WorldWideScience

Sample records for causal dynamical triangulations

  1. Introduction to causal dynamical triangulations

    DEFF Research Database (Denmark)

    Görlich, Andrzej

    2013-01-01

    The method of causal dynamical triangulations is a non-perturbative and background-independent approach to quantum theory of gravity. In this review we present recent results obtained within the four dimensional model of causal dynamical triangulations. We describe the phase structure of the mode...

  2. Phenomenology of Causal Dynamical Triangulations

    CERN Document Server

    Mielczarek, Jakub

    2015-01-01

    The four dimensional Causal Dynamical Triangulations (CDT) approach to quantum gravity is already more than ten years old theory with numerous unprecedented predictions such as non-trivial phase structure of gravitational field and dimensional running. Here, we discuss possible empirical consequences of CDT derived based on the two features of the approach mentioned above. A possibility of using both astrophysical and cosmological observations to test CDT is discussed. We show that scenarios which can be ruled out at the empirical level exist.

  3. Locally Causal Dynamical Triangulations in Two Dimensions

    CERN Document Server

    Loll, Renate

    2015-01-01

    We analyze the universal properties of a new two-dimensional quantum gravity model defined in terms of Locally Causal Dynamical Triangulations (LCDT). Measuring the Hausdorff and spectral dimensions of the dynamical geometrical ensemble, we find numerical evidence that the continuum limit of the model lies in a new universality class of two-dimensional quantum gravity theories, inequivalent to both Euclidean and Causal Dynamical Triangulations.

  4. Exploring Torus Universes in Causal Dynamical Triangulations

    CERN Document Server

    Budd, T G

    2013-01-01

    Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large-scale features of the emergent quantum geometry in numerical simulations with a classical minisuperspace formulation, we find partial agreement. By measuring the correlation matrix of volume fluctuations we succeed in reconstructing the effective action for the scale factor directly from the simulation data. Apart from setting the stage for the analysis of shape dynamics on the torus, the new set-up highlights the role o...

  5. Exploring Torus Universes in Causal Dynamical Triangulations

    DEFF Research Database (Denmark)

    Budd, Timothy George; Loll, R.

    2013-01-01

    Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global...... shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large......-scale features of the emergent quantum geometry in numerical simulations with a classical minisuperspace formulation, we find partial agreement. By measuring the correlation matrix of volume fluctuations we succeed in reconstructing the effective action for the scale factor directly from the simulation data...

  6. The transfer matrix in four-dimensional Causal Dynamical Triangulations

    CERN Document Server

    Görlich, Andrzej

    2013-01-01

    Causal Dynamical Triangulations is a background independent approach to quantum gravity. In this paper we introduce a phenomenological transfer matrix model, where at each time step a reduced set of quantum states is used. The states are solely characterized by the discretized spatial volume. Using Monte Carlo simulations we determine the effective transfer matrix elements and extract the effective action for the scale factor. In this framework no degrees of freedom are frozen, however, the obtained action agrees with the minisuperspace model.

  7. Scale-dependent homogeneity measures for causal dynamical triangulations

    CERN Document Server

    Cooperman, Joshua H

    2014-01-01

    I propose two scale-dependent measures of the homogeneity of the quantum geometry determined by an ensemble of causal triangulations. The first measure is volumetric, probing the growth of volume with graph geodesic distance. The second measure is spectral, probing the return probability of a random walk with diffusion time. Both of these measures, particularly the first, are closely related to those used to assess the homogeneity of our own universe on the basis of galaxy redshift surveys. I employ these measures to quantify the quantum spacetime homogeneity as well as the temporal evolution of quantum spatial homogeneity of ensembles of causal triangulations in the well-known physical phase. According to these measures, the quantum spacetime geometry exhibits some degree of inhomogeneity on sufficiently small scales and a high degree of homogeneity on sufficiently large scales. This inhomogeneity appears unrelated to the phenomenon of dynamical dimensional reduction. I also uncover evidence for power-law sc...

  8. Can causal dynamical triangulations probe factor-ordering issues?

    CERN Document Server

    Maitra, R L

    2009-01-01

    The causal dynamical triangulations (CDT) program has for the first time allowed for path-integral computation of correlation functions in full general relativity without symmetry reductions and taking into account Lorentzian signature. One of the most exciting recent results in CDT is the strong agreement of these computations with (minisuperspace) path integral calculations in quantum cosmology. Herein I will describe my current project to compute minisuperspace (Friedman-Robertson-Walker) path integrals with a range of different measures corresponding to various factor orderings of the Friedman-Robertson-Walker Hamiltonian. The aim is to compare with CDT results and ask whether CDT can shed light on factor-ordering ambiguities in quantum cosmology models.

  9. Extrinsic curvature in 2-dimensional Causal Dynamical Triangulation

    CERN Document Server

    Glaser, Lisa; Weinfurtner, Silke

    2016-01-01

    Causal Dynamical Triangulations (CDT) is a non-perturbative quantisation of general relativity. Ho\\v{r}ava-Lifshitz gravity on the other hand modifies general relativity to allow for perturbative quan- tisation. Past work has given rise to the speculation that Ho\\v{r}ava-Lifshitz gravity might correspond to the continuum limit of CDT. In this paper we add another piece to this puzzle by applying the CDT quantisation prescription directly to Ho\\v{r}ava-Lifshitz gravity in 2 dimensions. We derive the continuum Hamiltonian and we show that it matches exactly the Hamiltonian one derives from canonically quantising the Ho\\v{r}ava-Lifshitz action. Unlike the standard CDT case, here the intro- duction of a foliated lattice does not impose further restriction on the configuration space and, as a result, lattice quantisation does not leave any imprint on continuum physics as expected.

  10. Extrinsic curvature in two-dimensional causal dynamical triangulation

    Science.gov (United States)

    Glaser, Lisa; Sotiriou, Thomas P.; Weinfurtner, Silke

    2016-09-01

    Causal dynamical triangulation (CDT) is a nonperturbative quantization of general relativity. Hořava-Lifshitz gravity, on the other hand, modifies general relativity to allow for perturbative quantization. Past work has given rise to the speculation that Hořava-Lifshitz gravity might correspond to the continuum limit of CDT. In this paper we add another piece to this puzzle by applying the CDT quantization prescription directly to Hořava-Lifshitz gravity in two dimensions. We derive the continuum Hamiltonian, and we show that it matches exactly the Hamiltonian derived from canonically quantizing the Hořava-Lifshitz action. Unlike the standard CDT case, here the introduction of a foliated lattice does not impose further restriction on the configuration space and, as a result, lattice quantization does not leave any imprint on continuum physics as expected.

  11. Quantum Gravity and Matter: Counting Graphs on Causal Dynamical Triangulations

    CERN Document Server

    Benedetti, D

    2006-01-01

    An outstanding challenge for models of non-perturbative quantum gravity is the consistent formulation and quantitative evaluation of physical phenomena in a regime where geometry and matter are strongly coupled. After developing appropriate technical tools, one is interested in measuring and classifying how the quantum fluctuations of geometry alter the behaviour of matter, compared with that on a fixed background geometry. In the simplified context of two dimensions, we show how a method invented to analyze the critical behaviour of spin systems on flat lattices can be adapted to the fluctuating ensemble of curved spacetimes underlying the Causal Dynamical Triangulations (CDT) approach to quantum gravity. We develop a systematic counting of embedded graphs to evaluate the thermodynamic functions of the gravity-matter models in a high- and low-temperature expansion. For the case of the Ising model, we compute the series expansions for the magnetic susceptibility on CDT lattices and their duals up to orders 6 ...

  12. Causal Dynamical Triangulation of 3D Tensor Model

    CERN Document Server

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  13. A second look at transition amplitudes in (2+1)-dimensional causal dynamical triangulations

    CERN Document Server

    Cooperman, Joshua H; Miller, Jonah M

    2016-01-01

    Studying transition amplitudes in (2+1)-dimensional causal dynamical triangulations, Cooperman and Miller discovered speculative evidence for Lorentzian quantum geometries emerging from its Euclidean path integral. On the basis of this evidence, Cooperman and Miller conjectured that Lorentzian de Sitter spacetime, not Euclidean de Sitter space, dominates the ground state of the quantum geometry of causal dynamical triangulations on large scales, a scenario akin to that of the Hartle-Hawking no-boundary proposal in which Lorentzian spacetimes dominate a Euclidean path integral. We argue against this conjecture: we propose a more straightforward explanation of their findings, and we proffer evidence for the Euclidean nature of these seemingly Lorentzian quantum geometries. This explanation reveals another manner in which the Euclidean path integral of causal dynamical triangulations behaves correctly in its semiclassical limit--the implementation and interaction of multiple constraints.

  14. Four-dimensional Causal Dynamical Triangulations and an effective transfer matrix

    CERN Document Server

    Görlich, Andrzej

    2013-01-01

    Causal Dynamical Triangulations is a background independent approach to quantum gravity. We show that there exists an effective transfer matrix labeled by the scale factor which properly describes the evolution of the quantum universe. In this framework no degrees of freedom are frozen, but, the obtained effective action agrees with the minisuperspace model.

  15. Causal Dynamical Triangulations in the Spincube Model of Quantum Gravity

    CERN Document Server

    Vojinovic, Marko

    2015-01-01

    We study the implications of the simplicity constraint in the spincube model of quantum gravity. Relating the edge-lengths to integer triangle areas, the simplicity constraint imposes a very strong restrictions between them, ultimately leading to a requirement that all 4-simplices in the triangulation must be almost mutually identical. As a surprising and unexpected consequence of this property, one can obtain the CDT state sum as a special case of the spincube state sum. This relationship brings new insight into the long-standing problem of the relationship between the spinfoam approach and the CDT approach to quantum gravity. In particular, it turns out that the spincube model contains properties of both approaches, providing a single unifying framework for their analysis and comparison. In addition, the spincube state sum also contains some other special cases, very similar but not equivalent to the CDT state sum.

  16. The transfer matrix method in four-dimensional causal dynamical triangulations

    CERN Document Server

    Ambjorn, J; Goerlich, A T; Jurkiewicz, J; Loll, R

    2013-01-01

    The Causal Dynamical Triangulation model of quantum gravity (CDT) is a proposition to evaluate the path integral over space-time geometries using a lattice regularization with a discrete proper time and geometries realized as simplicial manifolds. The model admits a Wick rotation to imaginary time for each space-time configuration. Using computer simulations we determined the phase structure of the model and discovered that it predicts a de Sitter phase with a four-dimensional spherical semi-classical background geometry. The model has a transfer matrix, relating spatial geometries at adjacent (discrete lattice) times. The transfer matrix uniquely determines the theory. We show that the measurements of the scale factor of the (CDT) universe are well described by an effective transfer matrix where the matrix elements are labelled only by the scale factor. Using computer simulations we determine the effective transfer matrix elements and show how they relate to an effective minisuperspace action at all scales.

  17. Coupling a point-like mass to quantum gravity with causal dynamical triangulations

    Energy Technology Data Exchange (ETDEWEB)

    Khavkine, I; Loll, R; Reska, P, E-mail: i.khavkine@uu.n, E-mail: r.loll@uu.n, E-mail: p.m.reska@uu.n [Spinoza Institute and Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht (Netherlands)

    2010-09-21

    We present a possibility of coupling a point-like, non-singular, mass distribution to four-dimensional quantum gravity in the nonperturbative setting of causal dynamical triangulations (CDT). In order to provide a point of comparison for the classical limit of the matter-coupled CDT model, we derive the spatial volume profile of the Euclidean Schwarzschild-de Sitter space glued to an interior matter solution. The volume profile is calculated with respect to a specific proper-time foliation matching the global time slicing present in CDT. It deviates in a characteristic manner from that of the pure-gravity model. The appearance of coordinate caustics and the compactness of the mass distribution in lattice units put an upper bound on the total mass for which these calculations are expected to be valid. We also discuss some of the implementation details for numerically measuring the expectation value of the volume profiles in the framework of CDT when coupled appropriately to the matter source.

  18. Mixed Methods, Triangulation, and Causal Explanation

    Science.gov (United States)

    Howe, Kenneth R.

    2012-01-01

    This article distinguishes a disjunctive conception of mixed methods/triangulation, which brings different methods to bear on different questions, from a conjunctive conception, which brings different methods to bear on the same question. It then examines a more inclusive, holistic conception of mixed methods/triangulation that accommodates…

  19. Delaunay triangulation and computational fluid dynamics meshes

    Science.gov (United States)

    Posenau, Mary-Anne K.; Mount, David M.

    1992-01-01

    In aerospace computational fluid dynamics (CFD) calculations, the Delaunay triangulation of suitable quadrilateral meshes can lead to unsuitable triangulated meshes. Here, we present case studies which illustrate the limitations of using structured grid generation methods which produce points in a curvilinear coordinate system for subsequent triangulations for CFD applications. We discuss conditions under which meshes of quadrilateral elements may not produce a Delaunay triangulation suitable for CFD calculations, particularly with regard to high aspect ratio, skewed quadrilateral elements.

  20. A restricted dimer model on a 2-dimensional random causal triangulation

    CERN Document Server

    Ambjorn, J; Wheater, J F

    2014-01-01

    We introduce a restricted hard dimer model on a random causal triangulation that is exactly solvable and generalizes a model recently proposed by Atkin and Zohren. We show that the latter model exhibits unusual behaviour at its multicritical point; in particular, its Hausdorff dimension equals 3 and not 3/2 as would be expected from general scaling arguments. When viewed as a special case of the generalized model introduced here we show that this behaviour is not generic and therefore is not likely to represent the true behaviour of the full dimer model on a random causal triangulation.

  1. A restricted dimer model on a two-dimensional random causal triangulation

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Durhuus, Bergfinnur; Wheater, J. F.

    2014-01-01

    We introduce a restricted hard dimer model on a random causal triangulation that is exactly solvable and generalizes a model recently proposed by Atkin and Zohren (2012 Phys. Lett. B 712 445–50). We show that the latter model exhibits unusual behaviour at its multicritical point; in particular, its...

  2. Causal graph dynamics

    CERN Document Server

    Arrighi, Pablo

    2012-01-01

    We generalize the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these `causal graph dynamics' is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. Keywords: Dynamical networks, Boolean network...

  3. Quantum Causal Graph Dynamics

    CERN Document Server

    Arrighi, Pablo

    2016-01-01

    Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangula...

  4. Dynamic causal modelling.

    Science.gov (United States)

    Friston, K J; Harrison, L; Penny, W

    2003-08-01

    In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.

  5. On Causality in Dynamical Systems

    CERN Document Server

    Harnack, Daniel

    2016-01-01

    Identification of causal links is fundamental for the analysis of complex systems. In dynamical systems, however, nonlinear interactions may hamper separability of subsystems which poses a challenge for attempts to determine the directions and strengths of their mutual influences. We found that asymmetric causal influences between parts of a dynamical system lead to characteristic distortions in the mappings between the attractor manifolds reconstructed from respective local observables. These distortions can be measured in a model-free, data-driven manner. This approach extends basic intuitions about cause-effect relations to deterministic dynamical systems and suggests a mathematically well defined explanation of results obtained from previous methods based on state space reconstruction.

  6. Correlation Measure Equivalence in Dynamic Causal Structures

    CERN Document Server

    Gyongyosi, Laszlo

    2016-01-01

    We prove an equivalence transformation between the correlation measure functions of the causally-unbiased quantum gravity space and the causally-biased standard space. The theory of quantum gravity fuses the dynamic (nonfixed) causal structure of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity space, the events are causally nonseparable and all time bias vanishes, which makes it no possible to use the standard causally-biased entropy and the correlation measure functions. Since a corrected causally-unbiased entropy function leads to an undefined, obscure mathematical structure, in our approach the correction is made in the data representation of the causally-unbiased space. We prove that the standard causally-biased entropy function with a data correction can be used to identify correlations in dynamic causal structures. As a corollary, all mathematical properties of the causally-biased correlation measure functions are preserved in the causally-unbiased space. The eq...

  7. Dynamic ray tracing and its application in triangulated media

    Energy Technology Data Exchange (ETDEWEB)

    Rueger, A.

    1993-07-01

    Hale and Cohen (1991) developed software to generate two-dimensional computer models of complex geology. Their method uses a triangulation technique designed to support efficient and accurate computation of seismic wavefields for models of the earth`s interior. Subsequently, Hale (1991) used this triangulation approach to perform dynamic ray tracing and create synthetic seismograms based on the method of Gaussian beams. Here, I extend this methodology to allow an increased variety of ray-theoretical experiments. Specifically, the developed program GBmod (Gaussian Beam MODeling) can produce arbitrary multiple sequences and incorporate attenuation and density variations. In addition, I have added an option to perform Fresnel-volume ray tracing (Cerveny and Soares, 1992). Corrections for reflection and transmission losses at interfaces, and for two-and-one-half-dimensional (2.5-D) spreading are included. However, despite these enhancements, difficulties remain in attempts to compute accurate synthetic seismograms if strong lateral velocity inhomogeneities are present. Here, these problems are discussed and, to a certain extent, reduced. I provide example computations of high-frequency seismograms based on the method of Gaussian beams to exhibit the advantages and disadvantages of the proposed modeling method and illustrate new features for both surface and vertical seismic profiling (VSP) acquisition geometries.

  8. Intrinsic Universality of Causal Graph Dynamics

    Directory of Open Access Journals (Sweden)

    Simon Martiel

    2013-09-01

    Full Text Available Causal graph dynamics are transformations over graphs that capture two important symmetries of physics, namely causality and homogeneity. They can be equivalently defined as continuous and translation invariant transformations or functions induced by a local rule applied simultaneously on every vertex of the graph. Intrinsic universality is the ability of an instance of a model to simulate every other instance of the model while preserving the structure of the computation at every step of the simulation. In this work we present the construction of a family of intrinsically universal instances of causal graphs dynamics, each instance being able to simulate a subset of instances.

  9. Spectral Dimension from Causal Set Nonlocal Dynamics

    CERN Document Server

    Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo

    2015-01-01

    We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.

  10. Dynamics and causality constraints in field theory

    CERN Document Server

    De Souza, M M

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of causality implementation in classical field theories. Causality is normally implemented through kinematical constraints on fields but we show that in a zero-distance limit they also carry a dynamical information, which calls for a revision of our standard concepts of interacting fields. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the lightcone; a finite and consistent field theory requires a lightcone generator as the field support.

  11. An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation

    Science.gov (United States)

    Chen, Jun; Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Tang, Yipeng

    2010-01-01

    An enhanced dynamic Delaunay Triangulation-based (DT) path planning approach is proposed for mobile robots to plan and navigate a path successfully in the context of the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The Autonomous Challenge course requires the application of vision techniques since it involves path-based navigation in the presence of a tightly clustered obstacle field. Course artifacts such as switchbacks, ramps, dashed lane lines, trap etc. are present which could turn the robot around or cause it to exit the lane. The main contribution of this work is a navigation scheme based on dynamic Delaunay Triangulation (DDT) that is heuristically enhanced on the basis of a sense of general lane direction. The latter is computed through a "GPS (Global Positioning System) tail" vector obtained from the immediate path history of the robot. Using processed data from a LADAR, camera, compass and GPS unit, a composite local map containing both obstacles and lane line segments is built up and Delaunay Triangulation is continuously run to plan a path. This path is heuristically corrected, when necessary, by taking into account the "GPS tail" . With the enhancement of the Delaunay Triangulation by using the "GPS tail", goal selection is successfully achieved in a majority of situations. The robot appears to follow a very stable path while navigating through switchbacks and dashed lane line situations. The proposed enhanced path planning and GPS tail technique has been successfully demonstrated in a Player/Stage simulation environment. In addition, tests on an actual course are very promising and reveal the potential for stable forward navigation.

  12. Curvature Matrix Models for Dynamical Triangulations and the Itzykson-Di Francesco Formula

    CERN Document Server

    Szabó, R J; Szabo, Richard J.; Wheater, John F.

    1996-01-01

    We study the large-$N$ limit of a class of matrix models for dually weighted triangulated random surfaces using character expansion techniques. We show that for various choices of the weights of vertices of the dynamical triangulation the model can be solved by resumming the Itzykson-Di Francesco formula over congruence classes of Young tableau weights modulo three. From this we show that the large-$N$ limit implies a non-trivial correspondence with models of random surfaces weighted with only even coordination number vertices. We examine the critical behaviour and evaluation of observables and discuss their interrelationships in all models. We obtain explicit solutions of the model for simple choices of vertex weightings and use them to show how the matrix model reproduces features of the random surface sum. We show that a class of matrix models admits complex saddle-point solutions of the Itzykson-Di Francesco formula, and we present the general technique of dealing with such solutions. We find that the set...

  13. Causal random geometry from stochastic quantization

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Loll, R.; Westra, W.

    2010-01-01

     in this short note we review a recently found formulation of two-dimensional causal quantum gravity defined through Causal Dynamical Triangulations and stochastic quantization. This procedure enables one to extract the nonperturbative quantum Hamiltonian of the random surface model including the...

  14. Delaunay-Object-Dynamics: cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation.

    Science.gov (United States)

    Meyer-Hermann, Michael

    2008-01-01

    Mathematical methods in Biology are of increasing relevance for understanding the control and the dynamics of biological systems with medical relevance. In particular, agent-based methods turn more and more important because of fast increasing computational power which makes even large systems accessible. An overview of different mathematical methods used in Theoretical Biology is provided and a novel agent-based method for cell mechanics based on Delaunay-triangulations and Voronoi-tessellations is explained in more detail: The Delaunay-Object-Dynamics method. It is claimed that the model combines physically realistic cell mechanics with a reasonable computational load. The power of the approach is illustrated with two examples, avascular tumor growth and genesis of lymphoid tissue in a cell-flow equilibrium.

  15. Causality

    OpenAIRE

    Antonakis, J.

    2015-01-01

    Making correct causal claims is important for research and practice. This article explains what causality is, and how it can be established via experimental design. Because experiments are infeasible in many applied settings, researchers often use "observational" methods to estimate causal models. In these situations, it is likely that model estimates are compromised by endogeneity. The article discusses the conditions that engender endogeneity and methods that can eliminate it.

  16. Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order? (extended version)

    CERN Document Server

    Rindlisbacher, Tobias

    2015-01-01

    The transition between the two phases of 4D Euclidean Dynamical Triangulation [1] was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems [5,9]. However, one may wonder if this finding was affected by the numerical methods used: to control volume fluctuations, in both studies [5,9] an artificial harmonic potential was added to the action; in [9] measurements were taken after a fixed number of accepted instead of attempted moves which introduces an additional error. Finally the simulations suffer from strong critical slowing down which may have been underestimated. In the present work, we address the above weaknesses: we allow the volume to fluctuate freely within a fixed interval; we take measurements after a fixed number of attempted moves; and we overcome critical slowing down by using an optimized parallel tempering algorithm [12]. With these improved methods, on systems of size up to 64k 4-simplices, we confirm that the phase transition is first ...

  17. Euclidean Dynamical Triangulation revisited: is the phase transition really first order?

    CERN Document Server

    Rindlisbacher, Tobias

    2014-01-01

    The transition between the two phases of 4D Euclidean Dynamical Triangulation [1] was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems [3,4]. However, one may wonder if this finding was affected by the numerical methods used: to control volume fluctuations, in both studies [3,4] an artificial harmonic potential was added to the action; in [4] measurements were taken after a fixed number of accepted instead of attempted moves which introduces an additional error. Finally the simulations suffer from strong critical slowing down which may have been underestimated. In the present work, we address the above weaknesses: we allow the volume to fluctuate freely within a fixed interval; we take measurements after a fixed number of attempted moves; and we overcome critical slowing down by using an optimized parallel tempering algorithm [6]. With these improved methods, on systems of size up to 64k 4-simplices, we confirm that the phase transition is first o...

  18. Causality aspects of the dynamical Chern-Simons modified gravity

    Science.gov (United States)

    Porfírio, P. J.; Fonseca-Neto, J. B.; Nascimento, J. R.; Petrov, A. Yu.

    2016-11-01

    We discuss the Gödel-type solutions within the dynamical Chern-Simons modified gravity in four dimensions. Within our study, we show that in the vacuum case causal solutions are possible that cannot take place within the nondynamical framework. Another result of ours consists in the possibility for completely causal solutions for all of the types of matter we study in the paper, that is, relativistic fluid, cosmological constant, scalar, and electromagnetic fields.

  19. Granger causality vs. dynamic Bayesian network inference: a comparative study

    Directory of Open Access Journals (Sweden)

    Feng Jianfeng

    2009-04-01

    Full Text Available Abstract Background In computational biology, one often faces the problem of deriving the causal relationship among different elements such as genes, proteins, metabolites, neurons and so on, based upon multi-dimensional temporal data. Currently, there are two common approaches used to explore the network structure among elements. One is the Granger causality approach, and the other is the dynamic Bayesian network inference approach. Both have at least a few thousand publications reported in the literature. A key issue is to choose which approach is used to tackle the data, in particular when they give rise to contradictory results. Results In this paper, we provide an answer by focusing on a systematic and computationally intensive comparison between the two approaches on both synthesized and experimental data. For synthesized data, a critical point of the data length is found: the dynamic Bayesian network outperforms the Granger causality approach when the data length is short, and vice versa. We then test our results in experimental data of short length which is a common scenario in current biological experiments: it is again confirmed that the dynamic Bayesian network works better. Conclusion When the data size is short, the dynamic Bayesian network inference performs better than the Granger causality approach; otherwise the Granger causality approach is better.

  20. CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Görlich, Andrzej; Jurkiewicz, J.;

    2013-01-01

    High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)......High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)...

  1. Causality

    Science.gov (United States)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  2. Spectral dimension from nonlocal dynamics on causal sets

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Marcianò, Antonino; Modesto, Leonardo

    2016-02-01

    We investigate the spectral dimension obtained from nonlocal continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to two dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.

  3. Inferring connectivity in networked dynamical systems: Challenges using Granger causality

    Science.gov (United States)

    Lusch, Bethany; Maia, Pedro D.; Kutz, J. Nathan

    2016-09-01

    Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show a significant systematic disparity between the original and inferred network, unless the true structure is extremely sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due to its importance in random graph theory and network science. We conclude that Granger causal methods for inferring network structure are highly suspect and should always be checked against a ground truth model. The results also advocate the need to perform such comparisons with any network inference method since the inferred connectivity results appear to have very little to do with the ground truth system.

  4. Analysis of the relationship between lung cancer drug response level and atom connectivity dynamics based on trimmed Delaunay triangulation

    Science.gov (United States)

    Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong

    2016-05-01

    Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.

  5. An example of the stochastic dynamics of a causal set

    CERN Document Server

    Krugly, Alexey L

    2011-01-01

    An example of a discrete pregeometry on a microscopic scale is introduced. The model is a directed dyadic acyclic graph. This is the particular case of a causal set. The particles in this model must be self-organized repetitive structures. The dynamics of this model is a stochastic sequential growth dynamics. New vertexes are added one by one. The probability of this addition depends on the structure of existed graph. The particular case of the dynamics is considered. The numerical simulation provides some symptoms of self-organization.

  6. Emergence of a 4D World from Causal Quantum Gravity

    CERN Document Server

    Ambjørn, Jan; Loll, R

    2004-01-01

    Causal Dynamical Triangulations in four dimensions provide a background-independent definition of the sum over geometries in nonperturbative quantum gravity, with a positive cosmological constant. We present evidence that a macroscopic four-dimensional world emerges from this theory dynamically.

  7. Dynamic symmetrical pattern projection based laser triangulation sensor for precise surface position measurement of various material types.

    Science.gov (United States)

    Žbontar, Klemen; Mihelj, Matjaž; Podobnik, Boštjan; Povše, Franc; Munih, Marko

    2013-04-20

    This paper describes a custom, material-type-independent laser-triangulation-based measurement system that utilizes a high-quality ultraviolet laser beam. Laser structuring applications demand material surface alignment regarding the laser focus position, where fabrication conditions are optimal. Robust alignment of various material types was solved by introducing dynamic symmetrical pattern projection, and a "double curve fitting" centroid detection algorithm with subsurface scattering compensation. Experimental results have shown that the measurement system proves robust to laser intensity variation, with measurement bias lower than 50 μm and standard deviation lower than ±6.3 μm for all materials. The developed probe has been integrated into a PCB prototyping system for material referencing purposes.

  8. Dynamical symmetries and causality in non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte

    2015-01-01

    Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  9. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  10. OPTIMAL DELAUNAY TRIANGULATIONS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Jin-chao Xu

    2004-01-01

    The Delaunay triangulation, in both classic and more generalized sense, is studied in this paper for minimizing the linear interpolation error (measure in Lp-norm) for a given function. The classic Delaunay triangulation can then be characterized as an optimal triangulation that minimizes the interpolation error for the isotropic function ‖x‖2 among all the triangulations with a given set of vertices. For a more general function, a functiondependent Delaunay triangulation is then defined to be an optimal triangulation that minimizes the interpolation error for this .function and its construction can be obtained by a simple lifting and projection procedure.The optimal Delaunay triangulation is the one that minimizes the interpolation error among all triangulations with the same number of vertices, i.e. the distribution of vertices are optimized in order to minimize the interpolation error. Such a function-dependent optimal Delaunay triangulation is proved to exist for any given convex continuous function.On an optimal Delaunay triangulation associated with f, it is proved that ▽f at the interior vertices can be exactly recovered by the function values on its neighboring vertices.Since the optimal Delaunay triangulation is difficult to obtain in practice, the concept of nearly optimal triangulation is introduced and two sufficient conditions are presented for a triangulation to be nearly optimal.

  11. Gradient-based MCMC samplers for dynamic causal modelling.

    Science.gov (United States)

    Sengupta, Biswa; Friston, Karl J; Penny, Will D

    2016-01-15

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)-a class of biophysically motivated DCMs-we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability.

  12. Dynamic causal modelling of brain-behaviour relationships.

    Science.gov (United States)

    Rigoux, L; Daunizeau, J

    2015-08-15

    In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients).

  13. When two become one: the limits of causality analysis of brain dynamics.

    Science.gov (United States)

    Chicharro, Daniel; Ledberg, Anders

    2012-01-01

    Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.

  14. When two become one: the limits of causality analysis of brain dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel Chicharro

    Full Text Available Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM. Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.

  15. Imposing causality on a matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, Dario [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada)], E-mail: dbenedetti@perimeterinstitute.ca; Henson, Joe [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada)

    2009-07-13

    We introduce a new matrix model that describes Causal Dynamical Triangulations (CDT) in two dimensions. In order to do so, we introduce a new, simpler definition of 2D CDT and show it to be equivalent to the old one. The model makes use of ideas from dually weighted matrix models, combined with multi-matrix models, and can be studied by the method of character expansion.

  16. The causal structure of dynamical charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han, E-mail: eostm@muon.kaist.ac.k, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-02-21

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  17. Missing data estimation in fMRI dynamic causal modeling.

    Science.gov (United States)

    Zaghlool, Shaza B; Wyatt, Christopher L

    2014-01-01

    Dynamic Causal Modeling (DCM) can be used to quantify cognitive function in individuals as effective connectivity. However, ambiguity among subjects in the number and location of discernible active regions prevents all candidate models from being compared in all subjects, precluding the use of DCM as an individual cognitive phenotyping tool. This paper proposes a solution to this problem by treating missing regions in the first-level analysis as missing data, and performing estimation of the time course associated with any missing region using one of four candidate methods: zero-filling, average-filling, noise-filling using a fixed stochastic process, or one estimated using expectation-maximization. The effect of this estimation scheme was analyzed by treating it as a preprocessing step to DCM and observing the resulting effects on model evidence. Simulation studies show that estimation using expectation-maximization yields the highest classification accuracy using a simple loss function and highest model evidence, relative to other methods. This result held for various dataset sizes and varying numbers of model choice. In real data, application to Go/No-Go and Simon tasks allowed computation of signals from the missing nodes and the consequent computation of model evidence in all subjects compared to 62 and 48 percent respectively if no preprocessing was performed. These results demonstrate the face validity of the preprocessing scheme and open the possibility of using single-subject DCM as an individual cognitive phenotyping tool.

  18. Physiologically informed dynamic causal modeling of fMRI data.

    Science.gov (United States)

    Havlicek, Martin; Roebroeck, Alard; Friston, Karl; Gardumi, Anna; Ivanov, Dimo; Uludag, Kamil

    2015-11-15

    The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses - such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal

  19. Causality analysis in business performance measurement system using system dynamics methodology

    Science.gov (United States)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  20. Minimal triangulations of simplotopes

    CERN Document Server

    Seacrest, Tyler

    2009-01-01

    We derive lower bounds for the size of simplicial covers of simplotopes, which are products of simplices. These also serve as lower bounds for triangulations of such polytopes, including triangulations with interior vertices. We establish that a minimal triangulation of a product of two simplices is given by a vertex triangulation, i.e., one without interior vertices. For products of more than two simplices, we produce bounds for products of segments and triangles. Our analysis yields linear programs that arise from considerations of covering exterior faces and exploiting the product structure of these polytopes. Aside from cubes, these are the first known lower bounds for triangulations of simplotopes with three or more factors. We also construct a minimal triangulation for the product of a triangle and a square, and compare it to our lower bound.

  1. Triangulation 2.0

    Science.gov (United States)

    Denzin, Norman K.

    2012-01-01

    The author's thesis is simple and direct. Those in the mixed methods qualitative inquiry community need a new story line, one that does not confuse pragmatism for triangulation, and triangulation for mixed methods research (MMR). A different third way is required, one that inspires generative politics and dialogic democracy and helps shape…

  2. Taming the cosmological constant in 2D causal quantum gravity with topology change

    NARCIS (Netherlands)

    Loll, R.; Westra, W.; Zohren, S.

    2006-01-01

    As shown in previous work, there is a well-defined nonperturbative gravitational path integral including an explicit sum over topologies in the setting of Causal Dy- namical Triangulations in two dimensions. In this paper we derive a complete ana- lytical solution of the quantum continuum dynamics o

  3. Dynamic causal models of neural system dynamics: current state and future extensions

    Indian Academy of Sciences (India)

    Klaas E Stephan; Lee M Harrison; Stefan J Kiebel; Olivier David; Will D Penny; Karl J Friston

    2007-01-01

    Complex processes resulting from interaction of multiple elements can rarely be understood by analytical scientific approaches alone; additional, mathematical models of system dynamics are required. This insight, which disciplines like physics have embraced for a long time already, is gradually gaining importance in the study of cognitive processes by functional neuroimaging. In this field, causal mechanisms in neural systems are described in terms of effective connectivity. Recently, dynamic causal modelling (DCM) was introduced as a generic method to estimate effective connectivity from neuroimaging data in a Bayesian fashion. One of the key advantages of DCM over previous methods is that it distinguishes between neural state equations and modality-specific forward models that translate neural activity into a measured signal. Another strength is its natural relation to Bayesian model selection (BMS) procedures. In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing the application of BMS in the context of DCM, we conclude with an outlook to future extensions of DCM. These extensions are guided by the long-term goal of using dynamic system models for pharmacological and clinical applications, particularly with regard to synaptic plasticity.

  4. Compton scattering from chiral dynamics with unitarity and causality

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, A.M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); SSC RF ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Lutz, M.F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Pasquini, B. [Dipartimento di Fisica Nucleare e Teorica, Universita degli Studi di Pavia and INFN, Sezione di Pavia, Pavia (Italy)

    2011-09-15

    Proton Compton scattering is analyzed with the chiral Lagrangian. Partial-wave amplitudes are obtained by an analytic extrapolation of subthreshold reaction amplitudes computed in chiral perturbation theory, where the constraints set by electromagnetic-gauge invariance, causality and unitarity are used to stabilize the extrapolation. We present and discuss predictions for various spin observables and polarizabilities of the proton. While for the transition polarizabilities {gamma}{sub E1M2}, {gamma}{sub M1E2} we recover the results of strict chiral perturbation theory, for the diagonal {gamma}{sub E1E1}, {gamma}{sub M1M1} elements we find significant effects from rescattering.

  5. Triangulation of NURBS Surfaces

    Science.gov (United States)

    Samareh-Abolhassani, Jamshid

    1994-01-01

    A technique is presented for triangulation of NURBS surfaces. This technique is built upon an advancing front technique combined with grid point projection. This combined approach has been successfully implemented for structured and unstructured grids.

  6. Implementing causality in the spin foam quantum geometry

    CERN Document Server

    Livine, E R; Livine, Etera R.; Oriti, Daniele

    2003-01-01

    We analyse the classical and quantum geometry of the Barrett-Crane spin foam model for four dimensional quantum gravity, explaining why it has to be considering as a covariant realization of the projector operator onto physical quantum gravity states. We discuss how causality requirements can be consistently implemented in this framework, and construct causal transiton amplitudes between quantum gravity states, i.e. realising in the spin foam context the Feynman propagator between states. The resulting causal spin foam model can be seen as a path integral quantization of Lorentzian first order Regge calculus, and represents a link between several approaches to quantum gravity as canonical loop quantum gravity, sum-over-histories formulations, dynamical triangulations and causal sets. In particular, we show how the resulting model can be rephrased within the framework of quantum causal sets (or histories).

  7. Food Insecurity and Conflict Dynamics: Causal Linkages and Complex Feedbacks

    Directory of Open Access Journals (Sweden)

    Cullen Hendrix

    2013-06-01

    Full Text Available This paper addresses two related topics: 1 the circular link between food insecurity and conflict, with particular emphasis on the Sahel, and 2 the potential role of food security interventions in reducing the risk of violent conflicts. While we eschew mono-causal explanations of conflict, acute food insecurity can be a factor in popular mobilization and a risk multiplier. Moreover, violent conflict itself is a major driver of acute food insecurity. If food insecurity is a threat multiplier for conflict, improving food security can reduce tensions and contribute to more stable environments. If these interventions are done right, the vicious cycle of food insecurity and conflict can be transformed into a virtuous cycle of food security and stability that provides peace dividends, reduces conflict drivers, enhances social cohesion, rebuilds social trust, and builds the legitimacy and capacity of governments.

  8. Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics.

    Science.gov (United States)

    Zhou, Douglas; Zhang, Yaoyu; Xiao, Yanyang; Cai, David

    2014-01-01

    Granger causality (GC) is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length τ, i.e., the GC value is a function of τ. Using the GC analysis for the topology extraction of the simplest integrate-and-fire neuronal network of two neurons, we discuss behaviors of the GC value as a function of τ, which exhibits (i) oscillations, often vanishing at certain finite sampling interval lengths, (ii) the GC vanishes linearly as one uses finer and finer sampling. We show that these sampling effects can occur in both linear and non-linear dynamics: the GC value may vanish in the presence of true causal influence or become non-zero in the absence of causal influence. Without properly taking this issue into account, GC analysis may produce unreliable conclusions about causal influence when applied to empirical data. These sampling artifacts on the GC value greatly complicate the reliability of causal inference using the GC analysis, in general, and the validity of topology reconstruction for networks, in particular. We use idealized linear models to illustrate possible mechanisms underlying these phenomena and to gain insight into the general spectral structures that give rise to these sampling effects. Finally, we present an approach to circumvent these sampling artifacts to obtain reliable GC values.

  9. Analysis of Sampling Artifacts on the Granger Causality Analysis for Topology Extraction of Neuronal Dynamics

    Directory of Open Access Journals (Sweden)

    Douglas eZhou

    2014-07-01

    Full Text Available Granger causality (GC is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length $tau$, emph{i.e.}, the GC value is a function of $tau$. Using the GC analysis for the topology extraction of the simplest integrate-and-fire neuronal network of two neurons, we discuss behaviors of the GC value as a function of $tau$, which exhibits (i oscillations, often vanishing at certain finite sampling interval lengths, (ii the GC vanishes linearly as one uses finer and finer sampling. We show that these sampling effects can occur in both linear and nonlinear dynamics: the GC value may vanish in the presence of true causal influence or become nonzero in the absence of causal influence. Without properly taking this issue into account, GC analysis may produce unreliable conclusions about causal influence when applied to empirical data. These sampling artifacts on the GC value greatly complicate the reliability of causal inference using the GC analysis, in general, and the validity of topology reconstruction for networks, in particular. We use idealized linear models to illustrate possible mechanisms underlying these phenomena and to gain insight into the general spectral structures that give rise to these sampling effects. Finally, we present an approach to circumvent these sampling artifacts to obtain reliable GC values.

  10. Causal spin foams

    CERN Document Server

    Immirzi, Giorgio

    2016-01-01

    I discuss how to impose causality on spin-foam models, separating forward and backward propagation, turning a given triangulation to a 'causal set', and giving asymptotically the exponential of the Regge action, not a cosine. I show the equivalence of the prescriptions which have been proposed to achieve this. Essential to the argument is the closure condition for the 4-simplices, all made of space-like tetrahedra.

  11. Dynamic panel data models and causality : Applications to labor supply, health and insurance

    NARCIS (Netherlands)

    Michaud, P.C.

    2005-01-01

    One of the main findings concerns the importance of common persistent factors, or unobserved traits of respondents, in order to study dynamic relationships between two variables of interest using panel data. The ¿hand of the past¿ can reinforce existent causal relationships, or blur their effect, po

  12. Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference

    Science.gov (United States)

    Janzing, Dominik; Chaves, Rafael; Schölkopf, Bernhard

    2016-09-01

    We postulate a principle stating that the initial condition of a physical system is typically algorithmically independent of the dynamical law. We discuss the implications of this principle and argue that they link thermodynamics and causal inference. On the one hand, they entail behavior that is similar to the usual arrow of time. On the other hand, they motivate a statistical asymmetry between cause and effect that has recently been postulated in the field of causal inference, namely, that the probability distribution {P}{{cause}} contains no information about the conditional distribution {P}{{effect}| {{cause}}} and vice versa, while {P}{{effect}} may contain information about {P}{{cause}| {{effect}}}.

  13. A general solution for classical sequential growth dynamics of Causal Sets

    CERN Document Server

    Varadarajan, M; Rideout, David; Varadarajan, Madhavan

    2006-01-01

    A classical precursor to a full quantum dynamics for causal sets has been forumlated in terms of a stochastic sequential growth process in which the elements of the causal set arise in a sort of accretion process. The transition probabilities of the Markov growth process satisfy certain physical requirements of causality and general covariance, and the generic solution with all transition probabilities non-zero has been found. Here we remove the assumption of non-zero probabilities, define a reasonable extension of the physical requirements to cover the case of vanishing probabilities, and find the completely general solution to these physical conditions. The resulting family of growth processes has an interesting structure reminiscent of an ``infinite tower of turtles'' cosmology.

  14. Triangulation in rewriting

    NARCIS (Netherlands)

    Oostrom, V. van; Zantema, Hans

    2012-01-01

    We introduce a process, dubbed triangulation, turning any rewrite relation into a confluent one. It is more direct than usual completion, in the sense that objects connected by a peak are directly oriented rather than their normal forms. We investigate conditions under which this process preserves d

  15. Effect of science teaching on the young child's concept of piagetian physical causality: Animism and dynamism

    Science.gov (United States)

    Wolfinger, Donna M.

    The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.

  16. Consistent Cosmology, Dynamic Relativity and Causal Quantum Mechanics as Unified Manifestations of the Symmetry of Complexity

    CERN Document Server

    Kirilyuk, A P

    2006-01-01

    The universal symmetry, or conservation, of complexity underlies any law or principle of system dynamics and describes the unceasing transformation of dynamic information into dynamic entropy as the unique way to conserve their sum, the total dynamic complexity. Here we describe the real world structure emergence and dynamics as manifestation of the universal symmetry of complexity of initially homogeneous interaction between two protofields. It provides the unified complex-dynamic, causally complete origin of physically real, 3D space, time, elementary particles, their properties (mass, charge, spin, etc.), quantum, relativistic, and classical behaviour, as well as fundamental interaction forces, including naturally quantized gravitation. The old and new cosmological problems (including "dark" mass and energy) are basically solved for this explicitly emerging, self-tuning world structure characterised by strictly positive (and large) energy-complexity. A general relation is obtained between the numbers of wo...

  17. Advanced Triangulation Displacement Sensors

    Science.gov (United States)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  18. Causal and causally separable processes

    Science.gov (United States)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and

  19. Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Discrete DAG Cases

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang

    2012-01-01

    Developed from the dynamic causality diagram (DCD) model,a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented,which focuses on the compact representation of complex uncertain causalities and efficient probabilistic inference.It is pointed out that the existing models of compact representation and inference in Bayesian Network (BN) is applicable in single-valued cases,but may not be suitable to be applied in multi-valued cases.DUCG overcomes this problem and beyond.The main features of DUCG are:1) compactly and graphically representing complex conditional probability distributions (CPDs),regardless of whether the cases are single-valued or multi-valued; 2) able to perform exact reasoning in the case of the incomplete knowledge representation;3) simplifying the graphical knowledge base conditional on observations before other calculations,so that the scale and complexity of problem can be reduced exponentially; 4) the efficient two-step inference algorithm consisting of (a) logic operation to find all possible hypotheses in concern for given observations and (b) the probability calculation for these hypotheses; and 5) much less relying on the parameter accuracy.An alarm system example is provided to illustrate the DUCG methodology.

  20. Causality Networks

    OpenAIRE

    Ishanu Chattopadhyay

    2014-01-01

    While correlation measures are used to discern statistical relationships between observed variables in almost all branches of data-driven scientific inquiry, what we are really interested in is the existence of causal dependence. Designing an efficient causality test, that may be carried out in the absence of restrictive pre-suppositions on the underlying dynamical structure of the data at hand, is non-trivial. Nevertheless, ability to computationally infer statistical prima facie evidence of...

  1. An Isometric Dynamics for a Causal Set Approach to Discrete Quantum Gravity

    CERN Document Server

    Gudder, Stan

    2014-01-01

    We consider a covariant causal set approach to discrete quantum gravity. We first review the microscopic picture of this approach. In this picture a universe grows one element at a time and its geometry is determined by a sequence of integers called the shell sequence. We next present the macroscopic picture which is described by a sequential growth process. We introduce a model in which the dynamics is governed by a quantum transition amplitude. The amplitude satisfies a stochastic and unitary condition and the resulting dynamics becomes isometric. We show that the dynamics preserves stochastic states. By "doubling down" on the dynamics we obtain a unitary group representation and a natural energy operator. These unitary operators are employed to define canonical position and momentum operators.

  2. Interferometer predictions with triangulated images

    DEFF Research Database (Denmark)

    Brinch, Christian; Dullemond, C. P.

    2014-01-01

    Interferometers play an increasingly important role for spatially resolved observations. If employed at full potential, interferometry can probe an enormous dynamic range in spatial scale. Interpretation of the observed visibilities requires the numerical computation of Fourier integrals over...... the synthetic model images. To get the correct values of these integrals, the model images must have the right size and resolution. Insufficient care in these choices can lead to wrong results. We present a new general-purpose scheme for the computation of visibilities of radiative transfer images. Our method...... requires a model image that is a list of intensities at arbitrarily placed positions on the image-plane. It creates a triangulated grid from these vertices, and assumes that the intensity inside each triangle of the grid is a linear function. The Fourier integral over each triangle is then evaluated...

  3. Observation, innovation and triangulation

    DEFF Research Database (Denmark)

    Hetmar, Vibeke

    2007-01-01

    In the article the focus is on classroom research which aims at offering some evidence-based description of the interplay between the logic of practice in school and schooling on the one hand and the teachers' efforts to realize notions of innovation and change on the other hand. Based...... on experiences from a pilot project in three different classrooms methodological possibilities and problems are presented and discussed: 1) educational criticism, including the concepts of positions, perspectives and connoisseurship, 2) classroom observations and 3) triangulation as a methodological tool....

  4. The use of triangulation in qualitative research.

    Science.gov (United States)

    Carter, Nancy; Bryant-Lukosius, Denise; DiCenso, Alba; Blythe, Jennifer; Neville, Alan J

    2014-09-01

    Triangulation refers to the use of multiple methods or data sources in qualitative research to develop a comprehensive understanding of phenomena (Patton, 1999). Triangulation also has been viewed as a qualitative research strategy to test validity through the convergence of information from different sources. Denzin (1978) and Patton (1999) identified four types of triangulation: (a) method triangulation, (b) investigator triangulation, (c) theory triangulation, and (d) data source triangulation. The current article will present the four types of triangulation followed by a discussion of the use of focus groups (FGs) and in-depth individual (IDI) interviews as an example of data source triangulation in qualitative inquiry.

  5. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings.

    Science.gov (United States)

    Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian

    2013-10-16

    Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination.

  6. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    Science.gov (United States)

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  7. Challenges to inferring causality from viral information dispersion in dynamic social networks

    Science.gov (United States)

    Ternovski, John

    2014-06-01

    Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.

  8. Systemic risk and causality dynamics of the world international shipping market

    Science.gov (United States)

    Zhang, Xin; Podobnik, Boris; Kenett, Dror Y.; Eugene Stanley, H.

    2014-12-01

    Various studies have reported that many economic systems have been exhibiting an increase in the correlation between different market sectors, a factor that exacerbates the level of systemic risk. We measure this systemic risk of three major world shipping markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight market, as well as the shipping stock market. Based on correlation networks during three time periods, that prior to the financial crisis, during the crisis, and after the crisis, minimal spanning trees (MSTs) and hierarchical trees (HTs) both exhibit complex dynamics, i.e., different market sectors tend to be more closely linked during financial crisis. Brownian distance correlation and Granger causality test both can be used to explore the directional interconnectedness of market sectors, while Brownian distance correlation captures more dependent relationships, which are not observed in the Granger causality test. These two measures can also identify and quantify market regression periods, implying that they contain predictive power for the current crisis.

  9. Triangulation Made Easy

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P

    2009-12-23

    We describe a simple and efficient algorithm for two-view triangulation of 3D points from approximate 2D matches based on minimizing the L2 reprojection error. Our iterative algorithm improves on the one by Kanatani et al. by ensuring that in each iteration the epipolar constraint is satisfied. In the case where the two cameras are pointed in the same direction, the method provably converges to an optimal solution in exactly two iterations. For more general camera poses, two iterations are sufficient to achieve convergence to machine precision, which we exploit to devise a fast, non-iterative method. The resulting algorithm amounts to little more than solving a quadratic equation, and involves a fixed, small number of simple matrixvector operations and no conditional branches. We demonstrate that the method computes solutions that agree to very high precision with those of Hartley and Sturm's original polynomial method, though achieves higher numerical stability and 1-4 orders of magnitude greater speed.

  10. Cointegration and causality analysis of dynamic linkage between stock market and equity mutual funds in Australia

    Directory of Open Access Journals (Sweden)

    Sasipa Pojanavatee

    2014-12-01

    Full Text Available The existing literature finds conflicting results on the magnitude of price linkages between equity mutual funds and the stock market. The study contends that in an optimal lagged model, the expectations of future prices using knowledge of past price behaviour in a particular equity mutual fund category will improve forecasts of prices of other equity mutual fund categories and the stock market index. The evidence shows that the long-run pricing of equity mutual funds is cointegrated with the stock market index. In the short run, the results indicate that some equity mutual fund categories possess both long-run and short-run exogeneity with the stock market. Therefore, the short-run dynamic indicates short-run Granger causal links running between different equity mutual fund categories.

  11. On the convergence and causality of a frequency domain method for dynamic structural analysis

    Institute of Scientific and Technical Information of China (English)

    Kuifu Chen; Senwen Zhang

    2006-01-01

    Venanico-Filho et al.developed an elegant matrix formulation for dynamic analysis by frequency domain (FD),but the convergence,causality and extended period need further refining.In the present Paper,it was argued that:(1) under reasonable assumptions (approximating the frequency response function by the discrete Fourier transform of the discretized unitary impulse response function),the matrix formulation by FD is equivalent to a circular convolution;(2) to avoid the wraparound Interference,the excitation vector and impulse response must be padded with enough zeros:(3) provided that the zero padding requirement satisfied,the convergence and accuracy of direct time domain analysis,which is equivalent to that by FD,are guaranteed by the numerical integration scheme;(4) the imaginary part of the computational response approaching zero is due to the continuity of the impulse response functions.

  12. Fundamental triangulation networks in Denmark

    Directory of Open Access Journals (Sweden)

    Borre Kai

    2014-04-01

    Full Text Available The first triangulation activity on Danish ground was carried out by the astronomer Tycho Brahe who resided on the island Hven. He wanted to determine the longitude difference of his observatory Uraniborg to Copenhagen. A by-product was a map of his island made in 1579. In 1761 the Royal Danish Academy of Sciences and Letters initiated a mapping project which should be based on the principle of triangulation. Eventually 24 maps were printed in varying scales, predominantly in 1:120 000. The last map was engraved in 1842. The Danish GradeMeasurement initiated remeasurements and redesign of the fundamental triangulation network. This network served scientific as well as cartographic purposes in more than a century. Only in the 1960s all triangulation sides were measured electronically. A combined least-squares adjustment followed in the 1970s

  13. `Optimal' triangulation of surfaces and bodies

    NARCIS (Netherlands)

    Traas, C.R.

    1999-01-01

    A new criterion is given for constructing an optimal triangulation of surfaces and bodies. The triangulation, called the {\\em tight} triangulation, is convexity preserving and accepts long, thin triangles whenever they are useful. Both properties are not shared by the maxmin triangulation, which in

  14. Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating.

    Science.gov (United States)

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela K; Friston, Karl

    2016-01-15

    Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5-10min compared to approximately 1-2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated.

  15. Extending particle tracking capability with Delaunay triangulation.

    Science.gov (United States)

    Chen, Kejia; Anthony, Stephen M; Granick, Steve

    2014-04-29

    Particle tracking, the analysis of individual moving elements in time series of microscopic images, enables burgeoning new applications, but there is need to better resolve conformation and dynamics. Here we describe the advantages of Delaunay triangulation to extend the capabilities of particle tracking in three areas: (1) discriminating irregularly shaped objects, which allows one to track items other than point features; (2) combining time and space to better connect missing frames in trajectories; and (3) identifying shape backbone. To demonstrate the method, specific examples are given, involving analyzing the time-dependent molecular conformations of actin filaments and λ-DNA. The main limitation of this method, shared by all other clustering techniques, is the difficulty to separate objects when they are very close. This can be mitigated by inspecting locally to remove edges that are longer than their neighbors and also edges that link two objects, using methods described here, so that the combination of Delaunay triangulation with edge removal can be robustly applied to processing large data sets. As common software packages, both commercial and open source, can construct Delaunay triangulation on command, the methods described in this paper are both computationally efficient and easy to implement.

  16. Causal reasoning in physics

    CERN Document Server

    Frisch, Mathias

    2014-01-01

    Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.

  17. Quasi-greedy triangulations approximating the minimum weight triangulation

    Energy Technology Data Exchange (ETDEWEB)

    Levcopoulos, C.; Krznaric, D. [Lund Univ. (Sweden)

    1996-12-31

    This paper settles the following two open problems: (1) What is the worst-case approximation ratio between the greedy and the minimum weight triangulation? (2) Is there a polynomial time algorithm that always pro- duces a triangulation whose length is within a constant factor from the minimum? The answer to the first question is that the known {Omega}({radical}n) lower bound is tight. The second question is answered in the affirmative by using a slight modification of an O(n log n) algorithm for the greedy triangulation. We also derive some other interesting results. For example, we show that a constant-factor approximation of the minimum weight convex partition can be obtained within the same time bounds.

  18. CAUSALITY AND DYNAMICS OF ENERGY CONSUMPTION AND OUTPUT: EVIDENCE FROM NON-OECD ASIAN COUNTRIES

    OpenAIRE

    RUHUL A. SALIM; Shuddhasattwa Rafiq; A. F. M. KAMRUL HASSAN

    2008-01-01

    This article examines the short-run and long-run causal relationship between energy consumption and output in six non-OECD Asian developing countries. Standard time series econometrics is used for this purpose. Based on cointegration and vector error correction modeling, the empirical result shows a bi-directional causality between energy consumption and income in Malaysia, while a unidirectional causality from output to energy consumption in China and Thailand and energy consumption to outpu...

  19. Fat Triangulations and Differential Geometry

    CERN Document Server

    Saucan, Emil

    2011-01-01

    We study the differential geometric consequences of our previous result on the existence of fat triangulations, in conjunction with a result of Cheeger, M\\"{u}ller and Schrader, regarding the convergence of Lipschitz-Killing curvatures of piecewise-flat approximations of smooth Riemannian manifolds. A further application to the existence of quasiconformal mappings between manifolds, as well as an extension of the triangulation result to the case of almost Riemannian manifolds, are also given. In addition, the notion of fatness of triangulations and its relation to metric curvature and to excess is explored. Moreover, applications of the main results, and in particular a purely metric approach to Regge calculus, are also investigated.

  20. The Construction of Sorkin Triangulations

    CERN Document Server

    Tuckey, P A

    1993-01-01

    Some time ago, Sorkin (1975) reported investigations of the time evolution and initial value problems in Regge calculus, for one triangulation each of the manifolds $R*S^3$ and $R^4$. Here we display the simple, local characteristic of those triangulations which underlies the structure found by Sorkin, and emphasise its general applicability, and therefore the general validity of Sorkin's conclusions. We also make some elementary observations on the resulting structure of the time evolution and initial value problems in Regge calculus, and add some comments and speculations.

  1. From animal model to human brain networking: dynamic causal modeling of motivational systems.

    Science.gov (United States)

    Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma

    2012-05-23

    An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST.

  2. Identifying abnormal connectivity in patients using Dynamic Causal Modelling of fMRI responses.

    Directory of Open Access Journals (Sweden)

    Mohamed L Seghier

    2010-08-01

    Full Text Available Functional imaging studies of brain damaged patients offer a unique opportunity to understand how sensori-motor and cognitive tasks can be carried out when parts of the neural system that support normal performance are no longer available. In addition to knowing which regions a patient activates, we also need to know how these regions interact with one another, and how these inter-regional interactions deviate from normal. Dynamic Causal Modelling (DCM offers the opportunity to assess task-dependent interactions within a set of regions. Here we review its use in patients when the question of interest concerns the characterisation of abnormal connectivity for a given pathology. We describe the currently available implementations of DCM for fMRI responses, varying from the deterministic bilinear models with one-state equation to the stochastic nonlinear models with two-state equations. We also highlight the importance of the new Bayesian model selection and averaging tools that allow different plausible models to be compared at the single subject and group level. These procedures allow inferences to be made at different levels of model selection, from features (model families to connectivity parameters. Following a critical review of previous DCM studies that investigated abnormal connectivity we propose a systematic procedure that will ensure more flexibility and efficiency when using DCM in patients. Finally, some practical and methodological issues crucial for interpreting or generalising DCM findings in patients are discussed.

  3. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling.

    Science.gov (United States)

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-09-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis.

  4. Triangulation of cubic panorama for view synthesis.

    Science.gov (United States)

    Zhang, Chunxiao; Zhao, Yan; Wu, Falin

    2011-08-01

    An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs.

  5. Fundamental triangulation networks in Denmark

    DEFF Research Database (Denmark)

    Borre, Kai

    2014-01-01

    Academy of Sciences and Letters initiated a mapping project which should be based on the principle of triangulation. Eventually 24 maps were printed in varying scales, predominantly in 1:120 000. The last map was engraved in 1842. The Danish GradeMeasurement initiated remeasurements and redesign...

  6. Sequential triangulation of orbital photography

    Science.gov (United States)

    Rajan, M.; Junkins, J. L.; Turner, J. D.

    1979-01-01

    The feasibility of structuring the satellite photogrammetric triangulation as an iterative Extended Kalman estimation algorithm is demonstrated. Comparative numerical results of the sequential against batch estimation algorithm are presented. Difficulty of accurately modeling of the attitude motion is overcome by utilizing the on-board angular rate measurements. Solutions of the differential equations and the evaluation of state transition matrix are carried out numerically.

  7. Causal wave mechanics and the advent of complexity; 4, dynamical origin of quantum indeterminacy and wave reduction

    CERN Document Server

    Kirilyuk, A P

    1995-01-01

    The concept of the fundamental dynamic uncertainty (or the fundamental multivaluedness of dynamical functions) developed in parts I-III of this work and used to re-establish the correspondence principle for chaotic Hamiltonian systems provides also a causal description of the basic properties of quantum measurement, - quantum indeterminacy and wave reduction. The modified Schrödinger formalism involving multivalued effective dynamical functions reveals the dynamical origin of quantum indeterminacy as the intrinsic nonlinear instability in the combined quantum system of the measured object interacting with the instrument. As a result of this instability, the originally wide measured wave dynamically "shrinks" around a random accessible point of the combined configurational space loosing its coherence with respect to other possibilities. We do not use any assumptions on particular "classical", "macroscopic", "stochastic", etc. nature of the instrument or environment: full quantum indeterminacy dynamically appe...

  8. Estimating the Effects of Obesity and Weight Change on Mortality Using a Dynamic Causal Model

    OpenAIRE

    Bochen Cao

    2015-01-01

    Background A well-known challenge in estimating the mortality risks of obesity is reverse causality attributable to illness-associated and smoking-associated weight loss. Given that the likelihood of chronic and acute illnesses rises with age, reverse causality is most threatening to estimates derived from elderly populations. Methods I analyzed data from 12,523 respondents over 50 years old from a nationally representative longitudinal dataset, the Health and Retirement Study (HRS). The effe...

  9. Aging into perceptual control: A Dynamic Causal Modeling for fMRI study of bistable perception

    Directory of Open Access Journals (Sweden)

    Ehsan eDowlati

    2016-03-01

    Full Text Available Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16 resisted experimenter-induced visual bias compared to a younger cohort (n = 14 and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to lingual gyrus by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology.

  10. Altered retrieval of melodic information in congenital amusia: Insights from Dynamic Causal Modeling of MEG data

    Directory of Open Access Journals (Sweden)

    Philippe eAlbouy

    2015-02-01

    Full Text Available Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in Different trials and to its equivalent (original tone in Same trials were compared between groups using Dynamic Causal Modeling (DCM. DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with an increase in Same trials and a decrease in Different trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  11. Inhibitory behavioral control: A stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls

    Directory of Open Access Journals (Sweden)

    Liangsuo Ma

    2015-01-01

    Full Text Available Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD subjects studied with functional magnetic resonance imaging (fMRI. However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM to study the effective (directional neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard. The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced during the NoGo conditions for both groups. The effective connectivity from left (L anterior cingulate cortex (ACC to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R dorsolateral prefrontal cortex (DLPFC to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition.

  12. An efficient advancing front algorithm for Delaunay triangulation

    Science.gov (United States)

    Merriam, Marshal L.

    1991-01-01

    There has been some recent interest in fluid dynamics calculations on unstructured meshes. One method of unstructured mesh generation involves Delaunay triangulation. This method has certain advantages but it can be expensive to implement. Furthermore, there can be problems with crossing grid lines near boundaries. A method shown here avoids many of the robustness and efficiency problems previously associated with Delaunay triangulation. As an added feature, a simple algorithm is shown which allows removal of diagonal edges from cells that are nearly rectangular. This can result in significant savings in the cost per iteration of a flow solver using this grid.

  13. Research Survey of Dynamic Causal Models%动态因果模型的研究综述

    Institute of Scientific and Technical Information of China (English)

    邓红霞; 游雅; 李海芳

    2013-01-01

    With the development of functional magneticresonance imaging technology has laid a foundation for revealing the mechanisms of interval brain effective connection, dynamic causal model will be more conducive to the study of the connection mechanism, which is effective and direct method to reveal the mysteries of the brain. This paper summarized the basic concepts and principles of dynamic causal model, discussed the connection modeand method of thedifferent of dynamic causal model, analyzed the distinction between the different classes of models, distinguished model using Bayesian model selection. Through summarizing the experiment of predecessors, drawed that dynamic causal model should follow the rules, generalized the existing problem. This paper also presented a summary of the current art of the state of Dynamic causal model, a discussion on the future researches topics and some crucial problems which should be solved pressingly.%功能磁共振成像技术的发展为揭示脑区间的有效连接机制奠定了基础,而动态因果模型的研究将更有利于连接机制的研究,为揭示脑的奥秘提供了有效、直接的方法。阐述了动态因果模型的基本概念和原理,论述了不同类别的动态因果模型连接方式、方法;分析了不同类别模型间的区别,并通过贝叶斯模型选择进行模型辨识。通过总结前人所做的工作,得出动态因果模型在使用过程中应该遵循的规则,概括了存在的问题。结合已有的动态因果模型研究成果,展望了未来的研究方向和亟待解决的关键问题。

  14. Assessing the Influence of an Individual Event in Complex Fault Spreading Network Based on Dynamic Uncertain Causality Graph.

    Science.gov (United States)

    Dong, Chunling; Zhao, Yue; Zhang, Qin

    2016-08-01

    Identifying the pivotal causes and highly influential spreaders in fault propagation processes is crucial for improving the maintenance decision making for complex systems under abnormal and emergency situations. A dynamic uncertain causality graph-based method is introduced in this paper to explicitly model the uncertain causalities among system components, identify fault conditions, locate the fault origins, and predict the spreading tendency by means of probabilistic reasoning. A new algorithm is proposed to assess the impacts of an individual event by investigating the corresponding node's time-variant betweenness centrality and the strength of global causal influence in the fault propagation network. The algorithm does not depend on the whole original and static network but on the real-time spreading behaviors and dynamics, which makes the algorithm to be specifically targeted and more efficient. Experiments on both simulated networks and real-world systems demonstrate the accuracy, effectiveness, and comprehensibility of the proposed method for the fault management of power grids and other complex networked systems.

  15. How to be causal

    CERN Document Server

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers Kronig relations. The specification of causality in terms of temporal differential eqations then shows us the way to write down dynamical models so that their causal nature in the sense used here should be obvious to all. In particular, I apply this reasoning to Maxwell's equations, which is an instructive example since their casual properties are sometimes debated.

  16. Volumes of Polytopes Without Triangulations

    CERN Document Server

    Enciso, Michael

    2014-01-01

    We introduce a new formalism for defining and computing the volumes of completely general polytopes in any dimension. The expressions that we obtain for these volumes are independent of any triangulation, and manifestly depend only on the vertices of the underlying polytope. As one application of this formalism, we obtain new expressions for tree-level, n-point NMHV amplitudes in N=4 Super Yang-Mills (SYM) theory.

  17. Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren't

    Science.gov (United States)

    Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A.; Henson, Richard

    2016-01-01

    There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward “prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known “mismatch response.” But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain

  18. Economic growth-electricity consumption causality in 12 European countries. A dynamic panel data approach

    Energy Technology Data Exchange (ETDEWEB)

    Ciarreta, A. [Department of Economic Analysis II, University of the Basque Country (UPV/EHU), Avda, Lehendakari Aguirre, 83, 48015 Bilbao (Spain); Zarraga, A. [Department of Applied Economics III, University of the Basque Country (UPV/EHU), Avda, Lehendakari Aguirre, 83, 48015 Bilbao (Spain)

    2010-07-15

    This paper applies recent panel methodology to investigate the long-run and causal relationship between electricity consumption and real GDP for a set of 12 European countries using annual data for the period 1970-2007. The sample countries have moved faster than other neighboring countries towards the creation of a single electricity market over the past 30 years. Energy prices are also included in the study due to their important role in affecting the above variables, thus avoiding the problem of omitted variable bias. Tests for panel unit roots, cointegration in heterogeneous panels and panel causality are employed in a trivariate VECM estimated by system GMM. The results show evidence of a long-run equilibrium relationship between the three series and a negative short-run and strong causality from electricity consumption to GDP. As expected, there is bidirectional causality between energy prices and GDP and weaker evidence between electricity consumption and energy prices. These results support the policies implemented towards the creation of a common European electricity market. (author)

  19. Economic growth-electricity consumption causality in 12 European countries: A dynamic panel data approach

    Energy Technology Data Exchange (ETDEWEB)

    Ciarreta, A., E-mail: aitor.ciarreta@ehu.e [Department of Economic Analysis II, University of the Basque Country (UPV/EHU), Avda, Lehendakari Aguirre, 83, 48015 Bilbao (Spain); Zarraga, A., E-mail: ainhoa.zarraga@ehu.e [Department of Applied Economics III, University of the Basque Country (UPV/EHU), Avda, Lehendakari Aguirre, 83, 48015 Bilbao (Spain)

    2010-07-15

    This paper applies recent panel methodology to investigate the long-run and causal relationship between electricity consumption and real GDP for a set of 12 European countries using annual data for the period 1970-2007. The sample countries have moved faster than other neighboring countries towards the creation of a single electricity market over the past 30 years. Energy prices are also included in the study due to their important role in affecting the above variables, thus avoiding the problem of omitted variable bias. Tests for panel unit roots, cointegration in heterogeneous panels and panel causality are employed in a trivariate VECM estimated by system GMM. The results show evidence of a long-run equilibrium relationship between the three series and a negative short-run and strong causality from electricity consumption to GDP. As expected, there is bidirectional causality between energy prices and GDP and weaker evidence between electricity consumption and energy prices. These results support the policies implemented towards the creation of a common European electricity market.

  20. The Nonlinear Dynamic Relationship of Exchange Rates: Parametric and Nonparametric Causality testing

    NARCIS (Netherlands)

    Bekiros, S.D.; Diks, C.

    2007-01-01

    The present study investigates the long-term linear and nonlinear causal linkages among six currencies, namely EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD and USD/CAD. The prime motivation for choosing these exchange rates comes from the fact that they are the most liquid and widely traded, covering

  1. A study of causality structure and dynamics in industrial electricity consumption based on Granger network

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Lin, Qing-Wen; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2016-11-01

    Based on industrial electricity consumption, we model industrial networks by Granger causality method and MST (minimum spanning tree), and then further stick onto an industrial coupling mechanism from energy-consumption perspective. First, we construct Granger causality networks of five provinces in South China of GD, GX, GZ, HN and YN based on their industrial electricity consumption data, and we demonstrate from a network-topology perspective: the distribution of weight of links of all industrial electricity-consumption Granger causality networks approximately follows power-law distribution, revealing a phenomenon that few industries may bring a tremendous influence on the rest. Moreover, correlation analysis between weight and degree of a node shows that in most Granger causality networks, both span and strength of influence of a given industry will significantly increase. Further, we analyze the relationship between the thresholds of Granger causality significance and density of corresponding networks. Results show GD and HN could be classified into a group with relatively greater global differentiation in industries and unbalanced industrial development, however, GX, GZ and YN are grouped as second cluster with relatively balanced industrial development. Furthermore, using Chu-Liu-EdmondsMST algorithm, we extract graphs of MSTs or maximal cliques from industrial electricity-consumption Granger causality networks, and research on energy transmission structure, feedback loop, and bootstrap reliability. By analyzing MSTs, we find that only GD, GX and YN can be extracted with MST graphs, and capture the probable transmission routes of key nodes. Besides we illustrate all three MST graphs are involved with feedback loops structures with various characteristics: GX has complete feed-forward section, feed-back section and feedback loop section; YN has only feed-forward section and feedback loop section; GD has multiple feedback loops section. Finally, we conduct

  2. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.

    Science.gov (United States)

    Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.

  3. Spectral dimension in graph models of causal quantum gravity

    CERN Document Server

    Giasemidis, Georgios

    2013-01-01

    The phenomenon of scale dependent spectral dimension has attracted special interest in the quantum gravity community over the last eight years. It was first observed in computer simulations of the causal dynamical triangulation (CDT) approach to quantum gravity and refers to the reduction of the spectral dimension from 4 at classical scales to 2 at short distances. Thereafter several authors confirmed a similar result from different approaches to quantum gravity. Despite the contribution from different approaches, no analytical model was proposed to explain the numerical results as the continuum limit of CDT. In this thesis we introduce graph ensembles as toy models of CDT and show that both the continuum limit and a scale dependent spectral dimension can be defined rigorously. First we focus on a simple graph ensemble, the random comb. It does not have any dynamics from the gravity point of view, but serves as an instructive toy model to introduce the characteristic scale of the graph, study the continuum li...

  4. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Apergis, Nicholas [Department of Banking and Financial Management, University of Piraeus, Karaoli and Dimitriou 80, Piraeus, ATTIKI 18534 (Greece); Payne, James E. [Department of Economics, Illinois State University, Normal, IL 61790-4200 (United States); Menyah, Kojo [London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London, EC2M 6SQ (United Kingdom); Wolde-Rufael, Yemane

    2010-09-15

    This paper examines the causal relationship between CO{sub 2} emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO{sub 2} emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)

  5. Identifying change in the likelihood of violent recidivism: causal dynamic risk factors in the OASys violence predictor.

    Science.gov (United States)

    Howard, Philip D; Dixon, Louise

    2013-06-01

    Recent studies of multiwave risk assessment have investigated the association between changes in risk factors and violent recidivism. This study analyzed a large multiwave data set of English and Welsh offenders (N = 196,493), assessed in realistic correctional conditions using the static/dynamic Offender Assessment System (OASys). It aimed to compare the predictive validity of the OASys Violence Predictor (OVP) under mandated repeated assessment and one-time initial assessment conditions. Scores on 5 of OVP's 7 purportedly dynamic risk factors changed in 6 to 15% of pairs of successive assessments, whereas the other 2 seldom changed. Violent reoffenders had higher initial total and dynamic OVP scores than nonreoffenders, yet nonreoffenders' dynamic scores fell by significantly more between initial and final assessment. OVP scores from the current assessment achieved greater predictive validity than those from the initial assessment. Cox regression models showed that, for total OVP scores and most risk factors, both the initial score and the change in score from initial to current assessment significantly predicted reoffending. These results consistently showed that OVP includes several causal dynamic risk factors for violent recidivism, which can be measured reliably in operational settings. This adds to the evidence base that links changes in risk factors to changes in future reoffending risk and links the use of repeated assessments to incremental improvements in predictive validity. Further research could quantify the costs and benefits of reassessment in correctional practice, study associations between treatment and dynamic risk factors, and separate the effects of improvements and deteriorations in dynamic risk.

  6. Econometric causality

    OpenAIRE

    Heckman, James J.

    2008-01-01

    This paper presents the econometric approach to causal modeling. It is motivated by policy problems. New causal parameters are defined and identified to address specific policy problems. Economists embrace a scientific approach to causality and model the preferences and choices of agents to infer subjective (agent) evaluations as well as objective outcomes. Anticipated and realized subjective and objective outcomes are distinguished. Models for simultaneous causality are developed. The paper ...

  7. Triangulation of Data Analysis Techniques

    Directory of Open Access Journals (Sweden)

    Lauri, M

    2011-10-01

    Full Text Available In psychology, as in other disciplines, the concepts of validity and reliability are considered essential to give an accurate interpretation of results. While in quantitative research the idea is well established, in qualitative research, validity and reliability take on a different dimension. Researchers like Miles and Huberman (1994 and Silverman (2000, 2001, have shown how these issues are addressed in qualitative research. In this paper I am proposing that the same corpus of data, in this case the transcripts of focus group discussions, can be analysed using more than one data analysis technique. I refer to this idea as ‘triangulation of data analysis techniques’ and argue that such triangulation increases the reliability of the results. If the results obtained through a particular data analysis technique, for example thematic analysis, are congruent with the results obtained by analysing the same transcripts using a different technique, for example correspondence analysis, it is reasonable to argue that the analysis and interpretation of the data is valid.

  8. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.

    Science.gov (United States)

    Bönstrup, Marlene; Schulz, Robert; Feldheim, Jan; Hummel, Friedhelm C; Gerloff, Christian

    2016-01-01

    Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM-IR) and on fMRI would reveal congruent task-dependent network dynamics. Brain electrical (63-channel surface EEG) and Blood Oxygenation Level Dependent (BOLD) signals were recorded in separate sessions from 14 healthy participants performing simple isometric right and left hand grips. DCM-IR and DCM-fMRI were used to estimate coupling parameters modulated by right and left hand grips within a core motor network of six regions comprising bilateral primary motor cortex (M1), ventral premotor cortex (PMv) and supplementary motor area (SMA). We found that DCM-fMRI and DCM-IR similarly revealed significant grip-related increases in facilitatory coupling between SMA and M1 contralateral to the active hand. A grip-dependent interhemispheric reciprocal inhibition between M1 bilaterally was only revealed by DCM-fMRI but not by DCM-IR. Frequency-resolved coupling analysis showed that the information flow from contralateral SMA to M1 was predominantly a linear alpha-to-alpha (9-13Hz) interaction. We also detected some cross-frequency coupling from SMA to contralateral M1, i.e., between lower beta (14-21Hz) at the SMA and higher beta (22-30Hz) at M1 during right hand grip and between alpha (9-13Hz) at SMA and lower beta (14-21Hz) at M1

  9. DYNAMICS OF MUTUAL FUNDS IN RELATION TO STOCK MARKET: A VECTOR AUTOREGRESSIVE CAUSALITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Md. Shahadath Hossain

    2013-01-01

    Full Text Available In Bangladesh, primary and secondary mutual fund markets behave in a completely different way, where initial public offering (IPO investors of mutual funds earn more than 250 percent rerun, whereas secondary market investors cannot even manage to cover the opportunity cost of their investment. There are few other abnormalities present in this market – unlike everywhere in the world, most of the mutual funds are closed-end (92 percent and closed-end mutual funds are barred to issue bonus or right shares. A total of 714 day’s observations, from January 2008 to December 2010, of four variables– DSE (Dhaka Stock Exchange general index return, DSE general index turnover, mutual funds’ return and mutual funds’ turnover– are utilized. Stationarity of the variables are tested with Augmented Dickey-Fuller (ADF unit root test and found that variables are in different order of integration. Long-term equilibrium relationships among the variables are tested with Johansen cointegration and it is found that DSE general index return and mutual funds’ return are cointegrated. Toda-Yamamoto (TY version of granger non-causality test is employed and bidirectional causality is found moving from DSE (Dhaka Stock Exchange general index turnover to DSE general index return, whereas unidirectional causality is found moving from mutual fund’s return to DSE general index return, mutual funds’ return to mutual funds turnover, and DSE general index turnover to mutual funds turnover. This finding helps to conclude that equity shares’ demand drives the mutual funds demand but even higher demand of mutual funds fails to raise its own price unless underlying value of the mutual funds changes.

  10. Causality and contagion in peripheral EMU public debt markets: a dynamic approach

    OpenAIRE

    Gomez-Puig, Marta; Sosvilla Rivero, Simón Javier

    2016-01-01

    Nuestra investigación tiene como objetivo analizar las relaciones causales en el comportamiento de la deuda pública emitida por países miembros periféricos de la Unión Económica y Monetaria (UEM), con especial énfasis en los recientes episodios de crisis desatados en los mercados de deuda soberana de la zona euro desde 2009. Con este objetivo, empleamos una base de datos de la frecuencia diaria de los rendimientos de los bonos gubernamentales a 10 años emitidos por cinco países de la UEM (Gre...

  11. GENERATE TRIANGULATED SURFACES FROM MASSIVE UNORGANIZED POINTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A region-growing method for reconstructing triangulated surfaces from massive unorganized points is presented. To save memory space, a ring data-structure is adopted to build connections between points and triangulated surfaces. The data-structure allows the efficient retrieval of all neighboring vertices and triangles of a given vertice. To narrow the search range of adjacent points and avoid triangle intersection, an influence area is defined for each active-edge. In the region-growing process of triangulated surfaces, a minimum-edge-angle-product algorithm is put forward to select an appropriate point to form a new triangle for an active edge. Results indicate that the presented method has high efficiency and needs less memory space, optimized triangulated surfaces with reliable topological quality can be obtained after triangulation.

  12. On deformations of triangulated models

    CERN Document Server

    De Deken, Olivier

    2012-01-01

    This paper is the first part of a project aimed at understanding deformations of triangulated categories, and more precisely their dg and A infinity models, and applying the resulting theory to the models occurring in the Homological Mirror Symmetry setup. In this first paper, we focus on models of derived and related categories, based upon the classical construction of twisted objects over a dg or $A_{\\infty}$-algebra. For a Hochschild 2 cocycle on such a model, we describe a corresponding "curvature compensating" deformation which can be entirely understood within the framework of twisted objects. We unravel the construction in the specific cases of derived A infinity and abelian categories, homotopy categories, and categories of graded free qdg-modules. We identify a purity condition on our models which ensures that the structure of the model is preserved under deformation. This condition is typically fulfilled for homotopy categories, but not for unbounded derived categories.

  13. K-causality coincides with stable causality

    OpenAIRE

    Minguzzi, E

    2008-01-01

    It is proven that K-causality coincides with stable causality, and that in a K-causal spacetime the relation K^+ coincides with the Seifert's relation. As a consequence the causal relation "the spacetime is strongly causal and the closure of the causal relation is transitive" stays between stable causality and causal continuity.

  14. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Di, Xin; Biswal, Bharat B

    2014-02-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.

  15. Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections

    Science.gov (United States)

    Ushakov, Vadim; Sharaev, Maksim G.; Kartashov, Sergey I.; Zavyalova, Viktoria V.; Verkhlyutov, Vitaliy M.; Velichkovsky, Boris M.

    2016-01-01

    The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective

  16. Dynamic causal modeling of hippocampal links within the human default mode network: Lateralization and computational stability of effective connections

    Directory of Open Access Journals (Sweden)

    Vadim Leonidovich Ushakov

    2016-10-01

    Full Text Available The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively within the default mode network (DMN as represented by its key structures: the medial prefrontal cortex (MPFC, posterior cingulate cortex (PCC and the inferior parietal cortex of left (LIPC and right (RIPC hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM. Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of

  17. Causal Nature and Dynamics of Trapping Horizons in Black Hole Collapse and Cosmology

    CERN Document Server

    Helou, Alexis; Miller, John C

    2016-01-01

    In calculations of gravitational collapse to form black holes, trapping horizons (foliated by marginally trapped surfaces) make their first appearance either within the collapsing matter or where it joins on to a vacuum exterior. Those which then move outwards with respect to the matter have been proposed for use in defining black holes, replacing the global concept of an "event horizon" which has some serious drawbacks for practical applications. We focus here on studying the properties of trapping horizons within spherical symmetry (which gives some simplifications while retaining the most essential general features). Their locations are then given by exactly the same condition ($R=2M$) as for the event horizon in the vacuum Schwarzschild metric, and the same condition also applies for cosmological trapping horizons. We have investigated the causal nature of these horizons (i.e. whether they are spacelike, timelike or null), making contact with the Misner-Sharp formalism, which has often been used for numer...

  18. Causal universe

    CERN Document Server

    Ellis, George FR; Pabjan, Tadeusz

    2013-01-01

    Written by philosophers, cosmologists, and physicists, this collection of essays deals with causality, which is a core issue for both science and philosophy. Readers will learn about different types of causality in complex systems and about new perspectives on this issue based on physical and cosmological considerations. In addition, the book includes essays pertaining to the problem of causality in ancient Greek philosophy, and to the problem of God's relation to the causal structures of nature viewed in the light of contemporary physics and cosmology.

  19. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    Science.gov (United States)

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  20. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  1. Constrained Delaunay Triangulation for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    D. Satyanarayana

    2008-01-01

    Full Text Available Geometric spanners can be used for efficient routing in wireless ad hoc networks. Computation of existing spanners for ad hoc networks primarily focused on geometric properties without considering network requirements. In this paper, we propose a new spanner called constrained Delaunay triangulation (CDT which considers both geometric properties and network requirements. The CDT is formed by introducing a small set of constraint edges into local Delaunay triangulation (LDel to reduce the number of hops between nodes in the network graph. We have simulated the CDT using network simulator (ns-2.28 and compared with Gabriel graph (GG, relative neighborhood graph (RNG, local Delaunay triangulation (LDel, and planarized local Delaunay triangulation (PLDel. The simulation results show that the minimum number of hops from source to destination is less than other spanners. We also observed the decrease in delay, jitter, and improvement in throughput.

  2. Reconstructing surface triangulations by their intersection matrices

    OpenAIRE

    2014-01-01

    The intersection matrix of a finite simplicial complex has as each of its entries the rank of the intersection of its respective simplices. We prove that such matrix defines the triangulation of a closed connected surface up to isomorphism.

  3. Formal study of plane Delaunay triangulation

    CERN Document Server

    Dufourd, Jean-François

    2010-01-01

    This article presents the formal proof of correctness for a plane Delaunay triangulation algorithm. It consists in repeating a sequence of edge flippings from an initial triangulation until the Delaunay property is achieved. To describe triangulations, we rely on a combinatorial hypermap specification framework we have been developing for years. We embed hypermaps in the plane by attaching coordinates to elements in a consistent way. We then describe what are legal and illegal Delaunay edges and a flipping operation which we show preserves hypermap, triangulation, and embedding invariants. To prove the termination of the algorithm, we use a generic approach expressing that any non-cyclic relation is well-founded when working on a finite set.

  4. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    Science.gov (United States)

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  5. TRIANGULATION OF METHODS OF CAREER EDUCATION

    OpenAIRE

    Marija Turnsek Mikacic

    2015-01-01

    This paper is an overview of the current research in the field of career education and career planning. Presented results constitute a model based on the insight into different theories and empirical studies about career planning as a building block of personal excellence. We defined credibility, transferability and reliability of the research by means of triangulation. As sources of data of triangulation we included essays of participants of education and questionnaires. Qualitative analysi...

  6. Aspects of dynamical dimensional reduction in multigraph ensembles of CDT

    CERN Document Server

    Giasemidis, Georgios; Zohren, Stefan

    2012-01-01

    We study the continuum limit of a "radially reduced" approximation of Causal Dynamical Triangulations (CDT), so-called multigraph ensembles, and explain why they serve as realistic toy models to study the dimensional reduction observed in numerical simulations of four-dimensional CDT. We present properties of this approximation in two, three and four dimensions comparing them with the numerical simulations and pointing out some common features with 2+1 dimensional Horava-Lifshitz gravity.

  7. On the causality aspects of the dynamical Chern-Simons modified gravity

    CERN Document Server

    Porfirio, P J; Nascimento, J R; Petrov, A Yu

    2016-01-01

    We verify the consistency of the G\\"odel-type solutions within the dynamical Chern-Simons modified gravity in four dimensions, for different forms of matter including dust, fluid, scalar and electromagnetic fields and their combinations, and discuss the possibility of arising the closed timelike curves.

  8. Causality analysis of groundwater dynamics based on a Vector Autoregressive model in the semi-arid basin of Gundal (South India)

    Science.gov (United States)

    Mangiarotti, S.; Sekhar, M.; Berthon, L.; Javeed, Y.; Mazzega, P.

    2012-08-01

    Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India.

  9. Circular causality.

    Science.gov (United States)

    Thomas, R

    2006-07-01

    The problem of disentangling complex dynamic systems is addressed, especially with a view to identifying those variables that take part in the essential qualitative behaviour of systems. The author presents a series of reflections about the methods of formalisation together with the principles that govern the global operation of systems. In particular, a section on circuits, nuclei, and circular causality and a rather detailed description of the analytic use of the generalised asynchronous logical description, together with a brief description of its synthetic use (OreverseO logic). Some basic rules are recalled, such as the fact that a positive circuit is a necessary condition of multistationarity. Also, the interest of considering as a model, rather than a well-defined set of differential equations, a variety of systems that differ from each other only by the values of constant terms is emphasised. All these systems have a common Jacobian matrix and for all of them phase space has exactly the same structure. It means that all can be partitioned in the same way as regards the signs of the eigenvalues and thus as regards the precise nature of any steady states that might be present. Which steady states are actually present, depends on the values of terms of order zero in the ordinary differential equations (ODEs), and it is easy to find for which values of these terms a given point in phase space is steady. Models can be synthesised first at the level of the circuits involved in the Jacobian matrix (that determines which types and numbers of steady states are consistent with the model), then only at the level of terms of order zero in the ODE's (that determines which of the steady states actually exist), hence the title 'Circular casuality'.

  10. Triangulating the Square and Squaring the Triangle: Quadtrees and Delaunay Triangulations are Equivalent

    CERN Document Server

    Löffler, Maarten

    2012-01-01

    We show that Delaunay triangulations and compressed quadtrees are equivalent structures. More precisely, we give two algorithms: the first computes a compressed quadtree for a planar point set, given the Delaunay triangulation; the second finds the Delaunay triangulation, given a compressed quadtree. Both algorithms run in deterministic linear time on a pointer machine. Our work builds on and extends previous results by Krznaric and Levcopolous and Buchin and Mulzer. Our main tool for the second algorithm is the well-separated pair decomposition(WSPD), a structure that has been used previously to find Euclidean minimum spanning trees in higher dimensions (Eppstein). We show that knowing the WSPD (and a quadtree) suffices to compute a planar Euclidean minimum spanning tree (EMST) in linear time. With the EMST at hand, we can find the Delaunay triangulation in linear time. As a corollary, we obtain deterministic versions of many previous algorithms related to Delaunay triangulations, such as splitting planar De...

  11. The Use of Causal Mapping in the Design of Sustainability Performance Measurement Systems

    DEFF Research Database (Denmark)

    Parisi, Cristiana

    2013-01-01

    organisations’ strategic performance measurement systems (SPMSs). This study’s main contribution is the triangulation of multiple qualitative methods to enhance the reliability of causal maps. This innovative approach supports the use of causal mapping to extract managerial tacit knowledge in order to identify...

  12. Neural networks for action representation underlying automatic mimicry: A functional magnetic-resonance imaging and dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Akihiro T Sasaki

    2012-08-01

    Full Text Available Automatic mimicry is based on the tight linkage between motor and perception action representations in which internal models play a key role. Based on the anatomical connection, we hypothesized that the direct effective connectivity from the posterior superior temporal sulcus (pSTS to the ventral premotor area (PMv formed an inverse internal model, converting visual representation into a motor plan, and that reverse connectivity formed a forward internal model, converting the motor plan into a sensory outcome of action. To test this hypothesis, we employed dynamic causal-modeling analysis with functional magnetic-resonance imaging. Twenty-four normal participants underwent a change-detection task involving two visually-presented balls that were either manually rotated by the investigator’s right hand (‘Hand’ or automatically rotated. The effective connectivity from the pSTS to the PMv was enhanced by hand observation and suppressed by execution, corresponding to the inverse model. Opposite effects were observed from the PMv to the pSTS, suggesting the forward model. Additionally, both execution and hand observation commonly enhanced the effective connectivity from the pSTS to the inferior parietal lobule (IPL, the IPL to the primary sensorimotor cortex (S/M1, the PMv to the IPL, and the PMv to the S/M1. Representation of the hand action therefore was implemented in the motor system including the S/M1. During hand observation, effective connectivity toward the pSTS was suppressed whereas that toward the PMv and S/M1 was enhanced. Thus the action-representation network acted as a dynamic feedback-control system during action observation.

  13. Epidemiological causality.

    Science.gov (United States)

    Morabia, Alfredo

    2005-01-01

    Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.

  14. Fast topological construction of delaunay triangulations and voronoi diagrams

    Science.gov (United States)

    Tsai, Victor J. D.

    1993-11-01

    This paper describes a Convex Hull Insertion algorithm for constructing the Delaunay triangulation and the Voronoi diagram of randomly distributed points in the Euclidean plane. The implemented program on IBM-compatible personal computers takes benefits from the partitioning of data points, topological data structures of spatial primitives, and features in C++ programming language such as dynamic memory allocation and class objects. The program can handle arbitrary collections of points, and delivers several output options to link with GIS and CAD systems. Empirical results of various sets of up to 50,000 points show that the proposed algorithm speeds up the construction of both tessellations of irregular points in expected linear time.

  15. IMPROVED DELAUNAY TRIANGULATION FOR TRIMMED NURBS SURFACE

    Institute of Scientific and Technical Information of China (English)

    SUNKe-hao

    2004-01-01

    An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.

  16. Causality Principle

    OpenAIRE

    Chi, Do Minh

    2001-01-01

    We advance a famous principle - causality principle - but under a new view. This principle is a principium automatically leading to most fundamental laws of the nature. It is the inner origin of variation, rules evolutionary processes of things, and the answer of the quest for ultimate theories of the Universe.

  17. COUNTING FAIR NEAR-TRIANGULATIONS ON THE DISC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper various kinds of fair near-triangulations are enumerated and several other types of near-triangulations are counted with the root-face valency,the number of edges and faces as the parameters.

  18. Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG.

    Science.gov (United States)

    Adams, Rick A; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J

    2016-05-15

    This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision - inferred by our behavioural DCM - correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia.

  19. Altitude, Orthocenter of a Triangle and Triangulation

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-03-01

    Full Text Available We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides. Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

  20. Tradeoffs in Design Research: Development Oriented Triangulation

    NARCIS (Netherlands)

    Turnhout, Koen van; Craenmehr, Sabine; Holwerda, Robert; Menijn, Mark; Zwart, Jan-Pieter; Bakker, René

    2013-01-01

    The Development Oriented Triangulation (DOT) framework in this paper can spark and focus the debate about mixed-method approaches in HCI. The framework can be used to classify HCI methods, create mixed-method designs, and to align research activities in multidisciplinary projects. The framework is g

  1. A Sweepline Algorithm for Generalized Delaunay Triangulations

    DEFF Research Database (Denmark)

    Skyum, Sven

    We give a deterministic O(n log n) sweepline algorithm to construct the generalized Voronoi diagram for n points in the plane or rather its dual the generalized Delaunay triangulation. The algorithm uses no transformations and it is developed solely from the sweepline paradigm together...

  2. Spectral Properties of Unimodular Lattice Triangulations

    Science.gov (United States)

    Krüger, Benedikt; Schmidt, Ella M.; Mecke, Klaus

    2016-05-01

    Random unimodular lattice triangulations have been recently used as an embedded random graph model, which exhibit a crossover behavior between an ordered, large-world and a disordered, small-world behavior. Using the ergodic Pachner flips that transform such triangulations into another and an energy functional that corresponds to the degree distribution variance, Markov chain Monte Carlo simulations can be applied to study these graphs. Here, we consider the spectra of the adjacency and the Laplacian matrix as well as the algebraic connectivity and the spectral radius. Power law dependencies on the system size can clearly be identified and compared to analytical solutions for periodic ground states. For random triangulations we find a qualitative agreement of the spectral properties with well-known random graph models. In the microcanonical ensemble analytical approximations agree with numerical simulations. In the canonical ensemble a crossover behavior can be found for the algebraic connectivity and the spectral radius, thus combining large-world and small-world behavior in one model. The considered spectral properties can be applied to transport problems on triangulation graphs and the crossover behavior allows a tuning of important transport quantities.

  3. Advancing-Front Algorithm For Delaunay Triangulation

    Science.gov (United States)

    Merriam, Marshal L.

    1993-01-01

    Efficient algorithm performs Delaunay triangulation to generate unstructured grids for use in computing two-dimensional flows. Once grid generated, one can optionally call upon additional subalgorithm that removes diagonal lines from quadrilateral cells nearly rectangular. Resulting approximately rectangular grid reduces cost per iteration of flow-computing algorithm.

  4. Methodological triangulation in work life research

    DEFF Research Database (Denmark)

    Warring, Niels

    Based on examples from two research projects on preschool teachers' work, the paper will discuss potentials and challenges in methodological triangulation in work life research. Analysis of ethnographic and phenomenological inspired observations of everyday life in day care centers formed the basis...

  5. Determining Stochasticity and Causality of Vegetation Dynamics in the Southwestern Amazon: Non-linear Time Series Analysis and Dynamic Factor Analysis of EVI2 Data

    Science.gov (United States)

    Klarenberg, G.

    2015-12-01

    Infrastructure projects such as road paving have proven to bring a variety of (mainly) socio-economic advantages to countries and populations. However, many studies have also highlighted the negative socio-economic and biophysical effects that these developments have at local, regional and even larger scales. The "MAP" area (Madre de Dios in Peru, Acre in Brazil, and Pando in Bolivia) is a biodiversity hotspot in the southwestern Amazon where sections of South America's Inter-Oceanic Highway were paved between 2006 and 2010. We are interested in vegetation dynamics in the area since it plays an important role in ecosystem functions and ecosystem services in socio-ecological systems: it provides information on productivity and structure of the forest. In preparation of more complex and mechanistic simulation of vegetation, non-linear time series analysis and Dynamic Factor Analysis (DFA) was conducted on Enhanced Vegetation Index (EVI) time series - which is a remote sensing product and provides information on vegetation dynamics as it detects chlorophyll (productivity) and structural change. Time series of 30 years for EVI2 (from MODIS and AVHRR) were obtained for 100 communities in the area. Through specific time series cluster analysis of the vegetation data, communities were clustered to facilitate data analysis and pattern recognition. The clustering is spatially consistent, and appears to be driven by median road paving progress - which is different for each cluster. Non-linear time series analysis (multivariate singular spectrum analysis, MSSA) separates common signals (or low-dimensional attractors) across clusters. Despite the presence of this deterministic structure though, time series behavior is mostly stochastic. Granger causality analysis between EVI2 and possible response variables indicates which variables (and with what lags) are to be included in DFA, resulting in unique Dynamic Factor Models for each cluster.

  6. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models.

    Science.gov (United States)

    Smith, Jason F; Chen, Kewei; Pillai, Ajay S; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define "effective connectivity" using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons.

  7. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    Directory of Open Access Journals (Sweden)

    Jason Fitzgerald Smith

    2013-05-01

    Full Text Available The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here we explicitly define effective connectivity using a common set of observation and state equations that are appropriate for three connectivity methods: Dynamic Causal Modeling (DCM, Multivariate Autoregressive Modeling (MAR, and Switching Linear Dynamic Systems for fMRI (sLDSf. In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons.

  8. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    Science.gov (United States)

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  9. Causality discovery technology

    Science.gov (United States)

    Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.

    2012-11-01

    Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

  10. Triangulation using synthetic aperture radar images

    Science.gov (United States)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.

    1991-01-01

    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.

  11. Pre-Processing Rules for Triangulation of Probabilistic Networks

    NARCIS (Netherlands)

    Bodlaender, H.L.; Koster, A.M.C.A.; Eijkhof, F. van den

    2003-01-01

    The currently most efficient algorithm for inference with a probabilistic network builds upon a triangulation of a network’s graph. In this paper, we show that pre-processing can help in finding good triangulations for probabilistic networks, that is, triangulations with a minimal maximum clique siz

  12. Pre-processing for Triangulation of Probabilistic Networks

    NARCIS (Netherlands)

    Bodlaender, H.L.; Koster, A.M.C.A.; Eijkhof, F. van den; Gaag, L.C. van der

    2001-01-01

    The currently most efficient algorithm for inference with a probabilistic network builds upon a triangulation of a networks graph. In this paper, we show that pre-processing can help in finding good triangulations for probabilistic networks, that is, triangulations with a minimal maximum clique

  13. On the dynamics of aggregate output, electricity consumption and exports in Malaysia: Evidence from multivariate Granger causality tests

    Energy Technology Data Exchange (ETDEWEB)

    Lean, Hooi Hooi [Economics Program, School of Social Sciences, Universiti Sains Malaysia (Malaysia); Smyth, Russell [Department of Economics, Monash University, Clayton 3800 (Australia)

    2010-06-15

    This paper employs annual data from 1971 to 2006 to examine the causal relationship between aggregate output, electricity consumption, exports, labor and capital in a multivariate model for Malaysia. We find that there is bidirectional Granger causality running between aggregate output and electricity consumption. The policy implication of this result is that Malaysia should adopt the dual strategy of increasing investment in electricity infrastructure and stepping up electricity conservation policies to reduce unnecessary wastage of electricity, in order to avoid the negative effect of reducing electricity consumption on aggregate output. We also find support for the export-led hypothesis which states Granger causality runs from exports to aggregate output. This result is consistent with Malaysia pursuing a successful export-orientated strategy. (author)

  14. A causal interpretation of Piaget's theory of cognitive development: reflections on the relationship between epigenesis and nonlinear dynamics.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Raijmakers, M.E.J.

    2000-01-01

    It is shown that the Piagetian model of stagewise cognitive development can be assigned a powerful causal interpretation in terms of self-organizing epigenetic processes. A detailed heuristic explanation is given of self-organizing epigenetics. In addition, the relationships between self-organizing

  15. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2016-06-01

    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  16. On causality of extreme events

    Science.gov (United States)

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866

  17. Coefficient adaptive triangulation for strongly anisotropic problems

    Energy Technology Data Exchange (ETDEWEB)

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  18. Data Reduction and Triangulation Approach to Scattered Points

    Institute of Scientific and Technical Information of China (English)

    JIANG Dan; WANG Lan-cheng

    2004-01-01

    For the generation of the model in reverse engineering, a laser scanner is currently used a lot due to the fast measuring speed and high precision. Direct triangulation of data points captured from a physical object has a great advantage in that it can reduce the time and error in modeling process. It is important to reduce the number of data points for triangulating points with maintaining precision. To triangulate data points within a tolerance ε a new approach is developed in this paper. Different level of triangulations can be generated directly from data points using the proposed strategy that reduces and triangulates data points based on triangulation of 3D parametric surfaces. An experimental example is presented to demonstrate the effectiveness and efficiency of the proposed algorithm.

  19. Metodologisk triangulering i arbejdslivsforskning – potentialer og udfordringer

    DEFF Research Database (Denmark)

    Warring, Niels

    2015-01-01

    Metodologisk triangulering i arbejdslivsforskning – potentialer og udfordringer Med inddragelse af eksempler fra to forskningsprojekter om pædagogers arbejdsliv, vil der blive argumenteret for det frugtbare i metodologisk triangulering, når der forskes i moderne arbejdsliv – og ikke mindst, når...... ambitionen er at bidrage til at åbne for kritiske perspektiver og mulige forandringspotentialer. I de to projekter var etnografisk og fænomenologisk inspirerede observationer af hverdagen i daginstitutionerne første skridt i den metodologiske triangulering. Tolkning og analyse af scener fra hverdagen dannede...... udviklede sig i dialog med deltagernes såvel praktiske hverdagsviden som teoretisk baserede pædagogisk-faglige viden. Metodologisk triangulering er af Denzin (opr. 1970) foreslået som en blandt flere former for triangulering. Øvrige former er teoretisk triangulering (hvor flere teorier benyttes til at tolke...

  20. Duals of Orphan-Free Anisotropic Voronoi Diagrams are Triangulations

    CERN Document Server

    Canas, Guillermo D

    2011-01-01

    We show that, under mild conditions on the underlying metric, duals of appropriately defined anisotropic Voronoi diagrams are embedded triangulations. Furthermore, they always triangulate the convex hull of the vertices, and have other properties that parallel those of ordinary Delaunay triangulations. These results apply to the duals of anisotropic Voronoi diagrams of any set of vertices, so long as the diagram is orphan-free.

  1. Strategies for nonobtuse boundary Delaunay triangulations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science]|[Los Alamos National Lab., NM (United States); Gable, C.W. [Los Alamos National Lab., NM (United States). Earth and Environmental Science Div.

    1998-12-31

    Delaunay Triangulations with nonobtuse triangles at the boundaries satisfy a minimal requirement for Control Volume meshes. They motivate this quality requirement, discuss it in context with others that have been proposed, and give point placement strategies that generate the fewest or close to the fewest number of Steiner points needed to satisfy it for a particular problem instance. The advantage is that this strategy places a number of Steiner points proportional to the combinatorial size of the input rather than the local feature size, resulting in far fewer points in many cases.

  2. Wilson Fermions on a Randomly Triangulated Manifold

    CERN Document Server

    Burda, Z; Krzywicki, A

    1999-01-01

    A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual graph. The construction is carried out explicitly in 2-d, on an arbitrary orientable manifold without boundary. It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising spins in 2-d is rederived. The method can, in principle, be extended to higher dimensions.

  3. Diffractive triangulation of radiative point sources

    CERN Document Server

    Vespucci, Stefano; Maneuski, Dzmitry; O'Shea, Val; Winkelmann, Aimo

    2016-01-01

    We describe a general method to determine the location of a point source of waves relative to a two-dimensional active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. As a practical application of the wide-ranging principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This provides a method to calibrate Kikuchi diffraction patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions.

  4. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis

    Directory of Open Access Journals (Sweden)

    Mulugeta eSemework

    2014-09-01

    Full Text Available Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step towards the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP research, which uses microstimulation (MiSt to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL and somatosensory cortex (S1 in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both

  5. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis.

    Science.gov (United States)

    Semework, Mulugeta; DiStasio, Marcello

    2014-01-01

    Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain

  6. Computational Hardness of Enumerating Satisfying Spin-Assignments in Triangulations

    CERN Document Server

    Jiménez, Andrea

    2011-01-01

    Satisfying spin-assignments in triangulations of a surface are states of minimum energy of the antiferromagnetic Ising model on triangulations which correspond (via geometric duality) to perfect matchings in cubic bridgeless graphs. In this work we show that it is NP-complete to decide whether or not a surface triangulation admits a satisfying spin-assignment, and that it is #P-complete to determine the number of such assignments. Both results are derived via an elaborate (and atypical) reduction that maps a Boolean formula in 3-conjunctive normal form into a triangulation of an orientable closed surface.

  7. On the causal dynamics between renewable and non-renewable energy consumption and economic growth in developed and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Apergis, Nicholas [University of Piraeus, Department of Banking and Financial Management, Piraeus, Attiki (Greece); Payne, James E. [University of South Florida Polytechnic, Lakeland, FL (United States)

    2011-11-15

    This study extends recent work on the relationship between renewable and non-renewable energy consumption and economic growth to the case of developed and developing countries over the period 1990-2007. Heterogeneous panel cointegration procedures show a long-run equilibrium relationship between real GDP, renewable energy consumption, non-renewable energy consumption, real gross fixed capital formation, and the labor force with the respective coefficient estimates positive and statistically significant for developed and developing country panels. The results from the panel error correction models reveal bidirectional causality between renewable and non-renewable energy consumption and economic growth in the short- and long-run for each country panel. (orig.)

  8. Causal Effect Estimation Methods

    OpenAIRE

    2014-01-01

    Relationship between two popular modeling frameworks of causal inference from observational data, namely, causal graphical model and potential outcome causal model is discussed. How some popular causal effect estimators found in applications of the potential outcome causal model, such as inverse probability of treatment weighted estimator and doubly robust estimator can be obtained by using the causal graphical model is shown. We confine to the simple case of binary outcome and treatment vari...

  9. On causality of extreme events

    CERN Document Server

    Zanin, Massimiliano

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect both linear and non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task.

  10. TRIANGULATION OF METHODS OF CAREER EDUCATION

    Directory of Open Access Journals (Sweden)

    Marija Turnsek Mikacic

    2015-09-01

    Full Text Available This paper is an overview of the current research in the field of career education and career planning. Presented results constitute a model based on the insight into different theories and empirical studies about career planning as a building block of personal excellence. We defined credibility, transferability and reliability of the research by means of triangulation. As sources of data of triangulation we included essays of participants of education and questionnaires. Qualitative analysis represented the framework for the construction of the paradigmatic model and the formulation of the final theory. We formulated a questionnaire on the basis of our own experiences in the area of the education of individuals. The quantitative analysis, based on the results of the interviews, confirms the following three hypotheses: The individuals who elaborated a personal career plan and acted accordingly, changed their attitudes towards their careers and took control over their lives; in addition, they achieved a high level of self-esteem and self-confidence, in tandem with the perception of personal excellence, in contrast to the individuals who did not participate in career education and did not elaborate a career plan. We used the tools of NLP (neurolinguistic programming as an additional technique at learning.

  11. Surface roughness measurement with laser triangulation

    Science.gov (United States)

    Bai, Fuzhong; Zhang, Xiaoyan; Tian, Chaoping

    2016-09-01

    A surface roughness measurement method is introduced in the paper, which is based on laser triangulation and digital image processing technique. In the measuring system, we use the line-structured light as light source, microscope lens and high-accuracy CCD sensor as displacement sensor as well. In addition, the working angle corresponding to the optimal sensitivity is considered in the optical structure design to improve the measuring accuracy. Through necessary image processing operation for the light strip image, such as center-line extraction with the barycenter algorithm, Gaussian filtering, the value of roughness is calculated. A standard planing surface is measured experimentally with the proposed method and the stylus method (Mitutoyo SJ-410) respectively. The profilograms of surface appearance are greatly similar in the shape and the amplitude to two methods. Also, the roughness statistics values are close. The results indicate that the laser triangulation with the line-structured light can be applied to measure the surface roughness with the advantages of rapid measurement and visualized display of surface roughness profile.

  12. Causally nonseparable processes admitting a causal model

    Science.gov (United States)

    Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-08-01

    A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities) while others do not (they admit a ‘causal model’ analogous to a local model). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties.

  13. Graph Triangulations and the Compatibility of Unrooted Phylogenetic Trees

    CERN Document Server

    Vakati, Sudheer

    2010-01-01

    We characterize the compatibility of a collection of unrooted phylogenetic trees as a question of determining whether a graph derived from these trees --- the display graph --- has a specific kind of triangulation, which we call legal. Our result is a counterpart to the well known triangulation-based characterization of the compatibility of undirected multi-state characters.

  14. I/O-Efficient Construction of Constrained Delaunay Triangulations

    DEFF Research Database (Denmark)

    Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke

    2005-01-01

    In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where M...

  15. Triangulation, Respondent Validation, and Democratic Participation in Mixed Methods Research

    Science.gov (United States)

    Torrance, Harry

    2012-01-01

    Over the past 10 years or so the "Field" of "Mixed Methods Research" (MMR) has increasingly been exerting itself as something separate, novel, and significant, with some advocates claiming paradigmatic status. Triangulation is an important component of mixed methods designs. Triangulation has its origins in attempts to validate research findings…

  16. A TQFT of Turaev-Viro type on shaped triangulations

    CERN Document Server

    Kashaev, Rinat; Vartanov, Grigory

    2012-01-01

    A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techm\\"uller TQFT defined by Andersen and Kashaev. This is similar to the known relations...

  17. New deghosting method based on generalized triangulation

    Institute of Scientific and Technical Information of China (English)

    Bai Jing; Wang Guohong; Xiu Jianjuan; Wang Xiaobo

    2009-01-01

    A new deghosting method baaed on the generalized triangulation is presented. First, two intersection points corresponding to the emitter position are obtained by utilizing two azimuth angles and two elevation angles from two jammed 3-D radars (or 2-D passive sensors). Then, hypothesis testing baaed deghosting method in the multiple target scenarios is proposed using the two intersection points. In order to analyze the performance of the proposed method, the correct association probability of the true targets and the incorrect association probability of the ghost targets are defined. Finally, the Monte Carlo simulations are given for the proposed method compared with the hinge angle method in the cases of both two and three radars. The simulation results show that the proposed method has better performance than the hinge angle method in three radars case.

  18. Measuring and Controlling Fairness of Triangulations

    KAUST Repository

    Jiang, Caigui

    2016-09-30

    The fairness of meshes that represent geometric shapes is a topic that has been studied extensively and thoroughly. However, the focus in such considerations often is not on the mesh itself, but rather on the smooth surface approximated by it, and fairness essentially expresses a mesh’s suitability for purposes such as visualization or simulation. This paper focusses on meshes in the architectural context, where vertices, edges, and faces of meshes are often highly visible, and any notion of fairness must take new aspects into account. We use concepts from discrete differential geometry (star-shaped Gauss images) to express fairness, and we also demonstrate how fairness can be incorporated into interactive geometric design of triangulated freeform skins.

  19. Employee-satisfaction: A triangulation approach

    Directory of Open Access Journals (Sweden)

    P. J. Visser

    1997-06-01

    Full Text Available The research on employee-satisfaction was conducted in the manufacturing industry. The sample consisted of 543 employees. The methodology could be described as a "triangulation approach" where a combination of quantitative and qualitative measurements were utilised and the results of both types of measurement integrated in the study of the construct. The research confirms existing findings that although the measurement of dimensions such as equitable rewards, working conditions, supportive colleagues, job content, etc. yield results on the level of employee-satisfaction, a single question, namely, "How satisfied are you with your job?" compares favourably with the general index. The findings also suggest the advantage of complimenting the quantitative data with qualitative information. The conclusions confirm the value of a qualitative method in cross-cultural research in an African environment. Opsomming Die navorsing omtrent werknemerstevredenheid is uitgevoer in die vervaardigingsbedryf. Die steekproef het bestaan uit 543 werknemers. Die metode van ondersoek kan beskryf word as 'n "driekantige benadering" (triangulation approach waar daar van kwantitatiewe en kwalitatiewe meting gebruik gemaak is en die resultate geihtegreer is in die bestudering van die konstruk. Die navorsing bevestig bestaande bevindinge dat die meting van dimensies soos vergelykbare belonings, werkstoestande, ondersteunende kollegas, inhoud van werk, ens. resultate lewer rakende die vlak van werknemerstevredenheid, 'n enkel vraag, naamlik, "Hoe tevrede is jy met jou werk?" gunstig vergelyk met die algemene indeks. Die bevindinge dui ook op die voordele van 'n benadering waar die kwantitatiewe data gekomplimenteer word deur kwalitatiewe inligting soos verkry uit individuele onderhoude. Die gevolgtrekkings bevestig die waarde wat die kwalitatiewe navorsingsmetode inhou vir kruis-kulturele navorsing in 'n Afrika konteks.

  20. FPGA implementation of a modified FitzHugh-Nagumo neuron based causal neural network for compact internal representation of dynamic environments

    Science.gov (United States)

    Salas-Paracuellos, L.; Alba, Luis; Villacorta-Atienza, Jose A.; Makarov, Valeri A.

    2011-05-01

    Animals for surviving have developed cognitive abilities allowing them an abstract representation of the environment. This internal representation (IR) may contain a huge amount of information concerning the evolution and interactions of the animal and its surroundings. The temporal information is needed for IRs of dynamic environments and is one of the most subtle points in its implementation as the information needed to generate the IR may eventually increase dramatically. Some recent studies have proposed the compaction of the spatiotemporal information into only space, leading to a stable structure suitable to be the base for complex cognitive processes in what has been called Compact Internal Representation (CIR). The Compact Internal Representation is especially suited to be implemented in autonomous robots as it provides global strategies for the interaction with real environments. This paper describes an FPGA implementation of a Causal Neural Network based on a modified FitzHugh-Nagumo neuron to generate a Compact Internal Representation of dynamic environments for roving robots, developed under the framework of SPARK and SPARK II European project, to avoid dynamic and static obstacles.

  1. How NBWF cosmology is consistent with causal QC/ED particle CFT and its AdS dual preserves information

    Science.gov (United States)

    Lundberg, Wayne R.

    2012-03-01

    The no-boundary wave function includes a prescription for restoring causality to particle theory via instantons. To leading order in h, the instanton wave function terms IR and S correspond to area and curvature of a finite representation. For QG theories in which the gravitational quantum has an area, such as Ambjorn dynamical triangulation, the imaginary S term represents particle energy. This establishes the form of the action as required to pass the Seiberg, Susskind & Toumbas (IASSNS 2000) Causality criterion. By following Harari's approach to preon algebra and the eight-fold way, a non-commutative algebra is setup with 1-1 correspondence to band theory. A band is defined as a closed string with intrinsic curvature/tension/energy. Thus a finitary, causal CFT is established which has an AdS-2 dual space in the deep-deep throat of an information-preserving black hole. The geometry of the `extra' scalar field of such an I-PBH is shown to be astrophysically vast and smooth - and thus is a candidate explanation for the observational signature of dark matter.

  2. Theories of Causality

    Science.gov (United States)

    Jones, Robert

    2010-03-01

    There are a wide range of views on causality. To some (e.g. Karl Popper) causality is superfluous. Bertrand Russell said ``In advanced science the word cause never occurs. Causality is a relic of a bygone age.'' At the other extreme Rafael Sorkin and L. Bombelli suggest that space and time do not exist but are only an approximation to a reality that is simply a discrete ordered set, a ``causal set.'' For them causality IS reality. Others, like Judea Pearl and Nancy Cartwright are seaking to build a complex fundamental theory of causality (Causality, Cambridge Univ. Press, 2000) Or perhaps a theory of causality is simply the theory of functions. This is more or less my take on causality.

  3. Spin foam models as energetic causal sets

    CERN Document Server

    Cortês, Marina

    2014-01-01

    Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced by Wieland, and this construction makes use of results used there. What makes a spin foam model also an energetic causal set is Wieland's identification of new momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model.

  4. Efficient triangulation of Poisson-disk sampled point sets

    KAUST Repository

    Guo, Jianwei

    2014-05-06

    In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches. © 2014 Springer-Verlag Berlin Heidelberg.

  5. Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation

    Science.gov (United States)

    Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito

    2014-02-01

    A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.

  6. Information thermodynamics on causal networks.

    Science.gov (United States)

    Ito, Sosuke; Sagawa, Takahiro

    2013-11-01

    We study nonequilibrium thermodynamics of complex information flows induced by interactions between multiple fluctuating systems. Characterizing nonequilibrium dynamics by causal networks (i.e., Bayesian networks), we obtain novel generalizations of the second law of thermodynamics and the fluctuation theorem, which include an informational quantity characterized by the topology of the causal network. Our result implies that the entropy production in a single system in the presence of multiple other systems is bounded by the information flow between these systems. We demonstrate our general result by a simple model of biochemical adaptation.

  7. Causality in Science

    Directory of Open Access Journals (Sweden)

    Cristina Puente Águeda

    2011-10-01

    Full Text Available Causality is a fundamental notion in every field of science. Since the times of Aristotle, causal relationships have been a matter of study as a way to generate knowledge and provide for explanations. In this paper I review the notion of causality through different scientific areas such as physics, biology, engineering, etc. In the scientific area, causality is usually seen as a precise relation: the same cause provokes always the same effect. But in the everyday world, the links between cause and effect are frequently imprecise or imperfect in nature. Fuzzy logic offers an adequate framework for dealing with imperfect causality, so a few notions of fuzzy causality are introduced.

  8. 企业运行指标因果分析的动态贝叶斯网络方法%Dynamic Bayesian network method for causal analysis between enterprise operation indexes

    Institute of Scientific and Technical Information of China (English)

    高瑞; 王双成; 杜瑞杰

    2016-01-01

    针对现有的企业运行指标分析方法只强调动态或静态信息,不易实现二者结合的情况,建立了用于企业运行指标因果分析的动态贝叶斯网络模型,这种模型可将时间片间的指标动态时序因果关系与时间片内指标静态因果联系融为一体,并通过量化推理进行动态与静态因果分析。通过与领域专家交流,所建立的企业运行指标动态贝叶斯网络良好地反映了数据中所蕴涵的因果关系。%In the light of those methods now available for analyzing enterprises operation indexes are emphasizing only dynamic or static information,and have not realized the combinations between those two kinds of different information.This paper set up a dynamic Bayesian network method for causal analysis among enterprises operation indexes.The model could combine dynamic time sequence and static causal relationships of panel data as a whole,could analyze both dynamic and static causal relationships through quantitative inference without the assumptions of liner causal relationships.Communicating with the ex-perts in the relative field,the model can primely be used to analyze multi-variables dynamic causal relationships contained in the data.

  9. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers.

    Science.gov (United States)

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A

    2016-01-01

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time

  10. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    Science.gov (United States)

    Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.

    2016-01-01

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time

  11. Rail profile control using laser triangulation scanners

    Science.gov (United States)

    Boronahin, Ð. ńlexandr M.; Larionov, Daniil Yu.; Podgornaya, Liudmila N.; Shalymov, Roman V.; Filatov, Yuri V.; Bokhman, Evgueny D.

    2016-11-01

    Rail track geometric parameters measurement requires knowledge of left and right rail head location in each section. First of all displacement in transverse plane of rail head point located at a distance of 14 mm below the running surface, must be controlled [1]. It is carried out by detecting of each rail profile using triangulation laser scanners. Optical image recognition is carried out successfully in the laboratory, approaches used for this purpose are widely known. However, laser scanners operation has several features on railways leading to necessity of traditional approaches adaptation for solving these particular problems. The most significant problem is images noisiness due to the solar flashes and the effect of "Moon path" on the smooth rail surface. Using of optical filters gives inadequate result, because scanner laser diodes radiation frequency varies with temperature changes that forbid the use of narrow-band filters. Consideration of these features requires additional constructive and algorithmic solutions, including involvement of information from other sensors of the system. The specific usage of optical scanners for rail profiles control is the subject of the paper.

  12. Surface Triangulation for CSG in Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Georgia Inst. of Technology, Atlanta, GA (United States); O' Brien, Matthew J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-26

    Visualization routines for rendering complicated geometries are very useful for engineers and scientists who are trying to build 3D prototypes of their designs. A common way to rapidly add interesting features to a 3D model is through the use of a concept called Constructive Solid Geometry. CSG uses compositions of the boolean set operations to manipulate basic geometric primitives to form more complicated objects. The most common boolean operations employed are union, intersection, and subtraction. Most computer-aided design software packages contain some sort of ability visualize CSG. The typical workflow for the user is as follows: The user specifies the individual primitive components, the user arbitrarily combines each of these primitives with boolean operations, the software generates a CSG tree structure which normally stores these solids implicitly with their defining equation, the tree is traversed and a general algorithm is applied to render the appropriate geometry onto the screen. Algorithms for visualizing CSG have been extensively developed for over a decade. Points sampled from the implicit solids are typically used as input by variations of algorithms like marching cubes and point-cloud surface reconstruction. Here, we explain a surface triangulation method from the graphics community that is being used for surface visualization in the framework of a Monte-Carlo neutron transport code called Mercury.

  13. Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014

    OpenAIRE

    2015-01-01

    The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.

  14. Research on Image processing in laser triangulation system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kai; Wang Qianqian; Wang Yang; Liu Chenrui, E-mail: qqwang@bit.edu.cn [School of Optoelectronics, Beijing Institute of Technology, 100081 Beijing (China)

    2011-02-01

    Laser Triangulation Ranging is a kind of displacement distance measurement method which is based on the principle of optical triangulation using laser as the light source. It is superior in simple structure, high-speed, high-accuracy, anti-jamming capability and adaptability laser triangulation ranging. Therefore it is widely used in various fields such as industrial production, road test, three-dimensional face detection, and so on. In current study the features of the spot images achieved by CCD in laser triangulation system were analyzed, and the appropriate algorithms for spot images were discussed. Experimental results showed that the precision and stability of the spot location were enhanced significantly after applying these image processing algorithms.

  15. Land Elevation TINs (Triangulated Irregular Networks) for Jefferson County, WI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Land Elevation TINs (Triangulated Irregular Networks) in this directory are generated from 2 foot contour lines from Jefferson County. Little is known about the...

  16. Aerial Triangulation Close-range Images with Dual Quaternion

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-05-01

    Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.

  17. Causal Space-Times on a Null Lattice

    CERN Document Server

    Schaden, Martin

    2015-01-01

    I investigate a model of quantum gravity based on the first order Hilbert Palatini action with cosmological constant, discretized on a causal null-lattice with SL(2,C) structure group. The description is coordinate invariant and foliates in a causal and physically transparent manner. Lattice variables and observables are constructed. Conditions for a lattice configuration to describe a triangulated causal manifold are derived and encoded by a topological lattice theory. An equivariant BRST-construction is used to partially localize the SL(2,C) structure group of this model to the compact SU(2) of local spatial rotations. The latter in turn is completely localized using the spinors of this formulation. The integration measure of this completely localized model is derived from the SL(2,C)-invariant integration measure and is expressed in terms of SL(2,C)-invariant variables. An invariant regularization of the lattice integration measure that suppresses configurations with small local four-volumes is proposed. N...

  18. Bayesian Causal Induction

    CERN Document Server

    Ortega, Pedro A

    2011-01-01

    Discovering causal relationships is a hard task, often hindered by the need for intervention, and often requiring large amounts of data to resolve statistical uncertainty. However, humans quickly arrive at useful causal relationships. One possible reason is that humans use strong prior knowledge; and rather than encoding hard causal relationships, they encode beliefs over causal structures, allowing for sound generalization from the observations they obtain from directly acting in the world. In this work we propose a Bayesian approach to causal induction which allows modeling beliefs over multiple causal hypotheses and predicting the behavior of the world under causal interventions. We then illustrate how this method extracts causal information from data containing interventions and observations.

  19. From recollement of triangulated categories to recollement of abelian categories

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we prove that if a triangulated category D admits a recollement relative to triangulated categories D’ and D″,then the abelian category D/T admits a recollement relative to abelian categories D’/i(T) and D″/j(T) where T is a cluster tilting subcategory of D and satisfies i i (T)  T,j j (T) T.

  20. A TQFT of Tuarev-Viro type on shaped triangulations

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Rinat [Geneva Univ. (Switzerland); Luo, Feng [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Vartanov, Grigory [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-10-15

    A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.

  1. Algebraic Error Based Triangulation and Metric of Lines.

    Science.gov (United States)

    Wu, Fuchao; Zhang, Ming; Wang, Guanghui; Hu, Zhanyi

    2015-01-01

    Line triangulation, a classical geometric problem in computer vision, is to determine the 3D coordinates of a line based on its 2D image projections from more than two views of cameras with known projection matrices. Compared to point features, line segments are more robust to matching errors, occlusions, and image uncertainties. In addition to line triangulation, a better metric is needed to evaluate 3D errors of line triangulation. In this paper, the line triangulation problem is investigated by using the Lagrange multipliers theory. The main contributions include: (i) Based on the Lagrange multipliers theory, a formula to compute the Plücker correction is provided, and from the formula, a new linear algorithm, LINa, is proposed for line triangulation; (ii) two optimal algorithms, OPTa-I and OPTa-II, are proposed by minimizing the algebraic error; and (iii) two metrics on 3D line space, the orthogonal metric and the quasi-Riemannian metric, are introduced for the evaluation of line triangulations. Extensive experiments on synthetic data and real images are carried out to validate and demonstrate the effectiveness of the proposed algorithms.

  2. How to Be Causal: Time, Spacetime and Spectra

    Science.gov (United States)

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…

  3. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  4. Public health triangulation: approach and application to synthesizing data to understand national and local HIV epidemics

    Directory of Open Access Journals (Sweden)

    Aberle-Grasse John

    2010-07-01

    Full Text Available Abstract Background Public health triangulation is a process for reviewing, synthesising and interpreting secondary data from multiple sources that bear on the same question to make public health decisions. It can be used to understand the dynamics of HIV transmission and to measure the impact of public health programs. While traditional intervention research and metaanalysis would be ideal sources of information for public health decision making, they are infrequently available, and often decisions can be based only on surveillance and survey data. Methods The process involves examination of a wide variety of data sources and both biological, behavioral and program data and seeks input from stakeholders to formulate meaningful public health questions. Finally and most importantly, it uses the results to inform public health decision-making. There are 12 discrete steps in the triangulation process, which included identification and assessment of key questions, identification of data sources, refining questions, gathering data and reports, assessing the quality of those data and reports, formulating hypotheses to explain trends in the data, corroborating or refining working hypotheses, drawing conclusions, communicating results and recommendations and taking public health action. Results Triangulation can be limited by the quality of the original data, the potentials for ecological fallacy and "data dredging" and reproducibility of results. Conclusions Nonetheless, we believe that public health triangulation allows for the interpretation of data sets that cannot be analyzed using meta-analysis and can be a helpful adjunct to surveillance, to formal public health intervention research and to monitoring and evaluation, which in turn lead to improved national strategic planning and resource allocation.

  5. Causality for nonlocal phenomena

    CERN Document Server

    Eckstein, Michał

    2015-01-01

    Drawing from the theory of optimal transport we propose a rigorous notion of a causal relation for Borel probability measures on a given spacetime. To prepare the ground, we explore the borderland between causality, topology and measure theory. We provide various characterisations of the proposed causal relation, which turn out to be equivalent if the underlying spacetime has a sufficiently robust causal structure. We also present the notion of the 'Lorentz-Wasserstein distance' and study its basic properties. Finally, we discuss how various results on causality in quantum theory, aggregated around Hegerfeldt's theorem, fit into our framework.

  6. Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: a dynamic causal modeling study on MEG.

    Science.gov (United States)

    Lu, Qing; Li, Haoran; Luo, Guoping; Wang, Yi; Tang, Hao; Han, Li; Yao, Zhijian

    2012-08-15

    Depression is proved to be associated with the dysfunction of prefrontal-limbic neural circuit, especially during emotion processing procedure. Related explorations have been undertaken from the aspects of abnormal activation and functional connectivity. However, the mechanism of the dysfunction of coordinated interactions remains unknown and is still a matter of debate. The present study gave direct evidence of this issue from the aspect of effective connectivity via dynamic causal modeling (DCM). 20 major depressive disorder (MDD) patients and 20 healthy controls were recruited to attend facial emotional stimulus during MEG recording. Bayesian model selection (BMS) was applied to choose the best model. Results under the optimal model showed that top-down endogenous effective connectivity from the dorsolateral prefrontal cortex (DLPFC) to the amygdala was greatly impaired in patients relative to health controls; while bottom-up endogenous effective connectivity from the amygdala to the anterior cingulate cortex (ACC) as well as modulatory effective connectivity from ACC to DLPFC was significantly increased. We inferred the incapable DLPFC failed to exert influence on amygdala, and finally lead to enhanced amygdala-ACC and ACC-DLPFC bottom-up effects. Such impaired prefrontal-amygdala connectivity was supposed to be responsible for the dysfunction in MDD when dealing with emotional stimuli.

  7. Disrupted effective connectivity between the amygdala and orbitofrontal cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal modeling for FMRI.

    Science.gov (United States)

    Sladky, Ronald; Höflich, Anna; Küblböck, Martin; Kraus, Christoph; Baldinger, Pia; Moser, Ewald; Lanzenberger, Rupert; Windischberger, Christian

    2015-04-01

    Social anxiety disorder (SAD) is characterized by over-reactivity of fear-related circuits in social or performance situations and associated with marked social impairment. We used dynamic causal modeling (DCM), a method to evaluate effective connectivity, to test our hypothesis that SAD patients would exhibit dysfunctions in the amygdala-prefrontal emotion regulation network. Thirteen unmedicated SAD patients and 13 matched healthy controls performed a series of facial emotion and object discrimination tasks while undergoing fMRI. The emotion-processing network was identified by a task-related contrast and motivated the selection of the right amygdala, OFC, and DLPFC for DCM analysis. Bayesian model averaging for DCM revealed abnormal connectivity between the OFC and the amygdala in SAD patients. In healthy controls, this network represents a negative feedback loop. In patients, however, positive connectivity from OFC to amygdala was observed, indicating an excitatory connection. As we did not observe a group difference of the modulatory influence of the FACE condition on the OFC to amygdala connection, we assume a context-independent reduction of prefrontal control over amygdalar activation in SAD patients. Using DCM, it was possible to highlight not only the neuronal dysfunction of isolated brain regions, but also the dysbalance of a distributed functional network.

  8. Ventral and dorsal stream interactions during the perception of the Müller-Lyer illusion: evidence derived from fMRI and dynamic causal modeling.

    Science.gov (United States)

    Plewan, Thorsten; Weidner, Ralph; Eickhoff, Simon B; Fink, Gereon R

    2012-10-01

    The human visual system converts identically sized retinal stimuli into different-sized perceptions. For instance, the Müller-Lyer illusion alters the perceived length of a line via arrows attached to its end. The strength of this illusion can be expressed as the difference between physical and perceived line length. Accordingly, illusion strength reflects how strong a representation is transformed along its way from a retinal image up to a conscious percept. In this study, we investigated changes of effective connectivity between brain areas supporting these transformation processes to further elucidate the neural underpinnings of optical illusions. The strength of the Müller-Lyer illusion was parametrically modulated while participants performed either a spatial or a luminance task. Lateral occipital cortex and right superior parietal cortex were found to be associated with illusion strength. Dynamic causal modeling was employed to investigate putative interactions between ventral and dorsal visual streams. Bayesian model selection indicated that a model that involved bidirectional connections between dorsal and ventral stream areas most accurately accounted for the underlying network dynamics. Connections within this network were partially modulated by illusion strength. The data further suggest that the two areas subserve differential roles: Whereas lateral occipital cortex seems to be directly related to size transformation processes, activation in right superior parietal cortex may reflect subsequent levels of processing, including task-related supervisory functions. Furthermore, the data demonstrate that the observer's top-down settings modulate the interactions between lateral occipital and superior parietal regions and thereby influence the effect of illusion strength.

  9. Causality Violation, Gravitational Shockwaves and UV Completion

    CERN Document Server

    Hollowood, Timothy J

    2015-01-01

    The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of "time machines", i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate h...

  10. Algorithms for Sampling 3-Orientations of Planar Triangulations

    CERN Document Server

    Miracle, Sarah; Streib, Amanda Pascoe; Tetali, Prasad

    2012-01-01

    Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-degree three. Each 3-orientation gives rise to a unique edge coloring known as a Schnyder wood that has proven powerful for various computing and combinatorics applications. We consider natural Markov chains for sampling uniformly from the set of 3-orientations. First, we study a "triangle-reversing" chain on the space of 3-orientations of a fixed triangulation that reverses the orientation of the edges around a triangle in each move. It was shown previously that this chain connects the state space and we show that (i) when restricted to planar triangulations of maximum degree six, the Markov chain is rapidly mixing, and (ii) there exists a triangulation with high degree on which this Markov chain mixes slowly. Next, we consider an "edge-flipping" chain on the larger state space consisting of 3-orientations of all planar triangulations on a fixed number of vertices. It was also shown previou...

  11. Energetic Causal Sets

    CERN Document Server

    Cortês, Marina

    2013-01-01

    We propose an approach to quantum theory based on the energetic causal sets, introduced in Cort\\^{e}s and Smolin (2013). Fundamental processes are causal sets whose events carry momentum and energy, which are transmitted along causal links and conserved at each event. Fundamentally there are amplitudes for such causal processes, but no space-time. An embedding of the causal processes in an emergent space-time arises only at the semiclassical level. Hence, fundamentally there are no commutation relations, no uncertainty principle and, indeed, no hbar. All that remains of quantum theory is the relationship between the absolute value squared of complex amplitudes and probabilities. Consequently, we find that neither locality, nor non locality, are primary concepts, only causality exists at the fundamental level.

  12. Causal Decision Trees

    OpenAIRE

    2015-01-01

    Uncovering causal relationships in data is a major objective of data analytics. Causal relationships are normally discovered with designed experiments, e.g. randomised controlled trials, which, however are expensive or infeasible to be conducted in many cases. Causal relationships can also be found using some well designed observational studies, but they require domain experts' knowledge and the process is normally time consuming. Hence there is a need for scalable and automated methods for c...

  13. Moving sound source localization based on triangulation method

    Science.gov (United States)

    Miao, Feng; Yang, Diange; Wen, Junjie; Lian, Xiaomin

    2016-12-01

    This study develops a sound source localization method that extends traditional triangulation to moving sources. First, the possible sound source locating plane is scanned. Secondly, for each hypothetical source location in this possible plane, the Doppler effect is removed through the integration of sound pressure. Taking advantage of the de-Dopplerized signals, the moving time difference of arrival (MTDOA) is calculated, and the sound source is located based on triangulation. Thirdly, the estimated sound source location is compared to the original hypothetical location and the deviations are recorded. Because the real sound source location leads to zero deviation, the sound source can be finally located by minimizing the deviation matrix. Simulations have shown the superiority of MTDOA method over traditional triangulation in case of moving sound sources. The MTDOA method can be used to locate moving sound sources with as high resolution as DAMAS beamforming, as shown in the experiments, offering thus a new method for locating moving sound sources.

  14. Analysis of imaging for laser triangulation sensors under Scheimpflug rule.

    Science.gov (United States)

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2013-07-29

    In this work a detailed analysis of the problem of imaging of objects lying in the plane tilted with respect to the optical axis of the rotationally symmetrical optical system is performed by means of geometrical optics theory. It is shown that the fulfillment of the so called Scheimpflug condition (Scheimpflug rule) does not guarantee the sharp image of the object as it is usually declared because of the fact that due to the dependence of aberrations of real optical systems on the object distance the image becomes blurred. The f-number of a given optical system also varies with the object distance. It is shown the influence of above mentioned effects on the accuracy of the laser triangulation sensors measurements. A detailed analysis of laser triangulation sensors, based on geometrical optics theory, is performed and relations for the calculation of measurement errors and construction parameters of laser triangulation sensors are derived.

  15. Causality in 3D Massive Gravity Theories

    CERN Document Server

    Edelstein, Jose D; Kilicarslan, Ercan; Leoni, Matias; Tekin, Bayram

    2016-01-01

    We study the constraints coming from local causality requirement in various 2+1 dimensional dynamical theories of gravity. In Topologically Massive Gravity, with a single parity noninvariant massive degree of freedom, and in New Massive Gravity, with two massive spin-$2$ degrees of freedom, causality and unitarity are compatible with each other and they both require the Newton's constant to be negative. In their extensions, such as the Born-Infeld gravity and the minimal massive gravity the situation is similar and quite different from their higher dimensional counterparts, such as quadratic (e.g., Einstein-Gauss-Bonnet) or cubic theories, where causality and unitarity are in conflict.

  16. Triangulation in Youth Sport: Healthy Partnerships among Parents, Coaches, and Practitioners.

    Science.gov (United States)

    Blom, Lindsey C; Visek, Amanda J; Harris, Brandonn S

    2013-01-01

    Youth sport is unique because it involves communication, coordination, and maintenance of relationships among multiple adults, all of whom are vested stakeholders in a child-athlete's sport experience. This dynamic becomes even more complex when a sport psychology practitioner is added; therefore, the purpose of this paper is to provide guidelines and considerations to assist sport psychology practitioners in managing the triangulation of adults who are involved in the consultation process with youth athletes. We first discuss specific dyads and considerations for the practitioner and then highlight recommendations for practitioners regarding transparency and confidentiality issues specific to youth athletes.

  17. Dysconnectivity within the default mode in first-episode schizophrenia: a stochastic dynamic causal modeling study with functional magnetic resonance imaging.

    Science.gov (United States)

    Bastos-Leite, António J; Ridgway, Gerard R; Silveira, Celeste; Norton, Andreia; Reis, Salomé; Friston, Karl J

    2015-01-01

    We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia--according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria--were studied. Fifteen healthy control subjects (4 women, mean age = 24.6 years, SD = 4) were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI) interspersed with 2 periods of continuous picture viewing. The anterior frontal (AF), posterior cingulate (PC), and the left and right parietal nodes of the DMN were localized in an unbiased fashion using data from 16 independent healthy volunteers (using an identical fMRI protocol). We used sDCM to estimate directed connections between and within nodes of the DMN, which were subsequently compared with t tests at the between subject level. The excitatory effect of the PC node on the AF node and the inhibitory self-connection of the AF node were significantly weaker in patients (mean values = 0.013 and -0.048 Hz, SD = 0.09 and 0.05, respectively) relative to healthy subjects (mean values = 0.084 and -0.088 Hz, SD = 0.15 and 0.77, respectively; P < .05). In summary, sDCM revealed reduced effective connectivity to the AF node of the DMN--reflecting a reduced postsynaptic efficacy of prefrontal afferents--in patients with first-episode schizophrenia.

  18. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  19. Carbon Emissions and Economic Growth: Causality Testing in Heterogenous Panels

    Energy Technology Data Exchange (ETDEWEB)

    David Maddison; Katrin Rehdanz [Department of Economics, University of Birmingham, Birmingham (United Kingdom)

    2008-09-30

    Numerous papers have examined data on energy and GDP for evidence of Granger causality. Using time series techniques these analyses not infrequently reach differing conclusions concerning the existence and direction of Granger causality. This paper presents a heterogenous panel approach to Granger causality testing. This technique is used to examine a panel of data for evidence of a causal relationship between GDP and carbon emissions per capita allowing for heterogeneity in short run dynamics and even the long run cointegrating vector. This technique is compared to the standard fixed dynamic effects approach to pooling individual error correction models. In one important case the heterogenous panel test for Granger causality reaches conclusions quite different to those from conventional tests of Granger causality. Except for Asia there is strong evidence for the existence of a bidirectional causal relationship between GDP per capita and CO{sub 2} emissions per capita.

  20. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  1. Causal Dynamics of Discrete Surfaces

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2014-03-01

    Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.

  2. Degree-Regular Triangulations of Torus and Klein Bottle-Erratum

    Indian Academy of Sciences (India)

    Basudeb Datta; Ashish Kumar Upadhyay

    2005-08-01

    A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In [8], Lutz has classified all the weakly regular triangulations on at most 15 vertices. In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices. In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists an -vertex degree-regular triangulation of the Klein bottle if and only if is a composite number ≥ 9. We have constructed two distinct -vertex weakly regular triangulations of the torus for each ≥ 12 and a (4+2)-vertex weakly regular triangulation of the Klein bottle for each ≥ 2. For 12 ≤ ≤ 15, we have classified all the -vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.

  3. Editorial: Causal cognition

    NARCIS (Netherlands)

    Blaisdell, A.P.; Beckers, T.

    2009-01-01

    The article discusses various reports published within the issue, including one on psychological approaches to causal discovery in humans, one on the representational and reasoning capacities that underlie causal cognition in rats and one on the generality of knowledge of Great Ape.

  4. Causality in Classical Electrodynamics

    Science.gov (United States)

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  5. Causality and Lifshitz Holography

    Energy Technology Data Exchange (ETDEWEB)

    Koroteev, Peter [Department of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States)

    2011-07-15

    We study signal propagation in theories with Lifshitz scaling using the gravity dual and show that backgrounds with z<1 are incompatible with causality of the strongly coupled theory. We argue that causality violations in z<1 theories show up in boundary correlation functions as superluminal modes.

  6. Causality in Europeanization Research

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2012-01-01

    Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours...... to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality......, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This chapter deals with the question of how we may move from the study...

  7. Causality in demand

    DEFF Research Database (Denmark)

    Nielsen, Max; Jensen, Frank; Setälä, Jari;

    2011-01-01

    This article focuses on causality in demand. A methodology where causality is imposed and tested within an empirical co-integrated demand model, not prespecified, is suggested. The methodology allows different causality of different products within the same demand system. The methodology is applied...... to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological...... implication is that more explicit focus on causality in demand analyses provides improved information. The results suggest that frozen trout forms part of a large European whitefish market, where prices of fresh trout are formed on a relatively separate market. Redfish is a substitute on both markets...

  8. Agency, time and causality

    Directory of Open Access Journals (Sweden)

    Thomas eWidlok

    2014-11-01

    Full Text Available Cognitive Scientists interested in causal cognition increasingly search for evidence from non-WEIRD people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition.

  9. Regression to Causality

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...

  10. Internet information triangulation: Design theory and prototype evaluation

    NARCIS (Netherlands)

    Wijnhoven, Fons; Brinkhuis, Michel

    2014-01-01

    Many discussions exist regarding the credibility of information on the Internet. Similar discussions happen on the interpretation of social scientific research data, for which information triangulation has been proposed as a useful method. In this article, we explore a design theory—consisting of a

  11. Satisfying states of triangulations of a convex n-gon

    CERN Document Server

    Jiménez, Andrea; Loebl, Martin

    2009-01-01

    In this work we count the number of satisfying states of triangulations of a convex n-gon using the transfer matrix method. We show an exponential (in n) lower bound. We also give the exact formula for the number of satisfying states of a strip of triangles.

  12. Mutating loops and 2-cycles in 2-CY triangulated categories

    CERN Document Server

    Bertani-Økland, Marco Angel

    2010-01-01

    We derive an algorithm for mutating quivers of 2-CY tilted algebras that have loops and 2-cycles, under certain specific conditions. Further, we give the classification of the 2-CY tilted algebras coming from standard algebraic 2-CY triangulated categories with a finite number of indecomposables. These form a class of algebras that satisfy the setup for our mutation algorithm.

  13. Methodological triangulation of the students' use of recorded lectures

    NARCIS (Netherlands)

    Gorissen, Pierre; Bruggen, Jan van; Jochems, Wim

    2013-01-01

    A lot of research into the use of recorded lectures has been done by using surveys or interviews. We will show that triangulation of multiple data sources is needed. We will discuss how students use recorded lectures according to their self-report and what actual usage of the recorded lectures can b

  14. The Use of Triangulation Methods in Qualitative Educational Research

    Science.gov (United States)

    Oliver-Hoyo, Maria; Allen, DeeDee

    2006-01-01

    Triangulation involves the careful reviewing of data collected through different methods in order to achieve a more accurate and valid estimate of qualitative results for a particular construct. This paper describes how we used three qualitative methods of data collection to study attitudes of students toward graphing, hands-on activities, and…

  15. Multi-Sensor Triangulation of Multi-Source Spatial Data

    Science.gov (United States)

    Habib, Ayman; Kim, Chang-Jae; Bang, Ki-In

    2007-01-01

    The introduced methodologies are successful in: a) Ising LIDAR features for photogrammetric geo-refererncing; b) Delivering a geo-referenced imagery of the same quality as point-based geo-referencing procedures; c) Taking advantage of the synergistic characteristics of spatial data acquisition systems. The triangulation output can be used for the generation of 3-D perspective views.

  16. A Simple Quality Triangulation Algorithm for Complex Geometries

    Science.gov (United States)

    This paper presents a new and simple algorithm for quality triangulation in complex geometries. The proposed algorithm is based on an initial equilateral triangle mesh covering the whole domain. The mesh nodes close to the boundary edges satisfy the so-called non-encroaching criterion: the distance ...

  17. Analysing students' use of recorded lectures through methodological triangulation

    NARCIS (Netherlands)

    Gorissen, Pierre; Van Bruggen, Jan; Jochems, Wim

    2012-01-01

    Gorissen, P., Van Bruggen, J., & Jochems, W. M. G. (2012). Analysing students' use of recorded lectures through methodological triangulation. In L. Uden, E. S. Corchado Rodríquez, J. F. De Paz Santana, & F. De la Prieta (Eds.), Workshop on Learning Technology in Cloud (LTEC’12) (pp. 145-156). Heidel

  18. Ideal Triangulations of Pseudo-Anosov Mapping Tori

    CERN Document Server

    Agol, Ian

    2010-01-01

    We show how to construct an ideal triangulation of a mapping torus of a pseudo-Anosov map punctured along the singular fibers. This gives rise to a new conjugacy invariant of mapping classes, and a new proof of a theorem of Farb-Leininger-Margalit. The approach in this paper is based on ideas of Hamenstadt.

  19. A Triangulation Method for Identifying Hydrostratigraphic Locations of Well Screens

    Energy Technology Data Exchange (ETDEWEB)

    Whiteside, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Radiological Performance Assessment

    2015-01-31

    A method to identify the hydrostratigraphic location of well screens was developed using triangulation with known locations. This method was applied to all of the monitor wells being used to develop the new GSA groundwater model. Results from this method are closely aligned with those from an alternate method which uses a mesh surface.

  20. Adolescent Triangulation into Parental Conflicts: Longitudinal Implications for Appraisals and Adolescent-Parent Relations

    Science.gov (United States)

    Fosco, Gregory M.; Grych, John H.

    2010-01-01

    Although triangulation into parental conflict is a risk factor for child and adolescent maladjustment, little is known about how triangulation affects adolescents' functioning or the factors that lead children to be drawn into parental disagreements. This prospective study examined the relations between triangulation, appraisals of conflict, and…

  1. Exploratory Causal Analysis in Bivariate Time Series Data

    Science.gov (United States)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  2. Causally symmetric spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, F.J.

    1977-08-01

    Causally symmetric spacetimes are spacetimes with J/sup +/(S) isometric to J/sup -/(S) for some set S. We discuss certain properties of these spacetimes, showing for example that, if S is a maximal Cauchy surface with matter everywhere on S, then the spacetime has singularities in both J/sup +/(S) and J/sup -/(S). We also consider totally vicious spacetimes, a class of causally symmetric spacetimes for which I/sup +/(p) =I/sup -/(p) = M for any point p in M. Two different notions of stability in general relativity are discussed, using various types of causally symmetric spacetimes as starting points for perturbations.

  3. Causal Newton Gravity Law

    CERN Document Server

    Zinoviev, Yury M

    2012-01-01

    The equations of the relativistic causal Newton gravity law for the planets of the solar system are studied in the approximation when the Sun rests at the coordinates origin and the planets do not iteract between each other.

  4. Genus dependence of the number of (non-)orientable surface triangulations

    Science.gov (United States)

    Krüger, Benedikt; Mecke, Klaus

    2016-04-01

    Topological triangulations of orientable and nonorientable surfaces with arbitrary genus have important applications in quantum geometry, graph theory and statistical physics. However, until now, only the asymptotics for 2-spheres have been known analytically, and exact counts of triangulations are only available for both small genera and triangulations. We apply the Wang-Landau algorithm to calculate the number N (m ,h ) of triangulations for several orders of magnitude in system size m and type h (equals genus in orientable triangulations). We verify that the limit of the entropy density of triangulations is independent of genus and orientability and are able to determine the next-to-leading-order and the next-to-next-to-leading-order terms. We conjecture for the number of surface triangulations the asymptotic behavior N (m ,h )→(170.4 ±15.1 )hm-2 (h -1 )/5(256/27) m /2, which might guide a mathematician's proof for the exact asymptotics.

  5. Personal authentication using hand vein triangulation and knuckle shape.

    Science.gov (United States)

    Kumar, Ajay; Prathyusha, K Venkata

    2009-09-01

    This paper presents a new approach to authenticate individuals using triangulation of hand vein images and simultaneous extraction of knuckle shape information. The proposed method is fully automated and employs palm dorsal hand vein images acquired from the low-cost, near infrared, contactless imaging. The knuckle tips are used as key points for the image normalization and extraction of region of interest. The matching scores are generated in two parallel stages: (i) hierarchical matching score from the four topologies of triangulation in the binarized vein structures and (ii) from the geometrical features consisting of knuckle point perimeter distances in the acquired images. The weighted score level combination from these two matching scores are used to authenticate the individuals. The achieved experimental results from the proposed system using contactless palm dorsal-hand vein images are promising (equal error rate of 1.14%) and suggest more user friendly alternative for user identification.

  6. Experiences with systematic triangulation at the Global Environment Facility.

    Science.gov (United States)

    Carugi, Carlo

    2016-04-01

    Systematic triangulation may address common challenges in evaluation, such as the scarcity or unreliability of data, or the complexities of comparing and cross-checking evidence from diverse disciplines. Used to identify key evaluation findings, its application has proven to be effective in addressing the limitations encountered in country-level evaluation analysis conducted by the Independent Evaluation Office of the Global Environment Facility (GEF). These include the scarcity or unreliability of national statistics on environmental indicators and data series, especially in Least Developed Countries; challenges in evaluating the impacts of GEF projects; and inherent difficulties in defining the GEF portfolio of projects prior to the undertaking of the evaluation. In addition to responding to the need for further developing triangulation protocols, procedures and/or methodologies advocated by some authors, the approach offers a contribution to evaluation practice. This applies particularly to those evaluation units tasked with country-level evaluations in international organizations, facing similar constraints.

  7. A new insertion sequence for incremental Delaunay triangulation

    Institute of Scientific and Technical Information of China (English)

    Jian-Fei Liu; Jin-Hui Yan; S.H.Lo

    2013-01-01

    Incremental algorithm is one of the most popular procedures for constructing Delaunay triangulations (DTs).However,the point insertion sequence has a great impact on the amount of work needed for the construction of DTs.It affects the time for both point location and structure update,and hence the overall computational time of the triangulation algorithm.In this paper,a simple deterministic insertion sequence is proposed based on the breadth-first-search on a Kd-tree with some minor modifications for better performance.Using parent nodes as search-hints,the proposed insertion sequence proves to be faster and more stable than the Hilbert curve order and biased randomized insertion order (BRIO),especially for non-uniform point distributions over a wide range of benchmark examples.

  8. RESEARCH ON ADAPTIVE DATA COMPRESSION METHOD FOR TRIANGULATED SURFACES

    Institute of Scientific and Technical Information of China (English)

    Wang Wen; Wu Shixiong; Chen Zichen

    2004-01-01

    NC code or STL file can be generated directly from measuring data in a fast reverse-engineering mode.Compressing the massive data from laser scanner is the key of the new mode.An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal.Ring data structure is adopted to save massive data effectively.It allows the efficient retrieval of all neighboring vertices and triangles of a given vertices.To avoid long and thin triangles,a new re-triangulation approach based on normalized minimum-vertex-distance is proposed,in which the vertex distance and interior angle of triangle are considered.Results indicate that the compression method has high efficiency and can get reliable precision.The method can be applied in fast reverse engineering to acquire an optimal subset of the original massive data.

  9. Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation.

    Science.gov (United States)

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2012-12-01

    Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method.

  10. Detectability of active triangulation range finder: a solar irradiance approach.

    Science.gov (United States)

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  11. Causal Structures in Gauss-Bonnet gravity

    CERN Document Server

    Izumi, Keisuke

    2014-01-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its non-canonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyse them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity, i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on dynamical solutions with $(D-2)$-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, $R_{AB}N^AN^B \\ge 0$ for any null vector $N^A$, is satisfied, the radial velocity of gravitons ...

  12. DIVE in the cosmic web: voids with Delaunay Triangulation from discrete matter tracer distributions

    CERN Document Server

    Zhao, Cheng; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun

    2015-01-01

    We present a novel parameter-free cosmological void finder (\\textsc{dive}, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including an universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5\\,$h^{-1}$Gpc side each, with a bias and number density similar to the BOSS CMASS Luminous Red Galaxies, performed with the \\textsc{patchy} code. Our results show that there are two main species of DT voids, which can be characterised by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collap...

  13. DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions

    Science.gov (United States)

    Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun

    2016-07-01

    We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.

  14. Refining a triangulation of a planar straight-line graph to eliminate large angles

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, S.A.

    1993-05-13

    Triangulations without large angles have a number of applications in numerical analysis and computer graphics. In particular, the convergence of a finite element calculation depends on the largest angle of the triangulation. Also, the running time of a finite element calculation is dependent on the triangulation size, so having a triangulation with few Steiner points is also important. Bern, Dobkin and Eppstein pose as an open problem the existence of an algorithm to triangulate a planar straight-line graph (PSLG) without large angles using a polynomial number of Steiner points. We solve this problem by showing that any PSLG with {upsilon} vertices can be triangulated with no angle larger than 7{pi}/8 by adding O({upsilon}{sup 2}log {upsilon}) Steiner points in O({upsilon}{sup 2} log{sup 2} {upsilon}) time. We first triangulate the PSLG with an arbitrary constrained triangulation and then refine that triangulation by adding additional vertices and edges. Some PSLGs require {Omega}({upsilon}{sup 2}) Steiner points in any triangulation achieving any largest angle bound less than {pi}. Hence the number of Steiner points added by our algorithm is within a log {upsilon} factor of worst case optimal. We note that our refinement algorithm works on arbitrary triangulations: Given any triangulation, we show how to refine it so that no angle is larger than 7{pi}/8. Our construction adds O(nm+nplog m) vertices and runs in time O(nm+nplog m) log(m+ p)), where n is the number of edges, m is one plus the number of obtuse angles, and p is one plus the number of holes and interior vertices in the original triangulation. A previously considered problem is refining a constrained triangulation of a simple polygon, where p = 1. For this problem we add O({upsilon}{sup 2}) Steiner points, which is within a constant factor of worst case optimal.

  15. Algorithm for Triangulating Visual Landmarks and Determining Their Covariance

    Science.gov (United States)

    2012-01-01

    gyroscopes ........................................ 22 1 1. INTRODUCTION The work described in this report has to do with the problem of vision...IMUs. Because of the small magnitude of random Euler angle errors from even inexpensive gyroscopes , the presented algorithm for triangulation is...gyroscopes9. Silicon-Vibratory MEMs Tactical-grade IFOGs Aviation-Grade Spinning Mass Random gyro rate noise 1 hr/ 0.1 hr/ 0.002 hr/ Random

  16. Random discrete Morse theory and a new library of triangulations

    DEFF Research Database (Denmark)

    Benedetti, Bruno; Lutz, Frank Hagen

    2014-01-01

    We introduce random discrete Morse theory as a computational scheme to measure the complexity of a triangulation. The idea is to try to quantify the frequency of discrete Morse matchings with few critical cells. Our measure will depend on the topology of the space, but also on how nicely the space......” for testing algorithms based on discrete Morse theory. We propose a new library containing more complicated (and thus more meaningful) test examples....

  17. Grounded theory, feminist theory, critical theory: toward theoretical triangulation.

    Science.gov (United States)

    Kushner, Kaysi Eastlick; Morrow, Raymond

    2003-01-01

    Nursing and social science scholars have examined the compatibility between feminist and grounded theory traditions in scientific knowledge generation, concluding that they are complementary, yet not without certain tensions. This line of inquiry is extended to propose a critical feminist grounded theory methodology. The construction of symbolic interactionist, feminist, and critical feminist variants of grounded theory methodology is examined in terms of the presuppositions of each tradition and their interplay as a process of theoretical triangulation.

  18. The Stabilization and Idempotent Completion of a Left Triangulated Category

    Institute of Scientific and Technical Information of China (English)

    Lin XIN; Yixin FU

    2012-01-01

    Let ((ψ),Ω,△) be a left triangulated category with a fully faithful endofunctor Ω.We show a triangle-equivalence (S((ψ)),(Ω),(△)) ≌ (S((ψ)),(Ω),(△)),where (S((ψ)),(Ω),(△)) denotes the stabilization of the idempotent completion of ((ψ),Ω,△) and (S((ψ)),(Ω),(△)) denotes the idempotent completion of the stabilization of ((ψ),Ω,△).

  19. Parallel implementation of an algorithm for Delaunay triangulation

    Science.gov (United States)

    Merriam, Marshal L.

    1992-01-01

    The theory and practice of implementing Tanemura's algorithm for 3D Delaunay triangulation on Intel's Gamma prototype, a 128 processor MIMD computer, is described. Efficient implementation of Tanemura's algorithm on a conventional, vector processing supercomputer is problematic. It does not vectorize to any significant degree and requires indirect addressing. Efficient implementation on a parallel architecture is possible, however. Speeds in excess of 20 times a single processor Cray Y-MP are realized on 128 processors of the Intel Gamma prototype.

  20. Performance Evaluation of Triangulation Based Range Sensors

    Directory of Open Access Journals (Sweden)

    Monica Bordegoni

    2010-07-01

    Full Text Available The performance of 2D digital imaging systems depends on several factors related with both optical and electronic processing. These concepts have originated standards, which have been conceived for photographic equipment and bi-dimensional scanning systems, and which have been aimed at estimating different parameters such as resolution, noise or dynamic range. Conversely, no standard test protocols currently exist for evaluating the corresponding performances of 3D imaging systems such as laser scanners or pattern projection range cameras. This paper is focused on investigating experimental processes for evaluating some critical parameters of 3D equipment, by extending the concepts defined by the ISO standards to the 3D domain. The experimental part of this work concerns the characterization of different range sensors through the extraction of their resolution, accuracy and uncertainty from sets of 3D data acquisitions of specifically designed test objects whose geometrical characteristics are known in advance. The major objective of this contribution is to suggest an easy characterization process for generating a reliable comparison between the performances of different range sensors and to check if a specific piece of equipment is compliant with the expected characteristics.

  1. Excerpt from Triangulations: Narrative Strategies for Navigating Latino Identity

    Directory of Open Access Journals (Sweden)

    David J. Vázquez

    2011-12-01

    Full Text Available Just as mariners use triangulation, mapping an imaginary triangle between two known positions and an unknown location, so, David J. Vázquez contends, Latino authors in late twentieth-century America employ the coordinates of familiar ideas of self to find their way to new, complex identities. Through this metaphor, Vázquez reveals how Latino autobiographical texts, written after the rise of cultural nationalism in the 1960s, challenge mainstream notions of individual identity and national belonging in the United States.In a traditional autobiographical work, the protagonist frequently opts out of his or her community. In the works that Vázquez analyzes in Triangulations, protagonists instead opt in to collective groups—often for the express political purpose of redefining that collective. Reading texts by authors such as Ernesto Galarza, Jesús Colón, Piri Thomas, Oscar “Zeta” Acosta, Judith Ortiz Cofer, John Rechy, Julia Alvarez, and Sandra Cisneros, Vázquez engages debates about the relationship between literature and social movements, the role of cultural nationalism in projects for social justice, the gender and sexual problematics of 1960s cultural nationalist groups, the possibilities for interethnic coalitions, and the interpretation of autobiography. In the process, Triangulations considers the potential for cultural nationalism as a productive force for aggrieved communities of color in their struggles for equality.

  2. Optical triangulation-based microtopographic inspection of surfaces.

    Science.gov (United States)

    Costa, Manuel F M

    2012-01-01

    The non-invasive inspection of surfaces is a major issue in a wide variety of industries and research laboratories. The vast and increasing range of surface types, tolerance requirements and measurement constraints demanded during the last decades represents a major research effort in the development of new methods, systems and metrological strategies. The discreet dimensional evaluation the rugometric characterization and the profilometric inspection seem to be insufficient in many instances. The full microtopographic inspection has became a common requirement. Among the different systems developed, optical methods have the most important role and among those triangulation-based ones have gained a major status thanks to their flexibility, reliability and robustness. In this communication we will provide a brief historical review on the development of optical triangulation application to the dimensional inspection of objects and surfaces and on the work done at the Microtopography Laboratory of the Physics Department of the University of Minho, Portugal, in the development of methods and systems of optical triangulation-based microtopographic inspection of surfaces.

  3. Study design in causal models

    OpenAIRE

    2012-01-01

    The causal assumptions, the study design and the data are the elements required for scientific inference in empirical research. The research is adequately communicated only if all of these elements and their relations are described precisely. Causal models with design describe the study design and the missing data mechanism together with the causal structure and allow the direct application of causal calculus in the estimation of the causal effects. The flow of the study is visualized by orde...

  4. Assimetria causal: um estudo

    Directory of Open Access Journals (Sweden)

    Túlio Aguiar

    2003-12-01

    Full Text Available Neste artigo, examinamos o aspecto assimétrico da relação causal, confrontando-o com o ponto de vista humiano e neo-humiano. Seguindo Hausman e Ehring, favorecemos uma abordagem situacional para a assimetria causal. Nós exploramos a análise do famoso exemplo do mastro (Flagpole, esclarecendo as conexões entre causação e explicação. Nosso diagnóstico geral é que a tradição neo-humiana supõe, equivocadamente, que as relações nômicas, com exceção de pequenos detalhes, exaurem as relações causais.This paper examines the asymmetrical aspect of causal relation, confronting it to Humean and Neo-Humean's view. Following Hausman and Ehring, we favor a situational approach to causal asymmetry. We explore the Hausman's analysis of flagpole's example, clearing the connexions between causation and explanation. Our general diagnosis is that the Neo-humean tradition wrongly supposes that nomic relations, with the exception of minor details, exhaust the causal relations.

  5. Biased causal inseparable game

    CERN Document Server

    Bhattacharya, Some Sankar

    2015-01-01

    Here we study the \\emph{causal inseparable} game introduced in [\\href{http://www.nature.com/ncomms/journal/v3/n10/full/ncomms2076.html}{Nat. Commun. {\\bf3}, 1092 (2012)}], but it's biased version. Two separated parties, Alice and Bob, generate biased bits (say input bit) in their respective local laboratories. Bob generates another biased bit (say decision bit) which determines their goal: whether Alice has to guess Bob's bit or vice-verse. Under the assumption that events are ordered with respect to some global causal relation, we show that the success probability of this biased causal game is upper bounded, giving rise to \\emph{biased causal inequality} (BCI). In the \\emph{process matrix} formalism, which is locally in agreement with quantum physics but assume no global causal order, we show that there exist \\emph{inseparable} process matrices that violate the BCI for arbitrary bias in the decision bit. In such scenario we also derive the maximal violation of the BCI under local operations involving tracele...

  6. Triangulation Algorithm Based on Empty Convex Set Condition

    Directory of Open Access Journals (Sweden)

    Klyachin Vladimir Aleksandrovich

    2015-11-01

    Full Text Available The article is devoted to generalization of Delaunay triangulation. We suggest to consider empty condition for special convex sets. For given finite set P ⊂ Rn we shall say that empty condition for convex set B ⊂ Rn is fullfiled if P ∩ B = P ∩ ∂B. Let Φ = Φα, α ∈ A be a family of compact convex sets with non empty inner. Consider some nondegenerate simplex S ⊂ Rn with vertexes p0,...,pn. We define the girth set B(S ∈ Φ if qi ∈ ∂B(S, i = 0, 1, ..., n. We suppose that the family Φ has the property: for arbitrary nondegenerate simplex S there is only one the girth set B(S. We prove the following main result. Theorem 1. If the family Φ = Φα, α ∈ A of convex sets have the pointed above property then for the girth sets it is true: 1. The set B(S is uniquely determined by any simplex with vertexes on ∂B(S. 2. Let S1, S2 be two nondegenerate simplexes such that B(S1 ≠ B(S2. If the intersection B(S1 ∩ B(S2 is not empty, then the intersection of boundaries B(S1, B(S2 is (n − 2-dimensional convex surface, lying in some hyperplane. 3. If two simplexes S1 and S2 don’t intersect by inner points and have common (n − 1-dimensional face G and A, B are vertexes don’t belong to face G and vertex B of simplex B(S2 such that B ∉ B(S1 then B(S2 does not contain the vertex A of simplex S1. These statements allow us to define Φ-triangulation correctly by the following way. The given triangulation T of finite set P ⊂ Rn is called Φ-triangulation if for all simlex S ∈ T the girth set B(S ∈ Φ is empty. In the paper we give algorithm for construct Φ-triangulation arbitrary finite set P ⊂ Rn. Besides we describe examples of families Φ for which we prove the existence and uniqueness of girth set B(S for arbitrary nondegenerate simplex S.

  7. Causal inference in econometrics

    CERN Document Server

    Kreinovich, Vladik; Sriboonchitta, Songsak

    2016-01-01

    This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.

  8. Carbon Emissions and Economic Growth: Alternative Approaches to Causality Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rehdanz, Katrin (Christian-Albrechts Univ., Kiel (Germany)); Maddison, David J. (Univ. of Birmingham, Dept. of Economics, Birmingham (United Kingdom))

    2008-07-01

    Numerous papers have examined data on energy and GDP for evidence of Granger causality. More recently this technique has been extended to looking at the relationship between carbon emissions and GDP per capita. These analyses frequently reach differing conclusions concerning the existence and direction of Granger causality. This paper compares the standard fixed-dynamic-effects approach to a heterogenous panel approach testing for evidence of a causal relationship between GDP per capita and carbon emissions per capita allowing for heterogeneity. Overall there is strong evidence for the existence of a bidirectional causal relationship between GDP per capita and CO{sub 2} emissions per capita

  9. Triangulation of the neurocomputational architecture underpinning reading aloud.

    Science.gov (United States)

    Hoffman, Paul; Lambon Ralph, Matthew A; Woollams, Anna M

    2015-07-14

    The goal of cognitive neuroscience is to integrate cognitive models with knowledge about underlying neural machinery. This significant challenge was explored in relation to word reading, where sophisticated computational-cognitive models exist but have made limited contact with neural data. Using distortion-corrected functional MRI and dynamic causal modeling, we investigated the interactions between brain regions dedicated to orthographic, semantic, and phonological processing while participants read words aloud. We found that the lateral anterior temporal lobe exhibited increased activation when participants read words with irregular spellings. This area is implicated in semantic processing but has not previously been considered part of the reading network. We also found meaningful individual differences in the activation of this region: Activity was predicted by an independent measure of the degree to which participants use semantic knowledge to read. These characteristics are predicted by the connectionist Triangle Model of reading and indicate a key role for semantic knowledge in reading aloud. Premotor regions associated with phonological processing displayed the reverse characteristics. Changes in the functional connectivity of the reading network during irregular word reading also were consistent with semantic recruitment. These data support the view that reading aloud is underpinned by the joint operation of two neural pathways. They reveal that (i) the ATL is an important element of the ventral semantic pathway and (ii) the division of labor between the two routes varies according to both the properties of the words being read and individual differences in the degree to which participants rely on each route.

  10. Complementarity, causality, and explanation

    CERN Document Server

    Losee, John

    2013-01-01

    Prior to the work of Niels Bohr, discussions on the relationship of cause and effect presupposed that successful causal attribution implies explanation. The success of quantum theory challenged this presupposition. In this succinct review of the history of these discussions, John Losee presents the philosophical background of debates over the cause-effect relation. He reviews the positions of Aristotle, René Descartes, Isaac Newton, David Hume, Immanuel Kant, and John Stuart Mill. He shows how nineteenth-century theories in physics and chemistry were informed by a dominant theory of causality

  11. Causal premise semantics.

    Science.gov (United States)

    Kaufmann, Stefan

    2013-08-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals.

  12. Does Causality Matter More Now? Increase in the Proportion of Causal Language in English Texts.

    Science.gov (United States)

    Iliev, Rumen; Axelrod, Robert

    2016-05-01

    The vast majority of the work on culture and cognition has focused on cross-cultural comparisons, largely ignoring the dynamic aspects of culture. In this article, we provide a diachronic analysis of causal cognition over time. We hypothesized that the increased role of education, science, and technology in Western societies should be accompanied by greater attention to causal connections. To test this hypothesis, we compared word frequencies in English texts from different time periods and found an increase in the use of causal language of about 40% over the past two centuries. The observed increase was not attributable to general language effects or to changing semantics of causal words. We also found that there was a consistent difference between the 19th and the 20th centuries, and that the increase happened mainly in the 20th century.

  13. Understanding Causal Coherence Relations

    NARCIS (Netherlands)

    Mulder, G.

    2008-01-01

    The research reported in this dissertation focuses on the cognitive processes and representations involved in understanding causal coherence relations in text. Coherence relations are the meaning relations between the information units in the text, such as Cause-Consequence. These relations can be m

  14. Causality: Physics and Philosophy

    Science.gov (United States)

    Chatterjee, Atanu

    2013-01-01

    Nature is a complex causal network exhibiting diverse forms and species. These forms or rather systems are physically open, structurally complex and naturally adaptive. They interact with the surrounding media by operating a positive-feedback loop through which, they adapt, organize and self-organize themselves in response to the ever-changing…

  15. Exploring Forms of Triangulation to Facilitate Collaborative Research Practice: Reflections From a Multidisciplinary Research Group

    Directory of Open Access Journals (Sweden)

    Tarja Tiainen

    2006-10-01

    Full Text Available This article contains critical reflections of a multidisciplinary research group studying the human and technological dynamics around some newly offered electronic services in a specific rural area of Finland. For their research, the group adopted ethnography. On facing the challenges of doing ethnographic research in a multidisciplinary setting, the group evolved its own breed of research practice based on multiple forms of triangulation. This implied the use of multiple data sources, methods, theories, and researchers, in different combinations. One of the outcomes of the work is a model for collaborative research. It highlights, among others, the importance of creating a climate for collaboration within the research group and following a process of individual and collaborative writing to achieve the potential benefits of such research. The article also identifies a set of remaining challenges relevant to collaborative research.

  16. Reducing the Bias of Causality Measures

    CERN Document Server

    Papana, A; Larsson, P G

    2011-01-01

    Measures of the direction and strength of the interdependence between two time series are evaluated and modified in order to reduce the bias in the estimation of the measures, so that they give zero values when there is no causal effect. For this, point shuffling is employed as used in the frame of surrogate data. This correction is not specific to a particular measure and it is implemented here on measures based on state space reconstruction and information measures. The performance of the causality measures and their modifications is evaluated on simulated uncoupled and coupled dynamical systems and for different settings of embedding dimension, time series length and noise level. The corrected measures, and particularly the suggested corrected transfer entropy, turn out to stabilize at the zero level in the absence of causal effect and detect correctly the direction of information flow when it is present. The measures are also evaluated on electroencephalograms (EEG) for the detection of the information fl...

  17. Quantum objects as elementary units of causality and locality

    CERN Document Server

    Diel, Hans H

    2016-01-01

    The author's attempt to construct a local causal model of quantum theory (QT) that includes quantum field theory (QFT) resulted in the identification of "quantum objects" as the elementary units of causality and locality. Quantum objects are collections of particles (including single particles) whose collective dynamics and measurement results can only be described by the laws of QT and QFT. Local causal models of quantum objects' internal dynamics are not possible if a locality is understood as a space-point locality. Within quantum objects, state transitions may occur which instantly affect the whole quantum object. The identification of quantum objects as the elementary units of causality and locality has two primary implications for a causal model of quantum objects: (1) quantum objects run autonomously with system-state update frequencies based on their local proper times and with either no or minimal dependency on external parameters. (2) The laws of physics that describe global (but relativistic) inter...

  18. Optimizing 3D Triangulations to Recapture Sharp Edges

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    2006-01-01

    sharp edges. The energy is minimized using edge swapping, and this can be done either in a greedy fashion or using simulated annealing. The latter is more costly, but effectively avoids local minima. The method has been used on a number of models. Particularly good results have been obtained on digital...... terrain models. It is demonstrated how the method has been able to recapture sharp edges which are clearly present in the data but not reflected by the original triangulation of the elevation points....

  19. On a Linear Program for Minimum-Weight Triangulation

    CERN Document Server

    Yousefi, Arman

    2011-01-01

    Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time constant-factor approximation algorithm, and a variety of effective polynomial- time heuristics that, for many instances, can find the exact MWT. Linear programs (LPs) for MWT are well-studied, but previously no connection was known between any LP and any approximation algorithm or heuristic for MWT. Here we show the first such connections: for an LP formulation due to Dantzig et al. (1985): (i) the integrality gap is bounded by a constant; (ii) given any instance, if the aforementioned heuristics find the MWT, then so does the LP.

  20. Recent development of micro-triangulation for magnet fiducialisation

    CERN Document Server

    Vlachakis, Vasileios; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    The micro-triangulation method is proposed as an alternative for magnet fiducialisation. The main objective is to measure horizontal and vertical angles to fiducial points and stretched wires, utilising theodolites equipped with cameras. This study aims to develop various methods, algorithms and software tools to enable the data acquisition and processing. In this paper, we present the first test measurement as an attempt to demonstrate the feasibility of the method and to evaluate the accuracy. The preliminary results are very promising, with accuracy always better than 20 μm for the wire position, and of about40 μm/m for the wire orientation, compared with a coordinate measuring machine.

  1. A displacement measurement system based on optical triangulation method

    Institute of Scientific and Technical Information of China (English)

    FU Xian-bin; LIU Bin; ZHANG Yu-cun

    2011-01-01

    A new displacement measurement system is described in this paper according to the basic principles of traditional laser triangulation method.The range of the traditional measuring method is enlarged by measuring in sections.Three independent CCDs,which are distributed uniformly along the optical axis,are used to achieve subsection measurement.The plane mirror is regarded as a virtual detector.When imaging beam is reflected by the plane mirror,the beam is imaged on the CCD.The designed system is equivalent to add a CCD.The feasibility of the displacement measurement system is verified by the experiment.

  2. Hex-dominant mesh generation using 3D constrained triangulation

    Energy Technology Data Exchange (ETDEWEB)

    OWEN,STEVEN J.

    2000-05-30

    A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.

  3. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    DEFF Research Database (Denmark)

    Karagiannis, Georgios; Antón Castro, Francesc/François; Mioc, Darka

    2016-01-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features...... of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches....

  4. Comparative Study of Triangulation based and Feature based Image Morphing

    Directory of Open Access Journals (Sweden)

    Ms. Bhumika G. Bhatt

    2012-01-01

    Full Text Available Image Morphing is one of the most powerful Digital Image processing technique, which is used to enhancemany multimedia projects, presentations, education and computer based training. It is also used inmedical imaging field to recover features not visible in images by establishing correspondence of featuresamong successive pair of scanned images. This paper discuss what morphing is and implementation ofTriangulation based morphing Technique and Feature based Image Morphing. IT analyze both morphingtechniques in terms of different attributes such as computational complexity, Visual quality of morphobtained and complexity involved in selection of features.

  5. Triangulation of 3D Surfaces Recovered from STL Grids

    Directory of Open Access Journals (Sweden)

    D. Rypl

    2004-01-01

    Full Text Available In the present paper, an algorithm for the discretization of parametric 3D surfaces has been extended to the family of discrete surfaces represented by stereolithography (STL grids. The STL file format, developed for the rapid prototyping industry, is an attractive alternative to surface representation in solid modeling. Initially, a boundary representation is constructed from the STL file using feature recognition. Then a smooth surface is recovered over the original STL grid using an interpolating subdivision procedure. Finally, the reconstructed surface is subjected to the triangulation accomplished using the advancing front technique operating directly on the surface. The capability of the proposed methodology is illustrated on an example. 

  6. Causal diagrams for physical models

    CERN Document Server

    Kinsler, Paul

    2015-01-01

    I present a scheme of drawing causal diagrams based on physically motivated mathematical models expressed in terms of temporal differential equations. They provide a means of better understanding the processes and causal relationships contained within such systems.

  7. Information causality and noisy computations

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Li-Yi [Department of Physics, Chung Yuan Christian University, Chung-li 32023, Taiwan (China); Yu, I-Ching; Lin, Feng-Li [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2011-10-15

    We reformulate the information causality in a more general framework by adopting the results of signal propagation and computation in a noisy circuit. In our framework, the information causality leads to a broad class of Tsirelson inequalities. This fact allows us to subject information causality to experimental scrutiny. A no-go theorem for reliable nonlocal computation is also derived. Information causality prevents any physical circuit from performing reliable computations.

  8. Spectral Geometry and Causality

    CERN Document Server

    Kopf, T

    1996-01-01

    For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...

  9. Quantum information causality

    OpenAIRE

    Pitalúa-García, Damián

    2012-01-01

    How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combin...

  10. Generating triangulated macromolecular surfaces by Euclidean Distance Transform.

    Directory of Open Access Journals (Sweden)

    Dong Xu

    Full Text Available Macromolecular surfaces are fundamental representations of their three-dimensional geometric shape. Accurate calculation of protein surfaces is of critical importance in the protein structural and functional studies including ligand-protein docking and virtual screening. In contrast to analytical or parametric representation of macromolecular surfaces, triangulated mesh surfaces have been proved to be easy to describe, visualize and manipulate by computer programs. Here, we develop a new algorithm of EDTSurf for generating three major macromolecular surfaces of van der Waals surface, solvent-accessible surface and molecular surface, using the technique of fast Euclidean Distance Transform (EDT. The triangulated surfaces are constructed directly from volumetric solids by a Vertex-Connected Marching Cube algorithm that forms triangles from grid points. Compared to the analytical result, the relative error of the surface calculations by EDTSurf is <2-4% depending on the grid resolution, which is 1.5-4 times lower than the methods in the literature; and yet, the algorithm is faster and costs less computer memory than the comparative methods. The improvements in both accuracy and speed of the macromolecular surface determination should make EDTSurf a useful tool for the detailed study of protein docking and structure predictions. Both source code and the executable program of EDTSurf are freely available at http://zhang.bioinformatics.ku.edu/EDTSurf.

  11. A MODIFIED METHOD FOR IMAGE TRIANGULATION USING INCLINED ANGLES

    Directory of Open Access Journals (Sweden)

    B. Alsadik

    2016-06-01

    Full Text Available The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV, and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state – of –the –art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  12. Computing 2D constrained delaunay triangulation using the GPU.

    Science.gov (United States)

    Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng

    2013-05-01

    We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.

  13. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    Science.gov (United States)

    Karagiannis, Georgios; Antón Castro, Francesc; Mioc, Darka

    2016-06-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detected are invariant to image rotations, translations, scaling and also to changes in illumination, brightness and 3-dimensional viewpoint. Afterwards, each feature of the reference image is matched with one in the sensed image if, and only if, the distance between them multiplied by a threshold is shorter than the distances between the point and all the other points in the sensed image. Then, the matched features are used to compute the parameters of the homography that transforms the coordinate system of the sensed image to the coordinate system of the reference image. The Delaunay triangulations of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches.

  14. Triangulation of the Gigantic Jets in 20 August 2014

    Science.gov (United States)

    Kang-Ming, P.; Hsu, R. R.; Su, H. T.; Chen, A. B. C.; Chou, J. K.; Chang, S. C.; Wu, Y. J.; Chien-Lun, H.; Yang, I. C.; Tsai, S. H.

    2015-12-01

    Coordinate optical observation campaigns on TLEs near Taiwan are held since 2011 with the aim to triangulate TLEs. Currently, there are four stations with baseline varying from 100 to 400 km between them. Our optical observation systems recorded 48 various types of TLEs on the night of 20 August 2014, with eight of them being gigantic jets that were recorded by at least two stations. Due to the length of baselines and the TLE occurring locations, the earth curvature needed to be taken into account by means of spherical trigonometry method. The preliminary results shows the gigantic jets occurred over the northern Taiwan and the accuracy of geolocation is less than 1 km and the accuracy of the retrieval height on the key structures is less than 0.5 km. The triangulation results of the eight events indicate most of these gigantic jets terminated at 80-90km, but one of the gigantic jets is likely extend to 100 km. Three of the eight gigantic jets occurred consequently after previous one with time interval of 500ms to more than 100s. The previous gigantic jet is likely to influence the consequent gigantic jet for usually the consequent gigantic jet has more beads structures in high altitude and one of the streamer column of a consequent gigantic jets at 55 -60 km is identified to re-bright, which is more than 100s after the previous gigantic jet.

  15. Solving the horizontal conflation problem with a constrained Delaunay triangulation

    Science.gov (United States)

    Ledoux, Hugo; Ohori, Ken Arroyo

    2017-01-01

    Datasets produced by different countries or organisations are seldom properly aligned and contain several discrepancies (e.g., gaps and overlaps). This problem has been so far almost exclusively tackled by snapping vertices based on a user-defined threshold. However, as we argue in this paper, this leads to invalid geometries, is error-prone, and leaves several discrepancies along the boundaries. We propose a novel algorithm to align the boundaries of adjacent datasets. It is based on a constrained Delaunay triangulation to identify and eliminate the discrepancies, and the alignment is performed without moving vertices with a snapping operator. This allows us to guarantee that the datasets have been properly conflated and that the polygons are geometrically valid. We present our algorithm, our implementation (based on the stable and fast triangulator in CGAL), and we show how it can be used it practice with different experiments with real-world datasets. Our experiments demonstrate that our approach is highly efficient and that it yields better results than snapping-based methods.

  16. Eccentric error and compensation in rotationally symmetric laser triangulation

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Gao Jun; Wang Xiaojia; Johannes Eckstein; Peter Ott

    2007-01-01

    Rotationally symmetric triangulation (RST) sensor has more flexibility and less uncertainty limits becauseof the abaxial rotationally symmetric optical system.But if the incident laser is eccentric,the symmetry of the imagewill descend,and it will result in the eccentric error especially when some part of the imaged ring is blocked.Themodel of rotationally symmetric triangulation that meets the Schimpflug condition is presented in this paper.The errorfrom eccentric incident 1aser is analysed.It iS pointed out that the eccentric error is composed of two parts.one is acosine in circumference and proportional to the eccentric departure factor,and the other is a much smaller quadricfactor of the departure.When the ring is complete,the first error factor is zero because it is integrated in whole ring,but if some part of the ring iS blocked,the first factor will be the main error.Simulation verifies the result of the a-nalysis.At last,a compensation method to the error when some part of the ring is lost is presented based on neuralnetwork.The results of experiment show that the compensation will make the absolute maximum error descend tohalf,and the standard deviation of error descends to 1/3.

  17. Identification of novel autoantigens by a triangulation approach.

    Science.gov (United States)

    Cottrell, Tricia R; Hall, John C; Rosen, Antony; Casciola-Rosen, Livia

    2012-11-30

    High titer autoantibodies, which are often associated with specific clinical phenotypes, are useful diagnostically and prognostically in systemic autoimmune diseases. In several autoimmune rheumatic diseases (e.g. myositis and Sjogren's syndrome), 20-40% of patients are autoantibody negative as assessed by conventional assays. The recent discovery of new specificities (e.g., anti-MDA5) in a subset of these autoantibody-negative subjects demonstrates that additional specificities await identification. In this manuscript, we describe a rapid multidimensional method to identify new autoantigens. A central foundation of this rapid approach is the use of an antigen source in which a pathogenic pathway active in the disease is recapitulated. Additionally, the method involves a modified serological proteome analysis strategy which allows confirmation that the correct gel plug has been removed prior to sending for sequencing. Lastly, the approach uses multiple sources of information to enable rapid triangulation and identification of protein candidates. Possible permutations and underlying principles of this triangulation strategy are elaborated to demonstrate the broad utility of this approach for antigen discovery.

  18. The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.

    Science.gov (United States)

    Carson, Cantwell G; Levine, Jonathan S

    2016-09-01

    The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed.

  19. a Modified Method for Image Triangulation Using Inclined Angles

    Science.gov (United States)

    Alsadik, Bashar

    2016-06-01

    The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state - of -the -art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  20. Causality between time series

    CERN Document Server

    Liang, X San

    2014-01-01

    Given two time series, can one tell, in a rigorous and quantitative way, the cause and effect between them? Based on a recently rigorized physical notion namely information flow, we arrive at a concise formula and give this challenging question, which is of wide concern in different disciplines, a positive answer. Here causality is measured by the time rate of change of information flowing from one series, say, X2, to another, X1. The measure is asymmetric between the two parties and, particularly, if the process underlying X1 does not depend on X2, then the resulting causality from X2 to X1 vanishes. The formula is tight in form, involving only the commonly used statistics, sample covariances. It has been validated with touchstone series purportedly generated with one-way causality. It has also been applied to the investigation of real world problems; an example presented here is the cause-effect relation between two climate modes, El Ni\\~no and Indian Ocean Dipole, which have been linked to the hazards in f...

  1. Causality in physiological signals.

    Science.gov (United States)

    Müller, Andreas; Kraemer, Jan F; Penzel, Thomas; Bonnemeier, Hendrik; Kurths, Jürgen; Wessel, Niels

    2016-05-01

    Health is one of the most important non-material assets and thus also has an enormous influence on material values, since treating and preventing diseases is expensive. The number one cause of death worldwide today originates in cardiovascular diseases. For these reasons the aim of understanding the functions and the interactions of the cardiovascular system is and has been a major research topic throughout various disciplines for more than a hundred years. The purpose of most of today's research is to get as much information as possible with the lowest possible effort and the least discomfort for the subject or patient, e.g. via non-invasive measurements. A family of tools whose importance has been growing during the last years is known under the headline of coupling measures. The rationale for this kind of analysis is to identify the structure of interactions in a system of multiple components. Important information lies for example in the coupling direction, the coupling strength, and occurring time lags. In this work, we will, after a brief general introduction covering the development of cardiovascular time series analysis, introduce, explain and review some of the most important coupling measures and classify them according to their origin and capabilities in the light of physiological analyses. We will begin with classical correlation measures, go via Granger-causality-based tools, entropy-based techniques (e.g. momentary information transfer), nonlinear prediction measures (e.g. mutual prediction) to symbolic dynamics (e.g. symbolic coupling traces). All these methods have contributed important insights into physiological interactions like cardiorespiratory coupling, neuro-cardio-coupling and many more. Furthermore, we will cover tools to detect and analyze synchronization and coordination (e.g. synchrogram and coordigram). As a last point we will address time dependent couplings as identified using a recent approach employing ensembles of time series. The

  2. Revisiting Causality in Markov Chains

    CERN Document Server

    Shojaee, Abbas

    2016-01-01

    Identifying causal relationships is a key premise of scientific research. The growth of observational data in different disciplines along with the availability of machine learning methods offers the possibility of using an empirical approach to identifying potential causal relationships, to deepen our understandings of causal behavior and to build theories accordingly. Conventional methods of causality inference from observational data require a considerable length of time series data to capture cause-effect relationship. We find that potential causal relationships can be inferred from the composition of one step transition rates to and from an event. Also known as Markov chain, one step transition rates are a commonly available resource in different scientific disciplines. Here we introduce a simple, effective and computationally efficient method that we termed 'Causality Inference using Composition of Transitions CICT' to reveal causal structure with high accuracy. We characterize the differences in causes,...

  3. Operationalizing Triangulation in Naturalistic Evaluation: Community Education in Kanawha County (WVA).

    Science.gov (United States)

    Schwartz, Terry Ann; Kaplan, Michael H.

    The benefits accrued through the use of triangulation as both a design strategy and an analytic tool cannot be overstated. Triangulation allows for the clustering and organizing of disparate yet related data. Finding out what the data have in common and how the data are different allow the researcher to eliminate (or reduce) the number of…

  4. Investigation of point triangulation methods for optimality and performance in Structure from Motion systems

    DEFF Research Database (Denmark)

    an overview of existing triangulation methods with emphasis on performance versus optimality, and will suggest a fast triangulation algorithm based on linear constraints. The structure and camera motion estimation in a SFM system is based on the minimization of some norm of the reprojection error between...

  5. A Detailed Evaluation of a Laser Triangulation Ranging System for Mobile Robots

    Science.gov (United States)

    1983-08-01

    A RPI TECHNICAL REPORT MP-82 A DETAILED EVALUATION OF A LASER - TRIANGULATION RANGING SYSTEM FOR MOBILE ROBOTS by Thomas J. Clement Contract MDA-903...Polytechnic Institute Technical Report MP-79, Troy, N.Y., May 1982. 9. McNellis, T., "Evaluation of a Laser Triangulation Ranging System for Mobile Robots ." Rensselaer

  6. Causal relationship between microbial ecology dynamics and proteolysis during manufacture and ripening of protected designation of origin (PDO) cheese Canestrato Pugliese.

    Science.gov (United States)

    De Pasquale, Ilaria; Calasso, Maria; Mancini, Leonardo; Ercolini, Danilo; La Storia, Antonietta; De Angelis, Maria; Di Cagno, Raffaella; Gobbetti, Marco

    2014-07-01

    Pyrosequencing of the 16S rRNA gene, community-level physiological profiles determined by the use of Biolog EcoPlates, and proteolysis analyses were used to characterize Canestrato Pugliese Protected Designation of Origin (PDO) cheese. The number of presumptive mesophilic lactococci in raw ewes' milk was higher than that of presumptive mesophilic lactobacilli. The numbers of these microbial groups increased during ripening, showing temporal and numerical differences. Urea-PAGE showed limited primary proteolysis, whereas the analysis of the pH 4.6-soluble fraction of the cheese revealed that secondary proteolysis increased mainly from 45 to 75 days of ripening. This agreed with the concentration of free amino acids. Raw ewes' milk was contaminated by several bacterial phyla: Proteobacteria (68%; mainly Pseudomonas), Firmicutes (30%; mainly Carnobacterium and Lactococcus), Bacteroidetes (0.05%), and Actinobacteria (0.02%). Almost the same microbial composition persisted in the curd after molding. From day 1 of ripening onwards, the phylum Firmicutes dominated. Lactococcus dominated throughout ripening, and most of the Lactobacillus species appeared only at 7 or 15 days. At 90 days, Lactococcus (87.2%), Lactobacillus (4.8%; mainly Lactobacillus plantarum and Lactobacillus sakei), and Leuconostoc (3.9%) dominated. The relative utilization of carbon sources by the bacterial community reflected the succession. This study identified strategic phases that characterized the manufacture and ripening of Canestrato Pugliese cheese and established a causal relationship between mesophilic lactobacilli and proteolysis.

  7. Mitigating the effects of measurement noise on Granger causality

    CERN Document Server

    Nalatore, Hariharan; Ding, Mingzhou

    2007-01-01

    Computing Granger causal relations among bivariate experimentally observed time series has received increasing attention over the past few years. Such causal relations, if correctly estimated, can yield significant insights into the dynamical organization of the system being investigated. Since experimental measurements are inevitably contaminated by noise, it is thus important to understand the effects of such noise on Granger causality estimation. The first goal of this paper is to provide an analytical and numerical analysis of this problem. Specifically, we show that, due to noise contamination, (1) spurious causality between two measured variables can arise and (2) true causality can be suppressed. The second goal of the paper is to provide a denoising strategy to mitigate this problem. Specifically, we propose a denoising algorithm based on the combined use of the Kalman filter theory and the Expectation-Maximization (EM) algorithm. Numerical examples are used to demonstrate the effectiveness of the den...

  8. A REST Service for Triangulation of Point Sets Using Oriented Matroids

    Directory of Open Access Journals (Sweden)

    José Antonio Valero Medina

    2014-05-01

    Full Text Available This paper describes the implementation of a prototype REST service for triangulation of point sets collected by mobile GPS receivers. The first objective of this paper is to test functionalities of an application, which exploits mobile devices’ capabilities to get data associated with their spatial location. A triangulation of a set of points provides a mechanism through which it is possible to produce an accurate representation of spatial data. Such triangulation may be used for representing surfaces by Triangulated Irregular Networks (TINs, and for decomposing complex two-dimensional spatial objects into simpler geometries. The second objective of this paper is to promote the use of oriented matroids for finding alternative solutions to spatial data processing and analysis tasks. This study focused on the particular case of the calculation of triangulations based on oriented matroids. The prototype described in this paper used a wrapper to integrate and expose several tools previously implemented in C++.

  9. Using Methodological Triangulation to Study the Individual Compliance Behaviour Towards Income Reporting

    Directory of Open Access Journals (Sweden)

    Gabriela ȘTEFURA

    2014-04-01

    Full Text Available The research in tax compliance has approached various methods of data collection, but almost never methodological triangulation has been used. Triangulation helps the researcher in obtaining more reliable results, if they prove to be similar after each method used and also it increases the validity of the entire study. The purpose of the paper is to highlight the importance of triangulation and especially methodological triangulation, by presenting the use of it in researching the compliance behaviour of three categories of individual Romanian taxpayers (doctors, lawyers/notaries and self-employed accountants towards income reporting. Two studies have been conducted: a survey on actual taxpayers and a quasi-experiment on potential taxpayers. The studies had similar results, so the usefulness of triangulation is once again confirmed. The results may be useful to both theorists and practitioners.

  10. Quantum Fields on Causal Sets

    CERN Document Server

    Johnston, Steven

    2010-01-01

    Causal set theory provides a model of discrete spacetime in which spacetime events are represented by elements of a causal set---a locally finite, partially ordered set in which the partial order represents the causal relationships between events. The work presented here describes a model for matter on a causal set, specifically a theory of quantum scalar fields on a causal set spacetime background. The work starts with a discrete path integral model for particles on a causal set. Here quantum mechanical amplitudes are assigned to trajectories within the causal set. By summing these over all trajectories between two spacetime events we obtain a causal set particle propagator. With a suitable choice of amplitudes this is shown to agree (in an appropriate sense) with the retarded propagator for the Klein-Gordon equation in Minkowski spacetime. This causal set propagator is then used to define a causal set analogue of the Pauli-Jordan function that appears in continuum quantum field theories. A quantum scalar fi...

  11. Entropy of Causal Horizons

    CERN Document Server

    Howard, Eric M

    2016-01-01

    We analyze spacetimes with horizons and study the thermodynamic aspects of causal horizons, suggesting that the resemblance between gravitational and thermodynamic systems has a deeper quantum mechanical origin. We find that the observer dependence of such horizons is a direct consequence of associating a temperature and entropy to a spacetime. The geometrical picture of a horizon acting as a one-way membrane for information flow can be accepted as a natural interpretation of assigning a quantum field theory to a spacetime with boundary, ultimately leading to a close connection with thermodynamics.

  12. Quantum information causality.

    Science.gov (United States)

    Pitalúa-García, Damián

    2013-05-24

    How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs.

  13. Causality and Micro-Causality in Curved Spacetime

    OpenAIRE

    Hollowood, Timothy J.; Shore, Graham M.

    2007-01-01

    We consider how causality and micro-causality are realised in QED in curved spacetime. The photon propagator is found to exhibit novel non-analytic behaviour due to vacuum polarization, which invalidates the Kramers-Kronig dispersion relation and calls into question the validity of micro-causality in curved spacetime. This non-analyticity is ultimately related to the generic focusing nature of congruences of geodesics in curved spacetime, as implied by the null energy condition, and the exist...

  14. World oil and agricultural commodity prices: Evidence from nonlinear causality

    Energy Technology Data Exchange (ETDEWEB)

    Nazlioglu, Saban, E-mail: snazlioglu@pau.edu.t [Department of Econometrics, Pamukkale University, Denizli (Turkey)

    2011-05-15

    The increasing co-movements between the world oil and agricultural commodity prices have renewed interest in determining price transmission from oil prices to those of agricultural commodities. This study extends the literature on the oil-agricultural commodity prices nexus, which particularly concentrates on nonlinear causal relationships between the world oil and three key agricultural commodity prices (corn, soybeans, and wheat). To this end, the linear causality approach of Toda-Yamamoto and the nonparametric causality method of Diks-Panchenko are applied to the weekly data spanning from 1994 to 2010. The linear causality analysis indicates that the oil prices and the agricultural commodity prices do not influence each other, which supports evidence on the neutrality hypothesis. In contrast, the nonlinear causality analysis shows that: (i) there are nonlinear feedbacks between the oil and the agricultural prices, and (ii) there is a persistent unidirectional nonlinear causality running from the oil prices to the corn and to the soybeans prices. The findings from the nonlinear causality analysis therefore provide clues for better understanding the recent dynamics of the agricultural commodity prices and some policy implications for policy makers, farmers, and global investors. This study also suggests the directions for future studies. - Research highlights: {yields} This study determines the price transmission mechanisms between the world oil and three key agricultural commodity prices (corn, soybeans, and wheat). {yields} The linear and nonlinear cointegration and causality methods are carried out. {yields} The linear causality analysis supports evidence on the neutrality hypothesis. {yields} The nonlinear causality analysis shows that there is a persistent unidirectional causality from the oil prices to the corn and to the soybeans prices.

  15. Technique Triangulation for Validation in Directed Content Analysis

    Directory of Open Access Journals (Sweden)

    Áine M. Humble PhD

    2009-09-01

    Full Text Available Division of labor in wedding planning varies for first-time marriages, with three types of couples—traditional, transitional, and egalitarian—identified, but nothing is known about wedding planning for remarrying individuals. Using semistructured interviews, the author interviewed 14 couples in which at least one person had remarried and used directed content analysis to investigate the extent to which the aforementioned typology could be transferred to this different context. In this paper she describes how a triangulation of analytic techniques provided validation for couple classifications and also helped with moving beyond “blind spots” in data analysis. Analytic approaches were the constant comparative technique, rank order comparison, and visual representation of coding, using MAXQDA 2007's tool called TextPortraits.

  16. Spatial analysis of the Chania prefecture: Crete triangulation network quality

    Science.gov (United States)

    Achilleos, Georgios

    2016-08-01

    The network of trigonometric points of a region is the basis upon which any form of cartographic work is attached to the national geodetic coordinate system (data collection, processing, output presentations) and not only. The products of the cartographic work (cartographic representations), provide the background which is used in cases of spatial planning and development strategy. This trigonometric network, except that, provides to a single cartographic work, the ability to exist within a unified official state geodetic reference system, simultaneously determines the quality of the result, since the trigonometric network data that are used, have their own quality. In this paper, we present the research of spatial quality of the trigonometric network of Chania Prefecture in Crete. This analysis examines the triangulation network points, both with respect to their spatial position (distribution in space), and in their accuracy (horizontally and vertically).

  17. Magnetic Properties and Thermal Entanglement on a Triangulated Kagome Lattice

    CERN Document Server

    Ananikian, N S; Chakhmakhchyan, L A; Kocharian, A N

    2011-01-01

    The magnetic and entanglement thermal (equilibrium) properties in spin-1/2 Ising-Heisenberg model on a triangulated Kagome lattice are analyzed by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. Because of the separable character of Ising-type exchange interactions between the Heisenberg trimers the calculation of quantum entanglement in a self-consistent field can be performed for each of the trimers individually. The concurrence in terms of three qubit isotropic Heisenberg model in effective Ising field is non-zero even in the absence of a magnetic field. The magnetic and entanglement properties exhibit common (plateau and peak) features observable via (antferromagnetic) coupling constant and external magnetic field. The critical temperature for the phase transition and threshold temperature for concurrence coincide in the case of antiferromagnetic coupling between qubits. The existence of entangled and disentangled phases in saturated and frustrated phases is establishe...

  18. Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation.

    Science.gov (United States)

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2013-01-01

    A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method.

  19. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.

    Science.gov (United States)

    Pennisi, Andrea; Bloisi, Domenico D; Nardi, Daniele; Giampetruzzi, Anna Rita; Mondino, Chiara; Facchiano, Antonio

    2016-09-01

    Developing automatic diagnostic tools for the early detection of skin cancer lesions in dermoscopic images can help to reduce melanoma-induced mortality. Image segmentation is a key step in the automated skin lesion diagnosis pipeline. In this paper, a fast and fully-automatic algorithm for skin lesion segmentation in dermoscopic images is presented. Delaunay Triangulation is used to extract a binary mask of the lesion region, without the need of any training stage. A quantitative experimental evaluation has been conducted on a publicly available database, by taking into account six well-known state-of-the-art segmentation methods for comparison. The results of the experimental analysis demonstrate that the proposed approach is highly accurate when dealing with benign lesions, while the segmentation accuracy significantly decreases when melanoma images are processed. This behavior led us to consider geometrical and color features extracted from the binary masks generated by our algorithm for classification, achieving promising results for melanoma detection.

  20. Experimental study on subaperture testing with iterative triangulation algorithm.

    Science.gov (United States)

    Yan, Lisong; Wang, Xiaokun; Zheng, Ligong; Zeng, Xuefeng; Hu, Haixiang; Zhang, Xuejun

    2013-09-23

    Applying the iterative triangulation stitching algorithm, we provide an experimental demonstration by testing a Φ120 mm flat mirror, a Φ1450 mm off-axis parabolic mirror and a convex hyperboloid mirror. By comparing the stitching results with the self-examine subaperture, it shows that the reconstruction results are in consistent with that of the subaperture testing. As all the experiments are conducted with a 5-dof adjustment platform with big adjustment errors, it proves that using the above mentioned algorithm, the subaperture stitching can be easily performed without a precise positioning system. In addition, with the algorithm, we accomplish the coordinate unification between the testing and processing that makes it possible to guide the processing by the stitching result.

  1. Public Health Triangulation to inform decision-making in Belgium.

    Science.gov (United States)

    Bossuyt, N; Van Casteren, V; Goderis, G; Wens, J; Moreels, S; Vanthomme, K; De Clercq, E

    2015-01-01

    We assessed the impact of a nation-wide ambulatory care complex intervention (the "care trajectory program") on quality of care in Belgium. We used the three-step public health triangulation method described in this paper and data from four different data sources: a national reimbursement database, an electronic patient record-based general practitioner network, the Belgian general practitioner sentinel network, and a new national registry for care trajectory patients. By applying our method and using the available evidence, we identified key findings that have been accepted by experts and stakeholders. We also produced timely recommendations for the decision-making process, four years after the start of the care trajectory program.

  2. Calibration procedure for a laser triangulation scanner with uncertainty evaluation

    Science.gov (United States)

    Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio

    2016-11-01

    Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.

  3. Causal events enter awareness faster than non-causal events

    Science.gov (United States)

    Wagemans, Johan; de-Wit, Lee

    2017-01-01

    Philosophers have long argued that causality cannot be directly observed but requires a conscious inference (Hume, 1967). Albert Michotte however developed numerous visual phenomena in which people seemed to perceive causality akin to primary visual properties like colour or motion (Michotte, 1946). Michotte claimed that the perception of causality did not require a conscious, deliberate inference but, working over 70 years ago, he did not have access to the experimental methods to test this claim. Here we employ Continuous Flash Suppression (CFS)—an interocular suppression technique to render stimuli invisible (Tsuchiya & Koch, 2005)—to test whether causal events enter awareness faster than non-causal events. We presented observers with ‘causal’ and ‘non-causal’ events, and found consistent evidence that participants become aware of causal events more rapidly than non-causal events. Our results suggest that, whilst causality must be inferred from sensory evidence, this inference might be computed at low levels of perceptual processing, and does not depend on a deliberative conscious evaluation of the stimulus. This work therefore supports Michotte’s contention that, like colour or motion, causality is an immediate property of our perception of the world. PMID:28149698

  4. Relationship of causal effects in a causal chain and related inference

    Institute of Scientific and Technical Information of China (English)

    GENG Zhi; HE Yangbo; WANG Xueli

    2004-01-01

    This paper discusses the relationship among the total causal effect and local causal effects in a causal chain and identifiability of causal effects. We show a transmission relationship of causal effects in a causal chain. According to the relationship, we give an approach to eliminating confounding bias through controlling for intermediate variables in a causal chain.

  5. Experimental test of nonlocal causality.

    Science.gov (United States)

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  6. Experimental test of nonlocal causality

    Science.gov (United States)

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  7. Causal inference based on counterfactuals

    Directory of Open Access Journals (Sweden)

    Höfler M

    2005-09-01

    Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.

  8. Flattening of the electrocardiographic T-wave is a sign of proarrhythmic risk and a reflection of action potential triangulation

    DEFF Research Database (Denmark)

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Kanters, J.K.;

    2013-01-01

    Drug-induced triangulation of the cardiac action potential is associated with increased risk of arrhythmic events. It has been suggested that triangulation causes a flattening of the electrocardiographic T-wave but the relationship between triangulation, T-wave flattening and onset of arrhythmia...

  9. Causal evolution of wave packets

    CERN Document Server

    Eckstein, Michał

    2016-01-01

    Drawing from the optimal transport theory adapted to the relativistic setting we formulate the principle of a causal flow of probability and apply it in the wave packet formalism. We demonstrate that whereas the Dirac system is causal, the relativistic-Schr\\"odinger Hamiltonian impels a superluminal evolution of probabilities. We quantify the causality breakdown in the latter system and argue that, in contrast to the popular viewpoint, it is not related to the localisation properties of the states.

  10. Granger causality for circular variables

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Leonardo; Pellicoro, Mario [Istituto Nazionale di Fisica Nucleare, Sezione di Bari (Italy); Dipartimento di Fisica, University of Bari (Italy); Stramaglia, Sebastiano, E-mail: sebastiano.stramaglia@ba.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Bari (Italy); Dipartimento di Fisica, University of Bari (Italy)

    2009-06-29

    In this Letter we discuss the use of Granger causality to the analyze systems of coupled circular variables, by modifying a recently proposed method for multivariate analysis of causality. We show the application of the proposed approach on several Kuramoto systems, in particular one living on networks built by preferential attachment and a model for the transition from deeply to lightly anaesthetized states. Granger causalities describe the flow of information among variables.

  11. Causality Statistical Perspectives and Applications

    CERN Document Server

    Berzuini, Carlo; Bernardinell, Luisa

    2012-01-01

    A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr

  12. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    Science.gov (United States)

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  13. The Cradle of Causal Reasoning: Newborns' Preference for Physical Causality

    Science.gov (United States)

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca

    2013-01-01

    Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we…

  14. Identifiability of causal effect for a simple causal model

    Institute of Scientific and Technical Information of China (English)

    郑忠国; 张艳艳; 童行伟

    2002-01-01

    Counterfactual model is put forward to discuss the causal inference in the directed acyclic graph and its corresponding identifiability is thus studied with the ancillary information based on conditional independence. It is shown that the assumption of ignorability can be expanded to the assumption of replaceability,under which the causal efiects are identifiable.

  15. Inferring deterministic causal relations

    CERN Document Server

    Daniusis, Povilas; Mooij, Joris; Zscheischler, Jakob; Steudel, Bastian; Zhang, Kun; Schoelkopf, Bernhard

    2012-01-01

    We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noise-free) case, there are asymmetries that can be exploited for causal inference. Our method is based on the idea that if the function and the probability density of the cause are chosen independently, then the distribution of the effect will, in a certain sense, depend on the function. We provide a theoretical analysis of this method, showing that it also works in the low noise regime, and link it to information geometry. We report strong empirical results on various real-world data sets from different domains.

  16. Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, E.P.; Saias, I.; Zhu, B.

    1996-05-01

    This paper studies the point location problem in Delaunay triangulations without preprocessing and additional storage. The proposed procedure finds the query point simply by walking through the triangulation, after selecting a good starting point by random sampling. The analysis generalizes and extends a recent result of d = 2 dimensions by proving this procedure to take expected time close to O(n{sup 1/(d+1)}) for point location in Delaunay triangulations of n random points in d = 3 dimensions. Empirical results in both two and three dimensions show that this procedure is efficient in practice.

  17. The Cayley-Bacharach Theorem for Continuous Piecewise Algebraic Curves over Cross-cut Triangulations

    Institute of Scientific and Technical Information of China (English)

    Renhong WANG; Shaofan WANG

    2011-01-01

    A piecewise algebraic curve is a curve determined by the zero set of a bivariate spline function.In this paper,we propose the Cayley-Bacharach theorem for continuous piecewise algebraic curves over cross-cut triangulations.We show that,if two continuous piecewise algebraic curves of degrees m and n respectively meet at mnT distinct points over a cross-cut triangulation,where T denotes the number of cells of the triangulation,then any continuous piecewise algebraic curve of degree m + n - 2 containing all but one point of them also contains the last point.

  18. Neural Correlates of Causal Power Judgments

    Directory of Open Access Journals (Sweden)

    Denise Dellarosa Cummins

    2014-12-01

    Full Text Available Causal inference is a fundamental component of cognition and perception. Probabilistic theories of causal judgment (most notably causal Bayes networks derive causal judgments using metrics that integrate contingency information. But human estimates typically diverge from these normative predictions. This is because human causal power judgments are typically strongly influenced by beliefs concerning underlying causal mechanisms, and because of the way knowledge is retrieved from human memory during the judgment process. Neuroimaging studies indicate that the brain distinguishes causal events from mere covariation, and between perceived and inferred causality. Areas involved in error prediction are also activated, implying automatic activation of possible exception cases during causal decision-making.

  19. Theory-Based Causal Induction

    Science.gov (United States)

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2009-01-01

    Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…

  20. Expert Causal Reasoning and Explanation.

    Science.gov (United States)

    Kuipers, Benjamin

    The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…

  1. Re-thinking local causality

    NARCIS (Netherlands)

    Friederich, Simon

    2015-01-01

    There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell's criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the es

  2. Causal Inference and Developmental Psychology

    Science.gov (United States)

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  3. Applying Causal Discovery to the Output of Climate Models - What Can We Learn from the Causal Signatures?

    Science.gov (United States)

    Ebert-Uphoff, I.; Hammerling, D.; Samarasinghe, S.; Baker, A. H.

    2015-12-01

    The framework of causal discovery provides algorithms that seek to identify potential cause-effect relationships from observational data. The output of such algorithms is a graph structure that indicates the potential causal connections between the observed variables. Originally developed for applications in the social sciences and economics, causal discovery has been used with great success in bioinformatics and, most recently, in climate science, primarily to identify interaction patterns between compound climate variables and to track pathways of interactions between different locations around the globe. Here we apply causal discovery to the output data of climate models to learn so-called causal signatures from the data that indicate interactions between the different atmospheric variables. These causal signatures can act like fingerprints for the underlying dynamics and thus serve a variety of diagnostic purposes. We study the use of the causal signatures for three applications: 1) For climate model software verification we suggest to use causal signatures as a means of detecting statistical differences between model runs, thus identifying potential errors and supplementing the Community Earth System Model Ensemble Consistency Testing (CESM-ECT) tool recently developed at NCAR for CESM verification. 2) In the context of data compression of model runs, we will test how much the causal signatures of the model outputs changes after different compression algorithms have been applied. This may result in additional means to determine which type and amount of compression is acceptable. 3) This is the first study applying causal discovery simultaneously to a large number of different atmospheric variables, and in the process of studying the resulting interaction patterns for the two aforementioned applications, we expect to gain some new insights into their relationships from this approach. We will present first results obtained for Applications 1 and 2 above.

  4. CausalTrail: Testing hypothesis using causal Bayesian networks.

    Science.gov (United States)

    Stöckel, Daniel; Schmidt, Florian; Trampert, Patrick; Lenhof, Hans-Peter

    2015-01-01

    Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administered drug. Whereas numerous packages for constructing causal Bayesian networks are available, hardly any program targeted at downstream analysis exists. In this paper we present CausalTrail, a tool for performing reasoning on causal Bayesian networks using the do-calculus. CausalTrail's features include multiple data import methods, a flexible query language for formulating hypotheses, as well as an intuitive graphical user interface. The program is able to account for missing data and thus can be readily applied in multi-omics settings where it is common that not all measurements are performed for all samples. Availability and Implementation CausalTrail is implemented in C++ using the Boost and Qt5 libraries. It can be obtained from https://github.com/dstoeckel/causaltrail.

  5. Laser triangulation measurement of the level in a coal silo

    Institute of Scientific and Technical Information of China (English)

    Sun Jiping; Jiang Jing

    2011-01-01

    Laser triangulation theory was used to develop a novel contact-free method for measuring the coal level in a silo under harsh environmental conditions found in coal mines,such as the presence of dense dust,high humidity,and low illumination.A laser source and a camera were mounted at the top of the silo.The laser spot projected into the silo was imaged by the camera.The pinhole imaging principle allows the level to be found from the lateral shift of the spot image on the sensor.A pre-calibrated look-up table of the coal depth versus spot position was used to obtain the depth.The measurement accuracy depends on the step size used during pre-calibration.The actual application of a device designed according to these principles shows that it is easy to implement.The detection of the coal level in a silo at the low illumination level found in coal mines is demonstrated.

  6. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.

    Science.gov (United States)

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-06-09

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution.

  7. Stereo Matching Algorithm Based on 2D Delaunay Triangulation

    Directory of Open Access Journals (Sweden)

    Xue-he Zhang

    2015-01-01

    Full Text Available To fulfill the applications on robot vision, the commonly used stereo matching method for depth estimation is supposed to be efficient in terms of running speed and disparity accuracy. Based on this requirement, Delaunay-based stereo matching method is proposed to achieve the aforementioned standards in this paper. First, a Canny edge operator is used to detect the edge points of an image as supporting points. Those points are then processed using a Delaunay triangulation algorithm to divide the whole image into a series of linked triangular facets. A proposed module composed of these facets performs a rude estimation of image disparity. According to the triangular property of shared vertices, the estimated disparity is then refined to generate the disparity map. The method is tested on Middlebury stereo pairs. The running time of the proposed method is about 1 s and the matching accuracy is 93%. Experimental results show that the proposed method improves both running speed and disparity accuracy, which forms a steady foundation and good application prospect for a robot’s path planning system with stereo camera devices.

  8. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    Science.gov (United States)

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  9. Explicating students’ personal professional theories in vocational education through multi-method triangulation

    NARCIS (Netherlands)

    Schaap, Harmen; De Bruijn, Elly; Van der Schaaf, Marieke; Baartman, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Schaap, H., De Bruijn, E., Van der Schaaf, M. F., Baartman, L. K. J., & Kirschner, P. A. (2011). Explicating students’ personal professional theories in vocational education through multi-method triangulation. Scandinavian Journal of Educational Research, 55, 567-586.

  10. Clear message for causality

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Aephraim M. [Institute for Experimental Physics, University of Vienna, Vienna (Austria)

    2003-12-01

    Experiment confirms that information cannot be transmitted faster than the speed of light. Ever since Einstein stated that nothing can travel faster than light, physicists have delighted in finding exceptions. One after another, observations of such 'superluminal' propagation have been made. However, while some image or pattern- such as the motion of a spotlight projected on a distant wall - might have appeared to travel faster than light, it seemed that there was no way to use the superluminal effect to transmit energy or information. In recent years, the superluminal propagation of light pulses through certain media has led to renewed controversy. In 1995, for example, Guenther Nimtz of the University of Cologne encoded Mozart's 40th Symphony on a microwave beam, which he claimed to have transmitted at a speed faster than light. Others maintain that such a violation of Einstein's speed limit would wreak havoc on our most fundamental ideas about causality, allowing an effect to precede its cause. Relativity teaches us that sending a signal faster than light would be equivalent to sending it backwards in time. (U.K.)

  11. History, causality, and sexology.

    Science.gov (United States)

    Money, John

    2003-08-01

    In 1896, Krafft-Ebing published Psychopathia Sexualis. Popularly defined as hereditary weakness or taintedness in the family pedigree, degeneracy was called upon as a causal explanation for perversions of the sexual instinct. Although Krafft-Ebing accepted Karl Ulrichs proposal that homosexuality could be innate and probably located in the brain, he paid little attention to neuropathological sexology. Alfred Binet challenged Krafft-Ebing's orthodoxy by explaining fetishism in terms of associative learning, to which Krafft-Ebing's response was that only those with a hereditary taint would be vulnerable. Thus did the venerable nature-nurture antithesis maintain its rhetoric, even to the present day. Krafft-Ebing died too soon to meet the Freudian challenge of endopsychic determinism, and too soon also to encounter the idea of a developmental multivariate outcome of what I have termed the lovemap. Like other brain maps, for example the languagemap, the lovemap requires an intact human brain in which to develop. The personalized content of the lovemap has access to the brain by way of the special senses.

  12. Elbow arthroscopy: a new setup to avoid visual paradox and improve triangulation.

    Science.gov (United States)

    Sinha, Apurv; Pydah, Satya Kanth V; Webb, Mark

    2013-05-01

    Elbow arthroscopy is a useful diagnostic and therapeutic tool for various conditions. Conventional arthroscopy with the patient in the prone or lateral position where the screen is placed on the opposite side makes it difficult to interpret the image, results in visual paradox, and is associated with difficult triangulation. We present a modified setup for the operating room to help eliminate these problems and improve triangulation.

  13. Design of a triangulation based fiber optical distance sensor for application in large rotating machines

    Science.gov (United States)

    Willsch, Michael; Villnow, Michael; Bosselmann, Thomas

    2015-09-01

    Commercial distance sensors basing on the triangulation principle are highly accurate and reliable. However due to their contained electronics and optoelectronics they cannot be used in harsh environments such as high temperatures and strong electromagnetic fields. An all fiber optical triangulation sensor principle is presented here which can be used for tip clearance measurements of rotors of large engines such as power generators and turbines.

  14. Causal Selection and Counterfactual Reasoning

    Directory of Open Access Journals (Sweden)

    William Jiménez-Leal

    2013-01-01

    Full Text Available El trabajo defiende la posición según la cual el pensamiento contrafactual depende de nuestra representación causal del mundo y, en este sentido, argumenta que existe una estrecha relación entre el razonamiento causal y el contrafactual. Se lleva a cabo una crítica a la teoría de la disociación de juicios de Mandel (Mandel, 2003b, que defiende la independencia funcional entre el proceso de selección causal y el razonamiento contrafactual en el contexto de la selección causal. En los experimentos realizados se manipularon algunos elementos de la semántica de la tarea con el fin de ilustrar aquellos casos en los que no se da la disociación entre el razonamiento causal y el contrafactual. En el Experimento 1, el nivel de descripción del evento objetivo se manipuló en una tarea de generación de listas y evaluación. El Experimento 2 replicó los hallazgos del Experimento 1 utilizando un sistema de codificación alternativo, mientras que el Experimento 3 realizó lo mismo utilizando un formato de respuesta alternativo. Los resultados de los experimentos apoyan la concepción del entendimiento causal propuesta por los modelos mentales causales.

  15. Causal association rule mining methods based on fuzzy state description

    Institute of Scientific and Technical Information of China (English)

    Liang Kaijian; Liang Quan; Yang Bingru

    2006-01-01

    Aiming at the research that using more new knowledge to develope knowledge system with dynamic accordance, and under the background of using Fuzzy language field and Fuzzy language values structure as description framework, the generalized cell Automation that can synthetically process fuzzy indeterminacy and random indeterminacy and generalized inductive logic causal model is brought forward. On this basis, a kind of the new method that can discover causal association rules is provded. According to the causal information of standard sample space and commonly sample space,through constructing its state (abnormality) relation matrix, causal association rules can be gained by using inductive reasoning mechanism. The estimate of this algorithm complexity is given,and its validity is proved through case.

  16. Learning Why Things Change: The Difference-Based Causality Learner

    CERN Document Server

    Voortman, Mark; Druzdzel, Marek J

    2012-01-01

    In this paper, we present the Difference- Based Causality Learner (DBCL), an algorithm for learning a class of discrete-time dynamic models that represents all causation across time by means of difference equations driving change in a system. We motivate this representation with real-world mechanical systems and prove DBCL's correctness for learning structure from time series data, an endeavour that is complicated by the existence of latent derivatives that have to be detected. We also prove that, under common assumptions for causal discovery, DBCL will identify the presence or absence of feedback loops, making the model more useful for predicting the effects of manipulating variables when the system is in equilibrium. We argue analytically and show empirically the advantages of DBCL over vector autoregression (VAR) and Granger causality models as well as modified forms of Bayesian and constraintbased structure discovery algorithms. Finally, we show that our algorithm can discover causal directions of alpha r...

  17. Becoming invisible: The effect of triangulation on children's well-being.

    Science.gov (United States)

    Dallos, Rudi; Lakus, Katarzyna; Cahart, Marie-Stephanie; McKenzie, Rebecca

    2016-07-01

    The study explored children's experience of triangulation in their families. In all, 15 children aged 11-16 years, who were attending an early intervention family therapy service, participated in the study. The children's understandings and emotional experience of triangulation were explored by comparing their responses to pictures from the Separation Anxiety Test (SAT) and a set of pictures designed for the study depicting a variety of triangulation conflicts in families. An interview regarding the children's personal family experiences of triangulation was also undertaken and clinical information about the children's family contexts was also utilised. Statistical analysis was conducted based on eight of children for whom a full data set was available. This indicated that children showed greater levels of anxiety in response to the triangulation as opposed to the separation scenarios. Qualitative analysis supported this finding and revealed that many of the children felt 'invisible' due to parents' pre-occupation with marital conflict, felt caught in the middle of conflicts and coerced to take sides. Although able to describe their reactions and showing greater negative emotional responses to the triadic pictures, they were not consciously aware of the negative impacts of triangulation on their sense of well-being. Clinical implications are discussed with a focus on encouraging child-centred approaches to family therapy.

  18. Genus dependence of the number of (non-)orientable surface triangulations

    CERN Document Server

    Krüger, Benedikt

    2016-01-01

    Topological triangulations of orientable and non-orientable surfaces with arbitrary genus have important applications in quantum geometry, graph theory and statistical physics. However, until now only the asymptotics for 2-spheres are known analytically, and exact counts of triangulations are only available for both small genus and small triangulations. We apply the Wang-Landau algorithm to calculate the number $N(m,h)$ of triangulations for several order of magnitudes in system size $m$ and genus $h$. We verify that the limit of the entropy density of triangulations is independent of genus and orientability and are able to determine the next-to-leading and the next-to-next-to-leading order terms. We conjecture for the number of surface triangulations the asymptotic behavior \\begin{equation*} N(m,h) \\rightarrow (170.4 \\pm 15.1)^h m^{-2(h - 1)/5} \\left( \\frac{256}{27} \\right)^{m / 2}\\;, \\end{equation*} what might guide a mathematicians proof for the exact asymptotics.

  19. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...

  20. An efficient two-tier causal protocol for mobile distributed systems.

    Science.gov (United States)

    Dominguez, Eduardo Lopez; Pomares Hernandez, Saul E; Gomez, Gustavo Rodriguez; Medina, Maria Auxilio

    2013-01-01

    Causal ordering is a useful tool for mobile distributed systems (MDS) to reduce the non-determinism induced by three main aspects: host mobility, asynchronous execution, and unpredictable communication delays. Several causal protocols for MDS exist. Most of them, in order to reduce the overhead and the computational cost over wireless channels and mobile hosts (MH), ensure causal ordering at and according to the causal view of the Base Stations. Nevertheless, these protocols introduce certain disadvantage, such as unnecessary inhibition at the delivery of messages. In this paper, we present an efficient causal protocol for groupware that satisfies the MDS's constraints, avoiding unnecessary inhibitions and ensuring the causal delivery based on the view of the MHs. One interesting aspect of our protocol is that it dynamically adapts the causal information attached to each message based on the number of messages with immediate dependency relation, and this is not directly proportional to the number of MHs.

  1. On the concept of Bell’s local causality in local classical and quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Hofer-Szabó, Gábor, E-mail: szabo.gabor@btk.mta.hu [Research Center for the Humanities, Budapest (Hungary); Vecsernyés, Péter, E-mail: vecsernyes.peter@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary)

    2015-03-15

    The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively.

  2. Evolutionary triangulation: informing genetic association studies with evolutionary evidence.

    Science.gov (United States)

    Huang, Minjun; Graham, Britney E; Zhang, Ge; Harder, Reed; Kodaman, Nuri; Moore, Jason H; Muglia, Louis; Williams, Scott M

    2016-01-01

    Genetic studies of human diseases have identified many variants associated with pathogenesis and severity. However, most studies have used only statistical association to assess putative relationships to disease, and ignored other factors for evaluation. For example, evolution is a factor that has shaped disease risk, changing allele frequencies as human populations migrated into and inhabited new environments. Since many common variants differ among populations in frequency, as does disease prevalence, we hypothesized that patterns of disease and population structure, taken together, will inform association studies. Thus, the population distributions of allelic risk variants should reflect the distributions of their associated diseases. Evolutionary Triangulation (ET) exploits this evolutionary differentiation by comparing population structure among three populations with variable patterns of disease prevalence. By selecting populations based on patterns where two have similar rates of disease that differ substantially from a third, we performed a proof of principle analysis for this method. We examined three disease phenotypes, lactase persistence, melanoma, and Type 2 diabetes mellitus. We show that for lactase persistence, a phenotype with a simple genetic architecture, ET identifies the key gene, lactase. For melanoma, ET identifies several genes associated with this disease and/or phenotypes related to it, such as skin color genes. ET was less obviously successful for Type 2 diabetes mellitus, perhaps because of the small effect sizes in known risk loci and recent environmental changes that have altered disease risk. Alternatively, ET may have revealed new genes involved in conferring disease risk for diabetes that did not meet nominal GWAS significance thresholds. We also compared ET to another method used to filter for phenotype associated genes, population branch statistic (PBS), and show that ET performs better in identifying genes known to associate with

  3. Fluctuations in Relativistic Causal Hydrodynamics

    CERN Document Server

    Kumar, Avdhesh; Mishra, Ananta P

    2013-01-01

    The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.

  4. Causality constraints on TMD PDF

    CERN Document Server

    Efremov, A V

    2013-01-01

    In this short note, we discuss constraints on the transverse momentum dependent factorization formulae coming from the causality properties for the hadronic tensor. We show that the range of definition of the TMD PDFs in the transverse coordinate plane is wider that it is allowed by the causality. It indicates the presents of the large compensating corrections for the TMD PDF factorization theorem and/or overestimation of the transverse component dependence of TMD PDF.

  5. Qualitative analysis of causal cosmological models

    CERN Document Server

    Triginer, J

    1996-01-01

    The Einstein's field equations of Friedmann-Robertson-Walker universes filled with a dissipative fluid described by both the {\\em truncated} and {\\em non-truncated} causal transport equations are analyzed using techniques from dynamical systems theory. The equations of state, as well as the phase space, are different from those used in the recent literature. In the de Sitter expansion both the hydrodynamic approximation and the non-thermalizing condition can be fulfilled simultaneously. For \\Lambda=0 these expansions turn out to be stable provided a certain parameter of the fluid is lower than 1/2. The more general case \\Lambda>0 is studied in detail as well.

  6. An introduction to causal inference.

    Science.gov (United States)

    Pearl, Judea

    2010-02-26

    This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.

  7. Algorithms of causal inference for the analysis of effective connectivity among brain regions.

    Science.gov (United States)

    Chicharro, Daniel; Panzeri, Stefano

    2014-01-01

    In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl's causality, algorithms of inductive causation (IC and IC(*)) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity.

  8. Algorithms of causal inference for the analysis of effective connectivity among brain regions

    Directory of Open Access Journals (Sweden)

    Daniel eChicharro

    2014-07-01

    Full Text Available In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC and IC* provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM to analyze causal influences (effective connectivity among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g. measurement noise, hemodynamic responses, and time aggregation can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity.

  9. Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry

    Science.gov (United States)

    Aftosmis, M. J.; Delanaye, M.; Haimes, R.; Nixon, David (Technical Monitor)

    1998-01-01

    This paper presents an approach for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, without translation, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique which was developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space, The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. Sites are inserted using a variety of priority queues to ensure that new insertions will address the worst triangles first, As a result of this strategy, the algorithm will return its 'best' mesh for a given (prespecified) number of sites. Alternatively, the algorithm may be allowed to terminate naturally after achieving a prespecified measure of mesh quality. The resulting triangulations are 'CFD-ready' in that: (1) Edges match the underlying part model to within a specified tolerance. (2) Triangles on disjoint surfaces in close proximity have matching length-scales. (3) The algorithm produces a triangulation such that no angle is less than a given angle bound, alpha, or greater than Pi - 2alpha This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to tile output triangulations for a variety of CAD parts, tile discussion presents related theoretical results which assert the existence of such all angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.

  10. Large $N$ limits in tensor models: Towards more universality classes of colored triangulations in dimension $d\\geq 2$

    CERN Document Server

    Bonzom, Valentin

    2016-01-01

    We review an approach which aims at studying discrete (pseudo--)manifolds in dimension $d\\geq 2$ and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of $p$-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo--manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality clas...

  11. Causality and Tense - two temporal structure builders

    NARCIS (Netherlands)

    Oversteegen, E.

    2005-01-01

    By force of causes precede effects, causality contributes to the temporal meaning of discourse. In case of semantic causal relations, this contribution is straightforward, but in case of epistemic causal relations, it is not. In order to gain insight into the semantics of epistemic causal relations,

  12. Causal Stability Conditions for General Relativistic Spacetimes

    CERN Document Server

    Howard, E M

    2016-01-01

    A brief overview of some open questions in general relativity with important consequences for causality theory is presented, aiming to a better understanding of the causal structure of the spacetime. Special attention is accorded to the problem of fundamental causal stability conditions. Several questions are raised and some of the potential consequences of recent results regarding the causality problem in general relativity are presented. A key question is whether causality violating regions are locally allowed. The new concept of almost stable causality is introduced; meanwhile, related conditions and criteria for the stability and almost stability of the causal structure are discussed.

  13. Strongly minimal triangulations of $(S^{3}× S^{1})^{\\# 3}$ and $(S^{3}× S^{1})^{\\# 3}$

    Indian Academy of Sciences (India)

    Nitin Singh

    2015-02-01

    A triangulated -manifold , satisfies the inequality $\\binom{f_{0}(K)-d-1}{2}≥ \\binom{d+2}{2}_{1}(K;\\mathbb{Z}_{2})$ for $d≥ 3$. The triangulated -manifolds that meet the bound with equality are called tight neighbourly. In this paper, we present tight neighbourly triangulations of 4-manifolds on 15 vertices with $\\mathbb{Z}_{3}$ as an automorphism group. One such example was constructed by Bagchi and Datta (Discrete Math. 311 (2011) 986-995). We show that there are exactly 12 such triangulations up to isomorphism, 10 of which are orientable.

  14. Human causal discovery from observational data.

    OpenAIRE

    1996-01-01

    Utilizing Bayesian belief networks as a model of causality, we examined medical students' ability to discover causal relationships from observational data. Nine sets of patient cases were generated from relatively simple causal belief networks by stochastic simulation. Twenty participants examined the data sets and attempted to discover the underlying causal relationships. Performance was poor in general, except at discovering the absence of a causal relationship. This work supports the poten...

  15. The Geometry of Small Causal Cones

    CERN Document Server

    Jubb, Ian

    2016-01-01

    We derive a formula for the spacetime volume of a small causal cone. We use this formula within the context of causal set theory to construct causal set expressions for certain geometric quantities relating to a spacetime with a spacelike hypersurface. We also consider a scalar field on the causal set, and obtain causal set expressions relating to its normal derivatives with respect to the hypersurface.

  16. Profiles of cognitive appraisals and triangulation into interparental conflict: Implications for adolescent adjustment.

    Science.gov (United States)

    Fosco, Gregory M; Bray, Bethany C

    2016-08-01

    Youth appraisals and triangulation into conflicts are key mechanisms by which interparental conflict places youth at risk for psychological maladjustment. Although evidence suggests that there are multiple mechanisms at work (e.g., Fosco & Feinberg, 2015; Grych, Harold, & Miles, 2003), this body of work has relied on variable-centered analyses that are limited to the unique contributions of each process to the variance in outcomes. In reality, it is possible that different combinations of these risk mechanisms may account for multifinality in risk outcomes. Using latent profile analysis (LPA) we examined profiles of threat appraisals, self-blaming attributions, and triangulation in relation to internalizing and externalizing problems in a sample of 285, ethnically diverse high school students. The current analyses revealed 5 distinct profiles of appraisals and triangulation, including an overall low-risk group and a global high-risk group, in which all 3 processes were below average or above average, respectively. Additional profiles included combinations of threat and blame, threat and triangulation, and blame and triangulation. Links between these profiles and emotional distress, problem behavior, and academic outcomes are discussed. (PsycINFO Database Record

  17. Information flow and causality as rigorous notions ab initio

    Science.gov (United States)

    Liang, X. San

    2016-11-01

    Information flow or information transfer the widely applicable general physics notion can be rigorously derived from first principles, rather than axiomatically proposed as an ansatz. Its logical association with causality is firmly rooted in the dynamical system that lies beneath. The principle of nil causality that reads, an event is not causal to another if the evolution of the latter is independent of the former, which transfer entropy analysis and Granger causality test fail to verify in many situations, turns out to be a proven theorem here. Established in this study are the information flows among the components of time-discrete mappings and time-continuous dynamical systems, both deterministic and stochastic. They have been obtained explicitly in closed form, and put to applications with the benchmark systems such as the Kaplan-Yorke map, Rössler system, baker transformation, Hénon map, and stochastic potential flow. Besides unraveling the causal relations as expected from the respective systems, some of the applications show that the information flow structure underlying a complex trajectory pattern could be tractable. For linear systems, the resulting remarkably concise formula asserts analytically that causation implies correlation, while correlation does not imply causation, providing a mathematical basis for the long-standing philosophical debate over causation versus correlation.

  18. Fertility and Female Employment: Problems of Causal Direction.

    Science.gov (United States)

    Cramer, James C.

    1980-01-01

    Considers multicollinearity in nonrecursive models, misspecification of models, discrepancies between attitudes and behavior, and differences between static and dynamic models as explanations for contradictory information on the causal relationship between fertility and female employment. Finds that initially fertility affects employment but that,…

  19. Finance and growth : Time series evidence on causality

    NARCIS (Netherlands)

    Peia, Oana; Roszbach, Kasper

    2015-01-01

    This paper re-examines the empirical relationship between financial and economic development while (i) taking into account their dynamics and (ii) differentiating between stock market and banking sector development. We study the cointegration and causality between the real and the financial sector f

  20. Causality and Primordial Tensor Modes

    CERN Document Server

    Baumann, Daniel

    2009-01-01

    We introduce the real space correlation function of $B$-mode polarization of the cosmic microwave background (CMB) as a probe of superhorizon tensor perturbations created by inflation. By causality, any non-inflationary mechanism for gravitational wave production after reheating, like global phase transitions or cosmic strings, must have vanishing correlations for angular separations greater than the angle subtended by the particle horizon at recombination, i.e. $\\theta \\gtrsim 2^\\circ$. Since ordinary $B$-modes are defined non-locally in terms of the Stokes parameters $Q$ and $U$ and therefore don't have to respect causality, special care is taken to define `causal $\\tilde B$-modes' for the analysis. We compute the real space $\\tilde B$-mode correlation function for inflation and discuss its detectability on superhorizon scales where it provides an unambiguous test of inflationary gravitational waves. The correct identification of inflationary tensor modes is crucial since it relates directly to the energy s...

  1. Causal reasoning with mental models.

    Science.gov (United States)

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  2. Causal reasoning with mental models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2014-10-01

    Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  3. Causal Models for Risk Management

    Directory of Open Access Journals (Sweden)

    Neysis Hernández Díaz

    2013-12-01

    Full Text Available In this work a study about the process of risk management in major schools in the world. The project management tools worldwide highlights the need to redefine risk management processes. From the information obtained it is proposed the use of causal models for risk analysis based on information from the project or company, say risks and the influence thereof on the costs, human capital and project requirements and detect the damages of a number of tasks without tribute to the development of the project. A study on the use of causal models as knowledge representation techniques causal, among which are the Fuzzy Cognitive Maps (DCM and Bayesian networks, with the most favorable MCD technique to use because it allows modeling the risk information witho ut having a knowledge base either itemize.

  4. Gravitation, Causality, and Quantum Consistency

    CERN Document Server

    Hertzberg, Mark P

    2016-01-01

    We examine the role of consistency with causality and quantum mechanics in determining the properties of gravitation. We begin by constructing two different classes of interacting theories of massless spin 2 particles -- gravitons. One involves coupling the graviton with the lowest number of derivatives to matter, the other involves coupling the graviton with higher derivatives to matter, making use of the linearized Riemann tensor. The first class requires an infinite tower of terms for consistency, which is known to lead uniquely to general relativity. The second class only requires a finite number of terms for consistency, which appears as a new class of theories of massless spin 2. We recap the causal consistency of general relativity and show how this fails in the second class for the special case of coupling to photons, exploiting related calculations in the literature. In an upcoming publication [1] this result is generalized to a much broader set of theories. Then, as a causal modification of general ...

  5. Statistics, Causality and Bell's theorem

    CERN Document Server

    Gill, Richard D

    2012-01-01

    Bell's (1964) theorem is popularly supposed to establish the non-locality of quantum physics as a mathematical-physical theory. Building from this, observed violation of Bell's inequality in experiments such as that of Aspect and coworkers (1982) is popularly supposed to provide empirical proof of non-locality in the real world. This paper reviews recent work on Bell's theorem, linking it to issues in causality as understood by statisticians. The paper starts with a new proof of a strong (finite sample) version of Bell's theorem which relies only on elementary arithmetic and (counting) probability. This proof underscores the fact that Bell's theorem tells us that quantum theory is incompatible with the conjunction of three cherished and formerly uncontroversial physical principles, nicknamed here locality, realism, and freedom. The first, locality, is obviously connected to causality: causal influences need time to propagate spatially. Less obviously, the other two principles, realism and freedom, are also fo...

  6. Introductive remarks on causal inference

    Directory of Open Access Journals (Sweden)

    Silvana A. Romio

    2013-05-01

    Full Text Available One of the more challenging issues in epidemiological research is being able to provide an unbiased estimate of the causal exposure-disease effect, to assess the possible etiological mechanisms and the implication for public health. A major source of bias is confounding, which can spuriously create or mask the causal relationship. In the last ten years, methodological research has been developed to better de_ne the concept of causation in epidemiology and some important achievements have resulted in new statistical models. In this review, we aim to show how a technique the well known by statisticians, i.e. standardization, can be seen as a method to estimate causal e_ects, equivalent under certain conditions to the inverse probability treatment weight procedure.

  7. Fine-grained Delaunay triangulation in a simulation of tumor spheroid growth

    CERN Document Server

    Fabbro, A D; Milotti, E; Chignola, Roberto; Fabbro, Alessio Del; Milotti, Edoardo

    2006-01-01

    The simulation of many-particle systems often requires the detailed knowledge of proximity relations to reduce computational complexity and to provide a basis for specific calculations. Here we describe the basic scheme of a simulator of tumor spheroid growth: the calculation of mechanical interactions between cells and of the concentrations of diffusing chemicals requires a backbone provided by the Delaunay triangulation and the volumes of the associated Voronoi regions. Thus the Delaunay triangulation provides both the proximity relations needed to reduce the computational complexity and the basic structures that are needed to carry out the calculation of the biochemical interactions between cells and with the enviroment. A 3D version of the simulator uses the CGAL library as an essential component for the efficient computation of the Delaunay triangulation and of the Voronoi regions.

  8. Geometric asymptotics for spin foam lattice gauge gravity on arbitrary triangulations

    CERN Document Server

    Hellmann, Frank

    2012-01-01

    We study the behavior of holonomy spin foam partition functions, a form of lattice gauge gravity, on generic 4d-triangulations using micro local analysis. To do so we adapt tools from the renormalization theory of quantum field theory on curved space times. This allows us, for the first time, to study the partition function without taking any limits on the interior of the triangulation. We establish that for many of the most widely used models the geometricity constraints, which reduce the gauge theory to a geometric one, introduce strong accidental curvature constraints. These limit the curvature around each triangle of the triangulation to a finite set of values. We demonstrate how to modify the partition function to avoid this problem. Finally the new methods introduced provide a starting point for studying the regularization ambiguities and renormalization of the partition function.

  9. The role of convexity for solving some shortest path problems in plane without triangulation

    Science.gov (United States)

    An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van

    2013-09-01

    Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.

  10. PACMAN study of FSI and micro-triangulation for the pre-alignment of CLIC

    CERN Document Server

    Kamugasa, William Solomon

    2015-01-01

    The alignment precision of linear colliders is extremely demanding owing to the very narrow beam size at the interaction point. Unlike circular colliders, particles in linear colliders have only one chance to collide and are hence tightly focused to maximise the number of interactions per collision. The PACMAN* project is dedicated to study the integration of both fiducialization and alignment of the components on a common support. FSI (Frequency Scanning Interferometry) and Micro-triangulation will contribute to this goal. FSI realized by Etalon AG’s Absolute Multiline system and Micro-triangulation implemented by QDaedalus system developed at ETH Zurich offer precision of 0.5 μm/m and 2.4 μm/m respectively. However, these systems need to be improved in order to provide the necessary geometric information via distance measurements (multilateration) and angle measurements (triangulation), respectively. The paper describes the current status and the future developments of Absolute Multiline and QDaedalus, ...

  11. Cohomology with causally restricted supports

    CERN Document Server

    Khavkine, Igor

    2014-01-01

    De Rham cohomology with spacelike compact and timelike compact supports has recently been noticed to be of importance for understanding the structure of classical and quantum field theories on curved spacetimes. We compute these cohomology groups for globally hyperbolic spacetimes in terms of their standard de Rham cohomologies. The calculation exploits the fact that the de Rham-d'Alambert wave operator can be extended to a chain map that is homotopic to zero and that its causal Green function fits into a convenient exact sequence. This method extends also to the Calabi (or Killing-Riemann-Bianchi) complex and possibly other differential complexes. We also discuss generalized causal structures and functoriality.

  12. Kolmogorov Complexity, Causality And Spin

    CERN Document Server

    Shayda, Dara O

    2012-01-01

    A novel topological and computational method for 'motion' is described. Motion is constrained by inequalities in terms of Kolmogorov Complexity. Causality is obtained as the output of a high-pass filter, passing through only high values of Kolmogorov Complexity. Motion under the electromagnetic field described with immediate relationship with Subscript[G, 2] Holonomy group and its corresponding dense free 2-subgroup. Similar to Causality, Spin emerges as an immediate and inevitable consequence of high values of Kolmogorov Complexity. Consequently, the physical laws are nothing but a low-pass filter for small values of Kolmogorov Complexity.

  13. Local Causality, Probability and Explanation

    CERN Document Server

    Healey, Richard A

    2016-01-01

    In papers published in the 25 years following his famous 1964 proof John Bell refined and reformulated his views on locality and causality. Although his formulations of local causality were in terms of probability, he had little to say about that notion. But assumptions about probability are implicit in his arguments and conclusions. Probability does not conform to these assumptions when quantum mechanics is applied to account for the particular correlations Bell argues are locally inexplicable. This account involves no superluminal action and there is even a sense in which it is local, but it is in tension with the requirement that the direct causes and effects of events are nearby.

  14. Granger Causality and Unit Roots

    DEFF Research Database (Denmark)

    Rodríguez-Caballero, Carlos Vladimir; Ventosa-Santaulària, Daniel

    2014-01-01

    The asymptotic behavior of the Granger-causality test under stochastic nonstationarity is studied. Our results confirm that the inference drawn from the test is not reliable when the series are integrated to the first order. In the presence of deterministic components, the test statistic diverges......, eventually rejecting the null hypothesis, even when the series are independent of each other. Moreover, controlling for these deterministic elements (in the auxiliary regressions of the test) does not preclude the possibility of drawing erroneous inferences. Granger-causality tests should not be used under...

  15. Causality and micro-causality in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hollowood, Timothy J. [Department of Physics, University of Wales Swansea, Swansea, SA2 8PP (United Kingdom)], E-mail: t.hollowood@swansea.ac.uk; Shore, Graham M. [Department of Physics, University of Wales Swansea, Swansea, SA2 8PP (United Kingdom)], E-mail: g.m.shore@swansea.ac.uk

    2007-10-25

    We consider how causality and micro-causality are realised in QED in curved spacetime. The photon propagator is found to exhibit novel non-analytic behaviour due to vacuum polarization, which invalidates the Kramers-Kronig dispersion relation and calls into question the validity of micro-causality in curved spacetime. This non-analyticity is ultimately related to the generic focusing nature of congruences of geodesics in curved spacetime, as implied by the null energy condition, and the existence of conjugate points. These results arise from a calculation of the complete non-perturbative frequency dependence of the vacuum polarization tensor in QED, using novel world-line path integral methods together with the Penrose plane-wave limit of spacetime in the neighbourhood of a null geodesic. The refractive index of curved spacetime is shown to exhibit superluminal phase velocities, dispersion, absorption (due to {gamma}{yields}e{sup +}e{sup -}) and bi-refringence, but we demonstrate that the wavefront velocity (the high-frequency limit of the phase velocity) is indeed c, thereby guaranteeing that causality itself is respected.

  16. Tchebyshev Approximation by S01(Δ)over Some Special Triangulations

    Institute of Scientific and Technical Information of China (English)

    Ren Hong WANG; Wei DAN

    2012-01-01

    The critical point set plays a central role in the theory of Tchebyshev approximation.Generally,in multivariate Tchebyshev approximation,it is not a trivial task to determine whether a set is critical or not.In this paper,we study the characterization of the critical point set of S01(△) in geometry,where △ is restricted to some special triangulations (bitriangular,single road and star triangulations). Such geometrical characterization is convenient to use in the determination of a critical point set.

  17. COMBINED DELAUNAY TRIANGULATION AND ADAPTIVE FINITE ELEMENT METHOD FOR CRACK GROWTH ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Pramote DECHAUMPHAI; Sutthisak PHONGTHANAPANICH; Thanawat SRICHAROENCHAI

    2003-01-01

    The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around crack tips and large elements in the other regions. The resulting stress intensity factors and simulated crack propagation behavior are used to evaluate the effectiveness of the procedure. Three sample problems of a center cracked plate, a single edge cracked plate and a compact tension specimen, are simulated and their results assessed.

  18. Alpha shape and Delaunay triangulation in studies of protein-related interactions.

    Science.gov (United States)

    Zhou, Weiqiang; Yan, Hong

    2014-01-01

    In recent years, more 3D protein structures have become available, which has made the analysis of large molecular structures much easier. There is a strong demand for geometric models for the study of protein-related interactions. Alpha shape and Delaunay triangulation are powerful tools to represent protein structures and have advantages in characterizing the surface curvature and atom contacts. This review presents state-of-the-art applications of alpha shape and Delaunay triangulation in the studies on protein-DNA, protein-protein, protein-ligand interactions and protein structure analysis.

  19. The argumentative impact of causal relations

    DEFF Research Database (Denmark)

    Nielsen, Anne Ellerup

    1996-01-01

    such as causality, explanation and justification. In certain types of discourse, causal relations also imply an intentional element. This paper describes the way in which the semantic and pragmatic functions of causal markers can be accounted for in terms of linguistic and rhetorical theories of argumentation.......The semantic relations between and within utterances are marked by the use of connectors and adverbials. One type of semantic relations is causal relations expressed by causal markers such as because, therefore, so, for, etc. Some of these markers cover different types of causal relations...

  20. Causality problem in Economic Science

    Directory of Open Access Journals (Sweden)

    JOSÉ LUIS RETOLAZA

    2007-12-01

    Full Text Available The main point of the paper is the problem of the economy to be consider like a science in the most strict term of the concept. In the first step we are going to tackle a presentation about what we understand by science to subsequently present some of the fallacies which have bring certain scepticism about the scientific character of the investigation in economy, to know: 1 The differences between hard and weak sciences -physics and social; 2 The differences between paradigm, —positivist and phenomenological— 3 The differences between physic causalityand historic causality. In the second step we are going to talk about two fundamental problems which are questioned: 1 the confusion between ontology and gnoseology and, 2 the erroneous concept of causality that commonly is used. In the last step of the paper we are going over the recent models of «causal explanation» and we suggest the probabilistic casualty development next with a more elaborated models of causal explanation, like a way to conjugate the scientific severity with the possibility to tackle complex economic realities.

  1. Causal Categories: Relativistically Interacting Processes

    Science.gov (United States)

    Coecke, Bob; Lal, Raymond

    2013-04-01

    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.

  2. Causal feedbacks in climate change

    NARCIS (Netherlands)

    Nes, van E.H.; Scheffer, M.; Brovkin, V.; Lenton, T.M.; Ye, H.; Deyle, E.; Sugihara, G.

    2015-01-01

    The statistical association between temperature and greenhouse gases over glacial cycles is well documented1, but causality behind this correlation remains difficult to extract directly from the data. A time lag of CO2 behind Antarctic temperature—originally thought to hint at a driving role for tem

  3. An Introduction to Causal Inference

    Science.gov (United States)

    2009-11-02

    legitimize causal inference, has removed causation from its natural habitat, and distorted its face beyond recognition. This exclusivist attitude is...In contrast, when the mediation problem is approached from an exclusivist potential-outcome viewpoint, void of the structural guidance of Eq. (28

  4. Breaking the arrows of causality

    DEFF Research Database (Denmark)

    Valsiner, Jaan

    2014-01-01

    Theoretical models of catalysis have proven to bring with them major breakthroughs in chemistry and biology, from the 1830s onward. It can be argued that the scientific status of chemistry has become established through the move from causal to catalytic models. Likewise, the central explanatory...

  5. Learning a Theory of Causality

    Science.gov (United States)

    Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B.

    2011-01-01

    The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…

  6. Free Fermions on causal sets

    CERN Document Server

    Noldus, Johan

    2013-01-01

    We construct a Dirac theory on causal sets; a key element in the construction being that the causet must be regarded as emergent in an appropriate sense too. We further notice that mixed norm spaces appear in the construction allowing for negative norm particles and "ghosts".

  7. Abnormal Effective Connectivity in Schizophrenia: Dynamic Causal Modelling%运用动态因果模型探究精神分裂症异常有效连接

    Institute of Scientific and Technical Information of China (English)

    徐静; 李德民; 聂彬彬; 王静娟; 宋银南; 刘哲宁; 单保慈

    2014-01-01

    目的:探讨精神分裂症患者异常的有效连接.方法:对25例精神分裂症患者和27例对照组进行N-back任务下的功能磁共振扫描,采用全脑连接和建立广义线性模型相结合,选取两组间有激活差异且存在连接差异的脑区为感兴趣区,加入到动态因果模型.结果:确定感兴趣区为左侧内侧前额叶、左侧后扣带回和左侧中扣带回,精神分裂症患者和对照组存在相反的有效连接.结论:两种方法结合更加客观的展示了精神分裂症患者前额叶有功能异常,可能与工作记忆下降有关;另存在方向相反的有效连接,提示患者的无意识“经验”存在缺陷,导致对中性事件产生错误的过多的归因.%Objective:To investigate abnormal effective connectivity of schizophrenia.Methods:25 patients with schizophrenia and 27 healthy control subjects were recruited to complete the functional magnetic resonance imaging(fMRI) scanning in an n-back task,whole-brain connection combined generalized linear models to determine the region of interests that have activation difference and connection difference between the two groups,dynamic causal modelling was applied to explore the effective connectivity between two groups.Results:The region of interests were identified as Superior frontal gyrus medial,Posterior cingulate gyrus and Middle cingulate gyrus.Compared with healthy controls group,the schizophrenia patients had opposite effective connectivity.Conclusion:The findings suggest that the prefrontal functional abnormalities may be associated with deficits of working memory in schizophrenia,and that the abnormal effective connectivity may impair patient 't unconscious "experience",finally leading to a neutral event occurs excessive error.

  8. Causal efficacy and the normative notion of sustainability science

    Directory of Open Access Journals (Sweden)

    Lin-Shu Wang

    2011-10-01

    Full Text Available Sustainability science requires both a descriptive understanding and a normative approach. Modern science, however, began as purely descriptive knowledge, the core of which is that matter is dynamically inert and without purpose. The British philosopher David Hume concluded that the only type of causation in the material world is “efficient causation,” which supported this purposeless view of a deterministic world “governed” by the causal laws of dynamics. But Hume did not argue against the existence of efficacious causation, only the error of humans projecting the mind’s efficacy to objects. Though dynamically inert, a material object away from equilibrium can be thermodynamically reactive, suggesting the possibility of the object being efficaciously managed for a purpose. Furthermore, quantum physics has replaced classical physics as the fundamental theory of the material world. Its basic equation, the Schrödinger wave-equation, is deterministic but causally inert—it cannot govern, leaving the determinism door unlocked. This causal gap, according to the von Neumann-Stapp quantum measurement/activation theory, necessitates the pragmatic existence in an irreversible universe of the causal efficacy of mental effort and information management. The resulting “bigger” empirical science has room for “descriptive determinism” and “normative action,” both of which are utterly essential in formulating sustainability science as an integral discipline.

  9. Discrepancies between qualitative and quantitative evaluation of randomised controlled trial results : achieving clarity through mixed methods triangulation

    NARCIS (Netherlands)

    Tonkin-Crine, Sarah; Anthierens, Sibyl; Hood, Kerenza; Yardley, Lucy; Cals, Jochen W L; Francis, Nick A; Coenen, Samuel; van der Velden, Alike W; Godycki-Cwirko, Maciek; Llor, Carl; Butler, Chris C; Verheij, Theo J M; Goossens, Herman; Little, Paul

    2016-01-01

    BACKGROUND: Mixed methods are commonly used in health services research; however, data are not often integrated to explore complementarity of findings. A triangulation protocol is one approach to integrating such data. A retrospective triangulation protocol was carried out on mixed methods data coll

  10. The Application of a Multiphase Triangulation Approach to Mixed Methods: The Research of an Aspiring School Principal Development Program

    Science.gov (United States)

    Youngs, Howard; Piggot-Irvine, Eileen

    2012-01-01

    Mixed methods research has emerged as a credible alternative to unitary research approaches. The authors show how a combination of a triangulation convergence model with a triangulation multilevel model was used to research an aspiring school principal development pilot program. The multilevel model is used to show the national and regional levels…

  11. Causal inference in obesity research.

    Science.gov (United States)

    Franks, P W; Atabaki-Pasdar, N

    2017-03-01

    Obesity is a risk factor for a plethora of severe morbidities and premature death. Most supporting evidence comes from observational studies that are prone to chance, bias and confounding. Even data on the protective effects of weight loss from randomized controlled trials will be susceptible to confounding and bias if treatment assignment cannot be masked, which is usually the case with lifestyle and surgical interventions. Thus, whilst obesity is widely considered the major modifiable risk factor for many chronic diseases, its causes and consequences are often difficult to determine. Addressing this is important, as the prevention and treatment of any disease requires that interventions focus on causal risk factors. Disease prediction, although not dependent on knowing the causes, is nevertheless enhanced by such knowledge. Here, we provide an overview of some of the barriers to causal inference in obesity research and discuss analytical approaches, such as Mendelian randomization, that can help to overcome these obstacles. In a systematic review of the literature in this field, we found: (i) probable causal relationships between adiposity and bone health/disease, cancers (colorectal, lung and kidney cancers), cardiometabolic traits (blood pressure, fasting insulin, inflammatory markers and lipids), uric acid concentrations, coronary heart disease and venous thrombosis (in the presence of pulmonary embolism), (ii) possible causal relationships between adiposity and gray matter volume, depression and common mental disorders, oesophageal cancer, macroalbuminuria, end-stage renal disease, diabetic kidney disease, nuclear cataract and gall stone disease, and (iii) no evidence for causal relationships between adiposity and Alzheimer's disease, pancreatic cancer, venous thrombosis (in the absence of pulmonary embolism), liver function and periodontitis.

  12. Assessing thalamocortical functional connectivity with Granger causality.

    Science.gov (United States)

    Chen, Cheng; Maybhate, Anil; Israel, David; Thakor, Nitish V; Jia, Xiaofeng

    2013-09-01

    Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks ( , t -test). Next, we characterized the relationship between the "electrical synaptic strength" in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus ( 1.983±0.278 times higher, p = 0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain.

  13. Capturing connectivity and causality in complex industrial processes

    CERN Document Server

    Yang, Fan; Shah, Sirish L; Chen, Tongwen

    2014-01-01

    This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: ·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and ·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian ne...

  14. A Taxonomy of Causality-Based Biological Properties

    CERN Document Server

    Bodei, Chiara; Chiarugi, Davide; Gori, Roberta; 10.4204/EPTCS.19.8

    2010-01-01

    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this fr...

  15. On the Temporal Causal Relationship Between Macroeconomic Variables

    Directory of Open Access Journals (Sweden)

    Srinivasan Palamalai

    2014-02-01

    Full Text Available The present study examines the dynamic interactions among macroeconomic variables such as real output, prices, money supply, interest rate (IR, and exchange rate (EXR in India during the pre-economic crisis and economic crisis periods, using the autoregressive distributed lag (ARDL bounds test for cointegration, Johansen and Juselius multivariate cointegration test, Granger causality/Block exogeneity Wald test based on Vector Error Correction Model, variance decomposition analysis and impulse response functions. The empirical results reveal a stronger long-run bilateral relationship between real output, price level, IR, and EXR during the pre-crisis sample period. Moreover, the empirical results confirm a unidirectional short-run causality running from price level to EXR, IR to price level, and real output to money supply during the pre-crisis period. Also, it is evident from the test results that there exist short-run bidirectional relationships running between real output and EXR, price level and IR, and IR and EXR in the pre-crisis era, respectively. Most importantly, long-run bidirectional causality is found between real output, EXR, and IR during the economic crisis period. And the study results indicate short-run bidirectional causality between money supply and EXR, IR and price level, and IR and output in India during the crisis era. Also, a short-run unidirectional causality runs from prices to real output in the crisis period.

  16. Symmetry and Transitive Properties of Monohedral f-triangulations of the Riemannian Sphere

    Institute of Scientific and Technical Information of China (English)

    Ana M. BREDA; J. M. SIGARRETA

    2009-01-01

    Here we give the complete description of the symmetry group and transitive properties of the set of all of monohedral triangulations of the Riemannian sphere by f-tilings. We shall also show that each monohedral f-tiling of the Riemannian sphere can be seen, up to a spherical isometry, as the singular set of a spherical isometric folding.

  17. An Array of Qualitative Data Analysis Tools: A Call for Data Analysis Triangulation

    Science.gov (United States)

    Leech, Nancy L.; Onwuegbuzie, Anthony J.

    2007-01-01

    One of the most important steps in the qualitative research process is analysis of data. The purpose of this article is to provide elements for understanding multiple types of qualitative data analysis techniques available and the importance of utilizing more than one type of analysis, thus utilizing data analysis triangulation, in order to…

  18. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, Guoyu; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, P.P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  19. The Marginalized "Model" Minority: An Empirical Examination of the Racial Triangulation of Asian Americans

    Science.gov (United States)

    Xu, Jun; Lee, Jennifer C.

    2013-01-01

    In this article, we propose a shift in race research from a one-dimensional hierarchical approach to a multidimensional system of racial stratification. Building upon Claire Kim's (1999) racial triangulation theory, we examine how the American public rates Asians relative to blacks and whites along two dimensions of racial stratification: racial…

  20. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.

    Science.gov (United States)

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui

    2014-07-10

    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  1. Triangulation and Mixed Methods Designs: Data Integration with New Research Technologies

    Science.gov (United States)

    Fielding, Nigel G.

    2012-01-01

    Data integration is a crucial element in mixed methods analysis and conceptualization. It has three principal purposes: illustration, convergent validation (triangulation), and the development of analytic density or "richness." This article discusses such applications in relation to new technologies for social research, looking at three innovative…

  2. Theoretical Triangulation as an Approach for Revealing the Complexity of a Classroom Discussion

    Science.gov (United States)

    van Drie, Jannet; Dekker, Rijkje

    2013-01-01

    In this paper we explore the value of theoretical triangulation as a methodological approach for the analysis of classroom interaction. We analyze an excerpt of a whole-class discussion in history from three theoretical perspectives: interactivity of the discourse, conceptual level raising and historical reasoning. We conclude that using…

  3. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations

    DEFF Research Database (Denmark)

    Zhang, Guojie; Pei, Zhang; Krawczak, Michael;

    2010-01-01

    Triangulation of the human, chimpanzee, and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently...

  4. Some specific triangulated categories%几个具体的三角范畴

    Institute of Scientific and Technical Information of China (English)

    赵小娟

    2012-01-01

    Peng proposed two methods to construct triangulated categories from generalized chain complex categories and functors between them. In this paper, the author uses these methods to consider some specific triangulated categories, determines all the indecomposable objects of the triangulated categories and their concrete forms. Then, the author draws their Auslander-Reiten quivers. From these Auslander-Reiten quivers one can see that they also provide a new kind of realization for the orbit categories of some triangulated categories.%本文利用彭提出的用广义复形范畴以及广义复形范畴之间的锥扩张来构造三角范畴的方法,考虑了几类特殊的三角范畴,确定了这几类三角范畴的所有不可分解对象和它们的具体形式,并给出了它们的Auslander-Reiten箭图的结构.这些三角范畴提供了一些轨道范畴的一种新的实现.

  5. Evaluating Team Project-Work Using Triangulation: Lessons from Communities in Northern Ghana

    Science.gov (United States)

    Clark, Gordon; Jasaw, Godfred Seidu

    2014-01-01

    This paper uses triangulation to assess key aspects of a team-based, participatory action research programme for undergraduates in rural communities across northern Ghana. The perceptions of the programme and its effects on the students, staff and host communities are compared, showing areas of agreement and disagreement. The successes of the…

  6. Triangulation and Mixed Methods Designs: Data Integration with New Research Technologies

    Science.gov (United States)

    Fielding, Nigel G.

    2012-01-01

    Data integration is a crucial element in mixed methods analysis and conceptualization. It has three principal purposes: illustration, convergent validation (triangulation), and the development of analytic density or "richness." This article discusses such applications in relation to new technologies for social research, looking at three…

  7. Feminist Approaches to Triangulation: Uncovering Subjugated Knowledge and Fostering Social Change in Mixed Methods Research

    Science.gov (United States)

    Hesse-Biber, Sharlene

    2012-01-01

    This article explores the deployment of triangulation in the service of uncovering subjugated knowledge and promoting social change for women and other oppressed groups. Feminist approaches to mixed methods praxis create a tight link between the research problem and the research design. An analysis of selected case studies of feminist praxis…

  8. Causal inference in economics and marketing.

    Science.gov (United States)

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  9. Exploring Individual Differences in Preschoolers' Causal Stance

    Science.gov (United States)

    Alvarez, Aubry; Booth, Amy E.

    2016-01-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…

  10. Representing Personal Determinants in Causal Structures.

    Science.gov (United States)

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  11. Designing Effective Supports for Causal Reasoning

    Science.gov (United States)

    Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…

  12. Designing Effective Supports for Causal Reasoning

    Science.gov (United States)

    Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and inferences, and…

  13. Decomposing Granger Causality over the Spectrum

    NARCIS (Netherlands)

    A. Lemmens (Aurélie); C. Croux (Christophe); M.G. Dekimpe (Marnik)

    2004-01-01

    textabstractWe develop a bivariate spectral Granger-causality test that can be applied at each individual frequency of the spectrum. The spectral approach to Granger causality has the distinct advantage that it allows to disentangle (potentially) di®erent Granger- causality relationships over di®ere

  14. Expectations and Interpretations during Causal Learning

    Science.gov (United States)

    Luhmann, Christian C.; Ahn, Woo-kyoung

    2011-01-01

    In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…

  15. Quantum Causality, Stochastics, Trajectories and Information

    CERN Document Server

    Belavkin, V P

    2002-01-01

    A history of the discovery of quantum mechanics and paradoxes of its interpretation is reconsidered from the modern point of view of quantum stochastics and information. It is argued that in the orthodox quantum mechanics there is no place for quantum phenomenology such as events. The development of quantum measurement theory, initiated by von Neumann, and Bell's conceptual critics of hidden variable theories indicated a possibility for resolution of this crisis. This can be done by divorcing the algebra of the dynamical generators and an extended algebra of the potential (quantum) and the actual (classical) observables. The latter, called beables, form the center of the algebra of all observables, as the only visible (macroscopic) observables must be compatible with any hidden (microscopic) observable. It is shown that within this approach quantum causality can be rehabilitated within an extended quantum mechanics (eventum mechanics) in the form of a superselection rule for compatibility of the consistent hi...

  16. Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.

    Science.gov (United States)

    Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong

    2016-05-01

    This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.

  17. Velocity requirements for causality violation

    CERN Document Server

    Modanese, Giovanni

    2013-01-01

    It is known that the hypothetical existence of superluminal signals would imply the logical possibility of active causal violation: an observer in relative motion with respect to a primary source could in principle emit secondary superluminal signals (triggered by the primary ones) which go back in time and deactivate the primary source before the initial emission. This is a direct consequence of the structure of the Lorentz transformations, sometimes called "Regge-Tolman paradox". It is straightforward to find a formula for the velocity of the moving observer required to produce the causality violation. When applied to some recent claims of slight superluminal propagation, this formula yields a required velocity very close to the speed of light; this raises some doubts about the real physical observability of such violations. We re-compute this velocity requirement introducing a realistic delay between the reception of the primary signal and the emission of the secondary. It turns out that for -any- delay it...

  18. Painless causality in defect calculations

    CERN Document Server

    Cheung, C; Cheung, Charlotte; Magueijo, Joao

    1997-01-01

    Topological defects must respect causality, a statement leading to restrictive constraints on the power spectrum of the total cosmological perturbations they induce. Causality constraints have for long been known to require the presence of an under-density in the surrounding matter compensating the defect network on large scales. This so-called compensation can never be neglected and significantly complicates calculations in defect scenarios, eg. computing cosmic microwave background fluctuations. A quick and dirty way to implement the compensation are the so-called compensation fudge factors. Here we derive the complete photon-baryon-CDM backreaction effects in defect scenarios. The fudge factor comes out as an algebraic identity and so we drop the negative qualifier ``fudge''. The compensation scale is computed and physically interpreted. Secondary backreaction effects exist, and neglecting them constitutes the well-defined approximation scheme within which one should consider compensation factor calculatio...

  19. Confounding Equivalence in Causal Inference

    CERN Document Server

    Pearl, Judea

    2012-01-01

    The paper provides a simple test for deciding, from a given causal diagram, whether two sets of variables have the same bias-reducing potential under adjustment. The test re- quires that one of the following two condi- tions holds: either (1) both sets are admis- sible (i.e., satisfy the back-door criterion) or (2) the Markov boundaries surrounding the manipulated variable(s) are identical in both sets. Applications to covariate selection and model testing are discussed.

  20. Causality and primordial tensor modes

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Daniel; Zaldarriaga, Matias, E-mail: dbaumann@physics.harvard.edu, E-mail: mzaldarriaga@cfa.harvard.edu [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, U.S.A. and Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2009-06-01

    We introduce the real space correlation function of B-mode polarization of the cosmic microwave background (CMB) as a probe of superhorizon tensor perturbations created by inflation. By causality, any non-inflationary mechanism for gravitational wave production after reheating, like global phase transitions or cosmic strings, must have vanishing correlations for angular separations greater than the angle subtended by the particle horizon at recombination, i.e. θ ∼> 2°. Since ordinary B-modes are defined non-locally in terms of the Stokes parameters Q and U and therefore don't have to respect causality, special care is taken to define 'causal B-tilde -modes' for the analysis. We compute the real space B-tilde -mode correlation function for inflation and discuss its detectability on superhorizon scales where it provides an unambiguous test of inflationary gravitational waves. The correct identification of inflationary tensor modes is crucial since it relates directly to the energy scale of inflation. Wrongly associating tensor modes from causal seeds with inflation would imply an incorrect inference of the energy scale of inflation. We find that the superhorizon B-tilde -mode signal is above cosmic variance for the angular range 2° < θ < 4° and is therefore in principle detectable. In practice, the signal will be challenging to measure since it requires accurately resolving the recombination peak of the B-mode power spectrum. However, a future CMB satellite (CMBPol), with noise level Δ{sub P} ≅ 1μK-arcmin and sufficient resolution to efficiently correct for lensing-induced B-modes, should be able to detect the signal at more than 3σ if the tensor-to-scalar ratio isn't smaller than r ≅ 0.01.

  1. Estimating the directed information to infer causal relationships in ensemble neural spike train recordings.

    Science.gov (United States)

    Quinn, Christopher J; Coleman, Todd P; Kiyavash, Negar; Hatsopoulos, Nicholas G

    2011-02-01

    Advances in recording technologies have given neuroscience researchers access to large amounts of data, in particular, simultaneous, individual recordings of large groups of neurons in different parts of the brain. A variety of quantitative techniques have been utilized to analyze the spiking activities of the neurons to elucidate the functional connectivity of the recorded neurons. In the past, researchers have used correlative measures. More recently, to better capture the dynamic, complex relationships present in the data, neuroscientists have employed causal measures-most of which are variants of Granger causality-with limited success. This paper motivates the directed information, an information and control theoretic concept, as a modality-independent embodiment of Granger's original notion of causality. Key properties include: (a) it is nonzero if and only if one process causally influences another, and (b) its specific value can be interpreted as the strength of a causal relationship. We next describe how the causally conditioned directed information between two processes given knowledge of others provides a network version of causality: it is nonzero if and only if, in the presence of the present and past of other processes, one process causally influences another. This notion is shown to be able to differentiate between true direct causal influences, common inputs, and cascade effects in more two processes. We next describe a procedure to estimate the directed information on neural spike trains using point process generalized linear models, maximum likelihood estimation and information-theoretic model order selection. We demonstrate that on a simulated network of neurons, it (a) correctly identifies all pairwise causal relationships and (b) correctly identifies network causal relationships. This procedure is then used to analyze ensemble spike train recordings in primary motor cortex of an awake monkey while performing target reaching tasks, uncovering

  2. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Directory of Open Access Journals (Sweden)

    Gerald eYoung

    2015-11-01

    Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.

  3. What can causal networks tell us about metabolic pathways?

    Directory of Open Access Journals (Sweden)

    Rachael Hageman Blair

    Full Text Available Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: "What can causal networks tell us about metabolic pathways?". Using data from an Arabidopsis Bay[Formula: see text]Sha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies.

  4. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Science.gov (United States)

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639

  5. Modeling of causality with metamaterials

    Science.gov (United States)

    Smolyaninov, Igor I.

    2013-02-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.

  6. Entanglement, Holography and Causal Diamonds

    CERN Document Server

    de Boer, Jan; Heller, Michal P; Myers, Robert C

    2016-01-01

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the va...

  7. Experimental verification of an indefinite causal order

    Science.gov (United States)

    Rubino, Giulia; Rozema, Lee A.; Feix, Adrien; Araújo, Mateus; Zeuner, Jonas M.; Procopio, Lorenzo M.; Brukner, Časlav; Walther, Philip

    2017-01-01

    Investigating the role of causal order in quantum mechanics has recently revealed that the causal relations of events may not be a priori well defined in quantum theory. Although this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. We report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our setup is with a definite causal order by measuring a “causal witness.” This mathematical object incorporates a series of measurements that are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment, we perform a measurement in a superposition of causal orders—without destroying the coherence—to acquire information both inside and outside of a “causally nonordered process.” Using this information, we experimentally determine a causal witness, demonstrating by almost 7 SDs that the experimentally implemented process does not have a definite causal order.

  8. Timing and causality in the generation of learned eyelid responses

    Directory of Open Access Journals (Sweden)

    Raudel eSánchez-Campusano

    2011-08-01

    Full Text Available The cerebellum-red nucleus-facial motoneuron (Mn pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP neurons and orbicularis oculi (OO Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing to longer-lasting ranges (interval timing expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and premotor spike-timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar-Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IP neurons may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality than to their generation and/or initiation.

  9. Norms and customs: causally important or causally impotent?

    Science.gov (United States)

    Jones, Todd

    2010-01-01

    In this article, I argue that norms and customs, despite frequently being described as being causes of behavior in the social sciences and ordinary conversation, cannot really cause behavior. Terms like "norms" and the like seem to refer to philosophically disreputable disjunctive properties. More problematically, even if they do not, or even if there can be disjunctive properties after all, I argue that norms and customs still cannot cause behavior. The social sciences would be better off without referring to properties like norms and customs as if they could be causal.

  10. The continuum limit of causal fermion systems from Planck scale structures to macroscopic physics

    CERN Document Server

    Finster, Felix

    2016-01-01

    This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students e...

  11. Parental causal attributions and emotions in daily learning situations with the child.

    Science.gov (United States)

    Enlund, Emmi; Aunola, Kaisa; Tolvanen, Asko; Nurmi, Jari-Erik

    2015-08-01

    This study investigated the dynamics between the causal attributions parents reported daily for their children's success in learning situations and parental positive emotions. The sample consisted of 159 mothers and 147 fathers of 162 first graders (83 girls, 79 boys; aged from 6 to 7 years, M = 7.5 years, SD = 3.6 months). Parents filled in a structured diary questionnaire concerning their causal attributions and emotions over 7 successive days in the fall semester and again over 7 successive days in the spring semester. Multilevel analyses showed that both parental causal attributions and positive emotions varied more within parents (between days over the week) than between parents. Furthermore, mothers' positive emotions on a certain day predicted their causal attributions on that same day rather than vice versa. The higher the level of positive emotions parents reported in a specific day, the more they used effort and ability as causal attributions for their offspring's success on that same day.

  12. Inferring causal molecular networks: empirical assessment through a community-based effort.

    Science.gov (United States)

    Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-04-01

    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

  13. Independence and dependence in human causal reasoning.

    Science.gov (United States)

    Rehder, Bob

    2014-07-01

    Causal graphical models (CGMs) are a popular formalism used to model human causal reasoning and learning. The key property of CGMs is the causal Markov condition, which stipulates patterns of independence and dependence among causally related variables. Five experiments found that while adult's causal inferences exhibited aspects of veridical causal reasoning, they also exhibited a small but tenacious tendency to violate the Markov condition. They also failed to exhibit robust discounting in which the presence of one cause as an explanation of an effect makes the presence of another less likely. Instead, subjects often reasoned "associatively," that is, assumed that the presence of one variable implied the presence of other, causally related variables, even those that were (according to the Markov condition) conditionally independent. This tendency was unaffected by manipulations (e.g., response deadlines) known to influence fast and intuitive reasoning processes, suggesting that an associative response to a causal reasoning question is sometimes the product of careful and deliberate thinking. That about 60% of the erroneous associative inferences were made by about a quarter of the subjects suggests the presence of substantial individual differences in this tendency. There was also evidence that inferences were influenced by subjects' assumptions about factors that disable causal relations and their use of a conjunctive reasoning strategy. Theories that strive to provide high fidelity accounts of human causal reasoning will need to relax the independence constraints imposed by CGMs.

  14. Space and time in perceptual causality

    Directory of Open Access Journals (Sweden)

    Benjamin Straube

    2010-04-01

    Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.

  15. How prescriptive norms influence causal inferences.

    Science.gov (United States)

    Samland, Jana; Waldmann, Michael R

    2016-11-01

    Recent experimental findings suggest that prescriptive norms influence causal inferences. The cognitive mechanism underlying this finding is still under debate. We compare three competing theories: The culpable control model of blame argues that reasoners tend to exaggerate the causal influence of norm-violating agents, which should lead to relatively higher causal strength estimates for these agents. By contrast, the counterfactual reasoning account of causal selection assumes that norms do not alter the representation of the causal model, but rather later causal selection stages. According to this view, reasoners tend to preferentially consider counterfactual states of abnormal rather than normal factors, which leads to the choice of the abnormal factor in a causal selection task. A third view, the accountability hypothesis, claims that the effects of prescriptive norms are generated by the ambiguity of the causal test question. Asking whether an agent is a cause can be understood as a request to assess her causal contribution but also her moral accountability. According to this theory norm effects on causal selection are mediated by accountability judgments that are not only sensitive to the abnormality of behavior but also to mitigating factors, such as intentionality and knowledge of norms. Five experiments are presented that favor the accountability account over the two alternative theories.

  16. Primordial Magnetic Fields and Causality

    CERN Document Server

    Durrer, R; Durrer, Ruth; Caprini, Chiara

    2003-01-01

    In this letter we discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much stronger suppressed than usually assumed and that a helical component is even suppressed even more than the parity even part. We show that due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in galaxies and clusters, but they cannot leave any detectable imprint on the cosmic microwave background.

  17. Random number generators and causality

    Energy Technology Data Exchange (ETDEWEB)

    Larrondo, H.A. [Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata (Argentina)]. E-mail: larrondo@fi.mdp.edu.ar; Martin, M.T. [Instituto de Fisica (IFLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Argentina' s National Council (CONICET), C.C. 727, 1900 La Plata (Argentina)]. E-mail: mtmartin@venus.unlp.edu.ar; Gonzalez, C.M. [Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata (Argentina)]. E-mail: cmgonzal@fi.mdp.edu.ar; Plastino, A. [Instituto de Fisica (IFLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Argentina' s National Council (CONICET), C.C. 727, 1900 La Plata (Argentina)]. E-mail: plastino@venus.unlp.edu.ar; Rosso, O.A. [Chaos and Biology Group, Instituto de Calculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires (Argentina)]. E-mail: oarosso@fibertel.com.ar

    2006-04-03

    We advance a prescription to randomize physical or algorithmic Random Number Generators (RNG's) that do not pass Marsaglia's DIEHARD test suite and discuss a special physical quantifier, based on an intensive statistical complexity measure, that is able to adequately assess the improvements produced thereby. Eight RNG's are evaluated and the associated results are compared to those obtained by recourse to Marsaglia's DIEHARD test suite. Our quantifier, which is evaluated using causality arguments, can forecast whether a given RNG will pass the above mentioned test.

  18. Random number generators and causality

    Science.gov (United States)

    Larrondo, H. A.; Martín, M. T.; González, C. M.; Plastino, A.; Rosso, O. A.

    2006-04-01

    We advance a prescription to randomize physical or algorithmic Random Number Generators (RNG's) that do not pass Marsaglia's DIEHARD test suite and discuss a special physical quantifier, based on an intensive statistical complexity measure, that is able to adequately assess the improvements produced thereby. Eight RNG's are evaluated and the associated results are compared to those obtained by recourse to Marsaglia's DIEHARD test suite. Our quantifier, which is evaluated using causality arguments, can forecast whether a given RNG will pass the above mentioned test.

  19. Mutation of torsion pairs in triangulated categories and its geometric realization

    CERN Document Server

    Zhou, Yu

    2011-01-01

    By generalizing mutation of rigid subcategories, maximal rigid subcategories and cluster tilting subcategories, the notion of mutation of torsion pairs in triangulated categories is introduced. It is proved that the mutation of torsion pairs in triangulated categories are torsion pairs. It is also proved that there is no non-trivial mutation of t-structures, but shift. A geometric realization of mutation of torsion pairs in the cluster categories of type $A_n$ or in the cluster categories of type $A_{\\infty}$ is given via the mutations (generalized flips) of Ptolemy diagrams of a regular $(n+3)-$gon $P_{n+3}$ or of a $\\infty-$gon $P_{\\infty}$ respectively.

  20. Understanding how data triangulation identifies acute toxicity of novel psychoactive drugs.

    Science.gov (United States)

    Wood, D M; Dargan, P I

    2012-09-01

    Over the last decade, there has been an increase in the availability and use of novel psychoactive substances (also known as "legal highs"). There is limited information available on the potential acute toxicity (harms) associated with the use of these novel psychoactive substances. Gold standard evidence, such as animal studies or human clinical trials, is rarely available to users or healthcare professionals. However, it is possible to use triangulation of data on the acute toxicity from multiple sources to describe the overall pattern of toxicity associated with a novel psychoactive substance. In this review, we will describe these potential data sources, which include self-reported toxicity on internet discussion fora, data from sub-population user surveys, data from regional and national poisons information services and published case reports and case series. We will then describe how pattern of acute toxicity associated with the use of the cathinone mephedrone (4-methylmethcathinone) was established using triangulation of these different data sources.

  1. Detection method of inclination angle in image measurement based on improved triangulation.

    Science.gov (United States)

    Zhang, Jinfeng; Zhang, Jiye

    2015-02-01

    Image distortion seriously affects the accuracy in microscope image measurement. One source of such distortion is related to the tilting of the microscope stage during laser scanning, thereby resulting in various degrees of inclination angles. This paper describes a novel technique that improves the traditional laser triangulation method by using multiple parallel laser beams that can solve the inclination problem. Moreover, a multi-light-spot measurement device, based on the improved laser triangulation technique, is proposed that can accurately detect the degree and directions of the inclination angles in real time. Furthermore, experimental results generated from a prototype of this device show that the new measurement system can effectively detect small inclination angles at a precision up to ±0.5  μrad.

  2. Classification and Filtering of Constrained Delaunay Triangulation for Automated Building Aggregation

    Directory of Open Access Journals (Sweden)

    GUO Peipei

    2016-08-01

    Full Text Available Building aggregation is an important part of research on large scale map generalization. A triangulation based approach is proposed from the perspective of shape features, six measure parameters of triangles in a constrained Delaunay triangulation are proposed. First of all, use the six measure parameters to determine which triangles are retained and which are erased. Then, the contours of retained triangles, as bridge areas between buildings, are automatically identified and right angle processed. And then, the buildings are aggregated with right angle feature retained by merging the bridge areas with connecting buildings. Finally, the approach is verified by being carried out on actual data. Experimental result shows that it is efficient and practical.

  3. Nther-type theorem of piecewise algebraic curves on triangulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The piecewise algebraic curve is a kind generalization of the classical algebraic curve. Nther-type theorem of piecewise algebraic curves on the cross-cut partition is very important to construct the Lagrange interpolation sets for a bivariate spline space.In this paper,using the properties of bivariate splines,the Nther-type theorem of piecewise algebraic curves on the arbitrary triangulation is presented.

  4. A triangulation of a homotopy-Deligne-Mumford compactification of the Moduli of curves

    CERN Document Server

    Gadgil, Siddhartha

    2010-01-01

    We construct a triangulation of a compactification of the Moduli space of a surface with at least one puncture that is closely related to the Deligne-Mumford compactification. Specifically, there is a surjective map from the compactification we construct to the Deligne-Mumford compactification so that the inverse image of each point is contractible. In particular our compactification is homotopy equivalent to the Deligne-Mumford compactification.

  5. N(o)ther-type theorem of piecewise algebraic curves on triangulation

    Institute of Scientific and Technical Information of China (English)

    Chun-gang ZHU; Ren-hong WANG

    2007-01-01

    The piecewise algebraic curve is a kind generalization of the classical algebraic curve.N(o)ther-type theorem of piecewise algebraic curves on the cross-cut partition is very important to construct the Lagrange interpolation sets for a bivariate spline space. In this paper, using the properties of bivariate splines, the N(o)ther-type theorem of piecewise algebraic curves on the arbitrary triangulation is presented.

  6. Triangulation of the human, chimpanzee and Neanderthal genome sequences identifies potentially compensated mutations

    OpenAIRE

    Zhang, Guojie; Zhang,Pei; Krawczak, Michael; Ball, Edward V.; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N.

    2010-01-01

    Abstract Triangulation of the human, chimpanzee and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently pathogenic in humans but which may represent a `compensated? wild-type state in at least one of the other two species. Of 122 such `potentially compensated mutations? (PCMs) identi...

  7. TRIANGULATION OF INSTRUMENTATION AND DATA SOURCE: A STRONGER METHOD IN ASSESSING ENGLISH LANGUAGE NEEDS

    OpenAIRE

    Meedy Nugraha

    2002-01-01

    This paper proposes the importance of multiple instrumentation and data source (triangulation) in a needs analysis. Various data gathering methods developed in assessing learners' English language needs are reviewed. The justification of employing more than a single data gathering method and data source in a needs analysis is also presented by examining the strengths and weaknesses of each method and evaluating previous needs analyses carried out in some Asian countries. Highlights are then g...

  8. Coarse error analysis and correction of a two-dimensional triangulation range finder

    Institute of Scientific and Technical Information of China (English)

    Huaqiao Gui; Liang Lü; Wei Huang; Jun Xu; Deyong He; Huanqin Wang; Jianping Xie; Tianpeng Zhao; Hai Ming

    2006-01-01

    @@ A real-time two-dimensional (2D) triangulation range finder is presented, which is composed of two linear complementary metal oxidation semiconductor (CMOS) chips, two camera lenses, and four light emitting diodes (LEDs). The high order distortion in image aberrations is the main factor responsible for the coarse errors. The theoretical prediction is in good agreement with experiments and the correction equation is used to obtain more reliable results with the unique distortion coefficient in the whole working region.

  9. Chromatic Sums of Biloopless Nonseparable Near-Triangulations on the Projective Plane

    Institute of Scientific and Technical Information of China (English)

    Zhao-xiang Li; Yan-pei Liu; Bing-feng Si

    2013-01-01

    In this paper,the chromatic sum functions of rooted biloopless nonseparable near-triangulations on the sphere and the projective plane are studied.The chromatic sum function equations of such maps are obtained.From the chromatic sum equations of such maps,the enumerating function equations of such maps are derived.An asymptotic evaluation and some explicit expression of enumerating functions are also derived.

  10. 平面域中的Delaunay三角算法%Delaunay Triangulation Algorithm in Planar Domain

    Institute of Scientific and Technical Information of China (English)

    张洁; 陈世元

    2007-01-01

    对目前广泛使用的Delaunay三角网格生成方法的基本原理进行阐述,对目前流行的几类DT(Delaunay Triangulation)算法,逐点插入算法、分治算法、三角网生长算法的原理进行了分析,对它们的特点进行了介绍.

  11. SUPERCONVERGENCE OF LEAST-SQUARES MIXED FINITE ELEMENTS FOR ELLIPTIC PROBLEMS ON TRIANGULATION

    Institute of Scientific and Technical Information of China (English)

    陈艳萍; 杨菊娥

    2003-01-01

    In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projection and some mixed finite element projections,we obtain the superconvergence result of least-squares mixed finite element solutions.This error estimate indicates an accuracy of O(h3/2)if the lowest order Raviart-Thomas elements are employed.

  12. Triangulated Irregular Networks (TIN), Published in 2000, 1:1200 (1in=100ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Triangulated Irregular Networks (TIN) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Orthoimagery information as of 2000....

  13. Das Auge als Datenquelle: Triangulation von Blickbewegungsdaten zur Analyse perzpetueller und kognitiver Prozesse in der angewandten Psychologie

    NARCIS (Netherlands)

    Kammerer, Yvonne; Jarodzka, Halszka

    2011-01-01

    Kammerer, Y., & Jarodzka, H. (2010, September). Das Auge als Datenquelle: Triangulation von Blickbewegungsdaten zur Analyse perzeptueller und kognitiver Prozesse in der angewandten Psychologie. Arbeitsgruppe auf dem 47. Kongress der Deutschen Gesellschaft für Psychologie (DGPs). Bremen.

  14. Triangulated Irregular Networks (TIN), Published in 2005, 1:600 (1in=50ft) scale, Oconto County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Triangulated Irregular Networks (TIN) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2005. Data by this...

  15. Triangulated Irregular Networks (TIN), TIN Bayfield County, Published in 2008, 1:24000 (1in=2000ft) scale, Bayfield County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Triangulated Irregular Networks (TIN) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2008....

  16. Modeling of causality with metamaterials

    CERN Document Server

    Smolyaninov, Igor I

    2012-01-01

    Hyperbolic metamaterials may be used to model a 2+1 dimensional Minkowski spacetime in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete history of this 2+1 dimensional spacetime. While this model may be used to build interesting spacetime analogs, such as metamaterial black holes and big bang, it lacks causality: since light inside the metamaterial may propagate back and force along the timelike spatial coordinate, events in the future may affect events in the past. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the timelike spatial coordinate. Resulting 2+1 Minkowski spacetime appears to be causal. Th...

  17. Causal viscous cosmology without singularities

    CERN Document Server

    Laciana, Carlos E

    2016-01-01

    An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: a) energy density without singularities along time, b) scale factor increasing with time, c) universe accelerated at present time, d) state equation for dark energy with "w" bounded and close to -1. It is found that those conditions are satified for the following two cases. i) When the transport coefficient ({\\tau}_{{\\Pi}}), associated to the causal correction, is negative, with the aditional restriction {\\zeta}|{\\tau}_{{\\Pi}}|>2/3, where {\\zeta} is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. ii) For {\\tau}_{{\\Pi}} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in r...

  18. An investigation into design of fair surfaces over irregular domains using data-dependent triangulation

    Indian Academy of Sciences (India)

    R Sharma; O P Sha

    2006-10-01

    Design of fair surfaces over irregular domains is a fundamental problem in computer-aided geometric design (CAGD), and has applications in engineering sciences (in aircraft, automobile, ship science etc.). In the design of fair surfaces over irregular domains defined over scattered data, it was widely accepted till recently that the classical Delaunay triangulation be used because of its global optimum property. However, in recent times it has been shown that for continuous piecewise linear surfaces, improvements in the quality of fit can be achieved if the triangulation pattern is made dependent upon some topological or geometric property of the data set or is simply data dependent. The fair surface is desired because it ensures smooth and continuous surface planar cuts, and these in turn ensure smooth and easy production of the surface in CAD/CAM, and favourable resistance properties. In this paper, we discuss a method for construction of $C^1$ piecewise polynomial parametric fair surfaces which interpolate prescribed $\\mathfrak{R}^3$ scattered data using spaces of parametric splines defined on $\\mathfrak{R}^3$ triangulation. We show that our method is more specific to the cases when the projection on a 2-D plane may consist of triangles of zero area, numerically stable and robust, and computationally inexpensive and fast. Numerical examples dealing with surfaces approximated on plates, and on ships have been presented.

  19. Measuring teamwork in primary care: Triangulation of qualitative and quantitative data.

    Science.gov (United States)

    Brown, Judith Belle; Ryan, Bridget L; Thorpe, Cathy; Markle, Emma K R; Hutchison, Brian; Glazier, Richard H

    2015-09-01

    This article describes the triangulation of qualitative dimensions, reflecting high functioning teams, with the results of standardized teamwork measures. The study used a mixed methods design using qualitative and quantitative approaches to assess teamwork in 19 Family Health Teams in Ontario, Canada. This article describes dimensions from the qualitative phase using grounded theory to explore the issues and challenges to teamwork. Two quantitative measures were used in the study, the Team Climate Inventory (TCI) and the Providing Effective Resources and Knowledge (PERK) scale. For the triangulation analysis, the mean scores of these measures were compared with the qualitatively derived ratings for the dimensions. The final sample for the qualitative component was 107 participants. The qualitative analysis identified 9 dimensions related to high team functioning such as common philosophy, scope of practice, conflict resolution, change management, leadership, and team evolution. From these dimensions, teams were categorized numerically as high, moderate, or low functioning. Three hundred seventeen team members completed the survey measures. Mean site scores for the TCI and PERK were 3.87 and 3.88, respectively (of 5). The TCI was associated will all dimensions except for team location, space allocation, and executive director leadership. The PERK was associated with all dimensions except team location. Data triangulation provided qualitative and quantitative evidence of what constitutes teamwork. Leadership was pivotal in forging a common philosophy and encouraging team collaboration. Teams used conflict resolution strategies and adapted to the changes they encountered. These dimensions advanced the team's evolution toward a high functioning team.

  20. The triangulation of the gigantic jets observed by the optical observation network in Taiwan

    Science.gov (United States)

    Chen, Alfred B.; Huang, Chien-Fong; Peng, Kang-Ming; Su, Han-Tzong; Hsu, Rue-Ron

    2015-04-01

    The optical triangulation of sprites and elves by the multiple sites has been done in the past decades, but the similar observation on gigantic jets has never been reported yet. A ground optical observation network consisting of four stations at Kimen, Penghu, Tainan, and Taitung (from west to east) has been established in Taiwan since 2012. Each station equipped with two sets of Watec low-light sensitivity cameras, and the elevation and azimuth of the observation can be fully remote controlled to point toward the on-going convection system in the vicinity of Taiwan. In summer 2014, more than 6 gigantic jets were captured by at least two stations successfully. The triangulation and ULF sferics of these interesting events provides an excellent chance to explore the spatial and temporal evolution of the jets in different phases. In this presentation, this ground observation network will be introduced, the detail evolution of the recorded gigantic jets is presented. The preliminary result implies that the jets may not pop from the cloudtop straightforwardly, and some twists occur during the propagation of the jets. A more complicated analysis of the tomography for the advanced triangulation will be mentioned, too.