WorldWideScience

Sample records for caudate nucleus putamen

  1. Morphometric and volumetric study of caudate and putamen nuclei in normal individuals by MRI: Effect of normal aging, gender and hemispheric differences

    International Nuclear Information System (INIS)

    Abedelahi, Ali; Hasanzadeh, Hadi; Hadizadeh, Homaioon; Joghataie, Mohammad Taghi

    2013-01-01

    The aim of this study was to determine age, gender, and hemispheric differences in the volume of the human neostriatum (striatum) nucleus in healthy humans. This study was performed on 120 normal human subjects (60 males, 60 females, right-handed) 15–65 years old, divided into two groups: young (<40 yrs) and old (=≥40 yrs). Sectional brain images were obtained via magnetic resonance imaging (MRI), analyzed and processed using the Image-J software, and the striatum volume was calculated using the Cavalieri’s principle, retrospectively. The analyses revealed bilateral age-related shrinkage of the putamen in both genders and the putamen and caudate nucleus were significantly smaller in older than in younger subjects (P-value <0.001). The age-related shrinkage of the caudate and putamen nucleus in men and women was about 5%, 5% and 4%, 4%, respectively, and there were statistically significant volume differences between males and females (P-value <0.05). In both genders, a significant rightward asymmetry was observed in the caudate and putamen nucleus (3.89%, 4.21% in men and 4.51%, 3.32% in women). Bilateral age-related shrinkage and rightward asymmetry of the striate nucleus was found in healthy adults and there were significant volume differences between men and women. Obtained results provide useful baseline data on age and gender-related changes of the volume of the striatum

  2. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson's disease

    NARCIS (Netherlands)

    Luchetti, Sabina; Bossers, Koen; Frajese, Giovanni Vanni; Swaab, Dick F.

    2010-01-01

    There is emerging evidence from animal studies for a neuroprotective role of sex steroids in neurodegenerative diseases, but studies in human brain are lacking. We have carried out an extensive study of the neurosteroid biosynthetic pathways in substantia nigra (SN), caudate nucleus (CN) and putamen

  3. [Effect of injection of enkephalin and bestatin in caudate-putamen on operant conditioning in rats].

    Science.gov (United States)

    Zhang, S Y; Zhang, Y P; Zhang, M L; Qi, H X; Wang, B

    1992-10-01

    Female Wistar rats were trained in a Skinner-box, 30 trials per day in a dark room to establish operant defence conditioning. Training started with a light (15 s), then combined with footshock for further 8 s. When the rats learned to press the key to avoid footshock within 15 s, conditioned response was considered established. After the rats reached a conditioning rate (CR) above 80% for 5 days, cannulae were implanted into caudate-putamen. Two to three days later, Met-enkephalin (MEK) or bestatin (an aminopeptidase inhibitor) was injected bilaterally into caudate-putamen. 30 min, 2 h, 24 h and 48 h after injection, conditioning tests were conducted, with each session consisting of 30 trials. Control experiments were done when 0.9% NaCl (NS) was injected. After injection of NS, CR maintained above 80% in all 4 test sessions. MEK (60 ng/rat) or bestatin (10 micrograms/rat) significantly lowered the CR during the 30 min and 2 h test session. In the latter case, the latency (L) was also prolonged. However both CR and L returned to the control level in the 24 h and 48 h test sessions. Naloxone (2 mg/kg, i.p.) blocked the conditioning-depression effect of bestatin. No significant alteration was seen in locomotor activity after MEK or bestatin injection. The results suggest that enkephalin in caudate-putamen may be involved in the regulation of retrieval of conditioning. Bestatin mimics the effect of MEK on conditioning reflex probably by increasing production of endogenous enkephalin.

  4. Shape Abnormalities of the Caudate Nucleus Correlate with Poorer Gait and Balance

    DEFF Research Database (Denmark)

    Macfarlane, Matthew D; Looi, Jeffrey C L; Walterfang, Mark

    2015-01-01

    published method and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis using the spherical harmonic shape description toolkit. RESULTS: There was no correlation between the severity of WMHs and striatal volumes. Caudate nuclei...... volume correlated with performance on the SPPB at baseline but not at follow-up, with subsequent shape analysis showing left caudate changes occurred in areas corresponding to inputs of the dorsolateral prefrontal, premotor, and motor cortex. There was no correlation between putamen volumes...

  5. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease

    International Nuclear Information System (INIS)

    Jiji, Sudevan; Smitha, Karavallil Achuthan; Gupta, Arun Kumar; Pillai, Vellara Pappukutty Mahadevan; Jayasree, Ramapurath S.

    2013-01-01

    Objectives: A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. Methods: 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Results: Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. Conclusion: The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD

  6. Increased putamen volume in adults with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Wataru eSato

    2014-11-01

    Full Text Available Basal ganglia (BG abnormalities are implicated in the pathophysiology of autism spectrum disorder (ASD. However, studies measuring the volume of the entire BG in individuals with ASD have reported discrepant findings, and no study conducted volume measurement of the entire substructures of the BG (the caudate, putamen, nucleus accumbens, and globus pallidus in individuals with ASD. We delineated the BG substructures and measured their volumes in 29 adults with ASD without intellectual disabilities and 29 age- and gender-matched typically developed adult controls. We acquired T1-weighted anatomical images and performed semi-automated delineation and volume measurements of the above-mentioned subregions. Total cerebral volumes, sex, and ages were partialed out. Compared with controls, the putamen was significantly larger in the ASD group. The increased volume of the putamen found in high-functioning adults with ASD suggests that structural or histological abnormalities of the putamen may underlie the pathologies of ASD such as repetitive and stereotyped behaviors and impaired social interactions.

  7. Morphological alterations in the caudate, putamen, pallidum and thalamus in Parkinson’s disease.

    Directory of Open Access Journals (Sweden)

    Amanmeet eGarg

    2015-03-01

    Full Text Available Like many neurodegenerative diseases, the clinical symptoms of Parkinson’s disease (PD do not manifest until significant progression of the disease has already taken place, motivating the need for sensitive biomarkers of the disease. While structural imaging is a potentially attractive method due to its widespread availability and non-invasive nature, global morphometric measures (e.g. volume have proven insensitive to subtle disease change. Here we use individual surface displacements from deformations of an average surface model to capture disease related changes in shape of the subcortical structures in Parkinson’s disease. Data were obtained from both the University of British Columbia (UBC (n=54 healthy controls (HC & n=55 Parkinson’s disease (PD patients and the publicly available Parkinson’s Progression Marker’s Initiative (PPMI(n=137(HC & n=189 (PD database. A high dimensional non-rigid registration algorithm was used to register target segmentation labels (caudate, putamen, pallidum and thalamus to a set of segmentation labels defined on the average-template. The vertex-wise surface displacements were significantly different between PD and HC in thalamic and caudate structures. However overall displacements did not correlate with disease severity, as assessed by the Unified Parkinson's Disease Rating Scale (UPDRS. The results from this study suggest disease-relevant shape abnormalities can be robustly detected in subcortical structures in Parkinson’s disease. Future studies will be required to determine if shape changes in subcortical structures are seen in the prodromal phases of the disease.

  8. Measuring the volume of caudate nucleus in healthy Chinese adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Ni Mingfei; Chen Nan; Wang Xing; Wu Jianlin; Li Kuncheng; Zhou Xin; Zhou Yan; Chen Lin

    2010-01-01

    Objective: To explore the normal range of the caudate nucleus' volume in Chinese adults of the Han nationality and provide morphological data for the construction of database for Chinese Standard Brain. Methods: This was a clinical multi-center study. One thousand Chinese healthy volunteers (age range =18 to 70) recruited from 16 hospitals were divided into 5 groups, i.e, Group A (age range = 18 to 30), B (age range =31 to 40), C (age range =41 to 50), D (age range =51 to 60), and E (age range =61 to 70). Each group contained 100 males and 100 females. All of the volunteers were scanned by MR using T 1 weighted three-dimensional magnetization prepared rapid acquisition gradient echo sequence. The volume of caudate was measured manually using 3D volume analysis software. The difference of volumes of the caudate between male and female were analyzed by independent sample t-test, and among age groups by ANOVA. Pearson's correlation coefficient was used to characterize the relationship between volumes and age. The differences of measurements between left and right caudate nucleus were analyzed by paired t test. Results: (1) The mean volume of bilateral caudate nucleus in healthy Chinese adults was (10.973± 1.647) cm 3 . The mean volume of the the male's left and right caudate nucleus were (5.656±0.860) and (5.671±0.855) cm 3 respectively,no significant differences were found between the volume of left and right caudate nucleus (t=1.230, P>0.05). The mean volume of the the female's left and right caudate nucleus were (5.287±0.774) and (5.331±0.766) cm 3 respectively, and the right's was larger than the left's with significant differences (t=3.999, P<0.01); (2) Pearson correlation analysis showed a significant negative correlation between the nucleus volume and age (male and female's, left and right) (r=-0.561, -0.568, -0.548, -0.552, P<0.05). Conclusion: With high-resolution MRI and 3D volumetric analytic software (Midob), the volume of the caudate nucleus can be

  9. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    Science.gov (United States)

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder. Copyright © 2015. Published by Elsevier B.V.

  10. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism

    Directory of Open Access Journals (Sweden)

    Anne J. Blood

    2018-01-01

    Full Text Available Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either “matrix-weighted”, or “striosome-weighted” connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset.

  11. Registration and Analysis of Bioelectric Activity of Sensory-Motor Cortex During the Electrical Stimulation of Nucleus Caudate in Rats

    Directory of Open Access Journals (Sweden)

    Snežana Medenica-Milanović

    2007-05-01

    Full Text Available Background and purposeThe caudate circuit takes part in cognitive control of motor activity The purpose of the present work was registration and analysis of basic bioelectrical activity of ventral and dorsal sensory-motor cortex and nucleus caudate, study of the changes in EEG after nucleus caudate electrical stimulation and to identify of threshold level of electrical stimuli responsible for changes of electrical activity in registered brain area.Materials and methodsWe used 28 albino Wistar rat of both genders. After the animal fixation on stereotaxic apparatus to dry bone, the places for electrode fixation were marked. Two days after the electrodes had been implanted an EEG was registered so that the animals would adjust to the conditions and so they would repair the tissue reactions. EEG was registered with bipolar electrodes with ten-channeled apparatus. For first half an hour spontaneous activity of the brain was registered, and after that the head of nucleus caudate was stimulated with altered impulses of various voltages, frequency and duration.Results and conclusionsThreshold values of electric stimulus intensity from 3 to 5 V, frequency from 3 to 5 Hz, duration from 3 to 5 ms, by stimulation the head of nucleus caudate of rat, lead to the change of basal bioelectric activity of cerebrum. The change of bioelectric activity is firstly recorded in equilateral cortex, and with the higher intensity of the stimulus the changes overtake the contra lateral cortex.

  12. Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus.

    Directory of Open Access Journals (Sweden)

    Sonja A Kotz

    Full Text Available While there is ample evidence on the functional and connectional differentiation of the caudate nucleus (CN, less is known about its potential microstructural subdivisions. However, this latter aspect is critical to the local information processing capabilities of the tissue. We applied diffusion MRI, a non-invasive in vivo method that has great potential for the exploration of the brain structure-behavior relationship, in order to characterize the local fiber structure in gray matter of the CN. We report novel evidence of a functionally meaningful structural tri-partition along the anterior-posterior axis of this region. The connectivity of the CN subregions is in line with connectivity evidence from earlier invasive studies in animal models. In addition, histological validation using polarized light imaging (PLI confirms these results, corroborating the notion that cortico-subcortico-cortical loops involve microstructurally differentiated regions in the caudate nucleus. Methodologically speaking, the comparison with advanced analysis of diffusion MRI shows that diffusion tensor imaging (DTI yields a simplified view of the CN fiber architecture which is refined by advanced high angular resolution imaging methods.

  13. Increased turnover of dopamine in caudate nucleus of detoxified alcoholic patients

    DEFF Research Database (Denmark)

    Kumakura, Yoshitaka; Gjedde, Albert; Caprioli, Daniele

    2013-01-01

    ventral striatum. We conclude that craving is most pronounced in the individuals with relatively rapid dopamine turnover in the left ventral striatum. The blood-brain clearance rate (K), corrected for subsequent loss of radiolabeled molecules from brain, was completely normal throughout the brain...... of the alcoholics, in whom the volume of distribution (V(d)) was found to be significantly lower in the left caudate nucleus. The magnitude of Vd in the left caudate head was reduced by 43% relative to the 16 controls, consistent with a 58% increase of k(loss). We interpret the findings as indicating that a trait...... for rapid dopamine turnover in the ventral striatum subserves craving and reward-dependence, leading to an acquired state of increased dopamine turnover in the dorsal striatum of detoxified alcoholic patients....

  14. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    Science.gov (United States)

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  15. Modulation of neurotransmitter release in the region of the caudate nucleus by diet and neurotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Kurstjens, N P

    1987-01-01

    In this thesis the effects of dietary manipulation, ethanol and neurotoxins on the basal and electrically evoked release of dopamine and acetylcholine from the caudate nucleus of mature animals are presented together with an evaluation of the presynaptic acetylcholine and dopamine receptors controlling acetylcholine and dopamine release. A standardised superfusion technique was used to monitor the effect of apomorphine, in the presence of (R-S)- sulpiride or haloperidol, on the electrically induced release of (/sup 3/ H)-acetylcholine in slices of rat corpus striatum. The effect of ethanol and dietary manipulation on the basal and electrically evoke release of (/sup 3/H)-acetylfholine from rat striatal slices, in the presence of specific agonists and antagonists was evaluated. From this study it is possible to deduce that diet and neurotoxins exerted a measurable effect on the mechanisms controlling release of neurotransmitters in the region of the caudate nucleus. These changes were determined in mature animals previously considered to have cerebral activity, which was not subject to dietary fluctuaations. No changes in the activity of the presynaptic dopamine receptor of the acetylcholine nerve terminals of the striatal slice could be measured.

  16. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry.

    Science.gov (United States)

    Tao, Guozhi; Datta, Sushmita; He, Renjie; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2009-07-15

    Tensor based morphometry (TBM) was applied to determine the atrophy of deep gray matter (DGM) structures in 88 relapsing multiple sclerosis (MS) patients. For group analysis of atrophy, an unbiased atlas was constructed from 20 normal brains. The MS brain images were co-registered with the unbiased atlas using a symmetric inverse consistent nonlinear registration. These studies demonstrate significant atrophy of thalamus, caudate nucleus, and putamen even at a modest clinical disability, as assessed by the expanded disability status score (EDSS). A significant correlation between atrophy and EDSS was observed for different DGM structures: (thalamus: r=-0.51, p=3.85 x 10(-7); caudate nucleus: r=-0.43, p=2.35 x 10(-5); putamen: r=-0.36, p=6.12 x 10(-6)). Atrophy of these structures also correlated with 1) T2 hyperintense lesion volumes (thalamus: r=-0.56, p=9.96 x 10(-9); caudate nucleus: r=-0.31, p=3.10 x 10(-3); putamen: r=-0.50, p=6.06 x 10(-7)), 2) T1 hypointense lesion volumes (thalamus: r=-0.61, p=2.29 x 10(-10); caudate nucleus: r=-0.35, p=9.51 x 10(-4); putamen: r=-0.43, p=3.51 x 10(-5)), and 3) normalized CSF volume (thalamus: r=-0.66, p=3.55 x 10(-12); caudate nucleus: r=-0.52, p=2.31 x 10(-7), and putamen: r=-0.66, r=2.13 x 10(-12)). More severe atrophy was observed mainly in thalamus at higher EDSS. These studies appear to suggest a link between the white matter damage and DGM atrophy in MS.

  17. Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus.

    Directory of Open Access Journals (Sweden)

    Maheen M Adamson

    Full Text Available The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20-66 were asked to "fly" a series of simulated "cockpit view" instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog-legally unsafe to land or low risk (medium fog-legally safe to land. Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8 or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12. High Expertise pilots were more accurate than Moderate Expertise pilots in making a "land" versus "do not land" decision (CFII: d' = 3.62 ± 2.52; IFR: d' = 0.98 ± 1.04; p<.01. Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a "land" versus "do not land" decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97 ± 0.80 compared to Moderate Expertise pilots (1.91 ± 1.16 (p<.05. These findings provide evidence for increased "neural efficiency" in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the "expertise" effect was observed. These data provide evidence that performing "real world" aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions

  18. MR measurement of the basal ganglia volume in the tourette syndrome

    International Nuclear Information System (INIS)

    Liao Kaibing; Li Guiping; Yang Bo; Feng Gansheng

    2014-01-01

    Objective: To compare the volume of the basal ganglia in patients with Tourette syndrome (TS) and the normal volunteers and to explore the underlying anatomical basis of TS. Methods: Thirty-one cases of TS (TS subjects), 31 gender and age-matched subjects (the control subjects) were examined on a 3.0 T MRI system. The volume of the caudate nucleus, globus pallidus, putamen of the two sides and the brain volume were measured with volume analysis software, and the data were normalized according to the individual brain volume. Statistical analysis was performed using t test to compare between the TS subjects and the controls. Results: The volume of the both sides of the caudate nucleus, putamen and globus pallidus of TS subjects were (4.11 ±0.12) and (3.76 ±0.11), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm 3 , while they were (4.88 ±0.19) and (4.30 ±0.12), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm 3 in the controls, respectively. There were significant differences in the bilateral caudate nucleus and globus pallidus between the TS subjects and control subjects (t=2.97, 1.74, 3.72, 3.93, P<0.05), but there were no significant differences of the volume in the bilateral putamen between the TS and control subjects (t=0.47, 1.31, P>0.05). The volume was not significantly different between the left and right caudate nucleus in the TS subjects (t=1.81, P>0.05), but the left volume of the caudate nucleus was bigger in the control subjects compared with the right volume, however, there was significant difference between the bilateral caudate nucleus in the control subjects (t=2.34, P<0.05). There were no differences of volume between the bilateral globus pallidus and putamen in both the TS and control subjects (t=1.12, 1.44, 1.68, 0.38, P>0.05). Conclusion: The abnormal volume of caudate nucleus, putamen, and the globus pallidus may be involved in the pathogenesis of TS. (authors)

  19. Shape abnormalities of the striatum in Alzheimer's disease.

    Science.gov (United States)

    de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A

    2011-01-01

    Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.

  20. (123I)β-CIT and SPECT in essential tremor and Parkinson's disease

    International Nuclear Information System (INIS)

    Asenbaum, S.; Bruecke, T.; Pirker, W.; Bencsits, G.; Pruckmayer, M.; Angelberger, P.

    1997-01-01

    Resting and postural tremor may occur in essential tremor (ET) and Parkinson's disease (PD). The aim of the present study was to investigate the cocaine derivative [ 123 I] β-CIT, which labels striatal dopamine transporters, and SPECT in differentiating these diseases. Methods: 30 healthy volunteers, 32 patients with ET and 29 patients with idiopathic PD of Hoehn/Yahr stage I were investigated. Specific over nondisplaceable binding ratios (target/cerebellum-1) were calculated for the striatum, the caudate nucleus and the putamen separately as well as a ratio putamen/caudate and the percent deviation of each patient's ratio from ageexpected control values. Results: striatal ( 123 I]β-CIT binding ratios in ET were within normal ranges and showed only a discrete elevation to age-expected control values (+ 14.6 %). In PD significantly reduced specific binding was evident not only contralaterally to the clinically affected side (putamen: - 62 %, caudate nucleus: - 35 %), but also ipsilaterally (putamen: - 45 %, caudate nucleus: - 22 %). All investigated parameters differed significantly between PD and controls and ET respectively. Conclusion: imaging striatal dopamine transporters with ( 123 I)β-CIT and SPECT could clearly distinguish between ET and PD in an early stage of the disease. Findings do not suggest a subclinical involvement of dopaminergic nigrostriatal neurons in ET. (author)

  1. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug

    DEFF Research Database (Denmark)

    Glenthoj, Andreas; Glenthøj, Birte Yding; Mackeprang, Torben

    2007-01-01

    or intracranial volume, the only significant difference between patients and controls was a Hemisphere x Group interaction for the caudate nucleus at baseline, with controls having larger left than right caudate nuclei and patients having marginally larger right than left caudate volumes. Within patients, the two...... of exposure to medication and in controls at baseline. Caudate nucleus, nucleus accumbens, and putamen volumes were measured. Compared with controls, absolute volumes of interest (VOIs) were smaller in patients at baseline and increased after treatment. However, with controls for age, gender and whole brain...

  2. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug

    DEFF Research Database (Denmark)

    Glenthoj, Andreas; Glenthoj, Birte Y; Mackeprang, Torben

    2007-01-01

    of exposure to medication and in controls at baseline. Caudate nucleus, nucleus accumbens, and putamen volumes were measured. Compared with controls, absolute volumes of interest (VOIs) were smaller in patients at baseline and increased after treatment. However, with controls for age, gender and whole brain...... or intracranial volume, the only significant difference between patients and controls was a Hemisphere x Group interaction for the caudate nucleus at baseline, with controls having larger left than right caudate nuclei and patients having marginally larger right than left caudate volumes. Within patients, the two...

  3. CRFR1 in the ventromedial caudate putamen modulates acute stress-enhanced expression of cocaine locomotor sensitization.

    Science.gov (United States)

    Liu, Shuli; Wang, Zhiyan; Li, Yijing; Sun, Xiaowei; Ge, Feifei; Yang, Mingda; Wang, Xinjuan; Wang, Na; Wang, Junkai; Cui, Cailian

    2017-07-15

    Repeated exposure to psychostimulants induces a long-lasting enhancement of locomotor activity called behavioral sensitization, which is often reinforced by stress after drug withdrawal. The mechanisms underlying these phenomena remain elusive. Here we explored the effects of acute stress 3 or 14 days after the cessation of chronic cocaine treatment on the expression of locomotor sensitization induced by a cocaine challenge in rats and the key brain region and molecular mechanism underlying the phenomenon. A single session of forced swimming, as an acute stress (administered 2 days after the cessation of cocaine), significantly enhanced the expression of cocaine locomotor sensitization 14 days after the final cocaine injection (challenge at 12 days after acute stress) but not 3 days after the cessation of cocaine (challenge at 1 day after acute stress). The result indicated that acute stress enhanced the expression of cocaine locomotor sensitization after incubation for 12 days rather than 1 day after the last cocaine injection. Moreover, the enhancement in locomotor sensitization was paralleled by a selective increase in the number of the c-Fos + cells, the level of CRFR1 mRNA in the ventromedial caudate putamen (vmCPu). Furthermore, the enhancement was significantly attenuated by CRFR1 antagonist NBI-27914 into the vmCPu, implying that the up-regulation of CRFR1 in the vmCPu seems to be critical in the acute stress-enhanced expression of cocaine locomotor sensitization. The findings demonstrate that the long-term effect of acute stress on the expression of cocaine locomotor sensitization is partially mediated by CRFR1 in the vmCPu. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Different subcellular localization of neurotensin-receptor and neurotensin-acceptor sites in the rat brain dopaminergic system.

    Science.gov (United States)

    Schotte, A; Rostène, W; Laduron, P M

    1988-04-01

    The subcellular localization of neurotensin-receptor sites (NT2 sites) and neurotensin-acceptor sites (NT1 sites) was studied in rat caudate-putamen by isopycnic centrifugation in sucrose density gradients. [3H]Neurotensin binding to NT2 sites occurred as a major peak at higher sucrose densities, colocalized with [3H]dopamine uptake, and as a small peak at a lower density; whereas binding to NT1 sites occurred as a single large peak at an intermediate density. 6-Hydroxydopamine lesions of the median forebrain bundle resulted in a total loss of NT2 sites in the caudate-putamen but did not affect NT2 sites in the nucleus accumbens and the olfactory tubercle. NT1 sites were not affected. Kainic acid injections into the rat caudate-putamen led to a partial decrease of NT1 sites in this region 5 days later. After a few weeks they returned to normal. Therefore NT2 sites are probably associated with presynaptic nigrostriatal dopaminergic terminals in the caudate-putamen but not in the nucleus accumbens and the olfactory tubercle. A possible association of NT1 sites with glial cells is suggested.

  5. Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome.

    Science.gov (United States)

    Bloch, Michael H; Leckman, James F; Zhu, Hongtu; Peterson, Bradley S

    2005-10-25

    Most children with Tourette syndrome (TS) experience a marked decline in the severity of tic symptoms during adolescence. Currently no clinical measures can predict whose tic symptoms will persist into adulthood. Previous cross-sectional imaging studies have identified reduced caudate nucleus volumes in subjects with TS. To evaluate whether caudate nucleus volumes in childhood can predict the severity of tic or obsessive-compulsive symptoms at follow-up in early adulthood. In a prospective longitudinal study, clinical status and basal ganglia volumes of 43 children with TS were measured on high-resolution magnetic resonance images before age 14 years. Follow-up clinical assessments were conducted after age 16 years, an average of 7.5 years later. Linear regression and Tobit regression analyses were used to assess the association of basal ganglia volumes measured in childhood with the severity of tic and obsessive-compulsive disorder (OCD) symptoms at the time of childhood MRI and at follow-up in early adulthood. Volumes of the caudate nucleus correlated significantly and inversely with the severity of tic and OCD symptoms in early adulthood. Caudate volumes did not correlate with the severity of symptoms at the time of the MRI scan. Caudate volumes in children with Tourette syndrome predict the severity of tic and obsessive-compulsive symptoms in early adulthood. This study provides compelling evidence that morphologic disturbances of the caudate nucleus within cortico-striatal-thalamo-cortical circuits are central to the persistence of both tics and obsessive-compulsive symptoms into adulthood.

  6. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing effects of virtually all drugs...... as reference for all three methods. Mean pB were calculated for left and right putamen, caudate and VST. Correlations between the left and right pB were examined for each striatal region. The results of the three methods were also compared. Results: For all three methods, there was a highly significant...... correlation between the left and right caudate and putamen (pVST (0.01

  7. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Directory of Open Access Journals (Sweden)

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  8. Deep brain stimulation of the bilateral nucleus accumbens in normal rhesus monkey.

    Science.gov (United States)

    Li, Nan; Gao, Li; Wang, Xue-lian; Chen, Lei; Fang, Wei; Ge, Shun-nan; Gao, Guo-dong

    2013-01-09

    The nucleus accumbens (NAc) has been considered as a novel target of deep brain stimulation (DBS) for intractable psychiatric disorders. Quite a few questions exist about this new treatment, and might be explored in nonhuman primate models. There are several reports on DBS of brain nucleus other than NAc in nonhuman primates. Therefore, we stereotactically implanted the electrodes into bilateral NAc under the guidance of MRI using a clinical Leksell stereotactic system in normal rhesus monkeys. NAc could be recognized as the area of continuity between the caudate nucleus and putamen in the coronal sections, which is beneath the internal capsule, and the gray matter nucleus between the ventromedial prefrontal cortex and anterior commissure in axial sections, which is medial to the putamen. NAc is mainly at a point 2.0-3.0 mm inferior, 3.0-4.0 mm anterior, and 4.5-5.5 mm lateral to the anterior commissure. The electrodes were implanted accurately and connected to an implantable pulse generator subcutaneously. After recovery from surgery, stimulation with a variety of parameters was trialed, and continuous stimulation at 90 μs, 3.5 V, 160, or 60 Hz was administered individually for 7 days. The behaviors and spontaneous locomotor activity of the animals did not change significantly during stimulation. This is the first report on DBS of NAc in nonhuman primates to the best of our knowledge. Bilateral electrical stimulation of NAc is a safe treatment. This model could be helpful in further studies on the clinical use of NAc stimulation for psychiatric disorders and for a better understanding of the functions of this nucleus.

  9. 3D texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1.

    Directory of Open Access Journals (Sweden)

    Sanna Suoranta

    Full Text Available Progressive myoclonic epilepsy type 1 (EPM1 is an autosomal recessively inherited neurodegenerative disorder characterized by young onset age, myoclonus and tonic-clonic epileptic seizures. At the time of diagnosis, the visual assessment of the brain MRI is usually normal, with no major changes found later. Therefore, we utilized texture analysis (TA to characterize and classify the underlying properties of the affected brain tissue by means of 3D texture features. Sixteen genetically verified patients with EPM1 and 16 healthy controls were included in the study. TA was performed upon 3D volumes of interest that were placed bilaterally in the thalamus, amygdala, hippocampus, caudate nucleus and putamen. Compared to the healthy controls, EPM1 patients had significant textural differences especially in the thalamus and right putamen. The most significantly differing texture features included parameters that measure the complexity and heterogeneity of the tissue, such as the co-occurrence matrix-based entropy and angular second moment, and also the run-length matrix-based parameters of gray-level non-uniformity, short run emphasis and long run emphasis. This study demonstrates the usability of 3D TA for extracting additional information from MR images. Textural alterations which suggest complex, coarse and heterogeneous appearance were found bilaterally in the thalamus, supporting the previous literature on thalamic pathology in EPM1. The observed putamenal involvement is a novel finding. Our results encourage further studies on the clinical applications, feasibility, reproducibility and reliability of 3D TA.

  10. Do manual and voxel-based morphometry measure the same? – A proof of concept study

    Directory of Open Access Journals (Sweden)

    Niels K. Focke

    2014-04-01

    Full Text Available Voxel-based morphometry (VBM is a commonly used method to study volumetric variations on a whole brain basis. However it is often criticised for potential confounds, mainly based on imperfect spatial registration. We therefore aimed to evaluate if VBM and gold-standard manual volumetry are measuring the same effects with respect to subcortical grey matter volumes. Manual regions-of-interest (ROIs were drawn in the hippocampus, amygdala, nucleus accumbens, thalamus, putamen, pallidum and caudate nucleus bilaterally. Resulting volumes were used for a whole brain VBM correlation analysis with SPM8. The hippocampus, amygdala, putamen and caudate nucleus were correctly identified by SPM using the contemporary high-dimensional normalization (DARTEL toolbox. This strongly suggests that VBM and manual volumetry both are indeed measuring the same effects with regard to subcortical brain structures.

  11. Study on microstructure of corpus striatum in patients with idiopathic rapid eye movement sleep behavior disorder using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ya-meng ZHANG

    2017-07-01

    Full Text Available Objective To investigate the structure of corpus striatum and the integrity of white matter fiber in patients with Parkinson's disease (PD and idiopathic rapid eye movement sleep behavior disorder (iRBD.  Methods Twelve patients with iRBD, 12 patients with PD and 10 healthy subjects that were well matched in gender, age and education were enrolled in this study. Head MRI examination was performed to all subjects to observe the changes of corpus striatum structure (the gray matter volume and the integrity of white matter fiber [fractional anisotropy (FA] by combining voxel?based morphometry (VBM and diffusion tensor imaging (DTI.  Results Compared with healthy subjects, the gray matter volume of left caudate nucleus was significantly decreased (P < 0.005, and FA values of left caudate nucleus (P < 0.005, right caudate nucleus (P < 0.001 and right putamen (P < 0.05 were all significantly reduced in iRBD patients; FA value of right putamen was significantly decreased in PD patients (P < 0.05. Compared with PD patients, the gray matter volume of left caudate nucleus of iRBD patients was significantly reduced (P < 0.001, FA values of left caudate nucleus (P < 0.01 and right caudate nucleus (P < 0.005 of iRBD patients were significantly reduced.  Conclusions There is atrophy of gray matter volume and extensive white matter fiber impairment in corpus striatum of patients with iRBD, and the white matter fiber impairment was similar to PD, which provides an anatomical evidence for iRBD being presymptom of PD. DOI: 10.3969/j.issn.1672-6731.2017.05.008

  12. Reduced caudate volume and enhanced striatal-DMN integration in chess experts.

    Science.gov (United States)

    Duan, Xujun; He, Sheng; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Wei, Luqing; Li, Yuan; Liu, Chengyi; Gong, Qiyong; Chen, Huafu

    2012-04-02

    The superior capability of chess experts largely depends on quick automatic processing skills which are considered to be mediated by the caudate nucleus. We asked whether continued practice or rehearsal of the skill over a long period of time can lead to structural changes in this region. We found that, comparing to novice controls, grandmaster and master level Chinese chess players (GM/Ms), who had a mean period of over 10years of tournament and training practice, exhibited significant smaller gray-matter volume in the bilateral caudate nuclei. When these regions were used as seeds in functional connectivity analysis in resting-state fMRI, significantly enhanced integration was found in GM/Ms between the caudate and the default mode network (DMN), a constellation of brain areas important for goal-directed cognitive performance and theory of mind. These findings demonstrate the structural changes in the caudate nucleus in response to its extensive engagement in chess problem solving, and its enhanced functional integration with widely distributed circuitry to better support high-level cognitive control of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Decreased Left Putamen and Thalamus Volume Correlates with Delusions in First-Episode Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundDelusional thinking is one of the hallmark symptoms of schizophrenia. However, the underlying neural substrate for delusions in schizophrenia remains unknown. In an attempt to further our understanding of the neural basis of delusions, we explored gray matter deficits and their clinical associations in first-episode schizophrenia patients with and without delusions.MethodsTwenty-four first-episode schizophrenia patients with delusions and 18 without delusions as well as 26 healthy controls (HC underwent clinical assessment and whole-brain structural imaging which were acquired a 3.0 T scanner. Voxel-based morphometry was used to explore inter-group differences in gray matter volume using analysis of covariance, and Spearman correlation coefficients (rho between the Scale for the Assessment of Positive Symptoms (SAPS-delusion scores and mean regional brain volumes was obtained.ResultsPatients with delusions showed decreased brain gray matter volumes in the left putamen, thalamus, and caudate regions compared with HC. Patients with delusions also showed decreased regional volume in the left putamen and thalamus compared with patients without delusions. SAPS-delusion scores were negatively correlated with the gray matter volumes of the left putamen and thalamus.DiscussionLeft putamen and thalamus volume loss may be biological correlates of delusions in schizophrenia.

  14. Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder.

    Science.gov (United States)

    Yang, Xin-Hua; Tian, Kai; Wang, Dong-Fang; Wang, Yi; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K

    2017-08-15

    Recent empirical findings have suggested that imbalanced neural networks may underlie the pathophysiology of major depressive disorder (MDD). However, the contribution of the superior temporal gyrus (STG) and the caudate nucleus to its pathophysiology remains unclear. Functional magnetic resonance imaging (MRI) date were acquired from 40 patients with first-episode drug-naive MDD and 36 matched healthy controls during wakeful rest. We used whole-brain voxel-wise statistical maps to quantify within-group resting state functional connectivity (RSFC) and between-group differences of bilateral caudate and STG seeds. Compared with healthy controls, first-episode MDD patients were found to have reduced connectivity between the ventral caudate and several brain regions including the superior frontal gyrus (SFG), the superior parietal lobule (SPL) and the middle temporal gyrus (MTG), as well as increased connectivity with the cuneus. We also found increased connectivity between the left STG and the precuneus, the angular gyrus and the cuneus. Moreover, we found that increased anhedonia severity was correlated with the magnitude of ventral caudate functional connectivity with the cuneus and the MTG in MDD patients. Due to our small sample size, we did not correct the statistical threshold in the correlation analyses between clinical variables and connectivity abnormalities. The present study suggests that anhedonia is mainly associated with altered ventral caudate-cortical connectivity and highlights the importance of the ventral caudate in the neurobiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 99mTc-TRODAT-1 SPECT Imaging in Early and Late Onset Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Payam Sasannezhad

    2017-06-01

    Full Text Available Objective(s: 99mTc-TRODAT-1, which binds to the dopamine transporter, could be used to image the dopaminergic system in diagnosis of Parkinson’s disease (PD. PD can be classified into two groups: late onset Parkinson’s disease (LOPD and early onset Parkinson’s disease (EOPD. In this study we tried to determine the TRODAT SPECT findings in EOPD as compared to LOPD.Methods: Fifteen patients were studied. The diagnosis of PD was defined by clinical criteria based on UK Parkinson’s Disease Society Brain Bank criteria. Six patients whose age at onset of PD were younger than 50 were defined as patients with EOPD and 9 patients with older than 50 years were defined as patients with LOPD. All patients underwent 99mTc-TRODAT Brain SPECT.Results: There was a significant decrease of striatal 99mTc-TRODAT-1 (TRODAT binding in PD patients in both EOPD and LOPD. No significant difference was noticed between EOPD and LOPD in disease stage and symptoms. In visual analysis, 20 (66.67% caudate nucleuses had decreased tracer uptake while all 30 (100% putamens had decreased or absent tracer uptake. No significant difference between EOPD and LOPD was noticed in visual analysis. Striatum, Caudate and Putamen uptake ratio to background were calculated. No significant difference was noticed between EOPD and LOPD in these ratios. However there was significant difference in visual analysis (tracer uptake as well as in uptake ratio between putamen and caudate nucleuses in both groups (P=0.001. On the other word, we found more diminished uptake in putamen as compared the caudate. Frequency and severity of putamen involvement were much more than caudate.Conclusion: 99mTc-TRODAT-1 SPECT imaging showed lower presynaptical dopami-nergical terminals density in both EOPD and LOPD. There was no difference between EOPD and LOPD in TRODAT uptake. Putamen showed more involvement and more diminished TRODAT uptake.

  16. Correlation between the availability of dopamine transporter and olfactory function in healthy subjects

    International Nuclear Information System (INIS)

    Pak, Kyoungjune; Kim, Keunyoung; Kim, In Joo; Lee, Myung Jun; Lee, Jae Meen; Kim, Bum Soo; Kim, Seong-Jang

    2018-01-01

    Olfactory dysfunction in Parkinson's disease is usually prodromal to other symptoms. In this study, we aimed to explore the association of olfactory function with the availabilities of striatal dopamine transporter (DAT) in healthy subjects. Data used in the preparation of this article were obtained from Parkinson's Progression Markers Initiative database (www.ppmi-info.org/data). The study population consisted of healthy controls with screening 123 I-FP-CIT single photon emission tomography (SPECT). University of Pennsylvania Smell Identification Test (UPSIT) was assessed to evaluate the olfactory function. Totally, 181 healthy subjects (117 male, 64 female) with 123 I-FP-CIT SPECT data were included in this study. Specific binding ratios (SBRs) of the caudate nucleus (rho = -0.4217, p < 0.0001), putamen (rho = -0.2292, p = 0.0019), and striatum (rho=-0.3425, p < 0.0001) showed a reduction with ageing. SBRs of the caudate nucleus, putamen, and striatum were positively correlated with UPSIT (rho = 0.3716, p < 0.0001; rho = 0.3655, p < 0.0001; rho = 0.3880, p < 0.0001). After controlling for age by partial correlation, SBRs of the caudate nucleus, putamen, and striatum showed an influence on UPSIT (rho = 0.3288, p < 0.0001; rho = 0.3374, p < 0.0001; rho = 0.3511, p < 0.0001). Olfactory function is associated with the availability of striatal DAT independent of age in healthy subjects. (orig.)

  17. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder.

    Science.gov (United States)

    Chen, Yunhui; Juhás, Michal; Greenshaw, Andrew J; Hu, Qiang; Meng, Xin; Cui, Hongsheng; Ding, Yongzhuo; Kang, Lu; Zhang, Yubo; Wang, Yuhua; Cui, Guangcheng; Li, Ping

    2016-06-03

    Altered brain activities in the cortico-striato-thalamocortical (CSTC) circuitry are implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, whether the underlying changes occur only within this circuitry or in large-scale networks is still not thoroughly understood. This study performed voxel-based functional connectivity analysis on resting-state functional magnetic resonance imaging (fMRI) data from thirty OCD patients and thirty healthy controls to investigate whole-brain intrinsic functional connectivity patterns in OCD. Relative to the healthy controls, OCD patients showed decreased functional connectivity within the CSTC circuitry but increased functional connectivity in other brain regions. Furthermore, decreased left caudate nucleus-thalamus connectivity within the CSTC circuitry was positively correlated with the illness duration of OCD. This study provides additional evidence that CSTC circuitry may play an essential role and alteration of large-scale brain networks may be involved in the pathophysiology of OCD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Striatal FP-CIT uptake differs in the subtypes of early Parkinson's disease

    International Nuclear Information System (INIS)

    Spiegel, J.; Fassbender, K.; Dillmann, U.; Hellwig, D.; Samnick, S.; Moellers, M.-O.; Kirsch, C.-M.; Jost, W.

    2007-01-01

    In idiopathic Parkinson's disease (PD), a tremor-dominant type (TDT), an akinetic-rigid type (ART), and a mixed type (MT) are distinguished. We compared cerebral [I- 123 ]FP-CIT SPECT in the PD subtypes (67 patients Hoehn and Yahr stage 1:26 with ART, 19 with MT, 22 with TDT). We measured the ratios putamen/occipital lobe binding and caudate nucleus/occipital lobe binding. Parkinsonian motor symptoms were quantified by UPDRS motor scale. In both putamen and caudate nucleus contralateral to the clinically affected body side TDT patients showed a significantly higher FP-CIT uptake than ART or MT patients (ANOVA; p 0.05). The missing correlation between striatal FP-CIT uptake and tremor suggests, that further systems besides the nigrostriatal dopaminergic system may contribute to generation of parkinsonian tremor. (author)

  19. Evaluation of striatal dopamine transporter density using ({sup 123}I)-{beta}-CIT SPECT in schizophrenic patients treated with olanzapine: pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Eung; Moon, Hey Won; Choe, Won Sick; Kim, Chang Ho; Chi, Dae Yoon [Inha Univ., Incheon (Korea, Republic of)

    2002-08-01

    This pilot study was performed to understand the pharmacological effect of olanzapine, an atypical antipsychotic agent, on dopamine transporter in schizophrenic patients. Six patients (3 male, 3 female) with schizophrenia, who had not taken any psychotropic drugs for at least four weeks, were studied. Nuclear imaging using ({sup 123}I)-{beta}-CIT SPECT was obtained before and after 4-week treatment with olanzapine. Analysis of ROI on the striatum, caudate nucleus, and putamen was performed. Post-treatment uptake was significantly increased in all the ROIs compared with pre-treatment uptake. This preliminary study with the small number of schizophrenic patients suggested an increase in uptake of dopamine transporter in the striatum, caudate nucleus, and putamen after 4-week treatment with olanzapine, which warrants a large-scaled controlled study to confirm the current findings.

  20. Radiological imaging features of the basal ganglia that may predict progression to hemicraniectomy in large territory middle cerebral artery infarct

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Asim Z.; Edasery, David; Sakai, Osamu; Mustafa Qureshi, M. [Boston University School of Medicine, Department of Radiology, Boston Medical Center, Boston, MA 02118 (United States); Holsapple, James [Boston University School of Medicine, Department of Neurosurgery, Boston Medical Center, Boston, MA (United States); Nguyen, Thanh [Boston University School of Medicine, Department of Neurology, Boston Medical Center, Boston, MA (United States)

    2017-05-15

    Predicting which patients are at risk for hemicraniectomy can be helpful for triage and can help preserve neurologic function if detected early. We evaluated basal ganglia imaging predictors for early hemicraniectomy in patients with large territory anterior circulation infarct. This retrospective study evaluated patients with ischemic infarct admitted from January 2005 to July 2011. Patients with malignant cerebral edema refractory to medical therapy or with herniating signs such as depressed level of consciousness, anisocoria, and contralateral leg weakness were triaged to hemicraniectomy. Admission images were reviewed for presence of caudate, lentiform nucleus (putamen and globus pallidus), or basal ganglia (caudate + lentiform nucleus) infarction. Thirty-one patients with large territory MCA infarct, 10 (32%), underwent hemicraniectomy. Infarction of the caudate nucleus (9/10 vs 6/21, p = 0.002) or basal ganglia (5/10 vs 2/21, p = 0.02) predicted progression to hemicraniectomy. Infarction of the lentiform nucleus only did not predict progression to hemicraniectomy. Sensitivity for patients who did and did not have hemicraniectomy were 50% (5/10) and 90.5% (19/21). For caudate nucleus and caudate plus lentiform nucleus infarcts, the crude- and age-adjusted odds of progression to hemicraniectomy were 9.5 (1.4-64.3) and 6.6 (0.78-55.4), respectively. Infarction of the caudate nucleus or basal ganglia correlated with patients progressing to hemicraniectomy. Infarction of the lentiform nucleus alone did not. (orig.)

  1. Grey matter morphological anomalies in the caudate head in first-episode psychosis patients with delusions of reference.

    Science.gov (United States)

    Tao, Haojuan; Wong, Gloria H Y; Zhang, Huiran; Zhou, Yuan; Xue, Zhimin; Shan, Baoci; Chen, Eric Y H; Liu, Zhening

    2015-07-30

    Delusions of reference (DOR) are theoretically linked with aberrant salience and associative learning. Previous studies have shown that the caudate nucleus plays a critical role in the cognitive circuits of coding prediction errors and associative learning. The current study aimed at testing the hypothesis that abnormalities in the caudate nucleus may be involved in the neuroanatomical substrate of DOR. Structural magnetic resonance imaging of the brain was performed in 44 first-episode psychosis patients (with diagnoses of schizophrenia or schizophreniform disorder) and 25 healthy controls. Patients were divided into three groups according to symptoms: patients with DOR as prominent positive symptom; patients with prominent positive symptoms other than DOR; and patients with minimal positive symptoms. All groups were age-, gender-, and education-matched, and patient groups were matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to identify group differences in grey matter density. Relationships were explored between grey matter density and DOR. Patients with DOR were found to have reduced grey matter density in the caudate compared with patients without DOR and healthy controls. Grey matter density values of the left and right caudate head were negatively correlated with DOR severity. Decreased grey matter density in the caudate nucleus may underlie DOR in early psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Double dissociation of the anterior and posterior dorsomedial caudate-putamen in the acquisition and expression of associative learning with the nicotine stimulus.

    Science.gov (United States)

    Charntikov, Sergios; Pittenger, Steven T; Swalve, Natashia; Li, Ming; Bevins, Rick A

    2017-07-15

    Tobacco use is the leading cause of preventable deaths worldwide. This habit is not only debilitating to individual users but also to those around them (second-hand smoking). Nicotine is the main addictive component of tobacco products and is a moderate stimulant and a mild reinforcer. Importantly, besides its unconditional effects, nicotine also has conditioned stimulus effects that may contribute to the tenacity of the smoking habit. Because the neurobiological substrates underlying these processes are virtually unexplored, the present study investigated the functional involvement of the dorsomedial caudate putamen (dmCPu) in learning processes with nicotine as an interoceptive stimulus. Rats were trained using the discriminated goal-tracking task where nicotine injections (0.4 mg/kg; SC), on some days, were paired with intermittent (36 per session) sucrose deliveries; sucrose was not available on interspersed saline days. Pre-training excitotoxic or post-training transient lesions of anterior or posterior dmCPu were used to elucidate the role of these areas in acquisition or expression of associative learning with nicotine stimulus. Pre-training lesion of p-dmCPu inhibited acquisition while post-training lesions of p-dmCPu attenuated the expression of associative learning with the nicotine stimulus. On the other hand, post-training lesions of a-dmCPu evoked nicotine-like responding following saline treatment indicating the role of this area in disinhibition of learned motor behaviors. These results, for the first time, show functionally distinct involvement of a- and p-dmCPu in various stages of associative learning using nicotine stimulus and provide an initial account of neural plasticity underlying these learning processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia

    2012-12-01

    We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2018-03-01

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Tse, Peter U

    2015-04-15

    Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Transient alterations in neurotransmitter activity in the caudate nucleus of rat brain after a high dose of ionizing radiation

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.; Darden, J.H.

    1979-01-01

    A single 10,000-rad dose of high-energy electrons induced an increase in dopaminergic and cholinergic activity in the caudate nucleus of the rat brain as assessed by K + -stimulated dopamine release in vitro and high-affinity choline uptake. These alterations occur during early transient incapacitation (ETI) and dissipate as the animal recovers behaviorally, in about 30 min after irradiation. Although the responses observed resemble those that result from blockade of dopamine receptors, no radiation-induced changes were found in dopamine-sensitive adenylate cyclase activity and [ 3 H]haloperidol binding, two indices of dopaminergic receptor function. The data suggest that changes in dopaminergic and cholinergic activity are associated with the development of ETI and may play a role in the behavioral decrement observed under this condition

  7. Caudate Microstimulation Increases Value of Specific Choices.

    Science.gov (United States)

    Santacruz, Samantha R; Rich, Erin L; Wallis, Joni D; Carmena, Jose M

    2017-11-06

    Value-based decision-making involves an assessment of the value of items available and the actions required to obtain them. The basal ganglia are highly implicated in action selection and goal-directed behavior [1-4], and the striatum in particular plays a critical role in arbitrating between competing choices [5-9]. Previous work has demonstrated that neural activity in the caudate nucleus is modulated by task-relevant action values [6, 8]. Nonetheless, how value is represented and maintained in the striatum remains unclear since decision-making in these tasks relied on spatially lateralized responses, confounding the ability to generalize to a more abstract choice task [6, 8, 9]. Here, we investigate striatal value representations by applying caudate electrical stimulation in macaque monkeys (n = 3) to bias decision-making in a task that divorces the value of a stimulus from motor action. Electrical microstimulation is known to induce neural plasticity [10, 11], and caudate microstimulation in primates has been shown to accelerate associative learning [12, 13]. Our results indicate that stimulation paired with a particular stimulus increases selection of that stimulus, and this effect was stimulus dependent and action independent. The modulation of choice behavior using microstimulation was best modeled as resulting from changes in stimulus value. Caudate neural recordings (n = 1) show that changes in value-coding neuron activity are stimulus value dependent. We argue that caudate microstimulation can differentially increase stimulus values independent of action, and unilateral manipulations of value are sufficient to mediate choice behavior. These results support potential future applications of microstimulation to correct maladaptive plasticity underlying dysfunctional decision-making related to neuropsychiatric conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  9. Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder.

    Science.gov (United States)

    Yang, Xin-hua; Huang, Jia; Lan, Yong; Zhu, Cui-ying; Liu, Xiao-qun; Wang, Ye-fei; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K

    2016-01-04

    Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    On direct comparison of the two groups, Fl subjects showed additional activation in parts of primary visual cortex, thalamus, cerebellum, inferior and middle frontal gyrus. Conversely, FDs showed greater activation in inferior frontal gyms, precentral gyms, putamen, caudate nucleus and superior parietal lobule as compared ...

  11. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Stone-Elander, S.; Halldin, C.; Nordstroem, A.L.H.; Hall, H.; Sedvall, G.

    1990-01-01

    Several groups have reported increased densities of D2 dopamine receptors in the basal ganglia of schizophrenic brains postmortem. The significance of this finding has been questioned, since an upregulation of receptor number may be a neuronal response to neuroleptic drug treatment. We have used positron emission tomography and [ 11 C]raclopride to examine central D2 dopamine receptor binding in 20 healthy subjects and 18 newly admitted, young, neuroleptic-naive patients with schizophrenia. An in vivo saturation procedure was applied for quantitative determination of D2 dopamine receptor density (Bmax) and affinity (Kd). When the two groups were compared, no significant difference in Bmax or Kd values was found in the putamen or the caudate nucleus. The hypothesis of generally elevated central D2 dopamine receptor densities in schizophrenia was thus not supported by the present findings. In the patients but not in the healthy controls, significantly higher densities were found in the left than in the right putamen but not in the caudate nucleus

  12. Relationship of striatal 99Tcm-TRODAT-1 specific uptake and motor's severity in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Bian Yanzhu; Liu Huang; Feng Jue; Wei Qiang; Li Jinfu; Liu Guozhang

    2004-01-01

    Objective: To investigate the relationship of striatal 99 Tc m -2β-((N, N'-bis (2-mercap-toethyl) ethylene diamino) methyl), 3β-(4-chlorophenyl) tropane, ( 99 Tc m -TRODAT-1) specific uptake values (SUVs) and motor's severity in patients with Parkinson's disease (PD). Methods: 35 patients with PD were examined by 99 Tc m -TRODAT-1 SPECT dopamine transporter brain imaging. The SUVs of the striatum and its subregions, including the putamen and caudate nucleus, were calculated by semi-quantity region of interest (ROI) technique with the radiation ratios of target/cerebellum. Motor's severity of PD was measured by Unified Parkinson's Disease Rating Scale (UPDRS). Motor UPDRS scores were divided into four subscales, bradykinesia scores, rigidity scores, postural instability scores and tremor scores. Results: SUVs of putamen correlated best with the motor UPDRS scores(r=-0.846, P<0.001), followed by that of striatum and caudate nucleus. Among the four major clinical signs of PD, the bradykinesia scores (X1) correlated best with SUVs of putamen(r=-0.858, P<0.001), followed by rigidity scores (X2) and postural instability scores. There was no significant correlation between tremor scores and SUVs of putamen (Y). A regression equation (Y=2.345-0.0418 X1-0.0580 X2) was founded by stepwise multiple linear regression analysis. Conclusions: The SUVs of striatum (especially SUVs of putamen) was a useful marker to evaluate the motor's severity of PD and monitor the progression of PD. (authors)

  13. [Effect of stimulation of GABA-ergic structures of the substantia nigra and caudate nucleus on food-getting behavior in the cat].

    Science.gov (United States)

    Shugalev, N P

    1983-01-01

    A study was made of the functional significance of GABA-ergic structures of the substantia nigra (SN) and the caudate nucleus (CN) and their role in food-procuring behaviour of cats. Analysis was made of behavioral and EEG-effects of local GABA and the GABA antagonist, picrotoxin, microinjections into the studied brain structures. Stimulation of the GABA-ergic structures of the SN produced a sedative effect and depression of the cat food-procuring behaviour. Effects of stimulation of the CN GABA-ergic structures were to a great degree reverse. The conclusion has been made that GABA-ergic structures of the SN and the CN play different roles in controlling the CN inhibitory influence upon food-procuring behaviour.

  14. Executive dysfunction correlates with caudate nucleus atrophy in patients with white matter changes on MRI: A subset of LADIS

    DEFF Research Database (Denmark)

    Macfarlane, Matthew Duncan; Looi, Jeffrey Chee Leong; Walterfang, Mark

    2013-01-01

    and falls in cross-sectional and follow-up studies. Frontostriatal (or frontosubcortical) brain circuits may serve many of these functions, with the caudate nuclei playing a role in convergence of cognitive functions. This study aimed to determine whether reduced caudate volume relates to cognitive...... functions (executive functions, memory functions and speed of processing) and WMC. We determined caudate nuclei volumes, through manual tracing, on a subgroup of the LADIS study (n=66) from four centres with baseline and 3-year follow-up MRI scans. Regression analysis was used to assess relationships...... between caudate volume, cognitive function and WMC. Severity of WMC did not relate to caudate volume. Smaller caudate volumes were significantly associated with poorer executive functioning at baseline and at 3 years, but were not associated with scores of memory or speed of processing. Thus, in patients...

  15. Dissociation between vascular endothelial growth factor receptor-2 and blood vessel density in the caudate nucleus after chronic hydrocephalus.

    Science.gov (United States)

    Deshpande, Abhishek; Dombrowski, Stephen M; Leichliter, Anna; Krajcir, Natalie; Zingales, Nicholas; Inoue, Masahiro; Schenk, Soren; Fukamachi, Kiyotaka; Luciano, Mark G

    2009-11-01

    Chronic hydrocephalus (CH) is characterized by the presence of ventricular enlargement, decreased cerebral blood flow (CBF), and brain tissue oxygen delivery. Although the underlying pathophysiological role of vascular endothelial growth factor (VEGF) is not clear, ischemic-hypoxic events in CH are known to trigger its release. Previously, we have shown increased VEGF receptor-2 (VEGFR-2) and blood vessel density (BVd) in the hippocampus after CH. We investigated changes in neuronal and glial VEGFR-2 density and BVd in the caudate nucleus in an experimental model of CH. Animals with CH were divided into short term (ST, 2 to 4 weeks) and long term (LT, 12 to 16 weeks) and were compared with surgical controls (SCs, 12 to 16 weeks). The cellular and BVds were estimated using immunohistochemical and stereological counting methods. Overall, percentage (%)VEGFR-2 neurons were approximately two times greater in CH (ST, LT) than in SC. By comparison, glial cell %VEGFR-2 was greater by 10% to 17% in ST and 4% to 11% lower in LT compared with that in SC. Blood vessel density was significantly lower in CH than in SC in the superficial caudate. Changes in cerebrospinal fluid ventricular volume and pressure, as well as in CBF did not correlate with either VEGFR-2 or BVd. These observed findings suggest that destructive forces may outweigh angiogenic forces and possibly show a disassociation between VEGFR-2 and BV expressions.

  16. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Waugh, Jeff L

    2016-01-01

    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  17. Demyelination of subcortical nuclei in multiple sclerosis

    Science.gov (United States)

    Krutenkova, E.; Aitmagambetova, G.; Khodanovich, M.; Bowen, J.; Gangadharan, B.; Henson, L.; Mayadev, A.; Repovic, P.; Qian, P.; Yarnykh, V.

    2016-02-01

    Myelin containing in basal ganglia in multiple sclerosis patients was evaluated using new noninvasive quantitative MRI method fast whole brain macromolecular proton fraction mapping. Myelin level in globus pallidus and putamen significantly decreased in multiple sclerosis patients as compared with healthy control subjects but not in substantia nigra and caudate nucleus.

  18. The influence of puberty on subcortical brain development.

    Science.gov (United States)

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. © 2013. Published by Elsevier Inc. All rights reserved.

  19. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  20. Demyelination of subcortical nuclei in multiple sclerosis

    International Nuclear Information System (INIS)

    Krutenkova, E; Aitmagambetova, G; Khodanovich, M; Yarnykh, V; Bowen, J; Gangadharan, B; Henson, L; Mayadev, A; Repovic, P; Qian, P

    2016-01-01

    Myelin containing in basal ganglia in multiple sclerosis patients was evaluated using new noninvasive quantitative MRI method fast whole brain macromolecular proton fraction mapping. Myelin level in globus pallidus and putamen significantly decreased in multiple sclerosis patients as compared with healthy control subjects but not in substantia nigra and caudate nucleus. (paper)

  1. Neural mechanisms of negative reinforcement in children and adolescents with autism spectrum disorders.

    Science.gov (United States)

    Damiano, Cara R; Cockrell, Dillon C; Dunlap, Kaitlyn; Hanna, Eleanor K; Miller, Stephanie; Bizzell, Joshua; Kovac, Megan; Turner-Brown, Lauren; Sideris, John; Kinard, Jessica; Dichter, Gabriel S

    2015-01-01

    Previous research has found accumulating evidence for atypical reward processing in autism spectrum disorders (ASD), particularly in the context of social rewards. Yet, this line of research has focused largely on positive social reinforcement, while little is known about the processing of negative reinforcement in individuals with ASD. The present study examined neural responses to social negative reinforcement (a face displaying negative affect) and non-social negative reinforcement (monetary loss) in children with ASD relative to typically developing children, using functional magnetic resonance imaging (fMRI). We found that children with ASD demonstrated hypoactivation of the right caudate nucleus while anticipating non-social negative reinforcement and hypoactivation of a network of frontostriatal regions (including the nucleus accumbens, caudate nucleus, and putamen) while anticipating social negative reinforcement. In addition, activation of the right caudate nucleus during non-social negative reinforcement was associated with individual differences in social motivation. These results suggest that atypical responding to negative reinforcement in children with ASD may contribute to social motivational deficits in this population.

  2. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer's disease.

    Science.gov (United States)

    Ryan, Natalie S; Keihaninejad, Shiva; Shakespeare, Timothy J; Lehmann, Manja; Crutch, Sebastian J; Malone, Ian B; Thornton, John S; Mancini, Laura; Hyare, Harpreet; Yousry, Tarek; Ridgway, Gerard R; Zhang, Hui; Modat, Marc; Alexander, Daniel C; Rossor, Martin N; Ourselin, Sebastien; Fox, Nick C

    2013-05-01

    Amyloid imaging studies of presymptomatic familial Alzheimer's disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer's disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the subcortical

  3. The relation of putamen nucleus 6-[18F]fluoro-L-m-tyrosine uptake to total Unified Parkinson's Disease Rating Scale scores

    International Nuclear Information System (INIS)

    Buchy, R.

    2002-01-01

    The contribution of dopaminergic deficiency in the striatum to the severity of locomotor disability in Parkinson's disease has been consistently shown with 6-[ 18 F]fluoro-L-DOPA in positron emission tomography. Recently, 6-[ 18 F]fluoro-L-m-tyrosine, an alternative tracer with similar distribution kinetics has been used to facilitate data analysis. Locomotor disability in Parkinson's disease can be measured using the Unified Parkinson's Disease Rating Scale. The Unified Parkinson's Disease Rating Scale was used in conjunction with 6-[ 18 F]fluoro-L-m-tyrosine -PET to clinically examine a group of five Parkinson's disease patients. An inverse relation similar to that previously demonstrated with 6-[ 18 F]fluoro-L-DOPA was found between the putamen nucleus 6-[ 18 F]fluoro-L-m-tyrosine influx constant and Unified Parkinson's Disease Rating Scale score. This finding suggests that like 6-[ 18 F]fluoro-L-m-tyrosine can be used to accurately measure the degree of locomotor disability caused by Parkinson's disease. (author)

  4. Test-retest reliability of {sup 11}C-ORM-13070 in PET imaging of α{sub 2C}-adrenoceptors in vivo in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, Jussi; Peltonen, Juha M.; Volanen, Iina; Scheinin, Mika [University of Turku, Clinical Research Services Turku CRST, Turku (Finland); TYKSLAB, Unit of Clinical Pharmacology, Turku (Finland); Virta, Jere R. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland); Oikonen, Vesa; Roivainen, Anne; Luoto, Pauliina; Arponen, Eveliina; Helin, Semi; Virtanen, Kirsi [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Hietamaeki, Johanna; Holopainen, Aila; Rouru, Juha; Sallinen, Jukka [Orion Pharma, Turku (Finland); Kailajaervi, Marita [Turku Imanet, GE Healthcare, Turku (Finland); Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland); University of Turku, Clinical Research Services Turku CRST, Turku (Finland)

    2015-01-15

    α{sub 2C}-Adrenoceptors share inhibitory presynaptic functions with the more abundant α{sub 2A}-adrenoceptor subtype, but they also have widespread postsynaptic modulatory functions in the brain. Research on the noradrenergic system of the human brain has been hampered by the lack of suitable PET tracers targeted to the α{sub 2}-adrenoceptor subtypes. PET imaging with the specific α{sub 2C}-adrenoceptor antagonist tracer [{sup 11}C]ORM-13070 was performed twice in six healthy male subjects to investigate the test-retest reliability of tracer binding. The bound/free ratio of tracer uptake relative to nonspecific uptake into the cerebellum during the time interval of 5 - 30 min was most prominent in the dorsal striatum: 0.77 in the putamen and 0.58 in the caudate nucleus. Absolute test-retest variability in bound/free ratios of tracer ranged from 4.3 % in the putamen to 29 % in the hippocampus. Variability was also <10 % in the caudate nucleus and thalamus. Intraclass correlation coefficients (ICC) ranged from 0.50 in the hippocampus to 0.89 in the thalamus (ICC >0.70 was also reached in the caudate nucleus, putamen, lateral frontal cortex and parietal cortex). The pattern of [{sup 11}C]ORM-13070 binding, as determined by PET, was in good agreement with receptor density results previously derived from post-mortem autoradiography. PET data analysis results obtained with a compartmental model fit, the simplified reference tissue model and a graphical reference tissue analysis method were convergent with the tissue ratio method. The results of this study support the use of [{sup 11}C]ORM-13070 PET in the quantitative assessment of α{sub 2C}-adrenoceptors in the human brain in vivo. Reliable assessment of specific tracer binding in the dorsal striatum is possible with the help of reference tissue ratios. (orig.)

  5. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  6. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease

    Science.gov (United States)

    Keihaninejad, Shiva; Shakespeare, Timothy J.; Lehmann, Manja; Crutch, Sebastian J.; Malone, Ian B.; Thornton, John S.; Mancini, Laura; Hyare, Harpreet; Yousry, Tarek; Ridgway, Gerard R.; Zhang, Hui; Modat, Marc; Alexander, Daniel C.; Rossor, Martin N.; Ourselin, Sebastien; Fox, Nick C.

    2013-01-01

    Amyloid imaging studies of presymptomatic familial Alzheimer’s disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer’s disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the

  7. Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies.

    Science.gov (United States)

    West, Greg L; Drisdelle, Brandi Lee; Konishi, Kyoko; Jackson, Jonathan; Jolicoeur, Pierre; Bohbot, Veronique D

    2015-06-07

    The habitual playing of video games is associated with increased grey matter and activity in the striatum. Studies in humans and rodents have shown an inverse relationship between grey matter in the striatum and hippocampus. We investigated whether action video game playing is also associated with increased use of response learning strategies during navigation, known to be dependent on the caudate nucleus of the striatum, when presented in a dual solution task. We tested 26 action video game players (actionVGPs) and 33 non-action video game players (nonVGPs) on the 4-on-8 virtual maze and a visual attention event-related potential (ERP) task, which elicits a robust N-2-posterior-controlateral (N2pc) component. We found that actionVGPs had a significantly higher likelihood of using a response learning strategy (80.76%) compared to nonVGPs (42.42%). Consistent with previous evidence, actionVGPs and nonVGPs differed in the way they deployed visual attention to central and peripheral targets as observed in the elicited N2pc component during an ERP visual attention task. Increased use of the response strategy in actionVGPs is consistent with previously observed increases in striatal volume in video game players (VGPs). Using response strategies is associated with decreased grey matter in the hippocampus. Previous studies have shown that decreased volume in the hippocampus precedes the onset of many neurological and psychiatric disorders. If actionVGPs have lower grey matter in the hippocampus, as response learners normally do, then these individuals could be at increased risk of developing neurological and psychiatric disorders during their lifetime. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Directory of Open Access Journals (Sweden)

    Anne-Marike Schiffer

    Full Text Available Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  9. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Science.gov (United States)

    Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F; Schubotz, Ricarda I

    2012-01-01

    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  10. Differential reward coding in the subdivisions of the primate caudate during an oculomotor task.

    Science.gov (United States)

    Nakamura, Kae; Santos, Gustavo S; Matsuzaki, Ryuichi; Nakahara, Hiroyuki

    2012-11-07

    The basal ganglia play a pivotal role in reward-oriented behavior. The striatum, an input channel of the basal ganglia, is composed of subdivisions that are topographically connected with different cortical and subcortical areas. To test whether reward information is differentially processed in the different parts of the striatum, we compared reward-related neuronal activity along the dorsolateral-ventromedial axis in the caudate nucleus of monkeys performing an asymmetrically rewarded oculomotor task. In a given block, a target in one position was associated with a large reward, whereas the other target was associated with a small reward. The target position-reward value contingency was switched between blocks. We found the following: (1) activity that reflected the block-wise reward contingency emerged before the appearance of a visual target, and it was more prevalent in the dorsal, rather than central and ventral, caudate; (2) activity that was positively related to the reward size of the current trial was evident, especially after reward delivery, and it was more prevalent in the ventral and central, rather than dorsal, caudate; and (3) activity that was modulated by the memory of the outcomes of the previous trials was evident in the dorsal and central caudate. This multiple reward information, together with the target-direction information, was represented primarily by individual caudate neurons, and the different reward information was represented in caudate subpopulations with distinct electrophysiological properties, e.g., baseline firing and spike width. These results suggest parallel processing of different reward information by the basal ganglia subdivisions defined by extrinsic connections and intrinsic properties.

  11. SPECT quantification of 123I - and - CIT in Parkinsonism

    International Nuclear Information System (INIS)

    Larcos, G.; Shaffi, M.; Hutton, B.F.; Hatton, R.; Kyme, A.; Fung, V.S.C.; Morris, J.G.L.

    2002-01-01

    Full text: Evaluation of presynaptic dopaminergic function using 2B-carboxymethoxy-3B-(4-[ 123 I] iodophenyl) tropane ( 123 I-and-CIT) SPECT has employed subjective or semi-quantitative methods. Our hypothesis is that disease classification in Parkinsonism may be improved by partial volume correction and co-registration with MRI. We studied seven patients (pts) with IPD (four men, three women, mean age=54.5+/-10.9 yrs; Hoehn and Yahr stage range 1-3; Schwab and England scale range: 30-100 [mean=67.1+/-26.9]) and two controls with 123 I- - CIT using 110-150 MBq and a dual-head camera equipped with fan-beam collimation. SPECT was registered to MRI and then aligned to a reference template. Specific to non-specific dopaminergic binding (UR) was calculated for the putamen and caudate nucleus, as well as the fractional volume (FV; fraction of the Structure affected) and residual uptake ratio (RUR; count density in area/remnant apparently unaffected by disease). Parameters that were statistically significant were the putamen (p; but not caudate) UR, FV and RUR. We conclude that: (a) it is possible to distinguish dopaminergic activity within the putamen from caudate using MRI image co-registration and (b) parameters other than UR may discriminate IPD from normal subjects and other entities. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Increased binding of [3H]apomorphine in caudate membranes after dopamine pretreatment in vitro

    International Nuclear Information System (INIS)

    McManus, C.; Hartley, E.J.; Seeman, P.

    1978-01-01

    Most patients with Parkinson's disease treated with L-dopa show a progressively deteriorating response which may possibly be attributed to an L-dopa-induced process of unknown origin. Long-term administration of dopamine-mimetic drugs to animals sometimes produces behavioural facilitation. To investigate one possible molecular mechanism of this facilitation or sensitization the effects of prolonged exposure, in vitro, of dopamine on the dopamine/neuroleptic receptors in the caudate nucleus of the calf were tested. Calf caudate homogenates pretreated with dopamine or other drugs were tested for the binding of [ 3 H]apomorphine, [ 3 H]haloperidol, 3H-WB-4101, or [ 3 H]naloxine. Pre-exposure with dopamine or noradrenaline lead to an increased binding of [ 3 H]apomorphine. The significance of the results is discussed. (author)

  13. Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus

    International Nuclear Information System (INIS)

    Kemel, M.L.; Desban, M.; Glowinski, J.; Gauchy, C.

    1989-01-01

    By use of a sensitive in vitro microsuperfusion method, the cholinergic presynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of [ 3 H]dopamine continuously synthesized from [ 3 H]tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of [ 3 H]dopamine were calcium-dependent in both compartments. With 10 -6 M tetrodotoxin, 5 x 10 -5 M acetylcholine stimulated [ 3 H]dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine, thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) in contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10 -6 M atropine completely abolished the cholinergic stimulatory effect on [ 3 H]dopamine release in striosomal area, delayed and prolonged stimulation of [ 3 H] dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine. Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on [ 3 H]dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of [ 3 H]dopamine release mediated by muscarinic and nicotinic receptors, respectively

  14. Advanced Parkinson’s disease effect on goal-directed and habitual processes involved in visuomotor associative learning

    Directory of Open Access Journals (Sweden)

    Fadila eHadj-Bouziane

    2013-01-01

    Full Text Available The present behavioral study readdresses the question of habit learning in Parkinson's disease. Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding versus following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under sixty years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by Parkinson's disease. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced Parkinson's disease stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal

  15. Genome-wide imaging association study implicates functional activity and glial homeostasis of the caudate in smoking addiction.

    Science.gov (United States)

    Qian, David C; Molfese, David L; Jin, Jennifer L; Titus, Alexander J; He, Yixuan; Li, Yafang; Vaissié, Maxime; Viswanath, Humsini; Baldwin, Philip R; Krahe, Ralf; Salas, Ramiro; Amos, Christopher I

    2017-09-19

    Nearly 6 million deaths and over a half trillion dollars in healthcare costs worldwide are attributed to tobacco smoking each year. Extensive research efforts have been pursued to elucidate the molecular underpinnings of smoking addiction and facilitate cessation. In this study, we genotyped and obtained both resting state and task-based functional magnetic resonance imaging from 64 non-smokers and 42 smokers. Smokers were imaged after having smoked normally ("sated") and after having not smoked for at least 12 h ("abstinent"). While abstinent smokers did not differ from non-smokers with respect to pairwise resting state functional connectivities (RSFCs) between 12 brain regions of interest, RSFCs involving the caudate and putamen of sated smokers significantly differed from those of non-smokers (P smoking status (P = 0.015). Moreover, abstinent smokers with lower CR experienced greater withdrawal symptoms (P = 0.024), which suggests CR may be related to smoking urges. Associations between genetic variants and CR, adjusted for smoking status, were identified by genome-wide association study (GWAS). Genes containing or exhibiting caudate-specific expression regulation by these variants were enriched within Gene Ontology terms that describe cytoskeleton functions, synaptic organization, and injury response (P < 0.001, FDR < 0.05). By integrating genomic and imaging data, novel insights into potential mechanisms of caudate activation and homeostasis are revealed that may guide new directions of research toward improving our understanding of addiction pathology.

  16. Perfusion abnormality of the caudate nucleus in patients with paroxysmal kinesigenic choreoathetosis

    International Nuclear Information System (INIS)

    Joo, Eun Yeon; Hong, Seung Bong; Tae, Woo Suk; Kim, Jee Hyun; Han, Sun Jung; Seo, Dae Won; Lee, Kyung-Han; Kim, Byung Tae; Kim, Myoung-Hee; Kim, Seunghwan; Lee, Mann Hyung

    2005-01-01

    Previous cerebral blood flow and glucose metabolism studies suggest that the basal ganglia or thalamus is involved in the pathogenesis of paroxysmal kinesigenic choreoathetosis (PKC). However, the underlying cerebral abnormalities in idiopathic PKC have not been elucidated. To localise cerebral perfusion abnormalities in PKC, we performed interictal brain perfusion 99m Tc-ethylcysteinate dimer (ECD) single-photon emission computed tomography (SPECT) in PKC patients and in normal controls. Sixteen patients with idiopathic PKC and 18 age- and sex-matched normal controls were included. The patients were de novo diagnosed as having PKC, or had not taken medication for at least 3 months; none of them had structural abnormalities on MRI. Patients had a history of PKC attacks of a duration not exceeding 5 min and starting either on one side or on both sides of the body. These attacks were always induced by a sudden initiation of voluntary movement. PKC attacks were recorded in a hospital after being induced by neurology staff in 13 of the 16 patients. Interictal brain perfusion 99m Tc-ECD SPECT was performed in all 16 patients and 18 normal controls. Differences between the cerebral perfusion in the PKC group and the normal control group were tested by statistical parametric mapping. Student's t test was used for inter-group comparisons. Compared with normal controls, patients with idiopathic PKC showed interictal hypoperfusion in the posterior regions of the bilateral caudate nuclei (false discovery rate-corrected P<0.001 with a small volume correction). This study showed that cerebral perfusion abnormality of bilateral caudate nuclei is present in idiopathic PKC. (orig.)

  17. Perfusion abnormality of the caudate nucleus in patients with paroxysmal kinesigenic choreoathetosis

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Hong, Seung Bong; Tae, Woo Suk; Kim, Jee Hyun; Han, Sun Jung; Seo, Dae Won [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center and Center for Clinical Medicine, SBRI, Seoul (Korea); Lee, Kyung-Han; Kim, Byung Tae [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center and Center for Clinical Medicine, SBRI, Seoul (Korea); Kim, Myoung-Hee [Ewha Women' s University, Department of Computer Science and Engineering, Seoul (Korea); Kim, Seunghwan [POSTECH, APCTP/NCSL, Department of Physics, Pohang (Korea); Lee, Mann Hyung [Catholic University of Daegue, College of Pharmacy, Gyongbook (Korea)

    2005-10-01

    Previous cerebral blood flow and glucose metabolism studies suggest that the basal ganglia or thalamus is involved in the pathogenesis of paroxysmal kinesigenic choreoathetosis (PKC). However, the underlying cerebral abnormalities in idiopathic PKC have not been elucidated. To localise cerebral perfusion abnormalities in PKC, we performed interictal brain perfusion {sup 99m}Tc-ethylcysteinate dimer (ECD) single-photon emission computed tomography (SPECT) in PKC patients and in normal controls. Sixteen patients with idiopathic PKC and 18 age- and sex-matched normal controls were included. The patients were de novo diagnosed as having PKC, or had not taken medication for at least 3 months; none of them had structural abnormalities on MRI. Patients had a history of PKC attacks of a duration not exceeding 5 min and starting either on one side or on both sides of the body. These attacks were always induced by a sudden initiation of voluntary movement. PKC attacks were recorded in a hospital after being induced by neurology staff in 13 of the 16 patients. Interictal brain perfusion {sup 99m}Tc-ECD SPECT was performed in all 16 patients and 18 normal controls. Differences between the cerebral perfusion in the PKC group and the normal control group were tested by statistical parametric mapping. Student's t test was used for inter-group comparisons. Compared with normal controls, patients with idiopathic PKC showed interictal hypoperfusion in the posterior regions of the bilateral caudate nuclei (false discovery rate-corrected P<0.001 with a small volume correction). This study showed that cerebral perfusion abnormality of bilateral caudate nuclei is present in idiopathic PKC. (orig.)

  18. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  19. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson's disease: evaluation by 3.0-T MR imaging

    International Nuclear Information System (INIS)

    Tsukamoto, Kazumichi; Kanasaki, Yoshiko; Kakite, Suguru; Fujii, Shinya; Kaminou, Toshio; Ogawa, Toshihide; Matsusue, Eiji

    2012-01-01

    The clinical differentiation of Parkinson's disease (PD) from multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) may be challenging, especially in their early stages. The aim of this study was to evaluate the utility of apparent diffusion coefficient (ADC) measurement to distinguish among these degenerative disorders. Twenty-five MSA, 20 PSP, and 17 PD patients and 18 healthy controls were retrospectively studied. Axial diffusion-weighted and T2-weighted images were obtained using a 3-T MR system. Regions of interest (ROIs) were precisely placed in the midbrain, pons, putamen, globus pallidus, caudate nucleus, thalamus, superior cerebellar peduncle, middle cerebellar peduncle, cerebellar white matter, and cerebellar dentate nucleus, and the regional ADC (rADC) value was calculated in each ROI. In MSA, rADC values in the pons, middle cerebellar peduncle, cerebellar white matter, and cerebellar dentate nucleus were significantly higher than in PSP, PD, and controls. Furthermore, rADC values in the posterior putamen were significantly higher in MSA than in PSP and controls. In PSP, rADC values were significantly higher in the globus pallidus and midbrain than in MSA, PD, and controls. Furthermore, rADC values in the caudate nucleus and superior cerebellar peduncle were significantly higher in PSP than in MSA and controls. In PD, there were no significant differences in the rADC values compared to in MSA, PSP, and controls in all regions. Evaluation of rADC values in characteristic lesions in MSA, PSP, and PD by placing ROIs using 3-T systems can provide useful additional information for differentiating these disorders. (orig.)

  20. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Caudate Asymmetry: A Neurobiological Marker of Moderate Prenatal Alcohol Exposure in Young Adults

    OpenAIRE

    Willford, Jennifer; Day, Richard; Aizenstein, Howard; Day, Nancy

    2010-01-01

    This study identified structural changes in the caudate nucleus in offspring of mothers who drank moderate levels of alcohol during pregnancy. In addition, the effect of duration of alcohol use during pregnancy was assessed. Young adults were recruited from the Maternal Health Practices and Child Development Project. Three groups were evaluated: prenatal alcohol exposure (PAE) during all three trimesters (3T), PAE during the first trimester only (1T), and controls with no PAE (0T). Magnetic r...

  2. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease

    OpenAIRE

    Keene, C. Dirk; Rodrigues, Cecilia M. P.; Eich, Tacjana; Chhabra, Manik S.; Steer, Clifford J.; Low, Walter C.

    2002-01-01

    Huntington's disease (HD) is an untreatable neurological disorder caused by selective and progressive degeneration of the caudate nucleus and putamen of the basal ganglia. Although the etiology of HD pathology is not fully understood, the observed loss of neuronal cells is thought to occur primarily through apoptosis. Furthermore, there is evidence in HD that cell death is mediated through mitochondrial pathways, and mitochondrial deficits are commonly associated with HD. We have previously r...

  3. Egocentric and allocentric visuospatial working memory in premotor Huntington's disease: A double dissociation with caudate and hippocampal volumes.

    Science.gov (United States)

    Possin, Katherine L; Kim, Hosung; Geschwind, Michael D; Moskowitz, Tacie; Johnson, Erica T; Sha, Sharon J; Apple, Alexandra; Xu, Duan; Miller, Bruce L; Finkbeiner, Steven; Hess, Christopher P; Kramer, Joel H

    2017-07-01

    Our brains represent spatial information in egocentric (self-based) or allocentric (landmark-based) coordinates. Rodent studies have demonstrated a critical role for the caudate in egocentric navigation and the hippocampus in allocentric navigation. We administered tests of egocentric and allocentric working memory to individuals with premotor Huntington's disease (pmHD), which is associated with early caudate nucleus atrophy, and controls. Each test had 80 trials during which subjects were asked to remember 2 locations over 1-sec delays. The only difference between these otherwise identical tests was that locations could only be coded in self-based or landmark-based coordinates. We applied a multiatlas-based segmentation algorithm and computed point-wise Jacobian determinants to measure regional variations in caudate and hippocampal volumes from 3T MRI. As predicted, the pmHD patients were significantly more impaired on egocentric working memory. Only egocentric accuracy correlated with caudate volumes, specifically the dorsolateral caudate head, right more than left, a region that receives dense efferents from dorsolateral prefrontal cortex. In contrast, only allocentric accuracy correlated with hippocampal volumes, specifically intermediate and posterior regions that connect strongly with parahippocampal and posterior parietal cortices. These results indicate that the distinction between egocentric and allocentric navigation applies to working memory. The dorsolateral caudate is important for egocentric working memory, which can explain the disproportionate impairment in pmHD. Allocentric working memory, in contrast, relies on the hippocampus and is relatively spared in pmHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Increased binding of (/sup 3/H)apomorphine in caudate membranes after dopamine pretreatment in vitro

    Energy Technology Data Exchange (ETDEWEB)

    McManus, C; Hartley, E J; Seeman, P [Toronto Univ., Ontario (Canada)

    1978-07-01

    Most patients with Parkinson's disease treated with L-dopa show a progressively deteriorating response which may possibly be attributed to an L-dopa-induced process of unknown origin. Long-term administration of dopamine-mimetic drugs to animals sometimes produces behavioural facilitation. To investigate one possible molecular mechanism of this facilitation or sensitization the effects of prolonged exposure, in vitro, of dopamine on the dopamine/neuroleptic receptors in the caudate nucleus of the calf were tested. Calf caudate homogenates pretreated with dopamine or other drugs were tested for the binding of (/sup 3/H)apomorphine, (/sup 3/H)haloperidol, 3H-WB-4101, or (/sup 3/H)naloxine. Pre-exposure with dopamine or noradrenaline lead to an increased binding of (/sup 3/H)apomorphine. The significance of the results is discussed.

  5. Early and Degressive Putamen Atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julia Krämer

    2015-09-01

    Full Text Available Putamen atrophy and its long-term progress during disease course were recently shown in patients with multiple sclerosis (MS. Here we investigated retrospectively the time point of atrophy onset in patients with relapsing-remitting MS (RRMS. 68 patients with RRMS and 26 healthy controls (HC were admitted to 3T MRI in a cross-sectional study. We quantitatively analyzed the putamen volume of individual patients in relation to disease duration by correcting for age and intracranial volume (ICV. Patient’s relative putamen volume (RPV, expressed in percent of ICV, was significantly reduced compared to HC. Based on the correlation between RPV and age, we computed the age-corrected RPV deviation (ΔRPV from HC. Patients showed significantly negative ΔRPV. Interestingly, the age-corrected ΔRPV depended logarithmically on disease duration: Directly after first symptom manifestation, patients already showed a reduced RPV followed by a further degressive volumetric decline. This means that atrophy progression was stronger in the first than in later years of disease. Putamen atrophy starts directly after initial symptom manifestation or even years before, and progresses in a degressive manner. Due to its important role in neurological functions, early detection of putamen atrophy seems necessary. High-resolution structural MRI allows monitoring of disease course.

  6. Voxel-based analysis of cerebral glucose metabolism in AD and non-AD degenerative dementia using statistical parametric mapping

    International Nuclear Information System (INIS)

    Li Zugui; Gao Shuo; Zhang Benshu; Ma Aijun; Cai Li; Li Dacheng; Li Yansheng; Liu Lei

    2008-01-01

    Objective: It is know that Alzheimer's disease (AD) and non-AD degenerative dementia have some clinical features in common. The aim of this study was to investigate the specific patterns of regional, cerebral glucose metabolism of AD and non-AD degenerative dementia patients, using a voxel-based 18 F-fluorodeoxyglucose (FDG) PET study. Methods: Twenty-three AD patients and 24 non-AD degenerative dementia patients including 9 Parkinson's disease with dementia(PDD), 7 frontal-temporal dementia (FTD), 8 dementia of Lewy bodies (DLB) patients, and 40 normal controls (NC)were included in the study. To evaluate the relative cerebral metabolic rate of glucose (rCMRglc), 18 F-FDG PET imaging was performed in all subjects. Subsequently, statistical comparison of PET data with NC was performed using statistical parametric mapping (SPM). Results: The AD-associated FDG imaging pattern typically presented as focal cortical hypometabolism in bilateral parietotemporal association cortes and(or) frontal lobe and the posterior cingulate gyms. As compared with the comparative NC, FTD group demonstrated significant regional reductions in rCMRglc in bilateral frontal, parietal lobes, the cingulate gyri, insulae, left precuneus, and the subcortical structures (including right putamen, right medial dorsal nucleus and ventral anterior nucleus). The PDD group showed regional reductions in rCMRglc in bilateral frontal cortexes, parietotemporal association cortexes, and the subcortical structures (including left caudate, right putamen, the dorsomedial thalamus, lateral posterior nucleus, and pulvinar). By the voxel-by-voxel comparison between the DLB group and NC group, regional reductions in rCMRglc included bilateral occipital cortexes, precuneuses, frontal and parietal lobes, left anterior cingulate gyms, right superior temporal cortex, and the subcortical structures including putamen, caudate, lateral posterior nucleus, and pulvinar. Conclusions: The rCMRglc was found to be different

  7. File list: ALL.Neu.10.AllAg.Putamen [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Putamen hg19 All antigens Neural Putamen SRX998291,SRX1096826,SRX9...98289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Putamen.bed ...

  8. File list: ALL.Neu.20.AllAg.Putamen [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Putamen hg19 All antigens Neural Putamen SRX998291,SRX1096826,SRX9...98289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Putamen.bed ...

  9. File list: ALL.Neu.05.AllAg.Putamen [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Putamen hg19 All antigens Neural Putamen SRX998291,SRX1096826,SRX9...98289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Putamen.bed ...

  10. Striatal kinetics of [11C]-(+)-nomifensine and 6-[18F]fluoro-L-dopa in Parkinson's disease measured with positron emission tomography

    International Nuclear Information System (INIS)

    Tedroff, J.; Aquilonius, S.-M.; Laihinen, A.; Rinne, U.; Hartvig, P.; Anderson, J.; Lundqvist, H.; Haaparanta, M.; Solin, O.; Antoni, G.; Gee, A.D.; Ulin, J.; Laangstroem, B.

    1990-01-01

    The kinetics in brain of the dopamine reuptake blocking agent [ 11 C]-(+)-nomifensine and the L-dopa analogue 6-[ 18 F]fluoro-L-dopa were compared in 3 patients with idopathic Parkinson's disease and agematched healthy volunteers using positron emission tomography. Regional uptake was analyzed and quantified according to a 3-compartment model. Retention of both tracers in striatal regions of the parkinsonian patients were reduced compared with the healthy volunteers mainly in the putamen, while the caudate nuclleus was only mildly affected. The reductions were considerably less than the decrease previously reported postmortem for striatal dopamine content in the basal ganglia of patients with Parkinson's disease. A fairly constant ratio between 6-[ 18 F]fluoro-L-dopa utilization and [ 11 C]-(+)-nomifensine binding in the caudate nucleus and the putamen were found in both groups unrelated to the size of the estimated parameters. This indicates that a limiting factor for the utilization of exogenous levodopa in Parkinsons's disease may be a reduced transport capacity for the amino acid into the dopaminergic terminals. (author)

  11. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Striatal kinetics of ( sup 11 C)-(+)-nomifensine and 6-( sup 18 F)fluoro-L-dopa in Parkinson's disease measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tedroff, J; Aquilonius, S -M [Department of Neurology, University Hospital (Sweden); Laihinen, A; Rinne, U [Department of Neurology, University of Turku (Finland); Hartvig, P [Department of Hospital Pharmacy, University Hospital (Sweden); Anderson, J [Department of Radiation Sciences, University Hospital (Sweden); Lundqvist, H [Svenberg Laboratory, Uppsala University (Sweden); Haaparanta, M; Solin, O [Medical Cyclotron Laboratory, University of Turku (Finland); Antoni, G; Gee, A D; Ulin, J; Laangstroem, B [Department of Organic Chemistry, University Hospital (Sweden)

    1990-01-01

    The kinetics in brain of the dopamine reuptake blocking agent ({sup 11}C)-(+)-nomifensine and the L-dopa analogue 6-({sup 18}F)fluoro-L-dopa were compared in 3 patients with idopathic Parkinson's disease and agematched healthy volunteers using positron emission tomography. Regional uptake was analyzed and quantified according to a 3-compartment model. Retention of both tracers in striatal regions of the parkinsonian patients were reduced compared with the healthy volunteers mainly in the putamen, while the caudate nuclleus was only mildly affected. The reductions were considerably less than the decrease previously reported postmortem for striatal dopamine content in the basal ganglia of patients with Parkinson's disease. A fairly constant ratio between 6-({sup 18}F)fluoro-L-dopa utilization and ({sup 11}C)-(+)-nomifensine binding in the caudate nucleus and the putamen were found in both groups unrelated to the size of the estimated parameters. This indicates that a limiting factor for the utilization of exogenous levodopa in Parkinsons's disease may be a reduced transport capacity for the amino acid into the dopaminergic terminals. (author).

  13. Clinical-pathomorphological correlation in patients with symptomatic dystonias

    Directory of Open Access Journals (Sweden)

    Ivanović Nataša

    2002-01-01

    Full Text Available Symptomatic dystonia can be the result of various metabolic, degenerative diseases, the consumption of certain medications or exposure to toxic agents. However, only symptomatic dystonia with focal structural lesion provides a significant "window" for, at least indirect, perception of aetiopa-thogenesis and pathomorphological substratum of idiopathic dystonia. Our study included 57 patients with symptomatic dystonia, which as a base had focal or multifocal lesions, of whom 7 patients had generalized dystonia, 18 hemidystonia, 6 segmental dystonia, 7 torticollis, 6 blepharospasm, 7 hand dystonia, 3 spasmodic dysphonia, and 3 had oromandibular dystonia. Stroke was highly statistically the most frequent cause of structural lesions (33/57 or 58%. Relevant pathomorphological changes were present in 50/57 (88% patients, of whom 25 (50% had lesion in the lenticular nucleus (including individual damage of the putamen and globus pallidus, 12/50 (24% had damage of the thalamus and 6/50 (12% had damage of the brainstem. Generalized dystonia was most frequently associated with bilateral lesion of the putamen, hemidystonia with lesion of contralateral putamen, torticollis with damage of the caudate nucleus, hand dystonia with lesion of the thalamus and blepharospasm with lesion of the upper brainstem.

  14. Adenosine A(2A receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Masahiro Mishina

    Full Text Available Adenosine A(2A receptors (A2ARs are thought to interact negatively with the dopamine D(2 receptor (D2R, so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD. However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET with [7-methyl-(11C]-(E-8-(3,4,5-trimethoxystyryl-1,3,7-trimethylxanthine ([(11C]TMSX in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test. In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test. In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an

  15. Subcortical intelligence: caudate volume predicts IQ in healthy adults.

    Science.gov (United States)

    Grazioplene, Rachael G; G Ryman, Sephira; Gray, Jeremy R; Rustichini, Aldo; Jung, Rex E; DeYoung, Colin G

    2015-04-01

    This study examined the association between size of the caudate nuclei and intelligence. Based on the central role of the caudate in learning, as well as neuroimaging studies linking greater caudate volume to better attentional function, verbal ability, and dopamine receptor availability, we hypothesized the existence of a positive association between intelligence and caudate volume in three large independent samples of healthy adults (total N = 517). Regression of IQ onto bilateral caudate volume controlling for age, sex, and total brain volume indicated a significant positive correlation between caudate volume and intelligence, with a comparable magnitude of effect across each of the three samples. No other subcortical structures were independently associated with IQ, suggesting a specific biological link between caudate morphology and intelligence. © 2014 Wiley Periodicals, Inc.

  16. Reduced striatal dopamine D2/3 receptor availability in Body Dysmorphic Disorder.

    Science.gov (United States)

    Vulink, Nienke C; Planting, Robin S; Figee, Martijn; Booij, Jan; Denys, Damiaan

    2016-02-01

    Though the dopaminergic system is implicated in Obsessive Compulsive and Related Disorders (OCRD), the dopaminergic system has never been investigated in-vivo in Body Dysmorphic Disorder (BDD). In line with consistent findings of reduced striatal dopamine D2/3 receptor availability in Obsessive Compulsive Disorder (OCD), we hypothesized that the dopamine D2/3 receptor availability in the striatum will be lower in patients with BDD in comparison to healthy subjects. Striatal dopamine D2/3 receptor Binding Potential (BPND) was examined in 12 drug-free BDD patients and 12 control subjects pairwise matched by age, sex, and handedness using [(123)I]iodobenzamide Single Photon Emission Computed Tomography (SPECT; bolus/constant infusion technique). Regions of interest were the caudate nucleus and the putamen. BPND was calculated as the ratio of specific striatal to binding in the occipital cortex (representing nonspecific binding). Compared to controls, dopamine D2/3 receptor BPND was significantly lower in BDD, both in the putamen (p=0.017) and caudate nucleus (p=0.022). This study provides the first evidence of a disturbed dopaminergic system in BDD patients. Although previously BDD was classified as a separate disorder (somatoform disorder), our findings give pathophysiological support for the recent reclassification of BDD to the OCRD in DSM-5. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  17. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    Science.gov (United States)

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  18. fMRI of Simultaneous Interpretation Reveals the Neural Basis of Extreme Language Control.

    Science.gov (United States)

    Hervais-Adelman, Alexis; Moser-Mercer, Barbara; Michel, Christoph M; Golestani, Narly

    2015-12-01

    We used functional magnetic resonance imaging (fMRI) to examine the neural basis of extreme multilingual language control in a group of 50 multilingual participants. Comparing brain responses arising during simultaneous interpretation (SI) with those arising during simultaneous repetition revealed activation of regions known to be involved in speech perception and production, alongside a network incorporating the caudate nucleus that is known to be implicated in domain-general cognitive control. The similarity between the networks underlying bilingual language control and general executive control supports the notion that the frequently reported bilingual advantage on executive tasks stems from the day-to-day demands of language control in the multilingual brain. We examined neural correlates of the management of simultaneity by correlating brain activity during interpretation with the duration of simultaneous speaking and hearing. This analysis showed significant modulation of the putamen by the duration of simultaneity. Our findings suggest that, during SI, the caudate nucleus is implicated in the overarching selection and control of the lexico-semantic system, while the putamen is implicated in ongoing control of language output. These findings provide the first clear dissociation of specific dorsal striatum structures in polyglot language control, roles that are consistent with previously described involvement of these regions in nonlinguistic executive control. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Decreased Left Caudate Volume Is Associated with Increased Severity of Autistic-Like Symptoms in a Cohort of ADHD Patients and Their Unaffected Siblings

    Science.gov (United States)

    O’Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V.; Greven, Corina U.; Bralten, Janita; Zwiers, Marcel P.; Franke, Barbara; Heslenfeld, Dirk; Oosterlaan, Jaap; Hoekstra, Pieter J.; Hartman, Catharina A.; Groen, Wouter; Rommelse, Nanda; Buitelaar, Jan K.

    2016-01-01

    Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children's Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups. PMID:27806078

  20. A Study of volumetric variations of basal nuclei in the normal human brain by magnetic resonance imaging.

    Science.gov (United States)

    Elkattan, Amal; Mahdy, Amal; Eltomey, Mohamed; Ismail, Radwa

    2017-03-01

    Knowledge of the effects of healthy aging on brain structures is necessary to identify abnormal changes due to diseases. Many studies have demonstrated age-related volume changes in the brain using MRI. 60 healthy individuals who had normal MRI aged from 20 years to 80 years were examined and classified into three groups: Group I: 21 persons; nine males and 12 females aging between 20-39 years old. Group II: 22 persons; 11 males and 11 females aging between 40-59 years old. Group III: 17 persons; eight males and nine females aging between 60-80 years old. Volumetric analysis was done to evaluate the effect of age, gender and hemispheric difference in the caudate and putamen by the slicer 4.3.3.1 software using 3D T1-weighted images. Data were analyzed by student's unpaired t test, ANOVA and regression analysis. The volumes of the measured and corrected caudate nuclei and putamen significantly decreased with aging in males. There was a statistically insignificant relation between the age and the volume of the measured caudate nuclei and putamen in females but there was a statistically significant relation between the age and the corrected caudate nuclei and putamen. There was no significant difference on the caudate and putamen volumes between males and females. There was no significant difference between the right and left caudate nuclei volumes. There was a leftward asymmetry in the putamen volumes. The results can be considered as a base to track individual changes with time (aging and CNS diseases). Clin. Anat. 30:175-182, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    Science.gov (United States)

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  2. The role of the putamen in language: a meta-analytic connectivity modeling study.

    Science.gov (United States)

    Viñas-Guasch, Nestor; Wu, Yan Jing

    2017-12-01

    The putamen is a subcortical structure that forms part of the dorsal striatum of basal ganglia, and has traditionally been associated with reinforcement learning and motor control, including speech articulation. However, recent studies have shown involvement of the left putamen in other language functions such as bilingual language processing (Abutalebi et al. 2012) and production, with some authors arguing for functional segregation of anterior and posterior putamen (Oberhuber et al. 2013). A further step in exploring the role of putamen in language would involve identifying the network of coactivations of not only the left, but also the right putamen, given the involvement of right hemisphere in high order language functions (Vigneau et al. 2011). Here, a meta-analytic connectivity modeling technique was used to determine the patterns of coactivation of anterior and bilateral putamen in the language domain. Based on previous evidence, we hypothesized that left putamen coactivations would include brain regions directly associated with language processing, whereas right putamen coactivations would encompass regions involved in broader semantic processes, such as memory and visual imagery. The results showed that left anterior putamen coactivated with clusters predominantly in left hemisphere, encompassing regions directly associated with language processing, a left posterior putamen network spanning both hemispheres, and cerebellum. In right hemisphere, coactivations were in both hemispheres, in regions associated with visual and orthographic processing. These results confirm the differential involvement of right and left putamen in different language components, thus highlighting the need for further research into the role of putamen in language.

  3. Creutzfeldt jakob disease

    International Nuclear Information System (INIS)

    Haider, E.; Raja, S.; Wali, W.; Tariq, M.

    2013-01-01

    A case of 50 years of age, male with sporadic Creutzfeldt Jakob Disease (sCJD) is reported. Patient had dementia, behavioural abnormalities, unsteady gait and myoclonic jerks. Magnetic resonance imaging (MRI) brain T2 weighted and Fluid Attenuated Inverse Recovery (FLAIR) images showed abnormally increased signal intensity in caudate nucleus and putamen. Scalp electroencephalogram (EEG) revealed periodic synchronous biphasic sharp wave complexes. On the basis of history, clinical findings, typical MRI brain and EEG changes, diagnosis of sporadic CJD was made. (author)

  4. Regional distribution of enkephalinase in rat brain by autoradiography

    International Nuclear Information System (INIS)

    Waksman, G.; Hamel, E.; Besselievre, R.; Fournie-Zaluski, M.C.; Roques, B.P.; Bouboutou, R.

    1984-01-01

    The first visualization of enkephalinase (neutral metalloendopeptidase, E.C.3.4.24.11) in rat brain was obtained by autoradiography, using a new tritiated inhibitor: [ 3 H]N-[(R, S) 3-(N-hydroxy) carboxamido-2-benzyl propanoyl]-glycine ( 3 H-HCBP-Gly). The preliminary analysis of sections clearly showed a discrete localization of enkephalinase in enkephalin enriched regions, such as caudate nucleus, putamen, globus pallidus, and substantia nigra. Moreover 3 H-HCBP-Gly binding also occured in choroid plexus and spinal cord [fr

  5. Right putamen and age are the most discriminant features to diagnose Parkinson's disease by using 123I-FP-CIT brain SPET data by using an artificial neural network classifier, a classification tree (ClT).

    Science.gov (United States)

    Cascianelli, S; Tranfaglia, C; Fravolini, M L; Bianconi, F; Minestrini, M; Nuvoli, S; Tambasco, N; Dottorini, M E; Palumbo, B

    2017-01-01

    The differential diagnosis of Parkinson's disease (PD) and other conditions, such as essential tremor and drug-induced parkinsonian syndrome or normal aging brain, represents a diagnostic challenge. 123 I-FP-CIT brain SPET is able to contribute to the differential diagnosis. Semiquantitative analysis of radiopharmaceutical uptake in basal ganglia (caudate nuclei and putamina) is very useful to support the diagnostic process. An artificial neural network classifier using 123 I-FP-CIT brain SPET data, a classification tree (CIT), was applied. CIT is an automatic classifier composed of a set of logical rules, organized as a decision tree to produce an optimised threshold based classification of data to provide discriminative cut-off values. We applied a CIT to 123 I-FP-CIT brain SPET semiquantitave data, to obtain cut-off values of radiopharmaceutical uptake ratios in caudate nuclei and putamina with the aim to diagnose PD versus other conditions. We retrospectively investigated 187 patients undergoing 123 I-FP-CIT brain SPET (Millenium VG, G.E.M.S.) with semiquantitative analysis performed with Basal Ganglia (BasGan) V2 software according to EANM guidelines; among them 113 resulted affected by PD (PD group) and 74 (N group) by other non parkinsonian conditions, such as Essential Tremor and drug-induced PD. PD group included 113 subjects (60M and 53F of age: 60-81yrs) having Hoehn and Yahr score (HY): 0.5-1.5; Unified Parkinson Disease Rating Scale (UPDRS) score: 6-38; N group included 74 subjects (36M and 38 F range of age 60-80 yrs). All subjects were clinically followed for at least 6-18 months to confirm the diagnosis. To examinate data obtained by using CIT, for each of the 1,000 experiments carried out, 10% of patients were randomly selected as the CIT training set, while the remaining 90% validated the trained CIT, and the percentage of the validation data correctly classified in the two groups of patients was computed. The expected performance of an "average

  6. Magnetic resonance imaging of dystonic states

    International Nuclear Information System (INIS)

    Rutledge, J.N.; Hilal, S.K.; Silver, A.J.; Defendini, R.; Fahn, S.

    1988-01-01

    Interest in movement disorders is heightened by the recent capability of mapping the distribution of macromolecular complexes of Fe(III) in the brain using heavily T2-weighted images. This is accomplished through contrast caused by their T2 effect, a local inhomogeneity in the magnetic field which dephases spin and results in loss of signal. It is a unique characteristic of the extra-pyramidal system that its nuclei contain high concentrations of iron. The areas especially rich are the substantia nigra and globus pallidus. Lesser amounts of iron are found in the red nucleus, dentate nucleus, nigrostriatal tract, putamen, and caudate nucleus. The reasons for increased concentration of iron in nuclei related to movement are incompletely understood and are reviewed in this chapter

  7. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.

    Science.gov (United States)

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R

    2015-02-15

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Brain microstructural correlates of visuospatial choice reaction time in children

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Baaré, William F C; Skimminge, Arnold

    2011-01-01

    The corticospinal tracts and the basal ganglia continue to develop during childhood and adolescence, and indices of their maturation can be obtained using diffusion-weighted imaging. Here we show that a simple measure of visuomotor function is correlated with diffusion parameters...... anisotropy (FA) in the corticospinal tracts, after controlling for age, gender, and handedness. Mean MD and/or FA were extracted from the right and left corticospinal tracts, putamen, and caudate nuclei. As predicted, faster 5-choice RTs were associated with lower MD in the corticospinal tracts, putamen......, and caudate. MD effects on RT were bilateral in the corticospinal tracts and putamen, whilst right caudate MD was more strongly related to performance than was left caudate MD. Our results suggest a link between motor performance variability in children and diffusivity in the motor system, which may...

  9. Symptomatic laterality and magnetic resonance imaging (MRI) of the putamen in striatonigral degeneration (SND)

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, Chie; Ichikawa, Keiji; Kageyama, Yasufumi; Satou, Mutsumi; Hoshino, Masataka (Hyogo Prefectural Amagasaki Hospital (Japan))

    1994-04-01

    The relationship between sympatomatic laterality and lesions of the putamen was investigated by magnetic resonance (MR) imaging in 6 patients with striatonigral degeneration (SND). According to Yahr's classification, one patient had I, III, and V each, and 3 had IV. All patients had asymmetric onset of parkinsonism. They developed variable cerebellar ataxia and/or autonomic failure. T1-weighted imaging was most superior in delineating atrophy of the putamen and laterality. The atrophy and lateral difference of the putamen were associated with progression of symptoms. Both the area and the maximum transverse diameter of the putamen were significantly decreased. Atophied putamen extended from the dorsal to the abdominal sides with symptom progression. Attention should be paid to the dorsal side of the putamen in delineating the atrophy and bilateral difference. The measurement of the maximum transverse diameter of the dorsal atrophy of the putamen was a simple, useful means for assessing the atrophy of the putamen. The diameter 7.4 mm or less of the putamen suggested the presence of atrophy. (N.K.).

  10. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms

    Science.gov (United States)

    2014-01-01

    Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded. PMID:24397347

  11. Neuroradiologiske forandringer ved undertrykkelse af tics

    DEFF Research Database (Denmark)

    Larsen, Sara Bohn; Sørensen, Camilla Birgitte; Skov, Liselotte

    2017-01-01

    Neuroradiological changes by suppression of tics Tourette’s syndrome is characterized by involuntary tics. First choice of treatment has been pharmacological, but recently, behavioural therapy teaching patients to suppress their tics has been introduced. Neuroimaging studies have shown an increased...... activity in the prefrontal cortex, temporal lobes and caudate nucleus, and a decreased activity in globus pallidus and putamen during inhibition of tics. The activity in the frontal lobes changes with age, probably caused by a lack of compensatory hypertrophy. In order to fully understand the mechanism...

  12. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  13. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  14. Impaired Verbal Learning Is Associated with Larger Caudate Volumes in Early Onset Schizophrenia Spectrum Disorders.

    Directory of Open Access Journals (Sweden)

    Monica Juuhl-Langseth

    Full Text Available Both brain structural abnormalities and neurocognitive impairments are core features of schizophrenia. We have previously reported enlargements in subcortical brain structure volumes and impairment of neurocognitive functioning as measured by the MATRICS Cognitive Consensus Battery (MCCB in early onset schizophrenia spectrum disorders (EOS. To our knowledge, no previous study has investigated whether neurocognitive performance and volumetric abnormalities in subcortical brain structures are related in EOS.Twenty-four patients with EOS and 33 healthy controls (HC were included in the study. Relationships between the caudate nucleus, the lateral and fourth ventricles volumes and neurocognitive performance were investigated with multivariate linear regression analyses. Intracranial volume, age, antipsychotic medication and IQ were included as independent predictor-variables.The caudate volume was negatively correlated with verbal learning performance uniquely in the EOS group (r=-.454, p=.034. There were comparable positive correlations between the lateral ventricular volume and the processing speed, attention and reasoning and problem solving domains for both the EOS patients and the healthy controls. Antipsychotic medication was related to ventricular enlargements, but did not affect the brain structure-function relationship.Enlargement of the caudate volume was related to poorer verbal learning performance in patients with EOS. Despite a 32% enlargement of the lateral ventricles in the EOS group, associations to processing speed, attention and reasoning and problem solving were similar for both the EOS and the HC groups.

  15. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  16. Characteristic MR features of encephalitis caused by Epstein-Barr virus: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Jiro [Division of Paediatrics, Toyonaka Municipal Hospital, Osaka (Japan)]|[Department of Paediatrics, Faculty of Medicine, Osaka Univ. (Japan); Shimizu, Kazuo [Division of Paediatrics, Toyonaka Municipal Hospital, Osaka (Japan); Harada, Koushi [Division of Radiology, Kaizuka Municipal Hospital, Osaka (Japan); Mano, Toshiyuki; Okada, Shintaro [Department of Paediatrics, Faculty of Medicine, Osaka Univ. (Japan)

    1998-08-01

    An 8-year-old girl showed symptoms of encephalitis during acute Epstein-Barr virus (EBV) infection. The diagnosis of EB virus infection was made by changes in the titres of EB virus-specific antibody. Cranial MRI demonstrated abnormal low and high signal intensities in the striatal body (putamen and caudate nucleus) on T1-weighted and T2-weighted images, respectively, during the acute phase. These abnormal findings had almost completely resolved 1 month later. EBV infection should be considered when lesions are localised to the basal ganglia. (orig.) With 1 fig., 5 refs.

  17. Characteristic MR features of encephalitis caused by Epstein-Barr virus: a case report

    International Nuclear Information System (INIS)

    Ono, Jiro; Shimizu, Kazuo; Harada, Koushi; Mano, Toshiyuki; Okada, Shintaro

    1998-01-01

    An 8-year-old girl showed symptoms of encephalitis during acute Epstein-Barr virus (EBV) infection. The diagnosis of EB virus infection was made by changes in the titres of EB virus-specific antibody. Cranial MRI demonstrated abnormal low and high signal intensities in the striatal body (putamen and caudate nucleus) on T1-weighted and T2-weighted images, respectively, during the acute phase. These abnormal findings had almost completely resolved 1 month later. EBV infection should be considered when lesions are localised to the basal ganglia. (orig.)

  18. A comparison between the conventional manual ROI method and an automatic algorithm for semiquantitative analysis of SPECT studies

    International Nuclear Information System (INIS)

    Pagan, L; Novi, B; Guidarelli, G; Tranfaglia, C; Galli, S; Lucchi, G; Fagioli, G

    2011-01-01

    In this study, the performance of a free software for automatic segmentation of striatal SPECT brain studies (BasGanV2 - www.aimn.it) and a standard manual Region Of Interest (ROI) method were compared. The anthropomorphic Alderson RSD phantom, filled with solutions at different concentration of 123 I-FP-CIT with Caudate-Putamen to Background ratios between 1 and 8.7 and Caudate to Putamen ratios between 1 and 2, was imaged on a Philips-Irix triple head gamma camera. Images were reconstructed using filtered back-projection and processed with both BasGanV2, that provides normalized striatal uptake values on volumetric anatomical ROIs, and a manual method, based on average counts per voxel in ROIs drawn in a three-slice section. Caudate-Putamen/Background and Caudate/Putamen ratios obtained with the two methods were compared with true experimental ratios. Good correlation was found for each method; BasGanV2, however, has higher R index (BasGan R mean = 0.95, p mean = 0.89, p 123 I-FP-CIT SPECT data with, moreover, the advantage of the availability of a control subject's database.

  19. An adaption of the push-pull cannula method to study the in vivo release of [3H]dopamine synthesised from [3H]tyrosine in the cat caudate nucleus: effects of various physical and pharmacological treatments

    International Nuclear Information System (INIS)

    Nieoullon, A.; Cheramy, A.; Glowinski, J.

    1977-01-01

    The release of [ 3 H]dopamine ([ 3 H]DA) continuously synthesized from L-[3,5- 3 H]tyrosine from the caudate nucleus of the cat was estimated in halothane anaesthetized or 'encephale isole' animals. For this purpose, an improved superfusion cannula, avoiding tissue damage, was used. The best localization for the tip of the superfusion cannula was found first by determining the topographical distribution of endogenous DA within the caudate nucleus. A rostro-caudal heterogenous distribution of the transmitter was detected. In perfusion experiments, L-[3, 5 3 H]tyrosine was introduced continuously at a rate of 33 μl/min. [ 3 H]DA was the only catecholamine found in serial 15 min fractions as revealed by cochromatography. The spontaneous release of [ 3 H]DA was greater in anaesthetized than in 'encephale isole'cats; it represented 150 and 100 times the blank value, respectively. Depolarization by K + (30 mM) applied locally in the striatum or by electrical or mechanical stimulation of the substantia nigra caused a transitory increase in [ 3 H]DA release. Conversely, a decrease in nerve activity induced by tetrodotoxin (5 x 10 -7 M) or by electrocoagulation of the substantia nigra was associated with a decline in the amounts of [ 3 H]DA in superfusates. A temporary reduction in [ 3 H]DA release could also be obtained by a short-lasting cooling block of the substantia nigra. As expected, d-amphetamine (10 -5 M) and benzotropine (10 -6 M) added to the superfusing medium increased [ 3 H]DA release. These pharmacological results, as well as the changes in [ 3 H]DA release observed after various manipulations of the activity of dopaminergic neurones, confirms the validity and the high sensitivity of this approach. (author)

  20. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  1. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo; Yang, Jong Chul; Kim, Seok Kwun

    2012-01-01

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  2. Imaging dopamine and opiate receptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1986-01-01

    Chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its nature. In 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spipeone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress

  3. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  4. Dopamine transporter SPECT in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Tadanori; Tsuchida, Tatsuro; Hirayama, Mikio; Fujiyama, Jiro; Mutoh, Tatsuro; Yonekura, Yoshiharu; Kuriyama, Masaru [Fukui Medical Univ., Matsuoka (Japan)

    2000-03-01

    The major neuropathological feature in Parkinson's disease (PD) is severe degeneration of the dopamine (DA) neurons in the substantia nigra. Dopamine transporter (DAT) is an important protein in the regulation of DA neurotransmission. It has been reported that PD patients show a loss of DAT in striatum. We report here the findings of single photon emission computed tomography (SPECT) of the DAT with 2{beta}-carboxymethoxy-3{beta}-(4[{sup 123}I]iodophenyl)tropane ([{sup 123}I]{beta}-CIT) to investigate striatal DAT in 10 patients with PD, one patient with vascular parkinsonism (VP), and one patient with dystonia syndrome. Patients were evaluated using the Webster rating scale. Specific/nondisplaceable striatal binding ratio (V3'') was obtained in each case. In PD patients, the uptake of [{sup 123}I]{beta}-CIT was reduced, especially in the tail of putamen compared with caudate nucleus. Even in the early stage of PD, the uptake of {beta}-CIT was reduced not only in the severely affected side, but also in the mildly disturbed side of the brain. Putamen caudate ratio was generally low in PD patients. In VP patient, the uptake was reduced, but putamen caudate ratio was not decreased. V3'' values showed significant correlation with the severity of clinical symptoms such as self-care, facies, posture, gait, speech, and Hoehn-Yahr's stage. On the other hand, V3'' values were not significantly correlated with the degree of tremor, seborrhea, and duration of the illness. In conclusion, we found that SPECT of the [{sup 123}I]{beta}-CIT is a useful method for the diagnosis in the patients presenting parkinsonism, and for the clinico-physiological estimation of parkinsonian symptoms such as self-care, facies, posture, gait, and speech. (author)

  5. Dopamine transporter SPECT in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Hamano, Tadanori; Tsuchida, Tatsuro; Hirayama, Mikio; Fujiyama, Jiro; Mutoh, Tatsuro; Yonekura, Yoshiharu; Kuriyama, Masaru

    2000-01-01

    The major neuropathological feature in Parkinson's disease (PD) is severe degeneration of the dopamine (DA) neurons in the substantia nigra. Dopamine transporter (DAT) is an important protein in the regulation of DA neurotransmission. It has been reported that PD patients show a loss of DAT in striatum. We report here the findings of single photon emission computed tomography (SPECT) of the DAT with 2β-carboxymethoxy-3β-(4[ 123 I]iodophenyl)tropane ([ 123 I]β-CIT) to investigate striatal DAT in 10 patients with PD, one patient with vascular parkinsonism (VP), and one patient with dystonia syndrome. Patients were evaluated using the Webster rating scale. Specific/nondisplaceable striatal binding ratio (V3'') was obtained in each case. In PD patients, the uptake of [ 123 I]β-CIT was reduced, especially in the tail of putamen compared with caudate nucleus. Even in the early stage of PD, the uptake of β-CIT was reduced not only in the severely affected side, but also in the mildly disturbed side of the brain. Putamen caudate ratio was generally low in PD patients. In VP patient, the uptake was reduced, but putamen caudate ratio was not decreased. V3'' values showed significant correlation with the severity of clinical symptoms such as self-care, facies, posture, gait, speech, and Hoehn-Yahr's stage. On the other hand, V3'' values were not significantly correlated with the degree of tremor, seborrhea, and duration of the illness. In conclusion, we found that SPECT of the [ 123 I]β-CIT is a useful method for the diagnosis in the patients presenting parkinsonism, and for the clinico-physiological estimation of parkinsonian symptoms such as self-care, facies, posture, gait, and speech. (author)

  6. Avoiding boredom: Caudate and insula activity reflects boredom-elicited purchase bias.

    Science.gov (United States)

    Dal Mas, Dennis E; Wittmann, Bianca C

    2017-07-01

    People show a strong tendency to avoid boring situations, but the neural systems mediating this behavioural bias are yet unknown. We used functional magnetic resonance imaging (fMRI) to investigate how the anticipation of a boring task influences decisions to purchase entertainment. Participants accepted higher prices to avoid boredom compared to control tasks, and individual differences in boredom experience predicted the increase in price. This behavioural bias was associated with higher activity in the caudate nucleus during music purchases driven by boredom avoidance. Insula activation was increased during performance of the boring task and subsequently associated with individual differences in boredom-related decision making. These results identify a mechanism that drives decisions to avoid boring situations and potentially underlies consumer decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An interesting case of metabolic dystonia: L-2 hydroxyglutaric aciduria

    Directory of Open Access Journals (Sweden)

    Padma Balaji

    2014-01-01

    Full Text Available L-2-hydroxyglutaric aciduria (L-2-HGA, a neurometabolic disorder caused by mutations in the L-2 hydroxyglutarate dehydrogenase (L-2-HGDH gene, presents with psychomotor retardation, cerebellar ataxia, extrapyramidal symptoms, macrocephaly and seizures. Characteristic magnetic resonance imaging findings include subcortical cerebral white matter abnormalities with T2 hyperintensities of the dentate nucleus, globus pallidus, putamen and caudate nucleus. The diagnosis can be confirmed by elevated urinary L-2 hydroxyglutaric acid and mutational analysis of the L-2-HGDH gene. We report two siblings with dystonia diagnosed by classical neuroimaging findings with elevated urinary 2 hydroxyglutaric acid. Riboflavin therapy has shown promising results in a subset of cases, thus highlighting the importance of making the diagnosis in these patients.

  8. Reduced striatal volumes in Parkinson’s disease: a magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Pitcher Toni L

    2012-08-01

    Full Text Available Abstract Background The presence and extent of structural changes in the brain as a consequence of Parkinson’s disease (PD is still poorly understood. Methods High-resolution 3-tesla T1-weighted structural magnetic resonance images in sixty-five PD and 27 age-matched healthy control participants were examined. Putamen, caudate, and intracranial volumes were manually traced in the axial plane of 3D reconstructed images. Striatal nuclei volumes were normalized to intracranial volume for statistical comparison. Disease status was assessed using the Unified Parkinson’s Disease Rating Scale and Hoehn and Yahr scale. Cognitive status was assessed using global status tests and detailed neuropsychological testing. Results Both caudate and putamen volumes were smaller in PD brains compared to controls after adjusting for age and gender. Caudate volumes were reduced by 11% (p = 0.001 and putamen volumes by 8.1% (p = 0.025. PD striatal volumes were not found to be significantly correlated with cognitive or motor decline. Conclusion Small, but significant reductions in the volume of both the caudate and putamen occur in PD brains. These reductions are independent of the effects of age and gender, however the relation of these reductions to the functional loss of dopamine, which is characteristic of PD, remains unclear.

  9. Neonatal ventral hippocampus lesion alters the dopamine content in the limbic regions in postpubertal rats.

    Science.gov (United States)

    Alquicer, Glenda; Silva-Gómez, Adriana B; Peralta, Fernando; Flores, Gonzalo

    2004-04-01

    The neonatal ventral Hippocampus (nVH) lesion in rats has been used as a model to test the hypothesis that early neurodevelopmental abnormalities lead to behavioral changes putatively linked to schizophrenia. The schizophrenic patients tend to social isolation. In addition, considerable evidence from behavioral and neurochemistry studies strongly implicate the dopamine (DA) system and the medial part of the prefrontal cortex (mPFC) in the pathophysiology of the social isolation syndrome. In order to assess effects of the postweaning social isolation (pwSI) on the DA system of the nVH lesions, we investigated the DA content and its metabolite, DOPAC in different limbic subregions in rats postpubertally at postnatal day (P) 78 following nVH lesions at P7 with and without pwSI for 8 weeks. The DA and DOPAC were measured by HPLC with electrochemical detection. The nVH lesion induces increase in the DA content in the hippocampus with no effect in the mPFC, nucleus accumbens and caudate-putamen, while the pwSI induces major increase in the DA content in limbic subregions such as the mPFC, nucleus accumbens and hipocampus with opposite effect in the caudate-putamen. These results suggest that while pwSI has an effect in the postpubertal content of DA in both sham and nVH lesions in rats, the nVH-lesioned rats appear to be affected to a greater extent than the sham animals underscoring the influence of pwSI differences in the development of behaviors in the nVH-lesioned animals.

  10. A common neural code for social and monetary rewards in the human striatum.

    Science.gov (United States)

    Wake, Stephanie J; Izuma, Keise

    2017-10-01

    Although managing social information and decision making on the basis of reward is critical for survival, it remains uncertain whether differing reward type is processed in a uniform manner. Previously, we demonstrated that monetary reward and the social reward of good reputation activated the same striatal regions including the caudate nucleus and putamen. However, it remains unclear whether overlapping activations reflect activities of identical neuronal populations or two overlapping but functionally independent neuronal populations. Here, we re-analyzed the original data and addressed this question using multivariate-pattern-analysis and found evidence that in the left caudate nucleus and bilateral nucleus accumbens, social vs monetary reward were represented similarly. The findings suggest that social and monetary rewards are processed by the same population of neurons within these regions of the striatum. Additional findings demonstrated similar neural patterns when participants experience high social reward compared to viewing others receiving low social reward (potentially inducing schadenfreude). This is possibly an early indication that the same population of neurons may be responsible for processing two different types of social reward (good reputation and schadenfreude). These findings provide a supplementary perspective to previous research, helping to further elucidate the mechanisms behind social vs non-social reward processing. © The Author (2017). Published by Oxford University Press.

  11. Functionally distinct contributions of the anterior and posterior putamen during sublexical and lexical reading

    Directory of Open Access Journals (Sweden)

    Marion eOberhuber

    2013-11-01

    Full Text Available Previous studies have investigated orthographic-to-phonological mapping during reading by comparing brain activation for (1 reading words to object naming, or (2 reading pseudowords (e.g. phume to words (e.g. plume. Here we combined both approaches to provide new insights into the underlying neural mechanisms. In fMRI data from 25 healthy adult readers, we first identified activation that was greater for reading words and pseudowords relative to picture and color naming. The most significant effect was observed in the left putamen, extending to both anterior and posterior borders. Second, consistent with previous studies, we show that both the anterior and posterior putamen are involved in articulating speech with greater activation during our overt speech production tasks (reading, repetition, object naming and color naming than silent one-back-matching on the same stimuli. Third, we compared putamen activation for words versus pseudowords during overt reading and auditory repetition. This revealed that the anterior putamen was most activated by reading pseudowords, whereas the posterior putamen was most activated by words irrespective of whether the task was reading words or auditory word repetition. The pseudoword effect in the anterior putamen is consistent with prior studies that associated this region with the initiation of novel sequences of movements. In contrast, the heightened word response in the posterior putamen is consistent with other studies that associated this region with memory guided movement. Our results illustrate how the functional dissociation between the anterior and posterior putamen supports sublexical and lexical processing during reading.

  12. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  13. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  14. The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response.

    Science.gov (United States)

    Kesner, Raymond P; Gilbert, Paul E

    2006-04-01

    A delayed-match-to-sample task was used to assess memory for motor responses in rats with control, hippocampus, or medial caudate nucleus (MCN) lesions. All testing was conducted on a cheeseboard maze in complete darkness using an infrared camera. A start box was positioned in the centre of the maze facing a randomly determined direction on each trial. On the sample phase, a phosphorescent object was randomly positioned to cover a baited food well in one of five equally spaced positions around the circumference of the maze forming a 180-degree arc 60 cm from the box. The rat had to displace the object to receive food and return to the start box. The box was then rotated to face a different direction. An identical baited phosphorescent object was placed in the same position relative to the start box. A second identical object was positioned to cover a different unbaited well. On the choice phase, the rat must remember the motor response made on the sample phase and make the same motor response on the choice phase to receive a reward. Hippocampus lesioned and control rats improved as a function of increased angle separation used to separate the correct object from the foil (45, 90, 135, and 180 degrees) and matched the performance of controls. However, rats with MCN lesions were impaired across all separations. Results suggest that the MCN, but not the hippocampus, supports working memory and/or a process aimed at reducing interference for motor response selection based on vector angle information.

  15. Rostrocaudal gradients of dopamine D2/3 receptor binding in striatal subregions measured with [11C]raclopride and high-resolution positron emission tomography

    DEFF Research Database (Denmark)

    Alakurtti, Kati; Johansson, Jarkko J; Tuokkola, Terhi

    2013-01-01

    scanned with brain-dedicated high-resolution research tomography (HRRT, Siemens Medical Solutions, Knoxville, TN, USA) and [(11)C]raclopride. Coronally defined regions of interest (ROIs) of the caudate nucleus, putamen and ventral striatum (VST) were sampled plane-by-plane, 1.5mm apart, on spatially...... observed in the VST. The novelty of this study lies in the presentation, for the first time, of the D2/3 receptor binding gradients in each striatal subregion in the brains of living healthy humans. The high spatial resolution provided by HRRT enables frequent sampling of BPND along the longitudinal extent...

  16. The development of the region of basal nuclei in fetus using MRI of high field

    International Nuclear Information System (INIS)

    Geng Hequn; Zhang Zhonghe; Liu Shuwei

    2010-01-01

    Objective: To study the developmental process of the region of basal nuclei of postmortem fetuses by 3.0 T and 7.0 T MRI. Methods: One hundred and thirty-one postmortem fetuses of 14 to 40 weeks of gestational age (GA) were scanned by 3.0 T MR, of which 11 fetuses of 14-27 weeks of GA were chosen and scanned by 7.0 T MR. The time when the structures in the region of basal nuclei could be detected and the changes of MR signal intensity were analyzed for MRI of different Tesla. Results: On 3.0 T MRI, the dorsal thalamus could be delineated as early as 14 weeks of GA. The germinal matrix, caudate nucleus, and putamen could be visualized as early as 15 weeks of GA. The globus pallidus could be described as early as 18 weeks of GA, and the internal capsule and external capsule could be shown as early as 20 weeks of GA. The signal of the caudate nucleus during 15-30 weeks of GA was relatively hypointense on T 1 WI and hyperintense on T 2 WI, but during 31-40 weeks of GA, it was relatively hyperintense on T 1 WI and hypointense on T 2 WI. The putamen had a relatively high signal intensity on T 1 WI and low signal intensity on T 2 WI during 15-17 weeks of GA, and it appeared patchy during 18-25 weeks of GA, then it had a relatively low signal intensity on T 1 WI and high signal intensity on T 2 WI during 26-30 weeks of GA, and during 31-40 weeks of GA, its signal intensity was relatively high on T 1 WI and low on T 2 WI. The globus pallidus had a relatively high signal intensity on T 1 WI and low signal intensity on T 2 WI during 20- 40 weeks of GA. Compared to the 3.0 T MRI, the T 2 images of 7.0 T MRI were more clear, and most structures in the region of basal nuclei could be clearly displayed as early as 16 weeks of GA, such as the germinal matrix, caudate nucleus, dorsal thalamus, putamen, globus pallidus, internal capsule, and extemal capsule. The claustrum could be delineated as early as 18 weeks of GA on 7.0 T MRI. Conclusions: 3.0 T MRI could show the development

  17. Brain microstructural correlates of visuospatial choice reaction time in children

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Baaré, William F C; Skimminge, Arnold

    2011-01-01

    , and caudate. MD effects on RT were bilateral in the corticospinal tracts and putamen, whilst right caudate MD was more strongly related to performance than was left caudate MD. Our results suggest a link between motor performance variability in children and diffusivity in the motor system, which may...

  18. Synaptic adaptations to chronic ethanol intake in male rhesus monkey dorsal striatum depend on age of drinking onset.

    Science.gov (United States)

    Cuzon Carlson, Verginia C; Grant, Kathleen A; Lovinger, David M

    2018-03-15

    One in 12 adults suffer with alcohol use disorder (AUD). Studies suggest the younger the age in which alcohol consumption begins the higher the probability of being diagnosed with AUD. Binge/excessive alcohol drinking involves a transition from flexible to inflexible behavior likely involving the dorsal striatum (caudate and putamen nuclei). A major focus of this study was to examine the effect of age of drinking onset on subsequent chronic, voluntary ethanol intake and dorsal striatal circuitry. Data from rhesus monkeys (n = 45) that started drinking as adolescents, young adults or mature adults confirms an age-related risk for heavy drinking. Striatal neuroadaptations were examined using whole-cell patch clamp electrophysiology to record AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and GABA A receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) from medium-sized spiny projection neurons located in the caudate or putamen nuclei. In controls, greater GABAergic transmission (mIPSC frequency and amplitude) was observed in the putamen compared to the caudate. With advancing age, in the absence of ethanol, an increase in mIPSC frequency concomitant with changes in mIPSC amplitude was observed in both regions. Chronic ethanol drinking decreased mIPSC frequency in the putamen regardless of age of onset. In the caudate, an ethanol drinking-induced increase in mIPSC frequency was only observed in monkeys that began drinking as young adults. Glutamatergic transmission did not differ between the dorsal striatal subregions in controls. With chronic ethanol drinking there was a decrease in the postsynaptic characteristics of rise time and area of mEPSCs in the putamen but an increase in mEPSC frequency in the caudate. Together, the observed changes in striatal physiology indicate a combined disinhibition due to youth and ethanol leading to abnormally strong activation of the putamen that could contribute to the increased risk

  19. Age-related decline in dopamine transporter in human brain using PET with a new radioligand [18F]FE-PE2I

    International Nuclear Information System (INIS)

    Shingai, Yoshitoshi; Tateno, Amane; Arakawa, Ryosuke; Sakayori, Takeshi; Kim, WooChan; Okubo, Yoshiro; Suzuki, Hidenori

    2014-01-01

    Dopamine transporter (DAT) density is considered as a marker of pre-synaptic function. Numerous neuroimaging studies have consistently demonstrated an age-related decrease in DAT density in normal human brain. However, the precise degree of the regional decline is not yet clear. The purpose of this study was to evaluate the effect of the normal aging process on DAT densities in human-specific brain regions including the substantia nigra and thalamus using positron emission tomography (PET) with [ 18 F]FE-PE2I, a new PET radioligand with high affinity and selectivity for DAT. Thirty-six healthy volunteers ranging in age from 22 to 80 years were scanned with PET employing [ 18 F]FE-PE2I for measuring DAT densities. Region of interest (ROI)-based analysis was used, and ROIs were manually defined for the caudate, putamen, substantia nigra, thalamus, and cerebellar cortex. DAT binding was quantified using a simplified reference tissue model, and the cerebellum was used as reference region. Estimations of binding potential in the caudate, putamen, substantia nigra, and thalamus were individually regressed according to age using simple regression analysis. Estimates of DAT loss per decade were obtained using the values from the regression slopes. There were 7.6, 7.7, and 3.4% per-decade declines in DAT in the caudate, putamen, and substantia nigra, respectively. By contrast, there was no age-related decline of DAT in the thalamus. [ 18 F]FE-PE2I allowed reliable quantification of DAT, not only in the caudate and putamen but also in the substantia nigra. From the results, we demonstrated the age-related decline in the caudate and putamen as reported in previous studies, and additionally for those in the substantia nigra for the first time. (author)

  20. Post-stroke dementia: the contribution of thalamus and basal ganglia changes.

    Science.gov (United States)

    Lopes, Marcos Antonio; Firbank, Michael J; Widdrington, Michelle; Blamire, Andrew M; Kalaria, Raj N; O'Brien, John T

    2012-04-01

    The neurobiological basis of increased risk of dementia in stroke patients is unclear, though there are several related pathological changes, including white matter hyperintensities (WMH), and medial temporal atrophy. Subcortical gray matter structures have also been implicated in dementia resulting from vascular pathology, particularly vascular dementia. This study aimed to investigate the contribution of changes in subcortical gray matter structures to post-stroke dementia (PSD). T1- and T2-weighted images and T2-weighted fluid-attenuated inversion recovery (FLAIR) images were obtained on a 3-Tesla magnetic resonance (MR) system, in four groups aged over 75 years: post-stroke with dementia (PSD; 8), post-stroke no dementia (PSnoD; 33), Alzheimer's disease (AD; 26) and controls (30). Automated software was used to measure the volume of thalamus, putamen, caudate nucleus, and hippocampus as well as total WMH volume. The number of subcortical lacunes was also counted. The number of caudate lacunes was higher in the PSnoD group, compared with AD (p = 0.029) and controls (p = 0.019). The putamen volume was smaller in the stroke and AD groups, when compared with controls. In the whole stroke group, putamen lacunes were correlated with impairment in memory (Rey test; ρ = -0.365; p = 0.031), while WMH and hippocampal volume both correlated with global dysfunction. Our findings implicate a variety of neurobiological substrates of dementia, such as small vessel disease and Alzheimer pathology, which develop after stroke in an old older population, with a contribution from subcortical brain structures.

  1. Functional activity of substantia nigra grafts reinnervating the striatum: neurotransmitter metabolism and (14C)2-deoxy-D-glucose autoradiography. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R H; Ingvar, M; Lindvall, O; Stenevi, U; Bjoerklund, A

    1982-03-01

    Dopaminergic innervation of the caudate nucleus in adult rats can be partially restored by the grafting of embryonic substantia nigra into the overlying parietal cortex with concomitant compensation of certain behavioral abnormalities. In this study the function of such grafts was investigated neurochemically by quantification of transmitter metabolism and glucose utilization in the reinnervated target. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal bundle received a single graft to the dorsal caudate-putamen and were screened for rotational behavior following 5 mg/kg methamphetamine. The grafts restored dopamine concentrations in the caudate-putamen from initially less than 0.5% to an average of 13.6% of normal in rats with behavioral compensation. The ratio of 3,4-dihydroxyphenylacetic acid to dopamine, which is a measure of the rate of transmitter turnover, were equivalent in transplanted and normal control rats. Moreover, measurements of DOPA accumulation for a 30-min period after DOPA decarboxylase inhibition indicated similar fractional dopamine turnover rates in normal and transplant-reinnervated tissues. Correlations between rotational behavior and dopamine concentrations showed that reinnervation to only 3% of normal was sufficient to counterbalance the motor asymmetry. Measurements of glucose utilization by (14C)deoxyglucose autoradiography indicated equivalent metabolic rates for the grafted tissue and the intact substantia nigra. Overall the results indicate that behaviorally functional neuronal grafts spontaneously metabolize dopamine and utilize glucose at rates characteristic of the intact nigrostriatal system. This provides further evidence that ectopic intracortical nigral transplants can reinstate dopaminergic neurotransmission in regions of the host brain initially denervated by the 6-hydroxydopamine lesion.

  2. MRI volume measurement of basal ganglia volumes in patients with Tourette's syndrome

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Cao Yanxiang; Zhang Miao; Sui Xin; Zhang Xiaohua

    2009-01-01

    Objective: To evaluate MRI measurement of basal ganglia volumes in patients with Tourette's syndrome. Methods: Ten patients with Tourette's syndrome (TS) and 10 healthy volunteers were studied. Volumes of bilateral caudate, putamen and pallidum were measured, and the results were analyzed using paired t test. The basal ganglia volume was normalized according to individual brain volume. The basal ganglia volumes of TS patients were compared with normal control group using independent-sample t test. Results: In 10 healthy volunteers, volumes of the left caudate, putamen, pallidum were significantly larger compared with those of the right side (P 0.05) in TS patients. After normalized processing, the volumes of the left caudate (7.06 ± 0.48) cm 3 , putamen (8.81±1.01) cm 3 , pallidum (2.64± 0.38) cm 3 were smaller than those of control group [caudate (11.05±1.86) cm 3 , putamen (9.97± 1.11) cm 3 , pallidum (3.04±0.37) cm 3 ] (t=-6.577, -2.457, -2.376, P 3 in TS patients was significantly smaller compared with the control group (9.81±1.83) cm 3 (t=-4.258, P 0.05). Conclusion: The basal ganglia volumes were significantly decreased in patients with TS. MRI volumetric measurement was an important tool for evaluating pathologic changes of TS. (authors)

  3. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  4. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    International Nuclear Information System (INIS)

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A.

    1991-01-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ( 125 I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease

  5. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children.

    Science.gov (United States)

    Mortamais, Marion; Pujol, Jesus; van Drooge, Barend L; Macià, Didac; Martínez-Vilavella, Gerard; Reynes, Christelle; Sabatier, Robert; Rivas, Ioar; Grimalt, Joan; Forns, Joan; Alvarez-Pedrerol, Mar; Querol, Xavier; Sunyer, Jordi

    2017-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been proposed as environmental risk factors for attention deficit hyperactivity disorder (ADHD). The effects of these pollutants on brain structures potentially involved in the pathophysiology of ADHD are unknown. The aim of this study was to investigate the effects of PAHs on basal ganglia volumes and ADHD symptoms in school children. We conducted an imaging study in 242 children aged 8-12years, recruited through a set of representative schools of the city of Barcelona, Spain. Indoor and outdoor PAHs and benzo[a]pyrene (BPA) levels were assessed in the school environment, one year before the MRI assessment. Whole-brain volumes and basal ganglia volumes (caudate nucleus, globus pallidus, putamen) were derived from structural MRI scans using automated tissue segmentation. ADHD symptoms (ADHD/DSM-IV Scales, American Psychiatric Association 2002) were reported by teachers, and inattentiveness was evaluated with standard error of hit reaction time in the attention network computer-based test. Total PAHs and BPA were associated with caudate nucleus volume (CNV) (i.e., an interquartile range increase in BPA outdoor level (67pg/m 3 ) and indoor level (76pg/m 3 ) was significantly linked to a decrease in CNV (mm 3 ) (β=-150.6, 95% CI [-259.1, -42.1], p=0.007, and β=-122.4, 95% CI [-232.9, -11.8], p=0.030 respectively) independently of intracranial volume, age, sex, maternal education and socioeconomic vulnerability index at home). ADHD symptoms and inattentiveness increased in children with higher exposure to BPA, but these associations were not statistically significant. Exposure to PAHs, and in particular to BPA, is associated with subclinical changes on the caudate nucleus, even below the legislated annual target levels established in the European Union. The behavioral consequences of this induced brain change were not identified in this study, but given the caudate nucleus involvement in many crucial cognitive and behavior

  6. Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2014-01-01

    Full Text Available Obstructive sleep apnea (OSA is accompanied by cognitive, motor, autonomic, learning, and affective abnormalities. The putamen serves several of these functions, especially motor and autonomic behaviors, but whether global and specific sub-regions of that structure are damaged is unclear. We assessed global and regional putamen volumes in 43 recently-diagnosed, treatment-naïve OSA (age, 46.4 ± 8.8 years; 31 male and 61 control subjects (47.6 ± 8.8 years; 39 male using high-resolution T1-weighted images collected with a 3.0-Tesla MRI scanner. Global putamen volumes were calculated, and group differences evaluated with independent samples t-tests, as well as with analysis of covariance (covariates; age, gender, and total intracranial volume. Regional differences between groups were visualized with 3D surface morphometry-based group ratio maps. OSA subjects showed significantly higher global putamen volumes, relative to controls. Regional analyses showed putamen areas with increased and decreased tissue volumes in OSA relative to control subjects, including increases in caudal, mid-dorsal, mid-ventral portions, and ventral regions, while areas with decreased volumes appeared in rostral, mid-dorsal, medial-caudal, and mid-ventral sites. Global putamen volumes were significantly higher in the OSA subjects, but local sites showed both higher and lower volumes. The appearance of localized volume alterations points to differential hypoxic or perfusion action on glia and other tissues within the structure, and may reflect a stage in progression of injury in these newly-diagnosed patients toward the overall volume loss found in patients with chronic OSA. The regional changes may underlie some of the specific deficits in motor, autonomic, and neuropsychologic functions in OSA.

  7. Estradiol receptors mediate estradiol-induced inhibition of mitochondrial Ca^{2+} efflux in rat caudate nucleus and brain stem

    OpenAIRE

    PETROVIC, SNJEZANA; MILOSEVIC, MAJA; RISTIC-MEDIC, DANIJELA; VELICKOVIC, NATASA; DRAKULIC, DUNJA; GRKOVIC, IVANA; HORVAT, ANICA

    2015-01-01

    Our earlier studies found that in vitro estradiol modulates mitochondrial Ca2+ transport in discrete brain regions. The present study examined the role of estradiol receptors (ERs) in estradiol-induced inhibition of Ca^{2+} efflux from synaptosomal mitochondria isolated from rat caudate nuclei and brain stems. Radioactively labeled CaCl_2 (0.6?0.75 µCi ^45CaCl_{2}) was used for Ca^{2+} transport monitoring. The results revealed that in the presence of ER antagonist 7\\alpha,17ß-[9[(4,4,5,5,5-...

  8. ProSAAS-derived peptides are regulated by cocaine and are required for sensitization to the locomotor effects of cocaine.

    Science.gov (United States)

    Berezniuk, Iryna; Rodriguiz, Ramona M; Zee, Michael L; Marcus, David J; Pintar, John; Morgan, Daniel J; Wetsel, William C; Fricker, Lloyd D

    2017-11-01

    To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS. © 2017 International Society for Neurochemistry.

  9. Magnetic Resonance Imaging Features of the Nigrostriatal System: Biomarkers of Parkinson’s Disease Stages?

    Science.gov (United States)

    Hopes, Lucie; Grolez, Guillaume; Moreau, Caroline; Lopes, Renaud; Ryckewaert, Gilles; Carrière, Nicolas; Auger, Florent; Laloux, Charlotte; Petrault, Maud; Devedjian, Jean-Christophe; Bordet, Regis; Defebvre, Luc; Jissendi, Patrice; Delmaire, Christine; Devos, David

    2016-01-01

    Introduction Magnetic resonance imaging (MRI) can be used to identify biomarkers in Parkinson’s disease (PD); R2* values reflect iron content related to high levels of oxidative stress, whereas volume and/or shape changes reflect neuronal death. We sought to assess iron overload in the nigrostriatal system and characterize its relationship with focal and overall atrophy of the striatum in the pivotal stages of PD. Methods Twenty controls and 70 PD patients at different disease stages (untreated de novo patients, treated early-stage patients and advanced-stage patients with L-dopa-related motor complications) were included in the study. We determined the R2* values in the substantia nigra, putamen and caudate nucleus, together with striatal volume and shape analysis. We also measured R2* in an acute MPTP mouse model and in a longitudinal follow-up two years later in the early-stage PD patients. Results The R2* values in the substantia nigra, putamen and caudate nucleus were significantly higher in de novo PD patients than in controls. Early-stage patients displayed significantly higher R2* values in the substantia nigra (with changes in striatal shape), relative to de novo patients. Measurements after a two-year follow-up in early-stage patients and characterization of the acute MPTP mouse model confirmed that R2* changed rapidly with disease progression. Advanced-stage patients displayed significant atrophy of striatum, relative to earlier disease stages. Conclusion Each pivotal stage in PD appears to be characterized by putative nigrostriatal MRI biomarkers: iron overload at the de novo stage, striatal shape changes at early-stage disease and generalized striatal atrophy at advanced disease. PMID:27035571

  10. Synapsin I (Protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia. [Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, R; Alafuzoff, I; Winblad, B [Umeaa Univ. (Sweden); Perdahl, E; Albert, K A; Nestler, E J; Greengard, P [Rockefeller Univ., New York (USA)

    1984-01-01

    Synapsin I (Protein I), a neuron-specfic phosphoprotein enriched in presynaptic nerve terminals, has been used as a quantitative marker for the density of nerve terminals in five brain regions (caudate nucleus, cingulate gyrus, hippocampus, mesencephalon and putamen) from patients who had suffered from Alzheimer disease/senile dementia of Alzheimer type (AD/SDAT), from patients with multi-infarct dementia (MID), and from agematched controls. Samples were obtained at autopsy. Lower levels of Synapsin I were observed in the hippocampus of patients with AD/SDAT but not with MID. There were no significant differences in Synapsin I levels between patients and controls in any of the other four brain regions examined.

  11. Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia

    International Nuclear Information System (INIS)

    Adolfsson, R.; Alafuzoff, I.; Winblad, B.; Perdahl, E.; Albert, K.A.; Nestler, E.J.; Greengard, P.

    1984-01-01

    Synapsin I (Protein I), a neuron-specfic phosphoprotein enriched in presynaptic nerve terminals, has been used as a quantitative marker for the density of nerve terminals in five brain regions (caudate nucleus, cingulate gyrus, hippocampus, mesencephalon and putamen) from patients who had suffered from Alzheimer disease/senile dementia of Alzheimer type (AD/SDAT), from patients with multi-infarct dementia (MID), and from agematched controls. Samples were obtained at autopsy. Lower levels of Synapsin I were observed in the hippocampus of patients with AD/SDAT but not with MID. There were no significant differences in Synapsin I levels between patients and controls in any of the other four brain regions examined. (Author)

  12. Putaminal mosaic visualized by tyrosine hydroxylase immunohistochemistry in the human neostriatum.

    Directory of Open Access Journals (Sweden)

    Ryoma eMorigaki

    2016-04-01

    Full Text Available Among the basal ganglia-thalamocortical circuits, the putamen plays a critical role in the ‘motor’ circuits that control voluntary movements and motor learning. The human neostriatum comprises two functional subdivisions known as the striosome (patch and matrix compartments. Accumulating evidence suggests that compartment-specific dysregulations of dopamine activity might be involved in the disease-specific pathology and symptoms of human striatal diseases including movement disorders. This study was undertaken to examine whether or how striatal dopaminergic innervations are organized into the compartmentalized architecture found in the putamen of adult human brains. For this purpose, we used a highly sensitive immunohistochemistry technique to identify tyrosine hydroxylase (TH, EC 1.14.16.2, a marker for striatal dopaminergic axons and terminals, in formalin-fixed paraffin-embedded tissues obtained from autopsied human brains. Herein, we report that discrete compartmentalization of TH-labeled innervations occurs in the putamen, as in the caudate nucleus, with a higher density of TH labeling in the matrix compared to the striosomes. Our results provide anatomical evidence to support the hypothesis that compartment-specific dysfunction of the striosome-matrix dopaminergic systems might contribute to the genesis of movement disorders.

  13. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: evidence for deficits in dopaminergic neurons

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Rabin, B.M.

    1990-01-01

    Exposure to low doses of high-energy iron particles can alter motor behavior. The ability of rats to hang from a wire has been reported to be significantly degraded after exposure to doses as low as 0.5 Gy. In addition, deficits in the ability of acetylcholine to regulate dopamine release in the caudate nucleus (an area in the brain important for motor function) have been found. The concentrations of 3-methoxytyramine (3-MT), a metabolite of dopamine whose concentrations reflect dopamine release in vivo, were measured after rats were exposed to different doses of high-energy iron particles to gain further information about the effect of radiation on the dopaminergic system. Concentrations of 3-MT were significantly reduced 3 days after exposure to 5 Gy but returned to control values by 8 days. After 6 months, concentrations were again less than control values. Exposure to 5 Gy of high-energy electrons or gamma photons had no effect 3 days after exposure. Very high doses of electrons were needed to alter 3-MT concentrations. One hundred grays of electrons decreased 3-MT 30 min after irradiation but levels returned to control values by 60 min. Gamma photons had no effect after doses up to 200 Gy. These results provide further evidence that exposure to heavy particles can degrade motor behavior through an action on dopaminergic mechanisms and that this can occur after doses much lower than those needed for low-LET radiation

  14. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis.

    Science.gov (United States)

    Burgaleta, Miguel; Sanjuán, Ana; Ventura-Campos, Noelia; Sebastian-Galles, Núria; Ávila, César

    2016-01-15

    Naturally acquiring a language shapes the human brain through a long-lasting learning and practice process. This is supported by previous studies showing that managing more than one language from early childhood has an impact on brain structure and function. However, to what extent bilingual individuals present neuroanatomical peculiarities at the subcortical level with respect to monolinguals is yet not well understood, despite the key role of subcortical gray matter for a number of language functions, including monitoring of speech production and language control - two processes especially solicited by bilinguals. Here we addressed this issue by performing a subcortical surface-based analysis in a sample of monolinguals and simultaneous bilinguals (N=88) that only differed in their language experience from birth. This analysis allowed us to study with great anatomical precision the potential differences in morphology of key subcortical structures, namely, the caudate, accumbens, putamen, globus pallidus and thalamus. Vertexwise analyses revealed significantly expanded subcortical structures for bilinguals compared to monolinguals, localized in bilateral putamen and thalamus, as well as in the left globus pallidus and right caudate nucleus. A topographical interpretation of our results suggests that a more complex phonological system in bilinguals may lead to a greater development of a subcortical brain network involved in monitoring articulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Differences in striatal dopamine transporter density between tremor dominant and non-tremor Parkinson's disease

    International Nuclear Information System (INIS)

    Kaasinen, Valtteri; Kinos, Maija; Joutsa, Juho; Seppaenen, Marko; Noponen, Tommi

    2014-01-01

    Parkinson's disease (PD) can manifest with a tremor-dominant or a non-tremor (akinetic-rigid) phenotype. Although the tremor-dominant subtype may show a better prognosis, there is limited information on the phenotypic differences regarding the level of striatal dopamine transmission. The present study investigated striatal dopamine transporter (DAT) binding characteristics in a large sample of patients with and without tremor. [ 123 I]FP-CIT SPECT scans of 231 patients with a clinical diagnosis of PD and abnormal FP-CIT binding (157 with tremor, 74 without tremor) and 230 control patients with normal FP-CIT binding (148 with tremor, 82 without tremor) were analysed using an automated region-of-interest analysis of the scans (BRASS). Specific striatal binding ratios were compared between phenotypes and groups using age, sex, and symptom duration, predominant side of symptoms, dopaminergic medications and scanner as covariates. Patients with PD had 28.1 - 65.0 % lower binding in all striatal regions compared to controls (p < 0.001). The mean FP-CIT caudate nucleus uptake and the left caudate nucleus uptake were higher in PD patients with tremor than in PD patients without tremor (mean 9.0 % higher, left 10.5 % higher; p < 0.05), whereas there were no differences between tremor and non-tremor control patients. No significant effects of tremor on DAT binding were observed in the anterior or posterior putamen. The motor phenotype is associated with the extent of caudate dopamine terminal loss in PD, as dopamine function is relatively more preserved in tremor patients. Symptom type is related to caudate dopamine function only in association with Parkinsonian dopaminergic degeneration, not in intact dopamine systems in patients with non-PD tremor. (orig.)

  16. Evidence for a caudate role in aphasia from FDG positron emission tomography

    International Nuclear Information System (INIS)

    Metter, E.J.; Riege, W.H.; Hanson, W.R.; Phelps, M.; Kuhl, D.E.

    1982-01-01

    In a recent study correlations between language function and regional glucose metabolism from FDG positron computed tomography were examined. Caudate metabolism correlated with PICA speaking and comprehension factors, as well as BDAE mean writing and reading scores. To identify the language function implicated with caudate metabolism in these eleven patients, twenty subtests making up these two PICA factors and mean BDAE scores were correlated to caudate metabolism. Also a principle components analysis on the twenty subtests identified three factors, only one of which correlated with caudate metabolism. Evidence was found that the caudate has a functional relationship to recognition or motor planning of simple and overlearned materials. This involved simple syntax, low levels of abstraction, identification or sequencing of phonetic and semantic material. This role appeared related to but independent of Broca and frontal lobe function, and may involve the focusing of cortical functions, by allowing two or more regions to interact together

  17. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    Directory of Open Access Journals (Sweden)

    Jeffery G. Bednark

    2015-07-01

    Full Text Available Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g. rhythm and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI and multi-voxel pattern analysis (MVPA, we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the SMA and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.

  18. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task.

    Science.gov (United States)

    Wittmann, Marc; Leland, David S; Paulus, Martin P

    2007-06-01

    Delay discounting refers to the fact that an immediate reward is valued more than the same reward if it occurs some time in the future. To examine the neural substrates underlying this process, we studied 13 healthy volunteers who repeatedly had to decide between an immediate and parametrically varied delayed hypothetical reward using a delay discounting task during event-related functional magnetic resonance imaging. Subject's preference judgments resulted in different discounting slopes for shorter ( or =1 year) delays. Neural activation associated with the shorter delays relative to the longer delays was associated with increased activation in the head of the left caudate nucleus and putamen. When individuals selected the delayed relative to the immediate reward, a strong activation was found in bilateral posterior insular cortex. Several brain areas including the left caudate nucleus showed a correlation between the behaviorally determined discounting and brain activation for the contrast of intervals with delays or =1 year. These results suggest that (1) the posterior insula, which is a critical component of the decision-making neural network, is involved in delaying gratification and (2) the degree of neural activation in the striatum, which plays a fundamental role in reward prediction and in time estimation, may code for the time delay.

  20. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  1. The implication of frontostriatal circuits in young smokers: A resting-state study.

    Science.gov (United States)

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Li, Yangding; Guan, Yanyan; Liu, Jixin; Zhang, Yi; Qin, Wei; Lu, Xiaoqi; Tian, Jie

    2016-06-01

    The critical roles of frontostriatal circuits had been revealed in addiction. With regard to young smokers, the implication of frontostriatal circuits resting-state functional connectivity (RSFC) in smoking behaviors and cognitive control deficits remains unclear. In this study, the volume of striatum subsets, i.e., caudate, putamen, and nucleus accumbens, and corresponding RSFC differences were investigated between young smokers (n1  = 60) and nonsmokers (n2  = 60), which were then correlated with cigarette smoking measures, such as pack_years-cumulative effect of smoking, Fagerström Test for Nicotine Dependence (FTND)-severity of nicotine addiction, Questionnaire on Smoking Urges (QSU)-craving state, and Stroop task performances. Additionally, mediation analysis was carried out to test whether the frontostriatal RSFC mediates the relationship between striatum morphometry and cognitive control behaviors in young smokers when applicable. We revealed increased volume of right caudate and reduced RSFC between caudate and dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex in young smokers. Significant positive correlation between right caudate volume and QSU as well as negative correlation between anterior cingulate cortex-right caudate RSFC and FTND were detected in young smokers. More importantly, DLPFC-caudate RSFC strength mediated the relationship between caudate volume and incongruent errors during Stroop task in young smokers. Our results demonstrated that young smokers showed abnormal interactions within frontostriatal circuits, which were associated with smoking behaviors and cognitive control impairments. It is hoped that our study focusing on frontostriatal circuits could provide new insights into the neural correlates and potential novel therapeutic targets for treatment of young smokers. Hum Brain Mapp 37:2013-2026, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Distinct spatiotemporal patterns for disease duration and stage in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Badoud, Simon [Geneva University Hospitals, Neurology Unit, Department of Clinical Neurosciences, Geneva (Switzerland); University of Fribourg, Neurophysiology Unit, Department of Medicine, Fribourg (Switzerland); University of Geneva, Faculty of Medicine, Geneva (Switzerland); Nicastro, Nicolas; Burkhard, Pierre R. [Geneva University Hospitals, Neurology Unit, Department of Clinical Neurosciences, Geneva (Switzerland); University of Geneva, Faculty of Medicine, Geneva (Switzerland); Garibotto, Valentina [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Geneva University Hospitals, Nuclear Medicine and Molecular Imaging Unit, Department of Medical Imaging, Geneva (Switzerland); Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Centre de Diagnostique Radiologique de Carouge, Geneva (Switzerland); Uppsala University, Department of Surgical Sciences, Radiology, Uppsala (Sweden); University Hospital Freiburg, Department of Neuroradiology, Freiburg (Germany)

    2016-03-15

    To assess correlations between the degree of dopaminergic depletion measured using single-photon emission computed tomography (SPECT) and different clinical parameters of disease progression in Parkinson's disease (PD). This retrospective study included 970 consecutive patients undergoing {sup 123}I-ioflupane SPECT scans in our institution between 2003 and 2013, from which we selected a study population of 411 patients according to their clinical diagnosis: 301 patients with PD (69.4 ± 11.0 years, of age, 163 men) and 110 patients with nondegenerative conditions included as controls (72.7 ± 8.0 years of age, 55 men). Comprehensive and operator-independent data analysis included spatial normalization into standard space, estimation of the mean uptake values in the striatum (caudate nucleus + putamen) and voxel-wise correlation between SPECT signal intensity and disease stage as well as disease duration in order to investigate the spatiotemporal pattern of the dopaminergic nigrostriatal degeneration. To compensate for potential interactions between disease stage and disease duration, one parameter was used as nonexplanatory coregressor for the other. Increasing disease stage was associated with an exponential decrease in {sup 123}I-ioflupane uptake (R {sup 2} = 0.1501) particularly in the head of the ipsilateral caudate nucleus (p < 0.0001), whereas increasing disease duration was associated with a linear decrease in {sup 123}I-ioflupane uptake (p < 0.0001; R {sup 2} = 0.1532) particularly in the contralateral anterior putamen (p < 0.0001). We observed two distinct spatiotemporal patterns of posterior to anterior dopaminergic depletion associated with disease stage and disease duration in patients with PD. The developed operator-independent reference database of 411 {sup 123}I-ioflupane SPECT scans can be used for clinical and research applications. (orig.)

  3. Effects of intravenous glucose on dopaminergic function in the human brain in vivo.

    Science.gov (United States)

    Haltia, Lauri T; Rinne, Juha O; Merisaari, Harri; Maguire, Ralph P; Savontaus, Eriika; Helin, Semi; Någren, Kjell; Kaasinen, Valtteri

    2007-09-01

    Dopamine is known to regulate food intake by modulating food reward via the mesolimbic circuitry of the brain. The objective of this study was to compare the effects of high energy input (i.v. glucose) on striatal and thalamic dopamine release in overweight and lean individuals. We hypothesized that glucose would induce dopamine release and positive ratings (e.g., satiety) in Behavioral Analog Scales, particularly in food-deprived lean subjects. [(11)C]raclopride PET was performed for 12 lean (mean BMI = 22 kg/m(2)) and 12 overweight (mean BMI = 33 kg/m(2)) healthy subjects. Each subject was imaged twice in a blinded counter-balanced setting, after 300 mg/kg i.v. glucose and after i.v. placebo. Dopamine D2 receptor binding potentials (BPs) were estimated. The voxel-based analysis of the baseline scans indicated lower striatal BPs in the overweight group and a negative correlation between BMIs and BPs. Intravenous glucose did not have a significant effect on BPs in overweight or lean subjects (male and female groups combined). However, BP changes were opposite in the two gender groups. In male subjects, significant BP reductions after glucose were seen in the right and left caudate nucleus, left putamen, and right thalamus. In female subjects, increases in BP secondary to glucose were seen in the right caudate nucleus and right and left putamen. The sexually dimorphic effect of glucose was seen in both overweight and lean subjects. Although gender differences were not among the a priori hypotheses of the present study and, therefore, they must be considered to be preliminary findings, we postulate that this observation is a reflection of an interaction between glucose, sex steroids (estrogen), leptin, and dopamine.

  4. Behavioral and neurochemical effects of chronic administration of reserpine and SKF-38393 in rats

    International Nuclear Information System (INIS)

    Neisewander, J.L.; Lucki, I.; McGonigle, P.

    1991-01-01

    Alterations in the density of dopamine receptor subtypes and behaviors mediated by the D1-selective agonist SKF-38393 were examined in rats treated chronically with reserpine, SKF-38393 or the combination of these drugs. Animals received either vehicle or reserpine (1 mg/kg s.c.) on days 1 to 28 and, in addition, half of each of these groups were treated with vehicle and half were treated with SKF-38393 (5-10 mg/kg s.c.) on days 15 to 29. Quantitative autoradiographic measurement of D1 receptors labeled with [ 3 H]SCH-23390 and D2 receptors labeled with [ 3 H]spiroperidol revealed that chronic administration of reserpine increased the density of both receptor subtypes in the nucleus accumbens and caudate-putamen, but not in the substantia nigra. Chronic administration of SKF-38393 alone did not alter D1 receptor density in any of these regions. However, chronic administration of the agonist in reserpinized animals decreased D1 receptor density in the nucleus accumbens, but not in the caudate-putamen or substantia nigra, demonstrating that this partial agonist can selectively down-regulate D1 receptors when endogenous dopaminergic tone is removed. The chronic drug treatments also altered behavioral responses. Chronic administration of SKF-38393 alone produced sensitization of the oral dyskinesia response elicited by a challenge injection of the agonist, but no significant change in the grooming response. Acute administration of SKF-38393 in rats treated with reserpine for 14 days produced stereotypy which was not altered after chronic administration of the agonist. Surprisingly, chronic administration of reserpine alone produced a spontaneous oral dyskinesia, which was blocked dose-dependently by the D2-selective antagonist spiroperidol. These findings are discussed in terms of their relevance to Parkinson's disease and tardive dyskinesia

  5. Extensive cortical damage in a case of Creutzfeldt-Jacob disease: clinicoradiological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Bergui, M.; Bradac, G.B. [Neuroradiology, Ospedale S. G. Battista, University of Torino, Via Cherasco 15, 10126, Torino (Italy); Rossi, G. [Neuropathology Department, Istituto Neurologico C. Besta, Milano (Italy); Orsi, L. [Neurology, Ospedale S. G. Battista, University of Torino, Via Cherasco 15, 10126, Torino (Italy)

    2003-05-01

    MRI demonstrated extensive cortical involvement in a patient with pathologically proven Creutzfeldt-Jacob disease. The whole brain was atrophic; some of the supratentorial cortex, putamen and caudate nucleus gave high signal on T2-weighted images; the changes were more extensive on diffusion-weighted images (DWI). Comparison of the history, and the sites of atrophy and signal change suggested that the latter predominates in regions with long-lasting damage and prevalent gliosis, while high signal on DWI indicate current neuronal loss. This case widens the range of MRI findings in patients with Creutzfeldt-Jacob disease, and suggests that some information about the progression of the disease can be extracted from single MRI study. (orig.)

  6. PET findings in patients with chronic paranoid schizophrenia

    International Nuclear Information System (INIS)

    Uesugi, Hideji; Toyoda, Junzo; Iio, Masaaki.

    1995-01-01

    The regional cerebral blood flow (rCBF) of chronic schizophrenic patients with auditory hallucinations and paranoid delusions and normal controls was compared. The subjects were 5 male chronic inpatients (average age of 41.4 yrs, BPRS 29.3±15.0). Normal controls (6 males) were matched for age and sex. rCBF was determined by PET, based on the consecutive inhalation of 15 O-CO 2 . rCBF in the paranoid schizophrenics was significantly higher than that in normal controls in the temporal lobe and cerebellum (p<0.05). rCBF in paranoid schizophrenia showed a tendency to be higher in the frontal lobe, parietal lobe, caudate nucleus, parahippocampus and putamen, but not in the thalamus. (author)

  7. PET findings in patients with chronic paranoid schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, Hideji [National Center of Neurology and Psychiatry, Kodaira, Tokyo (Japan). National Center Hospital for Mental, Nervous and Muscular Disorders; Toyoda, Junzo; Iio, Masaaki

    1995-07-01

    The regional cerebral blood flow (rCBF) of chronic schizophrenic patients with auditory hallucinations and paranoid delusions and normal controls was compared. The subjects were 5 male chronic inpatients (average age of 41.4 yrs, BPRS 29.3{+-}15.0). Normal controls (6 males) were matched for age and sex. rCBF was determined by PET, based on the consecutive inhalation of {sup 15}O-CO{sub 2}. rCBF in the paranoid schizophrenics was significantly higher than that in normal controls in the temporal lobe and cerebellum (p<0.05). rCBF in paranoid schizophrenia showed a tendency to be higher in the frontal lobe, parietal lobe, caudate nucleus, parahippocampus and putamen, but not in the thalamus. (author).

  8. L-DOPA reverses the elevated density of D/sub 2/ dopamine receptors in Parkinson's diseased striatum

    Energy Technology Data Exchange (ETDEWEB)

    Guttman, M; Seeman, P

    1985-01-01

    Striatal dopamine receptors werde studied using (/sup 3/H)-spiperone in postmortem tissues of thirty-six patients with Parkinson's Disease. Each tissue was analyzed by the receptor saturation method. In non-treated patients, the D/sub 2/ dopamine receptor density was elevated in the caudate nucleus and putamen compared to controls. In L-DOPA-treated patients, the receptor density was the same as controls. The dissociation constant for (/sup 3/H)-spiperone was similar in all groups. The elevated density of D/sub 2/ receptors in non-treated patients may indicate dopaminergic supersensitivity in this disease. The elevated density was reversed with dopamine agonist therapy, but the density was not lower than control tissues.

  9. Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis - insights from a longitudinal FMRI study.

    Directory of Open Access Journals (Sweden)

    Marisa Loitfelder

    Full Text Available BACKGROUND: Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS, but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. METHODS: 13 MS patients and 15 healthy controls (HC underwent MRI including fMRI (go/no-go task, neurological and neuropsychological exams at baseline (BL and follow-up (FU; minimum 12, median 20 months. We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA plots served to assess fMRI signal variability. RESULTS: Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. CONCLUSIONS: Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and

  10. Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis - insights from a longitudinal FMRI study.

    Science.gov (United States)

    Loitfelder, Marisa; Fazekas, Franz; Koschutnig, Karl; Fuchs, Siegrid; Petrovic, Katja; Ropele, Stefan; Pichler, Alexander; Jehna, Margit; Langkammer, Christian; Schmidt, Reinhold; Neuper, Christa; Enzinger, Christian

    2014-01-01

    Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS), but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. 13 MS patients and 15 healthy controls (HC) underwent MRI including fMRI (go/no-go task), neurological and neuropsychological exams at baseline (BL) and follow-up (FU; minimum 12, median 20 months). We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA) plots served to assess fMRI signal variability. Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC) demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT) performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and the strategic importance of specific brain areas for

  11. Differences in striatal dopamine transporter density between tremor dominant and non-tremor Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kaasinen, Valtteri; Kinos, Maija; Joutsa, Juho [University of Turku and Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland); University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Seppaenen, Marko [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); University of Turku and Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku (Finland); Noponen, Tommi [University of Turku and Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku (Finland)

    2014-10-15

    Parkinson's disease (PD) can manifest with a tremor-dominant or a non-tremor (akinetic-rigid) phenotype. Although the tremor-dominant subtype may show a better prognosis, there is limited information on the phenotypic differences regarding the level of striatal dopamine transmission. The present study investigated striatal dopamine transporter (DAT) binding characteristics in a large sample of patients with and without tremor. [{sup 123}I]FP-CIT SPECT scans of 231 patients with a clinical diagnosis of PD and abnormal FP-CIT binding (157 with tremor, 74 without tremor) and 230 control patients with normal FP-CIT binding (148 with tremor, 82 without tremor) were analysed using an automated region-of-interest analysis of the scans (BRASS). Specific striatal binding ratios were compared between phenotypes and groups using age, sex, and symptom duration, predominant side of symptoms, dopaminergic medications and scanner as covariates. Patients with PD had 28.1 - 65.0 % lower binding in all striatal regions compared to controls (p < 0.001). The mean FP-CIT caudate nucleus uptake and the left caudate nucleus uptake were higher in PD patients with tremor than in PD patients without tremor (mean 9.0 % higher, left 10.5 % higher; p < 0.05), whereas there were no differences between tremor and non-tremor control patients. No significant effects of tremor on DAT binding were observed in the anterior or posterior putamen. The motor phenotype is associated with the extent of caudate dopamine terminal loss in PD, as dopamine function is relatively more preserved in tremor patients. Symptom type is related to caudate dopamine function only in association with Parkinsonian dopaminergic degeneration, not in intact dopamine systems in patients with non-PD tremor. (orig.)

  12. Age-related deposition of brain iron in normal adults: an in vivo susceptibility weighted imaging study

    International Nuclear Information System (INIS)

    Wang Qidong; Xu Xiaojun; Zhang Minming

    2008-01-01

    Objective: The purpose of this study was to investigate the effect of age on the iron concentration of the human brain. Methods: The brain iron level was evaluated in vivo in 78 healthy adult volunteers using a noninvasive magnetic resonance method termed susceptibility weighted imaging. The subjects were divided intothree groups due to different ages: young (22-35 years old, n=27), middle- aged (36-55 years old, n=35), and aged (56-78 years old, n=16). The phase values were measured on the corrected phase images in the globus pallidus, putamen, caudate, substantia nigra, red nucleus, thalamus and frontal white matter. The phase values of those regions measured from the subjects over than 30 years old were correlated with published values of brain iron concentration in normal adults to check the validity of the data. Then, the phase values of the three groups were tested for significant age-related differences using one-way ANOVA, followed by post hoc testing using least significant difference (LSD) procedure. Regression analysis was used to further examine age-related effects revealed by group comparisons, and to estimate the rates of age-related changes. Results: A strong negative correlation was found between the phase values and the published values of the brain iron concentration (r=-0.796, P= 0.032), which indicated that the higher the iron deposition level, the greater the negative phase values. In the putamen (F=20.115, P<0.01) and frontal white matter (F=3.536, P=0.034), significant differences were detected in the phase values of the three age groups. Linear regression analysis showed that phase values of the putamen, frontal white matter, and red nucleus decreased with age (The regression coefficients were -0.001, -0.001, and < -0.001 respectively, and the P value were all < 0.05), which indicated that the iron concentration of those brain structures increased with age. No significant age- related changes of the iron concentration were found in the

  13. CT anatomy of para-caval portion of the caudate lobe of the liver

    International Nuclear Information System (INIS)

    Matsui, Osamu; Takashima, Tsutomu; Kadoya, Masumi; Hirose, Jinichiro; Kameyama, Tomiaki; Choto, Shuichi; Konishi, Hideo

    1988-01-01

    Computed tomographic (CT) anatomy of the right border of the caudate lobe had been unclear. Recently, Kumon studied in full detail the anatomy of the caudate branches of the portal vein by corrosion liver cast study and revealed the para-caval portion (PCP) of the caudate lobe extending just right to the Spiegel lobe from the caudate process to the area between the roots of the right and middle hepatic veins. According to Kumon's study, we analyzed the perfusion defects seen on CT during arterial portography performed in patients with intrahepatic portal vein obstruction and studied CT anatomy of PCP. As a result, we consider that the area between the roots of the right and middle hepatic veins belongs to PCP in more than 70 % of patients. Therefore, we think that the area between the roots of the right and middle hepatic veins which had been classified as being in the anterior suprior area (S 8 ) should be reclassified as being in the caudate lobe (S 1 ). (author)

  14. CT anatomy of para-caval portion of the caudate lobe of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Osamu; Takashima, Tsutomu; Kadoya, Masumi; Hirose, Jinichiro; Kameyama, Tomiaki; Choto, Shuichi; Konishi, Hideo

    1988-07-01

    Computed tomographic (CT) anatomy of the right border of the caudate lobe had been unclear. Recently, Kumon studied in full detail the anatomy of the caudate branches of the portal vein by corrosion liver cast study and revealed the para-caval portion (PCP) of the caudate lobe extending just right to the Spiegel lobe from the caudate process to the area between the roots of the right and middle hepatic veins. According to Kumon's study, we analyzed the perfusion defects seen on CT during arterial portography performed in patients with intrahepatic portal vein obstruction and studied CT anatomy of PCP. As a result, we consider that the area between the roots of the right and middle hepatic veins belongs to PCP in more than 70 % of patients. Therefore, we think that the area between the roots of the right and middle hepatic veins which had been classified as being in the anterior suprior area (S/sub 8/) should be reclassified as being in the caudate lobe (S/sub 1/).

  15. Pramipexole but not imipramine or fluoxetine reverses the "depressive-like" behaviour in a rat model of preclinical stages of Parkinson's disease.

    Science.gov (United States)

    Berghauzen-Maciejewska, Klemencja; Kuter, Katarzyna; Kolasiewicz, Wacław; Głowacka, Urszula; Dziubina, Anna; Ossowska, Krystyna; Wardas, Jadwiga

    2014-09-01

    Depression is a frequent comorbid disorder in Parkinson's disease and may antedate its motor symptoms. However, mechanisms underlying Parkinson's disease-associated depression are unknown and its current medication is insufficient. The aim of the present study was to compare antidepressant-like effects of imipramine, fluoxetine and pramipexole in a model of preclinical stages of Parkinson's disease in rats. 6-Hydroxydopamine was bilaterally injected into the ventrolateral region of the caudate-putamen in rats. This treatment induced moderate decreases in the levels of dopamine and its metabolites in the caudate-putamen, nucleus accumbens and frontal cortex and reduced the density of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta and ventral tegmental area. The lesion increased immobility measured in the forced swimming test without influencing locomotor activity. Chronic (13 days) administration of pramipexole (1mg/kg sc/twice a day) reversed prolongation of the immobility time in lesioned animals but did not stimulate their locomotion. Chronic pramipexole activated dopaminergic transmission in the brain structures which might contribute to its effectiveness in the forced swimming test. In contrast, the 13-day administration of imipramine (10mg/kg ip/day) and fluoxetine (10mg/kg ip/day) did not shorten the immobility time in lesioned rats but reduced their locomotion. The present study indicates that already a moderate lesion of dopaminergic neurons induces "depressive-like" behaviour in animals which is reversed by chronic administration of the antiparkinsonian drug, pramipexole. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Lesser sac hematoma as a sign of rupture of hepatocellular carcinoma in the caudate lobe

    International Nuclear Information System (INIS)

    Iwasaki, Yoshie; Tani, Ichiro; Nakajima, Yasuo; Ishikawa, Tohru; Umeda, Satoshi; Kusano, Shoichi

    2001-01-01

    The purpose of this study was to evaluate the CT findings of rupture of hepatocellular carcinoma (HCC) in the caudate lobe of the liver. The CT scans of five cases of rupture of HCC in the caudate lobe of the liver were retrospectively reviewed and correlated with clinical records. All cases showed exophytic tumors in the caudate lobe of the liver and high-attenuation hematomas in the lesser sac on CT. A lesser sac hematoma may be a sentinel clot sign of rupture of HCC in the caudate lobe. (orig.)

  17. Three-compartment modeling of C-11 N-Methyl spiperone kinetics in the human brain

    International Nuclear Information System (INIS)

    Brooks, R.A.; Wong, D.F.; Di Chiro, G.; Wayner, R.T.; Douglass, K.H.; Frost, J.J.; Larson, S.M.; Wagner, H.N. Jr.

    1984-01-01

    N-Methyl spiperone, as well as spiperone, has been used to study the dopamine receptor system in the brain. The authors have applied a 3-compartment model consisting of vascular, extravascular unbound, and receptor-bound activity to two normal volunteers and one patient with Parkinson's disease. The model differs from that proposed by another study, in that, as in the Sokoloff model for deoxyglucose, there is no explicit term for blood flow. Furthermore, the authors used a 3-compartment model for the cerebellum as well as the caudate/putamen. Serial scans were obtained by PET for up to 2 hrs after injection of the tracer. Time-activity curves were generated over the caudate, putamen and cerebellum. The results indicate a close fit of the observed data to the 3-compatment model. In the model, K1 represents the rate constant of delivery of the tracer in the tissue from the vascular compartment. K2 is the reverse rate constant. K1 was approximately equal to K2 for the cerebellum. In the basal ganglia, K2 was less than K1 due to nonspecific binding in compartment 2. K3 represents the rate constant of binding of the tracer to the receptor binding sites in the cerebral cortex and basal ganglia and to nonspecific binding sites in the cerebellum which contains essentially no dopamine receptors. K4 represents the rate constant for dissociation of the tracer from the receptors. For N-methyl spiperone K4 is very low in the caudate/putamen. The 3-compartment model seemed to fit the data better than the 2-compartment model for both the caudate/putamen and cerebellar activity

  18. Stimulatory effect of the D2 antagonist sulpiride on glucose utilization in dopaminergic regions of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Pizzolato, G; Soncrant, T T; Larson, D M; Rapoport, S I

    1987-08-01

    Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic (/sup 14/C)2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an atypical neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the typical neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.

  19. [11C]-(R)-PK11195 positron emission tomography in patients with complex regional pain syndrome

    Science.gov (United States)

    Jeon, So Yeon; Seo, Seongho; Lee, Jae Sung; Choi, Soo-Hee; Lee, Do-Hyeong; Jung, Ye-Ha; Song, Man-Kyu; Lee, Kyung-Jun; Kim, Yong Chul; Kwon, Hyun Woo; Im, Hyung-Jun; Lee, Dong Soo; Cheon, Gi Jeong; Kang, Do-Hyung

    2017-01-01

    Abstract Complex regional pain syndrome (CRPS) is characterized by severe and chronic pain, but the pathophysiology of this disease are not clearly understood. The primary aim of our case–control study was to explore neuroinflammation in patients with CRPS using positron emission tomography (PET), with an 18-kDa translocator protein specific radioligand [11C]-(R)-PK11195. [11C]-(R)-PK11195 PET scans were acquired for 11 patients with CRPS (30–55 years) and 12 control subjects (30–52 years). Parametric image of distribution volume ratio (DVR) for each participant was generated by applying a relative equilibrium-based graphical analysis. The DVR of [11C]-(R)-PK11195 in the caudate nucleus (t(21) = −3.209, P = 0.004), putamen (t(21) = −2.492, P = 0.022), nucleus accumbens (t(21) = −2.218, P = 0.040), and thalamus (t(21) = −2.395, P = 0.026) were significantly higher in CRPS patients than in healthy controls. Those of globus pallidus (t(21) = −2.045, P = 0.054) tended to be higher in CRPS patients than in healthy controls. In patients with CRPS, there was a positive correlation between the DVR of [11C]-(R)-PK11195 in the caudate nucleus and the pain score, the visual analog scale (r = 0.661, P = 0.026, R2 = 0.408) and affective subscales of McGill Pain Questionnaire (r = 0.604, P = 0.049, R2 = 0.364). We demonstrated that neuroinflammation of CRPS patients in basal ganglia. Our results suggest that microglial pathology can be an important pathophysiology of CRPS. Association between the level of caudate nucleus and pain severity indicated that neuroinflammation in this region might play a key role. These results may be essential for developing effective medical treatments. PMID:28072713

  20. [{sup 18}F]L.B.T.-999, a new radioligand to study the dopamine transporter with PET: characterization in baboons

    Energy Technology Data Exchange (ETDEWEB)

    Saba, W.; Schollhorn, M.A.; Valette, H.; Dolle, F.; Bottlaender, M. [Service Hospitalier Frederic Joliot, DRM/DSV, 91 - Orsay (France); Chalon, S.; Garreau, L.; Emond, P.; Guilloteau, D. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Deloye, J.B. [Cyclopharma, 63 - Clermont Ferrand (France)

    2008-02-15

    The dopamine transporter (D.A.T.) is the main regulator of the synaptic concentration of dopamine in the brain and plays a key role in many neurological and psychiatric diseases. The goal of the study was to characterize the properties of [{sup 18}F]L.B.T.-999 in baboons. Regional brain distribution was examined in vitro by autoradiographic studies on brain sections and in vivo by PET. Results of in vitro autoradiographic studies were in agreement with the localisation of the D.A.T. and revealed high level of [{sup 18}F]L.B.T.-999 binding in the putamen and caudate, moderate level in the midbrain, and low level in the cortex and cerebellum. In PET study, the time course of the concentration of [{sup 18}F]L.B.T.-999 in different regions of the brain showed that the highest accumulation of [{sup 18}F]L.B.T.-999 was observed in the striatum with a peak uptake at 50 min (maximum = 5.7 {+-} 1.7 and 4.7 {+-}1.0% I.D./100 ml in putamen and caudate nucleus respectively, n 5). The radioactivity uptake peaked at 8 min in the midbrain (2.3 {+-} 1.2% I.D./100 ml) and decreased rapidly as a function of time. The lowest uptake was observed in the cortex (0.62 {+-}0.1 % I.D./100 ml, at 50 min) and in the cerebellum (0.44 {+-} 0.08% I.D./100 ml, at 50 min). In the test retest studies (n = 3) the variability of the uptake was 5% in the putamen and 6% in the caudate. Following HPLC analysis of plasma samples, [{sup 18}F]L.B.T.-999 was rapidly metabolized. Unchanged [{sup 18}F]L.B.T.-999 accounted for around 21% and 7% of the radioactivity at 30 and 120 min post-injection respectively. The region to cerebellum radioactivity ratio was calculated. This ratio reached a maximum at 110 min post injection (22.1 {+-} 4.6 and 18.8 {+-} 2.1 in the putamen and the caudate respectively) and remained stable during the time of the PET scan (4 h). This ratio was 4.21 {+-} 0.92, 2.0 {+-} 0.3 and 1.6 {+-} 0.2 in the midbrain, thalamus, and cortical structure at 110 min post-injection. Binding

  1. Complex population response of dorsal putamen neurons predicts the ability to learn.

    Science.gov (United States)

    Laquitaine, Steeve; Piron, Camille; Abellanas, David; Loewenstein, Yonatan; Boraud, Thomas

    2013-01-01

    Day-to-day variability in performance is a common experience. We investigated its neural correlate by studying learning behavior of monkeys in a two-alternative forced choice task, the two-armed bandit task. We found substantial session-to-session variability in the monkeys' learning behavior. Recording the activity of single dorsal putamen neurons we uncovered a dual function of this structure. It has been previously shown that a population of neurons in the DLP exhibits firing activity sensitive to the reward value of chosen actions. Here, we identify putative medium spiny neurons in the dorsal putamen that are cue-selective and whose activity builds up with learning. Remarkably we show that session-to-session changes in the size of this population and in the intensity with which this population encodes cue-selectivity is correlated with session-to-session changes in the ability to learn the task. Moreover, at the population level, dorsal putamen activity in the very beginning of the session is correlated with the performance at the end of the session, thus predicting whether the monkey will have a "good" or "bad" learning day. These results provide important insights on the neural basis of inter-temporal performance variability.

  2. CT cold areas in both putamens in cases with history of perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, Asayo; Maruyama, Hiroshi (Tokyo Women' s Medical Coll. (Japan))

    1982-12-01

    CT bilaterally showed a cold area in the putamen of 5 infants with cerebral palsy who had had asphyxia at birth. The etiology was discussed, and 4 of the cases were clinically studied. All four patients had convulsive tetraplegia, or convulsive bilateral paralysis with the element of athetosis. Three of them had a history of infantile epilepsy, accompanied by abnormal ocular movement. Two patients with tetraplegia showed marked hypotonia of the trunk in ventral support (Landau). Impairment of the bilateral putamens in the abnormal muscle tone was inferred.

  3. Basal ganglia disorders studied by positron emission tomography

    International Nuclear Information System (INIS)

    Shinotoh, Hitoshi

    1994-01-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [ 18 F]6-fluoro-L-dopa ([ 18 F]dopa), and striatal dopamine receptor density with suitable PET ligands. [ 18 F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [ 18 F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [ 18 F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [ 18 F] dopa uptake is lower in MSA than PD. However, [ 18 F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [ 18 F]dopa uptake overlap. D 1 and D 2 receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [ 18 F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D 2 receptor binding have been reported in the striatum of PSP patients. The reduction in D 2 receptor binding is more prominent in the caudate than putamen. Striatal [ 18 F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D 2 receptor binding is markedly reduced in patients with Huntington's disease, while striatal [ 18 F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. These PET findings are useful in the differential diagnosis of basal ganglia disorders. (J.P.N.) 55 refs

  4. Basal ganglia disorders studied by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1994-04-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [[sup 18]F]6-fluoro-L-dopa ([[sup 18]F]dopa), and striatal dopamine receptor density with suitable PET ligands. [[sup 18]F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [[sup 18]F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [[sup 18]F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [[sup 18]F] dopa uptake is lower in MSA than PD. However, [[sup 18]F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [[sup 18]F]dopa uptake overlap. D[sub 1] and D[sub 2] receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [[sup 18]F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D[sub 2] receptor binding have been reported in the striatum of PSP patients. The reduction in D[sub 2] receptor binding is more prominent in the caudate than putamen. Striatal [[sup 18]F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D[sub 2] receptor binding is markedly reduced in patients with Huntington's disease, while striatal [[sup 18]F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. (J.P.N.) 55 refs.

  5. Influence of scanning time window on the binding potentials of dopamine transporter in the brain of healthy volunteers with 11C-CFT PET imaging

    International Nuclear Information System (INIS)

    Qiu Chun; Zuo Chuantao; Zhang Zhengwei; Wu Ping; Zhang Huiwei; Guan Yihui

    2013-01-01

    Objective: To find the optimal scanning time window and then set up the normal binding potentials (BPs) of 2β-carbomethoxy-3β-(4-fluorophenyl)-(N- 11 C-methyl) tropane ( 11 C-CFT) DAT PET/CT imaging. Methods: Thirty-one healthy volunteers (20 males, 11 females, average age: (55.7±2.3) years), who all gave written informed consent, were divided into three age and gender-matched groups according to block randomization. Each group underwent static PET/CT scan in different time windows from 40-60 min, 60-80 min to 80-100 min after 11 C-CFT injection. To determine the best scanning time window, the ratios of caudate and putamen of all volunteers were analyzed using automatic ROI method (caudate (putamen)/parieto-occipital cotex-1) and compared by one-way analysis of variance and the least significant difference (LSD) t test. The ratio of the same area between different age-groups and gender-groups was compared with independent two-sample t test. Results: Ratios of left caudate (2.08±0.06, 1.75±0.07 and 1.77±0.12 respectively), right anterior putamen (2.33±0.06, 1.95±0.09 and 2.08±0.12 respectively) and bilateral posterior putamen (left: 1.88±0.66, 1.55±0.88 and 1.72±0.09; right: 1.98±0.07, 1.61±0.09 and 1.69±0.12) were all different in three time windows (F=3.588, 3.345, 4.479, 3.557, all P<0.05). There were significant differences in ratios of left caudate, right anterior and bilateral posterior putamen between 40-60 min and the 60-80 min (all P<0.05), as well as the ratios of left caudate between 40-60 min and the 80-100 min group (P<0.05). While no valid differences in ratios of those areas were shown between the groups of 60-80 min and 80-100 min scanning time window (all P>0.05). DAT densities in right and left side of caudate, anterior and posterior putamen were significantly lower in the group over 60 years of age than those under 60 years (t=-3.260, -3.090, -3.270, -3.190, -2.270, -3.110, all P<0.05), but were not different between gender

  6. Brain MRI findings of welders : high signal intensity in T1WI secondary to manganese exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. W.; Lim, M. A.; Shon, M. Y.; Lee, S. H.; Ha, D. G.; Kwon, K. R.; Kim, S. S.; Hong, Y. S.; Lee, Y. H. [Sunlin Presbyterian Hospital, Pohang (Korea, Republic of); Cheong, H. K. [Dongguk University, Seoul (Korea, Republic of)

    1998-03-01

    To evaluate the clinical and brain MRI findings of welders and to determine the utility of MRI in the assessment of occupational manganese exposure. All welders complained of fatigue, headache, anorexia, and decreased libido. The palmomental reflex was positive in five (28%), Myerson`s sign in four (22%), and intention tremor in three (17%). Mean blood Mn was 5.18 (range, 1.77-9.34) {mu}g/dl, mean urine Mn was 5.84 (range, 1.07 -22) {mu}g/l, serum Fe was elevated in one welder, and serum Cd in two. T1WI of brain MRI revealed high signal intensities in the globus pallidus, the putamen, the substantia nigra, the tectum, the caudate nucleus, the subthalamic nucleus, the hypothalamus and the pituitary gland. These intensities correlated closely with blood Mn levels, suggesting their potential role in estimating the accumulation of Mn in the brain. (author). 25 refs., 2 tabs., 5 figs.

  7. Water dissection technique of Toth for the treatment of hypertensive intracerebral putamen hemorrhage

    International Nuclear Information System (INIS)

    Wu Jiandong; Qian Surong; Lin Liqing; Wang Chenqiu; Wang Jianren; Wang Chen; Ying Guangzhong; Hui Guozhen

    2008-01-01

    Objective: To investige the possibility of water dissection technique of Toth for craniotomy with small bone flap through lateral fissure approach for the treatment of hypertensive intracerebral putamen hemorrhage. Methods: Twenty consecutive patients with hypertensive intracerebral putamen hemorrhage were treated by making a incision on sclap long about 6 cm across sylvian fissure, making a small bone flap about 3 cm x 3 cm, After opening dual, we injected water under microscopic control by a handheld syringe with a blunt needle applying repeated injection of physiological saline into the sylvian fissure to open it, opening the insular cortex, evacuation of intracerebral hematoma. Results: There was no further mortality. Patients who returned to ADL 1 and 2 (good recovery) after surgical treatment were 10, ADL 3 were 5, ADL 4 were 4, ADL 5 were 1. Conclusion: A method of water dissection technique of Toth for craniotomy with small bone flap through lateral fissure approach for the treatment of hypertensive intracerebral putamen hemorrhage is a method of convenient, safe, and with effective result. (authors)

  8. Occlusion of Heubner's artery

    International Nuclear Information System (INIS)

    Sato, Manabu; Kidooka, Minoru

    1982-01-01

    A case of occlusion of the left Heubner's artery in a right-handed, 51-year-old man is reported. Cardinal clinical features were transient right hemiparesis and mental disturbance, especially intellectual defect. Low density areas were found at CT in the globus pallidus, putamen, anterior limb of the internal capsule and a part of the caudate nucleus. It is well known that the occlusion of the Heubner's artery causes transient motor paresis of upper extremity on the contralaterl side. However, in the case where the Heubner's artery is remarkably well developed when compared with the medial striate arteries as was the case in this patient, it should be noted that the occlusion of the Heubner's artery may well causes grave mental disturbance, in addition. (author)

  9. Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno, Ph.D.

    2016-01-01

    Full Text Available Motivational signals influence a wide variety of cognitive processes and components of behavioral performance. Cognitive dysfunction in patients with childhood chronic fatigue syndrome (CCFS may be closely associated with a low motivation to learn induced by impaired neural reward processing. However, the extent to which reward processing is impaired in CCFS patients is unclear. The aim of the present functional magnetic resonance imaging (fMRI study was to determine whether brain activity in regions related to reward sensitivity is impaired in CCFS patients. fMRI data were collected from 13 CCFS patients (mean age, 13.6 ± 1.0 years and 13 healthy children and adolescents (HCA (mean age, 13.7 ± 1.3 years performing a monetary reward task. Neural activity in high- and low-monetary-reward conditions was compared between CCFS and HCA groups. Severity of fatigue and the reward obtained from learning in daily life were evaluated by questionnaires. Activity of the putamen was lower in the CCFS group than in the HCA group in the low-reward condition, but not in the high-reward condition. Activity of the putamen in the low-reward condition in CCFS patients was negatively and positively correlated with severity of fatigue and the reward from learning in daily life, respectively. We previously revealed that motivation to learn was correlated with striatal activity, particularly the neural activity in the putamen. This suggests that in CCFS patients low putamen activity, associated with altered dopaminergic function, decreases reward sensitivity and lowers motivation to learn.

  10. Differential regulation of dopamine receptors after chronic typical and atypical antipsychotic drug treatment

    International Nuclear Information System (INIS)

    Creese, I.; Florijn, W.J.; Tarazi, F.I.

    1997-01-01

    Changes in dopamine receptor subtype binding in different brain regions were examined after 28 days treatment of rats with haloperidol, raclopride, clozapine or SCH23390 using in vitro receptor autoradiography. [ 3 H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin binding to dopamine D 3 receptors was not changed in any brain region by any of the drug treatments. [ 3 H]SCH23390 was only increased by chronic SCH23390 treatment. Haloperidol significantly increased [ 3 H]nemonapride and [ 3 H]spiperone binding to dopamine D 2 -like receptors in the caudate-putamen. In contrast, haloperidol caused a small, significant increase in [ 3 H]raclopride binding in the lateral caudate-putamen only. Raclopride also elevated, but to a lesser extent [ 3 H]nemonapride and [ 3 H]spiperone binding in caudate-putamen, whereas it did not affect [ 3 H]raclopride binding. Clozapine did not significantly change D 2 -like striatal binding of [ 3 H]nemonapride, [ 3 H]spiperone or [ 3 H]raclopride. The differences in radioligand binding suggest that [ 3 H]nemonapride and [ 3 H]spiperone may be binding to additional subsets of dopamine D 2 -like receptors (including D 4 -like receptors) that are not recognized by [ 3 H]raclopride, which has high affinity for D 2 and D 3 receptors only.Quantification of [ 3 H]nemonapride or [ 3 H]spiperone binding in the presence of 300 nM raclopride (to block D 2 and D 3 receptors) revealed that haloperidol, raclopride and clozapine up-regulated D 4 -like receptors in the caudate-putamen using either radioligand. These results suggest that D 4 -like receptors may be a common site of action of both typical and atypical antipsychotics. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Chronic exposure to dopamine agonists affects the integrity of striatal D2 receptors in Parkinson's patients

    Directory of Open Access Journals (Sweden)

    Marios Politis

    2017-01-01

    Full Text Available We aimed to investigate the integrity and clinical relevance of striatal dopamine receptor type-2 (D2R availability in Parkinson's disease (PD patients. We studied 68 PD patients, spanning from early to advanced disease stages, and 12 healthy controls. All participants received one [11C]raclopride PET scan in an OFF medication condition for quantification of striatal D2R availability in vivo. Parametric images of [11C]raclopride non-displaceable binding potential were generated from the dynamic [11C]raclopride scans using implementation of the simplified reference tissue model with cerebellum as the reference tissue. PET data were interrogated for correlations with clinical data related to disease burden and dopaminergic treatment. PD patients showed a mean 16.7% decrease in caudate D2R and a mean 3.5% increase in putaminal D2R availability compared to healthy controls. Lower caudate [11C]raclopride BPND correlated with longer PD duration. PD patients on dopamine agonist treatment had 9.2% reduced D2R availability in the caudate and 12.8% in the putamen compared to PD patients who never received treatment with dopamine agonists. Higher amounts of lifetime dopamine agonist therapy correlated with reduced D2Rs availability in both caudate and putamen. No associations between striatal D2R availability and levodopa treatment and dyskinesias were found. In advancing PD the caudate and putamen D2R availability are differentially affected. Chronic exposure to treatment with dopamine agonists, but no levodopa, suppresses striatal D2R availability, which may have relevance to output signaling to frontal lobes and the occurrence of executive deficits, but not dyskinesias.

  12. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain.

    Science.gov (United States)

    Rao, Jia-Sheng; Liu, Zuxiang; Zhao, Can; Wei, Rui-Han; Zhao, Wen; Tian, Peng-Yu; Zhou, Xia; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-01

    Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (pketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status. Copyright © 2017. Published by Elsevier Inc.

  13. [Hepatocellular carcinoma originated in the caudate lobe. Surgical strategy for resection. A propos of a case].

    Science.gov (United States)

    Martínez-Mier, Gustavo; Esquivel-Torres, Sergio; Calzada-Grijalva, José Francisco; Grube-Pagola, Peter

    2015-01-01

    Hepatocellular carcinoma originating from the caudate lobe has a worse prognosis than other hepatocellular carcinoma in another segment of the liver. An isolated caudate lobe resection of the liver represents a significant technical challenge. Caudate lobe resection can be performed along with a lobectomy or as an isolated liver resection. There are very few reports about isolated caudate lobe liver resection. We report a case of successful isolated resection of hepatocellular carcinoma in the caudate lobe with excellent long-term survival. A 74 years old female with 8cm mass lesion in the caudate lobe without clinical or biochemical evidence of liver cirrhosis, serum alpha-fetoprotein 3.7 U/l, and negative hepatitis serology was evaluated for surgery. Complete resection of the lesion in 270minutes with Pringle maneuver for 13minutes was satisfactorily performed. Patient was discharged ten days after surgery without complications. Patient is currently asymptomatic, without deterioration of liver function and 48 month tumor free survival after the procedure. Isolated caudate lobe resection is an uncommon but technically possible procedure. In order to achieve a successful resection, one must have a detailed knowledge of complete liver anatomy. Tumor free margins must be obtained to provide long survival for these patients who have a malignancy in this anatomic location. Copyright © 2015. Published by Masson Doyma México S.A.

  14. Exercise Mode Moderates the Relationship Between Mobility and Basal Ganglia Volume in Healthy Older Adults.

    Science.gov (United States)

    Nagamatsu, Lindsay S; Weinstein, Andrea M; Erickson, Kirk I; Fanning, Jason; Awick, Elizabeth A; Kramer, Arthur F; McAuley, Edward

    2016-01-01

    To examine whether 12 months of aerobic training (AT) moderated the relationship between change in mobility and change in basal ganglia volume than balance and toning (BAT) exercises in older adults. Secondary analysis of a randomized controlled trial. Champaign-Urbana, Illinois. Community-dwelling older adults (N=101; mean age 66.4). Twelve-month exercise trial with two groups: AT and BAT. Mobility was assessed using the Timed Up and Go test. Basal ganglia (putamen, caudate nucleus, pallidum) was segmented from T1-weighted magnetic resonance images using the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Software Library Integrated Registration and Segmentation Tool. Measurements were obtained at baseline and trial completion. Hierarchical multiple regression was conducted to examine whether exercise mode moderates the relationship between change in mobility and change in basal ganglia volume over 12 months. Age, sex, and education were included as covariates. Exercise significantly moderated the relationship between change in mobility and change in left putamen volume. Specifically, for the AT group, volume of the left putamen did not change, regardless of change in mobility. Similarly, in the BAT group, those who improved their mobility most over 12 months had no change in left putamen volume, although left putamen volume of those who declined in mobility levels decreased significantly. The primary finding that older adults who engaged in 12 months of BAT training and improved mobility exhibited maintenance of brain volume in an important region responsible for motor control provides compelling evidence that such exercises can contribute to the promotion of functional independence and healthy aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  15. A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity

  16. Association Between Peripheral Inflammation and DATSCAN Data of the Striatal Nuclei in Different Motor Subtypes of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Hossein Sanjari Moghaddam

    2018-04-01

    Full Text Available The interplay between peripheral and central inflammation has a significant role in dopaminergic neural death in nigrostriatal pathway, although no direct assessment of inflammation has been performed in relation to dopaminergic neuronal loss in striatal nuclei. In this study, the correlation of neutrophil to lymphocyte ratio (NLR as a marker of peripheral inflammation to striatal binding ratios (SBRs of DAT SPECT images in bilateral caudate and putamen nuclei was calculated in 388 drug-naïve early PD patients [288 tremor dominant (TD, 73 postural instability and gait difficulty (PIGD, and 27 indeterminate] and 148 controls. NLR was significantly higher in PD patients than in age- and sex-matched healthy controls, and showed a negative correlation to SBR in bilateral putamen and ipsilateral caudate in all PD subjects. Among our three subgroups, only TD patients showed remarkable results. A positive association between NLR and motor severity was observed in TD subgroup. Besides, NLR could negatively predict the SBR in ipsilateral and contralateral putamen and caudate nuclei in tremulous phenotype. Nonetheless, we found no significant association between NLR and other clinical and imaging findings in PIGD and indeterminate subgroups, supporting the presence of distinct underlying pathologic mechanisms between tremor and non-tremor predominant PD at early stages of the disease.

  17. Contribution to speech development of the right anterior putamen revealed with multivariate tensor-based morphometry.

    Science.gov (United States)

    Vlasova, Roza; Yalin Wang; Dirks, Holly; Dean, Douglas; O'Muircheartaigh, Jonathan; Gonzalez, Sara; Binh Kien Nguyen; Nelson, Marvin D; Deoni, Sean; Lepore, Natasha

    2017-07-01

    In our previous study1, we suggested that the difference between tensor-based metrics in the anterior part of the right putamen between 21 and 18 months age groups associated with speech development during this ages. Here we used a correlational analysis between verbal scores and determinant of the Jacobian matrix to confirm our hypothesis. Significant correlations in anterior part of the right putamen between verbal scores and surface metric were revealed in the 18 and 21 age groups.

  18. Morphology and morphometry of the caudate lobe of the liver in two populations.

    Science.gov (United States)

    Sagoo, Mandeep Gill; Aland, R Claire; Gosden, Edward

    2018-01-01

    The caudate lobe of the liver has portal blood supply and hepatic vein drainage independent of the remainder of the liver and may be differentially affected in liver pathologies. Ultrasonographic measurement of the caudate lobe can be used to generate hepatic indices that may indicate cirrhosis. This study investigated the relationship of metrics of the caudate lobe and other morphological features of human livers from a northwest Indian Punjabi population (n = 50) and a UK Caucasian population (n = 25), which may affect the calculation of hepatic indices. The width of the right lobe of the liver was significantly smaller, while the anteroposterior diameter of the caudate lobe and both Harbin's Index and the Hess Index scores were significantly larger in NWI livers than in UKC livers. The Hess Index score, in particular, is much larger in the NWI population (265 %, p liver. These differences may affect the calculation of hepatic indices, resulting in a greater percentage of false positives of cirrhosis in the NWI population. Population-specific data are required to correctly determine normal ranges.

  19. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction.

    Science.gov (United States)

    Teklezgi, Belin G; Pamreddy, Annapurna; Baijnath, Sooraj; Kruger, Hendrik G; Naicker, Tricia; Gopal, Nirmala D; Govender, Thavendran

    2018-02-14

    Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (μ)-opioid agonist and treatment with naltrexone, μ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of μ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward. © 2018 Society for the Study of Addiction.

  20. Value and probability coding in a feedback-based learning task utilizing food rewards.

    Science.gov (United States)

    Tricomi, Elizabeth; Lempert, Karolina M

    2015-01-01

    For the consequences of our actions to guide behavior, the brain must represent different types of outcome-related information. For example, an outcome can be construed as negative because an expected reward was not delivered or because an outcome of low value was delivered. Thus behavioral consequences can differ in terms of the information they provide about outcome probability and value. We investigated the role of the striatum in processing probability-based and value-based negative feedback by training participants to associate cues with food rewards and then employing a selective satiety procedure to devalue one food outcome. Using functional magnetic resonance imaging, we examined brain activity related to receipt of expected rewards, receipt of devalued outcomes, omission of expected rewards, omission of devalued outcomes, and expected omissions of an outcome. Nucleus accumbens activation was greater for rewarding outcomes than devalued outcomes, but activity in this region did not correlate with the probability of reward receipt. Activation of the right caudate and putamen, however, was largest in response to rewarding outcomes relative to expected omissions of reward. The dorsal striatum (caudate and putamen) at the time of feedback also showed a parametric increase correlating with the trialwise probability of reward receipt. Our results suggest that the ventral striatum is sensitive to the motivational relevance, or subjective value, of the outcome, while the dorsal striatum codes for a more complex signal that incorporates reward probability. Value and probability information may be integrated in the dorsal striatum, to facilitate action planning and allocation of effort. Copyright © 2015 the American Physiological Society.

  1. Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function

    International Nuclear Information System (INIS)

    Berent, S.; Giordani, B.; Lehtinen, S.; Markel, D.; Penney, J.B.; Buchtel, H.A.; Starosta-Rubinstein, S.; Hichwa, R.; Young, A.B.

    1988-01-01

    Fifteen drug-free patients with early to mid-stage Huntington's disease (HD) were evaluated with positron emission tomographic (PET) scans of 18 F-2-fluoro-2-deoxy-D-glucose uptake and quantitative measures of neurological function, learning, memory, and general intelligence. In comparison with a group of normal volunteers, the HD patients showed lower metabolism in both caudate (p less than 0.001) and putamen (p less than 0.001) on PET scans. A significant and positive relationship was found between neuropsychological measures of verbal learning and memory and caudate metabolism in the patient group but not in the normal group. Visual-spatial learning did not reflect a similar pattern, but performance intelligence quotient was positively related to both caudate and putamen metabolism in the HD group. Vocabulary level was unrelated to either brain structure. Discussion focuses on these and other observed brain-behavior relationships and on the implications of these findings for general behaviors such as those involved in coping and adaptation

  2. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  3. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  4. The effects of caffeine ingestion on cortical areas: functional imaging study.

    Science.gov (United States)

    Park, Chan-A; Kang, Chang-Ki; Son, Young-Don; Choi, Eun-Jung; Kim, Sang-Hoon; Oh, Seung-Taek; Kim, Young-Bo; Park, Chan-Woong; Cho, Zang-Hee

    2014-05-01

    The effect of caffeine as a cognitive enhancer is well known; however, caffeine-induced changes in the cortical regions are still not very clear. Therefore, in this study, we conducted an investigation of the activation and deactivation with blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and of metabolic activity change with positron emission tomography (PET) in the human brain. Fourteen healthy subjects performed a visuomotor task inducing attention with 3T MRI, and PET imaging was also carried out in seven subjects to determine the cerebral glucose metabolic changes of caffeine at rest. The result by fMRI showed increased BOLD activation in the left cerebellum, putamen, insula, thalamus and the right primary motor cortex, and decreased BOLD deactivation in the posterior medial and the left posterior lateral cortex. Also, the resting state PET data showed reduced metabolic activity in the putamen, caudate nucleus, insula, pallidum and posterior medial cortex. The common cortical regions between fMRI and PET, such as putamen, insula and posterior medial cortex, where significant changes occurred after caffeine ingestion, are well known to play an important role in cognitive function like attention. This result suggests that the effect of caffeine as a cognitive enhancer is derived by modulating the attentional areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Kuhar, M.J.; O'Donohue, T.L.; Wolf, S.S.; Moody, T.W.

    1985-01-01

    The binding of ( 125 I-Tyr 4 )bombesin to rat brain slices was investigated. Radiolabeled (Tyr 4 )bombesin bound with high affinity (K/sub d/ . 4 nM) to a single class of sites (B/sub max/ . 130 fmol/mg of protein); the ratio of specific to nonspecific binding was 6/1. Also, pharmacology studies indicated that the C-terminal of bombesin was important for the high affinity binding activity. Autoradiographic studies indicated that the ( 125 I-Tyr4)bombesin-binding sites were discretely distributed in certain gray but not white matter regions of rat brain. Highest grain densities were present in the olfactory bulb and tubercle, nucleus accumbens, suprachiasmatic and periventricular nuclei of the hypothalamus, central medial thalamic nucleus, medial amygdaloid nucleus, hippocampus, dentate gyrus, subiculum, nucleus of the solitary tract, and substantia gelatinosa. Moderate grain densities were present in the parietal cortex, deep layers of the neocortex, rhinal cortex, caudate putamen, stria terminalis, locus ceruleus, parabrachial nucleus, and facial nucleus. Low grain densities were present in the globus pallidus, lateral thalamus, and midbrain. Negligible grain densities were present in the cerebellum, corpus callosum, and all regions treated with 1 microM unlabeled bombesin. The discrete regional distribution of binding suggests that endogenous bombesin-like peptides may function as important regulatory agents in certain brain loci

  6. Study of the brain glucose metabolism in different stage of mixed-type multiple system atrophy

    International Nuclear Information System (INIS)

    Wang Ying; Zhang Benshu; Cai Li; Zhang Meiyun; Gao Shuo

    2014-01-01

    Objective: To investigate the brain glucose metabolism in different stage of mixed-type multiple system atrophy (MSA). Methods: Forty-six MSA patients with cerebellar or Parkinsonian symptoms and 18 healthy controls with similar age as patients were included. According to the disease duration,the patients were divided into three groups: group 1 (≤ 12 months, n=14), group 2 (13-24 months, n=13), group 3 (≥ 25 months, n=19). All patients and controls underwent 18 F-FDG PET/CT brain imaging. To compare metabolic distributions between different groups, SPM 8 software and two-sample t test were used for image data analysis. When P<0.005, the result was considered statistically significant. Results: At the level of P<0.005, the hypometabolism in group 1 (all t>3.49) was identified in the frontal lobe, lateral temporal lobe, insula lobe, anterior cingulate cortex, caudate nucleus and anterior cerebellar hemisphere. The regions of hypometabolism extended to posterolateral putamen and part of posterior cerebellar hemisphere in group 2 (all t>3.21). In group 3, the whole parts of putamen and cerebellar hemisphere were involved as hypometabolism (all t>4.08). In addition to the hypometabolism regions, there were also stabled hypermetabolism regions mainly in the parietal lobe, medial temporal lobe and the thalamus in all patient groups (all t>3.27 in group 1, all t>3.02 in group 2,all t>3.30 in group 3). Conclusions: Disease duration is closely related to the FDG metabolism in the MSA patients. Frontal lobe, lateral temporal lobe, anterior cingulate cortex and caudate nucleus can be involved at early stage of the disease. Putaminal hypometabolism begins in its posterolateral part. Cerebellar hypometabolism occurs early at its anterior part. Besides, thalamus shows hypermetabolism in the whole duration. 18 F-FDG metabolic changes of brain can reflect the development of mixed-type MSA. (authors)

  7. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis

    Directory of Open Access Journals (Sweden)

    Ana Moreno-Alcázar

    2018-05-01

    Full Text Available Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions.Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM was used to compare the cannabis users against 28 matched controls (HC1 group. Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group obtained from a local database of healthy volunteers.Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001 of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001 and pallidum (p = 0.0015. Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05 and nucleus accumbens (p = 0.047.Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It

  8. Quantitative autoradiography of brain binding sites for the vesicular acetylcholine transport blocker 2-(4-phenylpiperidino)cyclohexanol (AH5183)

    International Nuclear Information System (INIS)

    Marien, M.R.; Parsons, S.M.; Altar, C.A.

    1987-01-01

    2-(4-Phenylpiperidino)cyclohexanol (AH5183) is a noncompetitive and potent inhibitor of high-affinity acetylcholine transport into cholinergic vesicles. It is reported here that [ 3 H]AH5183 binds specifically and saturably to slide-mounted sections of the rat forebrain (Kd = 1.1 to 2.2 X 10(-8) M; Bmax = 286 to 399 fmol/mg of protein). The association and dissociation rate constants for [ 3 H]AH5183 binding are 8.6 X 10(6) M-1 X min-1 and 0.18 min-1, respectively. Bound [ 3 H]AH5183 can be displaced by nonradioactive AH5183 and by the structural analog (2 alpha,3 beta,4A beta,8A alpha)-decahydro-3-(4-phenyl-1-piperidinyl)-2- naphthalenol but not by 10 microM concentrations of the cholinergic drugs acetylcholine, choline, atropine, hexamethonium, eserine, or hemicholinium-3 or by the structurally related compounds 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridine, (+/-)-N-allylnormetazocine (SKF 10,047), levoxadrol, or dexoxadrol. Quantitative autoradiography reveals that [ 3 H]AH5183 binding sites are distributed heterogenously throughout the rat forebrain and are highly localized to cholinergic nerve terminal regions. At the level of the caudate nucleus-putamen, the highest concentrations of saturable [ 3 H]AH5183 binding (713-751 fmol/mg of protein) are found in the vertical limb of the diagonal band and the olfactory tubercle, with lesser amounts (334-516 fmol/mg of protein) in the caudate-putamen, nucleus accumbens, superficial layers of the cerebral cortex, and the primary olfactory cortex. At day 7 after transsection of the left fimbria, [ 3 H]AH5183 binding and choline acetyltransferase activity in the left hippocampus were reduced by 33 +/- 6% and 61 +/- 7%, respectively. These findings indicate that [ 3 H]AH5183 binds to a unique recognition site in rat brain that is topographically associated with cholinergic nerve terminals

  9. Decreased resting-state BOLD regional homogeneity and the intrinsic functional connectivity within dorsal striatum is associated with greater impulsivity in food-related decision-making and BMI change at 6-month follow up.

    Science.gov (United States)

    Gao, Xiao; Liang, Qianlin; Wu, Guorong; She, Ying; Sui, Nan; Chen, Hong

    2018-04-30

    Increasing animal models as well as brain imaging studies among human suggest an association between substance-related impulsivity in decision-making and decreased function of dorsal striatum. However, the resting-state intrinsic functional organization of dorsal striatum underlying food-choice impulsivity remains unknown. To address this issue, we used resting-state functional MRI (rs-fMRI) to measure brain activity among adult females. Subjects underwent the food rating task, during which they rated each food item according to their subjective perception of its taste (from Dislike it very much to Like it very much), its long term effect on health (from very unhealthy to very healthy) and decision strength to eat it (from Strong no to Strong yes). Behaviorally, impulsivity in food-choice was indexed by the decision strength of the palatable high-calorie food rather than of the low-caloric food. Results on rs-fMRI showed that greater impulsivity in food-related decision-making was inversely correlated with spontaneous regional homogeneity in the dorsal striatum (dorsal caudate), as well as the resting-state functional connectivity (rs-FC) between the dorsal caudate seed and the rostral putamen. Furthermore, the caudate-putamen rs-FC inversely predicted BMI change at six-month follow-up. These findings may suggest the insensitivity to reward signals in dorsal caudate in decision-making coupled with an imbalance between goal-directed behaviors (modulated by dorsal caudate) and habitual actions (modulated by putamen) underlying impulsivity and future weight gain. In sum, these findings extend our understanding on the neural basis of food-related impulsivity, and provide evidence for the dorsal striatum as one of the landmarks in over eating and weight change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Computation of an MRI brain atlas from a population of Parkinson’s disease patients

    Science.gov (United States)

    Angelidakis, L.; Papageorgiou, I. E.; Damianou, C.; Psychogios, M. N.; Lingor, P.; von Eckardstein, K.; Hadjidemetriou, S.

    2017-11-01

    Parkinson’s Disease (PD) is a degenerative disorder of the brain. This study presents an MRI-based brain atlas of PD to characterize associated alterations for diagnostic and interventional purposes. The atlas standardizes primarily the implicated subcortical regions such as the globus pallidus (GP), substantia nigra (SN), subthalamic nucleus (STN), caudate nucleus (CN), thalamus (TH), putamen (PUT), and red nucleus (RN). The data were 3.0 T MRI brain images from 16 PD patients and 10 matched controls. The images used were T1-weighted (T 1 w), T2-weighted (T 2 w) images, and Susceptibility Weighted Images (SWI). The T1w images were the reference for the inter-subject non-rigid registration available from 3DSlicer. Anatomic labeling was achieved with BrainSuite and regions were refined with the level sets segmentation of ITK-Snap. The subcortical centers were analyzed for their volume and signal intensity. Comparison with an age-matched control group unravels a significant PD-related T1w signal loss in the striatum (CN and PUT) centers, but approximately a constant volume. The results in this study improve MRI based PD localization and can lead to the development of novel biomarkers.

  11. Acute encephalitis associated with measles: MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.Y.; Cho, W.H.; Kim, S.H. [Department of Radiology, Sanggye Paik Hospital, Inje University, 760-1 Sanggye-7 dong, Nowon-gu, Seoul 139707 (Korea); Kim, H.D. [Department of Paediatrics, Sanggye Paik Hospital, Inje University, 760-1 Sanggye-7 dong, Nowon-gu, Seoul 139707 (Korea); Kim, I.O. [Department of Radiology, Seoul National University Hospital, 28, Yongon-dong, Chongno-gu, Seoul 110744 (Korea)

    2003-02-01

    We document the MRI features in six patients aged 5-14 years with acute encephalitis following measles. The diagnosis was made on a characteristic morbiliform rash and detection of specific IgM and IgG antibodies. The symptoms of encephalitis occurred 1-11 days after the appearance of the rash. All patients underwent MRI within 1-4 days of the onset of neurological symptoms. Diffusion weighted images (DWI) were obtained in three patients. In all patients, T2-weighted images showed widely distributed, multifocal high signal in both cerebral hemispheres with swelling of the cortex, with bilateral, symmetrical involvement of the putamen and caudate nucleus. The lesions had showed low apparent diffusion coefficients. Three patients showed subacute gyriform haemorrhage, and asymmetrical gyriform contrast enhancement on follow-up MRI. (orig.)

  12. Automatic semi-quantification of [(123)I]FP-CIT SPECT scans in healthy volunteers using BasGan version 2

    DEFF Research Database (Denmark)

    Nobili, Flavio; Naseri, Mehrdad; De Carli, Fabrizio

    2013-01-01

    with partial volume effect correction. Multicentre camera inhomogeneity was taken into account by calibrating values on basal ganglia phantom data. SBR in each caudate nucleus (C) and putamen (P) were the dependent variables in a repeated measures general linear model analysis; age, gender, handedness and body...... Medicine). Brain single photon emission computed tomography (SPECT) was acquired by means of dual-head cameras 3 h after [(123)I]FP-CIT administration. Specific to nondisplaceable binding ratios (SBRs) in the basal ganglia were computed using the 'BasGan' software, allowing automatic value extraction...... mass index (BMI) were the independent variables. RESULTS: SBR values in C and P were significantly associated with age (mean rate decrease with age: 0.0306 per year, or 0.57 % of the general mean; p ...

  13. Mis-segmentation in voxel-based morphometry due to a signal intensity change in the putamen.

    Science.gov (United States)

    Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Aoki, Shigeki; Gomi, Tsutomu; Takeda, Tohoru

    2017-12-01

    The aims of this study were to demonstrate an association between changes in the signal intensity of the putamen on three-dimensional T1-weighted magnetic resonance images (3D-T1WI) and mis-segmentation, using the voxel-based morphometry (VBM) 8 toolbox. The sagittal 3D-T1WIs of 22 healthy volunteers were obtained for VBM analysis using the 1.5-T MR scanner. We prepared five levels of 3D-T1WI signal intensity (baseline, same level, background level, low level, and high level) in regions of interest containing the putamen. Groups of smoothed, spatially normalized tissue images were compared to the baseline group using a paired t test. The baseline was compared to the other four levels. In all comparisons, significant volume changes were observed around and outside the area that included the signal intensity change. The present study demonstrated an association between a change in the signal intensity of the putamen on 3D-T1WI and changed volume in segmented tissue images.

  14. Reduced binding potential of GABA-A/benzodiazepine receptors in individuals at ultra-high risk for psychosis: an [18F]-fluoroflumazenil positron emission tomography study.

    Science.gov (United States)

    Kang, Jee In; Park, Hae-Jeong; Kim, Se Joo; Kim, Kyung Ran; Lee, Su Young; Lee, Eun; An, Suk Kyoon; Kwon, Jun Soo; Lee, Jong Doo

    2014-05-01

    Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [(18)F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus). Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [(18)F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks. People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate. Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis.

  15. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.

  16. Differential regulation of dopamine receptors after chronic typical and atypical antipsychotic drug treatment

    Energy Technology Data Exchange (ETDEWEB)

    Creese, I; Florijn, W J; Tarazi, F I [Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ (United States)

    1997-04-14

    Changes in dopamine receptor subtype binding in different brain regions were examined after 28 days treatment of rats with haloperidol, raclopride, clozapine or SCH23390 using in vitro receptor autoradiography. [{sup 3}H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin binding to dopamine D{sub 3} receptors was not changed in any brain region by any of the drug treatments. [{sup 3}H]SCH23390 was only increased by chronic SCH23390 treatment. Haloperidol significantly increased [{sup 3}H]nemonapride and [{sup 3}H]spiperone binding to dopamine D{sub 2}-like receptors in the caudate-putamen. In contrast, haloperidol caused a small, significant increase in [{sup 3}H]raclopride binding in the lateral caudate-putamen only. Raclopride also elevated, but to a lesser extent [{sup 3}H]nemonapride and [{sup 3}H]spiperone binding in caudate-putamen, whereas it did not affect [{sup 3}H]raclopride binding. Clozapine did not significantly change D{sub 2}-like striatal binding of [{sup 3}H]nemonapride, [{sup 3}H]spiperone or [{sup 3}H]raclopride. The differences in radioligand binding suggest that [{sup 3}H]nemonapride and [{sup 3}H]spiperone may be binding to additional subsets of dopamine D{sub 2}-like receptors (including D{sub 4}-like receptors) that are not recognized by [{sup 3}H]raclopride, which has high affinity for D{sub 2} and D{sub 3} receptors only.Quantification of [{sup 3}H]nemonapride or [{sup 3}H]spiperone binding in the presence of 300 nM raclopride (to block D{sub 2} and D{sub 3} receptors) revealed that haloperidol, raclopride and clozapine up-regulated D{sub 4}-like receptors in the caudate-putamen using either radioligand. These results suggest that D{sub 4}-like receptors may be a common site of action of both typical and atypical antipsychotics. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Methadone, monoamine oxidase, and depression: opioid distribution and acute effects on enzyme activity

    International Nuclear Information System (INIS)

    Kaufmann, C.A.; Kreek, M.J.; Raghunath, J.; Arns, P.

    1983-01-01

    Narcotic withdrawal is often accompanied by an atypical depression which responds to resumption of narcotics. It was hypothesized that methadone might exert its antidepressant effects through monoamine oxidase (MAO) inhibition. The current study examined 3 H-methadone distribution in rat brain and effects on regional MAO activity with acute doses (2.5 mg/kg) which approximate those found during chronic methadone maintenance in man. Limbic areas (amygdala, basomedial hypothalamus, caudate-putamen, hippocampus, preoptic nucleus), as well as pituitary and liver were assayed for MAO activity and methadone concentration. MAO activities did not differ significantly in acute methadone or saline-treated cage-mates at 1 or 24 hr. The concentrations of methadone at 1 hr ranged between 17 and 223 ng/100 mg wet wt tissue in the preoptic nucleus and pituitary, respectively. No significant correlation was found between change in MAO activity (MAO methadone/MAO saline) and methadone concentration in any region at 1 or 24 hr. This study does not support the hypothesis that methadone acts as an antidepressant through MAO inhibition, at least not following acute administration of this exogenous opioid

  18. Effects of cysteamine on dopamine-mediated behaviors: evidence for dopamine-somatostatin interactions in the striatum

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Iverson, M.T.; Radke, J.M.; Vincent, S.R.

    1986-06-01

    The effects of prior treatment with cysteamine, a drug which appears to deplete selectively the neuropeptide somatostatin, on apomorphine-induced stereotypy and amphetamine-induced locomotor activity and conditioned place preferences were investigated. Twelve hours following systemic cysteamine injections apomorphine-induced stereotypy was attenuated and striatal somatostatin levels were reduced by half. Systemic cysteamine also decreased the motor stimulant effects of amphetamine, without influencing the rewarding properties as determined by the conditioned place preference procedure. Direct injections of cysteamine into the nucleus accumbens also decreased the locomotor response to amphetamine, and produced a local reduction in somatostatin levels in the accumbens. Cysteamine did not appear to alter monoamine turnover in the striatum after either systemic or intra-accumbens injections. These results suggest that somatostatin in the nucleus accumbens and caudate-putamen modulates the motor, but not the reinforcing properties of dopaminergic drugs, possibly via an action postsynaptic to dopamine-releasing terminals. Furthermore, it is evident from these results that cysteamine is an important tool with which to study the central actions of somatostatin.

  19. Like mother like daughter: putamen activation as a mechanism underlying intergenerational risk for depression.

    Science.gov (United States)

    Colich, Natalie L; Ho, Tiffany C; Ellwood-Lowe, Monica E; Foland-Ross, Lara C; Sacchet, Matthew D; LeMoult, Joelle L; Gotlib, Ian H

    2017-09-01

    Having a depressed mother is one of the strongest predictors for developing depression in adolescence. Given the role of aberrant reward processing in the onset and maintenance of depression, we examined the association between mothers' and their daughters' neural response to the anticipation of reward and loss. Fifteen non-depressed mothers with a history of recurrent depression and their never-disordered daughters, and 23 mothers without past or current depression and their never-disordered daughters, underwent functional magnetic resonance imaging while performing the monetary incentive delay task. To assess mother-daughter concordance, we first identified ROIs involved in the anticipation of reward and loss across all mother-daughter pairs. Within each of these ROIs, we examined the association between mothers' and daughters' neural response, and the interaction between group status and mothers' neural response in predicting daughters' neural response. We found a significant association between mothers' and daughters' putamen response to the anticipation of loss, regardless of mother's depression history. Furthermore, pubertal stage moderated the association between mother-daughter putamen concordance. Our findings suggest a unique role of the putamen in the maternal transmission of reward learning and have important implications for understanding disorders characterized by disturbances in reward learning and processing, such as major depression. © The Author (2017). Published by Oxford University Press.

  20. The effects of age on dopamine receptors measured by positron tomography in the living human brain

    International Nuclear Information System (INIS)

    Wong, D.F.; Wagner, E.N. Jr.; Dannals, R.F.

    1984-01-01

    C-11 n-methylspiperone has been used to measure dopamine (D2) receptors in the caudate and putamen of 30 normal persons. In vitro studies in rodent brain revealed a high affinity for dopamine (D2) receptors and five fold less for serotonin (S2) receptors. In vivo drug competition studies in rodents demonstrated that 90% of striatal binding is to dopamine receptors. In the frontal cortex, the majority of receptor binding is to serotonin receptors. Thirty normal volunteers aged 19 to 73 years were screened for normality by medical, neurological and neuropsychological examinations. Positron tomography was performed serially for 2 hours after injection. In 10 subjects there was good agreement between activity in arterial samples and that in venous samples from a heated hand. Binding in the dopamine rich caudate and putamen progressively increased while binding in the dopamine poor cerebellum decreased. The dopamine receptor density was estimated by the ratio of the caudate-to-cerebellar mean counts/pixel (Ca/Cb) and putamen-to-cerebellar mean counts/pixel (Pu/Cb). The ratios (Ca/Cb, Pu/Cb) increased linearly with time (r>0.95) for each subject. There was a decrease (Ca/Cb) with age (0.8%/yr) that could be approximated with a linear fit: (Ca/Cb = -.02 age + 3.92, r=.6). For the 21 males alone, the decrease was (1.1%/yr, r=.7 , p <.01), while for the 9 females there was no significant decrease with age. Similar findings were noted in the putamen. This decline in dopamine receptor density with age has been reported in rodent and human autopsy studies, but never before in the living human brain

  1. Feedback on Trait or Action Impacts on Caudate and Paracingulum Activity

    Science.gov (United States)

    Appelgren, Alva; Bengtsson, Sara L

    2015-01-01

    There is a general conception that positive associations to one’s trait, e.g. ‘I’m clever’, are beneficial for cognitive performance. Scientific evidence shows that this is a simplification. In this functional magnetic resonance imaging (fMRI) study we used written trial-based trait feedback ‘you are clever’, or task feedback ‘your choice was correct’, on each correct response of a rule-switching task, to investigate how the character of positive self-associations influences performance outcome. Twenty participants took part in this crossover design study. We found that trait feedback was less beneficial for motivation and performance improvement, and resulting in enhanced neural activation on more difficult bivalent rule trials. This indicates that the task was treated as more complex in this condition. For example, ‘you are clever’ feedback led to enhanced activation in anterior caudate nucleus, an area known to process uncertainty. We further observed that activation in anterior paracingulate cortex was sensitive to whether self-reflection was imposed by external feedback or generated from internal processes, where the latter activation correlated positively with performance when following after task feedback. Our results illustrate how feedback can evoke self-reflections that either help or hinder motivation and performance, most likely by impacting on processes of uncertainty. The results support social psychological models stipulating that trait focus take resources away from task focus. PMID:26102501

  2. Feedback on Trait or Action Impacts on Caudate and Paracingulum Activity.

    Directory of Open Access Journals (Sweden)

    Alva Appelgren

    Full Text Available There is a general conception that positive associations to one's trait, e.g. 'I'm clever', are beneficial for cognitive performance. Scientific evidence shows that this is a simplification. In this functional magnetic resonance imaging (fMRI study we used written trial-based trait feedback 'you are clever', or task feedback 'your choice was correct', on each correct response of a rule-switching task, to investigate how the character of positive self-associations influences performance outcome. Twenty participants took part in this crossover design study. We found that trait feedback was less beneficial for motivation and performance improvement, and resulting in enhanced neural activation on more difficult bivalent rule trials. This indicates that the task was treated as more complex in this condition. For example, 'you are clever' feedback led to enhanced activation in anterior caudate nucleus, an area known to process uncertainty. We further observed that activation in anterior paracingulate cortex was sensitive to whether self-reflection was imposed by external feedback or generated from internal processes, where the latter activation correlated positively with performance when following after task feedback. Our results illustrate how feedback can evoke self-reflections that either help or hinder motivation and performance, most likely by impacting on processes of uncertainty. The results support social psychological models stipulating that trait focus take resources away from task focus.

  3. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens.

    Science.gov (United States)

    Caputi, Francesca Felicia; Di Benedetto, Manuela; Carretta, Donatella; Bastias del Carmen Candia, Sussy; D'Addario, Claudio; Cavina, Chiara; Candeletti, Sanzio; Romualdi, Patrizia

    2014-03-03

    Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity. © 2013.

  4. CT-Guided Percutaneous Step-by-Step Radiofrequency Ablation for the Treatment of Carcinoma in the Caudate Lobe

    Science.gov (United States)

    Dong, Jun; Li, Wang; Zeng, Qi; Li, Sheng; Gong, Xiao; Shen, Lujun; Mao, Siyue; Dong, Annan; Wu, Peihong

    2015-01-01

    Abstract The location of the caudate lobe and its complex anatomy make caudate lobectomy and radiofrequency ablation (RFA) under ultrasound guidance technically challenging. The objective of the exploratory study was to introduce a novel modality of treatment of lesions in caudate lobe and discuss all details with our experiences to make this novel treatment modality repeatable and educational. The study enrolled 39 patients with liver caudate lobe tumor first diagnosed by computerized tomography (CT) or magnetic resonance imaging (MRI). After consultation of multi-disciplinary team, 7 patients with hepatic caudate lobe lesions were enrolled and accepted CT-guided percutaneous step-by-step RFA treatment. A total of 8 caudate lobe lesions of the 7 patients were treated by RFA in 6 cases and RFA combined with percutaneous ethanol injection (PEI) in 1 case. Median tumor diameter was 29 mm (range, 18–69 mm). A right approach was selected for 6 patients and a dorsal approach for 1 patient. Median operative time was 64 min (range, 59–102 min). Median blood loss was 10 mL (range, 8-16 mL) and mainly due to puncture injury. Median hospitalization time was 4 days (range, 2–5 days). All lesions were completely ablated (8/8; 100%) and no recurrence at the site of previous RFA was observed during median 8 months follow-up (range 3–11 months). No major or life-threatening complications or deaths occurred. In conclusion, percutaneous step-by-step RFA under CT guidance is a novel and effective minimally invasive therapy for hepatic caudate lobe lesions with well repeatability. PMID:26426638

  5. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    Science.gov (United States)

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.; Rizzu, Patrizia; Francescatto, Margherita; Vitezic, Morana; Leday, Gwenaë l G.R.; Sanchez, Javier Simon; Khamis, Abdullah M.; Takahashi, Hazuki; van de Berg, Wilma D.J.; Medvedeva, Yulia A.; van de Wiel, Mark A.; Daub, Carsten O.; Carninci, Piero; Heutink, Peter

    2013-01-01

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites

  7. The left dorsolateral prefrontal cortex and caudate pathway: New evidence for cue-induced craving of smokers.

    Science.gov (United States)

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Wang, Ruonan; Li, Min; Zhang, Yajuan; Dong, Minghao; Zhai, Jinquan; Li, Yangding; Lu, Xiaoqi; Tian, Jie

    2017-09-01

    Although the activation of the prefrontal cortex (PFC) and the striatum had been found in smoking cue induced craving task, whether and how the functional interactions and white matter integrity between these brain regions contribute to craving processing during smoking cue exposure remains unknown. Twenty-five young male smokers and 26 age- and gender-matched nonsmokers participated in the smoking cue-reactivity task. Craving related brain activation was extracted and psychophysiological interactions (PPI) analysis was used to specify the PFC-efferent pathways contributed to smoking cue-induced craving. Diffusion tensor imaging (DTI) and probabilistic tractography was used to explore whether the fiber connectivity strength facilitated functional coupling of the circuit with the smoking cue-induced craving. The PPI analysis revealed the negative functional coupling of the left dorsolateral prefrontal cortex (DLPFC) and the caudate during smoking cue induced craving task, which positively correlated with the craving score. Neither significant activation nor functional connectivity in smoking cue exposure task was detected in nonsmokers. DTI analyses revealed that fiber tract integrity negatively correlated with functional coupling in the DLPFC-caudate pathway and activation of the caudate induced by smoking cue in smokers. Moreover, the relationship between the fiber connectivity integrity of the left DLPFC-caudate and smoking cue induced caudate activation can be fully mediated by functional coupling strength of this circuit in smokers. The present study highlighted the left DLPFC-caudate pathway in smoking cue-induced craving in smokers, which may reflect top-down prefrontal modulation of striatal reward processing in smoking cue induced craving processing. Hum Brain Mapp 38:4644-4656, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Longitudinal Magnetic Resonance Imaging (MRI) Analysis of the Developmental Changes of Tourette Syndrome Reveal Reduced Diffusion in the Cortico-Striato-Thalamo-Cortical Pathways

    DEFF Research Database (Denmark)

    Debes, Nanette; Jeppesen, Signe; Raghava, Jayachandra Mitta

    2015-01-01

    There is evidence that cortico-striato-thalamo-cortical pathways are involved in Tourette syndrome. We performed a longitudinal imaging study in 22 patients and 21 healthy controls in order to examine the development of tics and its correlation with magnetic resonance imaging (MRI) findings....... Patients were divided in a group with persisting and a group with remission of tics. We found a decrease in volume of left putamen in controls, but not in patients. We found changes in mean diffusivity between patients and controls in right caudate nucleus, thalamus, and frontal lobe. In contrast...... to controls, parallel and perpendicular diffusivity decreased in patients and were most pronounced in the patients with persisting tics compared to those with remission. The findings suggest that the development of the brain in patients with remission resembles the normal development more than in patients...

  9. A clinico-MRI study of extrapyramidal symptoms in multiple system atrophy; Linear hyperintensity in the outer margin of the putamen

    Energy Technology Data Exchange (ETDEWEB)

    Konagaya, Masaaki; Iida, Mitsuo [Suzuka National Hospital, Mie (Japan); Konagaya, Yoko; Honda, Hitoshi

    1993-06-01

    We studied extrapyramidal symptoms and T2-weighted MRI findings of the putamen in 20 patients with multiple system atrophy (MSA) and 25 with idiopathic Parkinson's disease. Nine of the 20 MSA patients showed extrapyramidal symptoms. We could not observe cerebellar ataxia in two of the 9 patients because of severe rigidity and skinesia. Eight of the 9 MSA patients with extrapyramidal symptoms showed linear hyperintensity in the outer margin of the putamen. This abnormal intensity was bilateral and symmetric in most patients. However, in MSA patients without extrapyramidal symptoms, only one patient showed the linear hyperintensity. We could not find such abnormal intensity in any of the patients with Parkinson's disease. On proton density MRI, the signal intensity in the lesion was higher than that in the gray matter, which leads the speculation that the hyperintensity is gliosis of the putamen or increased extracellular fluid space caused by severe shrinkage of the putamen. These characteristic MRI findings may distinguish MSA with extrapyramidal symptoms from Parkinson's disease. (J.P.N.).

  10. Neuroanatomical correlates of Klinefelter syndrome studied in relation to the neuropsychological profile

    DEFF Research Database (Denmark)

    Skakkebæk, Anne; Gravholt, Claus Højbjerg; Rasmussen, Peter Mondrup

    2014-01-01

    , putamen, caudate, hippocampus, amygdala, temporal pole and frontal inferior orbita. Additionally, the right parahippocampal region and cerebellar volumes were reduced in KS patients. KS patients had significantly larger volumes in right postcentral gyrus, precuneus and parietal regions. Multivariate...

  11. Short-term hypoxia/reoxygenation activates the angiogenic pathway ...

    Indian Academy of Sciences (India)

    2013-04-20

    Apr 20, 2013 ... angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia .... (1:3 w/v) with a homogenator (Pellet Pestle Motor Cordless, ..... showing that the capillary density in the rat cerebral cortex was.

  12. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  13. Unusual magnetic resonance imaging features in Menkes disease

    International Nuclear Information System (INIS)

    Barnerias, C.; Desguerre, I.; Dulac, O.; Bahi-Buisson, N.; Boddaert, N.; Hertz-Pannier, L.; Boddaert, N.; Guiraud, P.; Hertz-Pannier, L.; Dulac, O.; Bahi-Buisson, N.; Hertz-Pannier, L.; Dulac, O.; Bahi-Buisson, N.; De Lonlay, P.

    2008-01-01

    We present a case of an inherited disorder of copper metabolism, Menkes disease in which MRI studies revealed the coexistence of T2 hyper-signal in the temporal white matter with an increase of apparent diffusion coefficient indicative of vasogenic oedema combined with T2 hyper-signal of the putamen and head of the caudate and decreased apparent diffusion coefficient indicative of cytotoxic oedema. These unusual MRI features emphasize the interest of newly developed techniques in early diagnosis in Menkes disease. The acute cerebral damage might result from the combined effects of acute metabolic stress due to infectious disease and prolonged status epilepticus, acting on a highly susceptible developing brain. Vasogenic oedema in the temporal white matter could be related to prolonged status epilepticus and vascular abnormalities. Cytotoxic oedema of the putamen and head caudate could result from energetic failure. (authors)

  14. Unusual magnetic resonance imaging features in Menkes disease

    Energy Technology Data Exchange (ETDEWEB)

    Barnerias, C; Desguerre, I; Dulac, O; Bahi-Buisson, N [Hop Necker Enfants Malades, AP-HP, Dept Paediat Neurol and Metab Dis, F-75743 Paris 15 (France); Boddaert, N; Hertz-Pannier, L [Hop Necker Enfants Malad, AP-HP, Dept Pediat Radiol, F-75743 Paris (France); Boddaert, N [CEA, Serv Hosp Frederic Joliot, INSERM, U797, F-91406 Orsay (France); Guiraud, P [Univ Grenoble, Serv Biochim, Genet Hop, Grenoble (France); Hertz-Pannier, L; Dulac, O; Bahi-Buisson, N [INSERM, U663, F-75015 Paris (France); Hertz-Pannier, L; Dulac, O; Bahi-Buisson, N [Univ Paris 05, F-75005 Paris (France); De Lonlay, P [Hop Necker Enfants Malades, AP-HP, Dept Paediat Neurol and Metab Dis, F-75743 Paris 15 (France); Hop Necker Enfants Malades, AP HP, Ctr Reference Malad Metab, F-75743 Paris 15 (France)

    2008-07-01

    We present a case of an inherited disorder of copper metabolism, Menkes disease in which MRI studies revealed the coexistence of T2 hyper-signal in the temporal white matter with an increase of apparent diffusion coefficient indicative of vasogenic oedema combined with T2 hyper-signal of the putamen and head of the caudate and decreased apparent diffusion coefficient indicative of cytotoxic oedema. These unusual MRI features emphasize the interest of newly developed techniques in early diagnosis in Menkes disease. The acute cerebral damage might result from the combined effects of acute metabolic stress due to infectious disease and prolonged status epilepticus, acting on a highly susceptible developing brain. Vasogenic oedema in the temporal white matter could be related to prolonged status epilepticus and vascular abnormalities. Cytotoxic oedema of the putamen and head caudate could result from energetic failure. (authors)

  15. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    Science.gov (United States)

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  16. The discriminating nature of dopamine transporter image in parkinsonism: the competency of dopaminergic transporter imaging in differential diagnosis of parkinsonism {sup 123}I-FP-CIT SPECT study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sahn; Jang, Sung June; Eo, Jae Seon; Park, Eun Kyung; Kim, Yu Kyeong; Kim, Jong Min; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-08-15

    The aim of this study was to evaluate the discriminating nature of {sup 123}I-FP-CIT SPECT in patients with parkinsonism. {sup 123}I-FP-CIT SPECT images acquired from the 18 normal controls; NC (60.4 {+-} 10.0 yr) and 237 patients with parkinsonism (65.9 {+-} 9.2 yr) were analyzed. From spatially normalized images, regional counts of the caudate, putamen, and occipital lobe were obtained using region of interest method. Binding potential (BP) was calculated with the ratio of specific to nonspecific binding activity at equilibrium. Additionally, the BP ratio of putamen to caudate (PCR) and asymmetric index (ASI) were measured. BPs of NC (3.37 {+-} 0.57, 3.10{+-} 0.41, 3.23 {+-} 0.48 for caudate, putamen, whole striatum, respectively) had no significant difference with those of essential tremor; ET (3.31 {+-} 0.64, 3.06 {+-} 0.61, 3.14 {+-} 0.63) and Alzheimer's disease; AD (3.33 {+-} 0.60, 3.29 {+-} 0.79, 3.31 {+-} 0.70), but were higher than those of Parkinson's disease; PD (1.92 {+-} 0.74, 1.39 {+-}0.68, 1.64 {+-} 0.68), multiple system atrophy; MSA (2.36 {+-} 1.07, 2.16 {+-} 0.91, 2.26 {+-} 0.96), and dementia with Lewy body; DLB (1.95{+-} 0.72, 1.64 {+-} 0.65, 1.79 {+-} 0.66)({rho} < 0.005). PD had statistically lower values of PCR and higher values of ASI than those of NC ({rho} < 0.005). And PD had significantly lower value of PCR, higher ASI and lower BP in the putamen and whole striatum than MSA ({rho} < 0.05). Dopamine transporter image of {sup 123}I-FP-CIT SPECT was a good value in differential diagnosis of parkinsonism.

  17. Differential distribution of striatal [123I]β-CIT in Parkinson's disease and progressive supranuclear palsy, evaluated with single-photon emission tomography

    International Nuclear Information System (INIS)

    Messa, C.; Volonte, M.A.; Fazio, F.; Zito, F.; Carpinelli, A.; D'Amico, A.; Rizzo, G.; Moresco, R.M.; Paulesu, E.; Franceschi, M.; Lucignani, G.

    1998-01-01

    Functional imaging of the presynaptic dopaminergic activity using single-photon emission tomography (SPET) and iodine-123 labelled 2-β-carboxymethoxy-3-β-(4-iodophenyl)tropane ([ 123 I]β-CIT) is important for the assessment of disease severity and progression in patients with Parkinson's disease (PD). However, its capability to discriminate between different extrapyramidal disorders has not yet been assessed. The aim of this study was to evaluate the possibility of differentiating patients with PD and with progressive supranuclear palsy (PSP) by means of this method. The distribution of [ 123 I]β-CIT in the basal ganglia was assessed in six normal subjects, 13 petients with PD and five patients with PSP in whom the disease was mild. SPET images were obtained 24±2 h after i.v. injection of the tracer using a brain-dedicated system (CERASPECT). MR and SPET images were co-registered in four normal subjects and used to define a standard set of 16 circular regions of interest (ROIs) on the slice showing the highest striatal activity. The basal ganglia ROIs corresponded to (1) the head of caudate, (2) a region of transition between the head of caudate and the anterior putamen, (3) the anterior putamen and (4) the posterior putamen. A ratio of specific to non-displaceable striatal uptake was calculated normalising the activity of the basal ganglia ROIs to that of the occipital cortex (V3''). ANOVA revealed a global reduction of V3'' in all ROIs of PD and PSP patients compared with normal controls (P 123 I]β-CIT distribution in discrete striatal areas provides information on the relative caudate-putamen damage, with different values being obtained in patients clinically diagnosed as having either PD or PSP. (orig.)

  18. Tractographical model of the cortico-basal ganglia and corticothalamic connections: Improving Our Understanding of Deep Brain Stimulation.

    Science.gov (United States)

    Avecillas-Chasin, Josué M; Rascón-Ramírez, Fernando; Barcia, Juan A

    2016-05-01

    The cortico-basal ganglia and corticothalamic projections have been extensively studied in the context of neurological and psychiatric disorders. Deep brain stimulation (DBS) is known to modulate many of these pathways to produce the desired clinical effect. The aim of this work is to describe the anatomy of the main circuits of the basal ganglia using tractography in a surgical planning station. We used imaging studies of 20 patients who underwent DBS for movement and psychiatric disorders. We segmented the putamen, caudate nucleus (CN), thalamus, and subthalamic nucleus (STN), and we also segmented the cortical areas connected with these subcortical areas. We used tractography to define the subdivisions of the basal ganglia and thalamus through the generation of fibers from the cortical areas to the subcortical structures. We were able to generate the corticostriatal and corticothalamic connections involved in the motor, associative and limbic circuits. Furthermore, we were able to reconstruct the hyperdirect pathway through the corticosubthalamic connections and we found subregions in the STN. Finally, we reconstructed the cortico-subcortical connections of the ventral intermediate nucleus, the nucleus accumbens and the CN. We identified a feasible delineation of the basal ganglia and thalamus connections using tractography. These results could be potentially useful in DBS if the parcellations are used as targets during surgery. © 2016 Wiley Periodicals, Inc.

  19. Coenzyme Q-responsive Leigh's encephalopathy in two sisters.

    NARCIS (Netherlands)

    Maldergem, L. van; Trijbels, J.M.F.; Mauro, S. Di; Sindelar, P.J.; Musumeci, O.; Janssen, A.J.M.; Delberghe, X.; Martin, J.J.; Gillerot, Y.

    2002-01-01

    A 31-year-old woman had encephalopathy, growth retardation, infantilism, ataxia, deafness, lactic acidosis, and increased signals of caudate and putamen on brain magnetic resonance imaging. Muscle biochemistry showed succinate:cytochrome c oxidoreductase (complex II-III) deficiency. Both clinical

  20. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  1. Effect of thyrotropin-releasing hormone (TRH) on local cerebral glucose utilization, by the autoradiographic 2-deoxy [14C] glucose method, in conscious and pentobarbitalized rats

    International Nuclear Information System (INIS)

    Nagai, Y.; Narumi, S.; Nagawa, Y.; Sakurada, O.; Ueno, H.; Ishii, S.

    1980-01-01

    Effects of TRH and pentobarbital alone, and in combination, on local cerebral glucose utilization of rats were studied by the autoradiographic 2-deoxy[ 14 C] glucose method. TRH (5 mg/kg i.v.) reduced the rate of cerebral glucose utilization slightly in the whole brain. Locally, significant depression was observed in the following structures: frontal and visual cortices, hippocampus Ammon's horn and dentate gyrus, medial and lateral geniculate bodies, nucleus accumbens, caudate-putamen, substantia nigra, pontine gray matter, superior colliculus, superior olivary nucleus, vestibular nucleus, lateral lemniscus and cerebellar cortex. Pentobarbital (30 mg/kg i.v.) produced a marked and diffuse reduction in the rate of glucose utilization throughout the brain. TRH given 15 min after the administration of pentobarbital markedly shortened the pentobarbital sleeping time and caused some reversal of the depression in local cerebral glucose utilization produced by pentobarbital., These effects were almost completely abolished by pretreatment with intracerebroventricular injection of atropine methyl bromide (20 μg/rat). These results indicate that although TRH acts to cause a reduction in the rate of cerebral glucose utilization, it reverses the depression induced by pentobarbital, via a cholinergic mechanism, in a number of structures, some of which are related to monoaminergic systems and the reticulo-thalamo-cortical activating system. (author)

  2. Interaction between the 5-HT system and the basal ganglia: Functional implication and therapeutic perspective in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Cristina eMiguelez

    2014-03-01

    Full Text Available The neurotransmitter serotonin (5-HT has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7 and ligand-gated ion channels (5-HT3. The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN share common projecting areas, in the basal ganglia (BG nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen, subthalamic nucleus (STN, internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe and substantia nigra (pars compacta, SNc, and pars reticulata, SNr. The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson’s disease. This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating Parkinson’s disease and the motor complications induced by chronic treatment with L-DOPA.

  3. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease.

    Science.gov (United States)

    Miguelez, Cristina; Morera-Herreras, Teresa; Torrecilla, Maria; Ruiz-Ortega, Jose A; Ugedo, Luisa

    2014-01-01

    The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.

  4. Treating and Downstaging Hepatocellular Carcinoma in the Caudate Lobe with Yttrium-90 Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Saad M. [Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Department of Radiology, Section of Interventional Radiology (United States); Kulik, Laura [Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Hepatology (United States); Baker, Talia [Northwestern University Feinberg School of Medicine, Division of Transplant Surgery (United States); Ryu, Robert K. [Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Department of Radiology, Section of Interventional Radiology (United States); Mulcahy, Mary F. [Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center (United States); Abecassis, Michael [Northwestern University Feinberg School of Medicine, Division of Transplant Surgery (United States); Salem, Riad; Lewandowski, Robert J., E-mail: r-lewandowski@northwestern.edu [Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Department of Radiology, Section of Interventional Radiology (United States)

    2012-10-15

    Purpose: This study was designed to determine the technical feasibility, safety, efficacy, and potential to downstage patients to within transplantation criteria when treating patients with hepatocellular carcinoma (HCC) of the caudate lobe using Y90 radioembolization. Methods: During a 4-year period, 8 of 291 patients treated with radioembolization for unresectable HCC had disease involving the caudate lobe. All patients were followed for treatment-related clinical/biochemical toxicities, serum tumor marker response, and treatment response. Imaging response was assessed with the World Health Organization (WHO) and European Association for the Study of the Liver (EASL) classification schemes. Pathologic response was reported as percent necrosis at explantation. Results: Caudate lobe radioembolization was successfully performed in all eight patients. All patients presented with both cirrhosis and portal hypertension. Half were United Network for Organ Sharing (UNOS) stage T3 (n = 4, 50%). Fatigue was reported in half of the patients (n = 4, 50%). One (13%) grade 3/4 bilirubin toxicity was reported. One patient (13%) showed complete tumor response by WHO criteria, and three patients (38%) showed complete response using EASL guidelines. Serum AFP decreased by more than 50% in most patients (n = 6, 75%). Four patients (50%) were UNOS downstaged from T3 to T2, three of who underwent transplantation. One specimen showed histopathologic evidence of 100% complete necrosis, and two specimens demonstrated greater than 50% necrosis. Conclusions: Radioembolization with yttrium-90 appears to be a feasible, safe, and effective treatment option for patients with unresectable caudate lobe HCC. It has the potential to downstage patients to transplantation.

  5. Long-term polarization of microglia upon alpha-synuclein overexpression in nonhuman primates

    DEFF Research Database (Denmark)

    Barkholt, Pernille; Sanchez-Guajardo, Vanesa Maria; Kirik, Denis

    2012-01-01

    We have previously shown that persistent ﰇ-sy- nuclein overexpression in ventral midbrain of marmoset leads to a distinctive neurodegenerative process and motor defects. The neurodegeneration was confined to caudate putamen dopaminergic fibers in animals overexpressing wild-type (wt) ﰇ-synuclein....

  6. Noradrenergic modulation of neural erotic stimulus perception.

    Science.gov (United States)

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline Danielle; Walter, Martin; Grön, Georg; Abler, Birgit

    2017-09-01

    We recently investigated neuromodulatory effects of the noradrenergic agent reboxetine and the dopamine receptor affine amisulpride in healthy subjects on dynamic erotic stimulus processing. Whereas amisulpride left sexual functions and neural activations unimpaired, we observed detrimental activations under reboxetine within the caudate nucleus corresponding to motivational components of sexual behavior. However, broadly impaired subjective sexual functioning under reboxetine suggested effects on further neural components. We now investigated the same sample under these two agents with static erotic picture stimulation as alternative stimulus presentation mode to potentially observe further neural treatment effects of reboxetine. 19 healthy males were investigated under reboxetine, amisulpride and placebo for 7 days each within a double-blind cross-over design. During fMRI static erotic picture were presented with preceding anticipation periods. Subjective sexual functions were assessed by a self-reported questionnaire. Neural activations were attenuated within the caudate nucleus, putamen, ventral striatum, the pregenual and anterior midcingulate cortex and in the orbitofrontal cortex under reboxetine. Subjective diminished sexual arousal under reboxetine was correlated with attenuated neural reactivity within the posterior insula. Again, amisulpride left neural activations along with subjective sexual functioning unimpaired. Neither reboxetine nor amisulpride altered differential neural activations during anticipation of erotic stimuli. Our results verified detrimental effects of noradrenergic agents on neural motivational but also emotional and autonomic components of sexual behavior. Considering the overlap of neural network alterations with those evoked by serotonergic agents, our results suggest similar neuromodulatory effects of serotonergic and noradrenergic agents on common neural pathways relevant for sexual behavior. Copyright © 2017 Elsevier B.V. and

  7. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1985-01-01

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  8. The subcortical role of language processing. High level linguistic features such as ambiguity-resolution and the human brain; an fMRI study.

    Science.gov (United States)

    Ketteler, Daniel; Kastrau, Frank; Vohn, Rene; Huber, Walter

    2008-02-15

    In the present study, we were interested in the neurofunctional representations of ambiguity processing by using functional magnetic resonance imaging (fMRI). Twelve right-handed, healthy adults aged between 21 and 29 years (6 male, 6 female) underwent an ambiguity resolution task with 4 different conditions (dominant vs. non-dominant; dominant vs. distractor; non-dominant vs. distractor; distractor vs. distractor). After subtraction of the corresponding control task (distractor vs. distractor) we found significant activation especially in the thalamus and some parts of the basal ganglia (caudate nucleus, putamen). Our findings implicate a participation of the thalamus and other basal ganglia circuits in high level linguistic functions and match with theoretical considerations on this highly controversial topic. Subcortical neural circuits probably become activated when the language processing system cannot rely entirely on automatic mechanisms but has to recruit controlled processes as well. Furthermore, we found broad activation in the inferior parietal lobule, the prefrontal gyrus, pre-SMA and SMA and the cingulate cortex. This might reflect a strategic semantic search mechanism which probably can be illustrated with connectionist models of language processing. According to this, we hypothesize a neuroregulatory role for the thalamus and basal ganglia in regulating and monitoring the release of preformulated language segments for motor programming and semantic verification. According to our findings there is strong evidence, that especially the thalamus, the caudate nucleus, the cingulate cortex, the inferior parietal lobule and the prefrontal cortex are responsible for an accurate ambiguity resolution in the human brain.

  9. Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Ioannis Ugo eIsaias

    2014-08-01

    Full Text Available We investigated in vivo brain nicotinic acetylcholine receptor (nAChR distribution in cognitively intact subjects with Parkinson's disease (PD at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography (SPECT and the radiotracer 5-[123I]iodo-3-[2(S-2-azetidinylmethoxy]pyridine ([123I]5IA. Patients were selected according to several criteria, including short duration of motor signs (<7 years and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ=0.56, p<0.05 but not contralateral (ρ=0.49, p=0.07 to the clinically most affected hemibody.We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease.

  10. Significance of local cerebral glucose utilization determined by the autoradiographic (/sup 14/C)deoxyglucose method in experimentally induced coma

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, O.; Kobayashi, M.; Ueno, H.; Ishii, S. (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1982-01-01

    Bilateral lesions made in the midbrain reticular formation of the rat produced behavioral akinesia. These animals neither ate nor drank. EEGs of these animals usually showed high voltage slow waves at rest. Slight EEG arousal response was demonstrated by clapping, touching and pinching only in rats with moderate impairment. Concerning the rates of local cerebral glucose utilization (LCGU) measured by means of the autoradiographic (/sup 14/C) deoxyglucose method, 13 structures exhibited significant reductions in 28 gray structures examined when compared with sham operated rats. Lesions in the midbrain reticular formation resulted in reduction of LCGU in the neocortex, ventral nucleus of the thalamus, subthalamic nucleus, and medial and lateral geniculated bodies, mamillary body, septal nucleus and caudateputamen. Structures which did not show any significant change in LCGU were those related to the paleo and archi-cortices. These findings suggest the existence of two types of ascending activating systems. Administration of 30 mg/kg of pentobarbital reduced LCGU diffusely throughout the brain. When thyrotropin releasing hormone (TRH) was administered to rats with lesions in the midbrain reticular formation, reversal of the reduction of LCGU was observed in the dorsomedial nucleus of the thalamus and the mamillary body. Reversal of LCGU in the dorsomedial nucleus of thalamus was especially significant and its level exceeded the level of the sham control value. This suggests TRH might exert its function through the dorsomedial nucleus of the thalamus and mamillary body. When TRH was administered to rats treated with pentobarbital, significant reversal was observed in the following structures: the lateral and ventral nucleus of the thalamus, dentate gyrus, caudate-putamen, nucleus accumbens, pontine gray matter, and raphe nucleus.

  11. Progression of dopaminergic degeneration in dementia with Lewy bodies and Parkinson's disease with and without dementia assessed using 123I-FP-CIT SPECT

    International Nuclear Information System (INIS)

    Colloby, Sean J.; McKeith, Ian G.; O'Brien, John T.; Williams, E. David; Burn, David J.; Lloyd, Jim J.

    2005-01-01

    The objective of this study was to investigate the rate of progression of nigrostriatal dopaminergic loss in subjects with dementia with Lewy bodies (DLB), Parkinson's disease (PD) and PD with dementia (PDD) using serial 123 I-FP-CIT SPECT imaging. We hypothesised that striatal rates of decline in patients would be greater than in controls, and that DLB and PDD would show similar rates, reflecting the similarity in neurobiological mechanisms of dopaminergic loss between the two disorders. We studied 20 patients with DLB, 20 with PD, 15 with PDD and 22 healthy age-matched controls. Semi-automated region of interest (ROI) analysis was performed on both baseline and repeat scans for each subject and mean striatal uptake ratios (caudate, anterior and posterior putamen) were calculated. Rates of decline in striatal binding between groups were assessed using ANCOVA. Significant differences between patients and controls were observed in caudate (DLB, PD, PDD, p≤0.01), anterior putamen (DLB, PDD, p≤0.05; PD, p=0.07) and posterior putamen (DLB, PD, PDD, p<0.006). Rates of decline were similar between DLB, PD and PDD. (orig.)

  12. Test-retest reproducibility of dopamine D{sub 2/3} receptor binding in human brain measured by PET with [{sup 11}C]MNPA and [{sup 11}C]raclopride

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Fumitoshi [National Institute of Radiological Sciences, Molecular Neuroimaging Program, Molecular Imaging Center, Chiba (Japan); Jikei University School of Medicine, Department of Psychiatry, Tokyo (Japan); Ito, Hiroshi [National Institute of Radiological Sciences, Molecular Neuroimaging Program, Molecular Imaging Center, Chiba (Japan); National Institute of Radiological Sciences, Biophysics Program, Molecular Imaging Center, Chiba (Japan); Kimura, Yasuyuki; Fujie, Saori; Takano, Harumasa; Fujiwara, Hironobu; Sasaki, Takeshi; Suhara, Tetsuya [National Institute of Radiological Sciences, Molecular Neuroimaging Program, Molecular Imaging Center, Chiba (Japan); Nakayama, Kazuhiko [Jikei University School of Medicine, Department of Psychiatry, Tokyo (Japan); Halldin, Christer; Farde, Lars [Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)

    2013-04-15

    Dopamine D{sub 2/3} receptors (D{sub 2/3}Rs) have two affinity states for endogenous dopamine, referred to as high-affinity state (D{sub 2/3} {sup HIGH}), which has a high affinity for endogenous dopamine, and low-affinity state (D{sub 2/3} {sup LOW}). The density of D{sub 2/3} {sup HIGH} can be measured with (R)-2-{sup 11}CH{sub 3}O-N-n-propylnorapomorphine ([{sup 11}C]MNPA), while total density of D{sub 2/3} {sup HIGH} and D{sub 2/3} {sup LOW} (D{sub 2/3}Rs) can be measured with [{sup 11}C]raclopride using positron emission tomography (PET). Thus, the ratio of the binding potential (BP) of [{sup 11}C]MNPA to that of [{sup 11}C]raclopride ([{sup 11}C]MNPA/[{sup 11}C]raclopride) may reflect the proportion of the density of D{sub 2/3} {sup HIGH} to that of D{sub 2/3}Rs. In the caudate and putamen, [{sup 11}C]MNPA/[{sup 11}C]raclopride reflects the proportion of the density of D{sub 2} {sup HIGH} to that of D{sub 2}Rs. To evaluate the reliability of the PET paradigm with [{sup 11}C]MNPA and [{sup 11}C]raclopride, we investigated the test-retest reproducibility of non-displaceable BP (BP{sub ND}) measured with [{sup 11}C]MNPA and of [{sup 11}C]MNPA/[{sup 11}C]raclopride in healthy humans. Eleven healthy male volunteers underwent two sets of PET studies on separate days that each included [{sup 11}C]MNPA and [{sup 11}C]raclopride scans. BP{sub ND} values in the caudate and putamen were calculated. Test-retest reproducibility of BP{sub ND} of [{sup 11}C]MNPA and [{sup 11}C]MNPA/[{sup 11}C]raclopride was assessed by intra-subject variability (absolute variability) and test-retest reliability (intraclass correlation coefficient: ICC). The absolute variability of [{sup 11}C]MNPA BP{sub ND} was 5.30 {+-} 3.96 % and 12.3 {+-} 7.95 % and the ICC values of [{sup 11}C]MNPA BP{sub ND} were 0.72 and 0.82 in the caudate and putamen, respectively. The absolute variability of [{sup 11}C]MNPA/[{sup 11}C]raclopride was 6.11 {+-} 3.68 % and 11.60 {+-} 5.70 % and the ICC values of [{sup

  13. Reward, motivation, and emotion systems associated with early-stage intense romantic love.

    Science.gov (United States)

    Aron, Arthur; Fisher, Helen; Mashek, Debra J; Strong, Greg; Li, Haifang; Brown, Lucy L

    2005-07-01

    Early-stage romantic love can induce euphoria, is a cross-cultural phenomenon, and is possibly a developed form of a mammalian drive to pursue preferred mates. It has an important influence on social behaviors that have reproductive and genetic consequences. To determine which reward and motivation systems may be involved, we used functional magnetic resonance imaging and studied 10 women and 7 men who were intensely "in love" from 1 to 17 mo. Participants alternately viewed a photograph of their beloved and a photograph of a familiar individual, interspersed with a distraction-attention task. Group activation specific to the beloved under the two control conditions occurred in dopamine-rich areas associated with mammalian reward and motivation, namely the right ventral tegmental area and the right postero-dorsal body and medial caudate nucleus. Activation in the left ventral tegmental area was correlated with facial attractiveness scores. Activation in the right anteromedial caudate was correlated with questionnaire scores that quantified intensity of romantic passion. In the left insula-putamen-globus pallidus, activation correlated with trait affect intensity. The results suggest that romantic love uses subcortical reward and motivation systems to focus on a specific individual, that limbic cortical regions process individual emotion factors, and that there is localization heterogeneity for reward functions in the human brain.

  14. Decreased striatal dopamine transporter binding assessed with [123I] FP-CIT in first-episode schizophrenic patients with and without short-term antipsychotic-induced parkinsonism.

    Science.gov (United States)

    Mateos, Jose J; Lomeña, Francisco; Parellada, Eduardo; Font, Mireia; Fernandez, Emili; Pavia, Javier; Prats, Alberto; Pons, Francisca; Bernardo, Miquel

    2005-09-01

    Drug-induced parkinsonism (DIP) is one of the main causes of treatment drop-out in schizophrenic patients causing a high incidence of relapse that leads patients to a bad clinical prognosis. The dopaminergic nigrostriatal pathway is involved in the movement control, so the study of the dopamine transporter (DAT) could be of great value to determine its implication in the appearance of DIP. The goal of the study is to determine the striatal DAT binding assessed with [(123)I] FP-CIT SPECT in first-episode neuroleptic-naive schizophrenic in-patients with DIP after short-term antipsychotic treatment. The [(123)I] FP-CIT binding ratios of ten schizophrenic in-patients who developed DIP during the first 4-week period of risperidone treatment (6+/-2 mg/day) were compared with ten schizophrenic in-patients treated with the same doses of risperidone and who do not developed DIP and with ten age-matched healthy subjects. Quantitative analyses of SPECTs were performed using regions of interest located in caudate, putamen and occipital cortex. Parkinsonism was assessed by the Simpson-Angus Scale and the psychopathological status by the Clinical General Impression and Positive and Negative Syndrome Scales. Whole striatal [(123)I] FP-CIT binding ratios were significantly lower in patients with and without DIP than in healthy subjects (p<0.001). This was also observed in whole putamen (p<0.001) and caudate nucleus (p<0.001). Females showed higher whole striatal [(123)I] FP-CIT binding ratios than males (p<0.05). No differences in psychopathological scales were observed between patients with and without DIP. Our first-episode schizophrenic patients with and without DIP after short-term risperidone treatment have a decreased striatal DAT binding assessed with [(123)I] FP-CIT. This alteration could be related to the schizophrenic disease or may be secondary to the antipsychotic treatment.

  15. Sex Differences in Regional Brain Glucose Metabolism Following Opioid Withdrawal and Replacement.

    Science.gov (United States)

    Santoro, Giovanni C; Carrion, Joseph; Patel, Krishna; Vilchez, Crystal; Veith, Jennifer; Brodie, Jonathan D; Dewey, Stephen L

    2017-08-01

    Methadone and buprenorphine are currently the most common pharmacological treatments for opioid dependence. Interestingly, the clinical response to these drugs appears to be sex specific. That is, females exhibit superior therapeutic efficacy, defined as extended periods of abstinence and longer time to relapse, compared with males. However, the underlying metabolic effects of opioid withdrawal and replacement have not been examined. Therefore, using 18 FDG and microPET, we measured differences in regional brain glucose metabolism in males and females following morphine withdrawal and subsequent methadone or buprenorphine replacement. In both males and females, spontaneous opioid withdrawal altered glucose metabolism in regions associated with reward and drug dependence. Specifically, metabolic increases in the thalamus, as well as metabolic decreases in insular cortex and the periaqueductal gray, were noted. However, compared with males, females exhibited increased metabolism in the preoptic area, primary motor cortex, and the amygdala, and decreased metabolism in the caudate/putamen and medial geniculate nucleus. Methadone and buprenorphine initially abolished these changes uniformly, but subsequently produced their own regional metabolic alterations that varied by treatment and sex. Compared with sex-matched control animals undergoing spontaneous opioid withdrawal, male animals treated with methadone exhibited increased caudate/putamen metabolism, whereas buprenorphine produced increased ventral striatum and motor cortex metabolism in females, and increased ventral striatum and somatosensory cortex metabolism in males. Notably, when treatment effects were compared between sexes, methadone-treated females showed increased cingulate cortex metabolism, whereas buprenorphine-treated females showed decreased metabolism in cingulate cortex and increased metabolism in the globus pallidus. Perhaps the initial similarities in males and females underlie early therapeutic

  16. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease

    Science.gov (United States)

    Kallenberg, K.; Summers, D. M.; Romero, C.; Taratuto, A.; Heinemann, U.; Breithaupt, M.; Varges, D.; Meissner, B.; Ladogana, A.; Schuur, M.; Haik, S.; Collins, S. J.; Jansen, Gerard H.; Stokin, G. B.; Pimentel, J.; Hewer, E.; Collie, D.; Smith, P.; Roberts, H.; Brandel, J. P.; van Duijn, C.; Pocchiari, M.; Begue, C.; Cras, P.; Will, R. G.; Sanchez-Juan, P.

    2009-01-01

    Several molecular subtypes of sporadic Creutzfeldt–Jakob disease have been identified and electroencephalogram and cerebrospinal fluid biomarkers have been reported to support clinical diagnosis but with variable utility according to subtype. In recent years, a series of publications have demonstrated a potentially important role for magnetic resonance imaging in the pre-mortem diagnosis of sporadic Creutzfeldt–Jakob disease. Magnetic resonance imaging signal alterations correlate with distinct sporadic Creutzfeldt–Jakob disease molecular subtypes and thus might contribute to the earlier identification of the whole spectrum of sporadic Creutzfeldt–Jakob disease cases. This multi-centre international study aimed to provide a rationale for the amendment of the clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Patients with sporadic Creutzfeldt–Jakob disease and fluid attenuated inversion recovery or diffusion-weight imaging were recruited from 12 countries. Patients referred as ‘suspected sporadic Creutzfeldt–Jakob disease’ but with an alternative diagnosis after thorough follow up, were analysed as controls. All magnetic resonance imaging scans were assessed for signal changes according to a standard protocol encompassing seven cortical regions, basal ganglia, thalamus and cerebellum. Magnetic resonance imaging scans were evaluated in 436 sporadic Creutzfeldt–Jakob disease patients and 141 controls. The pattern of high signal intensity with the best sensitivity and specificity in the differential diagnosis of sporadic Creutzfeldt–Jakob disease was identified. The optimum diagnostic accuracy in the differential diagnosis of rapid progressive dementia was obtained when either at least two cortical regions (temporal, parietal or occipital) or both caudate nucleus and putamen displayed a high signal in fluid attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging. Based on our analyses, magnetic

  17. Dopamine D2 receptor-mediated G-protein activation in rat striatum: functional autoradiography and influence of unilateral 6-hydroxydopamine lesions of the substantia nigra.

    Science.gov (United States)

    Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J

    2001-11-30

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of substantia nigra pars compacta (SNPC) neurons in rats induce behavioural hypersensitivity to dopaminergic agonists. However, the role of specific dopamine receptors is unclear, and potential alterations in their transduction mechanisms remain to be evaluated. The present study addressed these issues employing the dopaminergic agonist, quinelorane, which efficaciously stimulated G-protein activation (as assessed by [35S]GTPgammaS binding) at cloned hD2 (and hD3) receptors. At rat striatal membranes, dopamine stimulated [35S]GTPgammaS binding by 1.9-fold over basal, but its actions were only partially reversed by the selective D2/D3 receptor antagonist, raclopride, indicating the involvement of other receptor subtypes. In contrast, quinelorane-induced stimulation (48% of the effect of dopamine) was abolished by raclopride, and by the D2 receptor antagonist, L741,626. Further, novel antagonists selective for D3 and D4 receptors, S33084 and S18126, respectively, blocked the actions of quinelorane at concentrations corresponding to their affinities for D2 receptors. Quinelorane potently induced contralateral rotation in unilaterally 6-OHDA-lesioned rats, an effect abolished by raclopride and L741,626, but not by D3 and D4 receptor-selective doses of S33084 and S18126, respectively. In functional ([35S]GTPgammaS) autoradiography experiments, quinelorane stimulated G-protein activation in caudate putamen and, to a lesser extent, in nucleus accumbens and cingulate cortex of naive rats. In unilaterally SNPC-lesioned rats, quinelorane-induced G-protein activation in the caudate putamen on the non-lesioned side was similar to that seen in naive animals (approximately 50% stimulation), but significantly greater on the lesioned side (approximately 80%). This increase was both pharmacologically and regionally specific since it was reversed by raclopride, and was not observed in nucleus accumbens or cingulate cortex. In conclusion

  18. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine

    International Nuclear Information System (INIS)

    Goodman, R.R.; Synder, S.H.

    1982-01-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [ 3 H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine

  19. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music.

    Science.gov (United States)

    Green, Anders C; Bærentsen, Klaus B; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  20. The discriminating nature of dopamine transporter image in parkinsonism: the competency of dopaminergic transporter imaging in differential diagnosis of parkinsonism 123I-FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Kim, Bom Sahn; Jang, Sung June; Eo, Jae Seon; Park, Eun Kyung; Kim, Yu Kyeong; Kim, Jong Min; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    The aim of this study was to evaluate the discriminating nature of 123 I-FP-CIT SPECT in patients with parkinsonism. 123 I-FP-CIT SPECT images acquired from the 18 normal controls; NC (60.4 ± 10.0 yr) and 237 patients with parkinsonism (65.9 ± 9.2 yr) were analyzed. From spatially normalized images, regional counts of the caudate, putamen, and occipital lobe were obtained using region of interest method. Binding potential (BP) was calculated with the ratio of specific to nonspecific binding activity at equilibrium. Additionally, the BP ratio of putamen to caudate (PCR) and asymmetric index (ASI) were measured. BPs of NC (3.37 ± 0.57, 3.10± 0.41, 3.23 ± 0.48 for caudate, putamen, whole striatum, respectively) had no significant difference with those of essential tremor; ET (3.31 ± 0.64, 3.06 ± 0.61, 3.14 ± 0.63) and Alzheimer's disease; AD (3.33 ± 0.60, 3.29 ± 0.79, 3.31 ± 0.70), but were higher than those of Parkinson's disease; PD (1.92 ± 0.74, 1.39 ±0.68, 1.64 ± 0.68), multiple system atrophy; MSA (2.36 ± 1.07, 2.16 ± 0.91, 2.26 ± 0.96), and dementia with Lewy body; DLB (1.95± 0.72, 1.64 ± 0.65, 1.79 ± 0.66)(ρ 123 I-FP-CIT SPECT was a good value in differential diagnosis of parkinsonism

  1. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  2. Methadone, monoamine oxidase, and depression: opioid distribution and acute effects on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, C.A.; Kreek, M.J.; Raghunath, J.; Arns, P.

    1983-09-01

    Narcotic withdrawal is often accompanied by an atypical depression which responds to resumption of narcotics. It was hypothesized that methadone might exert its antidepressant effects through monoamine oxidase (MAO) inhibition. The current study examined /sub 3/H-methadone distribution in rat brain and effects on regional MAO activity with acute doses (2.5 mg/kg) which approximate those found during chronic methadone maintenance in man. Limbic areas (amygdala, basomedial hypothalamus, caudate-putamen, hippocampus, preoptic nucleus), as well as pituitary and liver were assayed for MAO activity and methadone concentration. MAO activities did not differ significantly in acute methadone or saline-treated cage-mates at 1 or 24 hr. The concentrations of methadone at 1 hr ranged between 17 and 223 ng/100 mg wet wt tissue in the preoptic nucleus and pituitary, respectively. No significant correlation was found between change in MAO activity (MAO methadone/MAO saline) and methadone concentration in any region at 1 or 24 hr. This study does not support the hypothesis that methadone acts as an antidepressant through MAO inhibition, at least not following acute administration of this exogenous opioid.

  3. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen...

  4. Functional neuroimaging of avoidance habits in OCD

    Science.gov (United States)

    Gillan, Claire M; Apergis-Schoute, Annemieke M; Morein-Zamir, Sharon; Urcelay, Gonzalo P; Sule, Akeem; Fineberg, Naomi A; Sahakian, Barbara J; Robbins, Trevor W

    2016-01-01

    Objective The goal of this study was to determine the neural correlates of excessive habit formation in obsessive-compulsive disorder (OCD). We aimed to (i) test for neurobiological convergence with the known pathophysiology of OCD and (ii) infer, based on abnormalities in brain activation, whether these habits arise from dysfunction in the goal-directed or habit system. Method Thirty-seven OCD patients and 33 controls learned to avoid shocks while undergoing a functional Magnetic Resonance Imaging (fMRI) scan. Following 4 blocks of training, we tested if the avoidance response had become a habit by removing the threat of shock and measuring continued avoidance. We tested for task-related differences in brain activity in 3 ROIs, the caudate, putamen and medial orbitofrontal cortex at a statistical threshold of phabit formation in OCD patients, which was associated with hyper-activation in the caudate. Activation in this region was also associated with subjective ratings of increased urge to perform habits. The OCD group, as a whole, showed hyper-activation in the medial orbitofrontal cortex (mOFC) during the acquisition of avoidance, however this did not relate directly to habit formation. Conclusions OCD patients exhibited excessive habits that were associated with hyper-activation in a key region implicated in the pathophysiology of OCD, the caudate nucleus. Prior studies suggest that this region is important for goal-directed behavior, suggesting that habit-forming biases in OCD may be a result of impairments in this system, rather than differences in the build up of stimulus-response habits themselves. PMID:25526600

  5. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder.

    Science.gov (United States)

    Gillan, Claire M; Apergis-Schoute, Annemieke M; Morein-Zamir, Sharon; Urcelay, Gonzalo P; Sule, Akeem; Fineberg, Naomi A; Sahakian, Barbara J; Robbins, Trevor W

    2015-03-01

    The purpose of this study was to determine the neural correlates of excessive habit formation in obsessive-compulsive disorder (OCD). The authors aimed to test for neurobiological convergence with the known pathophysiology of OCD and to infer, based on abnormalities in brain activation, whether these habits arise from dysfunction in the goal-directed or habit system. Thirty-seven OCD patients and 33 healthy comparison subjects learned to avoid shocks while undergoing a functional MRI scan. Following four blocks of training, the authors tested whether the avoidance response had become a habit by removing the threat of shock and measuring continued avoidance. Task-related differences in brain activity in three regions of interest (the caudate, the putamen, and the medial orbitofrontal cortex) were tested at a statistical threshold set at habit formation in OCD patients, which was associated with hyperactivation in the caudate, was observed. Activation in this region was also associated with subjective ratings of increased urge to perform habits. The OCD group, as a whole, showed hyperactivation in the medial orbitofrontal cortex during the acquisition of avoidance; however, this did not relate directly to habit formation. OCD patients exhibited excessive habits that were associated with hyperactivation in a key region implicated in the pathophysiology of OCD, the caudate nucleus. Previous studies indicate that this region is important for goal-directed behavior, suggesting that habit-forming biases in OCD may be a result of impairments in this system, rather than differences in the buildup of stimulus-response habits themselves.

  6. Clinical Significance of F 18 FP CIT Dual Time Point PET Imaging in Idiopathic Parkinson's Disease

    International Nuclear Information System (INIS)

    Oh, Jin Kyoung; Yoo, Ik Dong; Seo, Ye Young; Chung, Youg An; Yoo, Ie Ryung; Kim, Sung Hoon; Song, In Uk

    2011-01-01

    The purpose of this study was to investigate the diagnostic value of dual time point F 18 FP CIT PET imaging in idiopathic Parkinson's disease (PD). Twenty four patients with PD (mean age 69.6) and 18 healthy people (mean age 70.26) underwent two sequential PET/CT scans (dual time point imaging) at 90 and 210 min after F 18 FP CIT injection. Tracer activity of region of interest was measured in the caudate, putamen and a reference region in the brain from both time points. The outcome parameter was the striatooccipital ratio (SOR). Normal SOR values were obtained in the control group. The percent change in tracer activity between 90 and 210 min images was calculated. The SOR values and the percent change in tracer activity were compared between the patients and healthy control group. The SOR values for the caudate, anterior and posterior putamen at both 90 and 210 min images were significantly reduced in the patients with PD. The lowest P value was obtained for the anterior and posterior putamen (p<0.001) at both time points. There were significant differences of the percent change in tracer activity for the anterior and posterior putamen in the two groups (p=0.01) F 18 FP CIT PET scans at 90 and 210 min after injection are both able to diagnose PD. Therefore, the 90 min image by itself in sufficient for diagnosing PD.

  7. Comparison of the performance of {sup 18}F-FP-CIT brain PET/MR and simultaneous PET/CT: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Don; Chun, Kyung Ah [Dept. of Nuclear Medicine, Yeungnam University Hospital, Daegu (Korea, Republic of)

    2016-09-15

    {sup 18}F-FP-CIT [{sup 1'}8F-fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane] has been well established and used for the differential diagnosis of atypical parkinsonian disorders. Recently, combined positron emission tomography (PET)/magnetic resonance (MR) was proposed as a viable alternative to PET/computed tomography (CT). The aim of this study was to compare the performances of conventional {sup 18}F-FP-CIT brain PET/CT and simultaneous PET/MR by visual inspection and quantitative analysis. Fifteen consecutive patients clinically suspected of having Parkinson's disease were recruited for the study.{sup 18}F-FP-CIT PET was performed during PET/CT and PET/MR. PET/CT image acquisition was started 90 min after intravenous injection of {sup 18}F-FP-CIT and then PET/MR images were acquired. Dopamine transporter (DAT) density in bilateral striatal subregions was assessed visually. Quantitative analyses were performed on bilateral striatal volumes of interest (VOIs) using average standardized uptake values (SUVmeans). Intraclass correlation coefficients (ICCs) and their 95 % confidence intervals (CIs) were assessed to compare PET/CT and PET/MR data. Bland-Altman plots were drawn to perform method-comparisons. All subjects showed a preferential decrease in DAT binding in the posterior putamen (PP), with relative sparing of the ventral putamen (VP). Bilateral striatal subregional binding ratio (BR) determined PET/CT and PET/MR demonstrated close interequipment correspondence (BRright caudate - ICC, 0.944; 95 % CI, 0.835-0.981, BRleft caudate - ICC, 0.917; 95 % CI, 0.753-0.972, BRright putamen - ICC, 0.976; 95 % CI, 0.929-0.992 and BRleft putamen - ICC, 0.970; 95 % CI, 0.911-0.990, respectively), and Bland-Altman plots showed interequipment agreement between the two modalities. It is known that MR provides more information about anatomical changes associated with brain diseases and to enable the anatomical allocations of

  8. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  9. Spectrum of MRI findings in 58 patients with methanol intoxication: Long-term visual and neurological correlation

    Directory of Open Access Journals (Sweden)

    Sahar M. Elkhamary

    2016-09-01

    Conclusion: Spectrum of residual MRI Findings in patients who survived methanol poisoning included bilateral optic nerve atrophy and enhancement, bilateral putamen and caudate necrosis as well as subcortical white matter high SI at T2WI. Diffusion WI did not have additional value in chronic stage.

  10. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In response to hypoxia, tissues have to implement numerous mechanisms to enhance oxygen delivery, including the activation of angiogenesis. This work investigates the angiogenic response of the hypoxic caudate putamen after several recovery times. Adult Wistar rats were submitted to acute hypoxia and analysed after ...

  11. 75 FR 24428 - Spirodiclofen; Pesticide Tolerances

    Science.gov (United States)

    2010-05-05

    ... observed at terminal sacrifice in the chronic toxicity study. Cytoplasmic vacuolation in the adrenal cortex... mg/ kg/day; caudate putamen, parietal cortex, hippocampal gyrus, and dentate gyrus); there was no.... 601 et seq.) do not apply. This final rule directly regulates growers, food processors, food handlers...

  12. Multi-modal neuroimaging in premanifest and early Huntington's disease: 18 month longitudinal data from the IMAGE-HD study.

    Science.gov (United States)

    Domínguez D, Juan F; Egan, Gary F; Gray, Marcus A; Poudel, Govinda R; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C; Georgiou-Karistianis, Nellie

    2013-01-01

    IMAGE-HD is an Australian based multi-modal longitudinal magnetic resonance imaging (MRI) study in premanifest and early symptomatic Huntington's disease (pre-HD and symp-HD, respectively). In this investigation we sought to determine the sensitivity of imaging methods to detect macrostructural (volume) and microstructural (diffusivity) longitudinal change in HD. We used a 3T MRI scanner to acquire T1 and diffusion weighted images at baseline and 18 months in 31 pre-HD, 31 symp-HD and 29 controls. Volume was measured across the whole brain, and volume and diffusion measures were ascertained for caudate and putamen. We observed a range of significant volumetric and, for the first time, diffusion changes over 18 months in both pre-HD and symp-HD, relative to controls, detectable at the brain-wide level (volume change in grey and white matter) and in caudate and putamen (volume and diffusivity change). Importantly, longitudinal volume change in the caudate was the only measure that discriminated between groups across all stages of disease: far from diagnosis (>15 years), close to diagnosis (fractional anisotropy, FA), only longitudinal FA change was sensitive to group differences, but only after diagnosis. These findings further confirm caudate atrophy as one of the most sensitive and early biomarkers of neurodegeneration in HD. They also highlight that different tissue properties have varying schedules in their ability to discriminate between groups along disease progression and may therefore inform biomarker selection for future therapeutic interventions.

  13. Gender differences in brain activity toward unpleasant linguistic stimuli concerning interpersonal relationships: an fMRI study.

    Science.gov (United States)

    Shirao, Naoko; Okamoto, Yasumasa; Okada, Go; Ueda, Kazutaka; Yamawaki, Shigeto

    2005-10-01

    Women are more vulnerable to psychosocial stressors such as interpersonal conflicts than men, and are more susceptible to some psychiatric disorders. We hypothesized that there are differences in the brain activity of men and women while perceiving unpleasant linguistic stimuli concerning interpersonal relationships, and that they underlie the different sensitivity toward these stressful stimuli. We carried out a functional magnetic resonance imaging (fMRI) study on 13 young female adults and 13 young male adults who performed an emotional decision task including sets of unpleasant words concerning interpersonal relationships and sets of neutral words. In the women, the unpleasant words more significantly activated the bilateral caudate nuclei and left putamen than the neutral words. However, among the men, there was no difference in the level of activation of any brain area induced by the unpleasant or neutral word stimuli. Upon performing the task, there was a significant gender difference in brain activation. Moreover, among the female subjects, the activation in the bilateral caudate nuclei and left thalamus was negatively correlated with the average rating of pleasantness of the words concerning interpersonal conflicts by the subject. These results demonstrate gender differences in brain activity in processing unpleasant linguistic stimuli related to interpersonal conflicts. Our data suggest that the bilateral caudate nuclei and left putamen play an important role in the perception of words concerning interpersonal conflicts in women. The bilateral caudate nuclei and left thalamus may regulate a woman's sensitivity to unpleasant information about interpersonal difficulties.

  14. Sex linked recessive dystonia parkinsonism of Panay, Philippines (XDP).

    Science.gov (United States)

    Lee, L V; Munoz, E L; Tan, K T; Reyes, M T

    2001-12-01

    Sex linked dystonia parkinsonism (XDP), also referred to as "lubag" in American literature, was described in 1975 occurring endemically in Panay, Philippines. It is an adult onset, sex linked, predominantly male, severe, progressive movement disorder with high penetrance and a high frequency of generalisation. The movement disorder is characterised by dystonic movements, usually starting in the 3rd or 4th decade, spreading to generalisation within two to five years. The dystonia coexists or is replaced by parkinsonism usually beyond the 10th year of illness. No treatment has been found to be effective. Neuroimaging shows caudate and putamenal atrophy in patients reaching the parkinsonian stage. Neuropathology reveals pronounced atrophy of the caudate and putamen, mostly in the cases with long standing illness. The sex linked pattern of inheritance has been established. Genetic studies have located the affected gene (DYT3) to Xq13.1, with one group mapping the XDP gene to a < 350 kb locus in the DXS 7117-DXS 559 region.

  15. 125I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-01-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated 125 I-iomazenil ( 125 I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of 125 I-iomazenil of the 3-DAY and 5-DAY showed that 125 I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p 125 I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress

  16. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  17. Autoradiographic analysis of the in vivo distribution of 3H-imipramine and 3H-desipramine in brain: Comparison to in vitro binding patterns

    International Nuclear Information System (INIS)

    Duncan, G.E.; Paul, I.A.; Fassberg, J.B.; Powell, K.R.; Stumpf, W.E.; Breese, G.R.

    1991-01-01

    Using high resolution autoradiographic techniques, the distribution of radioactivity in forebrain and brainstem was assessed after 4 injection of 3H-impramine or 3H-desipramine. Results were compared with regional binding of the drugs to brain sections in vitro. Similar topographic binding of 3H-imipramine and 3H-desipramine was observed in vitro among brain regions, except in the paraventricular nucleus of the hypothalamus and locus coeruleus, where binding was greater for 3H-desipramine. For both 3H-desipramine and 3H-imipramine, some brain regions that exhibited high binding in vitro also showed high accumulation after in vivo injection. However, certain regions that contained high densities of binding sites for the antidepressant drugs as measured by in vitro binding showed very low accumulation of radioactivity after in vivo treatment. Such regions included the dentate gyrus of the hippocampus, layer 1 of piriform cortex, caudate-putamen, pontine and midbrain central gray, and cerebellar granular layer. Compared to in vitro binding of the drugs, the distribution of imipramine and desipramine in vivo appears more anatomically selective. For imipramine, primary sites of action in vivo, as indicated by the topographic distribution in brain, appear to be the locus coeruleus, hippocampus, lateral septal nucleus, and amygdala. For desipramine, the greatest accumulation in vivo was found in the locus coeruleus, paraventricular nucleus of the hypothalamus, and anterior thalamic nuclei

  18. Ebselen (PZ-51) protects the Caudate putamen against hypoxia/ischemia induced neuronal damage.

    NARCIS (Netherlands)

    Knollema, S; Elting, JW; Dijkhuizen, RM; Nicolay, K; Korf, J; TerHorst, GJ

    1996-01-01

    Ebselen, a synthetic selenium-containing compound which exhibits glutathione peroxidase-like activity in vivo, is known for its beneficial effects on inflammation and tissue injury. Experiments were conducted to test whether ebselen dissolved in DiMethylSulfOxide (DMSO) could prevent damage in a rat

  19. Ebselen (PZ-51) protects the caudate putamen against hypoxia/ischemia induced neuronal damage

    NARCIS (Netherlands)

    Knollema, S.; Elting, J.W.; Dijkhuizen, R.M.; Nicolaij, K.; Korf, J.; Horst, ter G.J.

    1996-01-01

    Ebselen, a synthetic selenium-containing compound which exhibits glutathione peroxidase-like activity in vivo, is known for its beneficial effects on inflammation and tissue injury. Experiments were conducted to test whether ebselen dissolved in DiMethylSulfOxide (DMSO) could prevent damage in a rat

  20. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  1. Differentiation of dementia with lewy bodies from Alzheimer's disease using FDG PET and I-123-fluoropropyl-β-CIT SPECT

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Cho, Sang Soo; Lee, Jae Sung; Kim, Jung Eun; Kim, Sang Yun; Lee, Won Woo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Dementia with Lewy bodies (DLB) shares clinical and pathological features with Alzheimer's disease (AD) and Parkinson's disease. The differentiation of DLB from these disorders poses difficulties. We compared regional cerebral metabolic impairment and dopaminergic neuronal integrity between patients with DLB and AD using FDG PET and I-123-fluoropropyl-β-CIT (FP-CIT) SPECT, respectively, as measures for differential diagnosis. Fourteen clinically diagnosed DLB patients, 15 probable AD patients, and 12 age- and gender-matched healthy controls were studied with FDG PET and FP-CIT SPECT. A voxel-wise comparison of PET images was performed using SPM99. A dopamine transporter (DAT) parameter V3 was calculated in striatal regions as (striatal VOIcerebellar VOI)/cerebellar VOI activity on SPECT images obtained 3 h after injection of 185 MBq FP-CIT. SPM analysis of PET images of DLB revealed hypometabolism bilaterally in the occipital cortices, lateral occipitotemporal gyri, cunei, caudate, and Thalami compared with controls, most pronounced in the occipital cortex compared with AD. In DLB, V3 in the caudate (1.07±0.55) and putamen (1.01±0.34) was significantly (P < 0.001) lower than in AD (2.73±0.75 and 3.17±0.88, respectively) and controls (3.00±0.45 and 3.11±0.31, respectively). There was no significant difference in striatal V3 between AD and controls. The ratio of putamen-to-caudate V3 was not significantly different between DLB (1.04±0.32) and controls (1.05±0.12), indicating that DATs in the caudate and putamen are evenly affected in DLB. In DLB, there was a significant correlation between striatal V3 and MMSE score (rho=0.97, P<0.01). These data demonstrate different biochemical features between DLB and AD, in terms of regional brain metabolism and dopaminergic neuronal integrity. Measures of the glucose metabolism in the occipital cortex and the striatal DAT density may be informative diagnostic aids to distinguish DLB from AD

  2. Default-mode network and deep gray-matter analysis in neuromyelitis optica patients.

    Science.gov (United States)

    Rueda-Lopes, Fernanda C; Pessôa, Fernanda M C; Tukamoto, Gustavo; Malfetano, Fabíola Rachid; Scherpenhuijzen, Simone Batista; Alves-Leon, Soniza; Gasparetto, Emerson L

    2018-02-20

    The aim of our study was to detect functional changes in default-mode network of neuromyelitis optica (NMO) patients using resting-state functional magnetic resonance images and the evaluation of subcortical gray-matter structures volumes. NMO patients (n=28) and controls patients (n=19) were enrolled. We used the integrated registration and segmentation tool, part of FMRIB's Software Library (FSL) to segment subcortical structures including the thalamus, caudate nucleus, putamen, hippocampus and amygdalae. Resting-state functional magnetic resonance images were post-processed using the Multivariate Exploratory Linear Optimized Decomposition into Independent Components, also part of FSL. Average Z-values extracted from the default-mode network were compared between patients and controls using t-tests (P values default-mode network of patients compared to controls, notably in the precuneus and right hippocampus (corrected Pdefault-mode network. The hyperactivity of certain default-mode network areas may reflect cortical compensation for subtle structural damage in NMO patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Thalamus and Language: What do we know from vascular and degenerative pathologies.

    Science.gov (United States)

    Moretti, Rita; Caruso, Paola; Crisman, Elena; Gazzin, Silvia

    2018-01-01

    Language is a complex cognitive task that is essential in our daily life. For decades, researchers have tried to understand the different role of cortical and subcortical areas in cerebral language representations and language processing. Language-related cortical zones are richly interconnected with other cortical regions (particularly via myelinated fibre tracts), but they also participate in subcortical feedback loops within the basal ganglia (caudate nucleus and putamen) and thalamus. The most relevant thalamic functions are the control and adaptation of cortico-cortical connectivity and bandwidth for information exchange. Despite having the knowledge of thalamic and basal ganglionic involvement in linguistic operations, the specific functions of these subcortical structures remain rather controversial. The aim of this study is to better understand the role of thalamus in language network, exploring the functional configuration of basal network components. The language specificity of subcortical supporting activity and the associated clinical features in thalamic involvement are also highlighted.

  4. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington's disease

    Directory of Open Access Journals (Sweden)

    Piotr Hadaczek

    2016-01-01

    Full Text Available Huntington's disease (HD is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV, AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP, with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease.

  5. The application of PET, SPECT and MRS in Parkinson's disease

    International Nuclear Information System (INIS)

    Dong Aisheng; Tian Jianming

    2005-01-01

    PET and SPECT provide the means to studying in vivo the neurochemical, hemodynamic or metabolic consequences of the degeneration of the nigrostriatal dopamineric system in Parkinson's disease (PD). Activation studies using cerebral blood flow and metabolism measurements during a motor task reveal an impaired ability to activate the supplementary motor area and dorsolateral prefrontal cortex in PD. The extent of striatal dopaminergic denervation can be quantified with PET and SPECT. Striatal uptake of 18 F-dopa is markedly decreased in PD, more in the putamen than in the caudate nucleus, and inversely correlates with the severity of motor signs and with duration of disease. PET and SPECT make possible the assessment by noninvasive means of the changes in dopamine receptor density. Meanwhile, MRS can reveal changes in concentration of several hydrogenate and phosphoric compounds in the brain. The functional information of brain in PD can be obtained with these complementary techniques. (authors)

  6. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder.

    Science.gov (United States)

    Hassel, Stefanie; Almeida, Jorge R; Frank, Ellen; Versace, Amelia; Nau, Sharon A; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2009-11-01

    The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. BD individuals scored significantly higher on these spectrum measures than healthy individuals (pright PFC activity to intense happy faces (pright caudate nucleus activity to neutral faces (pright ventral putamen activity to intense happy (pabuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD.

  7. Radioautographic localization of somatostatin-14 and somatostatin-28 binding sites in the rat brain

    International Nuclear Information System (INIS)

    Leroux, P.; Pelletier, G.

    1984-01-01

    Somatostatin-14 (S14) and its precursor, somatostatin-28 (S28), are widely distributed throughout the rat brain, suggesting that they could act as neurotransmitter or neuromodulator in the central nervous system. The present study was undertaken to study the localization of S14 and S28 receptors in the rat brain determined by ''in vitro'' radioautography. The study performed on slide mounted frozen brain section with iodinated S14 and S28 analogs revealed an identical distribution of binding sites for the two forms of somatostatin. A good correlation could be observed between receptor distribution and immunohistologically localized neuropeptides except for striatum and hypothalamus. However, receptors were not detectable in the hypothalamus and were found in low concentration in the caudate-putamen nucleus, two regions containing high amounts of S28 and S14, suggesting a high occupancy of receptors in these areas by endogenous peptides or an inverse correlation between receptor and peptide concentrations

  8. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  9. PET evaluation of the relationship between D2 receptor binding and glucose metabolism in patients with parkinsonism

    International Nuclear Information System (INIS)

    Nakagawa, Makoto; Kuwabara, Yasuo; Taniwaki, Takayuki; Koga, Hirofumi; Kaneko, Koichiro; Hayashi, Kazutaka; Kira, Jun-ichi; Honda, Hiroshi; Sasaki, Masayuki

    2005-01-01

    The objective of this study was to clarify the relationship between D 2 receptor binding and the cerebral metabolic rate for glucose (CMRGlu) in patients with parkinsonism, we simultaneously measured both of these factors, and then compared the results. The subjects consisted of 24 patients: 9 with Parkinson's disease (PD), 3 with Juvenile Parkinson's disease (JPD), 9 with multiple system atrophy (MSA), and 3 with progressive supranuclear palsy (PSP). The striatal D 2 receptor binding was measured by the C-11 raclopride transient equilibrium method. CMRGlu was investigated by the F-18 fluorodeoxyglucose autoradiographic method. The D 2 receptor binding in both the caudate nucleus and putamen showed a positive correlation with the CMRGlu in the PD-JPD group, but the two parameters demonstrated no correlation in the MSA-PSP group. The left/right (L/R) ratio of D 2 receptor binding in the putamen showed a positive correlation with that of CMRGlu in the MSA-PSP group, while the two demonstrated no correlation in the PD-JPD group. Our PET study showed striatal D 2 receptor binding and the CMRGlu to be closely related in patients with parkinsonism, even though the results obtained using the L/R ratios tended to differ substantially from those obtained using absolute values. The reason for this difference is not clear, but this finding may reflect the pathophysiology of these disease entities. (author)

  10. Is the spatial distribution of brain lesions associated with closed-head injury predictive of subsequent development of attention-deficit/hyperactivity disorder? Analysis with brain-image database

    Science.gov (United States)

    Herskovits, E. H.; Megalooikonomou, V.; Davatzikos, C.; Chen, A.; Bryan, R. N.; Gerring, J. P.

    1999-01-01

    PURPOSE: To determine whether there is an association between the spatial distribution of lesions detected at magnetic resonance (MR) imaging of the brain in children after closed-head injury and the development of secondary attention-deficit/hyperactivity disorder (ADHD). MATERIALS AND METHODS: Data obtained from 76 children without prior history of ADHD were analyzed. MR images were obtained 3 months after closed-head injury. After manual delineation of lesions, images were registered to the Talairach coordinate system. For each subject, registered images and secondary ADHD status were integrated into a brain-image database, which contains depiction (visualization) and statistical analysis software. Using this database, we assessed visually the spatial distributions of lesions and performed statistical analysis of image and clinical variables. RESULTS: Of the 76 children, 15 developed secondary ADHD. Depiction of the data suggested that children who developed secondary ADHD had more lesions in the right putamen than children who did not develop secondary ADHD; this impression was confirmed statistically. After Bonferroni correction, we could not demonstrate significant differences between secondary ADHD status and lesion burdens for the right caudate nucleus or the right globus pallidus. CONCLUSION: Closed-head injury-induced lesions in the right putamen in children are associated with subsequent development of secondary ADHD. Depiction software is useful in guiding statistical analysis of image data.

  11. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  12. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  13. Diagnosis of essential tremor vs. Parkinson's disease: NeuroSPECT by means of Trodat-1 Tc99m, a marker of Dopamine Transporter

    International Nuclear Information System (INIS)

    Mena, I.; Diaz, F.

    2002-01-01

    Background Information. We have recently reported that NeuroSPECT (NSP) of the Dopamine Transporter (DAT) is a highly sensitive method for early diagnosis of Parkinson's disease. Objectives. To evaluate the sensitivity of NSP of DAT in patients with essential tremor (E.T.) and compare them with parkinsonian patients (pts.) and normal controls, in order to assess the sensitivity to detect symptomatic impairment of concentration of DAT in Parkinson's Disease (PD) and normality in essential tremor, thus becoming an important diagnostic tool for this differential clinical diagnosis. Materials and Methods. The present study concerns 13 patients with essential tremor (E.T.), 20 pts. with Parkinson's Disease (P.D.). The ET pts, 5/13 were female and there mean age was 62 y. The PD pts age 62±11 years. The UPDRS V was 1, mean evolution, of 3.0 years, 5/20 were females. The average UPDRS III was 14,. They were compared with 25 healthy controls, 20/25 females, mean age was 54±14 years. The mean age of 13 E.T. pts was 60 y. (range 24-81 y). At onset of E.T. the mean age was 40 y. ( range 5-67 y.) 7 pts. were classified as sporadic tremor and 6 pts. as familial tremor. The frequency of tremor was 6.4 cycles/sec and the amplitude fluctuated between moderate and very intense. 8/13 pts suffered prolongation of postural tremor into resting tremor, while 3 of them had been diagnosed as P.D. at other Institutions. 3/13 pts had postural and brachial tremor, head tremor(5/13 pts.) voice or chin tremor in 1/13 pts. 3/13 pts suffered impairment of mild postural tremor during writing, eating or drinking. Three-dimensional images of the distribution of DAT in brain were gathered 4 hours after iv. injection of 30 mCi of Trodat-1 Tc 99m. Results. In normal controls there is maximal concentration of DAT in caudate and putamen. We establish a comparison with the occipital cortex where there is mild non specific concentration of DAT. In 13 pts. with Essential Tremor there was no significant

  14. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  15. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  16. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  17. The visual corticostriatal loop through the tail of the caudate: Circuitry and function

    Directory of Open Access Journals (Sweden)

    Carol A Seger

    2013-12-01

    Full Text Available Although high level visual cortex projects to a specific region of the striatum, the tail of the caudate, and participates in corticostriatal loops, the function of this visual corticostriatal system is not well understood. This article first reviews what is known about the anatomy of the visual corticostriatal loop across mammals, including rodents, cats, monkeys, and humans. Like other corticostriatal systems, the visual corticostriatal system includes both closed loop components (recurrent projections that return to the originating cortical location and open loop components (projections that terminate in other neural regions. The article then reviews what previous empircal research has shown about the function of the tail of the caudate. The article finally addresses the possible functions of the closed and open loop connections of the visual loop in the context of theories and computational models of corticostriatal function.

  18. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  19. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua

    2015-12-05

    Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH.

  20. Different loss of dopamine transporter according to subtype of multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Won [Keimyung University Dongsan Medical Center, Department of Nuclear Medicine, Daegu (Korea, Republic of); Keimyung University, Department of Nuclear Medicine, School of Medicine, Jung-gu, Daegu (Korea, Republic of); Kim, Jae Seung; Oh, Minyoung; Oh, Jungsu S.; Lee, Sang Joo; Oh, Seung Jun [University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Songpa-gu, Seoul (Korea, Republic of); Chung, Sun Ju; Lee, Chong Sik [University of Ulsan College of Medicine, Department of Neurology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The aim of this study was to evaluate whether striatal dopamine transporter (DAT) loss as measured by {sup 18}F-fluorinated-N-3-fluoropropyl-2-b-carboxymethoxy-3-b-(4-iodophenyl) nortropane ([{sup 18}F]FP-CIT) PET differs according to the metabolic subtype of multiple system atrophy (MSA) as assessed by [{sup 18}F]FDG PET. This retrospective study included 50 patients with clinically diagnosed MSA who underwent [{sup 18}F]FP-CIT and [{sup 18}F]FDG brain PET scans. The PET images were analysed using 12 striatal subregional volume-of-interest templates (bilateral ventral striatum, anterior caudate, posterior caudate, anterior putamen, posterior putamen, and ventral putamen). The patients were classified into three metabolic subtypes according to the [{sup 18}F]FDG PET findings: MSA-P{sub m} (striatal hypometabolism only), MSA-mixed{sub m} (both striatal and cerebellar hypometabolism), and MSA-C{sub m} (cerebellar hypometabolism only). The subregional glucose metabolic ratio (MR{sub gluc}), subregional DAT binding ratio (BR{sub DAT}), and intersubregional ratio (ISR{sub DAT}; defined as the BR{sub DAT} ratio of one striatal subregion to that of another striatal subregion) were compared according to metabolic subtype. Of the 50 patients, 13 presented with MSA-P{sub m}, 16 presented with MSA-mixed{sub m}, and 21 presented with MSA-C{sub m}. The BR{sub DAT} of all striatal subregions in the MSA-P{sub m} and MSA-mixed{sub m} groups were significantly lower than those in the MSA-C{sub m} group. The posterior putamen/anterior putamen ISR{sub DAT} and anterior putamen/ventral striatum ISR{sub DAT} in the MSA-P{sub m} and MSA-mixed{sub m} groups were significantly lower than those in the MSA-C{sub m} group. Patients with MSA-P{sub m} and MSA-mixed{sub m} showed more severe DAT loss in the striatum than patients with MSA-C{sub m}. Patients with MSA-C{sub m} had more diffuse DAT loss than patients with MSA-P{sub m} and MSA-mixed{sub m}. (orig.)

  1. Multi-modal neuroimaging in premanifest and early Huntington's disease: 18 month longitudinal data from the IMAGE-HD study.

    Directory of Open Access Journals (Sweden)

    Juan F Domínguez D

    Full Text Available IMAGE-HD is an Australian based multi-modal longitudinal magnetic resonance imaging (MRI study in premanifest and early symptomatic Huntington's disease (pre-HD and symp-HD, respectively. In this investigation we sought to determine the sensitivity of imaging methods to detect macrostructural (volume and microstructural (diffusivity longitudinal change in HD. We used a 3T MRI scanner to acquire T1 and diffusion weighted images at baseline and 18 months in 31 pre-HD, 31 symp-HD and 29 controls. Volume was measured across the whole brain, and volume and diffusion measures were ascertained for caudate and putamen. We observed a range of significant volumetric and, for the first time, diffusion changes over 18 months in both pre-HD and symp-HD, relative to controls, detectable at the brain-wide level (volume change in grey and white matter and in caudate and putamen (volume and diffusivity change. Importantly, longitudinal volume change in the caudate was the only measure that discriminated between groups across all stages of disease: far from diagnosis (>15 years, close to diagnosis (<15 years and after diagnosis. Of the two diffusion metrics (mean diffusivity, MD; fractional anisotropy, FA, only longitudinal FA change was sensitive to group differences, but only after diagnosis. These findings further confirm caudate atrophy as one of the most sensitive and early biomarkers of neurodegeneration in HD. They also highlight that different tissue properties have varying schedules in their ability to discriminate between groups along disease progression and may therefore inform biomarker selection for future therapeutic interventions.

  2. Early-stage [123I]β-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Stoffers, Diederick; Booij, Jan; Bosscher, Lisette; Winogrodzka, Ania; Wolters, Erik C.; Berendse, Henk W.

    2005-01-01

    Previous studies using dopamine transporter single-photon emission computed tomography (SPECT) to try and distinguish between patients with idiopathic Parkinson's disease (IPD) and patients with atypical parkinsonian syndromes (APS) have mainly focussed on patients with an already established clinical diagnosis of several years' duration. Differences in the pattern of striatal involvement between IPD and APS have been found in only few studies. We hypothesized that distinguishing SPECT features might be most pronounced at an early disease stage, and the purpose of the present study was to investigate this hypothesis. The study included 72 patients with an initial clinical diagnosis of IPD, supported by decreased striatal [ 123 I]β-CIT binding on baseline SPECT. In ten patients, the diagnosis was changed to APS over a mean follow-up period of 62 months. We retrospectively compared the patterns of striatal involvement on the baseline SPECT scans between the group of patients (re)diagnosed with APS and the remaining 62 patients in whom a diagnosis of IPD was maintained. In the group of patients with APS, baseline [ 123 I]β-CIT binding in both caudate nuclei was lower than in the group of patients with IPD. In addition, putamen to caudate binding ratios were higher in the group of APS patients. In spite of these differences, individual binding values showed considerable overlap between the groups. [ 123 I]β-CIT SPECT scanning in early-stage, untreated parkinsonian patients revealed a relative sparing of the caudate nucleus in patients with IPD as compared to patients later (re)diagnosed with APS. Nevertheless, the pattern of striatal involvement appears to have little predictive value for a later re-diagnosis of APS in individual cases. (orig.)

  3. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  4. Evaluating metabolites in patients with major depressive disorder who received mindfulness-based cognitive therapy and healthy controls using short echo MRSI at 7 Tesla.

    Science.gov (United States)

    Li, Yan; Jakary, Angela; Gillung, Erin; Eisendrath, Stuart; Nelson, Sarah J; Mukherjee, Pratik; Luks, Tracy

    2016-06-01

    Our aim was to evaluate differences in metabolite levels between unmedicated patients with major depressive disorder (MDD) and healthy controls, to assess changes in metabolites in patients after they completed an 8-week course of mindfulness-based cognitive therapy (MBCT), and to exam the correlation between metabolites and depression severity. Sixteen patients with MDD and ten age- and gender-matched healthy controls were studied using 3D short echo-time (20 ms) magnetic resonance spectroscopic imaging (MRSI) at 7 Tesla. Relative metabolite ratios were estimated in five regions of interest corresponding to insula, anterior cingulate cortex (ACC), caudate, putamen, and thalamus. In all cases, MBCT reduced severity of depression. The ratio of total choline-containing compounds/total creatine (tCr) in the right caudate was significantly increased compared to that in healthy controls, while ratios of N-acetyl aspartate (NAA)/tCr in the left ACC, myo-inositol/tCr in the right insula, and glutathione/tCr in the left putamen were significantly decreased. At baseline, the severity of depression was negatively correlated with my-inositol/tCr in the left insula and putamen. The improvement in depression severity was significantly associated with changes in NAA/tCr in the left ACC. This study has successfully evaluated regional differences in metabolites for patients with MDD who received MBCT treatment and in controls using 7 Tesla MRSI.

  5. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    Science.gov (United States)

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  6. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  7. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.; Nelson, S.R.; Samson, F.E.; McDonough, J.H. Jr.

    1984-01-01

    [3H]Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturation curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration

  8. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.; Nelson, S.R.; Samson, F.E.; McDonough, J.H. Jr.

    1984-08-01

    (3H)Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturation curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration.

  9. The impact of caudate lobe resection on margin status and outcomes in patients with hilar cholangiocarcinoma: a multi-institutional analysis from the US Extrahepatic Biliary Malignancy Consortium.

    Science.gov (United States)

    Bhutiani, Neal; Scoggins, Charles R; McMasters, Kelly M; Ethun, Cecilia G; Poultsides, George A; Pawlik, Timothy M; Weber, Sharon M; Schmidt, Carl R; Fields, Ryan C; Idrees, Kamran; Hatzaras, Ioannis; Shen, Perry; Maithel, Shishir K; Martin, Robert C G

    2018-04-01

    The objective of this study was to determine the impact of caudate resection on margin status and outcomes during resection of extrahepatic hilar cholangiocarcinoma. A database of 1,092 patients treated for biliary malignancies at institutions of the Extrahepatic Biliary Malignancy Consortium was queried for individuals undergoing curative-intent resection for extrahepatic hilar cholangiocarcinoma. Patients who did versus did not undergo concomitant caudate resection were compared with regard to demographic, baseline, and tumor characteristics as well as perioperative outcomes. A total of 241 patients underwent resection for a hilar cholangiocarcinoma, of whom 85 underwent caudate resection. Patients undergoing caudate resection were less likely to have a final positive margin (P = .01). Kaplan-Meier curve of overall survival for patients undergoing caudate resection indicated no improvement over patients not undergoing caudate resection (P = .16). On multivariable analysis, caudate resection was not associated with improved overall survival or recurrence-free survival, although lymph node positivity was associated with worse overall survival and recurrence-free survival, and adjuvant chemoradiotherapy was associated with improved overall survival and recurrence-free survival. Caudate resection is associated with a greater likelihood of margin-negative resection in patients with extrahepatic hilar cholangiocarcinoma. Precise preoperative imaging is critical to assess the extent of biliary involvement, so that all degrees of hepatic resections are possible at the time of the initial operation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dopamine receptor and Gα(olf expression in DYT1 dystonia mouse models during postnatal development.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated.We used Dyt1 knock out (Dyt1 KO, Dyt1 ΔGAG knock-in (Dyt1 KI, and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT or human ΔGAG mutant allele (DYT1 hMT. D1R, D2R, and Gα(olf protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60 male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14 male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice.We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology.

  11. Assessment of bioaccumulation, neuropathology, and neurobehavior following subchronic (90 days) inhalation in Sprague-Dawley rats exposed to manganese phosphate.

    Science.gov (United States)

    Normandin, Louise; Carrier, Gaétan; Gardiner, Phillip F; Kennedy, Greg; Hazell, Alan S; Mergler, Donna; Butterworth, Roger F; Philippe, Suzanne; Zayed, Joseph

    2002-09-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese (Mn) compound added to unleaded gasoline. It has been suggested that the combustion products of MMT containing Mn, such as manganese phosphate, could cause neurological symptoms similar to Parkinson's disease in humans. The aim of this work was to investigate the exposure-response relationship of bioaccumulation, neuropathology, and neurobehavior following a subchronic inhalation exposure to manganese phosphate in Sprague-Dawley male rats. Rats were exposed 6 h/day, 5 days/week for 13 consecutive weeks at 30, 300, or 3000 microg/m(3) Mn phosphate and compared to controls. Some rats were implanted with chronic EMG electrodes in the gastrocnemius muscle of the hind limb to assess tremor at the end of Mn exposure. Spontaneous motor activity was measured for 36 h using a computerized autotrack system. Rats were then sacrificed by exsanguination and Mn level in different brain tissues and other organs was determined by instrumental neutron activation analysis. Neuronal cell counts were obtained by assessing the sum of five grid areas for the caudate/putamen and the sum of two adjacent areas for the globus pallidus. Increased manganese concentrations were observed in all tissues of the brain and was dose-dependent in olfactory bulb and caudate/putamen. In fact, beginning with the highest level of exposure (3000 microg/m(3)) and ending with the control group, Mn concentrations in the olfactory bulb were 2.47 vs 1.28 vs 0.77 vs 0.64 ppm (P Locomotor activity assessment and tremor assessment did not reveal in neurobehavioral changes between the groups. Our results reinforce the hypothesis that the olfactory bulb and caudate/putamen are the main brain tissues for Mn accumulation after subchronic inhalation exposure.

  12. The meninges contribute to the conditioned taste avoidance induced by neural cooling in male rats.

    Science.gov (United States)

    Wang, Yuan; Chambers, Kathleen C

    2002-08-21

    After consumption of a novel sucrose solution, temporary cooling of neural areas that mediate conditioned taste avoidance can itself induce conditioned avoidance to the sucrose. It has been suggested that this effect is either a result of inactivation of neurons in these areas or of cooling the meninges. In a series of studies, we demonstrated that cooling the outer layer of the meninges, the dura mater, does not contribute to the conditioned taste avoidance induced by cooling any of these areas. The present experiments were designed to determine whether the inner layers of the meninges are involved. If they are involved, then one would expect that cooling locations in the brain that do not mediate conditioned taste avoidance, such as the caudate putamen (CP), would induce conditioned taste avoidance as long as the meninges were cooled as well. One also would expect that cooling neural tissue without cooling the meninges would reduce the strength of the conditioned taste avoidance. Experiment 1 established that the temperature of the neural tissue and meninges around the cold probes implanted in the CP were cooled to temperatures that have been shown to block synaptic transmission. Experiment 2 demonstrated that cooling the caudate putamen and overlying cortex and meninges induced conditioned taste avoidance. In experiment 3, a circle of meninges was cut away so that the caudate putamen and overlying cortex could be cooled without cooling the meninges. The strength of the conditioned taste avoidance was substantially reduced, but it was not entirely eliminated. These data support the hypothesis that cooling the meninges contributes to the conditioned taste avoidance induced by neural cooling. They also allow the possibility that neural inactivation produces physiological changes that can induce conditioned taste avoidance. Copyright 2002 Elsevier Science B.V.

  13. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  14. Cerebral glucose utilization in pediatric neurological disorders determined by positron emission tomography

    International Nuclear Information System (INIS)

    Yanai, Kazuhiko; Tohoku Univ., Sendai; Iinuma, Kazuie; Miyabayashi, Shigeaki; Narisawa, Kuniaki; Tada, Keiya; Matsuzawa, Taiju; Tohoku Univ., Sendai; Ito, Masatoshi; Yamada, Kenji

    1987-01-01

    We measured local cerebral glucose utilization in 19 patients with Lennox-Gastaut syndrome (LG), partial seizures (PS), atypical and classical phenylketonuria (PKU), Leigh disease, and subacute sclerosing panencephalitis (SSPE), using positron emission tomography (PET). The mean values of regional glucose utilization in interictal scans of LG were significantly reduced in all brain regions when compared with that of PS (P<0.005). PET studies of glucose utilization in LG revealed more widespread hypometabolism than in PS. Two sibling with dihydropteridine reductase deficiency, a patient with classical PKU, and a boy with cytochrome c oxidase deficiency showed reduced glucose utilization in the caudate and putamen. A marked decrease in glucose utilization was found in the cortical gray matter of a patient with rapidly progressive SSPE, despite relatively preserved utilization in the caudate and putamen. The PET study of a patient with slowly progressive SSPE revealed patterns and values of glucose utilization similar to those of the control. Thus, PET provided a useful clue toward understanding brain dysfunction in LG, PS, PKU, Leigh disease, and SSPE. (orig.)

  15. Cerebral glucose utilization in pediatric neurological disorders determined by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Kazuhiko; Iinuma, Kazuie; Miyabayashi, Shigeaki; Narisawa, Kuniaki; Tada, Keiya; Matsuzawa, Taiju; Ito, Masatoshi; Yamada, Kenji

    1987-09-01

    We measured local cerebral glucose utilization in 19 patients with Lennox-Gastaut syndrome (LG), partial seizures (PS), atypical and classical phenylketonuria (PKU), Leigh disease, and subacute sclerosing panencephalitis (SSPE), using positron emission tomography (PET). The mean values of regional glucose utilization in interictal scans of LG were significantly reduced in all brain regions when compared with that of PS (P<0.005). PET studies of glucose utilization in LG revealed more widespread hypometabolism than in PS. Two sibling with dihydropteridine reductase deficiency, a patient with classical PKU, and a boy with cytochrome c oxidase deficiency showed reduced glucose utilization in the caudate and putamen. A marked decrease in glucose utilization was found in the cortical gray matter of a patient with rapidly progressive SSPE, despite relatively preserved utilization in the caudate and putamen. The PET study of a patient with slowly progressive SSPE revealed patterns and values of glucose utilization similar to those of the control. Thus, PET provided a useful clue toward understanding brain dysfunction in LG, PS, PKU, Leigh disease, and SSPE.

  16. The study of automatic brain extraction of basal ganglia based on atlas of Talairach in 18F-FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chantao; Guan Yihui; Zhao Jun; Lin Xiangtong; Wang Jian; Zhang Jiange; Zhang Lu

    2005-01-01

    Objective: To establish a method which can extract functional areas of the brain basal ganglia automatically. Methods: 18 F-fluorodeoxyglucose (FDG) PET images were spatial normalized to Talairach atlas space through two steps, image registration and image deformation. The functional areas were extracted from three dimension PET images based on the coordinate obtained from atlas; caudate and putamen were extracted and rendered, the grey value of the area was normalized by whole brain. Results: The normal ratio of left caudate head, body and tail were 1.02 ± 0.04, 0.92 ± 0.07 and 0.71 ± 0.03, the right were 0.98 ± 0.03, 0.87 ± 0.04 and 0.71 ± 0.01 respectively. The normal ratio of left and right putamen were 1.20 ± 0.06 and 1.20 ± 0.04. The mean grey value between left and right basal ganglia had no significant difference (P>0.05). Conclusion: The automatic functional area extracting method based on atlas of Talairach is feasible. (authors)

  17. Chemoembolization of Extrahepatic Collateral Arteries for Treatment of Hepatocellular Carcinoma in the Caudate Lobe of the Liver

    International Nuclear Information System (INIS)

    Woo, Sungmin; Kim, Hyo-Cheol; Chung, Jin Wook; Jung, Hyun-Seok; Hur, Saebeom; Lee, Myungsu; Jae, Hwan Jun

    2015-01-01

    PurposeThis study was designed to evaluate the efficacy and safety in performing chemoembolization of extrahepatic collateral arteries (EHC) for hepatocellular carcinoma (HCC) located in the caudate lobe.MethodsBetween January 2006 and November 2013, chemoembolization via EHC was performed in 35 patients with 35 caudate HCCs. Preprocedural and follow-up CT or MR scans, angiographic images, and medical records were reviewed retrospectively in consensus. Chi-square analysis was used to evaluate the relationship between tumor characteristics and type of EHC and that between tumor response and the characteristics of the tumor and chemoembolization.ResultsIn 31 (88.6 %) patients, EHCs supplying the caudate HCC originated from the right inferior phrenic artery (RIPA). The remaining four HCCs were supplied by the gastroduodenal artery, dorsal pancreatic artery, and right and left gastric arteries. Superselective catheterization of tumor-feeding vessels from the EHC was achieved in 27 patients (77.1 %). There were no major complications. Individual tumor response supplied by the EHC at follow-up contrast-enhanced CT were as follows: complete response (n = 18), partial response (n = 9), stable disease (n = 3), and progressive disease (n = 3). Non-RIPA EHCs were significantly more common in patients who had previously received chemoembolization via the RIPA (50 %) than those who had not (6.5 %; P = 0.01). There was no significant predictive factor associated with tumor response.ConclusionsHCC in the caudate lobe can be supplied by several EHCs. Chemoembolization via these arteries can be performed safely and effectively

  18. Chemoembolization of Extrahepatic Collateral Arteries for Treatment of Hepatocellular Carcinoma in the Caudate Lobe of the Liver

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sungmin; Kim, Hyo-Cheol, E-mail: angiointervention@gmail.com; Chung, Jin Wook; Jung, Hyun-Seok; Hur, Saebeom; Lee, Myungsu; Jae, Hwan Jun [Seoul National University Hospital, Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute (Korea, Republic of)

    2015-04-15

    PurposeThis study was designed to evaluate the efficacy and safety in performing chemoembolization of extrahepatic collateral arteries (EHC) for hepatocellular carcinoma (HCC) located in the caudate lobe.MethodsBetween January 2006 and November 2013, chemoembolization via EHC was performed in 35 patients with 35 caudate HCCs. Preprocedural and follow-up CT or MR scans, angiographic images, and medical records were reviewed retrospectively in consensus. Chi-square analysis was used to evaluate the relationship between tumor characteristics and type of EHC and that between tumor response and the characteristics of the tumor and chemoembolization.ResultsIn 31 (88.6 %) patients, EHCs supplying the caudate HCC originated from the right inferior phrenic artery (RIPA). The remaining four HCCs were supplied by the gastroduodenal artery, dorsal pancreatic artery, and right and left gastric arteries. Superselective catheterization of tumor-feeding vessels from the EHC was achieved in 27 patients (77.1 %). There were no major complications. Individual tumor response supplied by the EHC at follow-up contrast-enhanced CT were as follows: complete response (n = 18), partial response (n = 9), stable disease (n = 3), and progressive disease (n = 3). Non-RIPA EHCs were significantly more common in patients who had previously received chemoembolization via the RIPA (50 %) than those who had not (6.5 %; P = 0.01). There was no significant predictive factor associated with tumor response.ConclusionsHCC in the caudate lobe can be supplied by several EHCs. Chemoembolization via these arteries can be performed safely and effectively.

  19. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  20. Non-Motor Symptom Burdens Are Not Associated with Iron Accumulation in Early Parkinson's Disease: a Quantitative Susceptibility Mapping Study.

    Science.gov (United States)

    Shin, Chaewon; Lee, Seon; Lee, Jee Young; Rhim, Jung Hyo; Park, Sun Won

    2018-03-26

    Quantitative susceptibility mapping (QSM) has been used to measure iron accumulation in the deep nuclei of patients with Parkinson's disease (PD). This study examined the relationship between non-motor symptoms (NMSs) and iron accumulation in the deep nuclei of patients with PD. The QSM data were acquired from 3-Tesla magnetic resonance imaging (MRI) in 29 patients with early PD and 19 normal controls. The Korean version of the NMS scale (K-NMSS) was used for evaluation of NMSs in patients. The patients were divided into high NMS and low NMS groups. The region-of-interest analyses were performed in the following deep nuclei: red nucleus, substantia nigra pars compacta, substantia nigra pars reticulata, dentate nucleus, globus pallidus, putamen, and head of the caudate nucleus. Thirteen patients had high NMS scores (total K-NMSS score, mean = 32.1), and 16 had low NMS scores (10.6). The QSM values in the deep were not different among the patients with high NMS scores, low NMS scores, and controls. The QSM values were not correlated linearly with K-NMSS total score after adjusting the age at acquisition of brain MRI. The study demonstrated that the NMS burdens are not associated with iron accumulation in the deep nuclei of patients with PD. These results suggest that future neuroimaging studies on the pathology of NMSs in PD should use more specific and detailed clinical tools and recruit PD patients with severe NMSs. © 2018 The Korean Academy of Medical Sciences.

  1. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  2. The importance of complete excision of the caudate lobe in resection of hilar cholangiocarcinoma

    NARCIS (Netherlands)

    Dinant, Sander; Gerhards, Michael F.; Busch, Olivier R. C.; Obertop, Hugo; Gouma, Dirk J.; van Gulik, Thomas M.

    2005-01-01

    Background: The numbers of margin-negative resections and survival times have greatly improved because of a more aggressive surgical approach to resectable hilar cholanciocarcinoma (Klatskin tumour). It was shown initially by Japanese authors that complete resection of the caudate lobe together with

  3. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  4. Longitudinal Study of Gray Matter Changes in Parkinson Disease.

    Science.gov (United States)

    Jia, X; Liang, P; Li, Y; Shi, L; Wang, D; Li, K

    2015-12-01

    The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. The observed progressive changes in gray matter volume in Parkinson disease may provide

  5. [11C]d-threo-methylphenidate PET in patients with Parkinson's disease and essential tremor

    International Nuclear Information System (INIS)

    Breit, S.; Reimold, M.; Reischl, G.; Klockgether, T.; Wuellner, U.

    2006-01-01

    Twenty Parkinson's disease (PD) patients, 6 patients with essential tremor and 10 healthy controls were studied with the dopamine transporter ligand [ 11 C]d-threo-methylphenidate ([ 11 C]dMP) and positron emission tomography (PET) to assess dopamine terminal loss in relation to disease duration and motor disability. Dopamine transporter availability was expressed as [11C]dMP binding potential (BP dMP ) in percentage of the mean of healthy controls. In PD patients (age at onset 57.7 ± 8.9 ys; disease duration 5.2 ± 3.3 ys; UPDRS motor score 24.2 ± 9.8; Hoehn and Yahr 2.1 ± 0.8; mean ± SD) BP dMP was reduced to 30 % (range: 11 - 55 %) in the putamen and 52 % (range: 14 - 96 %) in the caudate nucleus. BPdMP in the putamen closely correlated with the UPDRS motor score (r = -0.79, p dMP . Interestingly, when plotted over disease duration, PD patients with severe asymmetry of symptoms showed significantly lower BP dMP in the contralateral putamen (exponential fit: 34 % at onset) than the other PD patients (41 % at onset), indicating a different symptomatic threshold of these subgroups and an even closer correlation with the hypothetical 'true' disease duration. The exponential fit across all patients indicated a mean symptomatic threshold of 37 % contra- and 62 % ipsilateral, corresponding with an observed mean BP dMP of 51 % (average contra- and ipsilateral) in those patients with disease duration less than one year. No differences in BP dMP were observed between patients with essential tremor and healthy controls. [ 11 C]dMP appears to be a useful and sensitive marker of dopaminergic dysfunction in PD and can be used to assess and monitor disease severity. (author)

  6. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  7. Drug-related cue induced craving and the correlation between the activation in nucleus accumbens and drug craving: a fMRI study on heroin addicts

    International Nuclear Information System (INIS)

    Wang Yarong; Yang Lanying; Li Qiang; Yang Weichuan; Du Pang; Wang Wei

    2010-01-01

    Objective: To explore the neural mechanism underlying the craving of heroin addicts induced by picture-cue and the correlation between the brain activation degree in nucleus accumbens (NAc)/ the ventral striatum and the scores of patients self-report craving. Methods: Twelve active heroin addicts and 12 matched healthy controls underwent fMRI scan while viewing drug-related pictures and neutral pictures presented in a block design paradigm after anatomical scanning in GE 3.0 T scanner. The fMRI data were analyzed with SPM 5. The change of craving scores was tested by Wilcoxon signed rank test. The Pearson correlation between the activation of NAc/the ventral striatum and the heroin craving score was tested by SPSS 13.0. Results: The craving scores of heroin addicts ranged from 0 to 3.70 (median 0.15) before exposed to drug cue and 0 to 5.10 (median 3.25) after viewing drug-related pictures and showed statistical significance (Z=-2.666, P<0.05). There were 16 activated brain areas when heroin dependent patients exposed to visual drug-related cue vs. neutral visual stimuli. The activation brain regions belonged to two parts, one was limbic system (amygdale, hippocampus, putamen, anterior cingulate cortex and caudate), another was brain cortex (middle frontal cortex, inferior frontal cortex, precentral gyrus, middle temporal cortex, inferior temporal cortex, fusiform gyrus, precuneus and middle occipital gyrus). The MR signal activation magnitude of heroin addicts ranged from 0.19 to 3.50. The result displayed a significant positive correlation between the cue-induced fMRI activation in NAc/the ventral striatum and heroin craving severity (r=0.829, P<0.05). Conclusion: Heroin shared the same neural circuitry in part with other drugs of abuse for cue-induced craving, including brain reward circuitry, visualspatial attention circuit and working memory region. In addition, the dysfunction of NAc/the ventral striatum may attribute to heroin-related cue induced craving

  8. Early-stage [{sup 123}I]{beta}-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Stoffers, Diederick [VU University Medical Center, Institute for Clinical and Experimental Neurosciences, P.O. Box 7057, MB, Amsterdam (Netherlands); Vrije Universiteit, Department of Clinical Neuropsychology, Amsterdam (Netherlands); Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center (Netherlands); Bosscher, Lisette; Winogrodzka, Ania; Wolters, Erik C.; Berendse, Henk W. [VU University Medical Center, Institute for Clinical and Experimental Neurosciences, P.O. Box 7057, MB, Amsterdam (Netherlands)

    2005-06-01

    Previous studies using dopamine transporter single-photon emission computed tomography (SPECT) to try and distinguish between patients with idiopathic Parkinson's disease (IPD) and patients with atypical parkinsonian syndromes (APS) have mainly focussed on patients with an already established clinical diagnosis of several years' duration. Differences in the pattern of striatal involvement between IPD and APS have been found in only few studies. We hypothesized that distinguishing SPECT features might be most pronounced at an early disease stage, and the purpose of the present study was to investigate this hypothesis. The study included 72 patients with an initial clinical diagnosis of IPD, supported by decreased striatal [{sup 123}I]{beta}-CIT binding on baseline SPECT. In ten patients, the diagnosis was changed to APS over a mean follow-up period of 62 months. We retrospectively compared the patterns of striatal involvement on the baseline SPECT scans between the group of patients (re)diagnosed with APS and the remaining 62 patients in whom a diagnosis of IPD was maintained. In the group of patients with APS, baseline [{sup 123}I]{beta}-CIT binding in both caudate nuclei was lower than in the group of patients with IPD. In addition, putamen to caudate binding ratios were higher in the group of APS patients. In spite of these differences, individual binding values showed considerable overlap between the groups. [{sup 123}I]{beta}-CIT SPECT scanning in early-stage, untreated parkinsonian patients revealed a relative sparing of the caudate nucleus in patients with IPD as compared to patients later (re)diagnosed with APS. Nevertheless, the pattern of striatal involvement appears to have little predictive value for a later re-diagnosis of APS in individual cases. (orig.)

  9. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    Science.gov (United States)

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuichi; Kuwabara, Yasuo; Sasaki, Masayuki; Fukumura, Toshimitsu; Masuda, Kouji; Shima, Fumio; Kato, Motohiro (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-12-01

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with [sup 18]F-Dopa and [sup 18]F-FDG respectively. The [sup 18]F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The [sup 18]F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal [sup 18]F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The [sup 18]F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of [sup 18]F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the [sup 18]F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author).

  11. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Ryan A. Townley

    Full Text Available Background: Idiopathic normal pressure hydrocephalus (iNPH is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders. Methods: We retrospectively compared 18F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD, Dementia with Lewy Bodies (DLB and Parkinson's Disease Dementia (PDD, and behavioral variant frontotemporal dementia (bvFTD. Partial volume corrected and uncorrected images were reviewed separately. Results: Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction. Conclusions: In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation. Keywords: FDG-PET, Normal pressure hydrocephalus, Hypometabolism, Caudate, Biomarker

  12. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuichi; Kuwabara, Yasuo; Sasaki, Masayuki; Fukumura, Toshimitsu; Masuda, Kouji; Shima, Fumio; Kato, Motohiro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1992-12-01

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with [sup 18]F-Dopa and [sup 18]F-FDG respectively. The [sup 18]F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The [sup 18]F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal [sup 18]F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The [sup 18]F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of [sup 18]F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the [sup 18]F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author).

  13. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum

    Science.gov (United States)

    Fernandez-Ruiz, Juan; Wang, Jin; Aigner, Thomas G.; Mishkin, Mortimer

    2001-01-01

    Visual habit formation in monkeys, assessed by concurrent visual discrimination learning with 24-h intertrial intervals (ITI), was found earlier to be impaired by removal of the inferior temporal visual area (TE) but not by removal of either the medial temporal lobe or inferior prefrontal convexity, two of TE's major projection targets. To assess the role in this form of learning of another pair of structures to which TE projects, namely the rostral portion of the tail of the caudate nucleus and the overlying ventrocaudal putamen, we injected a neurotoxin into this neostriatal region of several monkeys and tested them on the 24-h ITI task as well as on a test of visual recognition memory. Compared with unoperated monkeys, the experimental animals were unaffected on the recognition test but showed an impairment on the 24-h ITI task that was highly correlated with the extent of their neostriatal damage. The findings suggest that TE and its projection areas in the ventrocaudal neostriatum form part of a circuit that selectively mediates visual habit formation. PMID:11274442

  14. Dopaminreceptorscintigraphy in Parkinson's disease - Clinical correlation

    International Nuclear Information System (INIS)

    Riklund Aahlstroem, K.E.; Hietala, S.-O.; Johansson, F.

    2002-01-01

    Parkinson's disease is a severe, progressive neuro degenerative disorder which is characterised by a degeneration of the dopamine containing cells and loss of dopamine transporters (DA) in substantia nigra. Earlier 123 I-β-CIT SPECT studies have demonstrated this loss of DA content in Parkinson's disease. Recently a new radioligand 123 I-FP-CIT, with faster kinetics than b-CIT became available for imaging of the DA transporter. The applicability of this radioligand was tested in a large clinical material with early and advanced Parkinson's disease using a one day protocol. 123 I-FP-CIT uptake was decreased in patients with Parkinson's disease and this was seen three hours after injection of the radioligand. In the Parkinson's disease group the uptake in the putamen was reduced more than in the caudate nucleus. Specific to non-specific striatal uptake ratios correlated with the Hoehn and Yahr stage. It appeared that 123 I-FP-CIT SPECT allows a significant discrimination between patients with Parkinson's disease and other movement disorders. The scintigraphic observations were correlated to clinical findings. The results will be presented and discussed

  15. Dopamine receptors in the Parkinsonian brain

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, U K; Loennberg, P; Koskinen, V [Turku Univ. (Finland). Dept. of Neurology

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using /sup 3/H-spiroperidol. The specific binding of /sup 3/H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of /sup 3/H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of /sup 3/H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy.

  16. Preparation of a potential positron emission tomographic radioligand for the dopamine transporter

    International Nuclear Information System (INIS)

    Mueller, L.; Halldin, C.; Foged, C.; Karlsson, P.; Hall, H.; Swahn, C.G.; Suzdak, P.D.; Hohlweg, R.; Nielsen, E.B.; Frade, L.

    1994-01-01

    NNC 12-0722 (1-[2-(bis(4-fluorophenyl)-methoxy)ethyl]-4-methyl piperazine) is a new selective inhibitor of the dopamine transporter. [ 11 C]NNC 12-0722 was prepared by N-methylation of the desmethyl compound with [ 11 C]methyl iodide. The total radiochemical yield of [ 11 C]NNC 12-0722 was 40%-50% with an overall synthesis time of 30-35 min. The radiochemical purity was higher than 99% and the specific radioactivity about 1500 Ci/mmol (55 GBq/μmol). Autoradiographic examination of [ 11 C]NNC 12-0722 binding on whole hemisphere cryosections from human brain post mortem demonstrated specific binding in the caudate nucleus and putamen. In a positron emission tomographic examination of [ 11 C]NNC 12-0722 in a cynomolgus monkey there was a rapid uptake of radioactivity in the brain. In the striatum, a region with a high density of dopamine transporters, the radioactivity was two times higher than in the cerebellum. These results indicate that [ 11 C]NNC 12-0722 may be a useful radioligand for labelling of the dopamine transporter in man. (orig.)

  17. Dopamine receptors in the Parkinsonian brain

    International Nuclear Information System (INIS)

    Rinne, U.K.; Loennberg, P.; Koskinen, V.

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using 3 H-spiroperidol. The specific binding of 3 H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of 3 H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of 3 H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy. (author)

  18. Positive parenting predicts the development of adolescent brain structure: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Sarah Whittle

    2014-04-01

    Full Text Available Little work has been conducted that examines the effects of positive environmental experiences on brain development to date. The aim of this study was to prospectively investigate the effects of positive (warm and supportive maternal behavior on structural brain development during adolescence, using longitudinal structural MRI. Participants were 188 (92 female adolescents, who were part of a longitudinal adolescent development study that involved mother–adolescent interactions and MRI scans at approximately 12 years old, and follow-up MRI scans approximately 4 years later. FreeSurfer software was used to estimate the volume of limbic-striatal regions (amygdala, hippocampus, caudate, putamen, pallidum, and nucleus accumbens and the thickness of prefrontal regions (anterior cingulate and orbitofrontal cortices across both time points. Higher frequency of positive maternal behavior during the interactions predicted attenuated volumetric growth in the right amygdala, and accelerated cortical thinning in the right anterior cingulate (males only and left and right orbitofrontal cortices, between baseline and follow up. These results have implications for understanding the biological mediators of risk and protective factors for mental disorders that have onset during adolescence.

  19. T2 relaxometry of brain in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Di Costanzo, A.; Bonavita, V.; Tedeschi, G. [Inst. of Neurological Sciences, 2. Univ. of Naples (Italy); Di Salle, F. [Dept. of Biomorphological and Functional Sciences, Univ. ' ' Federico II' ' , Naples (Italy); Santoro, L. [Dept. of Neurological Sciences, University ' ' Federico II' ' , Naples (Italy)

    2001-03-01

    We investigated the nature and extent of brain involvement in myotonic dystrophy (DM), examining possible T2 relaxation abnormalities in the brain of 20 patients with adult-onset DM and 20 sex- and age-matched normal controls. Brain MRI was performed at 0.5 T, and T2 values were calculated from signal intensity in two echoes. Regions of interest included: frontal, parietal, temporal, occipital and callosal (rostral and splenial) normal-appearing white matter; frontal, occipital, insular and hippocampal cortex; caudate nucleus, putamen, globus pallidus and thalamus. All white-matter and occipital and right frontal cortex regions showed a significantly longer T2 in the patients. Multiple regression analysis, including grey- and white-matter T2 as dependent variables, plus age at onset and at imaging, disease duration, muscular disability, brain atrophy and CTG trinucleotide repeats as independent variables, revealed that only white-matter T2 elongation and disease duration correlated positively. White-matter involvement in DM is more extensive than previously reported by MRI and neuropathological studies and seems to be progressive in the course of disease. (orig.)

  20. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients.

    Science.gov (United States)

    Liu, Qi; Zhang, Peihai; Pan, Junjie; Li, Zhengjie; Liu, Jixin; Li, Guangsen; Qin, Wei; You, Yaodong; Yu, Xujun; Sun, Jinbo; Dong, Minghao; Gong, Qiyong; Guo, Jun; Chang, Degui

    2015-01-01

    Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM) treatment for erectile dysfunction (ED). This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS) were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF) was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC), and middle cingulate cortex (MCC). Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP), the patients with kidney-yang deficiency pattern (KDP) showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P emotion-related regions, including prefrontal cortex and cingulated cortex.

  1. T2 relaxometry of brain in myotonic dystrophy

    International Nuclear Information System (INIS)

    Di Costanzo, A.; Bonavita, V.; Tedeschi, G.; Di Salle, F.; Santoro, L.

    2001-01-01

    We investigated the nature and extent of brain involvement in myotonic dystrophy (DM), examining possible T2 relaxation abnormalities in the brain of 20 patients with adult-onset DM and 20 sex- and age-matched normal controls. Brain MRI was performed at 0.5 T, and T2 values were calculated from signal intensity in two echoes. Regions of interest included: frontal, parietal, temporal, occipital and callosal (rostral and splenial) normal-appearing white matter; frontal, occipital, insular and hippocampal cortex; caudate nucleus, putamen, globus pallidus and thalamus. All white-matter and occipital and right frontal cortex regions showed a significantly longer T2 in the patients. Multiple regression analysis, including grey- and white-matter T2 as dependent variables, plus age at onset and at imaging, disease duration, muscular disability, brain atrophy and CTG trinucleotide repeats as independent variables, revealed that only white-matter T2 elongation and disease duration correlated positively. White-matter involvement in DM is more extensive than previously reported by MRI and neuropathological studies and seems to be progressive in the course of disease. (orig.)

  2. Subcortical regional morphology correlates with fluid and spatial intelligence.

    Science.gov (United States)

    Burgaleta, Miguel; MacDonald, Penny A; Martínez, Kenia; Román, Francisco J; Álvarez-Linera, Juan; Ramos González, Ana; Karama, Sherif; Colom, Roberto

    2014-05-01

    Neuroimaging studies have revealed associations between intelligence and brain morphology. However, researchers have focused primarily on the anatomical features of the cerebral cortex, whereas subcortical structures, such as the basal ganglia (BG), have often been neglected despite extensive functional evidence on their relation with higher-order cognition. Here we performed shape analyses to understand how individual differences in BG local morphology account for variability in cognitive performance. Structural MRI was acquired in 104 young adults (45 men, 59 women, mean age = 19.83, SD = 1.64), and the outer surface of striatal structures (caudate, nucleus accumbens, and putamen), globus pallidus, and thalamus was estimated for each subject and hemisphere. Further, nine cognitive tests were used to measure fluid (Gf), crystallized (Gc), and spatial intelligence (Gv). Latent scores for these factors were computed by means of confirmatory factor analysis and regressed vertex-wise against subcortical shape (local displacements of vertex position), controlling for age, sex, and adjusted for brain size. Significant results (FDR intelligence-related prefrontal areas. Copyright © 2013 Wiley Periodicals, Inc.

  3. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  4. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  5. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  6. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  7. {sup 125}I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi E-mail: GZL13162@nifty.ne.jp; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-02-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated {sup 125}I-iomazenil ({sup 125}I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of {sup 125}I-iomazenil of the 3-DAY and 5-DAY showed that {sup 125}I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p<0.05). Serum corticosterone level ratio appeared to be slightly elevated in 3-DAY and 5-DAY, although this elevation was not significant. These data suggest that {sup 125}I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress.

  8. Striatal dopamine transporter, regional cerebral blood flow and glucose utilization in MPTP-induced parkinson disease mice model

    International Nuclear Information System (INIS)

    Gao Yunchao; Wu Chunying; Xiang Jingde; Lin Xiangtong; Zhu Huiqing

    2005-01-01

    Objective: To explore the variation of regional cerebral blood flow (rCBF), glucose utilization as well as the neurotoxic effect on dopaminergic neurons induced by neurotoxin 1-methy-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP). Methods: Eight-week old male C57BL/6 mice were given a total dose of 0-80 mg/kg MPTP intraperitoneally. Ten days later the mice were sacrificed for tyrosine hydroxylase (TH)-immunopositive cell count- ing in substantia nigra using SP immunohistochemistry. Vivo autoradiography was employed to measure striatal do- pamine transporter (DAT) loss, rCBF and glucose utilization in striatum and thalamus. Results: The extents of DAT depletion and TH-immunopositive cell loss were positively correlated (r=0.998, P O.2), while glucose utilization was only slightly reduced in caudate/putamen and thalamus by 3.0% and 5.4% in 80 mg/kg MPTP-treated mice (P<0.05). Conclusion: Significant dose-dependent relationship was in presence of MPTP induced dopaminergic neurons loss, changes of rCBF in caudate/putamen and thalamus were not significant, while the glucose utilization was slightly decreased in higher dose group. (authors)

  9. The Development of the Basal Ganglia in Capuchin Monkeys (Cebus apella)

    Science.gov (United States)

    Phillips, Kimberley A.; Sobieski, Courtney A.; Gilbert, Valerie R.; Chiappini-Williamson, Christine; Sherwood, Chet C.; Strick, Peter L.

    2010-01-01

    The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n = 17, female n = 11; age range = 2 months – 20 years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia. PMID:20227397

  10. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  11. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  12. Aberrant functioning of the putamen links delusions, antipsychotic drug dose, and compromised connectivity in first episode psychosis--Preliminary fMRI findings.

    Science.gov (United States)

    Raij, Tuukka T; Mäntylä, Teemu; Kieseppä, Tuula; Suvisaari, Jaana

    2015-08-30

    The dopamine theory proposes the relationship of delusions to aberrant signaling in striatal circuitries that can be normalized with dopamine D2 receptor-blocking drugs. Localization of such circuitries, as well as their upstream and downstream signaling, remains poorly known. We collected functional magnetic resonance images from first-episode psychosis patients and controls during an audiovisual movie. Final analyses included 20 patients and 20 controls; another sample of 10 patients and 10 controls was used to calculate a comparison signal-time course. We identified putamen circuitry in which the signal aberrance (poor correlation with the comparison signal time course) was predicted by the dopamine theory, being greater in patients than controls; correlating positively with delusion scores; and correlating negatively with antipsychotic-equivalent dosage. In Granger causality analysis, patients showed a compromised contribution of the cortical salience network to the putamen and compromised contribution of the putamen to the default mode network. Results were corrected for multiple comparisons at the cluster level with primary voxel-wise threshold p < 0.005 for the salience network contribution, but liberal primary threshold p < 0.05 was used in other group comparisons. If replicated in larger studies, these findings may help unify and extend current hypotheses on dopaminergic dysfunction, salience processing and pathogenesis of delusions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Structural differences in basal ganglia of elite running versus martial arts athletes: a diffusion tensor imaging study.

    Science.gov (United States)

    Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung

    2015-07-01

    The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced.

  14. [Ultrastructural changes of myelinated fibers in the brain in continuous and attack-like paranoid schizophrenia].

    Science.gov (United States)

    Uranova, N A; Kolomeets, N S; Vikhreva, O V; Zimina, I S; Rakhmanova, V I; Orlovskaya, D D

    Previously the authors have reported the ultrastructural pathology of myelinated fibers (MF) in the brain in schizophrenia. The aim of the present study was to compare the effect of disease course on ultrastructural changes of MF. Postmortem electron microscopic morphometric study of MF was performed in the prefrontal cortex, caudate nucleus and hippocampus in 19 cases of paranoid schizophrenia. Fourteen cases of continuous schizophrenia, 5 cases of attack-like schizophrenia and 25 normal matched control cases were studied. The proportion (percentage) of pathological MF was estimated in the prefrontal cortex, layer 5, CA3 area of hippocampus, pyramidal layer, and in the head of the caudate nucleus. The percentage of MF having axonal atrophy and swelling of periaxonal oligodendrocyte process was significantly higher in both continuous and attack-like schizophrenia in all brain structures studied as compared to the control group. In the hippocampus and caudate nucleus, this parameter was increased significantly in attack-like schizophrenia as compared to continuous schizophrenia. In the prefrontal cortex. The percentage of the pathological MF having signs of deformation and destruction of myelin sheaths increased significantly only in continuous schizophrenia as compared to the control group. MF pathology is similar in attack-like and continuous paranoid schizophrenia but differ by the degree of severity of pathological MF. Abnormalities in MF contribute to the disconnectivity between the prefrontal cortex, caudate nucleus and hippocampus.

  15. First-person perspective effects on theory of mind without self-reference.

    Directory of Open Access Journals (Sweden)

    Yuki Otsuka

    Full Text Available This study examined dissociations between brain networks involved in theory of mind, which is needed for guessing others' mental states, and the self, which might constitute the basis for theory of mind's development. We used event-related fMRI to compare a condition that required participants to guess the mental state of a subject featured in first-person perspective sentences (1stPP condition with a third-person perspective sentence condition (3rdPP condition. The caudate nucleus was marginally more activated in the 1stPP than in the 3rdPP condition, while the left dorsolateral prefrontal cortex (DLPFC was significantly more activated in the 3rdPP condition as compared to the 1stPP condition. Furthermore, we examined the correlation between activation (signal intensity of the caudate nucleus and left DLPFC with that of the right DLPFC, which is thought to be closely connected with sense of self. We found a significant correlation between caudate nucleus and right DLPFC activation in the 1stPP condition, and between left and right DLPFC activation in the 3rdPP condition. Although theory of mind and the self both appear to recruit the right DLPFC, this region seems to be accessed through the left DLPFC during theory of mind tasks, but through the caudate nucleus when tasks require self reference.

  16. Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia.

    Science.gov (United States)

    Jourdain, Vincent A; Schindlbeck, Katharina A; Tang, Chris C; Niethammer, Martin; Choi, Yoon Young; Markowitz, Daniel; Nazem, Amir; Nardi, Dominic; Carras, Nicholas; Feigin, Andrew; Ma, Yilong; Peng, Shichun; Dhawan, Vijay; Eidelberg, David

    2017-10-19

    In a rodent model of Parkinson's disease (PD), levodopa-induced involuntary movements have been linked to striatal angiogenesis - a process that is difficult to document in living human subjects. Angiogenesis can be accompanied by localized increases in cerebral blood flow (CBF) responses to hypercapnia. We therefore explored the possibility that, in the absence of levodopa, local hypercapnic CBF responses are abnormally increased in PD patients with levodopa-induced dyskinesias (LID) but not in their nondyskinetic (NLID) counterparts. We used H215O PET to scan 24 unmedicated PD subjects (12 LID and 12 NLID) and 12 matched healthy subjects in the rest state under normocapnic and hypercapnic conditions. Hypercapnic CBF responses were compared to corresponding levodopa responses from the same subjects. Group differences in hypercapnic vasoreactivity were significant only in the posterior putamen, with greater CBF responses in LID subjects compared with the other subjects. Hypercapnic and levodopa-mediated CBF responses measured in this region exhibited distinct associations with disease severity: the former correlated with off-state motor disability ratings but not symptom duration, whereas the latter correlated with symptom duration but not motor disability. These are the first in vivo human findings linking LID to microvascular changes in the basal ganglia.

  17. Hyperechoic caudate nuclei: a potential mimic of germinal matrix hemorrhage

    International Nuclear Information System (INIS)

    Schlesinger, A.E.; Shackelford, G.D.; Adcock, L.M.

    1998-01-01

    Background. We have encountered bilateral hyperechoic foci in the region of the germinal matrix on cranial sonograms in neonates that have an appearance similar to germinal matrix hemorrhage (GMH), but are unusual either due to the age of the patient at presentation or to the evolution of the foci on follow-up. We believe that these findings represent hyperechoic caudate nuclei (HCN) rather than GMH. Objective. To demonstrate that bilateral HCN can be seen on cranial sonography in neonates and can mimic bilateral GMH. Materials and methods. The cranial sonograms were reviewed in nine neonates (three term and six premature) who had HCN identified on at least one sonographic examination. CT (two patients) and MR (one patient) studies were also reviewed, as well as the neuropathological examination in one patient who died and had an autopsy. The patients' medical records were reviewed to identify any clinical markers for significant risk of perinatal ischemia. Results. There was clinical evidence for risk of ischemia in five of the nine neonates. All nine patients had bilateral HCN on the initial or follow-up studies. Small cysts were seen sonographically in two patients. CT was normal in one patient and revealed a small unilateral focus of increased attenuation in one infant (very small compared to the bilateral HCN). MR was normal in one patient. Histopathological examination of the brain was normal in the one patient who died and had an autopsy. Conclusion. Hyperechoic caudate nuclei can occur in neonates either as a normal finding, or possibly related to ischemia, and should not always be attributed to GMH. (orig.)

  18. Extrastriatal dopaminergic changes in Parkinson's disease patients with impulse control disorders.

    Science.gov (United States)

    Lee, Jee-Young; Seo, Seong Ho; Kim, Yu Kyeong; Yoo, Hye Bin; Kim, Young Eun; Song, In Chan; Lee, Jae Sung; Jeon, Beom S

    2014-01-01

    To investigate the extrastriatal dopaminergic neural changes in relation to the medication-related impulse control disorders (ICD) in Parkinson's disease (PD). A total of 31 subjects (11 and 11 drug-treated PD patients with and without medication-related ICDs and 9 healthy controls) having no other co-morbid psychiatric disorders participated in this study. Each subject underwent dynamic N-(3-[(18)F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane (FP-CIT) positron emission tomography scans. Binding potentials (BP) at nucleus accumbens, amygdala, orbitofrontal and ventromedial prefrontal cortex (VMPFC), putamen and caudate nucleus were estimated, and whole brain parametric maps of [(18)F]-FP-CIT binding were analysed by original and putaminal normalised manners. Compared with the healthy controls, BPs at both VMPFCs were significantly high and the extrastriatal to putaminal BP ratios at all regions were approximately three times higher in both PD groups. The PD ICD patients showed significantly higher BPs at the right VMPFC and tendency to lower BPs at the left nucleus accumbens compared with those free of ICD. The ICD subjects also showed reduced uptakes at both ventral striatal regions in the original parametric analysis and higher uptakes at the left insular and right posterior cingulate cortex and lower uptakes at both ventral pallidums in the putaminal normalised parametric analysis compared with the non-ICD subjects. A great gap in extrastriatal versus striatal dopaminergic fibre degenerations is an intrinsic condition predisposing to ICD in PD. Distinct pattern of extrastriatal changes between the ICD and non-ICD patients could provide a further insight into a mechanism of ICD in PD.

  19. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  20. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Directory of Open Access Journals (Sweden)

    Jennifer S Richards

    Full Text Available Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD. Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE in interindividual variability of total gray matter (GM, caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312 and without ADHD (N = 437 from N = 402 families (age M = 17.00, SD = 3.60. GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  1. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Science.gov (United States)

    Richards, Jennifer S; Arias Vásquez, Alejandro; Franke, Barbara; Hoekstra, Pieter J; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hartman, Catharina A

    2016-01-01

    Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD). Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE) in interindividual variability of total gray matter (GM), caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312) and without ADHD (N = 437) from N = 402 families (age M = 17.00, SD = 3.60). GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation) as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  2. Striatal abnormalities in trichotillomania: A multi-site MRI analysis

    Directory of Open Access Journals (Sweden)

    Masanori Isobe

    2018-01-01

    Full Text Available Trichotillomania (hair-pulling disorder is characterized by the repetitive pulling out of one's own hair, and is classified as an Obsessive-Compulsive Related Disorder. Abnormalities of the ventral and dorsal striatum have been implicated in disease models of trichotillomania, based on translational research, but direct evidence is lacking. The aim of this study was to elucidate subcortical morphometric abnormalities, including localized curvature changes, in trichotillomania. De-identified MRI scans were pooled by contacting authors of previous peer-reviewed studies that examined brain structure in adult patients with trichotillomania, following an extensive literature search. Group differences on subcortical volumes of interest were explored (t-tests and localized differences in subcortical structure morphology were quantified using permutation testing. The pooled sample comprised N = 68 individuals with trichotillomania and N = 41 healthy controls. Groups were well-matched in terms of age, gender, and educational levels. Significant volumetric reductions were found in trichotillomania patients versus controls in right amygdala and left putamen. Localized shape deformities were found in bilateral nucleus accumbens, bilateral amygdala, right caudate and right putamen. Structural abnormalities of subcortical regions involved in affect regulation, inhibitory control, and habit generation, play a key role in the pathophysiology of trichotillomania. Trichotillomania may constitute a useful model through which to better understand other compulsive symptoms. These findings may account for why certain medications appear effective for trichotillomania, namely those modulating subcortical dopamine and glutamatergic function. Future work should study the state versus trait nature of these changes, and the impact of treatment.

  3. Dispositional mindfulness co-varies with smaller amygdala and caudate volumes in community adults.

    Directory of Open Access Journals (Sweden)

    Adrienne A Taren

    Full Text Available Mindfulness, a psychological process reflecting attention and awareness to what is happening in the present moment, has been associated with increased well-being and decreased depression and anxiety in both healthy and patient populations. However, little research has explored underlying neural pathways. Recent work suggests that mindfulness (and mindfulness training interventions may foster neuroplastic changes in cortico-limbic circuits responsible for stress and emotion regulation. Building on this work, we hypothesized that higher levels of dispositional mindfulness would be associated with decreased grey matter volume in the amgydala. In the present study, a self-report measure of dispositional mindfulness and structural MRI images were obtained from 155 healthy community adults. Volumetric analyses showed that higher dispositional mindfulness is associated with decreased grey matter volume in the right amygdala, and exploratory analyses revealed that higher dispositional mindfulness is also associated with decreased grey matter volume in the left caudate. Moreover, secondary analyses indicate that these amygdala and caudate volume associations persist after controlling for relevant demographic and individual difference factors (i.e., age, total grey matter volume, neuroticism, depression. Such volumetric differences may help explain why mindful individuals have reduced stress reactivity, and suggest new candidate structural neurobiological pathways linking mindfulness with mental and physical health outcomes.

  4. Dispositional Mindfulness Co-Varies with Smaller Amygdala and Caudate Volumes in Community Adults

    Science.gov (United States)

    Taren, Adrienne A.; Creswell, J. David; Gianaros, Peter J.

    2013-01-01

    Mindfulness, a psychological process reflecting attention and awareness to what is happening in the present moment, has been associated with increased well-being and decreased depression and anxiety in both healthy and patient populations. However, little research has explored underlying neural pathways. Recent work suggests that mindfulness (and mindfulness training interventions) may foster neuroplastic changes in cortico-limbic circuits responsible for stress and emotion regulation. Building on this work, we hypothesized that higher levels of dispositional mindfulness would be associated with decreased grey matter volume in the amgydala. In the present study, a self-report measure of dispositional mindfulness and structural MRI images were obtained from 155 healthy community adults. Volumetric analyses showed that higher dispositional mindfulness is associated with decreased grey matter volume in the right amygdala, and exploratory analyses revealed that higher dispositional mindfulness is also associated with decreased grey matter volume in the left caudate. Moreover, secondary analyses indicate that these amygdala and caudate volume associations persist after controlling for relevant demographic and individual difference factors (i.e., age, total grey matter volume, neuroticism, depression). Such volumetric differences may help explain why mindful individuals have reduced stress reactivity, and suggest new candidate structural neurobiological pathways linking mindfulness with mental and physical health outcomes. PMID:23717632

  5. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  6. Robotic resection of the liver caudate lobe: technical description and initial consideration.

    Science.gov (United States)

    Marino, Marco Vito; Glagolieva, Anastasiia; Guarrasi, Domenico

    2018-03-01

    Firstly described in 2002, the robotic liver surgery has not spread widely due to its high cost and the lack of a standardized training program. Still being considered as a 'development in progress' technique, it has however a potential to overcome the traditional limitations of the laparoscopic approach in liver interventions. We analyzed the postoperative outcomes of 10 patients who had undergone robotic partial resection of the caudate lobe (Spiegel lobe) from March 2014 to May 2016 in order to evaluate the advantages of robotic technique in hands of a young surgeon. The mean operative time was 258min (150-522) and the estimated blood loss 137ml (50-359), in none of the cases a blood transfusion was required. No patient underwent a conversion to open surgery; the overall morbidity was 2/10 (20%) and all the complications occurred (biliary fistula and pleural effusion) did not require a surgical revision. At histological examination, the mean tumour size was 2.63cm and we achieved R0-resection rate of 100%. The 90-day mortality rate was null. The 1-year overall and disease free-survival rates were 100% and 80%, respectively. Despite several concerns regarding the cost-effectiveness, a fully robotic partial resection of caudate lobe is an advantageous, implementable technique providing promising short-term postoperative outcomes with acceptable benefit-risk profile. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d...... microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based...... neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate...

  8. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  9. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  10. Long-term occupational stress is associated with regional reductions in brain tissue volumes.

    Directory of Open Access Journals (Sweden)

    Eva Blix

    Full Text Available There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM and white matter (WM volumes, and the volumes of hippocampus, caudate, and putamen - structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment.

  11. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes

    Science.gov (United States)

    Blix, Eva; Perski, Aleksander; Berglund, Hans; Savic, Ivanka

    2013-01-01

    There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment. PMID:23776438

  12. Pion production in nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1975-06-01

    Current work on pion production in high-energy nucleus-nucleus collisions is reviewed. The majority of existing data are of the inclusive variety in which a single final state pion is detected. Experimental data are compared and their possible contributions to obtaining new information on nuclear structure is discussed. Various models which attempt to explain the observed single-inclusive-pion spectra either on the basis of a nucleon-nucleus interaction in which Fermi motion is included or on some type of cooperative model are examined. Other areas of interest involving pion production include tests of charge symmetry and pion multiplicities. (9 figures, 1 table) (U.S.)

  13. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  14. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Penionzhkevich, Yu.

    1993-01-01

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  15. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  16. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  17. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  18. Proceedings of the Second Workshop on Numerical Analysis of Human and Surrogate Response to Accelerative Loading

    Science.gov (United States)

    2018-02-01

    Thalamus Gray matter within cerebellum Caudate Putamen Ventricle s Voxelated data MRI Segmented data MPM model Discretization : 2 voxel = 1 MP 3D brain...model and the solution to the model • Math issue: “Solving the equations right”  Validation: Process of determining the degree to which a model is an...Microstructure and Mechanical Response Anisotropic within a layer: BV/TV is depth-dependent. Used discrete values for each of the 10 layers Orientation

  19. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  20. CT study of infantile cerebral vitamin B1 deficiency (analysis of 22 cases)

    International Nuclear Information System (INIS)

    Liu Bin; Xi Meifang; Wang Mengding; Wang Chaoxiu

    1998-01-01

    Purpose: To study the CT features of infantile cerebral vitamin B 1 deficiency. Methods: The authors retrospectively reviewed the clinical manifestations and CT findings of 22 cases of infantile vitamin B 1 deficiency. Results: The main clinical signs were seizure malaise dullness and vomiting. CT scans showed bilateral symmetrical hypodense foci in lenticular nucleus (20/22), head of caudate nucleus (15/22), thalamus (3/22), anterior limb of internal capsule (4/22), external capsule (1/22) and para-ventricle white matter (2/22), and in many cases, signs of cerebral atrophy. 22 cases received thiamine treatment and were fully recovered. Conclusion: The authors concluded that bilateral symmetric hypodense foci in lenticular nucleus thalamus, head of caudate nucleus, anterior limb of internal capsule, external capsule and para-ventricle white matter were important CT signs suggestive of infantile cerebral vitamin B 1 deficiency

  1. Increased brain dopamine and dopamine receptors in schizophrenia

    International Nuclear Information System (INIS)

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-01-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients

  2. Glucose hypermetabolism in the thalamus of patients with drug-induced blepharospasm.

    Science.gov (United States)

    Suzuki, Y; Kiyosawa, M; Wakakura, M; Mochizuki, M; Ishiwata, K; Oda, K; Ishii, K

    2014-03-28

    We examined the difference in cerebral function alterations between drug-induced blepharospasm patients and essential blepharospasm (EB) patients by using positron emission tomography with (18)F-fluorodeoxyglucose. Cerebral glucose metabolism was examined in 21 patients with drug-induced blepharospasm (5 men and 16 women; mean age, 53.1 [range, 29-78] years), 21 essential EB patients (5 men and 16 women; mean age, 53.0 [range, 33-72] years) and 24 healthy subjects (6 men and 18 women; mean age, 57.9 [range, 22-78] years) with long-term history of benzodiazepines use (drug healthy subjects). Drug-induced blepharospasm patients developed symptoms while taking benzodiazepines or thienodiazepines. Sixty-three normal volunteers (15 men and 48 women; mean age, 53.6 [range, 20-70] years) were examined as controls. Differences between the patient groups and control group were examined by statistical parametric mapping. Additionally, we defined regions of interests on both sides of the thalamus, caudate nucleus, anterior putamen, posterior putamen and primary somatosensory area. The differences between groups were tested using two-sample t-tests with Bonferroni correction for multiple comparisons. Cerebral glucose hypermetabolism on both side of the thalamus was detected in drug-induced blepharospasm, EB patients and drug healthy subjects by statistical parametric mapping. In the analysis of regions of interest, glucose metabolism in both sides of the thalamus in the drug-induced blepharospasm group was significantly lower than that in the EB group. Moreover, we observed glucose hypermetabolism in the anterior and posterior putamen bilaterally in EB group but not in drug-induced blepharospasm group and drug healthy subjects. Long-term regimens of benzodiazepines or thienodiazepines may cause down-regulation of benzodiazepine receptors in the brain. We suggest that the functional brain alteration in drug-induced blepharospasm patients is similar to that in EB patients, and

  3. Comparison of two neural network classifiers in the differential diagnosis of essential tremor and Parkinson's disease by {sup 123}I-FP-CIT brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Barbara [University of Perugia, Nuclear Medicine Section, Department of Surgical, Radiological and Odontostomatological Sciences, Ospedale S. Maria della Misericordia, Perugia (Italy); Fravolini, Mario Luca [University of Perugia, Department of Electronic and Information Engineering, Perugia (Italy); Nuvoli, Susanna; Spanu, Angela; Madeddu, Giuseppe [University of Sassari, Department of Nuclear Medicine, Sassari (Italy); Paulus, Kai Stephan [University of Sassari, Department of Neurology, Sassari (Italy); Schillaci, Orazio [University Tor Vergata, Department of Biopathology and Diagnostic Imaging, Rome (Italy); IRCSS Neuromed, Pozzilli (Italy)

    2010-11-15

    To contribute to the differentiation of Parkinson's disease (PD) and essential tremor (ET), we compared two different artificial neural network classifiers using {sup 123}I-FP-CIT SPECT data, a probabilistic neural network (PNN) and a classification tree (ClT). {sup 123}I-FP-CIT brain SPECT with semiquantitative analysis was performed in 216 patients: 89 with ET, 64 with PD with a Hoehn and Yahr (H and Y) score of {<=}2 (early PD), and 63 with PD with a H and Y score of {>=}2.5 (advanced PD). For each of the 1,000 experiments carried out, 108 patients were randomly selected as the PNN training set, while the remaining 108 validated the trained PNN, and the percentage of the validation data correctly classified in the three groups of patients was computed. The expected performance of an ''average performance PNN'' was evaluated. In analogy, for ClT 1,000 classification trees with similar structures were generated. For PNN, the probability of correct classification in patients with early PD was 81.9{+-}8.1% (mean{+-}SD), in patients with advanced PD 78.9{+-}8.1%, and in ET patients 96.6{+-}2.6%. For ClT, the first decision rule gave a mean value for the putamen of 5.99, which resulted in a probability of correct classification of 93.5{+-}3.4%. This means that patients with putamen values >5.99 were classified as having ET, while patients with putamen values <5.99 were classified as having PD. Furthermore, if the caudate nucleus value was higher than 6.97 patients were classified as having early PD (probability 69.8{+-}5.3%), and if the value was <6.97 patients were classified as having advanced PD (probability 88.1%{+-}8.8%). These results confirm that PNN achieved valid classification results. Furthermore, ClT provided reliable cut-off values able to differentiate ET and PD of different severities. (orig.)

  4. Comparison of two neural network classifiers in the differential diagnosis of essential tremor and Parkinson's disease by 123I-FP-CIT brain SPECT

    International Nuclear Information System (INIS)

    Palumbo, Barbara; Fravolini, Mario Luca; Nuvoli, Susanna; Spanu, Angela; Madeddu, Giuseppe; Paulus, Kai Stephan; Schillaci, Orazio

    2010-01-01

    To contribute to the differentiation of Parkinson's disease (PD) and essential tremor (ET), we compared two different artificial neural network classifiers using 123 I-FP-CIT SPECT data, a probabilistic neural network (PNN) and a classification tree (ClT). 123 I-FP-CIT brain SPECT with semiquantitative analysis was performed in 216 patients: 89 with ET, 64 with PD with a Hoehn and Yahr (H and Y) score of ≤2 (early PD), and 63 with PD with a H and Y score of ≥2.5 (advanced PD). For each of the 1,000 experiments carried out, 108 patients were randomly selected as the PNN training set, while the remaining 108 validated the trained PNN, and the percentage of the validation data correctly classified in the three groups of patients was computed. The expected performance of an ''average performance PNN'' was evaluated. In analogy, for ClT 1,000 classification trees with similar structures were generated. For PNN, the probability of correct classification in patients with early PD was 81.9±8.1% (mean±SD), in patients with advanced PD 78.9±8.1%, and in ET patients 96.6±2.6%. For ClT, the first decision rule gave a mean value for the putamen of 5.99, which resulted in a probability of correct classification of 93.5±3.4%. This means that patients with putamen values >5.99 were classified as having ET, while patients with putamen values <5.99 were classified as having PD. Furthermore, if the caudate nucleus value was higher than 6.97 patients were classified as having early PD (probability 69.8±5.3%), and if the value was <6.97 patients were classified as having advanced PD (probability 88.1%±8.8%). These results confirm that PNN achieved valid classification results. Furthermore, ClT provided reliable cut-off values able to differentiate ET and PD of different severities. (orig.)

  5. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    Science.gov (United States)

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  6. Cerebral blood flow and metabolism analysis in parkinsonian disorders; Pathologie extrapyramidale. Apport de l'imagerie de perfusion et du metabolisme (TEP, TEM)

    Energy Technology Data Exchange (ETDEWEB)

    Defebvre, L. [Hopital Roger Salengro, Service de Neurologie, 59 - Lille (France)

    1999-12-01

    Main metabolic and hemodynamic abnormalities detected by single photon emission computerized tomography and positron emission tomography in extra-pyramidal disorders are reported. In the first stage of Parkinson's disease, cortical metabolism and perfusion can be in normal range or moderately and uniformly reduced. A significant decrease may appear with the disease evolution. Marked abnormalities are observed in parkinsonian patients with dementia (subcortical dementia), involving especially the frontal cortex. A marked diffuse cortical hypo-metabolism (temporal, parietal, occipital and frontal cortex) may suggest the diagnosis of dementia with Lewy bodies, especially in case of fluctuating cognitive decline with recurrent visual hallucinations. In progressive supra-nuclear palsy, a frontal cortex hypo-metabolism is reported precociously, preceding sometimes the cognitive impairment. Metabolic pattern find in multiple system atrophy reflects dysfunction of both nigrostriatal pathways and striatum, with a decrease glucose uptake in putamen and caudate nucleus which also involves cerebellum for the patients with cerebellar syndrome. In cortico-basal degeneration, asymmetric fronto-parietal and striatal hypo-metabolism observed in the controlateral hemisphere to the clinically most affected side, constitute the main characteristic well correlated with apraxia. (author)

  7. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  8. Lacunar infarcts in childhood

    International Nuclear Information System (INIS)

    Nakano, Chizuko; Eda, Isematsu; Takashima, Sachio; Takeshita, Kenzo; Kanetoh, Yasuko.

    1984-01-01

    Nine cases, ranging in age from 6 months to 9 years, were diagnosed as lacunar infarcts on computed tomography (CT). Hemiplegia developed rapidly or gradually in 8 cases. Three of 8 cases had transient ischemic attacks of hemiplegia. Other neurological deficits were dysarthria, aphasia, confusion and coarse tremor. One case was asymptomatic. Each of 8 cases had single lacuna and one case two lacunae on CT. These lacunae were localized in the internal capsule, the putamen or the caudate nucleus. Lacunae involving the internal capsule were associated with contralateral hemiplegia, whereas asymptomatic lacunae did not iovolve it. Severity of hemiplegia in the acute stage did not correlate with localization or size of lacunae. Moderate neurological sequelae were noticed in 3 cases, mild sequelae in two and none in three. The sequelae were related to the lacunae which involved the lateral lenticulostriate branch zone of the middle cerebral artery or larger areas. Prognosis did not correlate with the mode of onset or the severity of neurological signs in the acute stage. There were 2 cases with the occlusion of the left internal carotid artery or congenital heart disease, but the etiology of lacunae was unknown in the other cases. (author)

  9. Association of body mass index and the depletion of nigrostriatal dopamine in Parkinson's disease.

    Science.gov (United States)

    Lee, Jae Jung; Oh, Jungsu S; Ham, Jee H; Lee, Dong H; Lee, Injoo; Sohn, Young H; Kim, Jae S; Lee, Phil Hyu

    2016-02-01

    Several antecedent studies had reported close relationship between low body weight and Parkinson's disease (PD). However, there have been few investigations about the role of body weight to nigrostriatal dopaminergic neurodegeneration. This study enrolled 398 de novo patients with PD whom underwent [18F] N-(3-Fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography scan and body mass index (BMI) measurement. The relationships between BMI and dopamine transporter (DAT) activity were analyzed using linear regression analysis. A multivariate analysis adjusted for age, gender, disease duration, smoking status, coffee and tea consumption, and residence area revealed that BMI remained independently and significantly associated with DAT activity in all striatal subregions. Moreover, multiple logistic regression analyses showed that BMI was a significant predictor for the lowest quartile of DAT activity in the anterior putamen, ventral striatum, caudate nucleus, and total striatum. The present findings suggest that a low BMI might be closely associated with low density of nigrostriatal dopaminergic neurons in PD, which could support the evidence for the role of low body weight to PD-related pathologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Brain correlates of progressive olfactory loss in Parkinson's disease.

    Science.gov (United States)

    Campabadal, Anna; Uribe, Carme; Segura, Barbara; Baggio, Hugo C; Abos, Alexandra; Garcia-Diaz, Anna Isabel; Marti, Maria Jose; Valldeoriola, Francesc; Compta, Yaroslau; Bargallo, Nuria; Junque, Carme

    2017-08-01

    Olfactory dysfunction is present in a large proportion of patients with Parkinson's disease (PD) upon diagnosis. However, its progression over time has been poorly investigated. The few available longitudinal studies lack control groups or MRI data. To investigate the olfactory changes and their structural correlates in non-demented PD over a four-year follow-up. We assessed olfactory function in a sample of 25 PD patients and 24 normal controls of similar age using the University of Pennsylvania Smell Identification test (UPSIT). Structural magnetic resonance imaging data, obtained with a 3-T Siemens Trio scanner, were analyzed using FreeSurfer software. Analysis of variance showed significant group (F = 53.882; P effects, but the group-by-time interaction was not statistically significant. UPSIT performance declined ≥1.5 standard deviations in 5 controls and 7 patients. Change in UPSIT scores of patients correlated positively with volume change in the left putamen, right thalamus, and right caudate nucleus. Olfactory loss over time in PD and controls is similar, but we have observed significant correlation between this loss and basal ganglia volumes only in patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Positive parenting predicts the development of adolescent brain structure: a longitudinal study.

    Science.gov (United States)

    Whittle, Sarah; Simmons, Julian G; Dennison, Meg; Vijayakumar, Nandita; Schwartz, Orli; Yap, Marie B H; Sheeber, Lisa; Allen, Nicholas B

    2014-04-01

    Little work has been conducted that examines the effects of positive environmental experiences on brain development to date. The aim of this study was to prospectively investigate the effects of positive (warm and supportive) maternal behavior on structural brain development during adolescence, using longitudinal structural MRI. Participants were 188 (92 female) adolescents, who were part of a longitudinal adolescent development study that involved mother-adolescent interactions and MRI scans at approximately 12 years old, and follow-up MRI scans approximately 4 years later. FreeSurfer software was used to estimate the volume of limbic-striatal regions (amygdala, hippocampus, caudate, putamen, pallidum, and nucleus accumbens) and the thickness of prefrontal regions (anterior cingulate and orbitofrontal cortices) across both time points. Higher frequency of positive maternal behavior during the interactions predicted attenuated volumetric growth in the right amygdala, and accelerated cortical thinning in the right anterior cingulate (males only) and left and right orbitofrontal cortices, between baseline and follow up. These results have implications for understanding the biological mediators of risk and protective factors for mental disorders that have onset during adolescence. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. CD73 is a major regulator of adenosinergic signalling in mouse brain.

    Directory of Open Access Journals (Sweden)

    Natalia Kulesskaya

    Full Text Available CD73 (ecto-5'-nucleotidase is a cell surface enzyme that regulates purinergic signalling by desphosphorylating extracellular AMP to adenosine. 5'-nucleotidases are known to be expressed in brain, but the expression of CD73 and its putative physiological functions at this location remain elusive. Here we found, using immunohistochemistry of wild-type and CD73 deficient mice, that CD73 is prominently expressed in the basal ganglia core comprised of striatum (caudate nucleus and putamen and globus pallidus. Furthermore, meninges and the olfactory tubercle were found to specifically express CD73. Analysis of wild type (wt and CD73 deficient mice revealed that CD73 confers the majority of 5'-nucleotidase activity in several areas of the brain. In a battery of behavioural tests and in IntelliCage studies, the CD73 deficient mice demonstrated significantly enhanced exploratory locomotor activity, which probably reflects the prominent expression of CD73 in striatum and globus pallidus that are known to control locomotion. Furthermore, the CD73 deficient mice displayed altered social behaviour. Overall, our data provide a novel mechanistic insight into adenosinergic signalling in brain, which is implicated in the regulation of normal and pathological behaviour.

  13. Pre- and postsynaptic dopamine SPECT in the early phase of idiopathic parkinsonism: a population-based study

    Energy Technology Data Exchange (ETDEWEB)

    Jakobson, Mo Susanna; Riklund, Katrine [Umeaa University, Department of Radiation Sciences, Diagnostic Radiology, Umeaa (Sweden); Linder, Jan; Forsgren, Lars [Umeaa University, Department of Pharmacology and Clinical Neuroscience, Neurology, Umeaa (Sweden); Larsson, Anne; Johansson, Lennart [Umeaa University, Department of Radiation Sciences, Radiation Physics, Umeaa (Sweden)

    2010-11-15

    The aim of this study was to assess the diagnostic contribution of pre- and postsynaptic dopamine SPECT in drug-naive patients with early idiopathic parkinsonism and to investigate possible differences between idiopathic Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) and possible differences in motor subtypes of parkinsonism. A group of 128 newly diagnosed idiopathic parkinsonian patients and 48 healthy controls was studied. Presynaptic baseline SPECT with {sup 123}I-FP-CIT was performed in all patients and in 120 patients also a baseline postsynaptic SPECT with {sup 123}I-IBZM. Clinical diagnoses were reassessed after 12 months. Presynaptic uptake in the putamen and caudate was significantly reduced in patients compared to controls. Presynaptic uptake ratios were not different between PD patients and patients with APS, and postsynaptic uptake in APS was not significantly reduced compared to PD or controls. In half of the APS patients both pre- and postsynaptic uptake ratios were reduced on the same side in the striatum. Impaired motor performance was associated with decreased presynaptic uptake in the putamen in PD. The postural instability and gait difficulty (PIGD) subtype of PD had lower presynaptic uptake ratios than patients with tremor-dominated (TD) symptoms. Not only presynaptic putamen uptake ratios, but also caudate ratios were reduced in a majority of the patients in our study. At baseline scan, i.e. in an early stage of the disease, the accuracy of excluding APS in the whole study population was 85% using a combination of pre- and postsynaptic SPECT. Already at baseline, lower presynaptic SPECT ratios were seen in PD with PIGD at onset compared to those with TD subtype. (orig.)

  14. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597.

    Science.gov (United States)

    Matricon, Julien; Seillier, Alexandre; Giuffrida, Andrea

    2016-09-01

    The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study.

    Science.gov (United States)

    Zikou, A K; Kitsos, G; Tzarouchi, L C; Astrakas, L; Alexiou, G A; Argyropoulou, M I

    2012-01-01

    Neuropathologic studies in experimental and human glaucoma have demonstrated degenerative changes in the optic pathway. The purpose of this study was to assess the optic pathway in POAG by using VBM and DTI. Eighteen patients 57.05 ± 11.38 years of age with POAG of 8.30 ± 5.14 years' duration and 18 control subjects underwent a complete ophthalmologic examination, including quantification of the RNFLT by using Stratus OCT 3, and brain imaging. The imaging protocol consisted of a T1-weighted high-resolution 3D spoiled gradient-echo sequence and a multisection spin-echo- planar diffusion-weighted sequence. Data preprocessing and analysis were performed by using Matlab 7.0 and SPM 5. Left temporal and right nasal RNFLTs were significantly thinner than right temporal and left nasal RNFLTs. In patients, VBM revealed a significant reduction in the left visual cortex volume, the left lateral geniculate nucleus, and the intracranial part of the ONs and the chiasma. In addition, a significant decrease of FA was observed in the inferior fronto-occipital fasciculus, the longitudinal and inferior frontal fasciculi, the putamen, the caudate nucleus, the anterior and posterior thalamic radiations, and the anterior and posterior limbs of the internal capsule of the left hemisphere (P < .05). Neurodegenerative changes of the optic pathway and several brain areas associated with the visual system can be observed by using VBM and DTI in patients with POAG, suggesting that glaucoma is a complex neurologic disease.

  16. Therapeutic window of dopamine D2/3 receptor occupancy to treat psychosis in Alzheimer's disease.

    Science.gov (United States)

    Reeves, Suzanne; McLachlan, Emma; Bertrand, Julie; Antonio, Fabrizia D; Brownings, Stuart; Nair, Akshay; Greaves, Suki; Smith, Alan; Taylor, David; Dunn, Joel; Marsden, Paul; Kessler, Robert; Howard, Robert

    2017-04-01

    See Caravaggio and Graff-Guerrero (doi:10.1093/awx023) for a scientific commentary on this article.Antipsychotic drugs, originally developed to treat schizophrenia, are used to treat psychosis, agitation and aggression in Alzheimer's disease. In the absence of dopamine D2/3 receptor occupancy data to inform antipsychotic prescribing for psychosis in Alzheimer's disease, the mechanisms underpinning antipsychotic efficacy and side effects are poorly understood. This study used a population approach to investigate the relationship between amisulpride blood concentration and central D2/3 occupancy in older people with Alzheimer's disease by combining: (i) pharmacokinetic data (280 venous samples) from a phase I single (50 mg) dose study in healthy older people (n = 20, 65-79 years); (ii) pharmacokinetic, 18F-fallypride D2/3 receptor imaging and clinical outcome data on patients with Alzheimer's disease who were prescribed amisulpride (25-75 mg daily) to treat psychosis as part of an open study (n = 28; 69-92 years; 41 blood samples, five pretreatment scans, 19 post-treatment scans); and (iii) 18F-fallypride imaging of an antipsychotic free Alzheimer's disease control group (n = 10, 78-92 years), to provide additional pretreatment data. Non-linear mixed effects modelling was used to describe pharmacokinetic-occupancy curves in caudate, putamen and thalamus. Model outputs were used to estimate threshold steady state blood concentration and occupancy required to elicit a clinically relevant response (>25% reduction in scores on delusions, hallucinations and agitation domains of the Neuropsychiatric Inventory) and extrapyramidal side effects (Simpson Angus Scale scores > 3). Average steady state blood levels were low (71 ± 30 ng/ml), and associated with high D2/3 occupancies (65 ± 8%, caudate; 67 ± 11%, thalamus; 52 ± 11%, putamen). Antipsychotic clinical response occurred at a threshold concentration of 20 ng/ml and D2/3 occupancies of 43% (caudate), 25% (putamen), 43

  17. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    Science.gov (United States)

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

  18. The imaginary part of the nucleus - nucleus optical potential

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1978-01-01

    The contribution to the imaginary nucleus - nucleus optical potential has been estimated by evaluating the energy - conserving seocond-order term in the perturbation series. The incoming nuclear field is supposed to excite nucleons in a nucleus in this calculation and the nuclear excitations are approximated by particle-hole excitations in a Fermi gas. The resulting imaginary potential compares favourably with phenomenological potentials. (author)

  19. Systemic injection of kainic acid: Gliosis in olfactory and limbic brain regions quantified with [3H]PK 11195 binding autoradiography

    International Nuclear Information System (INIS)

    Altar, C.A.; Baudry, M.

    1990-01-01

    Neurodegenerative diseases may result from excessive stimulation of excitatory amino acid receptors by endogenous ligands. Because neuronal degeneration is associated with glial proliferation and hypertrophy, the degenerative changes throughout rat brain following the systemic administration of kainic acid (12 mg/kg) were mapped with quantitative autoradiography of [3H]PK 11195. This radioligand binds to a mitochondrial benzodiazepine binding site (MBBS) on microglia and astrocytes. Analysis of eight horizontal and four coronal brain levels revealed up to 16-fold increases in [3H]PK 11195 binding from 1 to 5 weeks but not 1 day after kainate injection. Increases in [3H]PK 11195 binding were predominantly in ventral limbic brain regions and olfactory projections to neocortical areas, with the olfactory cortex greater than subiculum/CA1 greater than anterior olfactory nucleus, medial thalamic nucleus, and piriform cortex greater than cingulate cortex and rostral hippocampus greater than dentate gyrus, septum, and amygdala greater than entorhinal cortex and temporal cortex. Little or no enhancement of [3H]PK 11195 binding was observed in numerous regions including the caudate-putamen, substantia nigra, nucleus accumbens, olfactory tubercle, cerebellum, thalamic nuclei, choroid plexus, medulla, parietal or occipital cortex, or pons. A 2-fold greater extent of neurodegeneration was obtained in ventral portions of the olfactory bulb, entorhinal cortex, temporal cortex, and dentate gyrus compared with the dorsal portions of these structures. The pattern of increase in [3H]PK 11195 binding closely matched the patterns of neuronal degeneration reported following parenteral kainate injection. These findings strengthen the notion that quantitative autoradiography of [3H]PK 11195 is a valuable tool to quantify the extent of neuronal degeneration

  20. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor.

    Science.gov (United States)

    Prast, Janine M; Schardl, Aurelia; Schwarzer, Christoph; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2014-01-01

    We investigated if counterconditioning with dyadic (i.e., one-to-one) social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP), differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1) region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268) in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs), with D2-MSNs (immunolabeled with an anti-DRD2 antibody) being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.

  1. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    Science.gov (United States)

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  2. Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125I-Bolton Hunter CCK-8 and 3H-MK-329

    International Nuclear Information System (INIS)

    Hill, D.R.; Shaw, T.M.; Graham, W.; Woodruff, G.N.

    1990-01-01

    In vitro autoradiography was performed in order to visualize cholecystokinin-A (CCK-A) receptors in sections of Cynomolgus monkey brain. CCK-A receptors were defined as those which displayed high affinity for the selective non-peptide antagonist MK-329 (L-364,718) and were detected in several regions by selective inhibition of 125I-Bolton Hunter CCK using MK-329 or direct labeling with 3H-MK-329. In the caudal medulla, high densities of CCK-A sites were present in the nucleus tractus solitarius, especially the caudal and medial aspects, and also the dorsal motor nucleus of the vagus. CCK-A sites were localized to a number of hypothalamic nuclei such as the supraoptic and paraventricular nuclei, the dorsomedial and infundibular nuclei as well as the neurohypophysis. The mammillary bodies and supramammillary nuclei also contained CCK-A receptor sites. High concentrations of CCK-A receptors were present in the substantia nigra zona compacta and also the ventral tegmental area and may be associated with dopamine cell bodies. Binding of 3H-MK-329 was also detected in parts of the caudate nucleus and ventral putamen. The detection, by autoradiographical means, of CCK-A receptors throughout the Cynomolgus monkey brain contrasts with similar studies performed using rodents and suggests differences in the density and, perhaps, the importance of CCK-A receptors in the primate as opposed to the rodent. The data suggest the possibility that CCK-A receptors may be involved in a number of important brain functions as diverse as the processing of sensory information from the gut, the regulation of hormone secretion, and the activity of dopamine cell activity

  3. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions.

    Science.gov (United States)

    Zheng, Yingjun; Wu, Chao; Li, Juanhua; Li, Ruikeng; Peng, Hongjun; She, Shenglin; Ning, Yuping; Li, Liang

    2018-04-04

    Speech recognition under noisy "cocktail-party" environments involves multiple perceptual/cognitive processes, including target detection, selective attention, irrelevant signal inhibition, sensory/working memory, and speech production. Compared to health listeners, people with schizophrenia are more vulnerable to masking stimuli and perform worse in speech recognition under speech-on-speech masking conditions. Although the schizophrenia-related speech-recognition impairment under "cocktail-party" conditions is associated with deficits of various perceptual/cognitive processes, it is crucial to know whether the brain substrates critically underlying speech detection against informational speech masking are impaired in people with schizophrenia. Using functional magnetic resonance imaging (fMRI), this study investigated differences between people with schizophrenia (n = 19, mean age = 33 ± 10 years) and their matched healthy controls (n = 15, mean age = 30 ± 9 years) in intra-network functional connectivity (FC) specifically associated with target-speech detection under speech-on-speech-masking conditions. The target-speech detection performance under the speech-on-speech-masking condition in participants with schizophrenia was significantly worse than that in matched healthy participants (healthy controls). Moreover, in healthy controls, but not participants with schizophrenia, the strength of intra-network FC within the bilateral caudate was positively correlated with the speech-detection performance under the speech-masking conditions. Compared to controls, patients showed altered spatial activity pattern and decreased intra-network FC in the caudate. In people with schizophrenia, the declined speech-detection performance under speech-on-speech masking conditions is associated with reduced intra-caudate functional connectivity, which normally contributes to detecting target speech against speech masking via its functions of suppressing masking-speech signals.

  4. 3H-spiroperidol labels dopamine receptors in pituitary and brain

    International Nuclear Information System (INIS)

    Creese, Ian; Schneider, R.; Snijder, S.H.

    1977-01-01

    3 H-Spiroperidol of high specific radioactivity labels dopamine receptors in membranes of bovine caudate nucleus and anterior pituitary. The saturation and kinetic properties of 3 H-spiroperidol binding are similar in the two tissues. In both caudate and pituitary 3 H-spiroperidol displays very high affinity with a dissocation constant of 0.2 - 0.3 nM. The relative potencies of numerous dopamine agonists and antagonists in competing for 3 H-spiroperidol binding are closely similar in anterior pituitary and caudate

  5. Fluorine-18-fluorodeoxyglucose positron emission tomography (PET) brain imaging patterns in patients with suspected X-linked dystonia parkinsonism (study in progress)

    International Nuclear Information System (INIS)

    Santiago, J.F.Y.; Fugoso, L.; Evidente, V.G.H.

    2004-01-01

    Objective: X-linked dystonia-parkinsonism (XDP or Lubag) is an adult-onset dystonia syndrome that afflicts mostly Filipino men from the island of Panay, Philippines.It starts focally and becomes generalized or multifocal after the first five years. Parkinsonism is commonly encountered as the initial symptom before the onset of dystonia. Patients may manifest a wide spectrum of movement disorders, including myoclonus, chorea, akathisia, ballism and myorhythmia. Diagnosis is based on the clinical presentation, and the establishment of an x-linked recessive pattern of inheritance and maternal roots from the Panay Islands. Neuroimaging in advanced cases have demonstrated caudate and putaminal atrophy. Previous studies using PET have shown selective reduction in normalized striatal glucose metabolism. The purpose of this study is to describe the FDG distribution using PET imaging in Filipino patients with suspected or confirmed Lubag in various stages of their disease in order to determine if FDG-PET can be used in the initial diagnosis and staging of the disease. Methods and results: All patients presenting to the Movement Disorders Center of St. Lukes Medical Center with dystonia and Parkinsonism symptoms with X-linked recessive inheritance pattern and maternal roots traceable to the Panay Islands were sent for a Brain FDG PET Scan. Seven male patients with various movement disorders (dysarthria, face dystonia, Parkinsonism, hemibalismus, involuntary movements and rest tremors) with duration of symptoms from 1 to 5 years underwent a PET scan. All patients had non visualized bilateral putamen, four had hypometabolic caudate nuclei, one had intense (hypermetabolic) caudate nuclei. CT scan and MRI did not show any findings which may explain the movement disorder symptoms. More patients are being collected and gene typing is planned for some patients. Conclusions: This small series of patients demonstrate that patients with the phenotypic characteristics of X

  6. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  7. A Multi-tracer Dopaminergic PET Study of Young-Onset Parkinsonian Patients With and Without Parkin Gene Mutations

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Thobois, St.; Broussolle, E.; Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A.; Lohmann, E.; Agid, Y.; Brice, A.; Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A.; Tezenas du Montcel, S.; Tezenas du Montcel, S.; Pelissolo, A.; Dubois, B.; Mallet, L.; Pollak, P.; Agid, Y.; Brice, A.; Remy, Ph.; Remy, Ph.

    2009-01-01

    The impact of parkin gene mutations on nigrostriatal dopaminergic degeneration is not well established. The purpose of this study was to characterize by PET using 18 F-fluoro-L-3, 4- dihydroxyphenylalanine ( 18 F-fluoro-L-DOPA), 11 C-PE2I, and 11 C-raclopride the pattern of dopaminergic lesions in young-onset Parkinson disease (YOPD) patients with or without mutations of the parkin gene and to correlate the clinical and neuro-psychologic characteristics of these patients with PET results. Methods: A total of 35 YOPD patients were enrolled (16 with parkin mutation, 19 without). The uptake constant (K i ) of 18 F-fluoro- L-DOPA and the binding potential (BP) of 11 C-PE2I (BPDAT) and of 11 C-raclopride (BPD2) were calculated in the striatum. Comparisons were made between the 2 groups of YOPD and between controls and patients. For each radiotracer, parametric images were obtained, and statistical parametric mapping (SPM) analysis using a voxel-by-voxel statistical t test was performed. Correlations between the cognitive and motor status and PET results were analyzed. Results: In YOPD patients, 18 F-fluoro-L-DOPA K i values were reduced to 68% (caudate) and 40% (putamen) of normal values (P ≤ 0.0001). This decrease was symmetric and comparable for non-parkin and parkin patients. No correlation was found between the K i values and cognitive or motor status. 11 C-PE2I BPDAT values in YOPD patients were decreased to 56% (caudate) and 41% (putamen) of normal values (P ≤ 0.0001) and did not differ between the 2 YOPD populations. The mean 11 C-raclopride BPD2 values were reduced to 72% (caudate) and 84% (putamen) of the normal values (P ≤ 0.02) and did not differ between non-parkin and parkin patients. SPM analyses showed in patients an additional decrease of 11 C-raclopride in the frontal cortex and a decrease of 18 F-fluoro-L-DOPA and 11 C-PE2I uptake in the substantia nigra bilaterally (P ≤ 0.05, false-discovery rate-corrected). Conclusion: Carriers of parkin

  8. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  9. Overeating Behavior and Striatal Dopamine with 6-[18F]-Fluoro-L--Tyrosine PET

    Directory of Open Access Journals (Sweden)

    Claire E. Wilcox

    2010-01-01

    Full Text Available Eating behavior may be affected by dopamine synthesis capacity. In this study, 6-[18F]-fluoro-L--tyrosine (FMT positron emission tomography (PET uptake in striatal subregions was correlated with BMI (kg/m2 and an estimate of the frequency of prior weight loss attempts in 15 healthy subjects. BMI was negatively correlated with FMT uptake in the dorsal caudate. Although the association between BMI and FMT uptake in the dorsal caudate was not significant upon correction for age and sex, the association fell within the range of a statistical trend. Weight loss attempts divided by years trying was also negatively correlated with FMT uptake in the dorsal putamen (=.05. These results suggest an association between low dorsal striatal presynaptic dopamine synthesis capacity and overeating behavior.

  10. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Salivary DJ-1 could be an indicator of Parkinson’s disease progression

    Directory of Open Access Journals (Sweden)

    Wen-yan eKang

    2014-06-01

    Full Text Available Objective: The goal of the current investigation was to explore whether salivary DJ-1 could be a potential biomarker for monitoring disease progression in Parkinson’s disease (PD by evaluating the association between salivary DJ-1 concentrations and nigrostriatal dopaminergic function.Methods: First, in 74 patients with PD and 12 age-matched normal controls, single photon emission computed tomography (SPECT imaging with labeled dopamine transporters (DAT (99mTc-TRODAT-1, which has been used for measuring DAT density in PD was prformed. Then, the DJ-1 level in their saliva was analyzed by quantitative and sensitive Luminex assay and compared to caudate or putamen DAT density. Finally, based on the above, our cross-section study was carried out in 376 research volunteers (285 patients with PD and 91 healthy controls to measure salivary DJ-1 level.Results: From our analysis, we found a correlation between salivary concentration of DJ-1 and putamen nucleus uptake of 99mTc-TRODAT-1 in the PD group. Although salivary DJ-1 levels were not affected by UPDRS scores, gender, age and pharmacotherapy, DJ-1 levels in H&Y 4 stage of PD were higher than those in H&Y 1-3 stage as well as those in healthy controls. Salivary DJ-1 also decreased significantly in mixed type PD patients compared to the tremor-dominant type (TDT and akinetic-rigid dominant type (ARDT PD patients.Conclusions: According to the investigation in a large cohort, we reported for the first time the prognostic potential of the salivary DJ-1 as a biomarker for evaluating nigrostriatal dopaminergic function in PD.

  12. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain

  13. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament

    Directory of Open Access Journals (Sweden)

    Peter F. Cook

    2014-09-01

    Full Text Available Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler, an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer. A group-level psychophysiological interaction (PPI connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications

  14. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  15. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn Hylsebeck; Glenthøj, Birte; Rasmussen, Hans

    2010-01-01

    of a false discovery rate correction (p brain structure volumes. We grouped patients as those with (n = 9) or without (n = 29) any lifetime substance abuse to examine the possible effects of substance abuse. RESULTS: We found......BACKGROUND: Enlarged ventricles and reduced hippocampal volume are consistently found in patients with first-episode schizophrenia. Studies investigating brain structure in antipsychotic-naive patients have generally focused on the striatum. In this study, we examined whether ventricular...... healthy controls by use of a 3-T scanner. We warped the brain images to each other by use of a high-dimensional intersubject registration algorithm. We performed voxel-wise group comparisons with permutation tests. We performed small volume correction for the hippocampus, caudate and ventricles by use...

  16. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  17. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Townley, Ryan A; Botha, Hugo; Graff-Radford, Jonathan; Boeve, Bradley F; Petersen, Ronald C; Senjem, Matthew L; Knopman, David S; Lowe, Val; Jack, Clifford R; Jones, David T

    2018-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders. We retrospectively compared 18 F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years) to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD), Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD), and behavioral variant frontotemporal dementia (bvFTD). Partial volume corrected and uncorrected images were reviewed separately. Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction. In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation.

  18. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  19. Diabatic interaction potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Lukasiak, A.

    1984-01-01

    Within a refined method for the construction of diabatic states allowing for the treatment of the full spin-orbit coupling, characteristic features of the diabatic potential for nucleus-nucleus collisions are investigated. Approximately 90% of the strong repulsion results from diabatic particle-hole excitations, while only 10% is due to compression. The diabatic interaction potential describes a physical situation intermediate between adiabatic and sudden approximations. (orig.)

  20. Measurement of phase value of the deep gray nuclei in underage brain

    International Nuclear Information System (INIS)

    Zhang Lei; Chen Tao; Ning Ning; Ren Zhuanqin; Luo Jun; Dang Shaonong; Yang Jian

    2014-01-01

    Objective: To measure the phase values of the deep gray nuclei by using susceptibility weighted imaging (SWI) in underage brains, and to investigate the correlation between the phase value and age. Methods: A total of 105 healthy juveniles were examined in this study by using MRI conventional sequence and SWI. Their ages ranged from 0 to 18 years(0-<1 year, 60 cases; 1-<3 years, 10 cases; 3.7 years, 10 cases; 7-12 years, 10 cases; 12-18 years, 15 cases). Phase values of deep gray nuclei were measured. The correlation between phase value and age was analyzed by Spearman correlation method. Results: During 0-3 years, the phase value of caudate nucleus was the lowest within the same age group (0-<1 year: left -0.0433 ± 0.0291, right -0.0369 ± 0.0215; 1-<3 years: left -0.0369 ± 0.0215, right -0.0384 ± 0.0259), whereas the phase value of red nucleus was the highest (0-<1 year: left 0.0286 ± 0.0380, right 0.0254 ± 0.0361; 1-<3 years: left 0.0325 ± 0.0237, right 0.0395 ±0.0270). After 3 years old, the phase value of globus pallidus was the lowest within the same age group (3-<7 years: left -0.0967 ± 0.0656, right -0.0953 ± 0.0617; 7-<12 years: left -0.1870 ± 0.0531, right -0.1724 ± 0.0547; 12-<18 years: left -0.2037 ± 0.0492, right -0.1849 ±0.0324), whereas the phase value of thalamus was the highest (3-<7 years: left -0.0019 ± 0.0225, right -0.0007 ± 0.0167; 7-<12 years: left -0.0067 ± 0.0104, right -0.0064 ± 0.0118; 12-<18 years: left -0.0204 ± 0.0181, right -0.0172 ± 0.0133). During 0-18 years, a moderate negative correlation between phase values of bilateral caudate nucleus, globus pallidus, red nucleus, substantia nigra and age were observed (r s =-0.483, -0.497, -0.67, -0.621, -0.489, -0.43, -0.552, -0.58 respectively) A low negative correlation between phase values of bilateral putamen, thalamus and age were observed (r s =-0.272, -0.213, -0.382, -0.366 respectively). Conclusions: There is a negative correlation between phase value and age in

  1. Frontostriatal Dysfunction During Decision Making in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder.

    Science.gov (United States)

    Norman, Luke J; Carlisi, Christina O; Christakou, Anastasia; Murphy, Clodagh M; Chantiluke, Kaylita; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Mataix-Cols, David; Rubia, Katya

    2018-03-24

    The aim of the current paper is to provide the first comparison of computational mechanisms and neurofunctional substrates in adolescents with attention-deficit/hyperactivity disorder (ADHD) and adolescents with obsessive-compulsive disorder (OCD) during decision making under ambiguity. Sixteen boys with ADHD, 20 boys with OCD, and 20 matched control subjects (12-18 years of age) completed a functional magnetic resonance imaging version of the Iowa Gambling Task. Brain activation was compared between groups using three-way analysis of covariance. Hierarchical Bayesian analysis was used to compare computational modeling parameters between groups. Patient groups shared reduced choice consistency and relied less on reinforcement learning during decision making relative to control subjects, while adolescents with ADHD alone demonstrated increased reward sensitivity. During advantageous choices, both disorders shared underactivation in ventral striatum, while OCD patients showed disorder-specific underactivation in the ventromedial orbitofrontal cortex. During outcome evaluation, shared underactivation to losses in patients relative to control subjects was found in the medial prefrontal cortex and shared underactivation to wins was found in the left putamen/caudate. ADHD boys showed disorder-specific dysfunction in the right putamen/caudate, which was activated more to losses in patients with ADHD but more to wins in control subjects. The findings suggest shared deficits in using learned reward expectancies to guide decision making, as well as shared dysfunction in medio-fronto-striato-limbic brain regions. However, findings of unique dysfunction in the ventromedial orbitofrontal cortex in OCD and in the right putamen in ADHD indicate additional, disorder-specific abnormalities and extend similar findings from inhibitory control tasks in the disorders to the domain of decision making under ambiguity. Copyright © 2018 Society of Biological Psychiatry. Published by

  2. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  3. K+-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    The K + -nucleus system is reviewed and comparison with data is made. The principal conclusions are that the theoretical uncertainties in relating the K + -nucleus interaction to the K + -nucleon interaction are very small and hence the positive kaon makes an excellent probe of the nucleus. It is suggested that this particle may be more sensitive to non-nucleonic degrees of freedom (especially quarks) than classical probes

  4. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  5. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  6. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  7. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  8. Mechanisms in Chronic Multisympton Illnesses

    Science.gov (United States)

    2007-10-01

    related to spinal cord injury [25], and in restless leg syndrome [26]. The caudate nucleus receives a large nociceptive input from spinal pain...Deutsch G: Familial painful restless legs syndrome correlates with pain dependent variation of blood flow to the caudate, thalamus, and anterior cingulate...imaging sequence commonly used in clinical practice to detection early ischemia (19). Diffusion tensor imaging ( DTI ) yields quantitative measures for

  9. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  10. Striatal dopamine release and genetic variation of the serotonin 2C receptor in humans.

    Science.gov (United States)

    Mickey, Brian J; Sanford, Benjamin J; Love, Tiffany M; Shen, Pei-Hong; Hodgkinson, Colin A; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-07-04

    Mesoaccumbal and nigrostriatal projections are sensitive to stress, and heightened stress sensitivity is thought to confer risk for neuropsychiatric disorders. Serotonin 2C (5-HT(2C)) receptors mediate the inhibitory effects of serotonin on dopaminergic circuitry in experimental animals, and preclinical findings have implicated 5-HT(2C) receptors in motivated behaviors and psychotropic drug mechanisms. In humans, a common missense single-nucleotide change (rs6318, Cys23Ser) in the 5-HT(2C) receptor gene (HTR2C) has been associated with altered activity in vitro and with clinical mood disorders. We hypothesized that dopaminergic circuitry would be more sensitive to stress in humans carrying the Ser23 variant. To test this hypothesis, we studied 54 healthy humans using positron emission tomography and the displaceable D(2)/D(3) receptor radiotracer [(11)C]raclopride. Binding potential (BP(ND)) was quantified before and after a standardized stress challenge consisting of 20 min of moderate deep muscular pain, and reduction in BP(ND) served as an index of dopamine release. The Cys23Ser variant was genotyped on a custom array, and ancestry informative markers were used to control for population stratification. We found greater dopamine release in the nucleus accumbens, caudate nucleus, and putamen among Ser23 carriers, after controlling for sex, age, and ancestry. Genotype accounted for 12% of the variance in dopamine release in the nucleus accumbens. There was no association of Cys23Ser with baseline BP(ND). These findings indicate that a putatively functional HTR2C variant (Ser23) is associated with greater striatal dopamine release during pain in healthy humans. Mesoaccumbal stress sensitivity may mediate the effects of HTR2C variation on risk of neuropsychiatric disorders.

  11. Voxel-based morphometry analyses of in-vivo MRI in the aging mouse lemur primate

    Directory of Open Access Journals (Sweden)

    Stephen John Sawiak

    2014-05-01

    Full Text Available Cerebral atrophy is one of the most widely brain alterations associated to aging. A clear relationship has been established between age-associated cognitive impairments and cerebral atrophy. The mouse lemur (Microcebus murinus is a small primate used as a model of age-related neurodegenerative processes. It is the first nonhuman primate in which cerebral atrophy has been correlated with cognitive deficits. Previous studies of cerebral atrophy in this model were based on time consuming manual delineation or measurement of selected brain regions from magnetic resonance images (MRI. These measures could not be used to analyse regions that cannot be easily outlined such as the nucleus basalis of Meynert or the subiculum. In humans, morphometric assessment of structural changes with age is generally performed with automated procedures such as voxel-based morphometry (VBM. The objective of our work was to perform user-independent assessment of age-related morphological changes in the whole brain of large mouse lemur populations thanks to VBM. The study was based on the SPMMouse toolbox of SPM 8 and involved thirty mouse lemurs aged from 1.9 to 11.3 years. The automatic method revealed for the first time atrophy in regions where manual delineation is prohibitive (nucleus basalis of Meynert, subiculum, prepiriform cortex, Brodmann areas 13-16, hypothalamus, putamen, thalamus, corpus callosum. Some of these regions are described as particularly sensitive to age-associated alterations in humans. The method revealed also age-associated atrophy in cortical regions (cingulate, occipital, parietal, nucleus septalis, and the caudate. Manual measures performed in some of these regions were in good agreement with results from automatic measures. The templates generated in this study as well as the toolbox for SPM8 can be downloaded. These tools will be valuable for future evaluation of various treatments that are tested to modulate cerebral aging in lemurs.

  12. Somatic mtDNA mutation spectra in the aging human putamen.

    Directory of Open Access Journals (Sweden)

    Siôn L Williams

    Full Text Available The accumulation of heteroplasmic mitochondrial DNA (mtDNA deletions and single nucleotide variants (SNVs is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the "common" deletion and other "major arc" deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ(- mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.

  13. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  14. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact

  15. Regulatory impairments following selective 6-OHDA lesions of the neostriatum.

    Science.gov (United States)

    Dunnett, S B; Iversen, S D

    1982-02-01

    6-Hydroxydopamine lesions of the ventrolateral (VLC) but not anteromedial (AMC) caudate-putamen in rats resulted in a greater post-operative reduction in body weight and water intake than seen in animals with sham lesions. Once animals had fully resumed spontaneous food and water intake, a series of regulatory challenges were administered, and the AMC rats showed a reduced enhancement of drinking following injection of hypertonic saline. The results are interpreted in terms of a heterogeneous striatal convergence of nigrostriatal and cortical regulatory mechanisms.

  16. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  17. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  18. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  19. Nucleus-nucleus interactions in the transition energy regime

    International Nuclear Information System (INIS)

    Volant, C.

    1985-02-01

    There are at least two ways for studying large interactions in nucleus-nucleus collisions. One way is to use the method of angular correlations between fission fragments. The aim of the experiments presented here was to make a survey on the role of the various experimental parameters. In that respect three targets have been studied and different projectiles and bombarding energies have been used. Results are presented and discussed

  20. Neuro degenerative diseases: clinical concerns; Les maladies neuro-degeneratives: problemes cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, V. [Hopitaux Universitaires de Geneve (HUG), Unite de Neuroimagerie, Dept. de Psychiatrie (Switzerland)

    2005-04-15

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [{sup 18}F]-deoxyglucose and [{sup 18}F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [{sup 18}F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [{sup 18}F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  1. Neuro degenerative diseases: clinical concerns

    International Nuclear Information System (INIS)

    Ibanez, V.

    2005-01-01

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [ 18 F]-deoxyglucose and [ 18 F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [ 18 F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [ 18 F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  2. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    International Nuclear Information System (INIS)

    Braak, Breg; Klooker, Tamira K.; Booij, Jan; Wijngaard, Rene M.J. van den; Boeckxstaens, Guy E.E.

    2012-01-01

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [ 123 I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 ± 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 ± 5 years). The FD patients had a lower left plus right average striatal binding potential (BP NP ) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BP NP in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  3. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Breg; Klooker, Tamira K. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); Booij, Jan [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Wijngaard, Rene M.J. van den [Academic Medical Center, Tytgat Institute of Liver and Intestinal Research, Amsterdam (Netherlands); Boeckxstaens, Guy E.E. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); University Hospital Leuven, Catholic University Leuven, Department of Gastroenterology, Leuven (Belgium)

    2012-04-15

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [{sup 123}I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 {+-} 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 {+-} 5 years). The FD patients had a lower left plus right average striatal binding potential (BP{sub NP}) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BP{sub NP} in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  4. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Science.gov (United States)

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  5. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  6. Neural correlates of visually induced self-motion illusion in depth.

    Science.gov (United States)

    Kovács, Gyula; Raabe, Markus; Greenlee, Mark W

    2008-08-01

    Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.

  7. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2015-01-01

    Full Text Available Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM treatment for erectile dysfunction (ED. This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC, and middle cingulate cortex (MCC. Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP, the patients with kidney-yang deficiency pattern (KDP showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P<0.005. Conclusions. The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex.

  8. The functional neuroanatomy of maternal love: mother's response to infant's attachment behaviors.

    Science.gov (United States)

    Noriuchi, Madoka; Kikuchi, Yoshiaki; Senoo, Atsushi

    2008-02-15

    Maternal love, which may be the core of maternal behavior, is essential for the mother-infant attachment relationship and is important for the infant's development and mental health. However, little has been known about these neural mechanisms in human mothers. We examined patterns of maternal brain activation in response to infant cues using video clips. We performed functional magnetic resonance imaging (fMRI) measurements while 13 mothers viewed video clips, with no sound, of their own infant and other infants of approximately 16 months of age who demonstrated two different attachment behaviors (smiling at the infant's mother and crying for her). We found that a limited number of the mother's brain areas were specifically involved in recognition of the mother's own infant, namely orbitofrontal cortex (OFC), periaqueductal gray, anterior insula, and dorsal and ventrolateral parts of putamen. Additionally, we found the strong and specific mother's brain response for the mother's own infant's distress. The differential neural activation pattern was found in the dorsal region of OFC, caudate nucleus, right inferior frontal gyrus, dorsomedial prefrontal cortex (PFC), anterior cingulate, posterior cingulate, thalamus, substantia nigra, posterior superior temporal sulcus, and PFC. Our results showed the highly elaborate neural mechanism mediating maternal love and diverse and complex maternal behaviors for vigilant protectiveness.

  9. Characterisation of [11C]PR04.MZ in Papio anubis baboon: A selective high-affinity radioligand for quantitative imaging of the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Riss P. J.; Fowler J.; Riss, P.J.; Hooker, J.M.; Shea, C.; Xu, Y.; Carter, P.; Warner, D.; Ferrari V.; Kim, S.W.; Aigbirhio, F.I.; Fowler, J.S.; Roesch, F.

    2011-10-25

    N-(4-fluorobut-2-yn-1-yl)-2{beta}-carbomethoxy-3{beta}-(4{prime}-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [{sup 11}C]PR04.MZ ([{sup 11}C]-1) has been developed using GMP compliant equipment. An adult female Papioanubis baboon was studied using a test-retest protocol with [{sup 11}C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (fP), plasma input functions and metabolic degradation of the radiotracer [{sup 11}C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (VT) and non-displaceable binding potentials (BPND) for various brain regions and the blood were obtained from kinetic modelling. [{sup 11}C]-1 shows promising results as aselective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man.

  10. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    Science.gov (United States)

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  11. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing

    Directory of Open Access Journals (Sweden)

    Valentina Ciullo

    2018-05-01

    Full Text Available The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition or onset (temporal condition were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation.Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between

  12. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    Science.gov (United States)

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and

  13. Regional cerebral blood flow abnormalities in late-life depression. Relation to refractoriness and chronification

    Energy Technology Data Exchange (ETDEWEB)

    Awata, Shuichi; Konno, Michiko; Sato, Mitsumoto [Tohoku Univ., Sendai (Japan). School of Medicine; Ito, Hiroshi; Ono, Shuichi; Kawashima, Ryuta; Fukuda, Hiroshi

    1998-02-01

    We examined patterns of regional cerebral blood flow (rCBF) abnormalities in 18 patients with major depressive disorder in late life using single photon emission computed tomography (SPECT) and {sup 99m}Tc-hexamethyl-propylenamine oxime ({sup 99m}Tc-HMPAO). Compared with 13 age-matched controls, relative rCBF was significantly decreased bilaterally in the anterior cingulate gyrus, the prefrontal cortex, the temporal cortex, the parietal cortex, the hippocampus and the caudate nucleus. However, it was not correlated with the severity of depression or global cognitive dysfunction. In 10 patients with a prolonged depressive episode or prolonged residual symptoms (the refractory subgroup), robust and extensive decreases in rCBF were found compared with controls and the rCBF decreased significantly in the anterior cingulate gyrus and the prefrontal cortex compared with that in the non-refractory subgroup. In the non-reflactory subgroup, rCBF decreased significantly in the caudate nucleus and tended to decrease in the anterior cingulate gyrus compared with controls. These findings indicate that dysfunction of the limbic system, the cerebral association cortex and the caudate nucleus may be implicated in late-life depression and that robust and extensive hypoperfusion, especially in the anterior cingulate and the prefrontal regions, may relate to refractoriness or chronification of depression. (author). 60 refs.

  14. Human pursuance of equality hinges on mental processes of projecting oneself into the perspectives of others and into future situations.

    Science.gov (United States)

    Takesue, Hirofumi; Miyauchi, Carlos Makoto; Sakaiya, Shiro; Fan, Hongwei; Matsuda, Tetsuya; Kato, Junko

    2017-07-19

    In the pursuance of equality, behavioural scientists disagree about distinct motivators, that is, consideration of others and prospective calculation for oneself. However, accumulating data suggest that these motivators may share a common process in the brain whereby perspectives and events that did not arise in the immediate environment are conceived. To examine this, we devised a game imitating a real decision-making situation regarding redistribution among income classes in a welfare state. The neural correlates of redistributive decisions were examined under contrasting conditions, with and without uncertainty, which affects support for equality in society. The dorsal anterior cingulate cortex (dACC) and the caudate nucleus were activated by equality decisions with uncertainty but by selfless decisions without uncertainty. Activation was also correlated with subjective values. Activation in both the dACC and the caudate nucleus was associated with the attitude to prefer accordance with others, whereas activation in the caudate nucleus reflected that the expected reward involved the prospective calculation of relative income. The neural correlates suggest that consideration of others and prospective calculation for oneself may underlie the support for equality. Projecting oneself into the perspective of others and into prospective future situations may underpin the pursuance of equality.

  15. Regional cerebral blood flow abnormalities in late-life depression. Relation to refractoriness and chronification

    International Nuclear Information System (INIS)

    Awata, Shuichi; Konno, Michiko; Sato, Mitsumoto; Ito, Hiroshi; Ono, Shuichi; Kawashima, Ryuta; Fukuda, Hiroshi

    1998-01-01

    We examined patterns of regional cerebral blood flow (rCBF) abnormalities in 18 patients with major depressive disorder in late life using single photon emission computed tomography (SPECT) and 99m Tc-hexamethyl-propylenamine oxime ( 99m Tc-HMPAO). Compared with 13 age-matched controls, relative rCBF was significantly decreased bilaterally in the anterior cingulate gyrus, the prefrontal cortex, the temporal cortex, the parietal cortex, the hippocampus and the caudate nucleus. However, it was not correlated with the severity of depression or global cognitive dysfunction. In 10 patients with a prolonged depressive episode or prolonged residual symptoms (the refractory subgroup), robust and extensive decreases in rCBF were found compared with controls and the rCBF decreased significantly in the anterior cingulate gyrus and the prefrontal cortex compared with that in the non-refractory subgroup. In the non-reflactory subgroup, rCBF decreased significantly in the caudate nucleus and tended to decrease in the anterior cingulate gyrus compared with controls. These findings indicate that dysfunction of the limbic system, the cerebral association cortex and the caudate nucleus may be implicated in late-life depression and that robust and extensive hypoperfusion, especially in the anterior cingulate and the prefrontal regions, may relate to refractoriness or chronification of depression. (author). 60 refs

  16. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  17. Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis.

    Science.gov (United States)

    Tortorella, C; Romano, R; Direnzo, V; Taurisano, P; Zoccolella, S; Iaffaldano, P; Fazio, L; Viterbo, R; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M

    2013-08-01

    Load-related functional magnetic resonance imaging (fMRI) abnormalities of brain activity during performance of attention tasks have been described in definite multiple sclerosis (MS). No data are available in clinically isolated syndrome (CIS) suggestive of MS. The objective of this research is to evaluate in CIS patients the fMRI pattern of brain activation during an attention task and to explore the effect of increasing task load demand on neurofunctional modifications. Twenty-seven untreated CIS patients and 32 age- and sex-matched healthy controls (HCs) underwent fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. Random-effects models were used for statistical analyses of fMRI data. CIS patients had reduced accuracy and greater reaction time at the VAC task compared with HCs (p=0.007). On blood oxygenation level-dependent (BOLD)-fMRI, CIS patients had greater activity in the right parietal cortex (p=0.0004) compared with HCs. Furthermore, CIS patients had greater activity at the lower (p=0.05) and reduced activity at the greater (p=0.04) level of attentional control demand in the left putamen, compared with HCs. This study demonstrates the failure of attentional control processing in CIS. The load-related fMRI dysfunction of the putamen supports the role of basal ganglia in the failure of attention observed at the earliest stage of MS.

  18. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  19. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB

    International Nuclear Information System (INIS)

    Patel, Shil; Hamill, Terence G.; Connolly, Brett; Jagoda, Elaine; Li Wenping; Gibson, Raymond E.

    2007-01-01

    Binding of [ 18 F]3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ([ 18 F]F-PEB) was evaluated in membranes and tissue sections prepared from rat, rhesus and human brain. Saturation equilibrium binding experiments with frozen brain cortex and caudate-putamen membranes of young adult rhesus and human and with cortex and striatum from rat yielded data indicative of specific high-affinity binding (K D =0.1-0.15 nM, n≥3) to a saturable site previously shown to be metabotropic glutamate receptor 5 (mGluR5; Patel S, Ndubizu O, Hamill T, Chaudhary A, Burns HD, Hargreaves RJ, Gibson RE. Screening cascade and development of potential positron emission tomography radiotracers for mGluR5: in vitro and in vivo characterization. Mol Imaging Biol 2005;7:314-323). High-affinity binding of [ 18 F]F-PEB was also detected in cerebellum membranes from rat, rhesus and human. The density of binding sites (B max ) measured using [ 18 F]F-PEB followed the rank order cortex∼caudate-putamen/striatum>cerebellum for all three species, with the cerebellum B max being significantly lower than that observed in the other regions. Receptor autoradiography studies in tissue sections confirmed that the regional distribution of [ 18 F]F-PEB in mammalian central nervous system is consistent with that of mGluR5 and that a small but specific mGluR5 signal is observed in rhesus and human cerebellum. A small and quantifiable specific signal could also be observed in rat cerebellum using this radiotracer. Immunohistochemical analysis in brain sections revealed a rank order of staining in rhesus and human brain of cortex∼caudate-putamen>cerebellum. Rat brain immunohistochemistry followed the same rank order, although the staining in the cerebellum was significantly lower. Using a 'no-wash' wipe assay, the development of a specific signal within 20 min of incubation of tissue brain sections (>60% in the cortex and striatum; 36-49% in the cerebellum) from all three species confirmed previous in vivo

  20. A Multi-tracer Dopaminergic PET Study of Young-Onset Parkinsonian Patients With and Without Parkin Gene Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M.J. [CEA, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Thobois, St.; Broussolle, E. [University of Lyon, Hospices Civils de Lyon, Neurological Hospital, Lyon (France); Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A. [INSERM, Paris (France); Lohmann, E.; Agid, Y.; Brice, A. [Department of the Nervous System Disorders, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A. [UPMC University of Paris, Paris (France); Tezenas du Montcel, S. [Unit of de Biostatistics and Medical Information and Unit of Medical Research, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Tezenas du Montcel, S. [Modelisation in Clinical Research, UPMC University of Paris, Paris (France); Pelissolo, A. [Department of Psychiatry, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Dubois, B. [Centre de Reference sur la Maladie de Pick, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Mallet, L. [Behaviour, Emotion and Basal Ganglia, Center of Clinical Investigation, INSERM Avenir Group, Paris (France); Pollak, P. [Department of Clinical and Biological Neurosciences, University Hospital of Grenoble, Grenoble (France); Agid, Y. [Clinical Investigation Center, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Brice, A. [Department of Genetics and Cytogenetics, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Remy, Ph. [CEA, I2BM, MIRCEN, URA CEA-CNRS 2210, Orsay (France); Remy, Ph. [CHU Henri Mondor, AP-HP and Faculte de Medecine Paris 12, Creteil (France)

    2009-07-01

    The impact of parkin gene mutations on nigrostriatal dopaminergic degeneration is not well established. The purpose of this study was to characterize by PET using {sup 18}F-fluoro-L-3, 4- dihydroxyphenylalanine ({sup 18}F-fluoro-L-DOPA), {sup 11}C-PE2I, and {sup 11}C-raclopride the pattern of dopaminergic lesions in young-onset Parkinson disease (YOPD) patients with or without mutations of the parkin gene and to correlate the clinical and neuro-psychologic characteristics of these patients with PET results. Methods: A total of 35 YOPD patients were enrolled (16 with parkin mutation, 19 without). The uptake constant (K{sub i}) of {sup 18}F-fluoro- L-DOPA and the binding potential (BP) of {sup 11}C-PE2I (BPDAT) and of {sup 11}C-raclopride (BPD2) were calculated in the striatum. Comparisons were made between the 2 groups of YOPD and between controls and patients. For each radiotracer, parametric images were obtained, and statistical parametric mapping (SPM) analysis using a voxel-by-voxel statistical t test was performed. Correlations between the cognitive and motor status and PET results were analyzed. Results: In YOPD patients, {sup 18}F-fluoro-L-DOPA K{sub i} values were reduced to 68% (caudate) and 40% (putamen) of normal values (P {<=} 0.0001). This decrease was symmetric and comparable for non-parkin and parkin patients. No correlation was found between the K{sub i} values and cognitive or motor status. {sup 11}C-PE2I BPDAT values in YOPD patients were decreased to 56% (caudate) and 41% (putamen) of normal values (P {<=} 0.0001) and did not differ between the 2 YOPD populations. The mean {sup 11}C-raclopride BPD2 values were reduced to 72% (caudate) and 84% (putamen) of the normal values (P {<=} 0.02) and did not differ between non-parkin and parkin patients. SPM analyses showed in patients an additional decrease of {sup 11}C-raclopride in the frontal cortex and a decrease of {sup 18}F-fluoro-L-DOPA and {sup 11}C-PE2I uptake in the substantia nigra bilaterally

  1. Disrupted Reinforcement Signaling in Orbital Frontal Cortex and Caudate in Youths with Conduct Disorder/Oppositional Defiant Disorder and High Psychopathic Traits

    Science.gov (United States)

    Finger, Elizabeth C.; Marsh, Abigail A.; Blair, Karina S.; Reid, Marguerite. E.; Sims, Courtney; Ng, Pamela; Pine, Daniel S.; Blair, R. James. R.

    2010-01-01

    OBJECTIVE Dysfunction in amygdala and orbital frontal cortex functioning has been reported in youths and adults with psychopathic traits. However, the specific nature of the computational irregularities within these brain structures remains poorly understood. The current study used the passive avoidance task to examine responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. METHOD 30 youths (N=15 with conduct disorder or oppositional defiant disorder plus high psychopathic traits and N=15 comparison subjects) completed a 3.0 T fMRI scan while performing a passive avoidance learning task. RESULTS Relative to comparison youth, youths with conduct disorder or oppositional defiant disorder plus psychopathic traits showed reduced orbitofrontal cortex responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as reduced caudate response to early stimulus-reinforcement exposure. Contrary to other predictions, however, there were no group differences in amygdala responsiveness specifically to these two task parameters. However, amygdala responsiveness throughout the task was reduced in the youths with conduct disorder or oppositional defiant disorder plus psychopathic traits. CONCLUSIONS This study demonstrates that youths with conduct disorder or oppositional defiant disorder plus psychopathic traits are marked by a compromised sensitivity to early reinforcement information in both orbitofrontal cortex and caudate and to reward outcome information within orbitofrontal cortex. They further suggest that the integrated functioning of the amygdala, caudate and orbitofrontal cortex may be disrupted in individuals with this disorder. PMID:21078707

  2. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  3. Simplified dietary acute tryptophan depletion: effects of a novel amino acid mixture on the neurochemistry of C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Cristina L. Sánchez

    2015-08-01

    Full Text Available Background: Diet and nutrition can impact on the biological processes underpinning neuropsychiatric disorders. Amino acid (AA mixtures lacking a specific neurotransmitter precursor can change the levels of brain serotonin (5-HT or dopamine (DA in the central nervous system. The availability of these substances within the brain is determined by the blood–brain barrier (BBB that restricts the access of peripheral AA into the brain. AA mixtures lacking tryptophan (TRP compete with endogenous TRP for uptake into the brain across the BBB, which in turn leads to a decrease in central nervous 5-HT synthesis. Objective: The present study compared the effects of a simplified acute tryptophan depletion (SATD mixture in mice on blood and brain serotonergic and dopaminergic metabolites to those of a commonly used acute tryptophan depletion mixture (ATD Moja-De and its TRP-balanced control (BAL. Design: The SATD formula is composed of only three large neutral AAs: phenylalanine (PHE, leucine (LEU, and isoleucine (ILE. BAL, ATD Moja-De, or SATD formulas were delivered to adult male C57BL/6J mice by gavage. TRP, monoamines, and their metabolites were quantified in blood and brain regions (hippocampus, frontal cortex, amygdala, caudate putamen, and nucleus accumbens. Results: Both ATD Moja-De and SATD significantly decreased levels of serum and brain TRP, as well as brain 5-HIAA and 5-HT compared with BAL. SATD reduced HVA levels in caudate but did not alter total DA levels or DOPAC. SATD decreased TRP and serotonergic metabolites comparably to ATD Moja-De administration. Conclusion: A simplified and more palatable combination of AAs can manipulate serotonergic function and might be useful to reveal underlying monoamine-related mechanisms contributing to different neuropsychiatric disorders.

  4. Psychopathy Moderates the Relationship between Orbitofrontal and Striatal Alterations and Violence: The Investigation of Individuals Accused of Homicide

    Directory of Open Access Journals (Sweden)

    Bess Y. H. Lam

    2017-12-01

    Full Text Available Brain structural abnormalities in the orbitofrontal cortex (OFC and striatum (caudate and putamen have been observed in violent individuals. However, a uni-modal neuroimaging perspective has been used and prior findings have been mixed. The present study takes the multimodal structural brain imaging approaches to investigate the differential gray matter volumes (GMV and cortical thickness (CTh in the OFC and striatum between violent (accused of homicide and non-violent (not accused of any violent crimes individuals with different levels of psychopathic traits (interpersonal and unemotional qualities, factor 1 psychopathy and the expressions of antisocial disposition and impulsivity, factor 2 psychopathy. Structural Magnetic Resonance Imaging data, psychopathy and demographic information were assessed in sixty seven non-violent or violent adults. The results showed that the relationship between violence and the GMV in the right lateral OFC varied across different levels of the factor 1 psychopathy. At the subcortical level, the psychopathy level (the factor 1 psychopathy moderated the positive relationship of violence with both left and right putamen GMV as well as left caudate GMV. Although the CTh findings were not significant, overall findings suggested that psychopathic traits moderated the relationship between violence and the brain structural morphology in the OFC and striatum. In conclusion, psychopathy takes upon a significant role in moderating violent behavior which gives insight to design and implement prevention measures targeting violent acts, thereby possibly mitigating their occurrence within the society.

  5. Increased histone H3 phosphorylation in neurons in specific brain structures after induction of status epilepticus in mice.

    Directory of Open Access Journals (Sweden)

    Tetsuji Mori

    Full Text Available Status epilepticus (SE induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3(+ (PH3(+ neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3(+ neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3(+ brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation.

  6. Altered structural covariance of the striatum in functional dyspepsia patients.

    Science.gov (United States)

    Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F

    2014-08-01

    Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.

  7. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    International Nuclear Information System (INIS)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L.

    1999-01-01

    The study of muon pairs in the mass region 1.5 μμ 2 in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A·B and centrality is observed

  8. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  9. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  10. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  11. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  12. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.

    Science.gov (United States)

    Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole

    2015-04-01

    Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.

  13. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  14. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans.

    Science.gov (United States)

    Wymbs, Nicholas F; Bassett, Danielle S; Mucha, Peter J; Porter, Mason A; Grafton, Scott T

    2012-06-07

    Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3 days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus.

    Science.gov (United States)

    Hart, John; Maguire, Mandy J; Motes, Michael; Mudar, Raksha Anand; Chiang, Hsueh-Sheng; Womack, Kyle B; Kraut, Michael A

    2013-07-01

    We propose that pre-supplementary motor area (pre-SMA)-thalamic interactions govern processes fundamental to semantic retrieval of an integrated object memory. At the onset of semantic retrieval, pre-SMA initiates electrical interactions between multiple cortical regions associated with semantic memory subsystems encodings as indexed by an increase in theta-band EEG power. This starts between 100-150 ms after stimulus presentation and is sustained throughout the task. We posit that this activity represents initiation of the object memory search, which continues in searching for an object memory. When the correct memory is retrieved, there is a high beta-band EEG power increase, which reflects communication between pre-SMA and thalamus, designates the end of the search process and resultant in object retrieval from multiple semantic memory subsystems. This high beta signal is also detected in cortical regions. This circuit is modulated by the caudate nuclei to facilitate correct and suppress incorrect target memories. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A longitudinal analysis of regional brain volumes in macaques exposed to X-irradiation in early gestation.

    Directory of Open Access Journals (Sweden)

    Kristina Aldridge

    Full Text Available Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate.Five Rhesus macaques were exposed to x-irradiation in early gestation (E30-E41, and four control monkeys were sham-irradiated at comparable ages. Whole brain magnetic resonance imaging was performed at 6 months, 12 months, and 3 and 5 years of age. Volumes of whole cerebrum, cortical gray matter, caudate, putamen, and thalamus were estimated using semi-automated segmentation methods and high dimensional brain mapping. Volume reductions spanning all ages were observed in irradiated monkeys in the putamen (15-24%, p = 0.01 and in cortical gray matter (6-15%, p = 0.01. Upon covarying for whole cerebral volume, group differences were reduced to trend levels (putamen: p = 0.07; cortical gray matter: p = 0.08. No group-by-age effects were significant.Due to the small number of observations, the conclusions drawn from this study must be viewed as tentative. Early gestational irradiation may result in non-uniform reduction of gray matter, mainly affecting the putamen and cerebral cortex. This may be relevant to understanding how early prenatal environmental insult could lead to brain morphological differences in neurodevelopmental diseases.

  17. Effective number of inelastically interacting nucleons in rare nucleus-nucleus production processes

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Lokhtin, I.P.

    1992-01-01

    A model of nucleus-nucleus interaction using one inelastic NN-interaction is suggested for the exclusive production processes with small cross-section. A-dependence nuclear coherent and incoherent production cross-section are predicted. 20 refs.; 4 figs

  18. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  19. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  20. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using ...

  1. Preferential responses in amygdala and insula during presentation of facial contempt and disgust.

    Science.gov (United States)

    Sambataro, Fabio; Dimalta, Savino; Di Giorgio, Annabella; Taurisano, Paolo; Blasi, Giuseppe; Scarabino, Tommaso; Giannatempo, Giuseppe; Nardini, Marcello; Bertolino, Alessandro

    2006-10-01

    Some authors consider contempt to be a basic emotion while others consider it a variant of disgust. The neural correlates of contempt have not so far been specifically contrasted with disgust. Using functional magnetic resonance imaging (fMRI), we investigated the neural networks involved in the processing of facial contempt and disgust in 24 healthy subjects. Facial recognition of contempt was lower than that of disgust and of neutral faces. The imaging data indicated significant activity in the amygdala and in globus pallidus and putamen during processing of contemptuous faces. Bilateral insula and caudate nuclei and left as well as right inferior frontal gyrus were engaged during processing of disgusted faces. Moreover, direct comparisons of contempt vs. disgust yielded significantly different activations in the amygdala. On the other hand, disgusted faces elicited greater activation than contemptuous faces in the right insula and caudate. Our findings suggest preferential involvement of different neural substrates in the processing of facial emotional expressions of contempt and disgust.

  2. Anatomical and diffusion MRI of deep gray matter in pediatric spina bifida

    Directory of Open Access Journals (Sweden)

    Ashley L. Ware

    2014-01-01

    Full Text Available Individuals with spina bifida myelomeningocele (SBM exhibit brain abnormalities in cortical thickness, white matter integrity, and cerebellar structure. Little is known about deep gray matter macro- and microstructure in this population. The current study utilized volumetric and diffusion-weighted MRI techniques to examine gray matter volume and microstructure in several subcortical structures: basal ganglia nuclei, thalamus, hippocampus, and amygdala. Sixty-six children and adolescents (ages 8–18; M = 12.0, SD = 2.73 with SBM and typically developing (TD controls underwent T1- and diffusion-weighted neuroimaging. Microstructural results indicated that hippocampal volume was disproportionately reduced, whereas the putamen volume was enlarged in the group with SBM. Microstructural analyses indicated increased mean diffusivity (MD and fractional anisotropy (FA in the gray matter of most examined structures (i.e., thalamus, caudate, hippocampus, with the putamen exhibiting a unique pattern of decreased MD and increased FA. These results provide further support that SBM differentially disrupts brain regions whereby some structures are volumetrically normal whereas others are reduced or enlarged. In the hippocampus, volumetric reduction coupled with increased MD may imply reduced cellular density and aberrant organization. Alternatively, the enlarged volume and significantly reduced MD in the putamen suggest increased density.

  3. The Role of Corticostriatal Systems in Speech Category Learning.

    Science.gov (United States)

    Yi, Han-Gyol; Maddox, W Todd; Mumford, Jeanette A; Chandrasekaran, Bharath

    2016-04-01

    One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Treatment of Small Hepatocellular Carcinoma (≤2 cm) in the Caudate Lobe with Sequential Transcatheter Arterial Chemoembolization and Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Hyun, Dongho; Cho, Sung Ki; Shin, Sung Wook; Rhim, Hyunchul; Koh, Kwang Cheol; Paik, Seung Woon

    2016-01-01

    PurposeTo evaluate technical feasibility and treatment results of sequential transcatheter arterial chemoembolization (TACE) and cone-beam computed tomography-guided percutaneous radiofrequency ablation (CBCT-RFA) for small hepatocellular carcinoma (HCC) in the caudate lobe.Materials and MethodsInstitutional review board approved this retrospective study. Radiologic database was searched for the patients referred to perform TACE and CBCT-RFA for small caudate HCCs (≤2 cm) between February 2009 and February 2014. A total of 14 patients (12 men and 2 women, mean age; 61.3 years) were included. Percutaneous ultrasonography-guided RFA (pUS-RFA) and surgery were infeasible due to poor conspicuity, inconspicuity or no safe electrode pathway, and poor hepatic reserve. Procedural success (completion of both TACE and CBCT-RFA), technique efficacy (absence of tumor enhancement at 1 month after treatment), and complication were evaluated. Treatment results including local tumor progression (LTP), intrahepatic distant recurrence (IDR), overall survival (OS), and progression-free survival (PFS) were analyzed.ResultsProcedural success and technique efficacy rates were 78.6 % (11/14) and 90.9 % (10/11), respectively. Average follow-up period was 45.3 months (range, 13.4–64.6 months). The 1-, 3-, and 5-year LTP probabilities were 0, 12.5, and 12.5 %, respectively. IDR occurred in seven patients (63.6 %, 7/11). The 1-, 3-, and 5-year PFS probabilities were 81.8, 51.9, and 26 %, respectively. The 1-, 3-, and 5-year OS probabilities were 100, 80.8, and 80.8 %, respectively.ConclusionCombination of TACE and CBCT-RFA seems feasible for small HCC in the caudate lobe not amenable to pUS-RFA and effective in local tumor control.

  5. Treatment of Small Hepatocellular Carcinoma (≤2 cm) in the Caudate Lobe with Sequential Transcatheter Arterial Chemoembolization and Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Dongho; Cho, Sung Ki, E-mail: sungkismc.cho@samsung.com; Shin, Sung Wook; Rhim, Hyunchul [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center (Korea, Republic of); Koh, Kwang Cheol; Paik, Seung Woon [Sungkyunkwan University School of Medicine, Department of Medicine, Samsung Medical Center (Korea, Republic of)

    2016-07-15

    PurposeTo evaluate technical feasibility and treatment results of sequential transcatheter arterial chemoembolization (TACE) and cone-beam computed tomography-guided percutaneous radiofrequency ablation (CBCT-RFA) for small hepatocellular carcinoma (HCC) in the caudate lobe.Materials and MethodsInstitutional review board approved this retrospective study. Radiologic database was searched for the patients referred to perform TACE and CBCT-RFA for small caudate HCCs (≤2 cm) between February 2009 and February 2014. A total of 14 patients (12 men and 2 women, mean age; 61.3 years) were included. Percutaneous ultrasonography-guided RFA (pUS-RFA) and surgery were infeasible due to poor conspicuity, inconspicuity or no safe electrode pathway, and poor hepatic reserve. Procedural success (completion of both TACE and CBCT-RFA), technique efficacy (absence of tumor enhancement at 1 month after treatment), and complication were evaluated. Treatment results including local tumor progression (LTP), intrahepatic distant recurrence (IDR), overall survival (OS), and progression-free survival (PFS) were analyzed.ResultsProcedural success and technique efficacy rates were 78.6 % (11/14) and 90.9 % (10/11), respectively. Average follow-up period was 45.3 months (range, 13.4–64.6 months). The 1-, 3-, and 5-year LTP probabilities were 0, 12.5, and 12.5 %, respectively. IDR occurred in seven patients (63.6 %, 7/11). The 1-, 3-, and 5-year PFS probabilities were 81.8, 51.9, and 26 %, respectively. The 1-, 3-, and 5-year OS probabilities were 100, 80.8, and 80.8 %, respectively.ConclusionCombination of TACE and CBCT-RFA seems feasible for small HCC in the caudate lobe not amenable to pUS-RFA and effective in local tumor control.

  6. Metabolomics of Neurotransmitters and Related Metabolites in Post-Mortem Tissue from the Dorsal and Ventral Striatum of Alcoholic Human Brain.

    Science.gov (United States)

    Kashem, Mohammed Abul; Ahmed, Selina; Sultana, Nilufa; Ahmed, Eakhlas U; Pickford, Russell; Rae, Caroline; Šerý, Omar; McGregor, Iain S; Balcar, Vladimir J

    2016-02-01

    We report on changes in neurotransmitter metabolome and protein expression in the striatum of humans exposed to heavy long-term consumption of alcohol. Extracts from post mortem striatal tissue (dorsal striatum; DS comprising caudate nucleus; CN and putamen; P and ventral striatum; VS constituted by nucleus accumbens; NAc) were analysed by high performance liquid chromatography coupled with tandem mass spectrometry. Proteomics was studied in CN by two-dimensional gel electrophoresis followed by mass-spectrometry. Proteomics identified 25 unique molecules expressed differently by the alcohol-affected tissue. Two were dopamine-related proteins and one a GABA-synthesizing enzyme GAD65. Two proteins that are related to apoptosis and/or neuronal loss (BiD and amyloid-β A4 precursor protein-binding family B member 3) were increased. There were no differences in the levels of dopamine (DA), 3,4-dihydrophenylacetic acid (DOPAC), serotonin (5HT), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (HIAA), histamine, L-glutamate (Glu), γ-aminobutyric acid (GABA), tyrosine (Tyr) and tryptophan (Tryp) between the DS (CN and P) and VS (NAc) in control brains. Choline (Ch) and acetylcholine (Ach) were higher and norepinephrine (NE) lower, in the VS. Alcoholic striata had lower levels of neurotransmitters except for Glu (30 % higher in the alcoholic ventral striatum). Ratios of DOPAC/DA and HIAA/5HT were higher in alcoholic striatum indicating an increase in the DA and 5HT turnover. Glutathione was significantly reduced in all three regions of alcohol-affected striatum. We conclude that neurotransmitter systems in both the DS (CN and P) and the VS (NAc) were significantly influenced by long-term heavy alcohol intake associated with alcoholism.

  7. Distribution and densitometry mapping of L1-CAM Immunoreactivity in the adult mouse brain – light microscopic observation

    Directory of Open Access Journals (Sweden)

    Yamasaki Hironobu

    2003-04-01

    Full Text Available Abstract Background The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain. Results We examined the overall distribution of L1 in the adult mouse brain by immunohistochemistry using two polyclonal antibodies against different epitopes for L1. Immunoreactive L1 was widely but unevenly distributed from the olfactory bulb to the upper cervical cord. The accumulation of immunoreactive L1 was greatest in a non-neuronal element of the major fibre bundles, i.e. the lateral olfactory tract, olfactory and temporal limb of the anterior commissure, corpus callosum, stria terminalis, globus pallidus, fornix, mammillothalamic tract, solitary tract, and spinal tract of the trigeminal nerve. High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc. High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc. Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc. Conclusion L1 is widely and unevenly distributed in the matured mouse brain, where immunoreactivity was present not only in neuronal elements; axons, synapses and cell soma, but also in non-neuronal elements.

  8. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study.

    Science.gov (United States)

    Lin, P-Y; Chao, T-C; Wu, M-L

    2015-03-01

    Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility. © 2015 by American Journal of Neuroradiology.

  9. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  10. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis

    International Nuclear Information System (INIS)

    Varrone, Andrea; Dickson, John C.; Tossici-Bolt, Livia; Sera, Terez; Asenbaum, Susanne; Booij, Jan; Kapucu, Ozlem L.; Kluge, Andreas; Knudsen, Gitte M.; Koulibaly, Pierre Malick; Nobili, Flavio; Pagani, Marco; Sabri, Osama; Borght, Thierry vander; Laere, Koen van; Tatsch, Klaus

    2013-01-01

    Dopamine transporter (DAT) imaging with [ 123 I]FP-CIT (DaTSCAN) is an established diagnostic tool in parkinsonism and dementia. Although qualitative assessment criteria are available, DAT quantification is important for research and for completion of a diagnostic evaluation. One critical aspect of quantification is the availability of normative data, considering possible age and gender effects on DAT availability. The aim of the European Normal Control Database of DaTSCAN (ENC-DAT) study was to generate a large database of [ 123 I]FP-CIT SPECT scans in healthy controls. SPECT data from 139 healthy controls (74 men, 65 women; age range 20 - 83 years, mean 53 years) acquired in 13 different centres were included. Images were reconstructed using the ordered-subset expectation-maximization algorithm without correction (NOACSC), with attenuation correction (AC), and with both attenuation and scatter correction using the triple-energy window method (ACSC). Region-of-interest analysis was performed using the BRASS software (caudate and putamen), and the Southampton method (striatum). The outcome measure was the specific binding ratio (SBR). A significant effect of age on SBR was found for all data. Gender had a significant effect on SBR in the caudate and putamen for the NOACSC and AC data, and only in the left caudate for the ACSC data (BRASS method). Significant effects of age and gender on striatal SBR were observed for all data analysed with the Southampton method. Overall, there was a significant age-related decline in SBR of between 4 % and 6.7 % per decade. This study provides a large database of [ 123 I]FP-CIT SPECT scans in healthy controls across a wide age range and with balanced gender representation. Higher DAT availability was found in women than in men. An average age-related decline in DAT availability of 5.5 % per decade was found for both genders, in agreement with previous reports. The data collected in this study may serve as a reference database for

  11. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a {sup 123}I-FP-CIT SPECT study

    Energy Technology Data Exchange (ETDEWEB)

    Di Giuda, Daniela; Cocciolillo, Fabrizio; Bruno, Isabella; Giordano, Alessandro [Universita Cattolica del Sacro Cuore, Istituto di Medicina Nucleare, Rome (Italy); Camardese, Giovanni; Pucci, Lorella; Janiri, Luigi [Universita Cattolica del Sacro Cuore, Istituto di Psichiatria e Psicologia, Rome (Italy); Bentivoglio, Anna Rita; Guidubaldi, Arianna [Universita Cattolica del Sacro Cuore, Istituto di Neurologia, Rome (Italy); Fasano, Alfonso [Universita Cattolica del Sacro Cuore, Istituto di Neurologia, Rome (Italy); AFaR-Associazione Fatebenefratelli per la Ricerca, Rome (Italy)

    2012-12-15

    Psychiatric symptoms frequently occur in patients with movement disorders. They are not a mere reaction to chronic disability, but most likely due to a combination of psychosocial factors and biochemical dysfunction underlying the movement disorder. We assessed dopamine transporter (DAT) availability by means of {sup 123}I-FP-CIT SPECT, and motor and psychiatric features in patients with Parkinson's disease, primary dystonia and essential tremor, exploring the association between SPECT findings and symptom severity. Enrolled in the study were 21 patients with Parkinson's disease, 14 patients with primary dystonia and 15 patients with essential tremor. The severity of depression symptoms was assessed using the Hamilton depression rating scale, anxiety levels using the Hamilton anxiety rating scale and hedonic tone impairment using the Snaith-Hamilton pleasure scale. Specific {sup 123}I-FP-CIT binding in the caudate and putamen was calculated based on ROI analysis. The control group included 17 healthy subjects. As expected, DAT availability was significantly decreased in patients with Parkinson's disease, whereas in essential tremor and dystonia patients it did not differ from that observed in the control group. In Parkinson's disease patients, an inverse correlation between severity of depression symptoms and DAT availability in the left caudate was found (r = -0.63, p = 0.002). In essential tremor patients, levels of anxiety symptoms were inversely correlated with DAT availability in the left caudate (r = -0.69, p = 0.004). In dystonia patients, the severities of both anxiety and depression symptoms were inversely associated with DAT availability in the left putamen (r = -0.71, p = 0.004, and r = -0.75, p = 0.002, respectively). There were no correlations between psychometric scores and {sup 123}I-FP-CIT uptake ratios in healthy subjects. We found association between presynaptic dopaminergic function and affective symptoms in different movement

  12. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a 123I-FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Di Giuda, Daniela; Cocciolillo, Fabrizio; Bruno, Isabella; Giordano, Alessandro; Camardese, Giovanni; Pucci, Lorella; Janiri, Luigi; Bentivoglio, Anna Rita; Guidubaldi, Arianna; Fasano, Alfonso

    2012-01-01

    Psychiatric symptoms frequently occur in patients with movement disorders. They are not a mere reaction to chronic disability, but most likely due to a combination of psychosocial factors and biochemical dysfunction underlying the movement disorder. We assessed dopamine transporter (DAT) availability by means of 123 I-FP-CIT SPECT, and motor and psychiatric features in patients with Parkinson's disease, primary dystonia and essential tremor, exploring the association between SPECT findings and symptom severity. Enrolled in the study were 21 patients with Parkinson's disease, 14 patients with primary dystonia and 15 patients with essential tremor. The severity of depression symptoms was assessed using the Hamilton depression rating scale, anxiety levels using the Hamilton anxiety rating scale and hedonic tone impairment using the Snaith-Hamilton pleasure scale. Specific 123 I-FP-CIT binding in the caudate and putamen was calculated based on ROI analysis. The control group included 17 healthy subjects. As expected, DAT availability was significantly decreased in patients with Parkinson's disease, whereas in essential tremor and dystonia patients it did not differ from that observed in the control group. In Parkinson's disease patients, an inverse correlation between severity of depression symptoms and DAT availability in the left caudate was found (r = -0.63, p = 0.002). In essential tremor patients, levels of anxiety symptoms were inversely correlated with DAT availability in the left caudate (r = -0.69, p = 0.004). In dystonia patients, the severities of both anxiety and depression symptoms were inversely associated with DAT availability in the left putamen (r = -0.71, p = 0.004, and r = -0.75, p = 0.002, respectively). There were no correlations between psychometric scores and 123 I-FP-CIT uptake ratios in healthy subjects. We found association between presynaptic dopaminergic function and affective symptoms in different movement disorders. Interestingly, the

  13. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  14. The intercalatus nucleus of Staderini.

    Science.gov (United States)

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  15. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  16. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder.

    Science.gov (United States)

    Wang, Gene-Jack; Volkow, Nora D; Wigal, Timothy; Kollins, Scott H; Newcorn, Jeffrey H; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T; Han, Hao; Fowler, Joanna S; Zhu, Wei; Swanson, James M

    2013-01-01

    Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. We used positron emission tomography and [(11)C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories.

  17. Neuropeptide processing in regional brain slices: Effect of conformation and sequence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.W.; Bijl, W.A.; van Nispen, J.W.; Brendel, K.; Davis, T.P. (Univ. of Arizona, Tucson (USA))

    1990-05-01

    The central enzymatic stability of des-enkephalin-gamma-endorphin and its synthetic analogs (cycloN alpha 6, C delta 11)beta-endorphin-(6-17) and (Pro7, Lys(Ac)9)-beta-endorphin(6-17) was studied in vitro using a newly developed, regionally dissected rat brain slice, time course incubation procedure. Tissue slice viability was estimated as the ability of the brain slice to take up or release gamma-(3H)aminobutyric acid after high K+ stimulation. Results demonstrated stability of uptake/release up to 5 hr of incubation, suggesting tissue viability over this period. The estimated half-life of peptides based on the results obtained in our incubation protocol suggest that the peptides studied are metabolized at different rates in the individual brain regions tested. A good correlation exists between the high enzyme activity of neutral endopeptidase and the rapid degradation of des-enkephalin-gamma-endorphin and (cycloN alpha 6, C delata 11)beta-endorphin-(6-17) in caudate putamen. Proline substitution combined with lysine acetylation appears to improve resistance to enzymatic metabolism in caudate putamen and hypothalamus. However, cyclization of des-enkephalin-gamma-endorphin forming an amide bond between the alpha-NH2 of the N-terminal threonine and the gamma-COOH of glutamic acid did not improve peptide stability in any brain region tested. The present study has shown that the brain slice technique is a valid and unique approach to study neuropeptide metabolism in small, discrete regions of rat brain where peptides, peptidases and receptors are colocalized and that specific structural modifications can improve peptide stability.

  18. The picture of the nuclei disintegration mechanism - from hadron-nucleus and nucleus-nucleus collisions experimental investigations at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.; Chmielowski, W.

    1997-01-01

    The mechanism of the nuclei disintegration process in collisions of high-energy hadrons with nuclei is revealed experimentally. The disintegration appears as a complicated nuclear process developing in time and space in intranuclear matter, consisting at least of three stages which last together about 10 -24 - 10 -17 s after the impact. At the first stage, which lasts about 10 -24 - 10 -22 s, fast nucleons are densely emitted and the target-nucleus is locally damaged. At the second stage, lasting about 10 -22 - 10 -1 7 s, the damaged and unstable residual target nucleus uses to evaporate light fragments - mainly nucleons, deuterons, tritons, α-particles. At the final stage, the residual target-nucleus uses to split sometimes into two or more nuclear fragments

  19. Liver parenchyma transection-first approach in hemihepatectomy with en bloc caudate lobectomy for hilar cholangiocarcinoma: A safe technique to secure favorable surgical outcomes.

    Science.gov (United States)

    Kawabata, Yasunari; Hayashi, Hikota; Yano, Seiji; Tajima, Yoshitsugu

    2017-06-01

    Although hemihepatectomy with total caudate lobectomy (hemiHx-tc) is essential for the surgical treatment of hilar cholangiocarcinoma, the advantage of an anterior approach for hemiHx-tc has not been fully discussed technically; the significance of an anterior approach without liver mobilization for preventing infectious complications also remains unknown. The liver parenchyma transection-first approach (Hp-first) technique is an early transection of the hepatic parenchyma without mobilization of the liver that utilizes a modified liver-hanging maneuver to avoid damaging the future remnant liver. Between May 2010 and August 2016, a total of 40 consecutive patients underwent surgery for hilar cholangiocarcinoma. Of these, 19 patients underwent a conventional hemihepatectomy with total caudate lobectomy (cHx), while 21 patients received a Hp-first. The patients in the Hp-first group had significantly less intraoperative blood loss (P hilar cholangiocarcinoma because it resulted in improved surgical outcomes as compared with the conventional approach. © 2017 Wiley Periodicals, Inc.

  20. Proton rapidity distribution in nucleus-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2002-01-01

    The proton rapidity distributions in nucleus-nucleus collisions at the Alternating Gradient Synchrotron (AGS) and the Super Proton Synchrotron (SPS) energies are analysed by the revised thermalized cylinder model. The calculated results are compared and found to he in agreement with the experimental data of Si-AI and Si-Pb collisions at 14.6 A GeV/c, Pb-Pb collisions at 158 A GeV/c, and S-S collisions at 200 A GeV/c. (Author)