphs, manifolds and (quantum) spacetime
International Nuclear Information System (INIS)
Krueger, Benedikt
2016-01-01
Triangulations, which can intuitively be described as a tessellation of space into simplicial building blocks, are structures that arise in various different branches of physics: They can be used for describing complicated and curved objects in a discretized way, e.g., in foams, gels or porous media, or for discretizing curved boundaries for fluid simulations or dissipative systems. Interpreting triangulations as (maximal planar) graphs makes it possible to use them in graph theory or statistical physics, e.g., as small-world networks, as networks of spins or in biological physics as actin networks. Since one can find an analogue of the Einstein-Hilbert action on triangulations, they can even be used for formulating theories of quantum gravity. Triangulations have also important applications in mathematics, especially in discrete topology. Despite their wide occurrence in different branches of physics and mathematics, there are still some fundamental open questions about triangulations in general. It is a prior unknown how many triangulations there are for a given set of points or a given manifold, or even whether there are exponentially many triangulations or more, a question that relates to a well-defined behavior of certain quantum geometry models. Another major unknown question is whether elementary steps transforming triangulations into each other, which are used in computer simulations, are ergodic. Using triangulations as model for spacetime, it is not clear whether there is a meaningful continuum limit that can be identified with the usual and well-tested theory of general relativity. Within this thesis some of these fundamental questions about triangulations are answered by the use of Markov chain Monte Carlo simulations, which are a probabilistic method for calculating statistical expectation values, or more generally a tool for calculating high-dimensional integrals. Additionally, some details about the Wang-Landau algorithm, which is the primary used
Simulating triangulations. Graphs, manifolds and (quantum) spacetime
Energy Technology Data Exchange (ETDEWEB)
Krueger, Benedikt
2016-07-01
Triangulations, which can intuitively be described as a tessellation of space into simplicial building blocks, are structures that arise in various different branches of physics: They can be used for describing complicated and curved objects in a discretized way, e.g., in foams, gels or porous media, or for discretizing curved boundaries for fluid simulations or dissipative systems. Interpreting triangulations as (maximal planar) graphs makes it possible to use them in graph theory or statistical physics, e.g., as small-world networks, as networks of spins or in biological physics as actin networks. Since one can find an analogue of the Einstein-Hilbert action on triangulations, they can even be used for formulating theories of quantum gravity. Triangulations have also important applications in mathematics, especially in discrete topology. Despite their wide occurrence in different branches of physics and mathematics, there are still some fundamental open questions about triangulations in general. It is a prior unknown how many triangulations there are for a given set of points or a given manifold, or even whether there are exponentially many triangulations or more, a question that relates to a well-defined behavior of certain quantum geometry models. Another major unknown question is whether elementary steps transforming triangulations into each other, which are used in computer simulations, are ergodic. Using triangulations as model for spacetime, it is not clear whether there is a meaningful continuum limit that can be identified with the usual and well-tested theory of general relativity. Within this thesis some of these fundamental questions about triangulations are answered by the use of Markov chain Monte Carlo simulations, which are a probabilistic method for calculating statistical expectation values, or more generally a tool for calculating high-dimensional integrals. Additionally, some details about the Wang-Landau algorithm, which is the primary used
The Nonlinear Dynamic Relationship of Exchange Rates: Parametric and Nonparametric Causality testing
Bekiros, S.D.; Diks, C.
2007-01-01
The present study investigates the long-term linear and nonlinear causal linkages among six currencies, namely EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD and USD/CAD. The prime motivation for choosing these exchange rates comes from the fact that they are the most liquid and widely traded, covering
Health and Wealth of Elderly Couples : Causality Tests Using Dynamic Panel Data Models
Michaud, P.C.; van Soest, A.H.O.
2004-01-01
A positive relationship between socio-economic status (SES) and health, the so-called \\health-wealth gradient", is repeatedly found in most industrialized countries with similar levels of health care technology and economic welfare. This study analyzes causality from health to wealth (health
International Nuclear Information System (INIS)
Ciarreta, A.; Zarraga, A.
2010-01-01
This paper applies recent panel methodology to investigate the long-run and causal relationship between electricity consumption and real GDP for a set of 12 European countries using annual data for the period 1970-2007. The sample countries have moved faster than other neighboring countries towards the creation of a single electricity market over the past 30 years. Energy prices are also included in the study due to their important role in affecting the above variables, thus avoiding the problem of omitted variable bias. Tests for panel unit roots, cointegration in heterogeneous panels and panel causality are employed in a trivariate VECM estimated by system GMM. The results show evidence of a long-run equilibrium relationship between the three series and a negative short-run and strong causality from electricity consumption to GDP. As expected, there is bidirectional causality between energy prices and GDP and weaker evidence between electricity consumption and energy prices. These results support the policies implemented towards the creation of a common European electricity market.
On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth
International Nuclear Information System (INIS)
Apergis, Nicholas; Payne, James E.; Menyah, Kojo; Wolde-Rufael, Yemane
2010-01-01
This paper examines the causal relationship between CO 2 emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO 2 emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)
On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth
Energy Technology Data Exchange (ETDEWEB)
Apergis, Nicholas [Department of Banking and Financial Management, University of Piraeus, Karaoli and Dimitriou 80, Piraeus, ATTIKI 18534 (Greece); Payne, James E. [Department of Economics, Illinois State University, Normal, IL 61790-4200 (United States); Menyah, Kojo [London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London, EC2M 6SQ (United Kingdom); Wolde-Rufael, Yemane
2010-09-15
This paper examines the causal relationship between CO{sub 2} emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO{sub 2} emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)
UAV PHOTOGRAMMETRY: BLOCK TRIANGULATION COMPARISONS
Directory of Open Access Journals (Sweden)
R. Gini
2013-08-01
Full Text Available UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord", useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey, allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma, Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points.
International Nuclear Information System (INIS)
Mensah, Justice Tei
2014-01-01
Following the recent global economic downturn, attention has gradually shifted towards emerging economies which have experienced robust growth amidst sluggish growth of the world economy. A significant number of these emerging economies are in Africa. Rising growth in these economies is associated with surging demand for energy to propel the engines of growth, with direct implications on emissions into the atmosphere. Further, these economies are constantly being shaped by series of structural reforms with direct and indirect effects on growth, demand for energy, etc. To this end, this paper examines the causal dynamics among energy use, real GDP and CO 2 emissions in the presence of regime shifts in six emerging African economies using the Gregory and Hansen (1996a). J. Econ. 70, 99–126 threshold cointegration and the Toda and Yamamoto (1995). J. Econometrics. 66, 225–250 Granger causality techniques. Results confirm the presence of regime shift effects in the long run inter-linkages among energy use, real GDP and CO 2 emissions in the countries considered, thus indicating that structural changes have both economic and environmental effects. Hence, integration of energy and environmental policies into development plans is imperative towards attaining sustainable growth and development. - Highlights: • The paper examines the causal dynamics among output, energy demand and carbon emissions in the presence of regime shifts. • Regime shift have significant effects on the nexus among energy use, real GDP and CO 2 emissions. • Results suggest that structural changes in selected countries have both economic and environmental effects. • Integration of energy and environmental policies into development plans is desirable
Measuring and Controlling Fairness of Triangulations
Jiang, Caigui; Gü nther, Felix; Wallner, Johannes; Pottmann, Helmut
2016-01-01
of fairness must take new aspects into account. We use concepts from discrete differential geometry (star-shaped Gauss images) to express fairness, and we also demonstrate how fairness can be incorporated into interactive geometric design of triangulated
DYNAMICS OF MUTUAL FUNDS IN RELATION TO STOCK MARKET: A VECTOR AUTOREGRESSIVE CAUSALITY ANALYSIS
Directory of Open Access Journals (Sweden)
Md. Shahadath Hossain
2013-01-01
Full Text Available In Bangladesh, primary and secondary mutual fund markets behave in a completely different way, where initial public offering (IPO investors of mutual funds earn more than 250 percent rerun, whereas secondary market investors cannot even manage to cover the opportunity cost of their investment. There are few other abnormalities present in this market – unlike everywhere in the world, most of the mutual funds are closed-end (92 percent and closed-end mutual funds are barred to issue bonus or right shares. A total of 714 day’s observations, from January 2008 to December 2010, of four variables– DSE (Dhaka Stock Exchange general index return, DSE general index turnover, mutual funds’ return and mutual funds’ turnover– are utilized. Stationarity of the variables are tested with Augmented Dickey-Fuller (ADF unit root test and found that variables are in different order of integration. Long-term equilibrium relationships among the variables are tested with Johansen cointegration and it is found that DSE general index return and mutual funds’ return are cointegrated. Toda-Yamamoto (TY version of granger non-causality test is employed and bidirectional causality is found moving from DSE (Dhaka Stock Exchange general index turnover to DSE general index return, whereas unidirectional causality is found moving from mutual fund’s return to DSE general index return, mutual funds’ return to mutual funds turnover, and DSE general index turnover to mutual funds turnover. This finding helps to conclude that equity shares’ demand drives the mutual funds demand but even higher demand of mutual funds fails to raise its own price unless underlying value of the mutual funds changes.
Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M
2016-01-01
The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.
Directory of Open Access Journals (Sweden)
Maksim eSharaev
2016-02-01
Full Text Available The Default Mode Network (DMN is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of BOLD (Blood-oxygen-level dependent activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e. effective connectivity, however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex mPFC, the posterior cingulate cortex PCC, left and right intraparietal cortex LIPC and RIPC. For this purpose fMRI (functional magnetic resonance imaging data from 30 healthy subjects (1000 time points from each one was acquired and spectral dynamic causal modeling (DCM on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p<0.05. Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state.
Synergy and redundancy in the Granger causal analysis of dynamical networks
International Nuclear Information System (INIS)
Stramaglia, Sebastiano; M Cortes, Jesus; Marinazzo, Daniele
2014-01-01
We analyze, by means of Granger causality (GC), the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. While we show that fully conditioned GC (CGC) is not affected by synergy, the pairwise analysis fails to prove synergetic effects. In cases when the number of samples is low, thus making the fully conditioned approach unfeasible, we show that partially conditioned GC (PCGC) is an effective approach if the set of conditioning variables is properly chosen. Here we consider two different strategies (based either on informational content for the candidate driver or on selecting the variables with highest pairwise influences) for PCGC and show that, depending on the data structure, either one or the other might be equally valid. On the other hand, we observe that fully conditioned approaches do not work well in the presence of redundancy, thus suggesting the strategy of separating the pairwise links in two subsets: those corresponding to indirect connections of the CGC (which should thus be excluded) and links that can be ascribed to redundancy effects and, together with the results from the fully connected approach, provide a better description of the causality pattern in the presence of redundancy. Finally we apply these methods to two different real datasets. First, analyzing electrophysiological data from an epileptic brain, we show that synergetic effects are dominant just before seizure occurrences. Second, our analysis applied to gene expression time series from HeLa culture shows that the underlying regulatory networks are characterized by both redundancy and synergy. (paper)
Salimi, Parisa; Hamedi, Mohsen; Jamshidi, Nima; Vismeh, Milad
2017-04-01
Diabetes and its associated complications are realized as one of the most challenging medical conditions threatening more than 29 million people only in the USA. The forecasts suggest a suffering of more than half a billion worldwide by 2030. Amid all diabetic complications, diabetic foot ulcer (DFU) has attracted much scientific investigations to lead to a better management of this disease. In this paper, a system thinking methodology is adopted to investigate the dynamic nature of the ulceration. The causal loop diagram as a tool is utilized to illustrate the well-researched relations and interrelations between causes of the DFU. The result of clustering causality evaluation suggests a vicious loop that relates external trauma to callus. Consequently a hypothesis is presented which localizes development of foot ulceration considering distribution of normal and shear stress. It specifies that normal and tangential forces, as the main representatives of external trauma, play the most important role in foot ulceration. The evaluation of this hypothesis suggests the significance of the information related to both normal and shear stress for managing DFU. The results also discusses how these two react on different locations on foot such as metatarsal head, heel and hallux. The findings of this study can facilitate tackling the complexity of DFU problem and looking for constructive mitigation measures. Moreover they lead to developing a more promising methodology for managing DFU including better prognosis, designing prosthesis and insoles for DFU and patient caring recommendations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Di, Xin; Biswal, Bharat B
2014-02-01
The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. © 2013.
Jajcay, N.; Kravtsov, S.; Tsonis, A.; Palus, M.
2017-12-01
A better understanding of dynamics in complex systems, such as the Earth's climate is one of the key challenges for contemporary science and society. A large amount of experimental data requires new mathematical and computational approaches. Natural complex systems vary on many temporal and spatial scales, often exhibiting recurring patterns and quasi-oscillatory phenomena. The statistical inference of causal interactions and synchronization between dynamical phenomena evolving on different temporal scales is of vital importance for better understanding of underlying mechanisms and a key for modeling and prediction of such systems. This study introduces and applies information theory diagnostics to phase and amplitude time series of different wavelet components of the observed data that characterizes El Niño. A suite of significant interactions between processes operating on different time scales was detected, and intermittent synchronization among different time scales has been associated with the extreme El Niño events. The mechanisms of these nonlinear interactions were further studied in conceptual low-order and state-of-the-art dynamical, as well as statistical climate models. Observed and simulated interactions exhibit substantial discrepancies, whose understanding may be the key to an improved prediction. Moreover, the statistical framework which we apply here is suitable for direct usage of inferring cross-scale interactions in nonlinear time series from complex systems such as the terrestrial magnetosphere, solar-terrestrial interactions, seismic activity or even human brain dynamics.
Directory of Open Access Journals (Sweden)
Vadim Leonidovich Ushakov
2016-10-01
Full Text Available The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively within the default mode network (DMN as represented by its key structures: the medial prefrontal cortex (MPFC, posterior cingulate cortex (PCC and the inferior parietal cortex of left (LIPC and right (RIPC hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM. Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of
Summations over equilaterally triangulated surfaces and the critical string measure
International Nuclear Information System (INIS)
Smit, D.J.; Lawrence Berkeley Lab., CA
1992-01-01
We propose a new approach to the summation over dynamically triangulated Riemann surfaces which does not rely on properties of the potential in a matrix model. Instead, we formulate a purely algebraic discretization of critical string path integral. This is combined with a technique which assigns to each equilateral triangulation of a two-dimensional surface a Riemann surface defined over a certain finite extension of the field of rational numbers, i.e. an arithmetic surface. Thus we establish a new formulated in which the sum over randomly triangulated surfaces defines an invariant measure on the moduli space of arithmetic surfaces. It is shown that because of this it is far from obvious that this measure for large genera approximates the measure defined by the continuum theory, i.e. Liouville theory or critical string theory. In low genus this subtlety does not exist. In the case of critical string theory we explicitly compute the volume of the moduli space of arithmetic surfaces in terms of the modular height function and show that for low genus it approximates correctly the continuum measure. We also discuss a continuum limit which bears some resemblance with a double scaling limit in matrix models. (orig.)
Comparison of phase space dynamics of Kopenhagen and causal interpretations of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Tempel, Christoph; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)
2013-07-01
Recent publications pursue the attempt to reconstruct Bohm trajectories experimentally utilizing the technique of weak measurements. We study the phase space dynamics of a specific double slit setup in terms of the Bohm de-Broglie formulation of quantum mechanics. We want to compare the results of those Bohmian phase space dynamics to the usual quantum mechanical phase space formulation with the Wigner function as a quasi probability density.
Ellis, George FR; Pabjan, Tadeusz
2013-01-01
Written by philosophers, cosmologists, and physicists, this collection of essays deals with causality, which is a core issue for both science and philosophy. Readers will learn about different types of causality in complex systems and about new perspectives on this issue based on physical and cosmological considerations. In addition, the book includes essays pertaining to the problem of causality in ancient Greek philosophy, and to the problem of God's relation to the causal structures of nature viewed in the light of contemporary physics and cosmology.
Optimal causal inference: estimating stored information and approximating causal architecture.
Still, Susanne; Crutchfield, James P; Ellison, Christopher J
2010-09-01
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.
Gaussian vector fields on triangulated surfaces
DEFF Research Database (Denmark)
Ipsen, John H
2016-01-01
proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...
Altitude, Orthocenter of a Triangle and Triangulation
Directory of Open Access Journals (Sweden)
Coghetto Roland
2016-03-01
Full Text Available We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides. Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.
A Sweepline Algorithm for Generalized Delaunay Triangulations
DEFF Research Database (Denmark)
Skyum, Sven
We give a deterministic O(n log n) sweepline algorithm to construct the generalized Voronoi diagram for n points in the plane or rather its dual the generalized Delaunay triangulation. The algorithm uses no transformations and it is developed solely from the sweepline paradigm together...
Triangulation applied to Jan H. van Bemmel
Hasman, A.; Bergemann, D.; McCray, A. T.; Talmon, J. L.; Zvárová, J.
2006-01-01
OBJECTIVE: To describe the person of Jan H. van Bemmel from different points of view. METHOD: Triangulation. RESULTS AND CONCLUSIONS: Jan H. van Bemmel successfully contributed to research and education in medical informatics. He inspired a lot of people in The Netherlands and internationally
Tradeoffs in Design Research: Development Oriented Triangulation
Koen van Turnhout; Sabine Craenmehr; Robert Holwerda; Mark Menijn; Jan-Pieter Zwart; René Bakker
2013-01-01
The Development Oriented Triangulation (DOT) framework in this paper can spark and focus the debate about mixed-method approaches in HCI. The framework can be used to classify HCI methods, create mixed-method designs, and to align research activities in multidisciplinary projects. The framework is
Causal Loop-based Modeling on System Dynamics for Risk Communication
Energy Technology Data Exchange (ETDEWEB)
Lee, Chang Ju [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kang, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2009-10-15
It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models.
Causal Loop-based Modeling on System Dynamics for Risk Communication
International Nuclear Information System (INIS)
Lee, Chang Ju; Kang, Kyung Min
2009-01-01
It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models
On generally covariant quantum field theory and generalized causal and dynamical structures
International Nuclear Information System (INIS)
Bannier, U.
1988-01-01
We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)
International Nuclear Information System (INIS)
Bruneton, Jean-Philippe
2007-01-01
Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories
Meng, Hao; Wang, Zhongyu; Fu, Jihua
2008-12-01
The non-diffracting beam triangulation measurement system possesses the advantages of longer measurement range, higher theoretical measurement accuracy and higher resolution over the traditional laser triangulation measurement system. Unfortunately the measurement accuracy of the system is greatly degraded due to the speckle noise, the CCD photoelectric noise and the background light noise in practical applications. Hence, some effective signal processing methods must be applied to improve the measurement accuracy. In this paper a novel effective method for removing the noises in the non-diffracting beam triangulation measurement system is proposed. In the method the grey system theory is used to process and reconstruct the measurement signal. Through implementing the grey dynamic filtering based on the dynamic GM(1,1), the noises can be effectively removed from the primary measurement data and the measurement accuracy of the system can be improved as a result.
International Nuclear Information System (INIS)
Bouri, Elie
2015-01-01
Within the new developed causality-in-variance approach, this paper builds up a broad methodological framework to more accurately capture the risk spillover effects between global oil prices and Jordanian stock market returns during the period 1 March 2003–31 January 2014. The sample period is divided, on the basis of the 2008 financial crisis, into pre-crisis and post-crisis periods. Results for the pre-crisis period show a lack of risk spillovers between global oil and the Jordanian stock market. After the crisis, however, we find evidence for one-way risk spillover running from the oil market. These findings have implications for the design of appropriate asset allocation and regulatory policies to manage risk spillover effects. -- Highlights: •A broad methodological framework accurately seizes dynamic risk spillover between oil prices and Jordanian stock returns. •We find insignificant risk spillover until the start of the financial crisis. •Crude oil transmits its risk to the Jordanian stock market
Pre-processing for Triangulation of Probabilistic Networks
Bodlaender, H.L.; Koster, A.M.C.A.; Eijkhof, F. van den; Gaag, L.C. van der
2001-01-01
The currently most efficient algorithm for inference with a probabilistic network builds upon a triangulation of a networks graph. In this paper, we show that pre-processing can help in finding good triangulations for probabilistic networks, that is, triangulations with a minimal maximum
Korzeniewska, Anna; Franaszczuk, Piotr J; Crainiceanu, Ciprian M; Kuś, Rafał; Crone, Nathan E
2011-06-15
Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (>60Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC "divergence", were also sites where high gamma power increases were most prominent and where electrocortical stimulation mapping
Morabia, Alfredo
2005-01-01
Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.
Stereo-tomography in triangulated models
Yang, Kai; Shao, Wei-Dong; Xing, Feng-yuan; Xiong, Kai
2018-04-01
Stereo-tomography is a distinctive tomographic method. It is capable of estimating the scatterer position, the local dip of scatterer and the background velocity simultaneously. Building a geologically consistent velocity model is always appealing for applied and earthquake seismologists. Differing from the previous work to incorporate various regularization techniques into the cost function of stereo-tomography, we think extending stereo-tomography to the triangulated model will be the most straightforward way to achieve this goal. In this paper, we provided all the Fréchet derivatives of stereo-tomographic data components with respect to model components for slowness-squared triangulated model (or sloth model) in 2D Cartesian coordinate based on the ray perturbation theory for interfaces. A sloth model representation means a sparser model representation when compared with conventional B-spline model representation. A sparser model representation leads to a smaller scale of stereo-tomographic (Fréchet) matrix, a higher-accuracy solution when solving linear equations, a faster convergence rate and a lower requirement for quantity of data space. Moreover, a quantitative representation of interface strengthens the relationships among different model components, which makes the cross regularizations among these model components, such as node coordinates, scatterer coordinates and scattering angles, etc., more straightforward and easier to be implemented. The sensitivity analysis, the model resolution matrix analysis and a series of synthetic data examples demonstrate the correctness of the Fréchet derivatives, the applicability of the regularization terms and the robustness of the stereo-tomography in triangulated model. It provides a solid theoretical foundation for the real applications in the future.
Marginal elasticity of periodic triangulated origami
Chen, Bryan; Sussman, Dan; Lubensky, Tom; Santangelo, Chris
Origami, the classical art of folding paper, has inspired much recent work on assembling complex 3D structures from planar sheets. Origami, and more generally hinged structures with rigid panels, where all faces are triangles have special properties due to having a bulk balance of mechanical degrees of freedom and constraints. We study two families of periodic triangulated origami structures, one based on the Miura ori and one based on a kagome-like pattern due to Ron Resch. We point out the consequences of the balance of degrees of freedom and constraints for these ''metamaterial plates'' and show how the elasticity can be tuned by changing the unit cell geometry.
Methodological triangulation in work life research
DEFF Research Database (Denmark)
Warring, Niels
Based on examples from two research projects on preschool teachers' work, the paper will discuss potentials and challenges in methodological triangulation in work life research. Analysis of ethnographic and phenomenological inspired observations of everyday life in day care centers formed the basis...... for individual interviews and informal talks with employees. The interviews and conversations were based on a critical hermeneutic approach. The analysis of observations and interviews constituted a knowledge base as the project went in to the last phase: action research workshops. In the workshops findings from...
Entropy for theories with indefinite causal structure
International Nuclear Information System (INIS)
Markes, Sonia; Hardy, Lucien
2011-01-01
Any theory with definite causal structure has a defined past and future, be it defined by light cones or an absolute time scale. Entropy is a concept that has traditionally been reliant on a definite notion of causality. However, without a definite notion of causality, the concept of entropy is not all lost. Indefinite causal structure results from combining probabilistic predictions and dynamical space-time. The causaloid framework lays the mathematical groundwork to be able to treat indefinite causal structure. In this paper, we build on the causaloid mathematics and define a causally-unbiased entropy for an indefinite causal structure. In defining a causally-unbiased entropy, there comes about an emergent idea of causality in the form of a measure of causal connectedness, termed the Q factor.
Triangulation-based 3D surveying borescope
Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.
2016-04-01
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
TRIANGULATION OF METHODS OF CAREER EDUCATION
Directory of Open Access Journals (Sweden)
Marija Turnsek Mikacic
2015-09-01
Full Text Available This paper is an overview of the current research in the field of career education and career planning. Presented results constitute a model based on the insight into different theories and empirical studies about career planning as a building block of personal excellence. We defined credibility, transferability and reliability of the research by means of triangulation. As sources of data of triangulation we included essays of participants of education and questionnaires. Qualitative analysis represented the framework for the construction of the paradigmatic model and the formulation of the final theory. We formulated a questionnaire on the basis of our own experiences in the area of the education of individuals. The quantitative analysis, based on the results of the interviews, confirms the following three hypotheses: The individuals who elaborated a personal career plan and acted accordingly, changed their attitudes towards their careers and took control over their lives; in addition, they achieved a high level of self-esteem and self-confidence, in tandem with the perception of personal excellence, in contrast to the individuals who did not participate in career education and did not elaborate a career plan. We used the tools of NLP (neurolinguistic programming as an additional technique at learning.
International Nuclear Information System (INIS)
Lean, Hooi Hooi; Smyth, Russell
2010-01-01
This paper employs annual data from 1971 to 2006 to examine the causal relationship between aggregate output, electricity consumption, exports, labor and capital in a multivariate model for Malaysia. We find that there is bidirectional Granger causality running between aggregate output and electricity consumption. The policy implication of this result is that Malaysia should adopt the dual strategy of increasing investment in electricity infrastructure and stepping up electricity conservation policies to reduce unnecessary wastage of electricity, in order to avoid the negative effect of reducing electricity consumption on aggregate output. We also find support for the export-led hypothesis which states Granger causality runs from exports to aggregate output. This result is consistent with Malaysia pursuing a successful export-orientated strategy. (author)
The Use of Causal Mapping in the Design of Sustainability Performance Measurement Systems
DEFF Research Database (Denmark)
Parisi, Cristiana
2013-01-01
organisations’ strategic performance measurement systems (SPMSs). This study’s main contribution is the triangulation of multiple qualitative methods to enhance the reliability of causal maps. This innovative approach supports the use of causal mapping to extract managerial tacit knowledge in order to identify...
Causality discovery technology
Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.
2012-11-01
Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.
Measuring and Controlling Fairness of Triangulations
Jiang, Caigui
2016-09-30
The fairness of meshes that represent geometric shapes is a topic that has been studied extensively and thoroughly. However, the focus in such considerations often is not on the mesh itself, but rather on the smooth surface approximated by it, and fairness essentially expresses a mesh’s suitability for purposes such as visualization or simulation. This paper focusses on meshes in the architectural context, where vertices, edges, and faces of meshes are often highly visible, and any notion of fairness must take new aspects into account. We use concepts from discrete differential geometry (star-shaped Gauss images) to express fairness, and we also demonstrate how fairness can be incorporated into interactive geometric design of triangulated freeform skins.
Employee-satisfaction: A triangulation approach
Directory of Open Access Journals (Sweden)
P. J. Visser
1997-06-01
Full Text Available The research on employee-satisfaction was conducted in the manufacturing industry. The sample consisted of 543 employees. The methodology could be described as a "triangulation approach" where a combination of quantitative and qualitative measurements were utilised and the results of both types of measurement integrated in the study of the construct. The research confirms existing findings that although the measurement of dimensions such as equitable rewards, working conditions, supportive colleagues, job content, etc. yield results on the level of employee-satisfaction, a single question, namely, "How satisfied are you with your job?" compares favourably with the general index. The findings also suggest the advantage of complimenting the quantitative data with qualitative information. The conclusions confirm the value of a qualitative method in cross-cultural research in an African environment. Opsomming Die navorsing omtrent werknemerstevredenheid is uitgevoer in die vervaardigingsbedryf. Die steekproef het bestaan uit 543 werknemers. Die metode van ondersoek kan beskryf word as 'n "driekantige benadering" (triangulation approach waar daar van kwantitatiewe en kwalitatiewe meting gebruik gemaak is en die resultate geihtegreer is in die bestudering van die konstruk. Die navorsing bevestig bestaande bevindinge dat die meting van dimensies soos vergelykbare belonings, werkstoestande, ondersteunende kollegas, inhoud van werk, ens. resultate lewer rakende die vlak van werknemerstevredenheid, 'n enkel vraag, naamlik, "Hoe tevrede is jy met jou werk?" gunstig vergelyk met die algemene indeks. Die bevindinge dui ook op die voordele van 'n benadering waar die kwantitatiewe data gekomplimenteer word deur kwalitatiewe inligting soos verkry uit individuele onderhoude. Die gevolgtrekkings bevestig die waarde wat die kwalitatiewe navorsingsmetode inhou vir kruis-kulturele navorsing in 'n Afrika konteks.
I/O-Efficient Construction of Constrained Delaunay Triangulations
DEFF Research Database (Denmark)
Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke
2005-01-01
In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where...
Degree-regular triangulations of torus and Klein bottle
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 3 ... A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. ... In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices.
Triangulation, Respondent Validation, and Democratic Participation in Mixed Methods Research
Torrance, Harry
2012-01-01
Over the past 10 years or so the "Field" of "Mixed Methods Research" (MMR) has increasingly been exerting itself as something separate, novel, and significant, with some advocates claiming paradigmatic status. Triangulation is an important component of mixed methods designs. Triangulation has its origins in attempts to validate research findings…
On causality of extreme events
Directory of Open Access Journals (Sweden)
Massimiliano Zanin
2016-06-01
Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.
Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M
Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display interrelated vital sign changes during situations of physiological stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. The purpose of this article is to illustrate the development of patient-specific VAR models using vital sign time series data in a sample of acutely ill, monitored, step-down unit patients and determine their Granger causal dynamics prior to onset of an incident CRI. CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40-140/minute, RR = 8-36/minute, SpO2 time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity, (b) appropriate lag was determined using a lag-length selection criteria, (c) the VAR model was constructed, (d) residual autocorrelation was assessed with the Lagrange Multiplier test, (e) stability of the VAR system was checked, and (f) Granger causality was evaluated in the final stable model. The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%; i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes
Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M.
2016-01-01
Background Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display inter-related vital sign changes during situations of physiologic stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. Purpose The purpose of this article is to illustrate development of patient-specific VAR models using vital sign time series (VSTS) data in a sample of acutely ill, monitored, step-down unit (SDU) patients, and determine their Granger causal dynamics prior to onset of an incident CRI. Approach CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40–140/minute, RR = 8–36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity; (b) appropriate lag was determined using a lag-length selection criteria; (c) the VAR model was constructed; (d) residual autocorrelation was assessed with the Lagrange Multiplier test; (e) stability of the VAR system was checked; and (f) Granger causality was evaluated in the final stable model. Results The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%) (i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing
International Nuclear Information System (INIS)
Zhang, Chuanguo; Xu, Jiao
2012-01-01
The increasing attention on energy policy needs has provided a renewed stimulus to research the linkages between energy consumption and economic performance in China. This paper examined the causal relationship between energy consumption and economic growth in the regional and sectoral aspects by adopting provincial panel data in China from 1995 to 2008. The results indicate that economic growth causes more energy consumption in China not only at the national level but also at the regional and sectoral levels. Then the Eastern Region and the industrial sector show results quite similar to that of the whole country, in which a bidirectional causality relationship exists between energy consumption and economic growth. The implication for energy policies in China is that the Eastern Region and the industrial sector should play a leading role in the adjustment of energy consumption patterns and the transformation of the economy structure. Energy prices have limited effects on energy consumption but do have effects on economic growth because the energy price mechanism is more government-oriented than market-oriented in China.
Strongly minimal triangulations of (S × S )#3 and (S S
Indian Academy of Sciences (India)
2011) 986–995). We show that there are exactly 12 such triangulations up to isomorphism, 10 of which are orientable. Keywords. Stacked sphere; tight neighbourly triangulation; minimal triangulation. 2000 Mathematics Subject Classification.
Relating covariant and canonical approaches to triangulated models of quantum gravity
International Nuclear Information System (INIS)
Arnsdorf, Matthias
2002-01-01
In this paper we explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over spacetime triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularizations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulation model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory
Efficient triangulation of Poisson-disk sampled point sets
Guo, Jianwei
2014-05-06
In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches. © 2014 Springer-Verlag Berlin Heidelberg.
Looseness and Independence Number of Triangulations on Closed Surfaces
Directory of Open Access Journals (Sweden)
Nakamoto Atsuhiro
2016-08-01
Full Text Available The looseness of a triangulation G on a closed surface F2, denoted by ξ (G, is defined as the minimum number k such that for any surjection c : V (G → {1, 2, . . . , k + 3}, there is a face uvw of G with c(u, c(v and c(w all distinct. We shall bound ξ (G for triangulations G on closed surfaces by the independence number of G denoted by α(G. In particular, for a triangulation G on the sphere, we have
Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation
Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito
2014-02-01
A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.
TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD
Energy Technology Data Exchange (ETDEWEB)
Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)
2015-11-01
Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.
Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014
Directory of Open Access Journals (Sweden)
Arocha Jorge L.
2015-08-01
Full Text Available The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.
Aerial Triangulation Close-range Images with Dual Quaternion
Directory of Open Access Journals (Sweden)
SHENG Qinghong
2015-05-01
Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.
Discrete causal theory emergent spacetime and the causal metric hypothesis
Dribus, Benjamin F
2017-01-01
This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.
A TQFT of Tuarev-Viro type on shaped triangulations
Energy Technology Data Exchange (ETDEWEB)
Kashaev, Rinat [Geneva Univ. (Switzerland); Luo, Feng [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Vartanov, Grigory [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-10-15
A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.
A TQFT of Tuarev-Viro type on shaped triangulations
International Nuclear Information System (INIS)
Kashaev, Rinat; Luo, Feng
2012-10-01
A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.
Directory of Open Access Journals (Sweden)
Inken Rothkirch
Full Text Available Writer's cramp (WC is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1, supplementary motor area (SMA, globus pallidus (GP, putamen (PU and ipsilateral cerebellum (CB was investigated using dynamic causal modeling (DCM for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis
Causally nonseparable processes admitting a causal model
International Nuclear Information System (INIS)
Feix, Adrien; Araújo, Mateus; Brukner, Caslav
2016-01-01
A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities ) while others do not (they admit a ‘causal model’ analogous to a local model ). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties. (paper)
Directory of Open Access Journals (Sweden)
Sebastian Sippel
Full Text Available Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP, a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective
Directory of Open Access Journals (Sweden)
Aberle-Grasse John
2010-07-01
Full Text Available Abstract Background Public health triangulation is a process for reviewing, synthesising and interpreting secondary data from multiple sources that bear on the same question to make public health decisions. It can be used to understand the dynamics of HIV transmission and to measure the impact of public health programs. While traditional intervention research and metaanalysis would be ideal sources of information for public health decision making, they are infrequently available, and often decisions can be based only on surveillance and survey data. Methods The process involves examination of a wide variety of data sources and both biological, behavioral and program data and seeks input from stakeholders to formulate meaningful public health questions. Finally and most importantly, it uses the results to inform public health decision-making. There are 12 discrete steps in the triangulation process, which included identification and assessment of key questions, identification of data sources, refining questions, gathering data and reports, assessing the quality of those data and reports, formulating hypotheses to explain trends in the data, corroborating or refining working hypotheses, drawing conclusions, communicating results and recommendations and taking public health action. Results Triangulation can be limited by the quality of the original data, the potentials for ecological fallacy and "data dredging" and reproducibility of results. Conclusions Nonetheless, we believe that public health triangulation allows for the interpretation of data sets that cannot be analyzed using meta-analysis and can be a helpful adjunct to surveillance, to formal public health intervention research and to monitoring and evaluation, which in turn lead to improved national strategic planning and resource allocation.
Directory of Open Access Journals (Sweden)
Bongsuk Sung
2018-04-01
Full Text Available This study explores how political–economic forces could affect export performance in the renewable energy technologies market. We conduct panel framework analyses to verify the characteristics of panel data for 19 countries before establishing the panel estimator meant to test the effects of political–economic forces on export specialization. We consider the results of the panel framework analyses and develop an empirical model to test casual dynamic relationships between political–economic forces and export performance. The results from the least squares dummy variable-corrected estimation indicate that the major factors promoting the export specialization of renewable energy technologies are, in order of decreasing importance, public pressure, market size, and government demand-pull policy. However, the traditional energy industry has no significant effect on export performance. Finally, this study finds that dynamic effects exist in all estimations.
Ren, Su-Li; Li, Yi-Han; Ou, Da; Guo, Yan-Jun; Qureshi, Jawwad A; Stansly, Philip A; Qiu, Bao-Li
2018-03-23
Wolbachia is a group of intracellular bacteria that infect a wide range of arthropods including the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. This insect is the vector of Candidatus Liberibacter asiaticus (CLas), the causal pathogen of Huanglongbing or citrus greening disease. Here, we investigated the localization pattern and infection dynamics of Wolbachia in different developmental stages of ACP. Results revealed that all developmental stages of ACP including egg, 1st-5th instar nymphs, and adults of both gender were infected with Wolbachia. FISH visualization of an ACP egg showed that Wolbachia moved from the egg stalk of newly laid eggs to a randomly distributed pattern throughout the egg prior to hatching. The infection rate varied between nymphal instars. The titers of Wolbachia in fourth and fifth instar nymphs were significantly higher than those in the first and second instar nymphs. Wolbachia were scattered in all nymphal stages, but with highest intensity in the U-shaped bacteriome located in the abdomen of the nymph. Wolbachia was confined to two symmetrical organizations in the abdomen of newly emerged female and male adults. The potential mechanisms of Wolbachia infection dynamics are discussed. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Omri, Anis; Kahouli, Bassem
2014-01-01
This paper examines the interrelationships between energy consumption, foreign direct investment and economic growth using dynamic panel data models in simultaneous-equations for a global panel consisting of 65 countries. The time component of our dataset is 1990–2011 inclusive. To make the panel data analysis more homogenous, we also investigate this interrelationship for a number of sub-panels which are constructed based on the income level of countries. In this way, we end up with three income panels; namely, high income, middle income, and low income panels. In the empirical part, we draw on the growth theory and augment the classical growth model, which consists of capital stock, labor force and inflation, with foreign direct investment and energy. Generally, we show mixed results about the interrelationship between energy consumption, FDI and economic growth. - Highlights: • We examine the energy–FDI–growth nexus for a global panel of 65 countries. • Dynamic simultaneous-equation panel data models are used to address this issue. • We also investigate this nexus for three sub-panels which are constructed based on the income level of countries. • We show mixed results about the interrelationship between the three variables
Quantum Gravity, Dynamical Triangulation and Higer Derivative Regularization
DEFF Research Database (Denmark)
Ambjorn, J.; Jurkiewicz, J.; Kristjansen, C. F.
1992-01-01
We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an $R^2$-term. The phase diagram as a function of the bare coupling constants is studied in the search for a sens......We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an $R^2$-term. The phase diagram as a function of the bare coupling constants is studied in the search...
Jones, Robert
2010-03-01
There are a wide range of views on causality. To some (e.g. Karl Popper) causality is superfluous. Bertrand Russell said ``In advanced science the word cause never occurs. Causality is a relic of a bygone age.'' At the other extreme Rafael Sorkin and L. Bombelli suggest that space and time do not exist but are only an approximation to a reality that is simply a discrete ordered set, a ``causal set.'' For them causality IS reality. Others, like Judea Pearl and Nancy Cartwright are seaking to build a complex fundamental theory of causality (Causality, Cambridge Univ. Press, 2000) Or perhaps a theory of causality is simply the theory of functions. This is more or less my take on causality.
International Nuclear Information System (INIS)
Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.
1987-01-01
We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit
Taming the cosmological constant in 2D causal quantum gravity with topology change
Loll, R.; Westra, W.; Zohren, S.
2005-01-01
As shown in previous work, there is a well-defined nonperturbative gravitational path integral including an explicit sum over topologies in the setting of Causal Dy- namical Triangulations in two dimensions. In this paper we derive a complete ana- lytical solution of the quantum continuum
Directory of Open Access Journals (Sweden)
Cristina Puente Águeda
2011-10-01
Full Text Available Causality is a fundamental notion in every field of science. Since the times of Aristotle, causal relationships have been a matter of study as a way to generate knowledge and provide for explanations. In this paper I review the notion of causality through different scientific areas such as physics, biology, engineering, etc. In the scientific area, causality is usually seen as a precise relation: the same cause provokes always the same effect. But in the everyday world, the links between cause and effect are frequently imprecise or imperfect in nature. Fuzzy logic offers an adequate framework for dealing with imperfect causality, so a few notions of fuzzy causality are introduced.
Internet information triangulation: Design theory and prototype evaluation
Wijnhoven, Alphonsus B.J.M.; Brinkhuis, Michel
2014-01-01
Many discussions exist regarding the credibility of information on the Internet. Similar discussions happen on the interpretation of social scientific research data, for which information triangulation has been proposed as a useful method. In this article, we explore a design theory—consisting of a
Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation
Bi, Qiao; Guo, Liu; Ruda, H. E.
2010-01-01
A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.
Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation
Directory of Open Access Journals (Sweden)
Qiao Bi
2010-01-01
Full Text Available A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.
Constructing Delaunay triangulations along space-filling curves
Buchin, K.; Fiat, A.; Sanders, P.
2009-01-01
Incremental construction con BRIO using a space-filling curve order for insertion is a popular algorithm for constructing Delaunay triangulations. So far, it has only been analyzed for the case that a worst-case optimal point location data structure is used which is often avoided in implementations.
Triangulating' AMPATH: Demonstration of a multi-perspective ...
African Journals Online (AJOL)
For strategic planning, the Kenyan HIV/AIDS programme AMPATH (Academic Model Providing Access to Healthcare) sought to evaluate its performance in 2006. The method used for this evaluation was termed 'triangulation,' because it used information from three different sources – patients, communities, and programme ...
Path integral measure and triangulation independence in discrete gravity
Dittrich, Bianca; Steinhaus, Sebastian
2012-02-01
A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.
A grand-canonical ensemble of randomly triangulated surfaces
International Nuclear Information System (INIS)
Jurkiewicz, J.; Krzywicki, A.; Petersson, B.
1986-01-01
An algorithm is presented generating the grand-canonical ensemble of discrete, randomly triangulated Polyakov surfaces. The algorithm is used to calculate the susceptibility exponent, which controls the existence of the continuum limit of the considered model, for the dimensionality of the embedding space ranging from 0 to 20. (orig.)
Rehder, Bob
2017-01-01
This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…
How to Be Causal: Time, Spacetime and Spectra
Kinsler, Paul
2011-01-01
I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…
An overview of the stereo correlation and triangulation formulations used in DICe.
Energy Technology Data Exchange (ETDEWEB)
Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-02-01
This document provides a detailed overview of the stereo correlation algorithm and triangulation formulation used in the Digital Image Correlation Engine (DICe) to triangulate three dimensional motion in space given the image coordinates and camera calibration parameters.
Causal imprinting in causal structure learning.
Taylor, Eric G; Ahn, Woo-Kyoung
2012-11-01
Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.
An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor
Liscombe, Michael
3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.
Directory of Open Access Journals (Sweden)
Long-Biao eCui
2015-11-01
Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.
Directory of Open Access Journals (Sweden)
Marcela Perrone-Bertolotti
2017-06-01
Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.
Causal Dynamics of Discrete Surfaces
Directory of Open Access Journals (Sweden)
Pablo Arrighi
2014-03-01
Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.
Random discrete Morse theory and a new library of triangulations
DEFF Research Database (Denmark)
Benedetti, Bruno; Lutz, Frank Hagen
2014-01-01
We introduce random discrete Morse theory as a computational scheme to measure the complexity of a triangulation. The idea is to try to quantify the frequency of discrete Morse matchings with few critical cells. Our measure will depend on the topology of the space, but also on how nicely the space...... is triangulated. The scheme we propose looks for optimal discrete Morse functions with an elementary random heuristic. Despite its naiveté, this approach turns out to be very successful even in the case of huge inputs. In our view, the existing libraries of examples in computational topology are “too easy......” for testing algorithms based on discrete Morse theory. We propose a new library containing more complicated (and thus more meaningful) test examples....
Repeated causal decision making.
Hagmayer, York; Meder, Björn
2013-01-01
Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Triangulation based inclusion probabilities: a design-unbiased sampling approach
Fehrmann, Lutz; Gregoire, Timothy; Kleinn, Christoph
2011-01-01
A probabilistic sampling approach for design-unbiased estimation of area-related quantitative characteristics of spatially dispersed population units is proposed. The developed field protocol includes a fixed number of 3 units per sampling location and is based on partial triangulations over their natural neighbors to derive the individual inclusion probabilities. The performance of the proposed design is tested in comparison to fixed area sample plots in a simulation with two forest stands. ...
Quantum triangulations. Moduli spaces, strings, and quantum computing
Energy Technology Data Exchange (ETDEWEB)
Carfora, Mauro; Marzouli, Annalisa [Univ. degli Studi di Pavia (Italy). Dipt. Fisica Nucleare e Teorica; Istituto Nazionale di Fisica Nucleare e Teorica, Pavia (Italy)
2012-07-01
Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment. The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest. This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications. (orig.)
[Causal analysis approaches in epidemiology].
Dumas, O; Siroux, V; Le Moual, N; Varraso, R
2014-02-01
Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the
Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma
2017-07-20
Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.
Granger Causality Testing with Intensive Longitudinal Data.
Molenaar, Peter C M
2018-06-01
The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.
The Continuum Limit of Causal Fermion Systems
Finster, Felix
2016-01-01
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries." The dynamics is described by...
Entanglement, holography and causal diamonds
de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.
2016-08-01
We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Entanglement, holography and causal diamonds
Energy Technology Data Exchange (ETDEWEB)
Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2016-08-29
We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Repeated Causal Decision Making
Hagmayer, York; Meder, Bjorn
2013-01-01
Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.; Torres, J.; Oliveira, H.P. de
1989-01-01
A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author) [pt
Causal Analysis After Haavelmo
Heckman, James; Pinto, Rodrigo
2014-01-01
Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Causality in Europeanization Research
DEFF Research Database (Denmark)
Lynggaard, Kennet
2012-01-01
to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality......Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours......, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This chapter deals with the question of how we may move from the study...
Directory of Open Access Journals (Sweden)
Thomas eWidlok
2014-11-01
Full Text Available Cognitive Scientists interested in causal cognition increasingly search for evidence from non-WEIRD people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition.
Directory of Open Access Journals (Sweden)
Ämin Baumeler
2017-07-01
Full Text Available Computation models such as circuits describe sequences of computation steps that are carried out one after the other. In other words, algorithm design is traditionally subject to the restriction imposed by a fixed causal order. We address a novel computing paradigm beyond quantum computing, replacing this assumption by mere logical consistency: We study non-causal circuits, where a fixed time structure within a gate is locally assumed whilst the global causal structure between the gates is dropped. We present examples of logically consistent non-causal circuits outperforming all causal ones; they imply that suppressing loops entirely is more restrictive than just avoiding the contradictions they can give rise to. That fact is already known for correlations as well as for communication, and we here extend it to computation.
Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation
DEFF Research Database (Denmark)
Karagiannis, Georgios; Antón Castro, Francesc/François; Mioc, Darka
2016-01-01
An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detec...... of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches....
Laser triangulation method for measuring the size of parking claw
Liu, Bo; Zhang, Ming; Pang, Ying
2017-10-01
With the development of science and technology and the maturity of measurement technology, the 3D profile measurement technology has been developed rapidly. Three dimensional measurement technology is widely used in mold manufacturing, industrial inspection, automatic processing and manufacturing, etc. There are many kinds of situations in scientific research and industrial production. It is necessary to transform the original mechanical parts into the 3D data model on the computer quickly and accurately. At present, many methods have been developed to measure the contour size, laser triangulation is one of the most widely used methods.
Optimizing 3D Triangulations to Recapture Sharp Edges
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas
2006-01-01
In this report, a technique for optimizing 3D triangulations is proposed. The method seeks to minimize an energy defined as a sum of energy terms for each edge in a triangle mesh. The main contribution is a novel per edge energy which strikes a balance between penalizing dihedral angle yet allowing...... sharp edges. The energy is minimized using edge swapping, and this can be done either in a greedy fashion or using simulated annealing. The latter is more costly, but effectively avoids local minima. The method has been used on a number of models. Particularly good results have been obtained on digital...
Recent development of micro-triangulation for magnet fiducialisation
Vlachakis, Vasileios; Mainaud Durand, Helene; CERN. Geneva. ATS Department
2016-01-01
The micro-triangulation method is proposed as an alternative for magnet fiducialisation. The main objective is to measure horizontal and vertical angles to fiducial points and stretched wires, utilising theodolites equipped with cameras. This study aims to develop various methods, algorithms and software tools to enable the data acquisition and processing. In this paper, we present the first test measurement as an attempt to demonstrate the feasibility of the method and to evaluate the accuracy. The preliminary results are very promising, with accuracy always better than 20 μm for the wire position, and of about40 μm/m for the wire orientation, compared with a coordinate measuring machine.
Causality and headache triggers
Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.
2013-01-01
Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872
D'Ariano, Giacomo Mauro
2018-07-13
Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Three-Dimensional Reconstruction Optical System Using Shadows Triangulation
Barba, J. Leiner; Vargas, Q. Lorena; Torres, M. Cesar; Mattos, V. Lorenzo
2008-04-01
In this work is developed a three-dimensional reconstruction system using the Shades3D tool of the Matlab® Programming Language and materials of low cost, such as webcam camera, a stick, a weak structured lighting system composed by a desk lamp, and observation plane in which the object is located. The reconstruction is obtained through a triangulation process that is executed after acquiring a sequence of images of the scene with a shadow projected on the object; additionally an image filtering process is done for obtaining only the part of the scene that will be reconstructed. Previously, it is necessary to develop a calibration process for determining the internal camera geometric and optical characteristics (intrinsic parameters), and the 3D position and orientation of the camera frame relative to a certain world coordinate system (extrinsic parameters). The lamp and the stick are used to produce a shadow which scans the object; in this technique, it is not necessary to know the position of the light source, instead the triangulation is obtained using shadow plane produced by intersection between the stick and the illumination pattern. The webcam camera captures all images with the shadow scanning the object, and Shades3D tool processes all information taking into account captured images and calibration parameters. Likewise, this technique is evaluated in the reconstruction of parts of the human body and its application in the detection of external abnormalities and elaboration of prosthesis or implant.
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Directory of Open Access Journals (Sweden)
Tarja Tiainen
2006-10-01
Full Text Available This article contains critical reflections of a multidisciplinary research group studying the human and technological dynamics around some newly offered electronic services in a specific rural area of Finland. For their research, the group adopted ethnography. On facing the challenges of doing ethnographic research in a multidisciplinary setting, the group evolved its own breed of research practice based on multiple forms of triangulation. This implied the use of multiple data sources, methods, theories, and researchers, in different combinations. One of the outcomes of the work is a model for collaborative research. It highlights, among others, the importance of creating a climate for collaboration within the research group and following a process of individual and collaborative writing to achieve the potential benefits of such research. The article also identifies a set of remaining challenges relevant to collaborative research.
Rate-Agnostic (Causal) Structure Learning.
Plis, Sergey; Danks, David; Freeman, Cynthia; Calhoun, Vince
2015-12-01
Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a "rate-agnostic" manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling.
International Nuclear Information System (INIS)
Maund, J.B.
1979-01-01
Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity
Entanglement, non-Markovianity, and causal non-separability
Milz, Simon; Pollock, Felix A.; Le, Thao P.; Chiribella, Giulio; Modi, Kavan
2018-03-01
Quantum mechanics, in principle, allows for processes with indefinite causal order. However, most of these causal anomalies have not yet been detected experimentally. We show that every such process can be simulated experimentally by means of non-Markovian dynamics with a measurement on additional degrees of freedom. In detail, we provide an explicit construction to implement arbitrary a causal processes. Furthermore, we give necessary and sufficient conditions for open system dynamics with measurement to yield processes that respect causality locally, and find that tripartite entanglement and nonlocal unitary transformations are crucial requirements for the simulation of causally indefinite processes. These results show a direct connection between three counter-intuitive concepts: entanglement, non-Markovianity, and causal non-separability.
Triangulation-based edge measurement using polyview optics
Li, Yinan; Kästner, Markus; Reithmeier, Eduard
2018-04-01
Laser triangulation sensors as non-contact measurement devices are widely used in industry and research for profile measurements and quantitative inspections. Some technical applications e.g. edge measurements usually require a configuration of a single sensor and a translation stage or a configuration of multiple sensors, so that they can measure a large measurement range that is out of the scope of a single sensor. However, the cost of both configurations is high, due to the additional rotational axis or additional sensor. This paper provides a special measurement system for measurement of great curved surfaces based on a single sensor configuration. Utilizing a self-designed polyview optics and calibration process, the proposed measurement system allows an over 180° FOV (field of view) with a precise measurement accuracy as well as an advantage of low cost. The detailed capability of this measurement system based on experimental data is discussed in this paper.
Accuracy enhancement of point triangulation probes for linear displacement measurement
Kim, Kyung-Chan; Kim, Jong-Ahn; Oh, SeBaek; Kim, Soo Hyun; Kwak, Yoon Keun
2000-03-01
Point triangulation probes (PTBs) fall into a general category of noncontact height or displacement measurement devices. PTBs are widely used for their simple structure, high resolution, and long operating range. However, there are several factors that must be taken into account in order to obtain high accuracy and reliability; measurement errors from inclinations of an object surface, probe signal fluctuations generated by speckle effects, power variation of a light source, electronic noises, and so on. In this paper, we propose a novel signal processing algorithm, named as EASDF (expanded average square difference function), for a newly designed PTB which is composed of an incoherent source (LED), a line scan array detector, a specially selected diffuse reflecting surface, and several optical components. The EASDF, which is a modified correlation function, is able to calculate displacement between the probe and the object surface effectively even if there are inclinations, power fluctuations, and noises.
Technique Triangulation for Validation in Directed Content Analysis
Directory of Open Access Journals (Sweden)
Áine M. Humble PhD
2009-09-01
Full Text Available Division of labor in wedding planning varies for first-time marriages, with three types of couples—traditional, transitional, and egalitarian—identified, but nothing is known about wedding planning for remarrying individuals. Using semistructured interviews, the author interviewed 14 couples in which at least one person had remarried and used directed content analysis to investigate the extent to which the aforementioned typology could be transferred to this different context. In this paper she describes how a triangulation of analytic techniques provided validation for couple classifications and also helped with moving beyond “blind spots” in data analysis. Analytic approaches were the constant comparative technique, rank order comparison, and visual representation of coding, using MAXQDA 2007's tool called TextPortraits.
On-Line Metrology with Conoscopic Holography: Beyond Triangulation
Directory of Open Access Journals (Sweden)
Ignacio Álvarez
2009-09-01
Full Text Available On-line non-contact surface inspection with high precision is still an open problem. Laser triangulation techniques are the most common solution for this kind of systems, but there exist fundamental limitations to their applicability when high precisions, long standoffs or large apertures are needed, and when there are difficult operating conditions. Other methods are, in general, not applicable in hostile environments or inadequate for on-line measurement. In this paper we review the latest research in Conoscopic Holography, an interferometric technique that has been applied successfully in this kind of applications, ranging from submicrometric roughness measurements, to long standoff sensors for surface defect detection in steel at high temperatures.
Causality violation, gravitational shockwaves and UV completion
Energy Technology Data Exchange (ETDEWEB)
Hollowood, Timothy J.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)
2016-03-18
The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of “time machines”, i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.
A quantum causal discovery algorithm
Giarmatzi, Christina; Costa, Fabio
2018-03-01
Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.
Olafsson, Gestur; Helgason, Sigurdur
1996-01-01
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Causal inference in econometrics
Kreinovich, Vladik; Sriboonchitta, Songsak
2016-01-01
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
Encoding dependence in Bayesian causal networks
Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...
The chromatic class and the chromatic number of the planar conjugated triangulation
Malinina, Natalia
2013-01-01
This material is dedicated to the estimation of the chromatic number and chromatic class of the conjugated triangulation (first conversion) and also of the second conversion of the planar triangulation. Also this paper introduces some new hypotheses, which are equivalent to Four Color Problem.
A REST Service for Triangulation of Point Sets Using Oriented Matroids
Directory of Open Access Journals (Sweden)
José Antonio Valero Medina
2014-05-01
Full Text Available This paper describes the implementation of a prototype REST service for triangulation of point sets collected by mobile GPS receivers. The first objective of this paper is to test functionalities of an application, which exploits mobile devices’ capabilities to get data associated with their spatial location. A triangulation of a set of points provides a mechanism through which it is possible to produce an accurate representation of spatial data. Such triangulation may be used for representing surfaces by Triangulated Irregular Networks (TINs, and for decomposing complex two-dimensional spatial objects into simpler geometries. The second objective of this paper is to promote the use of oriented matroids for finding alternative solutions to spatial data processing and analysis tasks. This study focused on the particular case of the calculation of triangulations based on oriented matroids. The prototype described in this paper used a wrapper to integrate and expose several tools previously implemented in C++.
Maximally causal quantum mechanics
International Nuclear Information System (INIS)
Roy, S.M.
1998-01-01
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)
DEFF Research Database (Denmark)
Nielsen, Max; Jensen, Frank; Setälä, Jari
2011-01-01
to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological...
Czech Academy of Sciences Publication Activity Database
Hvorecký, Juraj
2012-01-01
Roč. 19, Supp.2 (2012), s. 64-69 ISSN 1335-0668 R&D Projects: GA ČR(CZ) GAP401/12/0833 Institutional support: RVO:67985955 Keywords : conciousness * free will * determinism * causality Subject RIV: AA - Philosophy ; Religion
Explaining through causal mechanisms
Biesbroek, Robbert; Dupuis, Johann; Wellstead, Adam
2017-01-01
This paper synthesizes and builds on recent critiques of the resilience literature; namely that the field has largely been unsuccessful in capturing the complexity of governance processes, in particular cause–effects relationships. We demonstrate that absence of a causal model is reflected in the
Does Causality Matter More Now? Increase in the Proportion of Causal Language in English Texts.
Iliev, Rumen; Axelrod, Robert
2016-05-01
The vast majority of the work on culture and cognition has focused on cross-cultural comparisons, largely ignoring the dynamic aspects of culture. In this article, we provide a diachronic analysis of causal cognition over time. We hypothesized that the increased role of education, science, and technology in Western societies should be accompanied by greater attention to causal connections. To test this hypothesis, we compared word frequencies in English texts from different time periods and found an increase in the use of causal language of about 40% over the past two centuries. The observed increase was not attributable to general language effects or to changing semantics of causal words. We also found that there was a consistent difference between the 19th and the 20th centuries, and that the increase happened mainly in the 20th century. © The Author(s) 2016.
Branches of Triangulated Origami Near the Unfolded State
Directory of Open Access Journals (Sweden)
Bryan Gin-ge Chen
2018-02-01
Full Text Available Origami structures are characterized by a network of folds and vertices joining unbendable plates. For applications to mechanical design and self-folding structures, it is essential to understand the interplay between the set of folds in the unfolded origami and the possible 3D folded configurations. When deforming a structure that has been folded, one can often linearize the geometric constraints, but the degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this set consists of a number of distinct “branches” which intersect at the unfolded state, and that the number of these branches is exponential in the number of vertices. We find numerical and analytical evidence that suggests that the branches are characterized by choosing each internal vertex to either “pop up” or “pop down.” The large number of pathways along which one can fold an initially unfolded origami structure strongly indicates that a generic structure is likely to become trapped in a “misfolded” state. Thus, new techniques for creating self-folding origami are likely necessary; controlling the popping state of the vertices may be one possibility.
Branches of Triangulated Origami Near the Unfolded State
Chen, Bryan Gin-ge; Santangelo, Christian D.
2018-01-01
Origami structures are characterized by a network of folds and vertices joining unbendable plates. For applications to mechanical design and self-folding structures, it is essential to understand the interplay between the set of folds in the unfolded origami and the possible 3D folded configurations. When deforming a structure that has been folded, one can often linearize the geometric constraints, but the degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this set consists of a number of distinct "branches" which intersect at the unfolded state, and that the number of these branches is exponential in the number of vertices. We find numerical and analytical evidence that suggests that the branches are characterized by choosing each internal vertex to either "pop up" or "pop down." The large number of pathways along which one can fold an initially unfolded origami structure strongly indicates that a generic structure is likely to become trapped in a "misfolded" state. Thus, new techniques for creating self-folding origami are likely necessary; controlling the popping state of the vertices may be one possibility.
A Delaunay Triangulation Approach For Segmenting Clumps Of Nuclei
International Nuclear Information System (INIS)
Wen, Quan; Chang, Hang; Parvin, Bahram
2009-01-01
Cell-based fluorescence imaging assays have the potential to generate massive amount of data, which requires detailed quantitative analysis. Often, as a result of fixation, labeled nuclei overlap and create a clump of cells. However, it is important to quantify phenotypic read out on a cell-by-cell basis. In this paper, we propose a novel method for decomposing clumps of nuclei using high-level geometric constraints that are derived from low-level features of maximum curvature computed along the contour of each clump. Points of maximum curvature are used as vertices for Delaunay triangulation (DT), which provides a set of edge hypotheses for decomposing a clump of nuclei. Each hypothesis is subsequently tested against a constraint satisfaction network for a near optimum decomposition. The proposed method is compared with other traditional techniques such as the watershed method with/without markers. The experimental results show that our approach can overcome the deficiencies of the traditional methods and is very effective in separating severely touching nuclei.
Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine.
Pecak, Matija; Korošec, Peter; Kunej, Tanja
2018-06-01
Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.
Illness causal beliefs in Turkish immigrants
Directory of Open Access Journals (Sweden)
Klimidis Steven
2007-07-01
persists despite modernizing and acculturative influences. Different types of causal beliefs are held in relation to somatic or mental illness, and a variety of apparently logically incompatible beliefs may be concurrently held. Illness causal beliefs are dynamic and are related to demographic, modernizing, and acculturative factors, and to the current presence of illness. Any assumption of uniformity of illness causal beliefs within a community, even one that is relatively culturally homogeneous, is likely to be misleading. A better understanding of the diversity, and determinants, of illness causal beliefs can be of value in improving our understanding of illness experience, the clinical process, and in developing more effective health services and population health strategies.
Illness causal beliefs in Turkish immigrants.
Minas, Harry; Klimidis, Steven; Tuncer, Can
2007-07-24
types of causal beliefs are held in relation to somatic or mental illness, and a variety of apparently logically incompatible beliefs may be concurrently held. Illness causal beliefs are dynamic and are related to demographic, modernizing, and acculturative factors, and to the current presence of illness. Any assumption of uniformity of illness causal beliefs within a community, even one that is relatively culturally homogeneous, is likely to be misleading. A better understanding of the diversity, and determinants, of illness causal beliefs can be of value in improving our understanding of illness experience, the clinical process, and in developing more effective health services and population health strategies.
Bulk viscous cosmology with causal transport theory
International Nuclear Information System (INIS)
Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried
2011-01-01
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8
Gravity and matter in causal set theory
International Nuclear Information System (INIS)
Sverdlov, Roman; Bombelli, Luca
2009-01-01
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x) for a set of fields f is recast into a quasilocal expression L 0 (f;p,q) that depends on pairs of causally related points pprq and is a function of the values of f in the Alexandrov set defined by those points, and whose limit as p and q approach a common point x is L(f;x). We then describe how to discretize L 0 (f;p,q) and use it to define a causal-set-based action.
DEFF Research Database (Denmark)
Bhuiyan, Tanveer Ahmed; Graff, Claus; Kanters, J.K.
2013-01-01
Drug-induced triangulation of the cardiac action potential is associated with increased risk of arrhythmic events. It has been suggested that triangulation causes a flattening of the electrocardiographic T-wave but the relationship between triangulation, T-wave flattening and onset of arrhythmia ...
Operator ordering and causality
Plimak, L. I.; Stenholm, S. T.
2011-01-01
It is shown that causality violations [M. de Haan, Physica 132A, 375, 397 (1985)], emerging when the conventional definition of the time-normal operator ordering [P.L.Kelley and W.H.Kleiner, Phys.Rev. 136, A316 (1964)] is taken outside the rotating wave approximation, disappear when the amended definition [L.P. and S.S., Annals of Physics, 323, 1989 (2008)] of this ordering is used.
International Nuclear Information System (INIS)
Lucas, J.R.
1984-01-01
Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Muecke, E.P.; Saias, I.; Zhu, B.
1996-05-01
This paper studies the point location problem in Delaunay triangulations without preprocessing and additional storage. The proposed procedure finds the query point simply by walking through the triangulation, after selecting a good starting point by random sampling. The analysis generalizes and extends a recent result of d = 2 dimensions by proving this procedure to take expected time close to O(n{sup 1/(d+1)}) for point location in Delaunay triangulations of n random points in d = 3 dimensions. Empirical results in both two and three dimensions show that this procedure is efficient in practice.
SOFTWARE MODULE FOR CONSTRUCTING THE INTERSECTION OF TRIANGULATED SURFACES
Directory of Open Access Journals (Sweden)
Vladimir V. Kurgansky
2018-03-01
Full Text Available The effective algorithm is proposed for implementing Boolean operations over triangulated surfaces, namely, disjunction, conjunction and Boolean difference, and its software implementation. The idea consists in as follow. The first step is to determine pairs of intersecting triangles: localizing the intersection of the two surfaces using the bounding volume of the parallelepipeds and the future of their intersection. The second step is constructing an intersection line for each pair of triangles: a pair of intersecting triangles is selected, and the segment along which they intersect is constructed. Further, thanks to the entered data structure, "adjacent" triangles are selected, among which are selected those that form the intersecting pair. The process described above continues as long as such triangles can be detected. After that the triangles involved in the intersection are retriangulated. For each triangle, all the edges are known on which it intersects with triangles from another surface. These edges are structural edges in the triangulation problem with constraints for a given triangle. The third step is to combine all surfaces into one surface. Further, subsurfaces are constructed along the loops of intersection limited by the found loops. Since the intersection line of the surfaces was constructed in sequence, it is possible to specify the direction of each edge. Any edge from the intersection line is selected. The triangle is added to the subsurface under construction, which includes this edge and its orientation is the same as the direction of the edge. The edge which was selected previously is deleted from intersection line, but two new edges are added is the remaining edges of added triangle. The third step is to combine all surfaces into one surface. Further, subsurfaces are constructed along the cycles of intersection limited by the found cycles. Since the intersection line of the surfaces was constructed in sequence, it is
A study on the effect of different image centres on stereo triangulation accuracy
CSIR Research Space (South Africa)
De Villiers, J
2015-11-01
Full Text Available This paper evaluates the effect of mixing the distortion centre, principal point and arithmetic image centre on the distortion correction, focal length determination and resulting real-world stereo vision triangulation. A robotic arm is used...
Ising model of a randomly triangulated random surface as a definition of fermionic string theory
International Nuclear Information System (INIS)
Bershadsky, M.A.; Migdal, A.A.
1986-01-01
Fermionic degrees of freedom are added to randomly triangulated planar random surfaces. It is shown that the Ising model on a fixed graph is equivalent to a certain Majorana fermion theory on the dual graph. (orig.)
Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong
2017-06-02
Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.
Drug repurposing by integrated literature mining and drug–gene–disease triangulation
DEFF Research Database (Denmark)
Sun, Peng; Guo, Jiong; Winnenburg, Rainer
2017-01-01
recent developments in computational drug repositioning and introduce the utilized data sources. Afterwards, we introduce a new data fusion model based on n-cluster editing as a novel multi-source triangulation strategy, which was further combined with semantic literature mining. Our evaluation suggests...... that utilizing drug–gene–disease triangulation coupled to sophisticated text analysis is a robust approach for identifying new drug candidates for repurposing....
Granger-Causality Maps of Diffusion Processes
Czech Academy of Sciences Publication Activity Database
Wahl, B.; Feudel, U.; Hlinka, Jaroslav; Wächter, M.; Peinke, J.; Freund, J.A.
2016-01-01
Roč. 93, č. 2 16 February (2016), č. článku 022213. ISSN 2470-0045 R&D Projects: GA ČR GA13-23940S; GA MZd(CZ) NV15-29835A Institutional support: RVO:67985807 Keywords : Granger causality * stochastic process * diffusion process * nonlinear dynamical systems Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.366, year: 2016
Causal events enter awareness faster than non-causal events
Directory of Open Access Journals (Sweden)
Pieter Moors
2017-01-01
Full Text Available Philosophers have long argued that causality cannot be directly observed but requires a conscious inference (Hume, 1967. Albert Michotte however developed numerous visual phenomena in which people seemed to perceive causality akin to primary visual properties like colour or motion (Michotte, 1946. Michotte claimed that the perception of causality did not require a conscious, deliberate inference but, working over 70 years ago, he did not have access to the experimental methods to test this claim. Here we employ Continuous Flash Suppression (CFS—an interocular suppression technique to render stimuli invisible (Tsuchiya & Koch, 2005—to test whether causal events enter awareness faster than non-causal events. We presented observers with ‘causal’ and ‘non-causal’ events, and found consistent evidence that participants become aware of causal events more rapidly than non-causal events. Our results suggest that, whilst causality must be inferred from sensory evidence, this inference might be computed at low levels of perceptual processing, and does not depend on a deliberative conscious evaluation of the stimulus. This work therefore supports Michotte’s contention that, like colour or motion, causality is an immediate property of our perception of the world.
Causal inference based on counterfactuals
Directory of Open Access Journals (Sweden)
Höfler M
2005-09-01
Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.
Causal inference in public health.
Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M
2013-01-01
Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.
International Nuclear Information System (INIS)
Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan
1999-02-01
This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.
World oil and agricultural commodity prices: Evidence from nonlinear causality
International Nuclear Information System (INIS)
Nazlioglu, Saban
2011-01-01
The increasing co-movements between the world oil and agricultural commodity prices have renewed interest in determining price transmission from oil prices to those of agricultural commodities. This study extends the literature on the oil-agricultural commodity prices nexus, which particularly concentrates on nonlinear causal relationships between the world oil and three key agricultural commodity prices (corn, soybeans, and wheat). To this end, the linear causality approach of Toda-Yamamoto and the nonparametric causality method of Diks-Panchenko are applied to the weekly data spanning from 1994 to 2010. The linear causality analysis indicates that the oil prices and the agricultural commodity prices do not influence each other, which supports evidence on the neutrality hypothesis. In contrast, the nonlinear causality analysis shows that: (i) there are nonlinear feedbacks between the oil and the agricultural prices, and (ii) there is a persistent unidirectional nonlinear causality running from the oil prices to the corn and to the soybeans prices. The findings from the nonlinear causality analysis therefore provide clues for better understanding the recent dynamics of the agricultural commodity prices and some policy implications for policy makers, farmers, and global investors. This study also suggests the directions for future studies. - Research highlights: → This study determines the price transmission mechanisms between the world oil and three key agricultural commodity prices (corn, soybeans, and wheat). → The linear and nonlinear cointegration and causality methods are carried out. → The linear causality analysis supports evidence on the neutrality hypothesis. → The nonlinear causality analysis shows that there is a persistent unidirectional causality from the oil prices to the corn and to the soybeans prices.
Causal Diagrams for Empirical Research
Pearl, Judea
1994-01-01
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifiying causal effects from non-experimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in ter...
Causality Statistical Perspectives and Applications
Berzuini, Carlo; Bernardinell, Luisa
2012-01-01
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr
Causal electromagnetic interaction equations
International Nuclear Information System (INIS)
Zinoviev, Yury M.
2011-01-01
For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
Moment problems and the causal set approach to quantum gravity
International Nuclear Information System (INIS)
Ash, Avner; McDonald, Patrick
2003-01-01
We study a collection of discrete Markov chains related to the causal set approach to modeling discrete theories of quantum gravity. The transition probabilities of these chains satisfy a general covariance principle, a causality principle, and a renormalizability condition. The corresponding dynamics are completely determined by a sequence of non-negative real coupling constants. Using techniques related to the classical moment problem, we give a complete description of any such sequence of coupling constants. We prove a representation theorem: every discrete theory of quantum gravity arising from causal set dynamics satisfying covariance, causality, and renormalizability corresponds to a unique probability distribution function on the non-negative real numbers, with the coupling constants defining the theory given by the moments of the distribution
Implications of causality for quantum biology - I: topology change
Scofield, D. F.; Collins, T. C.
2018-06-01
A framework for describing the causal, topology changing, evolution of interacting biomolecules is developed. The quantum dynamical manifold equations (QDMEs) derived from this framework can be related to the causality restrictions implied by a finite speed of light and to Planck's constant to set a transition frequency scale. The QDMEs imply conserved stress-energy, angular-momentum and Noether currents. The functional whose extremisation leads to this result provides a causal, time-dependent, non-equilibrium generalisation of the Hohenberg-Kohn theorem. The system of dynamical equations derived from this functional and the currents J derived from the QDMEs are shown to be causal and consistent with the first and second laws of thermodynamics. This has the potential of allowing living systems to be quantum mechanically distinguished from non-living ones.
van Schalkwyk, Cari; Mndzebele, Sibongile; Hlophe, Thabo; Garcia Calleja, Jesus Maria; Korenromp, Eline L; Stoneburner, Rand; Pervilhac, Cyril
2013-01-01
Swaziland's severe HIV epidemic inspired an early national response since the late 1980s, and regular reporting of program outcomes since the onset of a national antiretroviral treatment (ART) program in 2004. We assessed effectiveness outcomes and mortality trends in relation to ART, HIV testing and counseling (HTC), tuberculosis (TB) and prevention of mother to child transmission (PMTCT). Data triangulated include intervention coverage and outcomes according to program registries (2001-2010), hospital admissions and deaths disaggregated by age and sex (2001-2010) and population mortality estimates from the 1997 and 2007 censuses and the 2007 demographic and health survey. By 2010, ART reached 70% of the estimated number of people living with HIV/AIDS with CD4impact to specific interventions (versus natural epidemic dynamics) will require additional data from future household surveys, and improved routine (program, surveillance, and hospital) data at district level.
Expert Causal Reasoning and Explanation.
Kuipers, Benjamin
The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…
Friederich, Simon
There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell's criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the
Covariation in Natural Causal Induction.
Cheng, Patricia W.; Novick, Laura R.
1991-01-01
Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)
Causal learning and inference as a rational process: the new synthesis.
Holyoak, Keith J; Cheng, Patricia W
2011-01-01
Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.
Paradoxical Behavior of Granger Causality
Witt, Annette; Battaglia, Demian; Gail, Alexander
2013-03-01
Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen
Neural Correlates of Causal Power Judgments
Directory of Open Access Journals (Sweden)
Denise Dellarosa Cummins
2014-12-01
Full Text Available Causal inference is a fundamental component of cognition and perception. Probabilistic theories of causal judgment (most notably causal Bayes networks derive causal judgments using metrics that integrate contingency information. But human estimates typically diverge from these normative predictions. This is because human causal power judgments are typically strongly influenced by beliefs concerning underlying causal mechanisms, and because of the way knowledge is retrieved from human memory during the judgment process. Neuroimaging studies indicate that the brain distinguishes causal events from mere covariation, and between perceived and inferred causality. Areas involved in error prediction are also activated, implying automatic activation of possible exception cases during causal decision-making.
Triangulation and the importance of establishing valid methods for food safety culture evaluation.
Jespersen, Lone; Wallace, Carol A
2017-10-01
The research evaluates maturity of food safety culture in five multi-national food companies using method triangulation, specifically self-assessment scale, performance documents, and semi-structured interviews. Weaknesses associated with each individual method are known but there are few studies in food safety where a method triangulation approach is used for both data collection and data analysis. Significantly, this research shows that individual results taken in isolation can lead to wrong conclusions, resulting in potentially failing tactics and wasted investments. However, by applying method triangulation and reviewing results from a range of culture measurement tools it is possible to better direct investments and interventions. The findings add to the food safety culture paradigm beyond a single evaluation of food safety culture using generic culture surveys. Copyright © 2017. Published by Elsevier Ltd.
Energy Technology Data Exchange (ETDEWEB)
Steinberg, Aephraim M. [Institute for Experimental Physics, University of Vienna, Vienna (Austria)
2003-12-01
Experiment confirms that information cannot be transmitted faster than the speed of light. Ever since Einstein stated that nothing can travel faster than light, physicists have delighted in finding exceptions. One after another, observations of such 'superluminal' propagation have been made. However, while some image or pattern- such as the motion of a spotlight projected on a distant wall - might have appeared to travel faster than light, it seemed that there was no way to use the superluminal effect to transmit energy or information. In recent years, the superluminal propagation of light pulses through certain media has led to renewed controversy. In 1995, for example, Guenther Nimtz of the University of Cologne encoded Mozart's 40th Symphony on a microwave beam, which he claimed to have transmitted at a speed faster than light. Others maintain that such a violation of Einstein's speed limit would wreak havoc on our most fundamental ideas about causality, allowing an effect to precede its cause. Relativity teaches us that sending a signal faster than light would be equivalent to sending it backwards in time. (U.K.)
Directory of Open Access Journals (Sweden)
A. Jackson Stenner
2013-08-01
Full Text Available Rasch’s unidimensional models for measurement show how to connect object measures (e.g., reader abilities, measurement mechanisms (e.g., machine-generated cloze reading items, and observational outcomes (e.g., counts correct on reading instruments. Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct. We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.
Stenner, A Jackson; Fisher, William P; Stone, Mark H; Burdick, Donald S
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726
International Nuclear Information System (INIS)
Crawford, G.N.
1981-01-01
The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm
["Karoshi" and causal relationships].
Hamajima, N
1992-08-01
This paper aims to introduce a measure for use by physicians for stating the degree of probable causal relationship for "Karoshi", ie, a sudden death from cerebrovascular diseases or ischemic heart diseases under occupational stresses, as well as to give a brief description for legal procedures associated with worker's compensation and civil trial in Japan. It is a well-used measure in epidemiology, "attributable risk percent (AR%)", which can be applied to describe the extent of contribution to "Karoshi" of the excess occupational burdens the deceased worker was forced to bear. Although several standards such as average occupational burdens for the worker, average occupational burdens for an ordinary worker, burdens in a nonoccupational life, and a complete rest, might be considered for the AR% estimation, the average occupational burdens for an ordinary worker should normally be utilized as a standard for worker's compensation. The adoption of AR% could be helpful for courts to make a consistent judgement whether "Karoshi" cases are compensatable or not.
Structure and Strength in Causal Induction
Griffiths, Thomas L.; Tenenbaum, Joshua B.
2005-01-01
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Directory of Open Access Journals (Sweden)
Ashatu Hussein
2015-03-01
Full Text Available This article refers to a study in Tanzania on fringe benefits or welfare via the work contract1 where we will work both quantitatively and qualitatively. My focus is on the vital issue of combining methods or methodologies. There has been mixed views on the uses of triangulation in researches. Some authors argue that triangulation is just for increasing the wider and deep understanding of the study phenomenon, while others have argued that triangulation is actually used to increase the study accuracy, in this case triangulation is one of the validity measures. Triangulation is defined as the use of multiple methods mainly qualitative and quantitative methods in studying the same phenomenon for the purpose of increasing study credibility. This implies that triangulation is the combination of two or more methodological approaches, theoretical perspectives, data sources, investigators and analysis methods to study the same phenomenon.However, using both qualitative and quantitative paradigms in the same study has resulted into debate from some researchers arguing that the two paradigms differ epistemologically and ontologically. Nevertheless, both paradigms are designed towards understanding about a particular subject area of interest and both of them have strengths and weaknesses. Thus, when combined there is a great possibility of neutralizing the flaws of one method and strengthening the benefits of the other for the better research results. Thus, to reap the benefits of two paradigms and minimizing the drawbacks of each, the combination of the two approaches have been advocated in this article. The quality of our studies on welfare to combat poverty is crucial, and especially when we want our conclusions to matter in practice.
Diagnostic reasoning using qualitative causal models
International Nuclear Information System (INIS)
Sudduth, A.L.
1992-01-01
The application of expert systems to reasoning problems involving real-time data from plant measurements has been a topic of much research, but few practical systems have been deployed. One obstacle to wider use of expert systems in applications involving real-time data is the lack of adequate knowledge representation methodologies for dynamic processes. Knowledge bases composed mainly of rules have disadvantages when applied to dynamic processes and real-time data. This paper describes a methodology for the development of qualitative causal models that can be used as knowledge bases for reasoning about process dynamic behavior. These models provide a systematic method for knowledge base construction, considerably reducing the engineering effort required. They also offer much better opportunities for verification and validation of the knowledge base, thus increasing the possibility of the application of expert systems to reasoning about mission critical systems. Starting with the Signed Directed Graph (SDG) method that has been successfully applied to describe the behavior of diverse dynamic processes, the paper shows how certain non-physical behaviors that result from abstraction may be eliminated by applying causal constraint to the models. The resulting Extended Signed Directed Graph (ESDG) may then be compiled to produce a model for use in process fault diagnosis. This model based reasoning methodology is used in the MOBIAS system being developed by Duke Power Company under EPRI sponsorship. 15 refs., 4 figs
Robotic tool positioning process using a multi-line off-axis laser triangulation sensor
Pinto, T. C.; Matos, G.
2018-03-01
Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.
All roads lead to Rome - New search methods for the optimal triangulation problem
Czech Academy of Sciences Publication Activity Database
Ottosen, T. J.; Vomlel, Jiří
2012-01-01
Roč. 53, č. 9 (2012), s. 1350-1366 ISSN 0888-613X R&D Projects: GA MŠk 1M0572; GA ČR GEICC/08/E010; GA ČR GA201/09/1891 Grant - others:GA MŠk(CZ) 2C06019 Institutional support: RVO:67985556 Keywords : Bayesian networks * Optimal triangulation * Probabilistic inference * Cliques in a graph Subject RIV: BD - Theory of Information Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/vomlel-all roads lead to rome - new search methods for the optimal triangulation problem.pdf
Visualization research of 3D radiation field based on Delaunay triangulation
International Nuclear Information System (INIS)
Xie Changji; Chen Yuqing; Li Shiting; Zhu Bo
2011-01-01
Based on the characteristics of the three dimensional partition, the triangulation of discrete date sets is improved by the method of point-by-point insertion. The discrete data for the radiation field by theoretical calculation or actual measurement is restructured, and the continuous distribution of the radiation field data is obtained. Finally, the 3D virtual scene of the nuclear facilities is built with the VR simulation techniques, and the visualization of the 3D radiation field is also achieved by the visualization mapping techniques. It is shown that the method combined VR and Delaunay triangulation could greatly improve the quality and efficiency of 3D radiation field visualization. (authors)
DEFF Research Database (Denmark)
Structure from Motion (SFM) systems are composed of cameras and structure in the form of 3D points and other features. It is most often that the structure components outnumber the cameras by a great margin. It is not uncommon to have a configuration with 3 cameras observing more than 500 3D points...... an overview of existing triangulation methods with emphasis on performance versus optimality, and will suggest a fast triangulation algorithm based on linear constraints. The structure and camera motion estimation in a SFM system is based on the minimization of some norm of the reprojection error between...
Understanding bicycling in cities using system dynamics modelling.
Macmillan, Alexandra; Woodcock, James
2017-12-01
Increasing urban bicycling has established net benefits for human and environmental health. Questions remain about which policies are needed and in what order, to achieve an increase in cycling while avoiding negative consequences. Novel ways of considering cycling policy are needed, bringing together expertise across policy, community and research to develop a shared understanding of the dynamically complex cycling system. In this paper we use a collaborative learning process to develop a dynamic causal model of urban cycling to develop consensus about the nature and order of policies needed in different cycling contexts to optimise outcomes. We used participatory system dynamics modelling to develop causal loop diagrams (CLDs) of cycling in three contrasting contexts: Auckland, London and Nijmegen. We combined qualitative interviews and workshops to develop the CLDs. We used the three CLDs to compare and contrast influences on cycling at different points on a "cycling trajectory" and drew out policy insights. The three CLDs consisted of feedback loops dynamically influencing cycling, with significant overlap between the three diagrams. Common reinforcing patterns emerged: growing numbers of people cycling lifts political will to improve the environment; cycling safety in numbers drives further growth; and more cycling can lead to normalisation across the population. By contrast, limits to growth varied as cycling increases. In Auckland and London, real and perceived danger was considered the main limit, with added barriers to normalisation in London. Cycling congestion and "market saturation" were important in the Netherlands. A generalisable, dynamic causal theory for urban cycling enables a more ordered set of policy recommendations for different cities on a cycling trajectory. Participation meant the collective knowledge of cycling stakeholders was represented and triangulated with research evidence. Extending this research to further cities, especially in low
Principal stratification in causal inference.
Frangakis, Constantine E; Rubin, Donald B
2002-03-01
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.
Causal boundary for stably causal space-times
International Nuclear Information System (INIS)
Racz, I.
1987-12-01
The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs
Causal boundary for strongly causal spacetimes: Pt. 1
International Nuclear Information System (INIS)
Szabados, L.B.
1989-01-01
In a previous paper an analysis of the general structure of the causal boundary constructions and a new explicit identification rule, built up from elementary TIP-TIF gluings, were presented. In the present paper we complete our identification by incorporating TIP-TIP and TIF-TIF gluings as well. An asymptotic causality condition is found which, for physically important cases, ensures the uniqueness of the endpoints of the non-spacelike curves in the completed spacetime. (author)
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Causal Modelling in Evaluation Research.
Winteler, Adolf
1983-01-01
A study applied path analysis methods, using new techniques of causal analysis, to the problem of predicting the achievement, dropout rate, and satisfaction of university students. Besides providing explanations, the technique indicates possible remedial measures. (MSE)
Theoretical triangulation as an approach for revealing the complexity of a classroom discussion
van Drie, J.; Dekker, R.
2013-01-01
In this paper we explore the value of theoretical triangulation as a methodological approach for the analysis of classroom interaction. We analyze an excerpt of a whole-class discussion in history from three theoretical perspectives: interactivity of the discourse, conceptual level raising and
An Array of Qualitative Data Analysis Tools: A Call for Data Analysis Triangulation
Leech, Nancy L.; Onwuegbuzie, Anthony J.
2007-01-01
One of the most important steps in the qualitative research process is analysis of data. The purpose of this article is to provide elements for understanding multiple types of qualitative data analysis techniques available and the importance of utilizing more than one type of analysis, thus utilizing data analysis triangulation, in order to…
Hesse-Biber, Sharlene
2012-01-01
This article explores the deployment of triangulation in the service of uncovering subjugated knowledge and promoting social change for women and other oppressed groups. Feminist approaches to mixed methods praxis create a tight link between the research problem and the research design. An analysis of selected case studies of feminist praxis…
Oliver, Kathryn; Aicken, Catherine; Arai, Lisa
2013-01-01
Drawing lessons from research can help policy makers make better decisions. If a large and methodologically varied body of research exists, as with childhood obesity, this is challenging. We present new research and policy objectives for child obesity developed by triangulating user involvement data with a mapping study of interventions aimed at…
Generation of triangulated random surfaces by the Monte Carlo method in the grand canonical ensemble
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analog of the Polyakov string is considered. An algorithm is proposed which enables one to study the model by the Monte Carlo method in the grand canonical ensemble. Preliminary results on the determination of the critical index γ are presented
Xu, Jun; Lee, Jennifer C.
2013-01-01
In this article, we propose a shift in race research from a one-dimensional hierarchical approach to a multidimensional system of racial stratification. Building upon Claire Kim's (1999) racial triangulation theory, we examine how the American public rates Asians relative to blacks and whites along two dimensions of racial stratification: racial…
Triangulation and Mixed Methods Designs: Data Integration with New Research Technologies
Fielding, Nigel G.
2012-01-01
Data integration is a crucial element in mixed methods analysis and conceptualization. It has three principal purposes: illustration, convergent validation (triangulation), and the development of analytic density or "richness." This article discusses such applications in relation to new technologies for social research, looking at three…
Conditional Granger Causality of Diffusion Processes
Czech Academy of Sciences Publication Activity Database
Wahl, B.; Feudel, U.; Hlinka, Jaroslav; Wächter, M.; Peinke, J.; Freund, J.A.
2017-01-01
Roč. 90, č. 10 (2017), č. článku 197. ISSN 1434-6028 R&D Projects: GA ČR GA13-23940S; GA MZd(CZ) NV15-29835A Institutional support: RVO:67985807 Keywords : Granger causality * stochastic process * diffusion process * nonlinear dynamical systems Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 1.461, year: 2016
Consciousness and the "Causal Paradox"
Velmans, Max
1996-01-01
Viewed from a first-person perspective consciousness appears to be necessary for complex, novel human activity - but viewed from a third-person perspective consciousness appears to play no role in the activity of brains, producing a "causal paradox". To resolve this paradox one needs to distinguish consciousness of processing from consciousness accompanying processing or causing processing. Accounts of consciousness/brain causal interactions switch between first- and third-person perspectives...
Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information
Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David
2018-05-01
The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.
Youngs, Howard; Piggot-Irvine, Eileen
2012-01-01
Mixed methods research has emerged as a credible alternative to unitary research approaches. The authors show how a combination of a triangulation convergence model with a triangulation multilevel model was used to research an aspiring school principal development pilot program. The multilevel model is used to show the national and regional levels…
Causal learning is collaborative: Examining explanation and exploration in social contexts.
Legare, Cristine H; Sobel, David M; Callanan, Maureen
2017-10-01
Causal learning in childhood is a dynamic and collaborative process of explanation and exploration within complex physical and social environments. Understanding how children learn causal knowledge requires examining how they update beliefs about the world given novel information and studying the processes by which children learn in collaboration with caregivers, educators, and peers. The objective of this article is to review evidence for how children learn causal knowledge by explaining and exploring in collaboration with others. We review three examples of causal learning in social contexts, which elucidate how interaction with others influences causal learning. First, we consider children's explanation-seeking behaviors in the form of "why" questions. Second, we examine parents' elaboration of meaning about causal relations. Finally, we consider parents' interactive styles with children during free play, which constrains how children explore. We propose that the best way to understand children's causal learning in social context is to combine results from laboratory and natural interactive informal learning environments.
Regression to Causality : Regression-style presentation influences causal attribution
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
An Empirical Analysis of the ASEAN-4’s Causality between Exports and Output Growth
Lam, Tri Dung
2016-01-01
This paper specifically focuses on analysing the causality between real GDP and real export of goods and services of the ASEAN-4 countries (Indonesia, Malaysia, Thailand and the Philippines) by using comprehensive econometric techniques such as the unit root test, cointegration test, and error correction model. This study reveals that for short-run dynamics, while bi-directional Granger-causality exists in Malaysia, the Philippines, and Thailand; the unidirectional Granger-causality runs from...
Bayesian networks improve causal environmental ...
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value
Causality and analyticity in optics
International Nuclear Information System (INIS)
Nussenzveig, H.M.
In order to provide an overall picture of the broad range of optical phenomena that are directly linked with the concepts of causality and analyticity, the following topics are briefly reviewed, emphasizing recent developments: 1) Derivation of dispersion relations for the optical constants of general linear media from causality. Application to the theory of natural optical activity. 2) Derivation of sum rules for the optical constants from causality and from the short-time response function (asymptotic high-frequency behavior). Average spectral behavior of optical media. Applications. 3) Role of spectral conditions. Analytic properties of coherence functions in quantum optics. Reconstruction theorem.4) Phase retrieval problems. 5) Inverse scattering problems. 6) Solution of nonlinear evolution equations in optics by inverse scattering methods. Application to self-induced transparency. Causality in nonlinear wave propagation. 7) Analytic continuation in frequency and angular momentum. Complex singularities. Resonances and natural-mode expansions. Regge poles. 8) Wigner's causal inequality. Time delay. Spatial displacements in total reflection. 9) Analyticity in diffraction theory. Complex angular momentum theory of Mie scattering. Diffraction as a barrier tunnelling effect. Complex trajectories in optics. (Author) [pt
Hierarchical organisation of causal graphs
International Nuclear Information System (INIS)
Dziopa, P.
1993-01-01
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
mediation: R package for causal mediation analysis
Tingley, Dustin; Yamamoto, Teppei; Hirose, Kentaro; Keele, Luke; Imai, Kosuke
2012-01-01
In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting su...
Directory of Open Access Journals (Sweden)
José Tomás Alvarado
2009-08-01
Full Text Available This work presents a causal conception of metaphysical modality in which a state of affairs is metaphysically possible if and only if it can be caused (in the past, the present or the future by current entities. The conception is contrasted with what is called the “combinatorial” conception of modality, in which everything can co-exist with anything else. This work explains how the notion of ‘causality’ should be construed in the causal theory, what difference exists between modalities thus defined from nomological modality, how accessibility relations between possible worlds should be interpreted, and what is the relation between the causal conception and the necessity of origin.
Introductive remarks on causal inference
Directory of Open Access Journals (Sweden)
Silvana A. Romio
2013-05-01
Full Text Available One of the more challenging issues in epidemiological research is being able to provide an unbiased estimate of the causal exposure-disease effect, to assess the possible etiological mechanisms and the implication for public health. A major source of bias is confounding, which can spuriously create or mask the causal relationship. In the last ten years, methodological research has been developed to better de_ne the concept of causation in epidemiology and some important achievements have resulted in new statistical models. In this review, we aim to show how a technique the well known by statisticians, i.e. standardization, can be seen as a method to estimate causal e_ects, equivalent under certain conditions to the inverse probability treatment weight procedure.
Causal reasoning with mental models
Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398
Causal reasoning with mental models.
Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Causal reasoning with mental models
Directory of Open Access Journals (Sweden)
Sangeet eKhemlani
2014-10-01
Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Finance and growth : Time series evidence on causality
Peia, Oana; Roszbach, Kasper
2015-01-01
This paper re-examines the empirical relationship between financial and economic development while (i) taking into account their dynamics and (ii) differentiating between stock market and banking sector development. We study the cointegration and causality between the real and the financial sector
Causal approach to (2+1)-dimensional Quantum Electrodynamics
International Nuclear Information System (INIS)
Scharf, G.; Wreszinski, W.F.; Pimentel, B.M.; Tomazelli, J.L.
1993-05-01
It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs
Granger Causality and Unit Roots
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir; Ventosa-Santaulària, Daniel
2014-01-01
The asymptotic behavior of the Granger-causality test under stochastic nonstationarity is studied. Our results confirm that the inference drawn from the test is not reliable when the series are integrated to the first order. In the presence of deterministic components, the test statistic diverges......, eventually rejecting the null hypothesis, even when the series are independent of each other. Moreover, controlling for these deterministic elements (in the auxiliary regressions of the test) does not preclude the possibility of drawing erroneous inferences. Granger-causality tests should not be used under...
Quantum theory and local causality
Hofer-Szabó, Gábor
2018-01-01
This book summarizes the results of research the authors have pursued in the past years on the problem of implementing Bell's notion of local causality in local physical theories and relating it to other important concepts and principles in the foundations of physics such as the Common Cause Principle, Bell's inequalities, the EPR (Einstein-Podolsky-Rosen) scenario, and various other locality and causality concepts. The book is intended for philosophers of science with an interest in the formal background of sciences, philosophers of physics and physicists working in foundation of physics.
DEFF Research Database (Denmark)
Bhuiyan, Tanveer Ahmed; Graff, Claus; Thomsen, Morten Bækgaard
2012-01-01
of the action potential under the effect of the IKr blocker sertindole and associated these changes to concurrent changes in the morphology of electrocardiographic T-waves in dogs. We show that, under the effect of sertindole, the peak changes in the morphology of action potentials occur at time points similar......It has been proposed that triangulation on the cardiac action potential manifests as a broadened, more flat and notched T-wave on the ECG but to what extent such morphology characteristics are indicative of triangulation is more unclear. In this paper, we have analyzed the morphological changes...... to those observed for the peak changes in T-wave morphology on the ECG. We further show that the association between action potential shape and ECG shape is dose-dependent and most prominent at the time corresponding to phase 3 of the action potential....
Directory of Open Access Journals (Sweden)
GUO Peipei
2016-08-01
Full Text Available Building aggregation is an important part of research on large scale map generalization. A triangulation based approach is proposed from the perspective of shape features, six measure parameters of triangles in a constrained Delaunay triangulation are proposed. First of all, use the six measure parameters to determine which triangles are retained and which are erased. Then, the contours of retained triangles, as bridge areas between buildings, are automatically identified and right angle processed. And then, the buildings are aggregated with right angle feature retained by merging the bridge areas with connecting buildings. Finally, the approach is verified by being carried out on actual data. Experimental result shows that it is efficient and practical.
Quantum triangulations moduli space, quantum computing, non-linear sigma models and Ricci flow
Carfora, Mauro
2017-01-01
This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involv...
Quest, D.; Gayer, C.; Hering, P.
2012-01-01
Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.
Incremental Reconstruction of Urban Environments by Edge-Points Delaunay Triangulation
Romanoni, Andrea; Matteucci, Matteo
2016-01-01
Urban reconstruction from a video captured by a surveying vehicle constitutes a core module of automated mapping. When computational power represents a limited resource and, a detailed map is not the primary goal, the reconstruction can be performed incrementally, from a monocular video, carving a 3D Delaunay triangulation of sparse points; this allows online incremental mapping for tasks such as traversability analysis or obstacle avoidance. To exploit the sharp edges of urban landscape, we ...
GEOPOSITIONING PRECISION ANALYSIS OF MULTIPLE IMAGE TRIANGULATION USING LRO NAC LUNAR IMAGES
Directory of Open Access Journals (Sweden)
K. Di
2016-06-01
Full Text Available This paper presents an empirical analysis of the geopositioning precision of multiple image triangulation using Lunar Reconnaissance Orbiter Camera (LROC Narrow Angle Camera (NAC images at the Chang’e-3(CE-3 landing site. Nine LROC NAC images are selected for comparative analysis of geopositioning precision. Rigorous sensor models of the images are established based on collinearity equations with interior and exterior orientation elements retrieved from the corresponding SPICE kernels. Rational polynomial coefficients (RPCs of each image are derived by least squares fitting using vast number of virtual control points generated according to rigorous sensor models. Experiments of different combinations of images are performed for comparisons. The results demonstrate that the plane coordinates can achieve a precision of 0.54 m to 2.54 m, with a height precision of 0.71 m to 8.16 m when only two images are used for three-dimensional triangulation. There is a general trend that the geopositioning precision, especially the height precision, is improved with the convergent angle of the two images increasing from several degrees to about 50°. However, the image matching precision should also be taken into consideration when choosing image pairs for triangulation. The precisions of using all the 9 images are 0.60 m, 0.50 m, 1.23 m in along-track, cross-track, and height directions, which are better than most combinations of two or more images. However, triangulation with selected fewer images could produce better precision than that using all the images.
Yang, Changhuei; McGuckin, Laura E. L.; Simon, John D.; Choma, Michael A.; Applegate, Brian E.; Izatt, Joseph A.
2004-01-01
We report a new molecular contrast optical coherence tomography (MCOCT) implementation that profiles the contrast agent distribution in a sample by measuring the agent's spectral differential absorption. The method, spectra triangulation MCOCT, can effectively suppress contributions from spectrally dependent scatterings from the sample without a priori knowledge of the scattering properties. We demonstrate molecular imaging with this new MCOCT modality by mapping the distribution of indocyani...
Durif-Bruckert, C; Roux, P; Morelle, M; Mignotte, H; Faure, C; Moumjid-Ferdjaoui, N
2015-07-01
The aim of this study on shared decision-making in the doctor-patient encounter about surgical treatment for early-stage breast cancer, conducted in a regional cancer centre in France, was to further the understanding of patient perceptions on shared decision-making. The study used methodological triangulation to collect data (both quantitative and qualitative) about patient preferences in the context of a clinical consultation in which surgeons followed a shared decision-making protocol. Data were analysed from a multi-disciplinary research perspective (social psychology and health economics). The triangulated data collection methods were questionnaires (n = 132), longitudinal interviews (n = 47) and observations of consultations (n = 26). Methodological triangulation revealed levels of divergence and complementarity between qualitative and quantitative results that suggest new perspectives on the three inter-related notions of decision-making, participation and information. Patients' responses revealed important differences between shared decision-making and participation per se. The authors note that subjecting patients to a normative behavioural model of shared decision-making in an era when paradigms of medical authority are shifting may undermine the patient's quest for what he or she believes is a more important right: a guarantee of the best care available. © 2014 John Wiley & Sons Ltd.
Gran, Sarah Frandsen; Braend, Anja Maria; Lindbaek, Morten
2010-01-01
Many medical students in general practice clerkships experience lack of observation-based feedback. The StudentPEP project combined written feedback from patients, observing teachers and students. This study analyzes the perceived usefulness of triangulated written feedback. A total of 71 general practitioners and 79 medical students at the University of Oslo completed project evaluation forms after a 6-week clerkship. A principal component analysis was performed to find structures within the questionnaire. Regression analysis was performed regarding students' answers to whether StudentPEP was worthwhile. Free-text answers were analyzed qualitatively. Student and teacher responses were mixed within six subscales, with highest agreement on 'Teachers oral and written feedback' and 'Attitude to patient evaluation'. Fifty-four per cent of the students agreed that the triangulation gave concrete feedback on their weaknesses, and 59% valued the teachers' feedback provided. Two statements regarding the teacher's attitudes towards StudentPEP were significantly associated with the student's perception of worthwhileness. Qualitative analysis showed that patient evaluations were encouraging or distrusted. Some students thought that StudentPEP ensured observation and feedback. The patient evaluations increased the students' awareness of the patient perspective. A majority of the students considered the triangulated written feedback beneficial, although time-consuming. The teacher's attitudes strongly influenced how the students perceived the usefulness of StudentPEP.
Chromatic polynomials of planar triangulations, the Tutte upper bound and chromatic zeros
International Nuclear Information System (INIS)
Shrock, Robert; Xu Yan
2012-01-01
Tutte proved that if G pt is a planar triangulation and P(G pt , q) is its chromatic polynomial, then |P(G pt , τ + 1)| ⩽ (τ − 1) n−5 , where τ=(1+√5 )/2 and n is the number of vertices in G pt . Here we study the ratio r(G pt ) = |P(G pt , τ + 1)|/(τ − 1) n−5 for a variety of planar triangulations. We construct infinite recursive families of planar triangulations G pt,m depending on a parameter m linearly related to n and show that if P(G pt,m , q) only involves a single power of a polynomial, then r(G pt,m ) approaches zero exponentially fast as n → ∞. We also construct infinite recursive families for which P(G pt,m , q) is a sum of powers of certain functions and show that for these, r(G pt,m ) may approach a finite nonzero constant as n → ∞. The connection between the Tutte upper bound and the observed chromatic zero(s) near to τ + 1 is investigated. We report the first known graph for which the zero(s) closest to τ + 1 is not real, but instead is a complex-conjugate pair. Finally, we discuss connections with the nonzero ground-state entropy of the Potts antiferromagnet on these families of graphs. (paper)
Schärli, Marianne; Müller, Rita; Martin, Jacqueline S; Spichiger, Elisabeth; Spirig, Rebecca
2017-01-01
Background: Interprofessional collaboration between nurses and physicians is a recurrent challenge in daily clinical practice. To ameliorate the situation, quantitative or qualitative studies are conducted. However, the results of these studies have often been limited by the methods chosen. Aim: To describe the synthesis of interprofessional collaboration from the nursing perspective by triangulating quantitative and qualitative data. Method: Data triangulation was performed as a sub-project of the interprofessional Sinergia DRG Research program. Initially, quantitative and qualitative data were analyzed separately in a mixed methods design. By means of triangulation a „meta-matrix“ resulted in a four-step process. Results: The „meta-matrix“ displays all relevant quantitative and qualitative results as well as their interrelations on one page. Relevance, influencing factors as well as consequences of interprofessional collaboration for patients, relatives and systems become visible. Conclusion: For the first time, the interprofessional collaboration from the nursing perspective at five Swiss hospitals is shown in a „meta-matrix“. The consequences of insufficient collaboration between nurses and physicians are considerable. This is why it’s necessary to invest in interprofessional concepts. In the „meta-matrix“ the factors which influence the interprofessional collaboration positively or negatively are visible.
Causal Reasoning with Mental Models
2014-08-08
The initial rubric is equivalent to an exclusive disjunction between the two causal assertions. It 488 yields the following two mental models: 489...are 575 important, whereas the functions of artifacts are important (Ahn, 1998). A genetic code is 576 accordingly more critical to being a goat than
Identity, causality, and pronoun ambiguity.
Sagi, Eyal; Rips, Lance J
2014-10-01
This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs. Copyright © 2014 Cognitive Science Society, Inc.
Charged singularities: the causality violation
Energy Technology Data Exchange (ETDEWEB)
De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia
1980-12-01
A search is made for examples of particle trajectories which, approaching a naked singularity from infinity, make up for lost time before going back to infinity. In the Kerr-Newman metric a whole family of such trajectories is found showing that the causality violation is indeed a non-avoidable pathology.
The argumentative impact of causal relations
DEFF Research Database (Denmark)
Nielsen, Anne Ellerup
1996-01-01
such as causality, explanation and justification. In certain types of discourse, causal relations also imply an intentional element. This paper describes the way in which the semantic and pragmatic functions of causal markers can be accounted for in terms of linguistic and rhetorical theories of argumentation.......The semantic relations between and within utterances are marked by the use of connectors and adverbials. One type of semantic relations is causal relations expressed by causal markers such as because, therefore, so, for, etc. Some of these markers cover different types of causal relations...
Relating the thermodynamic arrow of time to the causal arrow
International Nuclear Information System (INIS)
Allahverdyan, Armen E; Janzing, Dominik
2008-01-01
Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born–Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonical distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning
Capturing connectivity and causality in complex industrial processes
Yang, Fan; Shah, Sirish L; Chen, Tongwen
2014-01-01
This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: · from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and · from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian ne...
Bonzom, Valentin
2016-07-01
We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes. While this work is written in the context of random tensors, it is almost exclusively of combinatorial nature and we hope it is accessible to interested readers who are not familiar with random matrices, tensors and quantum
Jiménez, Andrea
2014-02-01
We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.
Peleg, Ora
2014-12-01
This study examined the relationships between stressful life events in childhood and differentiation of self and intergenerational triangulation in adulthood. The sample included 217 students (173 females and 44 males) from a college in northern Israel. Participants completed the Hebrew versions of Life Events Checklist (LEC), Differentiation of Self Inventory-Revised (DSI-R) and intergenerational triangulation (INTRI). The main findings were that levels of stressful life events during childhood and adolescence among both genders were positively correlated with the levels of fusion with others and intergenerational triangulation. The levels of positive life events were negatively related to levels of emotional reactivity, emotional cut-off and intergenerational triangulation. Levels of stressful life events in females were positively correlated with emotional reactivity. Intergenerational triangulation was correlated with emotional reactivity, emotional cut-off, fusion with others and I-position. Findings suggest that families that experience higher levels of stressful life events may be at risk for higher levels of intergenerational triangulation and lower levels of differentiation of self. © 2014 International Union of Psychological Science.
On the Temporal Causal Relationship Between Macroeconomic Variables
Directory of Open Access Journals (Sweden)
Srinivasan Palamalai
2014-02-01
Full Text Available The present study examines the dynamic interactions among macroeconomic variables such as real output, prices, money supply, interest rate (IR, and exchange rate (EXR in India during the pre-economic crisis and economic crisis periods, using the autoregressive distributed lag (ARDL bounds test for cointegration, Johansen and Juselius multivariate cointegration test, Granger causality/Block exogeneity Wald test based on Vector Error Correction Model, variance decomposition analysis and impulse response functions. The empirical results reveal a stronger long-run bilateral relationship between real output, price level, IR, and EXR during the pre-crisis sample period. Moreover, the empirical results confirm a unidirectional short-run causality running from price level to EXR, IR to price level, and real output to money supply during the pre-crisis period. Also, it is evident from the test results that there exist short-run bidirectional relationships running between real output and EXR, price level and IR, and IR and EXR in the pre-crisis era, respectively. Most importantly, long-run bidirectional causality is found between real output, EXR, and IR during the economic crisis period. And the study results indicate short-run bidirectional causality between money supply and EXR, IR and price level, and IR and output in India during the crisis era. Also, a short-run unidirectional causality runs from prices to real output in the crisis period.
Causality between public policies and exports of renewable energy technologies
International Nuclear Information System (INIS)
Sung, Bongsuk; Song, Woo-Yong
2013-01-01
This article investigates the causal relationship between public policies and exports of renewable energy technologies using panel data from 18 countries for the period 1991–2007. A number of panel unit root and cointegration tests are applied. Time series data on public policies and exports are integrated and cointegrated. The dynamic OLS results indicate that in the long run, a 1% increase in government R and D expenditures (RAD) increases exports (EX) by 0.819%. EX and RAD variables respond to deviations from the long-run equilibrium in the previous period. Additionally, the Blundell–Bond system generalized methods of moments (GMM) is employed to conduct a panel causality test in a vector error-correction mechanism (VECM) setting. Evidence of a bidirectional and short-run, and strong causal relationship between EX and the contribution of renewable energy to the total energy supply (CRES) is uncovered. CRES has a negative effect on EX, whereas EX has a positive effect on CRES. We suggest some policy implications based on the results of this study. - Highlights: ► We model VECM to test the Granger causality between the policies and the export. ► Technology-push policy has a positive impact on export in the long-run. ► There are the short-run causal relationships between market-pull policy and export
Spectral dimension in causal set quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Mizera, Sebastian
2014-01-01
We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)
On causal nonrelativistic classical electrodynamics
International Nuclear Information System (INIS)
Goedecke, G.H.
1984-01-01
The differential-difference (DD) motion equations of the causal nonrelativistic classical electrodynamics developed by the author in 1975 are shown to possess only nonrunaway, causal solutions with no discontinuities in particle velocity or position. As an example, the DD equation solution for the problem of an electromagnetic shock incident on an initially stationary charged particle is contrasted with the standard Abraham-Lorentz equation solution. The general Cauchy problem for these DD motion equations is discussed. In general, in order to uniquely determine a solution, the initial data must be more detailed than the standard Cauchy data of initial position and velocity. Conditions are given under which the standard Cauchy data will determine the DD equation solutions to sufficient practical accuracy
Quantum mechanics, relativity and causality
International Nuclear Information System (INIS)
Tati, Takao.
1975-07-01
In quantum mechanics, the state is prepared by a measurement on a space-like surface sigma. What is that determines the surface sigma on which the measurement prepares the state It is considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning causality or conservation of probability due to that the velocity of reduction of wave-packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing causal relations. We propose an experiment to discriminate between the above-mentioned two cases and to test the existence of the universal time-like vector. (auth.)
Causal Set Generator and Action Computer
Cunningham, William; Krioukov, Dmitri
2017-01-01
The causal set approach to quantum gravity has gained traction over the past three decades, but numerical experiments involving causal sets have been limited to relatively small scales. The software suite presented here provides a new framework for the generation and study of causal sets. Its efficiency surpasses previous implementations by several orders of magnitude. We highlight several important features of the code, including the compact data structures, the $O(N^2)$ causal set generatio...
Modeling of causality with metamaterials
International Nuclear Information System (INIS)
Smolyaninov, Igor I
2013-01-01
Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space–time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space–time. While this model may be used to build interesting space–time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space–time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler–Feynman absorber theory of causality. (paper)
THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...
CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc
Causal structure of analogue spacetimes
International Nuclear Information System (INIS)
Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt
2004-01-01
The so-called 'analogue models of general relativity' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of perturbations in these condensed matter systems is described by 'effective metrics' that carry with them notions of 'causal structure' as determined by an exchange of quasi-particles. These quasi-particle-induced causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying analogue model is governed by its own specific physics, not necessarily by the Einstein equations.) In this paper we take a careful look at what can be said about the causal structure of analogue spacetimes, focusing on those containing quasi-particle horizons, both with a view to seeing what is different from standard general relativity, and what the similarities might be. For definiteness, and because the physics is particularly simple to understand, we will phrase much of the discussion in terms of acoustic disturbances in moving fluids, where the underlying physics is ordinary fluid mechanics, governed by the equations of traditional hydrodynamics, and the relevant quasi-particles are the phonons. It must however be emphasized that this choice of example is only for the sake of pedagogical simplicity and that our considerations apply generically to wide classes of analogue spacetimes
Obesity and infection: reciprocal causality.
Hainer, V; Zamrazilová, H; Kunešová, M; Bendlová, B; Aldhoon-Hainerová, I
2015-01-01
Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.
Behavioural Pattern of Causality Parameter of Autoregressive ...
African Journals Online (AJOL)
In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...
Exploring Individual Differences in Preschoolers' Causal Stance
Alvarez, Aubry; Booth, Amy E.
2016-01-01
Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…
Representing Personal Determinants in Causal Structures.
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
Causal inference in economics and marketing.
Varian, Hal R
2016-07-05
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.
Causal knowledge and reasoning in decision making
Hagmayer, Y.; Witteman, C.L.M.
2017-01-01
Normative causal decision theories argue that people should use their causal knowledge in decision making. Based on these ideas, we argue that causal knowledge and reasoning may support and thereby potentially improve decision making based on expected outcomes, narratives, and even cues. We will
The key role of causal explanation in the climate change issue
Directory of Open Access Journals (Sweden)
Francesca Pongiglione
2012-06-01
Full Text Available The basis for adoption of pro-environment behaviour is the understanding of causal passages within climate dynamics. The understanding of the causes of climate change is necessary in order to be able to take mitigation actions (the subject needs to be aware of his role as a causal agent. Conversely, the understanding of the consequences of climate change is essential in motivating action (the subject must be aware of the risks caused by it in order to prevent them. The case of ozone depletion confirms this view: the understanding of its causal dynamics played a determining role in people’s behavioural response.
THE CAUSALITY TEST BETWEEN THE VARIANCES OF SPOT AND FUTURE MARKET PRICES
Directory of Open Access Journals (Sweden)
EMRAH İSMAİL ÇEVİK
2013-06-01
Full Text Available Volatility in financial markets urges importance of risk management with respect to investors and especially firms. Information and interaction between spot and futures markets plays an important role on formation of market prices. In this study, causality and information flows are examined on spot and futures prices of ISE 100 Index, US Dollar, and Euro which are traded at Turkish Derivatives Exchange (VOB. Dynamic causality test that is originally created by Cheung and Ng (1996 is applied. Dynamic causality test results show that in the ISE 100 Index model spot prices affect futures prices and in the exchange model futures prices affect spot prices.
A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale
Decherchi, Sergio; Rocchia, Walter
2013-01-01
We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation. PMID:23577073
Measuring teamwork in primary care: Triangulation of qualitative and quantitative data.
Brown, Judith Belle; Ryan, Bridget L; Thorpe, Cathy; Markle, Emma K R; Hutchison, Brian; Glazier, Richard H
2015-09-01
This article describes the triangulation of qualitative dimensions, reflecting high functioning teams, with the results of standardized teamwork measures. The study used a mixed methods design using qualitative and quantitative approaches to assess teamwork in 19 Family Health Teams in Ontario, Canada. This article describes dimensions from the qualitative phase using grounded theory to explore the issues and challenges to teamwork. Two quantitative measures were used in the study, the Team Climate Inventory (TCI) and the Providing Effective Resources and Knowledge (PERK) scale. For the triangulation analysis, the mean scores of these measures were compared with the qualitatively derived ratings for the dimensions. The final sample for the qualitative component was 107 participants. The qualitative analysis identified 9 dimensions related to high team functioning such as common philosophy, scope of practice, conflict resolution, change management, leadership, and team evolution. From these dimensions, teams were categorized numerically as high, moderate, or low functioning. Three hundred seventeen team members completed the survey measures. Mean site scores for the TCI and PERK were 3.87 and 3.88, respectively (of 5). The TCI was associated will all dimensions except for team location, space allocation, and executive director leadership. The PERK was associated with all dimensions except team location. Data triangulation provided qualitative and quantitative evidence of what constitutes teamwork. Leadership was pivotal in forging a common philosophy and encouraging team collaboration. Teams used conflict resolution strategies and adapted to the changes they encountered. These dimensions advanced the team's evolution toward a high functioning team. (c) 2015 APA, all rights reserved).
Krynyckyi, Borys R; Shafir, Michail K; Kim, Suk Chul; Kim, Dong Wook; Travis, Arlene; Moadel, Renee M; Kim, Chun K
2005-11-08
Current trends in patient care include the desire for minimizing invasiveness of procedures and interventions. This aim is reflected in the increasing utilization of sentinel lymph node biopsy, which results in a lower level of morbidity in breast cancer staging, in comparison to extensive conventional axillary dissection. Optimized lymphoscintigraphy with triangulated body marking is a clinical option that can further reduce morbidity, more than when a hand held gamma probe alone is utilized. Unfortunately it is often either overlooked or not fully understood, and thus not utilized. This results in the unnecessary loss of an opportunity to further reduce morbidity. Optimized lymphoscintigraphy and triangulated body marking provides a detailed 3 dimensional map of the number and location of the sentinel nodes, available before the first incision is made. The number, location, relevance based on time/sequence of appearance of the nodes, all can influence 1) where the incision is made, 2) how extensive the dissection is, and 3) how many nodes are removed. In addition, complex patterns can arise from injections. These include prominent lymphatic channels, pseudo-sentinel nodes, echelon and reverse echelon nodes and even contamination, which are much more difficult to access with the probe only. With the detailed information provided by optimized lymphoscintigraphy and triangulated body marking, the surgeon can approach the axilla in a more enlightened fashion, in contrast to when the less informed probe only method is used. This allows for better planning, resulting in the best cosmetic effect and less trauma to the tissues, further reducing morbidity while maintaining adequate sampling of the sentinel node(s).
Causality in Psychiatry: A Hybrid Symptom Network Construct Model
Directory of Open Access Journals (Sweden)
Gerald eYoung
2015-11-01
Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.
Modification of the laser triangulation method for measuring the thickness of optical layers
Khramov, V. N.; Adamov, A. A.
2018-04-01
The problem of determining the thickness of thin films by the method of laser triangulation is considered. An expression is derived for the film thickness and the distance between the focused beams on the photo detector. The possibility of applying the chosen method for measuring thickness is in the range [0.1; 1] mm. We could resolve 2 individual light marks for a minimum film thickness of 0.23 mm. We resolved with the help of computer processing of photos with a resolution of 0.10 mm. The obtained results can be used in ophthalmology for express diagnostics during surgical operations on the corneal layer.
1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province
International Nuclear Information System (INIS)
Feifei, Xie; Zongjian, Lin; Dezhu, Gui
2014-01-01
A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping
First Instances of Generalized Expo-Rational Finite Elements on Triangulations
Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre
2011-12-01
In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.
Development of the delyed-neutron triangulation technique for locating failed fuel in LMFBR
International Nuclear Information System (INIS)
Kryter, R.C.
1975-01-01
Two major accomplishments of the ORNL delayed neutron triangulation program are (1) an analysis of anticipated detector counting rates and sensitivities to unclad fuel and erosion types of pin failure, and (2) an experimental assessment of the accuracy with which the position of failed fuel can be determined in the FFTF (this was performed in a quarter-scale water mockup of realistic outlet plenum geometry using electrolyte injections and conductivity cells to simulate delayed-neutron precursor releases and detections, respectively). The major results and conclusions from these studies are presented, along with plans for further DNT development work at ORNL for the FFTF and CRBR. (author)
Triangulating laser profilometer as a navigational aid for the blind: optical aspects
Farcy, R.; Denise, B.; Damaschini, R.
1996-03-01
We propose a navigational aid approach for the blind that relies on active optical profilometry with real-time electrotactile interfacing on the skin. Here we are concerned with the optical parts of this system. We point out the particular requirements the profilometer must meet to meet the needs of blind people. We show experimentally that an adequate compromise is possible that consists of a compact class I IR laser-diode triangulation profilometer with the following angular resolution, 20-ms acquisition time per measure of distance, 60 degrees angular scanning field.
A theory of causal learning in children: causal maps and Bayes nets.
Gopnik, Alison; Glymour, Clark; Sobel, David M; Schulz, Laura E; Kushnir, Tamar; Danks, David
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net formalism.
Norms and customs: causally important or causally impotent?
Jones, Todd
2010-01-01
In this article, I argue that norms and customs, despite frequently being described as being causes of behavior in the social sciences and ordinary conversation, cannot really cause behavior. Terms like "norms" and the like seem to refer to philosophically disreputable disjunctive properties. More problematically, even if they do not, or even if there can be disjunctive properties after all, I argue that norms and customs still cannot cause behavior. The social sciences would be better off without referring to properties like norms and customs as if they could be causal.
Directory of Open Access Journals (Sweden)
Michael J. Markham
2011-07-01
Full Text Available Some problems occurring in Expert Systems can be resolved by employing a causal (Bayesian network and methodologies exist for this purpose. These require data in a specific form and make assumptions about the independence relationships involved. Methodologies using Maximum Entropy (ME are free from these conditions and have the potential to be used in a wider context including systems consisting of given sets of linear and independence constraints, subject to consistency and convergence. ME can also be used to validate results from the causal network methodologies. Three ME methods for determining the prior probability distribution of causal network systems are considered. The first method is Sequential Maximum Entropy in which the computation of a progression of local distributions leads to the over-all distribution. This is followed by development of the Method of Tribus. The development takes the form of an algorithm that includes the handling of explicit independence constraints. These fall into two groups those relating parents of vertices, and those deduced from triangulation of the remaining graph. The third method involves a variation in the part of that algorithm which handles independence constraints. Evidence is presented that this adaptation only requires the linear constraints and the parental independence constraints to emulate the second method in a substantial class of examples.
A theory of causal learning in children: Causal maps and Bayes nets
Gopnik, A; Glymour, C; Sobel, D M; Schulz, L E; Kushnir, T; Danks, D
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computatio...
Dynamic causal models of neural system dynamics: current state ...
Indian Academy of Sciences (India)
Prakash
2006-09-28
Sep 28, 2006 ... The Boolean nature of θ, i.e. the pattern of absent and present connections, and the ..... statistical inference at the group level, various options exist. The simplest approach is to enter the ... the group level as well (M Garrido, J M Kilner, S J Kiebel, K. E Stephan and K J Friston, unpublished results). Fitted to ...
Causal mediation analysis with multiple causally non-ordered mediators.
Taguri, Masataka; Featherstone, John; Cheng, Jing
2018-01-01
In many health studies, researchers are interested in estimating the treatment effects on the outcome around and through an intermediate variable. Such causal mediation analyses aim to understand the mechanisms that explain the treatment effect. Although multiple mediators are often involved in real studies, most of the literature considered mediation analyses with one mediator at a time. In this article, we consider mediation analyses when there are causally non-ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect effects through the two mediators considered separately may diverge from the joint natural indirect effect when there are additive interactions between the effects of the two mediators on the outcome. Therefore, we derive an equation for the joint natural indirect effect based on the individual mediation effects and their interactive effect, which helps us understand how the mediation effect works through the two mediators and relative contributions of the mediators and their interaction. We also discuss an extension for three mediators. The proposed method is illustrated using data from a randomized trial on the prevention of dental caries.
The role of causal maps in intellectual capital measurement and management
DEFF Research Database (Denmark)
Montemari, Marco; Nielsen, Christian
2013-01-01
Purpose – The purpose of this paper is to investigate the measurement and the management of the dynamic aspects of intellectual capital through the use of causal mapping. Design/methodology/approach – The study details the methods utilized in a single in-depth case study of a network-based business...... of the lag and the persistence of the effects of managerial actions. In addition, it can signal when and how to refine and update the causal map. The combination of these factors supports the dynamic measurement and management of intellectual capital. Research limitations/implications – The paper presented...... the causal mapping approach into practice. Practical implications – The paper highlights the need to build causal maps to enhance the measurement and management of intellectual capital, which is dynamic of nature. As a consequence, this tool can be useful for companies to monitor their intangibles...
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
Zenil, Hector
2017-09-08
We introduce a conceptual framework and an interventional calculus to steer and manipulate systems based on their intrinsic algorithmic probability using the universal principles of the theory of computability and algorithmic information. By applying sequences of controlled interventions to systems and networks, we estimate how changes in their algorithmic information content are reflected in positive/negative shifts towards and away from randomness. The strong connection between approximations to algorithmic complexity (the size of the shortest generating mechanism) and causality induces a sequence of perturbations ranking the network elements by the steering capabilities that each of them is capable of. This new dimension unmasks a separation between causal and non-causal components providing a suite of powerful parameter-free algorithms of wide applicability ranging from optimal dimension reduction, maximal randomness analysis and system control. We introduce methods for reprogramming systems that do not require the full knowledge or access to the system\\'s actual kinetic equations or any probability distributions. A causal interventional analysis of synthetic and regulatory biological networks reveals how the algorithmic reprogramming qualitatively reshapes the system\\'s dynamic landscape. For example, during cellular differentiation we find a decrease in the number of elements corresponding to a transition away from randomness and a combination of the system\\'s intrinsic properties and its intrinsic capabilities to be algorithmically reprogrammed can reconstruct an epigenetic landscape. The interventional calculus is broadly applicable to predictive causal inference of systems such as networks and of relevance to a variety of machine and causal learning techniques driving model-based approaches to better understanding and manipulate complex systems.
Indirect measurement of molten steel level in tundish based on laser triangulation
Energy Technology Data Exchange (ETDEWEB)
Su, Zhiqi; He, Qing, E-mail: heqing@ise.neu.edu.cn; Xie, Zhi [State Key Laboratory of Synthetical Automation for Process Industries, School of Information Science and Engineering, Northeastern University, Shenyang 110819 (China)
2016-03-15
For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such as installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.
Indirect measurement of molten steel level in tundish based on laser triangulation
Su, Zhiqi; He, Qing; Xie, Zhi
2016-03-01
For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such as installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.
The causal effect of institutional quality on outsourcing
H.J. Roelfsema; Zhang Yi
2009-01-01
This paper empirically investigates the relationship between institutional quality and outsourcing to developing economies. In contrast to cross-sectional studies on institutions, this paper uses panel data for 76 countries over 25 years (1980-2004). Employing panel data helps to show the causal relationship by controlling for the fixed effects and dynamic factors. Using within and IV estimations, we find that there is a positive effect of institutional quality on outsourcing in the lower-mid...
The Functions of Danish Causal Conjunctions
Directory of Open Access Journals (Sweden)
Rita Therkelsen
2004-01-01
Full Text Available In the article I propose an analysis of the Danish causal conjunctions fordi, siden and for based on the framework of Danish Functional Grammar. As conjunctions they relate two clauses, and their semantics have in common that it indicates a causal relationship between the clauses. The causal conjunctions are different as far as their distribution is concerned; siden conjoins a subordinate clause and a main clause, for conjoins two main clauses, and fordi is able to do both. Methodologically I have based my analysis on these distributional properties comparing siden and fordi conjoining a subordinate and a main clause, and comparing for and fordi conjoining two main clauses, following the thesis that they would establish a causal relationship between different kinds of content. My main findings are that fordi establishes a causal relationship between the events referred to by the two clauses, and the whole utterance functions as a statement of this causal relationship. Siden presupposes such a general causal relationship between the two events and puts forward the causing event as a reason for assuming or wishing or ordering the caused event, siden thus establishes a causal relationship between an event and a speech act. For equally presupposes a general causal relationship between two events and it establishes a causal relationship between speech acts, and fordi conjoining two main clauses is able to do this too, but in this position it also maintains its event-relating ability, the interpretation depending on contextual factors.
Space and time in perceptual causality
Directory of Open Access Journals (Sweden)
Benjamin Straube
2010-04-01
Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.
Causal diagrams in systems epidemiology
Directory of Open Access Journals (Sweden)
Joffe Michael
2012-03-01
Full Text Available Abstract Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s. Transmitted causes ("causes of causes" tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.
Causal diagrams in systems epidemiology.
Joffe, Michael; Gambhir, Manoj; Chadeau-Hyam, Marc; Vineis, Paolo
2012-03-19
Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed.The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties.The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets.Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.
Probabilistic causality and radiogenic cancers
International Nuclear Information System (INIS)
Groeer, P.G.
1986-01-01
A review and scrutiny of the literature on probability and probabilistic causality shows that it is possible under certain assumptions to estimate the probability that a certain type of cancer diagnosed in an individual exposed to radiation prior to diagnosis was caused by this exposure. Diagnosis of this causal relationship like diagnosis of any disease - malignant or not - requires always some subjective judgments by the diagnostician. It is, therefore, illusory to believe that tables based on actuarial data can provide objective estimates of the chance that a cancer diagnosed in an individual is radiogenic. It is argued that such tables can only provide a base from which the diagnostician(s) deviate in one direction or the other according to his (their) individual (consensual) judgment. Acceptance of a physician's diagnostic judgment by patients is commonplace. Similar widespread acceptance of expert judgment by claimants in radiation compensation cases does presently not exist. Judicious use of the present radioepidemiological tables prepared by the Working Group of the National Institutes of Health or of updated future versions of similar tables may improve the situation. 20 references
The continuum limit of causal fermion systems from Planck scale structures to macroscopic physics
Finster, Felix
2016-01-01
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students e...
Inferring causal molecular networks: empirical assessment through a community-based effort.
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-04-01
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.
van Schalkwyk, Cari; Mndzebele, Sibongile; Hlophe, Thabo; Garcia Calleja, Jesus Maria; Korenromp, Eline L.; Stoneburner, Rand; Pervilhac, Cyril
2013-01-01
Introduction Swaziland’s severe HIV epidemic inspired an early national response since the late 1980s, and regular reporting of program outcomes since the onset of a national antiretroviral treatment (ART) program in 2004. We assessed effectiveness outcomes and mortality trends in relation to ART, HIV testing and counseling (HTC), tuberculosis (TB) and prevention of mother to child transmission (PMTCT). Methods Data triangulated include intervention coverage and outcomes according to program registries (2001-2010), hospital admissions and deaths disaggregated by age and sex (2001-2010) and population mortality estimates from the 1997 and 2007 censuses and the 2007 demographic and health survey. Results By 2010, ART reached 70% of the estimated number of people living with HIV/AIDS with CD4<350/mm3, with progressively improving patient retention and survival. As of 2010, 88% of health facilities providing antenatal care offered comprehensive PMTCT services. The HTC program recorded a halving in the proportion of adults tested who were HIV-infected; similarly HIV infection rates among HIV-exposed babies halved from 2007 to 2010. Case fatality rates among hospital patients diagnosed with HIV/AIDS started to decrease from 2005–6 in adults and especially in children, contrasting with stable case fatality for other causes including TB. All-cause child in-patient case fatality rates started to decrease from 2005–6. TB case notifications as well as rates of HIV/TB co-infection among notified TB patients continued a steady increase through 2010, while coverage of HIV testing and CPT for co-infected patients increased to above 80%. Conclusion Against a background of high, but stable HIV prevalence and decreasing HIV incidence, we documented early evidence of a mortality decline associated with the expanded national HIV response since 2004. Attribution of impact to specific interventions (versus natural epidemic dynamics) will require additional data from future
Ponappa, Sujata; Bartle-Haring, Suzanne; Holowacz, Eugene; Ferriby, Megan
2017-01-01
Guided by Bowen theory, we investigated the relationships between parent-child triangulation, parental differential treatment (PDT), sibling warmth, and individual depressive symptoms in a sample of 77 sibling dyads, aged 18-25 years, recruited through undergraduate classes at a U.S. public University. Results of the actor-partner interdependence models suggested that being triangulated into parental conflict was positively related to both siblings' perception of PDT; however, as one sibling felt triangulated, the other perceived reduced levels of PDT. For both siblings, the perception of higher levels of PDT was related to decreased sibling warmth and higher sibling warmth was associated with fewer depressive symptoms. The implications of these findings for research and the treatment of depression in the college-aged population are discussed. © 2016 American Association for Marriage and Family Therapy.
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Causal relationship: a new tool for the causal characterization of Lorentzian manifolds
International Nuclear Information System (INIS)
Garcia-Parrado, Alfonso; Senovilla, Jose M M
2003-01-01
We define and study a new kind of relation between two diffeomorphic Lorentzian manifolds called a causal relation, which is any diffeomorphism characterized by mapping every causal vector of the first manifold onto a causal vector of the second. We perform a thorough study of the mathematical properties of causal relations and prove in particular that two given Lorentzian manifolds (say V and W) may be causally related only in one direction (say from V to W, but not from W to V). This leads us to the concept of causally equivalent (or isocausal in short) Lorentzian manifolds as those mutually causally related and to a definition of causal structure over a differentiable manifold as the equivalence class formed by isocausal Lorentzian metrics upon it. Isocausality is a more general concept than the conformal relationship, because we prove the remarkable result that a conformal relation φ is characterized by the fact of being a causal relation of the particular kind in which both φ and φ -1 are causal relations. Isocausal Lorentzian manifolds are mutually causally compatible, they share some important causal properties, and there are one-to-one correspondences, which are sometimes non-trivial, between several classes of their respective future (and past) objects. A more important feature is that they satisfy the same standard causality constraints. We also introduce a partial order for the equivalence classes of isocausal Lorentzian manifolds providing a classification of all the causal structures that a given fixed manifold can have. By introducing the concept of causal extension we put forward a new definition of causal boundary for Lorentzian manifolds based on the concept of isocausality, and thereby we generalize the traditional Penrose constructions of conformal infinity, diagrams and embeddings. In particular, the concept of causal diagram is given. Many explicit clarifying examples are presented throughout the paper
Amodal causal capture in the tunnel effect.
Bae, Gi Yeul; Flombaum, Jonathan I
2011-01-01
In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.
Electromagnetic pulses, localized and causal
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
Quantum retrodiction and causality principle
International Nuclear Information System (INIS)
Shirokov, M.I.
1994-01-01
Quantum mechanics is factually a predictive science. But quantum retrodiction may also be needed, e.g., for the experimental verification of the validity of the Schroedinger equation for the wave function in the past if the present state is given. It is shown that in the retrodictive analog of the prediction the measurement must be replaced by another physical process called the retromeasurement. In this process, the reduction of a state vector into eigenvectors of a measured observable must proceed in the opposite direction of time as compared to the usual reduction. Examples of such processes are unknown. Moreover, they are shown to be forbidden by the causality principle stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and F.Belinfante must be considered as an unsatisfactory ersatz of retrodicting. 20 refs., 3 figs
Characterizing time series: when Granger causality triggers complex networks
International Nuclear Information System (INIS)
Ge Tian; Cui Yindong; Lin Wei; Liu Chong; Kurths, Jürgen
2012-01-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length. (paper)
Characterizing time series: when Granger causality triggers complex networks
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
Two Strategies for Qualitative Content Analysis: An Intramethod Approach to Triangulation.
Renz, Susan M; Carrington, Jane M; Badger, Terry A
2018-04-01
The overarching aim of qualitative research is to gain an understanding of certain social phenomena. Qualitative research involves the studied use and collection of empirical materials, all to describe moments and meanings in individuals' lives. Data derived from these various materials require a form of analysis of the content, focusing on written or spoken language as communication, to provide context and understanding of the message. Qualitative research often involves the collection of data through extensive interviews, note taking, and tape recording. These methods are time- and labor-intensive. With the advances in computerized text analysis software, the practice of combining methods to analyze qualitative data can assist the researcher in making large data sets more manageable and enhance the trustworthiness of the results. This article will describe a novel process of combining two methods of qualitative data analysis, or Intramethod triangulation, as a means to provide a deeper analysis of text.
A Novel Model of Conforming Delaunay Triangulation for Sensor Network Configuration
Directory of Open Access Journals (Sweden)
Yan Ma
2015-01-01
Full Text Available Delaunay refinement is a technique for generating unstructured meshes of triangles for sensor network configuration engineering practice. A new method for solving Delaunay triangulation problem is proposed in this paper, which is called endpoint triangle’s circumcircle model (ETCM. As compared with the original fractional node refinement algorithms, the proposed algorithm can get well refinement stability with least time cost. Simulations are performed under five aspects including refinement stability, the number of additional nodes, time cost, mesh quality after intruding additional nodes, and the aspect ratio improved by single additional node. All experimental results show the advantages of the proposed algorithm as compared with the existing algorithms and confirm the algorithm analysis sufficiently.
Triangulation and Gender Perspectives in ‘Falling Man’ by Don DeLillo
Directory of Open Access Journals (Sweden)
Noemi Abe
2011-09-01
Susannah Radstone argues that the rhetorical response to 9/11 by the Bush administration is based on the opposition of two father figures: “the 'chastened' but powerful 'good' patriarchal father” Vs. “the 'bad' archaic father”. She explains: “In this Manichean fantasy can be glimpsed the continuing battle between competing versions of masculinity” (2002:459 that leaves women on the margins. The battle of the fathers of Bush’s rhetoric is counterposed in Falling Man by a battle between two men that stands for an unaccomplished fatherhood. Furthermore, the dualistic vision engendered by post-9/11 rhetoric and reflected in the novel should be evaluated in a trilateral dimension, given that at its core lies a triangulation built upon three stereotypical representations: the white middle-class man; the Arab terrorist; and a composite character in the middle, the woman, who shifts from ally, to victim, to a plausible supporter of the enemy.
Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle
Ettl, Svenja
2015-04-01
'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.
Delaunay Triangulation as a New Coverage Measurement Method in Wireless Sensor Network
Chizari, Hassan; Hosseini, Majid; Poston, Timothy; Razak, Shukor Abd; Abdullah, Abdul Hanan
2011-01-01
Sensing and communication coverage are among the most important trade-offs in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage is vital in scheduling, target tracking and redeployment phases, as well as providing communication coverage. Some methods measure the coverage as a percentage value, but detailed information has been missing. Two scenarios with equal coverage percentage may not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage measurement method using Delaunay Triangulation (DT). This can provide the value for all coverage measurement tools. Moreover, it categorizes sensors as ‘fat’, ‘healthy’ or ‘thin’ to show the dense, optimal and scattered areas. It can also yield the largest empty area of sensors in the field. Simulation results show that the proposed DT method can achieve accurate coverage information, and provides many tools to compare QoC between different scenarios. PMID:22163792
Zur Rekonstruktion einer Typologie jugendlichen Medienhandelns gemäß dem Leitbild der Triangulation
Directory of Open Access Journals (Sweden)
Klaus Peter Treumann
2017-09-01
Full Text Available Die im Folgenden dargestellten Ergebnisse sind im Rahmen des von der DFG geförderten Forschungsprojekts „Eine Untersuchung zum Mediennutzungsverhalten 12- bis 20-Jähriger und zur Entwicklung von Medienkompetenz im Jugendalter“ entstanden, das gemeinsam von Klaus Peter Treumann, Uwe Sander und Dorothee Meister geleitet wird. Das Forschungsprojekt untersucht das Medienhandeln Jugendlicher sowohl hinsichtlich Neuer als auch alter Medien. Zum einen fragen wir dabei nach den Ausprägungen von Medienkompetenz in verschiedenen Dimensionen und zum anderen konzentrieren wir uns auf die Entwicklung einer empirisch fundierten Typologie jugendlichen Medienhandelns. Methodologisch ist die Untersuchung an dem Leitbild der Triangulation orientiert und kombiniert qualitative und quantitative Zugänge zum Forschungsfeld in Form von Gruppendiskussionen, leitfadengestützten Einzelinterviews und einer Repräsentativerhebung.
Thermal Entanglement and Critical Behavior of Magnetic Properties on a Triangulated Kagomé Lattice
Directory of Open Access Journals (Sweden)
N. Ananikian
2011-01-01
Full Text Available The equilibrium magnetic and entanglement properties in a spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice are analyzed by means of the effective field for the Gibbs-Bogoliubov inequality. The calculation is reduced to decoupled individual (clusters trimers due to the separable character of the Ising-type exchange interactions between the Heisenberg trimers. The concurrence in terms of the three qubit isotropic Heisenberg model in the effective Ising field in the absence of a magnetic field is non-zero. The magnetic and entanglement properties exhibit common (plateau, peak features driven by a magnetic field and (antiferromagnetic exchange interaction. The (quantum entangled and non-entangled phases can be exploited as a useful tool for signalling the quantum phase transitions and crossovers at finite temperatures. The critical temperature of order-disorder coincides with the threshold temperature of thermal entanglement.
Directory of Open Access Journals (Sweden)
YANG Wei
2017-02-01
Full Text Available Extraction of road boundary accurately from crowdsourcing trajectory lines is still a hard work.Therefore,this study presented a new approach to use vehicle trajectory lines to extract road boundary.Firstly, constructing constrained Delaunay triangulation within interpolated track lines to calculate road boundary descriptors using triangle edge length and Voronoi cell.Road boundary recognition model was established by integrating the two boundary descriptors.Then,based on seed polygons,a regional growing method was proposed to extract road boundary. Finally, taxi GPS traces in Beijing were used to verify the validity of the novel method, and the results also showed that our method was suitable for GPS traces with disparity density,complex road structure and different time interval.
Determination of Shift/Bias in Digital Aerial Triangulation of UAV Imagery Sequences
Wierzbicki, Damian
2017-12-01
Currently UAV Photogrammetry is characterized a largely automated and efficient data processing. Depicting from the low altitude more often gains on the meaning in the uses of applications as: cities mapping, corridor mapping, road and pipeline inspections or mapping of large areas e.g. forests. Additionally, high-resolution video image (HD and bigger) is more often use for depicting from the low altitude from one side it lets deliver a lot of details and characteristics of ground surfaces features, and from the other side is presenting new challenges in the data processing. Therefore, determination of elements of external orientation plays a substantial role the detail of Digital Terrain Models and artefact-free ortophoto generation. Parallel a research on the quality of acquired images from UAV and above the quality of products e.g. orthophotos are conducted. Despite so fast development UAV photogrammetry still exists the necessity of accomplishment Automatic Aerial Triangulation (AAT) on the basis of the observations GPS/INS and via ground control points. During low altitude photogrammetric flight, the approximate elements of external orientation registered by UAV are burdened with the influence of some shift/bias errors. In this article, methods of determination shift/bias error are presented. In the process of the digital aerial triangulation two solutions are applied. In the first method shift/bias error was determined together with the drift/bias error, elements of external orientation and coordinates of ground control points. In the second method shift/bias error was determined together with the elements of external orientation, coordinates of ground control points and drift/bias error equals 0. When two methods were compared the difference for shift/bias error is more than ±0.01 m for all terrain coordinates XYZ.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
International Nuclear Information System (INIS)
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
Energy Technology Data Exchange (ETDEWEB)
Neelamkavil, Raphael
2014-07-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Arnone, E.; Dialynas, Y. G.; Noto, L. V.; Bras, R. L.
2013-12-01
Catchment slope distribution is one of the topographic characteristics that significantly control rainfall-triggered landslide modeling, in both direct and indirect ways. Slope directly determines the soil volume associated with instability. Indirectly slope also affects the subsurface lateral redistribution of soil moisture across the basin, which in turn determines the water pore pressure conditions that impact slope stability. In this study, we investigate the influence of DEM resolution on slope stability and the slope stability analysis by using a distributed eco-hydrological and landslide model, the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). The model implements a triangulated irregular network to describe the topography, and it is capable of evaluating vegetation dynamics and predicting shallow landslides triggered by rainfall. The impact of DEM resolution on the landslide prediction was studied using five TINs derived from five grid DEMs at different resolutions, i.e. 10, 20, 30, 50 and 70 m respectively. The analysis was carried out on the Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. Results showed that the use of the irregular mesh reduced the loss of accuracy in the derived slope distribution when coarser resolutions were used. The impact of the different resolutions on soil moisture patterns was important only when the lateral redistribution was considerable, depending on hydrological properties and rainfall forcing. In some cases, the use of different DEM resolutions did not significantly affect tRIBS-VEGGIE landslide output, in terms of landslide locations, and values of slope and soil moisture at failure.
Causal models in epidemiology: past inheritance and genetic future
Directory of Open Access Journals (Sweden)
Kriebel David
2006-07-01
Full Text Available Abstract The eruption of genetic research presents a tremendous opportunity to epidemiologists to improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced the new tools of genomics and proteomics to investigate gene-environment interactions. We argue that neither the full import nor limitations of such studies can be appreciated without clarifying underlying theoretical models of interaction, etiologic fraction, and the fundamental concept of causality. We therefore explore different models of causality in the epidemiology of disease arising out of genes, environments, and the interplay between environments and genes. We begin from Rothman's "pie" model of necessary and sufficient causes, and then discuss newer approaches, which provide additional insights into multifactorial causal processes. These include directed acyclic graphs and structural equation models. Caution is urged in the application of two essential and closely related concepts found in many studies: interaction (effect modification and the etiologic or attributable fraction. We review these concepts and present four important limitations. 1. Interaction is a fundamental characteristic of any causal process involving a series of probabilistic steps, and not a second-order phenomenon identified after first accounting for "main effects". 2. Standard methods of assessing interaction do not adequately consider the life course, and the temporal dynamics through which an individual's sufficient cause is completed. Different individuals may be at different stages of development along the path to disease, but this is not usually measurable. Thus, for example, acquired susceptibility in children can be an important source of variation. 3. A distinction must be made between individual-based and population-level models. Most epidemiologic discussions of causality fail to make this distinction. 4. At the population level, there is additional
A Theory of Causal Learning in Children: Causal Maps and Bayes Nets
Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David
2004-01-01
The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…
International Nuclear Information System (INIS)
Garcia-Parrado, Alfonso; Sanchez, Miguel
2005-01-01
Recently (Garcia-Parrado and Senovilla 2003 Class. Quantum Grav. 20 625-64) the concept of causal mapping between spacetimes, essentially equivalent in this context to the chronological map defined in abstract chronological spaces, and the related notion of causal structure, have been introduced as new tools to study causality in Lorentzian geometry. In the present paper, these tools are further developed in several directions such as (i) causal mappings-and, thus, abstract chronological ones-do not preserve two levels of the standard hierarchy of causality conditions (however, they preserve the remaining levels as shown in the above reference), (ii) even though global hyperbolicity is a stable property (in the set of all time-oriented Lorentzian metrics on a fixed manifold), the causal structure of a globally hyperbolic spacetime can be unstable against perturbations; in fact, we show that the causal structures of Minkowski and Einstein static spacetimes remain stable, whereas that of de Sitter becomes unstable, (iii) general criteria allow us to discriminate different causal structures in some general spacetimes (e.g. globally hyperbolic, stationary standard); in particular, there are infinitely many different globally hyperbolic causal structures (and thus, different conformal ones) on R 2 (iv) plane waves with the same number of positive eigenvalues in the frequency matrix share the same causal structure and, thus, they have equal causal extensions and causal boundaries
Campbell's and Rubin's Perspectives on Causal Inference
West, Stephen G.; Thoemmes, Felix
2010-01-01
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
mediation: R Package for Causal Mediation Analysis
Directory of Open Access Journals (Sweden)
Dustin Tingley
2014-09-01
Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.
Causal Mediation Analysis: Warning! Assumptions Ahead
Keele, Luke
2015-01-01
In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…
A General Approach to Causal Mediation Analysis
Imai, Kosuke; Keele, Luke; Tingley, Dustin
2010-01-01
Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…
A Causal Model of Faculty Research Productivity.
Bean, John P.
A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…
Counterfactual overdetermination vs. the causal exclusion problem.
Sparber, Georg
2005-01-01
This paper aims to show that a counterfactual approach to causation is not sufficient to provide a solution to the causal exclusion problem in the form of systematic overdetermination. Taking into account the truthmakers of causal counterfactuals provides a strong argument in favour of the identity of causes in situations of translevel, causation.
Causal Indicators Can Help to Interpret Factors
Bentler, Peter M.
2016-01-01
The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…
Quasi-Experimental Designs for Causal Inference
Kim, Yongnam; Steiner, Peter
2016-01-01
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Determining Directional Dependency in Causal Associations
Pornprasertmanit, Sunthud; Little, Todd D.
2012-01-01
Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…
Dilepton production in schematic causal viscous hydrodynamics
International Nuclear Information System (INIS)
Song, Taesoo; Han, Kyong Chol; Ko, Che Ming
2011-01-01
Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4π for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse momenta.
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analogue of the Polyakov string is considered in the work. An algorithm is proposed which enables one to study the model by means of the Monte Carlo method in the grand canonical ensemble. Preliminary results are presented on the evaluation of the critical index γ
Heterogeneous Causal Effects and Sample Selection Bias
DEFF Research Database (Denmark)
Breen, Richard; Choi, Seongsoo; Holm, Anders
2015-01-01
The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how...... causal effects might vary over individuals or groups. In this paper we point out one of the under-appreciated hazards of seeking to estimate heterogeneous causal effects: conventional selection bias (that is, selection on baseline differences) can easily be mistaken for heterogeneity of causal effects....... This might lead us to find heterogeneous effects when the true effect is homogenous, or to wrongly estimate not only the magnitude but also the sign of heterogeneous effects. We apply a test for the robustness of heterogeneous causal effects in the face of varying degrees and patterns of selection bias...
Repair of Partly Misspecified Causal Diagrams.
Oates, Chris J; Kasza, Jessica; Simpson, Julie A; Forbes, Andrew B
2017-07-01
Errors in causal diagrams elicited from experts can lead to the omission of important confounding variables from adjustment sets and render causal inferences invalid. In this report, a novel method is presented that repairs a misspecified causal diagram through the addition of edges. These edges are determined using a data-driven approach designed to provide improved statistical efficiency relative to de novo structure learning methods. Our main assumption is that the expert is "directionally informed," meaning that "false" edges provided by the expert would not create cycles if added to the "true" causal diagram. The overall procedure is cast as a preprocessing technique that is agnostic to subsequent causal inferences. Results based on simulated data and data derived from an observational cohort illustrate the potential for data-assisted elicitation in epidemiologic applications. See video abstract at, http://links.lww.com/EDE/B208.
Causality, spin, and equal-time commutators
International Nuclear Information System (INIS)
Abdel-Rahman, A.M.
1975-01-01
We study the causality constraints on the structure of the Lorentz-antisymmetric component of the commutator of two conserved isovector currents between fermion states of equal momenta. We discuss the sum rules that follow from causality and scaling, using the recently introduced refined infinite-momentum technique. The complete set of sum rules is found to include the spin-dependent fixed-mass sum rules obtained from light-cone commutators. The causality and scaling restrictions on the structure of the electromagnetic equal-time commutators are discussed, and it is found, in particular, that causality requires the spin-dependent part of the matrix element for the time-space electromagnetic equal-time commutator to vanish identically. It is also shown, in comparison with the electromagnetic case, that the corresponding matrix element for the time-space isovector current equal-time commutator is required, by causality, to have isospin-antisymmetric tensor and scalar operator Schwinger terms
Causal ubiquity in quantum physics a superluminal and local-causal physical ontology
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That
Causality violations in Lovelock theories
Brustein, Ram; Sherf, Yotam
2018-04-01
Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo
Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.
2016-05-01
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and
Causal localizations in relativistic quantum mechanics
Castrigiano, Domenico P. L.; Leiseifer, Andreas D.
2015-07-01
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Causal inference, probability theory, and graphical insights.
Baker, Stuart G
2013-11-10
Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.
Can chance cause cancer? A causal consideration.
Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai
2017-04-01
The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dual Causality and the Autonomy of Biology.
Bock, Walter J
2017-03-01
Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.
Mathematical implications of Einstein-Weyl causality
International Nuclear Information System (INIS)
Borchers, H.J.; Sen, R.N.
2006-01-01
The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics. (orig.)
The mistake of the causal relationship
Directory of Open Access Journals (Sweden)
О. Д. Комаров
2015-03-01
Full Text Available The article deals with issues of the mistake of the causal relationship. The modern criminal law science approaches to the content of the mistake of the causal relationship and its significance to the qualification of the crime are described. It is proved that in cases of dolus generalis different mental attitude of the guilty person to two separate acts of his conduct exist. Consequently, in mentioned above cases mistake of the causal relationship does not have place. The rules of qualification of the crimes commited with the mistake of causation and in cases of dolus generalis are proposed .
How causal analysis can reveal autonomy in models of biological systems
Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa
2017-11-01
Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Kim, Katherine K; Browe, Dennis K; Logan, Holly C; Holm, Roberta; Hack, Lori; Ohno-Machado, Lucila
2014-01-01
There is currently limited information on best practices for the development of governance requirements for distributed research networks (DRNs), an emerging model that promotes clinical data reuse and improves timeliness of comparative effectiveness research. Much of the existing information is based on a single type of stakeholder such as researchers or administrators. This paper reports on a triangulated approach to developing DRN data governance requirements based on a combination of policy analysis with experts, interviews with institutional leaders, and patient focus groups. This approach is illustrated with an example from the Scalable National Network for Effectiveness Research, which resulted in 91 requirements. These requirements were analyzed against the Fair Information Practice Principles (FIPPs) and Health Insurance Portability and Accountability Act (HIPAA) protected versus non-protected health information. The requirements addressed all FIPPs, showing how a DRN's technical infrastructure is able to fulfill HIPAA regulations, protect privacy, and provide a trustworthy platform for research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Directory of Open Access Journals (Sweden)
Matthias Saba
2015-01-01
Full Text Available We propose a new approach to calculate the complex photonic band structure, both purely dispersive and evanescent Bloch modes of a finite range, of arbitrary three-dimensional photonic crystals. Our method, based on a well-established plane wave expansion and the weak form solution of Maxwell’s equations, computes the Fourier components of periodic structures composed of distinct homogeneous material domains from a triangulated mesh representation of the inter-material interfaces; this allows substantially more accurate representations of the geometry of complex photonic crystals than the conventional representation by a cubic voxel grid. Our method works for general two-phase composite materials, consisting of bi-anisotropic materials with tensor-valued dielectric and magnetic permittivities ε and μ and coupling matrices ς. We demonstrate for the Bragg mirror and a simple cubic crystal closely related to the Kelvin foam that relatively small numbers of Fourier components are sufficient to yield good convergence of the eigenvalues, making this method viable, despite its computational complexity. As an application, we use the single gyroid crystal to demonstrate that the consideration of both conventional and evanescent Bloch modes is necessary to predict the key features of the reflectance spectrum by analysis of the band structure, in particular for light incident along the cubic [111] direction.
Solving the Einstein constraint equations on multi-block triangulations using finite element methods
Energy Technology Data Exchange (ETDEWEB)
Korobkin, Oleg; Pazos, Enrique [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Aksoylu, Burak [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Holst, Michael [Department of Mathematics, University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0112 (United States); Tiglio, Manuel [Department of Physics, University of Maryland, College Park, MD 20742 (United States)
2009-07-21
In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor psi. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.
Solving the Einstein constraint equations on multi-block triangulations using finite element methods
International Nuclear Information System (INIS)
Korobkin, Oleg; Pazos, Enrique; Aksoylu, Burak; Holst, Michael; Tiglio, Manuel
2009-01-01
In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.
Liu, Y.; Guo, Q.; Sun, Y.
2014-04-01
In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.
A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method.
Nasirahmadi, A; Hensel, O; Edwards, S A; Sturm, B
2017-01-01
Machine vision-based monitoring of pig lying behaviour is a fast and non-intrusive approach that could be used to improve animal health and welfare. Four pens with 22 pigs in each were selected at a commercial pig farm and monitored for 15 days using top view cameras. Three thermal categories were selected relative to room setpoint temperature. An image processing technique based on Delaunay triangulation (DT) was utilized. Different lying patterns (close, normal and far) were defined regarding the perimeter of each DT triangle and the percentages of each lying pattern were obtained in each thermal category. A method using a multilayer perceptron (MLP) neural network, to automatically classify group lying behaviour of pigs into three thermal categories, was developed and tested for its feasibility. The DT features (mean value of perimeters, maximum and minimum length of sides of triangles) were calculated as inputs for the MLP classifier. The network was trained, validated and tested and the results revealed that MLP could classify lying features into the three thermal categories with high overall accuracy (95.6%). The technique indicates that a combination of image processing, MLP classification and mathematical modelling can be used as a precise method for quantifying pig lying behaviour in welfare investigations.
Triangulation of Qualitative Methods for the Exploration of Activity Systems in Ergonomics
Directory of Open Access Journals (Sweden)
Monika Hackel
2008-08-01
Full Text Available Research concerning ergonomic issues in interdisciplinary projects often raises several very specific questions depending on project objectives. To answer these questions the application of research methods should be thoroughly considered, regarding both the expenditure and the options within the scope of the given resources. The project AQUIMO develops an adaptable modelling tool for mechatronical engineering and creates a related qualification program. The task of social scientific research within this project is to identify requirements viewed from the perspective of the subsequent users. This formative evaluation is based on the approach of "developmental work research" as set forth by ENGESTRÖM and, thus, is a form of "action research". This paper discusses the triangulation of several qualitative methods addressing the examination of difficulties in interdisciplinary collaboration in mechatronical engineering. After a description of both background and analytic approach within the project AQUIMO, the methods are briefly described concerning their advantages and critical points. Their application within the research project AQUIMO is explained from an activity theoretical perspective. URN: urn:nbn:de:0114-fqs0803158
International Nuclear Information System (INIS)
Rehmatulla, Nishatabbas; Smith, Tristan
2015-01-01
Energy efficiency is a key policy strategy to meet some of the challenges being faced today and to plan for a sustainable future. Numerous empirical studies in various sectors suggest that there are cost-effective measures that are available but not always implemented due to existence of barriers to energy efficiency. Several cost-effective energy efficient options (technologies for new and existing ships and operations) have also been identified for improving energy efficiency of ships. This paper is one of the first to empirically investigate barriers to energy efficiency in the shipping industry using a novel framework and multidisciplinary methods to gauge implementation of cost-effective measures, perception on barriers and observations of barriers. It draws on findings of a survey conducted of shipping companies, content analysis of shipping contracts and analysis of energy efficiency data. Initial results from these methods suggest the existence of the principal agent problem and other market failures and barriers that have also been suggested in other sectors and industries. Given this finding, policies to improve implementation of energy efficiency in shipping need to be carefully considered to improve their efficacy and avoid unintended consequences. -- Highlights: •We provide the first analysis of the principal agent problem in shipping. •We develop a framework that incorporates methodological triangulation. •Our results show the extent to which this barrier is observed and perceived. •The presence of the barrier has implications on the policy most suited to shipping
International Nuclear Information System (INIS)
Berberi, Pellumb; Tabaku, Burhan
2010-01-01
Laser triangulation method is one of the methods used for contactless measurement of roughness of textile fabrics. Method is based on measurement of distance between the sensor and the object by imaging the light scattered from the surface. However, experimental results, especially for high values of roughness, show a strong dependence to duration of exposure time to laser pulses. Use of very short exposure times and long exposures times causes appearance on the surface of the scanned textile of pixels with Active peak heights. The number of Active peaks increases with decrease of exposure time down to 0.1 ms, and increases with increase of exposure time up to 100 ms. Appearance of Active peaks leads to nonrealistic increase of roughness of the surface both for short exposure times and long exposure times reaching a minimum somewhere in the region of medium exposure times, 1 to 2 ms. The above effect suggests a careful analysis of experimental data and, also, becomes an important restriction to the method. In this paper we attempt to make a phenomenological approach to the mechanisms leading to these effects. We suppose that effect is related both to scattering properties of scanned surface and to physical parameters of CCD sensors. The first factor becomes more important in the region of long exposure times, while second factor becomes more important in the region of short exposure times.
Energy Technology Data Exchange (ETDEWEB)
Grazzini, Jacopo [Los Alamos National Laboratory; Prasad, Lakshman [Los Alamos National Laboratory; Dillard, Scott [PNNL
2010-10-21
The automatic detection, recognition , and segmentation of object classes in remote sensed images is of crucial importance for scene interpretation and understanding. However, it is a difficult task because of the high variability of satellite data. Indeed, the observed scenes usually exhibit a high degree of complexity, where complexity refers to the large variety of pictorial representations of objects with the same semantic meaning and also to the extensive amount of available det.ails. Therefore, there is still a strong demand for robust techniques for automatic information extraction and interpretation of satellite images. In parallel, there is a growing interest in techniques that can extract vector features directly from such imagery. In this paper, we investigate the problem of automatic hierarchical segmentation and vectorization of multispectral satellite images. We propose a new algorithm composed of the following steps: (i) a non-uniform sampling scheme extracting most salient pixels in the image, (ii) an anisotropic triangulation constrained by the sampled pixels taking into account both strength and directionality of local structures present in the image, (iii) a polygonal grouping scheme merging, through techniques based on perceptual information , the obtained segments to a smaller quantity of superior vectorial objects. Besides its computational efficiency, this approach provides a meaningful polygonal representation for subsequent image analysis and/or interpretation.
Identifying causal linkages between environmental variables and African conflicts
Nguy-Robertson, A. L.; Dartevelle, S.
2017-12-01
Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.
Assessing students' beliefs, emotions and causal attribution ...
African Journals Online (AJOL)
Keywords: academic emotion; belief; causal attribution; statistical validation; students' conceptions of learning ... Sadi & Lee, 2015), through their effect on motivation and learning strategies .... to understand why they may or may not be doing.
Causality Between Urban Concentration and Environmental Quality
Directory of Open Access Journals (Sweden)
Amin Pujiati
2015-08-01
Full Text Available Population is concentrated in urban areas can cause the external diseconomies on environment if it exceeds the carrying capacity of the space and the urban economy. Otherwise the quality of the environment is getting better, led to the concentration of population in urban areas are increasingly high. This study aims to analyze the relationship of causality between the urban concentration and environmental quality in urban agglomeration areas. The data used in the study of secondary data obtained from the Central Bureau of statistics and the City Government from 2000 to 2013. The analytical method used is the Granger causality and descriptive. Granger causality study results showed no pattern of reciprocal causality, between urban concentration and the quality of the environment, but there unidirectional relationship between the urban concentration and environmental quality. This means that increasing urban concentration led to decreased environmental quality.
Selecting appropriate cases when tracing causal mechanisms
DEFF Research Database (Denmark)
Beach, Derek; Pedersen, Rasmus Brun
2016-01-01
The last decade has witnessed resurgence in the interest in studying the causal mechanisms linking causes and outcomes in the social sciences. This article explores the overlooked implications for case selection when tracing mechanisms using in-depth case studies. Our argument is that existing case...... selection guidelines are appropriate for research aimed at making cross-case claims about causal relationships, where case selection is primarily used to control for other causes. However, existing guidelines are not in alignment with case-based research that aims to trace mechanisms, where the goal...... is to unpack the causal mechanism between X and Y, enabling causal inferences to be made because empirical evidence is provided for how the mechanism actually operated in a particular case. The in-depth, within-case tracing of how mechanisms operate in particular cases produces what can be termed mechanistic...
K-causality and degenerate spacetimes
Dowker, H. F.; Garcia, R. S.; Surya, S.
2000-11-01
The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.
CAUSAL RELATIONSHIPS BETWEEN GRAIN, MEAT PRICES AND EXCHANGE RATES
Directory of Open Access Journals (Sweden)
Naveen Musunuru
2017-10-01
Full Text Available Understanding agricultural commodity price relationships are important as they help producers improve their awareness regarding production costs and ultimately aid in income determination. The present paper empirically examines the dynamic interrelationships among grain, meat prices and the U.S. dollar exchange rate. Johansen cointegration tests reveal no cointegrating relationships among the study variables. Majority of the commodities studied in the paper exhibited unidirectional causality except for corn and lean hogs. The vector autoregression (VAR model results indicate that the grain and meat prices are influenced by their own past prices. The role of exchange rates is found to be limited in linking the agricultural commodities.
Efficient nonparametric estimation of causal mediation effects
Chan, K. C. G.; Imai, K.; Yam, S. C. P.; Zhang, Z.
2016-01-01
An essential goal of program evaluation and scientific research is the investigation of causal mechanisms. Over the past several decades, causal mediation analysis has been used in medical and social sciences to decompose the treatment effect into the natural direct and indirect effects. However, all of the existing mediation analysis methods rely on parametric modeling assumptions in one way or another, typically requiring researchers to specify multiple regression models involving the treat...
Inference of Boundaries in Causal Sets
Cunningham, William
2017-01-01
We investigate the extrinsic geometry of causal sets in $(1+1)$-dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons-Hawking-York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space...
Quantum Gravity in Two Dimensions
DEFF Research Database (Denmark)
Ipsen, Asger Cronberg
The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...
Causal strength induction from time series data.
Soo, Kevin W; Rottman, Benjamin M
2018-04-01
One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kant on causal laws and powers.
Henschen, Tobias
2014-12-01
The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.
Directory of Open Access Journals (Sweden)
J. Vauhkonen
2015-03-01
Full Text Available Reconstruction of three-dimensional (3D forest canopy is described and quantified using airborne laser scanning (ALS data with densities of 0.6–0.8 points m-2 and field measurements aggregated at resolutions of 400–900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i to optimize the degree of filtration with respect to the field measurements, and (ii to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2 with the stem volume considered, both alone (R2=0.65 and together with other predictors (R2=0.78. When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.
Bailey, Ajay; Hutter, Inge
2008-10-01
With 3.1 million people estimated to be living with HIV/AIDS in India and 39.5 million people globally, the epidemic has posed academics the challenge of identifying behaviours and their underlying beliefs in the effort to reduce the risk of HIV transmission. The Health Belief Model (HBM) is frequently used to identify risk behaviours and adherence behaviour in the field of HIV/AIDS. Risk behaviour studies that apply HBM have been largely quantitative and use of qualitative methodology is rare. The marriage of qualitative and quantitative methods has never been easy. The challenge is in triangulating the methods. Method triangulation has been largely used to combine insights from the qualitative and quantitative methods but not to link both the methods. In this paper we suggest a linked trajectory of method triangulation (LTMT). The linked trajectory aims to first gather individual level information through in-depth interviews and then to present the information as vignettes in focus group discussions. We thus validate information obtained from in-depth interviews and gather emic concepts that arise from the interaction. We thus capture both the interpretation and the interaction angles of the qualitative method. Further, using the qualitative information gained, a survey is designed. In doing so, the survey questions are grounded and contextualized. We employed this linked trajectory of method triangulation in a study on the risk assessment of HIV/AIDS among migrant and mobile men. Fieldwork was carried out in Goa, India. Data come from two waves of studies, first an explorative qualitative study (2003), second a larger study (2004-2005), including in-depth interviews (25), focus group discussions (21) and a survey (n=1259). By employing the qualitative to quantitative LTMT we can not only contextualize the existing concepts of the HBM, but also validate new concepts and identify new risk groups.
Lyons, Gordon; De Bortoli, Tania; Arthur-Kelly, Michael
2017-09-01
This paper explains and demonstrates the pilot application of Triangulated Proxy Reporting (TPR); a practical technique for enhancing communication around people who have severe cognitive impairment (SCI). An introduction explains SCI and how this impacts on communication; and consequently on quality of care and quality of life. This is followed by an explanation of TPR and its origins in triangulation research techniques. An illustrative vignette explicates its utility and value in a group home for a resident with profound multiple disabilities. The Discussion and Conclusion sections propose the wider application of TPR for different cohorts of people with SCIs, their communication partners and service providers. TPR presents as a practical technique for enhancing communication interactions with people who have SCI. The paper demonstrates the potential of the technique for improving engagement amongst those with profound multiple disabilities, severe acquired brain injury and advanced dementia and their partners in and across different care settings. Implications for Rehabilitation Triangulated Proxy Reporting (TPR) shows potential to improve communications between people with severe cognitive impairments and their communication partners. TPR can lead to improved quality of care and quality of life for people with profound multiple disabilities, very advanced dementia and severe acquired brain injury, who otherwise are very difficult to support. TPR is a relatively simple and inexpensive technique that service providers can incorporate into practice to improving communications between clients with severe cognitive impairments, their carers and other support professionals.
Energy Technology Data Exchange (ETDEWEB)
Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))
1993-05-01
There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).
Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai
1998-01-01
This paper considers an algebraic preconditioning algorithm for hyperbolic-elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of triangulation vertices which separates subdomain and interface solution unknowns. The reordering induces a natural 2 x 2 block partitioning of the discretization matrix. Exact LU factorization of this block system yields a Schur complement matrix which couples subdomains and the interface together. The remaining sections of this paper present a family of approximate techniques for both constructing and applying the Schur complement as a domain-decomposition preconditioner. The approximate Schur complement serves as an algebraic coarse space operator, thus avoiding the known difficulties associated with the direct formation of a coarse space discretization. In developing Schur complement approximations, particular attention has been given to improving sequential and parallel efficiency of implementations without significantly degrading the quality of the preconditioner. A computer code based on these developments has been tested on the IBM SP2 using MPI message passing protocol. A number of 2-D calculations are presented for both scalar advection-diffusion equations as well as the Euler equations governing compressible fluid flow to demonstrate performance of the preconditioning algorithm.
Whitty, Jennifer A; Rundle-Thiele, Sharyn R; Scuffham, Paul A
2012-03-01
Discrete choice experiments (DCEs) and the Juster scale are accepted methods for the prediction of individual purchase probabilities. Nevertheless, these methods have seldom been applied to a social decision-making context. To gain an overview of social decisions for a decision-making population through data triangulation, these two methods were used to understand purchase probability in a social decision-making context. We report an exploratory social decision-making study of pharmaceutical subsidy in Australia. A DCE and selected Juster scale profiles were presented to current and past members of the Australian Pharmaceutical Benefits Advisory Committee and its Economic Subcommittee. Across 66 observations derived from 11 respondents for 6 different pharmaceutical profiles, there was a small overall median difference of 0.024 in the predicted probability of public subsidy (p = 0.003), with the Juster scale predicting the higher likelihood. While consistency was observed at the extremes of the probability scale, the funding probability differed over the mid-range of profiles. There was larger variability in the DCE than Juster predictions within each individual respondent, suggesting the DCE is better able to discriminate between profiles. However, large variation was observed between individuals in the Juster scale but not DCE predictions. It is important to use multiple methods to obtain a complete picture of the probability of purchase or public subsidy in a social decision-making context until further research can elaborate on our findings. This exploratory analysis supports the suggestion that the mixed logit model, which was used for the DCE analysis, may fail to adequately account for preference heterogeneity in some contexts.
L1 Use in EFL Classes with English-only Policy: Insights from Triangulated Data
Directory of Open Access Journals (Sweden)
Seyyed Hatam Tamimi Sa’d
2015-06-01
Full Text Available This study examines the role of the use of the L1 in EFL classes from the perspective of EFL learners. The triangulated data were collected using class observations, focus group semi-structured interviews and the learners’ written reports of their perceptions and attitudes in a purpose-designed questionnaire. The participants consisted of sixty male Iranian EFL learners who constituted three classes. The results indicated a strong tendency among the participants toward L1 and its positive effects on language learning; while only a minority of the learners favoured an English-only policy, the majority supported the judicious, limited and occasional use of the L1, particularly on the part of the teacher. The participants mentioned the advantages as well as the disadvantages of the use/non-use of the L1. While the major advantage and the main purpose of L1 use was said to be the clarification and intelligibility of instructions, grammatical and lexical items, the main advantages of avoiding it were stated as being the improvement of speaking and listening skills, aximizing learners’ exposure to English and their becoming accustomed to it. The study concludes that, overall and in line with the majority of the previous research studies, a judicious, occasional and limited use of the L1 is a better approach to take in EFL classes than to include or exclude it totally. In conclusion, a re-examination of the English-only policy and a reconsideration of the role of the L1 are recommended. Finally, the commonly held assumption that L1 is a hindrance and an impediment to the learners’ language learning is challenged.
Entanglement entropy in causal set theory
Sorkin, Rafael D.; Yazdi, Yasaman K.
2018-04-01
Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal sets, especially since they provide in a natural manner the UV cutoff needed to render entanglement entropy finite. Formulating a notion of entanglement entropy in a causal set is not straightforward because the type of canonical hypersurface-data on which its definition typically relies is not available. Instead, we appeal to the more global expression given in Sorkin (2012 (arXiv:1205.2953)) which, for a Gaussian scalar field, expresses the entropy of a spacetime region in terms of the field’s correlation function within that region (its ‘Wightman function’ W(x, x') ). Carrying this formula over to the causal set, one obtains an entropy which is both finite and of a Lorentz invariant nature. We evaluate this global entropy-expression numerically for certain regions (primarily order-intervals or ‘causal diamonds’) within causal sets of 1 + 1 dimensions. For the causal-set counterpart of the entanglement entropy, we obtain, in the first instance, a result that follows a (spacetime) volume law instead of the expected (spatial) area law. We find, however, that one obtains an area law if one truncates the commutator function (‘Pauli–Jordan operator’) and the Wightman function by projecting out the eigenmodes of the Pauli–Jordan operator whose eigenvalues are too close to zero according to a geometrical criterion which we describe more fully below. In connection with these results and the questions they raise, we also study the ‘entropy of coarse-graining’ generated by thinning out the causal set, and we compare it with what one obtains by similarly thinning out a chain of harmonic oscillators, finding the same, ‘universal’ behaviour in both cases.
The Relevance of Causal Social Construction
Directory of Open Access Journals (Sweden)
Marques Teresa
2017-02-01
Full Text Available Social constructionist claims are surprising and interesting when they entail that presumably natural kinds are in fact socially constructed. The claims are interesting because of their theoretical and political importance. Authors like Díaz-León argue that constitutive social construction is more relevant for achieving social justice than causal social construction. This paper challenges this claim. Assuming there are socially salient groups that are discriminated against, the paper presents a dilemma: if there were no constitutively constructed social kinds, the causes of the discrimination of existing social groups would have to be addressed, and understanding causal social construction would be relevant to achieve social justice. On the other hand, not all possible constitutively socially constructed kinds are actual social kinds. If an existing social group is constitutively constructed as a social kind K, the fact that it actually exists as a K has social causes. Again, causal social construction is relevant. The paper argues that (i for any actual social kind X, if X is constitutively socially constructed as K, then it is also causally socially constructed; and (ii causal social construction is at least as relevant as constitutive social construction for concerns of social justice. For illustration, I draw upon two phenomena that are presumed to contribute towards the discrimination of women: (i the poor performance effects of stereotype threat, and (ii the silencing effects of gendered language use.
Preschoolers prefer to learn causal information
Directory of Open Access Journals (Sweden)
Aubry eAlvarez
2015-02-01
Full Text Available Young children, in general, appear to have a strong drive to explore the environment in ways that reveal its underlying causal structure. But are they really attuned specifically to casual information in this quest for understanding, or do they show equal interest in other types of non-obvious information about the world? To answer this question, we introduced 20 three-year-old children to two puppets who were anxious to tell the child about a set of novel artifacts and animals. One puppet consistently described causal properties of the items while the other puppet consistently described carefully matched non-causal properties of the same items. After a familiarization period in which children learned which type of information to expect from each informant, children were given the opportunity to choose which they wanted to hear describe each of eight pictured test items. On average, children chose to hear from the informant that provided causal descriptions on 72% of the trials. This preference for causal information has important implications for explaining the role of conceptual information in supporting early learning and may suggest means for maximizing interest and motivation in young children.
A frequency domain subspace algorithm for mixed causal, anti-causal LTI systems
Fraanje, Rufus; Verhaegen, Michel; Verdult, Vincent; Pintelon, Rik
2003-01-01
The paper extends the subspacc identification method to estimate state-space models from frequency response function (FRF) samples, proposed by McKelvey et al. (1996) for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
Inference of boundaries in causal sets
Cunningham, William J.
2018-05-01
We investigate the extrinsic geometry of causal sets in (1+1) -dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons–Hawking–York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space. We discuss algorithms to differentiate between different types of regions, consider when these distinctions are possible, and then apply the algorithms to several spacetime regions. Numerical results indicate the volumes of timelike boundaries can be measured to within 0.5% accuracy for flat boundaries and within 10% accuracy for highly curved boundaries for medium-sized causal sets with N = 214 spacetime elements.
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Spatial hypersurfaces in causal set cosmology
International Nuclear Information System (INIS)
Major, Seth A; Rideout, David; Surya, Sumati
2006-01-01
Within the causal set approach to quantum gravity, a discrete analogue of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical sequential growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity
Testing the causal theory of reference.
Domaneschi, Filippo; Vignolo, Massimiliano; Di Paola, Simona
2017-04-01
Theories of reference are a crucial research topic in analytic philosophy. Since the publication of Kripke's Naming and Necessity, most philosophers have endorsed the causal/historical theory of reference. The goal of this paper is twofold: (i) to discuss a method for testing experimentally the causal theory of reference for proper names by investigating linguistic usage and (ii) to present the results from two experiments conducted with that method. Data collected in our experiments confirm the causal theory of reference for people proper names and for geographical proper names. A secondary but interesting result is that the semantic domain affects reference assignment: while with people proper names speakers tend to assign the semantic reference, with geographical proper names they are prompted to assign the speaker's reference. Copyright © 2016 Elsevier B.V. All rights reserved.
Causal inheritance in plane wave quotients
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2004-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.
Neural correlates of continuous causal word generation.
Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne
2012-09-01
Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.
BOLD Granger causality reflects vascular anatomy.
Directory of Open Access Journals (Sweden)
J Taylor Webb
Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.
A Temporal-Causal Modelling Approach to Integrated Contagion and Network Change in Social Networks
Blankendaal, Romy; Parinussa, Sarah; Treur, Jan
2016-01-01
This paper introduces an integrated temporal-causal model for dynamics in social networks addressing the contagion principle by which states are affected mutually, and both the homophily principle and the more-becomes-more principle by which connections are adapted over time. The integrated model
Causal interpretation of stochastic differential equations
DEFF Research Database (Denmark)
Sokol, Alexander; Hansen, Niels Richard
2014-01-01
We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....
Morse theory on timelike and causal curves
International Nuclear Information System (INIS)
Everson, J.; Talbot, C.J.
1976-01-01
It is shown that the set of timelike curves in a globally hyperbolic space-time manifold can be given the structure of a Hilbert manifold under a suitable definition of 'timelike.' The causal curves are the topological closure of this manifold. The Lorentzian energy (corresponding to Milnor's energy, except that the Lorentzian inner product is used) is shown to be a Morse function for the space of causal curves. A fixed end point index theorem is obtained in which a lower bound for the index of the Hessian of the Lorentzian energy is given in terms of the sum of the orders of the conjugate points between the end points. (author)
Inferring causality from noisy time series data
DEFF Research Database (Denmark)
Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian
2016-01-01
Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...
Farcy, R.; Damaschini, R.
1998-06-01
We describe a device currently under industrial development which will give to the blind a means of three-dimensional space perception. It consists of a 350 g hand-held triangulating laser telemeter including electronic parts and batteries, with auditory feedback either inside the apparatus or close to the ear. The microprocessor unit converts in real time the distance measured by the telemeter into a musical note. Scanning the space with an adequate movement of the hand produces musical lines corresponding to the profiles of the environment. We discuss the optical configuration of the system relative to our first year of clinical experimentation.
Causal Meta-Analysis : Methodology and Applications
Bax, L.J.
2009-01-01
Meta-analysis is a statistical method to summarize research data from multiple studies in a quantitative manner. This dissertation addresses a number of methodological topics in causal meta-analysis and reports the development and validation of meta-analysis software. In the first (methodological)
Information-causality and extremal tripartite correlations
International Nuclear Information System (INIS)
Yang, Tzyh Haur; Cavalcanti, Daniel; Almeida, Mafalda L; Teo, Colin; Scarani, Valerio
2012-01-01
We study the principle of information-causality (IC) in the presence of extremal no-signaling correlations on a tripartite scenario. We prove that all, except one, of the non-local correlations lead to violation of IC. The remaining non-quantum correlation is shown to satisfy any bipartite physical principle. (paper)
The causal structure of utility conditionals.
Bonnefon, Jean-François; Sloman, Steven A
2013-01-01
The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ''if p then q'' statements where the realization of p or q or both is valued by some agents. Various approaches to utility conditionals share the assumption that reasoners make inferences from utility conditionals based on the comparison between the utility of p and the expected utility of q. This article introduces a new parameter in this analysis, the underlying causal structure of the conditional. Four experiments showed that causal structure moderated utility-informed conditional reasoning. These inferences were strongly invited when the underlying structure of the conditional was causal, and significantly less so when the underlying structure of the conditional was diagnostic. This asymmetry was only observed for conditionals in which the utility of q was clear, and disappeared when the utility of q was unclear. Thus, an adequate account of utility-informed inferences conditional reasoning requires three components: utility, probability, and causal structure. Copyright © 2012 Cognitive Science Society, Inc.
Comments: Causal Interpretations of Mediation Effects
Jo, Booil; Stuart, Elizabeth A.
2012-01-01
The authors thank Dr. Lindsay Page for providing a nice illustration of the use of the principal stratification framework to define causal effects, and a Bayesian model for effect estimation. They hope that her well-written article will help expose education researchers to these concepts and methods, and move the field of mediation analysis in…
Inductive reasoning about causally transmitted properties.
Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B
2008-11-01
Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.
Exploring Causal Models of Educational Achievement.
Parkerson, Jo Ann; And Others
1984-01-01
This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…
Sequential causal learning in humans and rats
Lu, H.; Rojas, R.R.; Beckers, T.; Yuille, A.; Love, B.C.; McRae, K.; Sloutsky, V.M.
2008-01-01
Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005;Beckers, Miller, De Houwer, & Urushihara, 2006) have shown that pretraining with unrelated cues can dramatically influence the performance of humans in a causal learning paradigm and rats in a standard Pavlovian conditioning paradigm.
The Causal Foundations of Structural Equation Modeling
2012-02-16
and Baumrind (1993).” This, together with the steady influx of statisticians into the field, has left SEM re- searchers in a quandary about the...considerations. Journal of Personality and Social Psychology 51 1173–1182. Baumrind , D. (1993). Specious causal attributions in social sciences: The
Causal Measurement Models: Can Criticism Stimulate Clarification?
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
A quantum probability model of causal reasoning
Directory of Open Access Journals (Sweden)
Jennifer S Trueblood
2012-05-01
Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.
A Causal Model of Faculty Turnover Intentions.
Smart, John C.
1990-01-01
A causal model assesses the relative influence of individual attributes, institutional characteristics, contextual-work environment variables, and multiple measures of job satisfaction on faculty intentions to leave their current institutions. Factors considered include tenure status, age, institutional status, governance style, organizational…
Catastrophizing and Causal Beliefs in Whiplash
Buitenhuis, J.; de Jong, P. J.; Jaspers, J. P. C.; Groothoff, J. W.
2008-01-01
Study Design. Prospective cohort study. Objective. This study investigates the role of pain catastrophizing and causal beliefs with regard to severity and persistence of neck complaints after motor vehicle accidents. Summary of Background Data. In previous research on low back pain, somatoform
Probable autoimmune causal relationship between periodontitis and ...
African Journals Online (AJOL)
Periodontitis is a multifactorial disease with microbial dental plaque as the initiator of periodontal disease. However, the manifestation and progression of the disease is influenced by a wide variety of determinants and factors. The strongest type of causal relationship is the association of systemic and periodontal disease.
On minimizers of causal variational principles
International Nuclear Information System (INIS)
Schiefeneder, Daniela
2011-01-01
Causal variational principles are a class of nonlinear minimization problems which arise in a formulation of relativistic quantum theory referred to as the fermionic projector approach. This thesis is devoted to a numerical and analytic study of the minimizers of a general class of causal variational principles. We begin with a numerical investigation of variational principles for the fermionic projector in discrete space-time. It is shown that for sufficiently many space-time points, the minimizing fermionic projector induces non-trivial causal relations on the space-time points. We then generalize the setting by introducing a class of causal variational principles for measures on a compact manifold. In our main result we prove under general assumptions that the support of a minimizing measure is either completely timelike, or it is singular in the sense that its interior is empty. In the examples of the circle, the sphere and certain flag manifolds, the general results are supplemented by a more detailed analysis of the minimizers. (orig.)
Causality and analyticity in quantum fields theory
International Nuclear Information System (INIS)
Iagolnitzer, D.
1992-01-01
This is a presentation of results on the causal and analytical structure of Green functions and on the collision amplitudes in fields theories, for massive particles of one type, with a positive mass and a zero spin value. (A.B.)
Causality and Time in Historical Institutionalism
DEFF Research Database (Denmark)
Mahoney, James; Mohamedali, Khairunnisa; Nguyen, Christoph
2016-01-01
This chapter explores the dual concern with causality and time in historical institutionalism using a graphical approach. The analysis focuses on three concepts that are central to this field: critical junctures, gradual change, and path dependence. The analysis makes explicit and formal the logi...
Inductive Reasoning about Causally Transmitted Properties
Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B.
2008-01-01
Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…
Black Hole Complementarity and Violation of Causality
Rozenblit, Moshe
2017-01-01
Analysis of a massive shell collapsing on a solid sphere shows that black hole complementarity (BHC) violates causality in its effort to save information conservation. In particular, this note describes a hypothetical contraption based on BHC that would allow the transfer of information from the future to the present.
Causality in the semantics of Esterel : revisited
Mousavi, M.R.; Klin, B.; Sobocinski, P.
2010-01-01
We re-examine the challenges concerning causality in the semantics of Esterel and show that they pertain to the known issues in the semantics of Structured Operational Semantics with negative premises. We show that the solutions offered for the semantics of SOS also provide answers to the semantic
Scalar field Green functions on causal sets
International Nuclear Information System (INIS)
Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay
2017-01-01
We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)
Are bruxism and the bite causally related?
Lobbezoo, F.; Ahlberg, J.; Manfredini, D.; Winocur, E.
2012-01-01
In the dental profession, the belief that bruxism and dental (mal-)occlusion (‘the bite’) are causally related is widespread. The aim of this review was to critically assess the available literature on this topic. A PubMed search of the English-language literature, using the query ‘Bruxism [Majr
Causality relationship between energy demand and economic ...
African Journals Online (AJOL)
This paper attempts to examine the causal relationship between electricity demand and economic growth in Nigeria using data for 1970 – 2003. The study uses the Johansen cointegration VAR approach. The ADF and Phillips – Perron test statistics were used to test for stationarity of the data. It was found that the data were ...
Bawden, Gerald W.
2001-01-01
Coseismic leveling and triangulation observations are used to determine the faulting geometry and slip distribution of the July 21, 1952, Mw 7.3 Kern County earthquake on the White Wolf fault. A singular value decomposition inversion is used to assess the ability of the geodetic network to resolve slip along a multisegment fault and shows that the network is sufficient to resolve slip along the surface rupture to a depth of 10 km. Below 10 km, the network can only resolve dip slip near the fa...
Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence
Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.
2018-04-01
Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.
Causal Inference and Explaining Away in a Spiking Network
Moreno-Bote, Rubén; Drugowitsch, Jan
2015-01-01
While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426
Causal knowledge and the development of inductive reasoning.
Bright, Aimée K; Feeney, Aidan
2014-06-01
We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.
Uncertainty, causality and decision: The case of social risks and nuclear risk in particular
International Nuclear Information System (INIS)
Lahidji, R.
2012-01-01
Probability and causality are two indispensable tools for addressing situations of social risk. Causal relations are the foundation for building risk assessment models and identifying risk prevention, mitigation and compensation measures. Probability enables us to quantify risk assessments and to calibrate intervention measures. It therefore seems not only natural, but also necessary to make the role of causality and probability explicit in the definition of decision problems in situations of social risk. Such is the aim of this thesis.By reviewing the terminology of risk and the logic of public interventions in various fields of social risk, we gain a better understanding of the notion and of the issues that one faces when trying to model it. We further elaborate our analysis in the case of nuclear safety, examining in detail how methods and policies have been developed in this field and how they have evolved through time. This leads to a number of observations concerning risk and safety assessments.Generalising the concept of intervention in a Bayesian network allows us to develop a variety of causal Bayesian networks adapted to our needs. In this framework, we propose a definition of risk which seems to be relevant for a broad range of issues. We then offer simple applications of our model to specific aspects of the Fukushima accident and other nuclear safety problems. In addition to specific lessons, the analysis leads to the conclusion that a systematic approach for identifying uncertainties is needed in this area. When applied to decision theory, our tool evolves into a dynamic decision model in which acts cause consequences and are causally interconnected. The model provides a causal interpretation of Savage's conceptual framework, solves some of its paradoxes and clarifies certain aspects. It leads us to considering uncertainty with regard to a problem's causal structure as the source of ambiguity in decision-making, an interpretation which corresponds to a
The causal link between energy and output growth: Evidence from Markov switching Granger causality
International Nuclear Information System (INIS)
Kandemir Kocaaslan, Ozge
2013-01-01
In this paper we empirically investigate the causal link between energy consumption and economic growth employing a Markov switching Granger causality analysis. We carry out our investigation using annual U.S. real GDP, total final energy consumption and total primary energy consumption data which cover the period between 1968 and 2010. We find that there are significant changes in the causal relation between energy consumption and economic growth over the sample period under investigation. Our results show that total final energy consumption and total primary energy consumption have significant predictive content for real economic activity in the U.S. economy. Furthermore, the causality running from energy consumption to output growth seems to be strongly apparent particularly during the periods of economic downturn and energy crisis. We also document that output growth has predictive power in explaining total energy consumption. Furthermore, the power of output growth in predicting total energy consumption is found to diminish after the mid of 1980s. - Highlights: • Total energy consumption has predictive content for real economic activity. • The causality from energy to output growth is apparent in the periods of recession. • The causality from energy to output growth is strong in the periods of energy crisis. • Output growth has predictive power in explaining total energy consumption. • The power of output growth in explaining energy diminishes after the mid of 1980s
Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.
Directory of Open Access Journals (Sweden)
Saumya Gupta
2015-06-01
Full Text Available Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants' effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage
CauseMap: fast inference of causality from complex time series
Directory of Open Access Journals (Sweden)
M. Cyrus Maher
2015-03-01
Full Text Available Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data.Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM, a method for establishing causality from long time series data (≳25 observations. Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens’ Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement
CauseMap: fast inference of causality from complex time series.
Maher, M Cyrus; Hernandez, Ryan D
2015-01-01
Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data. Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM), a method for establishing causality from long time series data (≳25 observations). Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens' Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement CCM in Julia, a
Development of face recognition: Dynamic causal modelling of MEG data
Wei He; Blake W. Johnson
2018-01-01
Electrophysiological studies of adults indicate that brain activity is enhanced during viewing of repeated faces, at a latency of about 250 ms after the onset of the face (M250/N250). The present study aimed to determine if this effect was also present in preschool-aged children, whose brain activity was measured in a custom-sized pediatric MEG system. The results showed that, unlike adults, face repetition did not show any significant modulation of M250 amplitude in children; however childre...
Measures of Coupling between Neural Populations Based on Granger Causality Principle.
Kaminski, Maciej; Brzezicka, Aneta; Kaminski, Jan; Blinowska, Katarzyna J
2016-01-01
This paper shortly reviews the measures used to estimate neural synchronization in experimental settings. Our focus is on multivariate measures of dependence based on the Granger causality (G-causality) principle, their applications and performance in respect of robustness to noise, volume conduction, common driving, and presence of a "weak node." Application of G-causality measures to EEG, intracranial signals and fMRI time series is addressed. G-causality based measures defined in the frequency domain allow the synchronization between neural populations and the directed propagation of their electrical activity to be determined. The time-varying G-causality based measure Short-time Directed Transfer Function (SDTF) supplies information on the dynamics of synchronization and the organization of neural networks. Inspection of effective connectivity patterns indicates a modular structure of neural networks, with a stronger coupling within modules than between them. The hypothetical plausible mechanism of information processing, suggested by the identified synchronization patterns, is communication between tightly coupled modules intermitted by sparser interactions providing synchronization of distant structures.
Measures of coupling between neural populations based on Granger causality principle
Directory of Open Access Journals (Sweden)
Maciej Kaminski
2016-10-01
Full Text Available This paper shortly reviews the measures used to estimate neural synchronization in experimental settings. Our focus is on multivariate measures of dependence based on the Granger causality (G-causality principle, their applications and performance in respect of robustness to noise, volume conduction, common driving, and presence of a weak node. Application of G-causality measures to EEG, intracranial signals and fMRI time series is addressed. G-causality based measures defined in the frequency domain allow the synchronization between neural populations and the directed propagation of their electrical activity to be determined. The time-varying G-causality based measure Short-time Directed Transfer Function (SDTF supplies information on the dynamics of synchronization and the organization of neural networks. Inspection of effective connectivity patterns indicates a modular structure of neural networks, with a stronger coupling within modules than between them. The hypothetical plausible mechanism of information processing, suggested by the identified synchronization patterns, is communication between tightly coupled modules intermitted by sparser interactions providing synchronization of distant structures.
Parental causal attributions and emotions in daily learning situations with the child.
Enlund, Emmi; Aunola, Kaisa; Tolvanen, Asko; Nurmi, Jari-Erik
2015-08-01
This study investigated the dynamics between the causal attributions parents reported daily for their children's success in learning situations and parental positive emotions. The sample consisted of 159 mothers and 147 fathers of 162 first graders (83 girls, 79 boys; aged from 6 to 7 years, M = 7.5 years, SD = 3.6 months). Parents filled in a structured diary questionnaire concerning their causal attributions and emotions over 7 successive days in the fall semester and again over 7 successive days in the spring semester. Multilevel analyses showed that both parental causal attributions and positive emotions varied more within parents (between days over the week) than between parents. Furthermore, mothers' positive emotions on a certain day predicted their causal attributions on that same day rather than vice versa. The higher the level of positive emotions parents reported in a specific day, the more they used effort and ability as causal attributions for their offspring's success on that same day. (c) 2015 APA, all rights reserved).
Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman
2013-01-01
Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.
Elements of Causal Inference: Foundations and Learning Algorithms
DEFF Research Database (Denmark)
Peters, Jonas Martin; Janzing, Dominik; Schölkopf, Bernhard
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning......A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning...
The causal relationship between Foreign Direct Investment (FDI ...
African Journals Online (AJOL)
The causal relationship between Foreign Direct Investment (FDI) and the ... of selected west African countries: Panel ARDL/Granger Causality Analysis. ... among this developing countries and an important revelation for policy implication.
The Hankel transform of causal distributions
Directory of Open Access Journals (Sweden)
Manuel A. Aguirre T.
2012-03-01
Full Text Available In this note we evaluate the unidimensional distributional Hankel transform of \\dfrac{x^{\\alpha-1}_{+}}{\\Gamma^{\\alpha}},\\dfrac{x^{\\alpha-1}_{-}}{\\Gamma^{\\alpha}},dfrac{|x|^{\\alpha-1}}{\\Gamma^{\\frac{\\alpha}{2}}},dfrac{|x|^{\\alpha-1}sgn(x}{\\Gamma^{\\frac{\\alpha +1}{2}}} and (x± i0^{\\alpha-1} and then we extend the formulae to certain kinds of n-dimensional distributions calles "causal" and "anti-causal" distributions. We evaluate the distributional Handel transform of \\dfrac{(m^2+P^{\\alpha -1}_{-}}{\\Gamma^{(\\alpha} }, \\dfrac{|m^2+P|^{\\alpha -1}_{-}}{\\Gamma^{(\\frac{\\alpha}{2}}}, \\dfrac{|m^2+P|^{\\alpha -1}sgn(m^2+P}{\\Gamma (\\frac{\\alpha +1}{2 }} and (m^2+P±i0^{\\alpha-1}