WorldWideScience

Sample records for cattle mammary bioreactor

  1. Transgenic bioreactors.

    Science.gov (United States)

    Jänne, J; Alhonen, L; Hyttinen, J M; Peura, T; Tolvanen, M; Korhonen, V P

    1998-01-01

    Since the generation of the first transgenic mice in 1980, transgene technology has also been successfully applied to large farm animals. Although this technology can be employed to improve certain production traits of livestock, this approach has not been very successful so far owing to unwanted effects encountered in the production animals. However, by using tissue-specific targeting of the transgene expression, it is possible to produce heterologous proteins in the extracellular space of large transgenic farm animals. Even though some recombinant proteins, such as human hemoglobin, have been produced in the blood of transgenic pigs, in the majority of the cases mammary gland targeted expression of the transgene has been employed. Using production genes driven by regulatory sequences of milk protein genes a number of valuable therapeutic proteins have been produced in the milk of transgenic bioreactors, ranging from rabbits to dairy cattle. Unlike bacterial fermentors, the mammary gland of transgenic bioreactors appear to carry out proper postsynthetic modifications of human proteins required for full biological activity. In comparison with mammalian cell bioreactors, transgenic livestock with mammary gland targeted expression seems to be able to produce valuable human therapeutic proteins at very low cost. Although not one transgenically produced therapeutic protein is yet on the market, the first such proteins have recently entered or even completed clinical trials required for their approval.

  2. Bioreactor

    Science.gov (United States)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  3. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  4. Differentiation dynamics of mammary epithelial stem cells from Korean holstein dairy cattle under ECM-free conditions.

    Science.gov (United States)

    Sharma, Neelesh; Kim, Jeong Hyun; Sodhi, Simrinder Singh; Luong, Do Huynh; Kim, Sung-Woo; Oh, Sung Jong; Jeong, Dong Kee

    2015-01-01

    The "stem cells" are commonly defined as "cells capable of self-renewal through replication and differentiating into specific lineages". The mammary gland contains functional stem/progenitor cells. The current study was planned with the objectives to study the differentiation dynamics of Korean Holstein mammary epithelial stem cells (KHMESCs) under the optimum culture conditions. Lineage negative KHMESCs isolated from mammary tissue of lactating cows have shown the typical differentiation dynamics with formation of lobulo-alveolar structures in in vitro culture. This suggests the existence of bipotential mammary epithelial stem cells in the mammary gland. The strong mRNA expression of pluripotency factors indicates stemness, whereas expression of milk protein genes and epithelial cell-specific gene indicate their differentiation capabilities. Further, immunostaining results have shown the differentiation capabilities of KHMESCs into both luminal and basal lineages under the extracellular matrix (ECM, matrigel) free environment. However, under matrigel, the differentiation process was comparatively higher than without matrigel. Immunostaining results also suggested that differentiated cells could secrete milk proteins such as β-casein. To our knowledge, these data represent the first report on the differentiation dynamics and establishment of mammary epithelial stem cells from Korean Holstein with typical stemness properties. It was observed that isolated KHMESCs had normal morphology, growth pattern, differentiation ability, cytogenetic and secretory activity even without ECM. Therefore, it is concluded that established KHMESCs could be used for further studies on Korean Holstein dairy cows related to lactation studies, as non-GMO animal bioreactors and stem cell-based management of bovine mastitis including post-mastitis damage.

  5. Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor.

    Science.gov (United States)

    Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi

    Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.

  6. Effects of Cooling and Supplemental Bovine Somatotropin on Milk Production relating to Body Glucose Metabolism and Utilization of Glucose by the Mammary Gland in Crossbred Holstein Cattle

    Directory of Open Access Journals (Sweden)

    Siravit Sitprija

    2010-01-01

    Full Text Available Problem statement: The low milk yield and shorter persistency of lactation of dairy cattle is the major problem for the dairy practices in the tropics. High environmental temperatures and rapid decline of plasma growth hormone level can influence milk production. Regulation of the milk yield of animals is mainly based on the mechanisms governing the quantity of glucose extracted by the mammary gland for lactose biosynthetic pathways. The mechanism(s underlying the effects of cooling and supplemental bovine somatotropin on milk production relating to body glucose metabolism and intracellular metabolism of glucose in the mammary gland of crossbred Holstein cattle in the tropics have not been investigated to date. Approach: Ten crossbred 87.5% Holstein cows were divided into two groups of five animals each. Animals were housed in Normal Shade barn (NS as non-cooled cows and cows in the second group were housed in barn which was equipped with a two Misty-Fan cooling system (MF as cooled cows. Supplementation of recombinant bovine Somatotropin (rbST (POSILAC, 500 mg per cow were performed in both groups to study body glucose metabolism and the utilization of glucose in the mammary gland using a continuous infusion of [3-3H] glucose and [U- 14C] glucose as markers in early, mid and late stages of lactation. Results: Milk yield significantly increased in both groups during supplemental rbST with a high level of mammary blood flow. Body glucose turnover rates were not significant different between cooled and non-cooled cows whether supplemental rbST or not. The glucose taken up by the mammary gland of both non-cooled and cooled cows increased flux through the lactose synthesis and the pentose cycle pathway with significant increases in NADPH formation for fatty acid synthesis during rbST supplementation. The utilization of glucose carbon incorporation into milk appeared to increase in milk lactose and milk triacylglycerol but not for

  7. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis.

    Science.gov (United States)

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.

  8. Proteomics and pathway analysis of N-glycosylated mammary gland proteins in response to Escherichia coli mastitis in cattle.

    Science.gov (United States)

    Yang, Yongxin; Shen, Weijun; Zhao, Xiaowei; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong

    2014-06-01

    The aim of this study was to investigate the N-linked glycosylated protein profile of mammary tissue from healthy cows and cows with mastitis due to Escherichia coli, in order to understand the molecular mechanisms of the host response to mastitis. N-glycopeptides were enriched with a lectin mixture and identified through high-accuracy mass spectrometry. A total of 551 N-glycosylation sites, corresponding to 294 proteins, were identified in the mammary tissues of healthy cows; these glycoproteins were categorised into three functional groups and clustered into 11 specific pathways. A total of 511 N-glycosylation sites, corresponding to 283 glycosylated proteins, were detected in the mammary tissues of cows with E. coli mastitis. There were differences in N-glycosylation sites in 98 proteins in the mammary tissues of healthy cows and cows with mastitis due to E. coli. Most proteins with altered glycosylation were those involved in responses to stress, cell adhesion and the immune response, and were assigned to five specific pathways based on their gene ontology annotation. The results from this study show that the glycosylated protein profile in the mammary tissues of healthy and mastitic cows are different, and altered glycoproteins are associated with several pathways, including the lysosome and O-glycan biosynthesis pathways.

  9. 壳聚糖在奶牛乳腺健康中的作用及应用研究进展%Advance on the Applications of Chitosan in Mammary Health in Dairy Cattle

    Institute of Scientific and Technical Information of China (English)

    王俊锋; 连慧香

    2012-01-01

    Mastitis is one of the three main diseases that affects the profitability of dairy farmers. Chitosan has important significance in maintenance of mammary health. In view of this, the function and application of chitosan in mammary health in dairy cattle were reviewed, which provides a theoretical basis for the effective control of mastitis.%乳腺炎是影响奶牛生产者经济效益的三大主要疾病之一.壳聚糖具有提高动物免疫力,发挥类抗生素的作用,在维护奶牛乳腺健康方面具有重要意义.为此,综述了壳聚糖在奶牛乳腺健康中的作用及应用研究进展,并对壳聚糖的应用前景进行了展望,以期为有效控制奶牛乳腺炎提供理论依据.

  10. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. Transgenic dairy cattle: genetic engineering on a large scale.

    Science.gov (United States)

    Wall, R J; Kerr, D E; Bondioli, K R

    1997-09-01

    Amid the explosion of fundamental knowledge generated from transgenic animal models, a small group of scientists has been producing transgenic livestock with goals of improving animal production efficiency and generating new products. The ability to modify mammary-specific genes provides an opportunity to pursue several distinctly different avenues of research. The objective of the emerging gene "pharming" industry is to produce pharmaceuticals for treating human diseases. It is argued that mammary glands are an ideal site for producing complex bioactive proteins that can be cost effectively harvested and purified. Consequently, during the past decade, approximately a dozen companies have been created to capture the US market for pharmaceuticals produced from transgenic bioreactors estimated at $3 billion annually. Several products produced in this way are now in human clinical trials. Another research direction, which has been widely discussed but has received less attention in the laboratory, is genetic engineering of the bovine mammary gland to alter the composition of milk destined for human consumption. Proposals include increasing or altering endogenous proteins, decreasing fat, and altering milk composition to resemble that of human milk. Initial studies using transgenic mice to investigate the feasibility of enhancing manufacturing properties of milk have been encouraging. The potential profitability of gene "pharming" seems clear, as do the benefits of transgenic cows producing milk that has been optimized for food products. To take full advantage of enhanced milk, it may be desirable to restructure the method by which dairy producers are compensated. However, the cost of producing functional transgenic cattle will remain a severe limitation to realizing the potential of transgenic cattle until inefficiencies of transgenic technology are overcome. These inefficiencies include low rates of gene integration, poor embryo survival, and unpredictable transgene

  13. 9 CFR 310.17 - Inspection of mammary glands.

    Science.gov (United States)

    2010-01-01

    ... mammary glands and diseased mammary glands of cattle, sheep, swine, and goats shall be removed without..., swine, and goats shall not be saved for edible purposes. (d) The udders from cows officially designated as “Brucellosis reactors” or as “Mastitis elimination cows” shall be condemned....

  14. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  15. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  16. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Metastatic mammary carcinoma in a cow

    Directory of Open Access Journals (Sweden)

    Manoela Marchezan Piva

    Full Text Available ABSTRACT: Mammary gland neoplasms in cattle are rarely observed in the field veterinary diagnostics routine. Therefore, the objective of this study is to report a metastatic mammary carcinoma in a fourteen-year-old Holstein cow in the state of Santa Catarina, Brazil. The animal was diagnosed by the field veterinarian with clinical mastitis that was unresponsive to treatment, and was euthanized due to the poor prognosis. At the necropsy, multiple yellow, firm, and sometimes friable nodules, ranging from 0.1 to 20cm were observed in all mammary glands, lymph nodes, kidneys, spleen, liver, pancreas, mediastinal lymph nodes, heart, and lungs. The final diagnosis of mammary carcinoma was established through the association of clinical, necropsy, histopathological, and immunohistochemical findings. Differential diagnoses included diseases such as bovine tuberculosis and chronic fungal or bacterial mastitis.

  18. Exploring the genetic architecture and improving genomic prediction accuracy for mastitis and milk production traits in dairy cattle by mapping variants to hepatic transcriptomic regions responsive to intra-mammary infection.

    Science.gov (United States)

    Fang, Lingzhao; Sahana, Goutam; Ma, Peipei; Su, Guosheng; Yu, Ying; Zhang, Shengli; Lund, Mogens Sandø; Sørensen, Peter

    2017-05-12

    A better understanding of the genetic architecture of complex traits can contribute to improve genomic prediction. We hypothesized that genomic variants associated with mastitis and milk production traits in dairy cattle are enriched in hepatic transcriptomic regions that are responsive to intra-mammary infection (IMI). Genomic markers [e.g. single nucleotide polymorphisms (SNPs)] from those regions, if included, may improve the predictive ability of a genomic model. We applied a genomic feature best linear unbiased prediction model (GFBLUP) to implement the above strategy by considering the hepatic transcriptomic regions responsive to IMI as genomic features. GFBLUP, an extension of GBLUP, includes a separate genomic effect of SNPs within a genomic feature, and allows differential weighting of the individual marker relationships in the prediction equation. Since GFBLUP is computationally intensive, we investigated whether a SNP set test could be a computationally fast way to preselect predictive genomic features. The SNP set test assesses the association between a genomic feature and a trait based on single-SNP genome-wide association studies. We applied these two approaches to mastitis and milk production traits (milk, fat and protein yield) in Holstein (HOL, n = 5056) and Jersey (JER, n = 1231) cattle. We observed that a majority of genomic features were enriched in genomic variants that were associated with mastitis and milk production traits. Compared to GBLUP, the accuracy of genomic prediction with GFBLUP was marginally improved (3.2 to 3.9%) in within-breed prediction. The highest increase (164.4%) in prediction accuracy was observed in across-breed prediction. The significance of genomic features based on the SNP set test were correlated with changes in prediction accuracy of GFBLUP (P < 0.05). GFBLUP provides a framework for integrating multiple layers of biological knowledge to provide novel insights into the biological basis of complex traits

  19. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  20. Engineering disease resistant cattle.

    Science.gov (United States)

    Donovan, David M; Kerr, David E; Wall, Robert J

    2005-10-01

    Mastitis is a disease of the mammary gland caused by pathogens that find their way into the lumen of the gland through the teat canal. Mammary gland infections cost the US dairy industry approximately $2 billion dollars annually and have a similar impact in Europe. In the absence of effective treatments or breeding strategies to enhance mastitis resistance, we have created transgenic dairy cows that express lysostaphin in their mammary epithelium and secrete the antimicrobial peptide into milk. Staphylococcus aureus, a major mastitis pathogen, is exquisitely sensitive to lysostaphin. The transgenic cattle resist S. aureus mammary gland challenges, and their milk kills the bacteria, in a dose dependent manner. This first step in protecting cattle against mastitis will be followed by introduction of other genes to deal with potential resistance issues and other mastitis causing organisms. Care will be taken to avoid altering milk's nutritional and manufacturing properties. Multi-cistronic constructs may be required to achieve our goals as will other strategies possibly involving RNAi and gene targeting technology. This work demonstrates the possibility of using transgenic technology to address disease problems in agriculturally important species.

  1. The Advance in Research on Transgenic Animal Technical Application to the Transgenic Cattle%动物转基因技术在转基因牛中的研究进展

    Institute of Scientific and Technical Information of China (English)

    张兆顺; 成功; 昝林森

    2012-01-01

    本研究综述了目前应用于转基因牛中原核显微注射法、体细胞克隆法、病毒载体法等传统动物转基因技术以及具有应用前景的ZFN技术、TALEN技术和iPS技术等.概述了20年来国内外转基因牛重要的研究进展,并就目前转基因牛在乳腺生物反应器、抗病育种、品种改良主要3个方面的应用进行了介绍.在此基础上,就目前转基因牛育种中存在的问题及今后发展趋势进行了讨论,以促进转基因牛技术的发展.%The article summarized the transgenic animal technology used in transgenic cattle research, such as microinjection, somatic cell nuclear transfer, virus and the more prospects technology such as ZFN, TALEN and iPS. Reviewed the progress of transgenic cattle research in Domestic and foreign, and the application of transgenic cattle research in mammary bioreactor, breeding for disease resistance and breeding improvement. Finally, transgenic cattle breeding problems and future development trends were discussed to improve the research of transgenic cattle.

  2. Expression systems and species used for transgenic animal bioreactors.

    Science.gov (United States)

    Wang, Yanli; Zhao, Sihai; Bai, Liang; Fan, Jianglin; Liu, Enqi

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  3. Expression Systems and Species Used for Transgenic Animal Bioreactors

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2013-01-01

    Full Text Available Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon, the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  4. Mammary gland pathologies in the parturient buffalo

    Directory of Open Access Journals (Sweden)

    G N Purohit

    2014-12-01

    Full Text Available Parturition related mammary gland pathologies in the buffalo appear to be low on accord of anatomic (longer teat length, thicker streak canal and physiologic (lower cisternal storage of secreted milk, lower milk production differences with cattle. Hemolactia, udder edema and hypogalactia usually occur in the buffalo due to physiologic changes around parturition however mastitis involves pathologic changes in the udder and teats; the incidence of mastitis is however lower compared to cattle. The incidence and therapy of hemolactia, udder edema and hypogalactia are mentioned and the risk factors, incidence, diagnosis, therapy and prevention for mastitis in buffalo are also described.

  5. Bioreactors addressing diabetes mellitus.

    Science.gov (United States)

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  6. NASA Bioreactor Demonstration System

    Science.gov (United States)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  7. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  8. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  9. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  10. Space Bioreactor Science Workshop

    Science.gov (United States)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  11. [Generation of transgenic mice expressing human lysozyme in mammary gland].

    Science.gov (United States)

    Yan, Hua; Li, Guo-cai; Sun, Huai-chang

    2005-10-01

    To evaluate the feasibility of generating animal mammary gland bioreactors expressing human lysozyme (hLYZ). The recombinant vector p205C3-hLYZ, as a result of connecting the hLYZ cDNA with the mammry gland expression vector p205C3, was used to generate transfer genic mice by microinjection. A total of 136 F0 mice were obtained, of which 7 (2 females and 5 males) and 4 (1 females and 3 males) were found to contain the transfer-gene by PCR and Southern blotting respectively. The results of Western blotting indicated that the expressed protein had the same molecular weight as that of normal hLYZ. From the F1 generation on, the mice mated only with their brothers or sisters and a colony of F7 transgenic mice was obtained. Among the offspring, the female transgenic mice maintained and expressed the transfer-gene stably with an expression level as high as 750 mg/L. The expressed protein had strong tissue specificity, and in addition to the mammary glands, some degree of ectropic expression in the spleens and intestines of the transgenic mice was confirmed by dot blotting assay. These data indicate that the mice mammary gland bioreactors expressing hLYZ have been successfully generated.

  12. Mammary Duct Ectasia

    Science.gov (United States)

    ... tenderness or inflammation of the clogged duct (periductal mastitis). Mammary duct ectasia most often occurs in women ... that's turned inward (inverted) A bacterial infection called mastitis also may develop in the affected milk duct, ...

  13. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...

  14. Bioreactors and bioseparation.

    Science.gov (United States)

    Zhang, Siliang; Cao, Xuejun; Chu, Ju; Qian, Jiangchao; Zhuang, Yingping

    2010-01-01

    Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid

  15. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  17. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  18. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. Mammary gland development.

    Science.gov (United States)

    Macias, Hector; Hinck, Lindsay

    2012-01-01

    The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.

  20. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  1. Activation of immune cells in bovine mammary gland secretions by zymosan treated bovine serum

    Science.gov (United States)

    Mastitis, caused by bacterial infection of the mammary gland, is a major disease of dairy cattle. The greatest risks of intramammary infection occur at the end of lactation and at the initiation of the next lactation when the cow calves. Treating serum with zymosan (yeast cell wall preparation) ca...

  2. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. Basic bioreactor design.

    NARCIS (Netherlands)

    Riet, van 't K.; Tramper, J.

    1991-01-01

    Based on a graduate course in biochemical engineering, provides the basic knowledge needed for the efficient design of bioreactors and the relevant principles and data for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms. Includes exercises.

  5. Basic bioreactor design.

    NARCIS (Netherlands)

    Riet, van 't K.; Tramper, J.

    1991-01-01

    Based on a graduate course in biochemical engineering, provides the basic knowledge needed for the efficient design of bioreactors and the relevant principles and data for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms. Includes exercises.

  6. Cascades of bioreactors.

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :i) processes with a variable stoichiometry ,ii) processes with a consta

  7. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  8. Canine mammary gland tumors.

    Science.gov (United States)

    Sorenmo, Karin

    2003-05-01

    The National Consensus Group recommends that all women with tumors larger than 1 cm be offered chemotherapy regardless of tumor histology of lymph node status. This recommendation is to ensure that everyone at risk for failing, even though the risk may be low in women with relatively small tumors and favorable histology, has a choice and receives the benefit of adjuvant chemotherapy. This type of treatment recommendation may also be made in dogs based on recognized, well-accepted prognostic factors such as tumor size, stage, type, and histologic differentiation. Based on the limited clinical information available in veterinary medicine, the drugs that are effective in human breast cancer, such as cyclophosphamide, 5-fluorouracil, and doxorubicin, may also have a role in the treatment of malignant mammary gland tumors in dogs. Randomized prospective studies are needed, however, to evaluate the efficacy of chemotherapy in dogs with high-risk mammary gland tumors and to determine which drugs and protocols are the most efficacious. Until such studies are performed, the treatment of canine mammary gland tumors will be based on the individual oncologist's understanding of tumor biology, experience, interpretation of the available studies, and a little bit of gut-feeling. Table 2 is a proposal for treatment guidelines for malignant canine mammary gland tumors according to established prognostic factors, results from published veterinary studies, and current recommendations for breast cancer treatment in women.

  9. Immunoglobins in mammary secretions

    DEFF Research Database (Denmark)

    Hurley, W L; Theil, Peter Kappel

    2013-01-01

    Immunoglobulins secreted in colostrum and milk by the lactating mammal are major factors providing immune protection to the newborn. Immunoglobulins in mammary secretions represent the cumulative immune response of the lactating animal to exposure to antigenic stimulation that occurs through inte...

  10. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  11. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... studies, human or mouse epithelium was implanted as fragments into the mouse gland, more recent technical progress has allowed the self-renewal capacity and differentiation potential of distinct cell populations or even individual cells to be interrogated. Here, we review and discuss similarities...

  12. Design challenges for space bioreactors

    Science.gov (United States)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  13. A mammary repopulating cell population characterized in mammary anlagen reveals essential mammary stroma for morphogenesis.

    Science.gov (United States)

    Song, Jiazhe; Xue, Kai; She, Ji; Ding, Fangrong; Li, Song; Shangguan, Rulan; Dai, Yunping; Du, Liying; Li, Ning

    2014-09-10

    The cells with mammary repopulating capability can achieve mammary gland morphogenesis in a suitable cellular microenvironment. Using cell surface markers of CD24, CD29 and CD49f, mouse mammary repopulating unit (MRU) has been identified in adult mammary epithelium and late embryonic mammary bud epithelium. However, embryonic MRU remains to be fully characterized at earlier mammary anlagen stage. Here we isolated discrete populations of E14.5 mouse mammary anlagen cells. Only Lin(-)CD24(med)CD29(+) cell population was predicted as E14.5 MRU by examining their capacities of forming mammosphere and repopulating cleared mammary fat pad in vivo. However, when we characterized gene expressions of this E14.5 cell population by comparing with adult mouse MRU (Lin(-)CD24(+)CD29(hi)), the gene profiling of these two cell populations exhibited great differences. Real-time PCR and immunostaining assays uncovered that E14.5 Lin(-)CD24(med)CD29(+) cell population was a heterogeneous stroma-enriched cell population. Then, limiting dilutions and single-cell assays also confirmed that E14.5 Lin(-)CD24(med)CD29(+) cell population possessed low proportion of stem cells. In summary, heterogeneous Lin(-)CD24(med)CD29(+) cell population exhibited mammary repopulating ability in E14.5 mammary anlagen, implying that only suitable mammary stroma could enable mammary gland morphogenesis, which relied on the interaction between rare stem cells and microenvironment. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Perfusion Bioreactor Module

    Science.gov (United States)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  15. Computational analysis of bovine milk exosomal miRNAs profiles derived from uninfected and Streptococcus uberis infected mammary gland

    Science.gov (United States)

    The dairy cattle industry in the U.S. contributes an estimated 7 billion dollars to the agribusiness economy. Bacterial infections that cause disease like mastitis, affect health of the lactating mammary gland, and negatively impacts milk production and milk quality, costing producers an estimated 2...

  16. Cells growing in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Cells growing in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. Transgenic animal bioreactors.

    Science.gov (United States)

    Houdebine, L M

    2000-01-01

    The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes

  19. Immunological analysis of aerobic bioreactor bovine theileriosis vaccine.

    Directory of Open Access Journals (Sweden)

    Gholamreza Habibi

    2014-09-01

    Full Text Available In this study, the pilot production of aerobic bioreactor tropical theileriosis vaccine was optimized with the aim of immunological assays for further mass production.We have shown earlier the delayed type hypersensitivity (DTH assay could be used for evaluating the immunity and memory cells against specific Theileria antigen in vaccinated animals. In addition, TNF-α is the principle cytokine in modulating the cytotoxic activity of cytotoxic T-lymphocytes (CTL. Immunological analysis of the vaccine was performed by using two cell mediated immunity (CMI in vitro and in vivo DTH test (Theilerin and TNF-α assay.The results of immune responses of susceptible immunized cattle by bioreactor vaccine in comparison with conventional flask vaccine revealed a significant stimulation of immune cells by transcription of high level of TNF-α and positive reaction against Theileria antigen in Theilerin skin test (DTH.The equal immunological results achieved in both above mentioned vaccines verified the satisfactory immunity for aerobic bioreactor theileriosis vaccine for advance mass vaccination in the field on a large-scale.

  20. Genetic Architecture of clinical mastitis traits in dairy cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2012-01-01

    investigate the genetic architecture of clinical mastitis and somatic cell score traits in dairy cattle using a high density (HD) SNP panel. Mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection, is a frequent disease in dairy cattle. Clinical mastitis and somatic cell...... mixed model analysis. After Bonferroni correction 12, 372 SNP exhibited genome-wide significant associations with mastitis related traits. A total 61 QTL regions on 22 chromosomes associated with mastitis related traits were identified. The SNP with highest effect explained 5.6% of the variance...... of the predicted breeding values for the first lactation clinical mastitis...

  1. Genetic Architecture of clinical mastitis traits in dairy cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2012-01-01

    investigate the genetic architecture of clinical mastitis and somatic cell score traits in dairy cattle using a high density (HD) SNP panel. Mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection, is a frequent disease in dairy cattle. Clinical mastitis and somatic cell...... mixed model analysis. After Bonferroni correction 12, 372 SNP exhibited genome-wide significant associations with mastitis related traits. A total 61 QTL regions on 22 chromosomes associated with mastitis related traits were identified. The SNP with highest effect explained 5.6% of the variance...... of the predicted breeding values for the first lactation clinical mastitis...

  2. VALUATION OF CONDITIONS OF MECHANIZED MILKING OF COWS AND OF THE MAMMARY HEALTH SITUATION IN THE EAST CENTRAL DE SOUSSE (TUNISIA

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-07-01

    Full Text Available The aim of this study is to evaluate mainly the conditions the milking and the mammary health status of cows in the central East Sousse (Tunisian Sahel. The study was conducted on a sample of 20 small and means dairy cattle herds aboveground divided into two study areas. This study examined the general conditions of cattle, the practices of trafficking and the situation mammary health of cows, while completing the analysis by assessing quantitative losses caused in the product milk. The situation detected in the elevages requires an effective response against mastitis while trying to control the risk factors in small and medium farms herds aboveground.

  3. Spiral vane bioreactor

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  4. [Transgenic animals bioreactors].

    Science.gov (United States)

    Gou, Ke-Mian; An, Xiao-Rong; Tian, Jian-Hui; Chen, Yong-Fu

    2002-01-01

    The production of human recombinant proteins in milk of transgenic farm animals offers a safe, very cost-effective source of commercially important proteins that cannot be produced as efficiently in adequate quantities by other methods. This review has summarized the current status of gene selection, vector construct, transgenic methods, economics, and obvious potential in transgenic animals bioreactors. Recently, a more powerful approach was adopted in the transgenic animals founded on the application of nuclear transfer. As we will illustrate, this strategy presents a breakthrough in the overall efficiency of generating transgenic farm animals, product consistency, and time of product development. The successful adaptation of Cre-/lox P-mediated site-specific DNA recombination systems in farm animals will offer unprecedented possibilities for generating transgenic animals.

  5. Controlled-Turbulence Bioreactors

    Science.gov (United States)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  6. Fast multipoint immobilized MOF bioreactor.

    Science.gov (United States)

    Liu, Wan-Ling; Wu, Cheng-You; Chen, Chien-Yu; Singco, Brenda; Lin, Chia-Her; Huang, Hsi-Ya

    2014-07-14

    An enzyme-NBD@MOF bioreactor with exemplary proteolytic performance, even after successive reuse and storage, was produced through a novel, rapid and simple multipoint immobilization technique without chemical modification of the solid support. Enzyme loading and distribution could be directly monitored from the fluorescence emission of the bioreactor. The dye molecular dimension plays a role in its overall performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bioreactor Mass Transport Studies

    Science.gov (United States)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  8. Mammary tuberculosis: percutaneous treatment of a mammary tuberculous abscess

    Energy Technology Data Exchange (ETDEWEB)

    Romero, C.; Carreira, C.; Cereceda, C.; Pinto, J. [Servicio de Radiologia, Hospital Virgen de la Salud, Toledo (Spain); Lopez, R.; Bolanos, F. [Servicio de Cirugia, Hospital Virgen de la Salud, Toledo (Spain)

    2000-03-01

    It is currently very rare to find mammary involvement in cases of tuberculosis, in either primary or secondary form. Diagnosis is classically clinical and microbiological, and the basic techniques used in imaging diagnosis are mammography and ultrasound. Computed tomography may define the involvement of the thoracic wall in those cases which present as mammary masses adhering to deep levels, and is also able to evaluate accompanying pulmonary disease, if it is present. Traditionally, treatment has consisted of quadrantectomy and specific antibiotic therapy. We present a case of tuberculous mammary abscess secondary to pulmonary disease, which was treated by percutaneous drainage controlled by CT and specific antibiotic therapy. We revise the diagnosis, differential diagnosis and treatment of mammary tuberculosis. (orig.)

  9. Integrating Sequence-based GWAS and RNA-Seq Provides Novel Insights into the Genetic Basis of Mastitis and Milk Production in Dairy Cattle

    OpenAIRE

    Lingzhao Fang; Goutam Sahana; Guosheng Su; Ying Yu; Shengli Zhang; Mogens Sandø Lund; Peter Sørensen

    2017-01-01

    Connecting genome-wide association study (GWAS) to biological mechanisms underlying complex traits is a major challenge. Mastitis resistance and milk production are complex traits of economic importance in the dairy sector and are associated with intra-mammary infection (IMI). Here, we integrated IMI-relevant RNA-Seq data from Holstein cattle and sequence-based GWAS data from three dairy cattle breeds (i.e., Holstein, Nordic red cattle, and Jersey) to explore the genetic basis of mastitis res...

  10. Canine mammary tumors - clinical survey

    Directory of Open Access Journals (Sweden)

    Elena Atanaskova Petrov

    2014-10-01

    Full Text Available Mammary tumours are the second most frequent neoplasia in dogs, mainly affecting older female patients. Approximately 50% of the mammary tumours are malignant with high percentage of mortality if not treated in time. The aim of this study was to analyze the data of canine patients with mammary tumours, to evaluate the type of tumours, as well as the relationship between tumour incidence and dogs’ age, reproductive cycle and sterilization. The survey was used to retrieve the information in the period of two years from the patient data base of the University Veterinary Hospital at the Faculty of Veterinary medicine in Skopje. Patients included in this survey were subjected to routine clinical investigation and additional laboratory tests (cytological examination, x-rays imaging, CBC and biochemical profile, histopathology of the tumor samples. Aged female patients (12 – 13 years are the most susceptible category for development of mammary tumours. The reproductive history showed that five of the patients with malignant mammary tumourshave never whelped and were not treated with any exogenous hormones. Malignant tumours (adenocarcinoma were diagnosed in 90% of the patients. Three patients died due to lung metastasis. Late diagnosis is one of the major problems that results in lethal outcome due to lung metastases. Since ovarian steroids play an important role in the aetiology, the most effective prevention of mammary tumoursis elective ovariectomy of the bitch at an early age.

  11. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewater

  12. Progress in bioreactors of bioartiifcial livers

    Institute of Scientific and Technical Information of China (English)

    Cheng-Bo Yu; Xiao-Ping Pan; Lan-Juan Li

    2009-01-01

    BACKGROUND: Bioartiifcial liver support systems are becoming an effective therapy for hepatic failure. Bioreactors, as key devices in these systems, can provide a favorable growth and metabolic environment, mass exchange, and immunological isolation as a platform. Currently, stagnancy in bioreactor research is the main factor restricting the development of bioartiifcial liver support systems. DATA SOURCES: A PubMed database search of English-language literature was performed to identify relevant articles using the keywords "bioreactor", "bioartiifcial liver", "hepatocyte", and "liver failure". More than 40 articles related to the bioreactors of bioartiifcial livers were reviewed. RESULTS: Some progress has been made in the improvement of structures, functions, and modiifed macromolecular materials related to bioreactors in recent years. The current data on the improvement of bioreactor conifgurations for bioartiifcial livers or on the potential of the use of certain scaffold materials in bioreactors, combined with the clinical efifcacy and safety evaluation of cultured hepatocytesin vitro, indicate that the AMC (Academic Medical Center) BAL bioreactor and MELS (modular extracorporeal liver support) BAL bioreactor system can partly replace the synthetic and metabolic functions of the liver in phaseⅠ clinical studies. In addition, it has been indicated that the microlfuidic PDMS (polydimethylsiloxane) bioreactor, or SlideBioreactor, and the microfabricated grooved bioreactor are appropriate for hepatocyte culture, which is also promising for bioartiifcial livers. Similarly, modiifed scaffolds can promote the adhesion, growth, and function of hepatocytes, and provide reliable materials for bioreactors.CONCLUSIONS: Bioreactors, as key devices in bioartiifcial livers, play an important role in the therapy for liver failure both now and in the future. Bioreactor conifgurations are indispensable for the development of bioartiifcial livers used for liver

  13. Expression of prolactin receptors in normal canine mammary tissue, canine mammary adenomas and mammary adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Michel Erika

    2012-05-01

    Full Text Available Abstract Background Mammary tumors represent the most common neoplastic disease in female dogs. Recently, the promoting role of prolactin (PRL in the development of human breast carcinoma has been shown. Possible proliferative, anti-apoptotic, migratory and angiogenic effects of PRL on human mammary cancer cells in vitro and in vivo were suggested. The effects of PRL are mediated by its receptor, and alterations in receptor expression are likely to play a role in tumor development. Currently, not much data is available about prolactin receptor (PRLR expression in canine mammary tumors. To set the basis for investigations on the role of PRL in mammary tumorigenesis in this species, prolactin receptor expression was evaluated by semi-quantitative real time PCR and immunohistochemistry on 10 formalin-fixed, paraffin-embedded samples each of canine non-neoplastic mammary tissue, mammary adenomas and adenocarcinomas. Results The highest PRLR expression levels were found in normal mammary tissue, while adenomas, and to an even higher degree adenocarcinomas, showed a significant decrease in prolactin receptor expression. Compared to normal tissue, PRLR mRNA was reduced 2.4 fold (p = 0.0261 in adenomas and 4.8 fold (p = 0.008 in adenocarcinomas. PRLR mRNA expression was significantly lower in malignant than in benign lesions (p = 0.0165. Immunohistochemistry demonstrated PRLR expression in all three tissue types with signals mostly limited to epithelial cells. Conclusions Malignant transformation of mammary tissue was associated with a decline in prolactin receptor expression. Further studies are warranted to address the functional significance of this finding.

  14. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.;

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed-b...

  15. Membrane bioreactor for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.

    1997-01-01

    Summary

    This thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of

  16. Preliminary Study on Airlift Membran—Bioreactor

    Institute of Scientific and Technical Information of China (English)

    XUNong; XINGWeihong; 等

    2002-01-01

    A new type of membrane bioreactor named “airlift membrane-bioreactor”is discussed.For municipal wastewater reclamation,the preliminary study on airlift membrane-bioreactor shows its good performance such as high flux and lower energy consumption.The airlift membrane-bioreactor is potentially applicable in bioengineering and environmental protection fields.

  17. Construction of a Mammary-specific Expression Vector of Human α- defensin- 1 ( HNP- 1) Gene

    Institute of Scientific and Technical Information of China (English)

    Yue YANG; Jing-Ping OU YANG; Bao-Hua WANG

    2005-01-01

    @@ 1 Introduction Defensins, also called human neutrophil peptides(HNP), are small cationic peptides with broad antimicrobial activity[1]. Human defensins are highly abundant in the cytoplasmic granules of polymorphonuclear neutrophils. Alpha-defensin-1 is an important mediator in either innate immunity or anti-infection. It can be developed to be an ideal new type antibiotic and may provide a better solution for the present situation of extensive antibiotics-resistence. It is difficult to achieve amount of antimicrobial peptides from nature sources. Transgenic mammary gland bioreactors offer a safe and cost effective source to produce important proteins. The purpose of this study was to construct a mammary-specific expression plasmid containing beta-lactoglobulin (BLG) gene promoter and human α-defensin-1 (HNP-1) gene.

  18. Tissue grown in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  19. Tissue grown in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  20. The Polymorphism of Pituitary Factor 1 (POU1F1 in Cattle

    Directory of Open Access Journals (Sweden)

    Teodora Crina Carsai

    2012-05-01

    Full Text Available The development and function of mammary gland is mainly controlled by growth hormone and prolactin, twoprotein hormones secreted by the anterior pituitary gland. Their synthesis is under regulatory influence of pituitaryfactor 1 (PIT1 or POU1F1, a protein factor produced in hypothalamic nuclei. In cattle, it was shown that a HinfIpolymorphism located in exon 6 of PIT1 gene may have significant influence on milk quantity. In particular A allelewas associated with a higher milk yield and could be a valuable genetic marker for improving milk quantity in cattle.In an effort to better understand the possible influence of this polymorphism on mammary gland development andfunction in cattle, we have studied the frequency this polymorphism in Romanian Black and White breed, a highmilk production cattle breed versus Romanian Grey Steppe breed, a primitive breed with very low milk production.In both breeds the frequency of B allele is much higher as compared with the frequency of A allele. The study ofPIT1 polymorphism in Romanian cattle breeds is a part of a more complex study targeting several key genesinvolved in mammary gland function.

  1. Mammary carcinoma diagnostics and therapy; Diagnostik und Therapie des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Uwe; Baum, Friedemann (eds.) [Diagnostisches Brustzentrum Goettingen BZG, Goettingen(Germany)

    2014-11-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  2. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  3. Two new disposable bioreactors for plant cell culture: The wave and undertow bioreactor and the slug bubble bioreactor.

    Science.gov (United States)

    Terrier, Bénédicte; Courtois, Didier; Hénault, Nicolas; Cuvier, Arnaud; Bastin, Maryse; Aknin, Aziz; Dubreuil, Julien; Pétiard, Vincent

    2007-04-01

    The present article describes two novel flexible plastic-based disposable bioreactors. The first one, the WU bioreactor, is based on the principle of a wave and undertow mechanism that provides agitation while offering convenient mixing and aeration to the plant cell culture contained within the bioreactor. The second one is a high aspect ratio bubble column bioreactor, where agitation and aeration are achieved through the intermittent generation of large diameter bubbles, "Taylor-like" or "slug bubbles" (SB bioreactor). It allows an easy volume increase from a few liters to larger volumes up to several hundred liters with the use of multiple units. The cultivation of tobacco and soya cells producing isoflavones is described up to 70 and 100 L working volume for the SB bioreactor and WU bioreactor, respectively. The bioreactors being disposable and pre-sterilized before use, cleaning, sterilization, and maintenance operations are strongly reduced or eliminated. Both bioreactors represent efficient and low cost cell culture systems, applicable to various cell cultures at small and medium scale, complementary to traditional stainless-steel bioreactors.

  4. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    Science.gov (United States)

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  5. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen...

  6. Immunology of the mammary gland

    Directory of Open Access Journals (Sweden)

    Lazarević Miodrag

    2003-01-01

    Full Text Available The mammary gland is an organ of specific structure whose elementary task is to supply offspring with nutritive and other biologically active substances during the first weeks, or, depending on the species, the first months of life. This prolongs the period of close contact between the mother and her young, which is necessary for their regular growth. Most mammal offspring are born with physiological agammaglobulinaemia, because of the specific structure of the placenta, so that they receive the first specific protection against pathogenic microorganisms through colostrum. Furthermore, this gland is in direct contact with the outer environment through the secretary ducts, so that there are great possibilities for the occurrence of infections. It is therefore necessary to secure protective mechanisms which would prevent such infections. It is clear that there is a distinct connection between the immunological system and the mammary gland, and that link is the central topic of this paper. It presents the basic mechanisms of mammary gland defense which are divided into two categories: nonspecific (innate and specific immune response. The mammary gland secretion contains several types of leukocytes, such as lymphocytes, macrophages, and neutrophiles, as well as 2% epithelial cells. On the average, there are 0.2 x 106 somatic cells in one mililiter of milk. Macrophages account for most of these (58%, as well as lymphocytes (28%, while a smaller number of somatic cells (12% are polymorphonuclears (PMN. The paper considers the characteristics and main functions of these cell types.

  7. Comparison of abortion and infection after experimental challenge of pregnant bison and cattle with Brucella abortus strain 2308

    Science.gov (United States)

    A comparative study was conducted using data from naive bison (n=45) and cattle (n=46) from 8 and 6 studies, respectively, in which a standardized Brucella abortus strain 2308 experimental challenge was administered. The incidence of abortion, fetal infection, uterine or mammary infection, or infec...

  8. Optimizing of Culture Conditionin Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionBioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world. 2 Rotating bioreactors2.1 Working principleThere are two kinds of horizontal rotating bioreactor: HARV(high aspect ratio vessel) and RCCS (rotary cell culture system). It is drived by step motor with horizontal rotation, the culture medium and cell is filled between ...

  9. Methane production in simulated hybrid bioreactor landfill.

    Science.gov (United States)

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  10. Advanced methods for bioreactor characterization.

    Science.gov (United States)

    Lübbert, A

    1992-08-01

    Bioreactors are characterized by the transport capacities they provide to optimally supply the microorganisms during production process. The transport is performed by flows induced in their cultivation media. In order to understand the extremely complex mixing, mass and heat transfer phenomena encountered, and to perceive their influences on bioreactor performance, sophisticated measuring techniques are required. This review compiles the developments currently in progress to surmount today's shortage of reliable measuring techniques. Measuring techniques are distinguished which can be used on different scales and their application spectra are illustrated by recently obtained results. Several new measuring techniques, which can be employed to resolve the flow structures, are discussed in detail. Only those techniques are considered which can be used to advantage during real cultivations in industrial-scale reactors.

  11. Monolithic Continuous-Flow Bioreactors

    Science.gov (United States)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  12. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  13. Metabolic changes and mammary uptake of metabolites in milk in heat stressed cows

    Directory of Open Access Journals (Sweden)

    Branislava Belić

    2011-12-01

    Full Text Available Heat stress is a major economic problem in dairy cattle because it leads to reduced milk production and quality. Reduced milk production and quality is the result of reduced feed intake and changes in post-absorptive metabolism of nutrients. The aim of this study was to investigate the post-absorptive use of glucose, non-esterified fatty acids (NEFA, betahydroxybutyrate (BHB and urea in milk production by determination of postprandial concentration of metabolites and the degree of metabolites extraction in milk glands. The use of glucose for energy production was increased during heat stress, and a small amount of glucose was transported to the mammary gland. Therefore, it decreased concentration of lactose in milk. The uptake of NEFA and BHB in mammary gland was significantly greater during heat stress, due to adaptation to decreased supply of glucose. This adaptation has shown a negative impact on the percentage of milk fat and protein. Elevated concentration of urea is the result of heat stress; it easily passes through the mammary gland and shows a negative impact on milk proteins. All these changes show a negative effect on the amount of milk produced during heat stress. Reduced influx of glucose in the mammary gland, increased utilization of NEFA and BHB in milk production and increased concentrations of urea during heat stress directly affect the production and quality of milk.

  14. Bioreactors for Plant Embryogenesis and Beyond.

    Science.gov (United States)

    Fei, Liwen; Weathers, Pamela

    2016-01-01

    A variety of different bioreactors have been developed for use in initiating and cultivating somatic embryos. The various designs for embryogenesis and culture are critically evaluated here. Bioreactor optimization and operation methods are also described along with recommendations for use based on desired outcome.

  15. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  16. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    Science.gov (United States)

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  17. Invasive Teat Surgery in Dairy Cattle

    Science.gov (United States)

    Ducharme, Norm G.; Arighi, Mimi; Horney, F. Donald; Livesey, Michael A.; Hurtig, Mark H.; Pennock, Paul

    1987-01-01

    A prospective study was performed to identify the nature and management of teat abnormalities in cows presented to a referral teaching hospital during a three year period. All cattle (n = 60) admitted to the Ontario Veterinary College for teat problems were evaluated by physical examination; in 53 teats, contrast radiography or xeroradiography were obtained. Surgery was performed on 52 teats from 51 cows and a prosthesis was implanted in 27 teats. Short term (under two weeks) complications included intraoperative bleeding (n = 6), milk leakage through the incision (n = 4), and failure to milk by machine in 26 cases. Histopathological diagnosis of sections taken from obstructive lesions included fibrous tissue (n = 8), normal mammary tissue (n = 3), fibropapilloma, mammary polyps, and inflamed mucosa (one each). The lesion could be classified into five types: 1) focal teat cistern obstruction, 2) diffuse teat cistern obstruction, 3) membranous obstruction, 4) diffuse teat and gland cistern obstruction, or 5) leakage of milk through an abnormal route (i.e. teat fistula, webbed teat, or lacerations). ImagesFigure 1.Figure 4. PMID:17422937

  18. [Relationship between residual milk and clinical mastitis in dairy cattle].

    Science.gov (United States)

    Cording, F; Hoedemaker, M; Krömker, V

    2013-01-01

    Mastitis in cattle is an infection of the mammary gland caused by infection, toxins and/or trauma. Currently, it is assumed that there is a correlation between higher amounts of residual milk and the incidence of clinical mastitis. The amount of residual milk can be examined using different methods. Higher amounts of residual milk may result from an insufficient teat condition and individual detachment settings of milking units. To date, scientific literature has already discussed the relationship between high amounts of residual milk, undermilking and the occurrence of clinical mastitis. The present paper reviews the current status of knowledge regarding residual milk and risk of mastitis.

  19. Hydrodynamic characteristics of UASB bioreactors.

    Science.gov (United States)

    John, Siby; Tare, Vinod

    2011-10-01

    The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.

  20. High-level expressing YAC vector for transgenic animal bioreactors.

    Science.gov (United States)

    Fujiwara, Y; Miwa, M; Takahashi, R; Kodaira, K; Hirabayashi, M; Suzuki, T; Ueda, M

    1999-04-01

    The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.

  1. Mammary hypertrophy in an ovariohysterectomized cat.

    Science.gov (United States)

    Pukay, B P; Stevenson, D A

    1983-05-01

    A four year old ovariohysterectomized domestic short-haired cat under treatment for behavioral urine spraying and idiopathic alopecia developed mammary gland hypertrophy following treatment with megestrol acetate. Withdrawal of the progestin and treatment with androgen failed to cause regression of the hypertrophy. The affected mammary gland was surgically excised and recovery was uneventful.

  2. IDENTIFICATION OF BETA-LACTOGLOBULIN AND KAPPACASEIN GENOTYPES IN CATTLE

    Directory of Open Access Journals (Sweden)

    R.A. VĂTĂŞESCU-BALCAN

    2013-12-01

    Full Text Available Beta-lactoglobulin (b-Lg and kappa-casein (k-Cn are two of the most important proteins in the mammals’ milk synthesized by the epithelial cells of the mammary glands. They play a crucial role in the milk quality and coagulation process (production of cheese and butter. The PCR-RFLP test was performed to distinguish the different alleles in a population of Romanian Black Spotted cattle, a dairy breed. Genetic polymorphism was detected by digestion with the endonucleases Hae III (b-Lg and Hinf I (k-Cn, followed by electrophoresis in agarose high resolution gel stained with ethidium bromide. Fifty DNA samples from Romanian Black Spotted breed were analyzed for A and B variants. This simple PCR-RFLP test makes feasible the inclusion of b-Lg and k- Cn genotypes in breeding plans and cattle selection.

  3. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing

    Science.gov (United States)

    2014-01-01

    Background Recently, RNA sequencing (RNA-seq) has rapidly emerged as a major transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome by RNA-seq is essential for identifying candidate genes that contribute to milk composition traits in dairy cattle. Results We used massive, parallel, high-throughput, RNA-seq to generate the bovine transcriptome from the mammary glands of four lactating Holstein cows with extremely high and low phenotypic values of milk protein and fat percentage. In total, we obtained 48,967,376–75,572,578 uniquely mapped reads that covered 82.25% of the current annotated transcripts, which represented 15549 mRNA transcripts, across all the four mammary gland samples. Among them, 31 differentially expressed genes (p < 0.05, false discovery rate q < 0.05) between the high and low groups of cows were revealed. Gene ontology and pathway analysis demonstrated that the 31 differently expressed genes were enriched in specific biological processes with regard to protein metabolism, fat metabolism, and mammary gland development (p < 0.05). Integrated analysis of differential gene expression, previously reported quantitative trait loci, and genome-wide association studies indicated that TRIB3, SAA (SAA1, SAA3, and M-SAA3.2), VEGFA, PTHLH, and RPL23A were the most promising candidate genes affecting milk protein and fat percentage. Conclusions This study investigated the complexity of the mammary gland transcriptome in dairy cattle using RNA-seq. Integrated analysis of differential gene expression and the reported quantitative trait loci and genome-wide association study data permitted the identification of candidate key genes for milk composition traits. PMID:24655368

  5. Dental fluorosis in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Narozny, J.

    1965-01-01

    Dental fluorosis in cattle was used as an indicator of toxic effects produced by fluorine emissions from an aluminium factory. Data are presented on the effects of a ten-year exposure to fluorides on cattle teeth. Emissions from the factory were observed in two directions from the factory, and extended as far as 16 km from the source.

  6. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  7. Bioreactor Technology in Cardiovascular Tissue Engineering

    Science.gov (United States)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  8. Spatial Experiment Technologies Suitable for Unreturnable Bioreactor

    Science.gov (United States)

    Zhang, Tao; Zheng, Weibo; Tong, Guanghui

    2016-07-01

    The system composition and main function of the bioreactor piggybacked on TZ cargo transport spacecraft are introduced briefly in the paper.The spatial experiment technologies which are suitable for unreturnable bioreactor are described in detail,including multi-channel liquid transportion and management,multi-type animal cells circuit testing,dynamic targets microscopic observation in situ etc..The feasibility and effectiveness of these technologies which will be used in space experiment in bioreactor are verified in tests and experiments on the ground.

  9. Development of Fundamental Technologies for Micro Bioreactors

    Science.gov (United States)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  10. Systems physiology in dairy cattle: nutritional genomics and beyond.

    Science.gov (United States)

    Loor, Juan J; Bionaz, Massimo; Drackley, James K

    2013-01-01

    Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattle has already advanced knowledge of the simultaneous functional adaptations in liver, adipose, and mammary tissue.

  11. The Research and Application of Mammary Gland Epithelial Cells%哺乳动物乳腺上皮细胞的研究和应用

    Institute of Scientific and Technical Information of China (English)

    闫亚彬; 黄英

    2013-01-01

    转基因动物-乳腺生物反应器的研制是近十多年发展起来的一项生物制药方法,具有巨大的应用前景.外源目的基因载体的构建是制备转基因动物-乳腺生物反应器成功的关键技术环节,因此建立简单、快捷检测外源基因载体构建的合理性和表达情况的方法至关重要.由于乳腺上皮细胞能较真实反映哺乳动物乳腺生长发育及泌乳的各项生理功能,开展体外培养哺乳动物乳腺上皮细胞,可作为转基因动物制备过程中载体有效性检验的一种体外模型途径.本文将对哺乳动物乳腺组织的结构和乳腺上皮细胞体外培养的增殖能力、诱导、维持分化的特点,以及乳腺上皮细胞的培养和它在生物、医学领域中的应用研究进行简要概述.%Transgenic animal mammary gland bioreactor has been developed for the drugs production as one of the most promising bio-pharmaceutical methods in recent decades.The key technique in the process of the mammary gland bioreactors generation relies on the construction of exogenous gene vectors.It is crucial to establish a simple and quick method to test the accuracy and expression level of constructed gene vectors.As the growth progress and biophysiological lactation functions of mammary glands could be representatively investigated in mammary epithelial cells in vitro,mammary epithelial cells are becoming ideal cell models for detecting the efficacy of constructed-vectors in transgenic animals generations.In this review,it briefly introduced the structure of mammary gland tissue and characteristics of proliferation,differentiation,induction and maintenance of mammary epithelial cells.Additionally,it was summarized the culture approach of mammary epithelial cells and its application in biological and medical researches.

  12. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR.

  13. Bioreactor Design for Tendon/Ligament Engineering

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  14. In vivo bioreactors for mandibular reconstruction.

    Science.gov (United States)

    Tatara, A M; Wong, M E; Mikos, A G

    2014-12-01

    Large mandibular defects are difficult to reconstruct with good functional and aesthetic outcomes because of the complex geometry of craniofacial bone. While the current gold standard is free tissue flap transfer, this treatment is limited in fidelity by the shape of the harvested tissue and can result in significant donor site morbidity. To address these problems, in vivo bioreactors have been explored as an approach to generate autologous prefabricated tissue flaps. These bioreactors are implanted in an ectopic site in the body, where ossified tissue grows into the bioreactor in predefined geometries and local vessels are recruited to vascularize the developing construct. The prefabricated flap can then be harvested with vessels and transferred to a mandibular defect for optimal reconstruction. The objective of this review article is to introduce the concept of the in vivo bioreactor, describe important preclinical models in the field, summarize the human cases that have been reported through this strategy, and offer future directions for this exciting approach.

  15. Energy efficiency in membrane bioreactors.

    Science.gov (United States)

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.

  16. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  17. NASA Bioreactors Advance Disease Treatments

    Science.gov (United States)

    2009-01-01

    The International Space Station (ISS) is falling. This is no threat to the astronauts onboard, however, because falling is part of the ISS staying in orbit. The absence of gravity beyond the Earth s atmosphere is actually an illusion; at the ISS s orbital altitude of approximately 250 miles above the surface, the planet s gravitational pull is only 12-percent weaker than on the ground. Gravity is constantly pulling the ISS back to Earth, but the space station is also constantly traveling at nearly 18,000 miles per hour. This means that, even though the ISS is falling toward Earth, it is moving sideways fast enough to continually miss impacting the planet. The balance between the force of gravity and the ISS s motion creates a stable orbit, and the fact that the ISS and everything in it including the astronauts are falling at an equal rate creates the condition of weightlessness called microgravity. The constant falling of objects in orbit is not only an important principle in space, but it is also a key element of a revolutionary NASA technology here on Earth that may soon help cure medical ailments from heart disease to diabetes. In the mid-1980s, NASA researchers at Johnson Space Center were investigating the effects of long-term microgravity on human tissues. At the time, the Agency s shuttle fleet was grounded following the 1986 Space Shuttle Challenger disaster, and researchers had no access to the microgravity conditions of space. To provide a method for recreating such conditions on Earth, Johnson s David Wolf, Tinh Trinh, and Ray Schwarz developed that same year a horizontal, rotating device called a rotating wall bioreactor that allowed the growth of human cells in simulated weightlessness. Previously, cell cultures on Earth could only be grown two-dimensionally in Petri dishes, because gravity would cause the multiplying cells to sink within their growth medium. These cells do not look or function like real human cells, which grow three-dimensionally in

  18. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  19. Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia.

    OpenAIRE

    Marchetti, A.; Buttitta, F.; Miyazaki, S; Gallahan, D; Smith, G H; Callahan, R

    1995-01-01

    With a unique mouse mammary tumor model system in which mouse mammary tumor virus (MMTV) insertional mutations can be detected during progression from preneoplasia to frank malignancy, including metastasis, we have discovered a new common integration site (designated Int-6) for MMTV in mouse mammary tumors. MMTV was integrated into Int-6 in a mammary hyperplastic outgrowth line, its tumors and metastases, and two independent mammary tumors arising in unrelated mice. The Int-6 gene is ubiquito...

  20. Heart tissue grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  1. Colon tumor cells grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  2. Adenoma of anogenital mammary-like glands.

    Science.gov (United States)

    Ahmed, Sartaj; Campbell, Ross M; Li, Jin Hong; Wang, Li Juan; Robinson-Bostom, Leslie

    2007-11-01

    Adenomas in the anogenital region are uncommon. There has been debate about the origin, including ectopic breast tissue, cutaneous apocrine gland, and most recently anogenital mammary-like gland. An anogenital mass in a 36-year-old woman was excised, and histopathologic examination and immunostaining were performed. Microscopic tissue sections showed a morphologic pattern similar to that of a mammary fibroadenoma, and immunostaining demonstrated the presence of estrogen receptors and progesterone receptors. The possibility of adenomas of anogenital mammary-like glands should be considered when evaluating patients with a mass in this area with confirmation by tissue biopsy or aspiration cytology.

  3. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors.

    Science.gov (United States)

    Connelly, Stephanie; Shin, Seung G; Dillon, Robert J; Ijaz, Umer Z; Quince, Christopher; Sloan, William T; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB-a one-dimensional and a three- dimensional scale-down of a full-scale design-were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory

  4. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors.

    Science.gov (United States)

    Hsu, Wei-Ting; Aulakh, Rigzen P S; Traul, Donald L; Yuk, Inn H

    2012-12-01

    In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10-15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na(+), osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.

  5. The mammary cellular hierarchy and breast cancer.

    Science.gov (United States)

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  6. Site of iodination in rat mammary gland

    Energy Technology Data Exchange (ETDEWEB)

    Strum, J.M.

    1978-10-01

    The ability of the mammary gland to take up and organically bind radioiodide was studied in non-pregnant, pregnant, and lactating rats. Autoradiography was used to determine whether duct cells or alveolar cells are responsible for iodination in the rat mammary gland. Iodination was not detected in mammary glands from non-pregnant rats, but occurred late in the twelfth day of gestation and continued throughout pregnancy and lactation. Protein-containing vacuoles in alveolar cells and casein-like proteins in milk were the major sites where iodination occurred within the gland. Milk proteins in the lumens of ductules adjacent to alveoli were also iodinated. In contrast, ducts, myoepithelial cells, fat cells, blood vessels and other histological components of the gland did not show iodinating capability. Cytochemistry was also used to identify endogenous mammary peroxidase activity in the same glands, and it was found that the presence and location of this enzyme were correlated with the ability to iodinate.

  7. Mammary fibroadenoma in a lamb

    Science.gov (United States)

    Guvenc, Tolga; Yarim, Murat; Kabak, Yonca B.; Sozgen, Yuksel

    2007-01-01

    A fibroadenoma was diagnosed in the left udder of a 3-month-old female Chios lamb. No recurrence was observed after surgery. Grossly, the tumor had a whitish-gray lobular appearance, and the lobules were interlaced with thin septa. Microscopically, the tumor was composed of proliferating fibroepithelial tissue, including differentiated ducts lined by whorls and interlacing bundles of abundant loose fibrovascular stroma. Immunohistochemistry revealed the ductal epithelium to be positive for pancytokeratin (AE1/AE3) and loose fibrovascular stroma was positive for vimentin and basal cells covering the ductal epithelium of alpha-smooth-muscle actin. Immunostaining for the estrogen and progesterone receptors was negative. A diagnosis of mammary fibroadenoma was made based on the histological and immunohistochemical findings. PMID:17993758

  8. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto;

    1991-01-01

    /l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium levels...... revealed no association between selenium levels and breast cancer risk.......In a case-referent study on the possible role of selenium in human mammary carcinogenesis, serum selenium was found to be 79 +/- 12 micrograms/l in 66 cases and 81 +/- 12 micrograms/l in 93 referents. An internal trend in serum selenium was observed among cases (TNM stage I 81 +/- 11 micrograms...

  9. Mammary Cancer and Activation of Transposable Elements

    Science.gov (United States)

    2015-03-01

    transcriptionally activated during pregnancy and lactation , and the mice are predisposed to develop mammary cancer after a minimum of 3 pregnancies and...pregnancy and lactation . After 3 pregnancies and lactations , but not after 1 pregnancy and lactation , females develop mammary cancers at an average...mated females per experimental condition (1 or 3 pregnancies/ lactations . 5 breeding strategy to develop triple transgenic cancer -prone and control

  10. Mammary Cancer and Activation of Transposable Elements

    Science.gov (United States)

    2012-09-01

    SV40Tag is transcriptionally activated during pregnancy and lactation , and the mice are predisposed to develop mammary cancer after 3 pregnancies...and lactations . Using this model, populations of marked cells can be collected for integrated analysis of gene expression, promoter usage, and DNA...completed over the first 6 months on the job . Training included mouse husbandry and colony management, mammary cell isolations in preparation for

  11. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  12. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Optimizing of Culture Condition in Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yan-Fang ZHANG; Huai-Qing CHEN; Hua HUANG

    2005-01-01

    @@ 1 Introduction Bioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world.

  14. Regulation of leptin in involution of mammary gland

    Institute of Scientific and Technical Information of China (English)

    LI Meng; LI Qingzhang

    2007-01-01

    Leptin, a protein hormone produced and secreted predominantly by white adipose tissue, has a critical role in the regulation and coordination of energy metabolism. Leptin is produced in the mammary gland by the fat tissue or by the mammary epithelium. In vitro study has shown that leptin triggers apoptosis in mammary epithelial cells. Mammary gland involution is characterized by extensive apoptosis of the epithelial cells. At the onset of involution, STAT3 is specifically activated. Various studies show that leptin act as a paracrine and autocrin factor to influence mammary epithelial cell proliferation and differentiation. This paper reviewed the function of leptin to the involution of mammary gland.

  15. Complement component 3: characterization and association with mastitis resistance in Egyptian water buffalo and cattle

    Indian Academy of Sciences (India)

    NERMIN EL-HALAWANY; ABD-EL-MONSIF A. SHAWKY; AHMED F. M. AL-TOHAMY; LAMEES HEGAZY; HAMDY ABDEL-SHAFY; MAGDY A. ABDEL-LATIF; YASSER A. GHAZI; CHRISTIANE NEUHOFF; DESSIE SALILEW-WONDIM; KARL SCHELLANDER

    2017-03-01

    Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing ofmicroorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids—as in cattle—and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle.The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.

  16. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    Directory of Open Access Journals (Sweden)

    Damien S Bouchard

    Full Text Available Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation; inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC; and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  17. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    Science.gov (United States)

    Bouchard, Damien S; Seridan, Bianca; Saraoui, Taous; Rault, Lucie; Germon, Pierre; Gonzalez-Moreno, Candelaria; Nader-Macias, Fatima M E; Baud, Damien; François, Patrice; Chuat, Victoria; Chain, Florian; Langella, Philippe; Nicoli, Jacques; Le Loir, Yves; Even, Sergine

    2015-01-01

    Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  18. Cox-2 levels in canine mammary tumors, including inflammatory mammary carcinoma: clinicopathological features and prognostic significance.

    Science.gov (United States)

    Queiroga, Felisbina Luisa; Perez-Alenza, Maria Dolores; Silvan, Gema; Peña, Laura; Lopes, Carlos; Illera, Juan Carlos

    2005-01-01

    Cyclo-oxygenase (Cox-2) plays an important role in mammary carcinogenesis, nevertheless, its role in canine mammary tumors, and particularly in inflammatory mammary carcinoma (IMC), is unknown. Tumor Cox-2 levels were analyzed by enzyme immunoassay, in post-surgical tumor homogenates of 129 mammary tumors (62 dysplasias and benign tumors, 57 malignant non-IMC and 10 IMC) from 57 female dogs. The highest Cox-2 values were detected in the IMC group. In non-IMC malignant tumors, high values of Cox-2 were related to skin ulceration (p IMC cases could indicate a special role of Cox-2 in the inflammatory phenotype and open the possibility of additional new therapeutic approaches in this special type of mammary cancer in humans and dogs.

  19. Open source software to control Bioflo bioreactors.

    Directory of Open Access Journals (Sweden)

    David A Burdge

    Full Text Available Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  20. Open source software to control Bioflo bioreactors.

    Science.gov (United States)

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  1. Prevalence of Glomerulopathies in Canine Mammary Carcinoma

    Science.gov (United States)

    2016-01-01

    The incidence and prevalence of paraneoplastic glomerulopathy, especially associated with carcinoma, are a matter of debate and the causal link between cancer and glomerular diseases remains unclear. The aim of this study was to evaluate renal biopsies of selected bitches with spontaneous mammary gland carcinoma. We hypothesized that dogs with mammary carcinomas would show histologic evidence of glomerular pathology. A prospective study was performed in dogs with naturally occurring mammary carcinoma that were undergoing tumor resection and ovariohysterectomy. We evaluated renal biopsies of 32 bitches with spontaneous mammary gland carcinoma and 11 control dogs without mammary gland neoplasia. Samples were obtained from the left kidney and the biopsy material was divided for light microscopy (LM), immunofluorescence (IF) and transmission electron microscopy (TEM). Light microscopy abnormalities were identified in 78.1% of dogs with mammary carcinoma (n = 25) and in none of the dogs in the control group. Focal glomerular mesangial matrix expansion was the most common alteration (n = 15, 60.0%), but mesangial cell proliferation (n = 9, 36.0%) and focal segmental glomerulosclerosis (n = 9, 36.0%), synechiae (n = 7, 28.0%), and globally sclerotic glomeruli (n = 6, 24.0%) were also frequent in dogs with malignancy. Immunofluorescence microscopy revealed strong IgM staining was demonstrated in 64.3% (n = 18) of carcinoma dogs. Transmission electron microscopy from dogs with carcinoma revealed slight changes, the most frequent of which was faint sub-endothelial and mesangial deposits of electron-dense material (78%). Mesangial cell interpositioning and segmental effacement of podocyte foot processes were identified in some specimens (45%). Changes in the glomerulus and proteinuria are common in dogs with naturally occurring mammary carcinoma and this condition appears to provide an excellent large animal model for cancer-associated glomerulopathy in humans. PMID:27764139

  2. Distinct stem cells contribute to mammary gland development and maintenance.

    Science.gov (United States)

    Van Keymeulen, Alexandra; Rocha, Ana Sofia; Ousset, Marielle; Beck, Benjamin; Bouvencourt, Gaëlle; Rock, Jason; Sharma, Neha; Dekoninck, Sophie; Blanpain, Cédric

    2011-10-09

    The mammary epithelium is composed of several cell lineages including luminal, alveolar and myoepithelial cells. Transplantation studies have suggested that the mammary epithelium is maintained by the presence of multipotent mammary stem cells. To define the cellular hierarchy of the mammary gland during physiological conditions, we performed genetic lineage-tracing experiments and clonal analysis of the mouse mammary gland during development, adulthood and pregnancy. We found that in postnatal unperturbed mammary gland, both luminal and myoepithelial lineages contain long-lived unipotent stem cells that display extensive renewing capacities, as demonstrated by their ability to clonally expand during morphogenesis and adult life as well as undergo massive expansion during several cycles of pregnancy. The demonstration that the mammary gland contains different types of long-lived stem cells has profound implications for our understanding of mammary gland physiology and will be instrumental in unravelling the cells at the origin of breast cancers.

  3. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  4. Bioreactor and methods for producing synchronous cells

    Science.gov (United States)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  5. [Galactorrhea after mammary plastic surgery].

    Science.gov (United States)

    Inguenault, C; Capon-Degardin, N; Martinot-Duquennoy, V; Pellerin, P

    2005-04-01

    Galactorrhoea is a complication rarely observed after mammary plastic surgery. Our experience in the domain extends to three clinical cases - two after prosthetic insertion and one after breast reduction - wich will be presented here. The origin of this complication is uncertain. Nevertheless, it is likely to be multifocal, as surgery alone is not the only cause. Postsurgical galactorrhoea often follows a benign course culminating in spontaneous resolution. However, it may reveal the presence of o prolactin secreting adenoma, as was the case with one of our patients. A detailed history, exploring antecedent factors, is an essential step in guiding subsequent management. When faced with postsurgical galactorrhoea, serum prolactin levels should be measured. If serum prolactin levels exceed 150 ng/ml further investigation by way of an MRI of the sella turcica is advisable to rule out pituitary adenoma. Depending on symptom severity, treatment may be medical with the prescription of dopaminergic agonists, and/or surgical with drainage or removal of prostheses. Increased awareness of galactorrhea as a possible complication of plastic surgery to the breast will improve management.

  6. Environmental Control in Flow Bioreactors

    Directory of Open Access Journals (Sweden)

    Serena Giusti

    2017-04-01

    Full Text Available The realization of physiologically-relevant advanced in vitro models is not just related to the reproduction of a three-dimensional multicellular architecture, but also to the maintenance of a cell culture environment in which parameters, such as temperature, pH, and hydrostatic pressure are finely controlled. Tunable and reproducible culture conditions are crucial for the study of environment-sensitive cells, and can also be used for mimicking pathophysiological conditions related with alterations of temperature, pressure and pH. Here, we present the SUITE (Supervising Unit for In Vitro Testing system, a platform able to monitor and adjust local environmental variables in dynamic cell culture experiments. The physical core of the control system is a mixing chamber, which can be connected to different bioreactors and acts as a media reservoir equipped with a pH meter and pressure sensors. The chamber is heated by external resistive elements and the temperature is controlled using a thermistor. A purpose-built electronic control unit gathers all data from the sensors and controls the pH and hydrostatic pressure by regulating air and CO2 overpressure and flux. The system’s modularity and the possibility of imposing different pressure conditions were used to implement a model of portal hypertension with both endothelial and hepatic cells. The results show that the SUITE platform is able to control and maintain cell culture parameters at fixed values that represent either physiological or pathological conditions. Thus, it represents a fundamental tool for the design of biomimetic in vitro models, with applications in disease modelling or toxicity testing.

  7. Parathyroid hormone-related protein specifies the mammary mesenchyme and regulates embryonic mammary development.

    Science.gov (United States)

    Hiremath, Minoti; Wysolmerski, John

    2013-06-01

    Parathyroid Hormone related Protein (PTHrP) is a critical regulator of mammary gland morphogenesis in the mouse embryo. Loss of PTHrP, or its receptor, PTHR1, results in arrested mammary buds at day 15 of embryonic development (E15). In contrast, overexpression of PTHrP converts the ventral epidermis into hairless nipple skin. PTHrP signaling appears to be critical for mammary mesenchyme specification, which in turn maintains mammary epithelial identity, directs bud outgrowth, disrupts the male mammary rudiment and specifies the formation of the nipple. In the embryonic mammary bud, PTHrP exerts its effects on morphogenesis, in part, through epithelial-stromal crosstalk mediated by Wnt and BMP signaling. Recently, PTHLH has been identified as a strong candidate for a novel breast cancer susceptibility locus, although PTHrP's role in breast cancer has not been clearly defined. The effects of PTHrP on the growth of the embryonic mammary rudiment and its invasion into the dermis may, in turn, have connections to the role of PTHrP in breast cancer.

  8. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    The aim of this paper is to discuss the potential consequences of modern dairy cattle breeding for the welfare of dairy cows. The paper focuses on so-called genomic selection, which deploys thousands of genetic markers to estimate breeding values. The discussion should help to structure...... the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits......, unfavourable genetic trends for metabolic, reproductive, claw and leg diseases indicate that these attempts have been insufficient. Today, novel genome-wide sequencing techniques are revolutionising dairy cattle breeding; these enable genetic changes to occur at least twice as rapidly as previously. While...

  9. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    The aim of this paper is to discuss the potential consequences of modern dairy cattle breeding for the welfare of dairy cows. The paper focuses on so-called genomic selection, which deploys thousands of genetic markers to estimate breeding values. The discussion should help to structure...... the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits......, unfavourable genetic trends for metabolic, reproductive, claw and leg diseases indicate that these attempts have been insufficient. Today, novel genome-wide sequencing techniques are revolutionising dairy cattle breeding; these enable genetic changes to occur at least twice as rapidly as previously. While...

  10. Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme.

    Science.gov (United States)

    Cunha, G R; Young, P; Christov, K; Guzman, R; Nandi, S; Talamantes, F; Thordarson, G

    1995-01-01

    The goal of this research was to establish methods for inducing mammary epithelial differentiation from nonmammary epithelium. For this purpose, mid-ventral or dorsal epidermis (skin epithelium; SKE) from 13-day rat or mouse embryos was associated with 13-day embryonic mouse mammary mesenchyme (mammary gland mesenchyme; MGM) (mouse MGM+rat or mouse SKE). The resultant MGM+SKE recombinants as well as controls (homotypic mouse mammary recombinants, homotypic mouse skin recombinants and mouse mammary mesenchyme by itself) were grafted under the renal capsule of syngeneic or athymic female nude mouse hosts. Most female hosts were induced to undergo lactogenesis by grafting an adult pituitary which elicited a state of hyperprolactinemia. Tissue recombinants of mouse MGM+rat or mouse SKE grown for 1 month in vivo formed a hair-bearing keratinized skin from which mammary ductal structures extended into the mesenchyme. The ducts were composed of columnar luminal epithelial cells as well as basal, actin-positive myoepithelial cells. When grown in pituitary-grafted hosts, the ductal epithelial cells expressed casein and alpha-lactalbumin as judged by immunocytochemistry. The expression of caseins in MGM+SKE recombinants was confirmed by Western blot. The epithelial cells in mouse MGM+rat SKE recombinants expressing milk proteins were shown to be rat cells while the surrounding connective tissue was composed of mouse cells based upon staining with Hoechst dye 33258. Using mammary-specific markers, these studies confirmed the earlier morphological studies of Propper and unequivocally demonstrated for the first time that embryonic mammary mesenchyme can induce morphological and functional mammary differentiation from nonmammary epithelium.

  11. Cattle as urban planner

    OpenAIRE

    2015-01-01

    Hong Kong has a wide variety of habitats which contribute to the diversity of local fauna especially birds and insects. However, wild mammals are declining rapidly because of the degradation or loss of habitats caused by urbanization. For hundreds of years, bovid such as cattle and water buffalo have been an enduring presence amongst the diverse landscape of Hong Kong. Prior to the 1970’s, cattle were important to Hong Kong’s agricultural industry as a valuable labor for farming. Large popula...

  12. Mouse Mammary Tumor Virus-Like Nucleotide Sequences in Canine and Feline Mammary Tumors▿

    OpenAIRE

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-01-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. Fo...

  13. Mammary stem cells have myoepithelial cell properties

    Science.gov (United States)

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  14. Of Microenvironments and Mammary Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  15. Mammary stem cells have myoepithelial cell properties.

    Science.gov (United States)

    Prater, Michael D; Petit, Valérie; Alasdair Russell, I; Giraddi, Rajshekhar R; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F; Metzger, Daniel; Faraldo, Marisa M; Deugnier, Marie-Ange; Glukhova, Marina A; Stingl, John

    2014-10-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.

  16. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  17. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  18. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  19. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  20. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  1. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  2. Bioreactor Studies and Computational Fluid Dynamics

    Science.gov (United States)

    Singh, H.; Hutmacher, D. W.

    The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  3. Vortex breakdown in a truncated conical bioreactor

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2015-01-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It ...... are of fundamental interest and can be relevant for aerial bioreactors....

  4. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  5. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  6. Establishing Liver Bioreactors for In Vitro Research.

    Science.gov (United States)

    Rebelo, Sofia P; Costa, Rita; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2015-01-01

    In vitro systems that can effectively model liver function for long periods of time are fundamental tools for preclinical research. Nevertheless, the adoption of in vitro research tools at the earliest stages of drug development has been hampered by the lack of culture systems that offer the robustness, scalability, and flexibility necessary to meet industry's demands. Bioreactor-based technologies, such as stirred tank bioreactors, constitute a feasible approach to aggregate hepatic cells and maintain long-term three-dimensional cultures. These three-dimensional cultures sustain the polarity, differentiated phenotype, and metabolic performance of human hepatocytes. Culture in computer-controlled stirred tank bioreactors allows the maintenance of physiological conditions, such as pH, dissolved oxygen, and temperature, with minimal fluctuations. Moreover, by operating in perfusion mode, gradients of soluble factors and metabolic by-products can be established, aiming at resembling the in vivo microenvironment. This chapter provides a protocol for the aggregation and culture of hepatocyte spheroids in stirred tank bioreactors by applying perfusion mode for the long-term culture of human hepatocytes. This in vitro culture system is compatible with feeding high-throughput screening platforms for the assessment of drug elimination pathways, being a useful tool for toxicology research and drug development in the preclinical phase.

  7. Continuous-Flow Gas-Phase Bioreactors

    Science.gov (United States)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  8. Vortex breakdown in a truncated conical bioreactor

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.;

    2015-01-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It ...... are of fundamental interest and can be relevant for aerial bioreactors....

  9. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  10. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  11. Mammary tumorigenesis by radiation and its prevention

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Makoto; Suzuki, Keiko; Inano, Hiroshi [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-06-01

    Since the breast cancer in women emerged as an important risk associated with exposure to ionizing radiation, we have investigated to clarify the relationship between the induction of mammary tumors by irradiation and the developmental stage of the mammary glands that regulated by the action of endocrine hormones. Besides the radiation, epidemiological studies showed that the process of biosynthesis/metabolism of steroid hormones and hyperlipidemia may be associated with an increased risk of mammary carcinogenesis. In this context, we have undertaken investigations to evaluate the anti-carcinogenic activities of dehydroepiandrosterone (DHEA), a major secretory steroid of the adrenal glands, bezafibrate (BEZF), an anti-hyperlipidemic drug derived from clofibrate, and simvastatin (SIMV), a prodrug of a specific inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, against diethylstilbestrol (DES)-dependent promotion/progression of rat mammary tumors initiated by {gamma}-rays. Pregnant Wistar-MS rats received whole-body irradiation with 2.6 Gy of {gamma}-rays from a {sup 60}Co source at day-20 of pregnancy. The mother rats were fed a diet containing either 0.6% DHEA, 0.15% BEZF or 0.03% SIMV beginning immediately after weaning. They were then implanted subcutaneously with a pellet of DES (3 mg/pellet) in the interscapular area 30 days after termination of nursing and were observed for 1 year for detection of palpable mammary tumors starting from the time of pellet implantation. The administration of dietary DHEA, BEZF or SIMV together with DES implantation in rats irradiated in late pregnancy significantly decreased the total incidence of mammary tumors to 35%, 27% and 36%, respectively, for the 1 year period, while higher tumor incidence (96%, 90% and 88%) was observed in rats fed controldiet. However, neither the number of mammary tumors per tumor-bearing rat nor the latency period in the drug treated groups was different from that observed in the control group

  12. Juvenile mammary papillomatosis; Papilomatosis juvenil mamaria

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.; Jimenez, A. V. [Hospital Reina Sofia. Cordoba (Spain)

    2001-07-01

    Juvenile mammary papillomatosis is a benign proliferative disease of young patients, generally under 30 years of age. The most frequent clinical presentation is the existence of an elastic and mobile lymph node of the breast. Anatomopathologically, it is characterized because it presents ductal epithelial hyperplasia, sometimes with marked atypia, and there are numerous cysts having different sizes among the findings. It has been associated with an increase in the incidence of breast cancer, both in the patient herself as well as her family. We review the literature on the subject and present the mammographic and ultrasonographic findings of a 22 year old woman diagnosed of juvenile mammary papillomatosis. (Author) 12 refs.

  13. [Mammary ductal ectasia child. Diagnostic and therapeutic approach].

    Science.gov (United States)

    Martínez-Medel, Jorge; Cabistany-Esqué, Ana Cristina; Sanz-Asin, Olga; del Martínez-Rubio, María Pilar; Echavarren-Plaza, Virginia; Arroyo-Lemarroy, Taydé

    2014-01-01

    Mammary duct ectasia in childhood is a rare disease. It appears typically as a periareolar mammary mass and/or nipple discharge. Even though in the adult age is an acquired disease, its occurrence in children suggests it may constitute a development mammary gland anomaly. Sonography is highly useful in the diagnosis. Differential diagnosis must include other nipple discharge and mammary mass causes as the juvenile fibroadenoma or malignant pathology. This usually is a self-limited process, so that a conservative approach is recommended, even though occasionally surgical treatment is required. We report the case of a 13 years old girl with nipple discharge who finally was diagnosed bilateral mammary duct ectasia.

  14. CLINICOPATHOLOGIC FEATURES OF MAMMARY MASSES IN CAPTIVE LIONS (PANTHERA LEO).

    Science.gov (United States)

    Sadler, Ryan A; Craig, Linden E; Ramsay, Edward C; Helmick, Kelly; Collins, Darin; Garner, Michael M

    2016-03-01

    A multi-institutional retrospective analysis of 330 pathology accessions from 285 different lions found 15 captive, female African lions (Panthera leo) with confirmed mammary masses. Aside from the presence of a mammary mass, the most common initial clinical sign was inappetence. Histologic diagnoses were predominantly adenocarcinoma (n = 12), though two benign masses (mammary hyperplasia and a mammary cyst) and one squamous cell carcinoma were identified. Nine of 13 malignant tumors had metastasized to lymph nodes or viscera at the time of necropsy. Six lions with adenocarcinoma and two lions with benign mammary masses had received hormonal contraception, though little evidence of mammary lobular hyperplasia was seen in association with the adenocarcinomas. The most common concurrent disease processes found at necropsy were chronic urinary tract disease and other malignancies. These cases demonstrate that mammary malignancies occur in captive lions and frequently metastasize.

  15. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  16. Research on the Changes of Endocrine Hormones in Mammary Cancer and Hyperplasia of Mammary Glands

    Institute of Scientific and Technical Information of China (English)

    CHEN Chengqi

    2002-01-01

    Objective Based on a comparison of endocrine hormones between patients of mammary cancer and those of hyperplasia of mammary glands, a preliminary analysis of the interaction between endocrine hormones and the immune system was oonducted. Methods The experiment involved 50 cases of mammary cancer and hyperplasia of mammary glands each.Blood samples were taken from pre - menopausal and menopausal patients; six kinds of hypophyseal hommones(PRL, GH, TSH,ACTH, FSH and LH) and three kinds of sex hormones ( E2,P and T) were subjected to RIA tests.Results Wilcoxon matchpaired assay and normal approximation of the experiment indicated that the FSH level before pre - menopause and the ACTH level during menopause in patients with mammary canoer were higher that those of patients suffering hyperplasia of mamary glands. Conclusion Statistics show the the normal rhythm between endocrine hormones and the immune system is disrupted in mammary cancer patients, the feedback mechanism of the hypothalamo- hypophyseal- adrenal system is maladjusted,resulting in inhibition of the immune function. Female hormones induce the gene mutation and the sensitivity of the cells is increased, resulting in a significant acceleration of the hyperplasia of cancer cells.

  17. Mouse mammary tumor virus-like nucleotide sequences in canine and feline mammary tumors.

    Science.gov (United States)

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-12-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats.

  18. Dietary genistein stimulates mammary development in gilts

    Science.gov (United States)

    The possible role of the phytoestrogen, genistein, on prepubertal development of mammary glands, hormonal status and bone resorption was investigated in gilts. Forty-five gilts were fed a control diet containing soya (CTLS, n = 15), a control diet without soya (CTL0, n = 15) or the CTLS diet supplem...

  19. Hollow fiber bioreactor technology for tissue engineering applications.

    Science.gov (United States)

    Eghbali, Hadis; Nava, Michele M; Mohebbi-Kalhori, Davod; Raimondi, Manuela T

    2016-01-01

    Hollow fiber bioreactors are the focus of scientific research aiming to mimic physiological vascular networks and engineer organs and tissues in vitro. The reason for this lies in the interesting features of this bioreactor type, including excellent mass transport properties. Indeed, hollow fiber bioreactors allow limitations to be overcome in nutrient transport by diffusion, which is often an obstacle to engineer sizable constructs in vitro. This work reviews the existing literature relevant to hollow fiber bioreactors in organ and tissue engineering applications. To this purpose, we first classify the hollow fiber bioreactors into 2 categories: cylindrical and rectangular. For each category, we summarize their main applications both at the tissue and at the organ level, focusing on experimental models and computational studies as predictive tools for designing innovative, dynamic culture systems. Finally, we discuss future perspectives on hollow fiber bioreactors as in vitro models for tissue and organ engineering applications.

  20. Cell Separations in Microgravity and Development of a Space Bioreactor

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    A bioreactor optimized for operations in space is now being developed. The current research is focused on determining the optimum cell-bead ratios, medium content and proper maintenance conditions required to keep living cell specimens alive and healthy for the entire flight. The bioreactor development project has recently added a microprocessor/computer to the JSC prototype for control and data analysis. Appropriate new technology is being combined with the current bioreactor designs and tested to determine what specific features must be included in the fabrication of a bioreactor designed to operate for STS demonstration tests. Considerations include: (1) circulation and resupply of culture media; (2) sensors required to monitor temperature, cell growth, mass transport, and oxygen consumption; and (3) inflight control of shear stress on cells, gas transfer in microgravity, diffusion, and intracellular transport. These data and results from the JSC prototype bioreactor test will be used for the design and construction of a small space bioreactor for the Orbiter middeck.

  1. Vitamin C nutrition in cattle.

    Science.gov (United States)

    Matsui, T

    2012-05-01

    Domestic animals, including ruminants, can synthesize vitamin C (VC) in their liver; as such, the dietary requirement for VC has not been confirmed in these animals. The adequacy of VC has been evaluated by quantifying VC levels in plasma, but the reported values in bovine plasma have been widely variable. Plasma VC concentration is decreased by heat stress, hepatic lesions, fattening, and infectious diseases such as mastitis in cattle. Therefore, VC supplementation is potentially beneficial for cattle with low plasma VC concentration. This review discusses the methods for determination of plasma VC concentration in cattle, VC nutrition, and the efficacy of VC supplementation in calves, dairy cattle, and beef cattle. Additionally I propose a reference range for plasma VC concentration in Japanese Black cattle.

  2. Citrus pulp for cattle.

    Science.gov (United States)

    Arthington, John D; Kunkle, William E; Martin, Amy M

    2002-07-01

    Citrus pulp is classified as an energy concentrate by-product feed. Citrus by-products fed to beef cattle include citrus molasses, citrus meal, wet citrus pulp, dried citrus pulp, and pelleted citrus pulp; however, in current production systems, pulp (wet, dry, and pelleted) is the only by-product commonly used. Citrus pulp production in the United States is limited to specific subtropical regions, of which south central Florida remains the largest with additional production in California and Texas.

  3. Catalytic bioreactors and methods of using same

    Energy Technology Data Exchange (ETDEWEB)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  4. Design and validation of a corneal bioreactor.

    Science.gov (United States)

    Leonard, Elissa K; Pai, Vincent H; Amberg, Philip; Gardner, Jens; Orwin, Elizabeth J

    2012-12-01

    Mechanical strain is an important signal that influences the behavior and properties of cells in a wide variety of tissues. Physiologically similar mechanical strain can revert cultured cells to a more normal phenotype. Here, we have demonstrated that 3% equibiaxial (EB) and uniaxial strains confer favorable protein expression in cultured rabbit corneal fibroblasts (RCFs), with approximately 35% and 65% reduction in expression of α-smooth muscle actin (α-SMA), respectively. We have designed a novel bioreactor that is capable of imparting up to 7% EB strain and up to 6% EB strain using a cornea-shaped post. Additional features of the bioreactor include the application of shear stress to cells in culture and the ability to image cells using optical coherence microscopy (OCM) without being removed from the system. Copyright © 2012 Wiley Periodicals, Inc.

  5. Bioreactor and process design for biohydrogen production.

    Science.gov (United States)

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.

  6. Feedlot Processing and Arrival Cattle Management.

    Science.gov (United States)

    Noffsinger, Tom; Lukasiewicz, Kip; Hyder, LeeAnn

    2015-11-01

    Acclimating newly arrived cattle in a feedlot setting can increase cattle confidence, reduce stress, improve immune function, and increase cattle well-being. Understanding cattle instincts and using low-stress handling techniques teaches cattle to trust their caregivers and work efficiently for them throughout the feeding period. These techniques should be applied with newly arrived cattle when they are unloaded, moved from the holding pen to the home pen, and handled inside the home pen. Low-stress handling during processing and a sound processing protocol based on cattle history and proper risk assessment can improve cattle health from the start of the feeding period.

  7. Oxygen transfer in a pressurized airlift bioreactor.

    Science.gov (United States)

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control.

  8. Bioreactor Yields Extracts for Skin Cream

    Science.gov (United States)

    2015-01-01

    Johnson Space Flight Center researchers created a unique rotating-wall bioreactor that simulates microgravity conditions, spurring innovations in drug development and medical research. Renuèll Int'l Inc., based in Aventure, Florida, licensed the technology and used it to produce a healing skin care product, RE`JUVEL. In a Food and Drug Administration test, RE`JUVEL substantially increased skin moisture and elasticity while reducing dark blotches and wrinkles.

  9. Enhanced Denitrification in Roadside Ditches with Bioreactors

    Science.gov (United States)

    Pluer, W.; Schneider, R.; Walter, M. T.

    2016-12-01

    Nitrate (NO3) pollution remains a water quality problem in agriculture-dominated watersheds despite decades of research and concerted efforts. Excess NO3 causes eutrophication in estuarine and marine ecosystems far downstream of the pollution source. Denitrification reduces NO3 to inert dinitrogen gas; this process occurs naturally in saturated areas of the landscape but this rate cannot keep up with the runoff rate due to fertilizer and manure applications. Researchers developed denitrifying bioreactors as a solution to encourage denitrification at the field level. Denitrifying bioreactors remove NO3 at a significantly higher rate (>2 g N m-2 d-1) than natural systems such as wetlands (<0.5 g N m-2 d-1). Most current designs of denitrifying bioreactors necessitate connection with tile drainage as the inflow source of water and NO3. It also requires a portion of farmland (typically <1% of field area is needed) which farmers can be reluctant to relinquish. Meanwhile, road ditches commonly run along agricultural fields, channeling runoff and NO3 to surface water. Because the ditches are designed to avoid flooding, they channel water rapidly and minimize time and contact with soil microbes for denitrification (denitrification rates in ditches are typically <0.1 g N m-2 d-1). Modified denitrifying bioreactors placed in road ditches could provide high NO3 removal in already marginal land, especially at baseflow conditions. A pilot study of this shows instantaneous NO3 removal rates up to 110 g N m-2 d-1 in the first year. Continued results similar to this pilot study and wider application could significantly increase ditch denitrification and help mitigate NO3 pollution.

  10. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    I Slivac; V Gaurina Srček; K Radošević; I Kmetič; Z Kniewald

    2006-09-01

    A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring oxygen was evaluated for BHK 21 C13 cell line growth and Aujeszky’s disease virus (ADV) production. Growth kinetics of BHK 21 C13 cells in the wave bioreactor during 3-day period were determined. At the end of the 3-day culture period and cell density of 1.82 × 106 cells ml–1, the reactor was inoculated with 9 ml of gE- Bartha K-61 strain ADV suspension (105.9 TCID50) with multiplicity of infection (MOI) of 0.01. After a 144 h incubation period, 400 ml of ADV harvest was obtained with titre of 107.0 TCID50 ml–1, which corresponds to 40,000 doses of vaccine against AD. In conclusion, the results obtained with the wave bioreactor using BHK 21 C13 cells showed that this system can be considered as suitable for ADV or BHK 21 C13 cell biomass production.

  11. Replaceable Sensor System for Bioreactor Monitoring

    Science.gov (United States)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  12. Degradation of Refuse in Hybrid Bioreactor Landfill

    Institute of Scientific and Technical Information of China (English)

    YAN LONG; Yu-YANG LONG; HAI-CHUN LIU; DONG-SHENG SHEN

    2009-01-01

    Objectivess To explore the process of refuse decomposition in hybrid bioreactor landfill. Methods The bioreactor landfill was operated in sequencing of facultative-anaerobic and aerobic conditions with leachate recireulation, pH, COD, and ammonia in the leachate and pH, biodegradable organic matter (BDM), and cation exchange capacity (CEC) in refuse were detected. Results CEC increased gradually with the degradation of refuse, which was negatively correlad, With BDM. COD and ammonia in the leachate was declined to 399.2 mg L-1 and 20.6 mg N L-1, respectively, during the 357-day operation. The respective concentrations of ammonia and COD were below the second and the third levels of current discharge standards in China. Conclusion The refuse is relatively stable at the end of hybrid bioreactor landfill operation. Most of the readily biodegradable organic matter is mineralized in the initial phase of refuse degradation, whereas the hard-biodegradable organic matter is mainly humidified in the maturity phase of refuse degradation.

  13. ALPHA-LACTALBUMIN GENOTYPES IDENTIFICATION IN ROMANIAN BLACK SPOTTED CATTLE BREED

    Directory of Open Access Journals (Sweden)

    R.A. VĂTĂSESCU

    2013-12-01

    Full Text Available Alpha-lactalbumin (α-La is a major milk protein essential for the biosynthesis of lactose at the level of mammary glands. α-La directly influences the quality and the volume of the milk since it is directly involved in the lactose synthesis (Ashwell et al., 1997. The PCR-RFLP test was performed to distinguish the different alleles in a population of Romanian Black Spotted cattle, a dairy breed. Genetic polymorphism was detected by digestion with the endonuclease MnlI, followed by electrophoresis in high resolution agarose gel stained with ethidium bromide. Sixty DNA samples from Romanian Black Spotted breed were analyzed for A and B variants. The PCRRFLP test makes feasible the inclusion of α-La genotypes in breeding plans and cattle selection.

  14. Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Susan R. Ross

    2010-09-01

    Full Text Available Mouse mammary tumor virus (MMTV, which was discovered as a milk‑transmitted, infectious cancer-inducing agent in the 1930s, has been used since that time as an animal model for the study of human breast cancer. Like other complex retroviruses, MMTV encodes a number of accessory proteins that both facilitate infection and affect host immune response. In vivo, the virus predominantly infects lymphocytes and mammary epithelial cells. High level infection of mammary epithelial cells ensures efficient passage of virus to the next generation. It also results in mammary tumor induction, since the MMTV provirus integrates into the mammary epithelial cell genome during viral replication and activates cellular oncogene expression. Thus, mammary tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.

  15. GH-producing mammary tumors in two dogs with acromegaly.

    Science.gov (United States)

    Murai, Atsuko; Nishii, Naohito; Morita, Takehito; Yuki, Masashi

    2012-06-01

    Two intact female dogs were admitted for growing mammary tumors. They had symptoms of acromegaly including weight gain, enlargement of the head, excessive skin folds, and inspiratory stridor. Serum concentrations of growth hormone (GH), insulin-like growth factor-I (IGF-I), and insulin were elevated in the two cases. From these findings, both dogs were diagnosed with acromegaly. In case 1, the GH, IGF-I, and insulin levels subsided after removal of the focal benign mammary tumors and ovariohysterectomy. In case 2, those levels subsided after removal of only focal mammary carcinoma. In both cases, immunohistochemical investigations for GH were positive in the mammary tumor cells but not in the normal mammary glands. We concluded that GH-producing mammary tumors caused the present acromegaly.

  16. Squamous Cell Carcinoma of Mammary Gland in Domestic Cat

    OpenAIRE

    Filgueira, Kilder Dantas; Reche Junior,Archivaldo

    2012-01-01

    Background: In the feline species, 80% to 93% of neoplasias in the mammary gland are malignant, being the majority carcinomas. Among them, there is the mammary squamous cell carcinoma, which amounts to a very rare neoplasm in the domestic cat, with considerable potential for malignancy. This study aimed to report a case of squamous cell mammary carcinoma in the feline species. Case: A female cat, mixed breed, ten years old, presented history of skin lesion. The cat had been spayed two years b...

  17. Genetic Susceptibility to Estrogen-Induced Mammary Cancers

    Science.gov (United States)

    2000-11-01

    mammary glands were reflected in mammary histology. (A and E) Thin sections from Fig. 3. E2 induced pituitary growth and hyperprolactinemia similarly in...with E2 5 (33%) exhibited a normal DNA profile where the great for 12 wk induced pituitary growth and hyperprolactinemia in majority of cells displayed...etal. , " terone, or PRL. Hyperprolactinemia has been shown to be sufficient to induce mammary cancer in certain strains of mouse 1 , (29-31) and rat

  18. The evolving role of mammary ductoscopy.

    Science.gov (United States)

    Mokbel, Kefah; Elkak, Abd Elrafea

    2002-01-01

    Mammary ductoscopy (MD) is an emerging technique that allows direct visualisation of the mammary duct system, and that produces sharp and clear video images and ductal washings for cytological analysis. There is a growing body of evidence that MD may have a role in the management of women with pathological nipple discharge, the guiding of breast conserving surgery for cancer, and the screening of high risk women. Further research is required to confirm these potential applications and the feasibility of its use in the rapid intervention and outpatient setting under local anaesthesia. Furthermore, the addition of molecular and genetic analysis of cells obtained by MD and the emergence of newer generations of microendoscopes are likely to enhance the use of this technique.

  19. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  20. Bovine mammary stem cells: new perspective for dairy science.

    Science.gov (United States)

    Martignani, E; Cravero, D; Miretti, S; Accornero, P; Baratta, M

    2014-01-01

    Mammary stem cells provide opportunities for the cyclic remodelling of the bovine mammary gland. Therefore, understanding the character and regulation of mammary stem cells is important for increasing animal health and productivity. The exciting possibility that stem cell expansion can influence milk production is currently being investigated by several researchers. In fact, appropriate regulation of mammary stem cells could hopefully benefit milk yield, persistency of lactation, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and regulate the function of bovine mammary stem cells. However, research on mammary stem cells requires tissue biopsies, which represents a limitation for the management of animal welfare. Interestingly, different studies recently reported the identification of putative mammary stem cells in human breast milk. The possible identification of primitive cell types within cow's milk may provide a non-invasive source of relevant mammary cells for a wide range of applications. In this review, we have summarized the main achievements in this field for dairy cow science and described the interesting perspectives open to manipulate milk persistency during lactation and to cope with oxidative stress during the transition period by regulating mammary stem cells.

  1. Mammary gland stem cells: More puzzles than explanations

    Indian Academy of Sciences (India)

    Suneesh Kaimala; Suneesh Kaimala; Satish Kumar

    2012-06-01

    Mammary gland stem cells (MaSC) have not been identified in spite of extensive research spanning over several decades. This has been primarily due to the complexity of mammary gland structure and its development, cell heterogeneity in the mammary gland and the insufficient knowledge about MaSC markers. At present, Lin–CD29hiCD49fhiCD24+/modSca-1– cells of the mammary gland have been reported to be enriched with MaSCs. We suggest that the inclusion of stem cell markers like Oct4, Sox2, Nanog and the mammary gland differentiation marker BRCA-1 may further narrow down the search for MaSCs. In addition, we have discussed some of the other unresolved puzzles on the mammary gland stem cells, such as their similarities and/or differences with mammary cancer stem cells, use of milk as source of mammary stem cells and the possibility of in vitro differentiation of embryonic stem (ES) cells into functional mammary gland structures in this review. Nevertheless, it is the lack of identity for a MaSC that is curtailing the advances in some of the above and other related areas.

  2. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis.

    Science.gov (United States)

    Visvader, Jane E

    2009-11-15

    The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.

  3. Ultrasound appearance of chronic mammary duct ectasia

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, N. [Ottawa Hospital, Dept. of Radiology, Ottawa, Ontario (Canada)]. E-mail: nathalie_duchesne_22@yahoo.ca; Skolnik, S. [Univ. of Toronto, Dept. of Family Medicine, Toronto, Ontario (Canada); Bilmer, S. [Ottawa Hospital, Dept. of Radiology, Ottawa, Ontario (Canada)

    2005-12-15

    Mammary duct ectasia (MDE), also called periductal mastitis, mammary dysplasia, or plasma cell mastitis, is a benign condition of the mammary gland first described by Haagensen in 1951. The etiology of MDE is unknown and its pathogenesis still controversial; the periductal inflammation could be either the cause or the result of dilated damaged ducts. The process is usually bilateral and asymptomatic, with only a small percentage of patients presenting with symptoms that may include long course of tumour formation, usually subareolar breast lumps, nipple discharge, nipple retraction, mastalgia, and mammary abscess or fistulas. Mammographic presentation of MDE is well known; its features include periductal calcification, benign intraductal calcification, and retroareolar duct dilatation. The periductal calcification results from dystrophic calcification and forms calcified rings or very dense, oval, elongated calcifications, each with a central lucency representing the dilated duct. Intraductal calcifications of duct ectasia represent inspissated intraductal material and are typically of uniform high density, often needle-like, and occasionally branching. Occasionally, there are no mammographic findings, and the diagnosis must rely on sonographic features. Appearance of MDE on ultrasonography (US) depends on the stage of the disease and the contents of the dilated ducts. The acute presentation has been demonstrated in the literature more often than has its chronic counterpart. In the former, duct content can vary from anechoic to isoechoic with surrounding fatty tissue. In chronic MDE, episodes of inflammation are longer. This tends to result in secretions that have a more solid, cheesy texture, partly due to cholesterol crystals, foam cells, and inflammatory cells. For both types of MDE, the appearance can mimic high-grade ductal carcinoma in situ (DCIS) on US. In this essay, 2 chronic MDE cases are presented and their US appearance discussed. Our goal is to explore

  4. Mammary fibromatosis in a male breast.

    Science.gov (United States)

    Al-Saleh, N; Amir, T; Shafi, I N

    2012-07-01

    Fibromatosis of the breast is a relatively benign, though locally invasive neoplasm. It is rare and difficult to diagnose. Risk of recurrence is there if it was inadequately excised. The best treatment is local wide excision with negative margins. We report a 46-year old gentleman with mammary fibromatosis. To the best of our knowledge, there are only few cases reported on male breast fibromatosis. The optimal management of it is unknown because of the rarity of the disease.

  5. Pain evaluation in dairy cattle

    DEFF Research Database (Denmark)

    Gleerup, Karina Charlotte Bech; Andersen, Pia Haubro; Munksgaard, Lene

    2015-01-01

    Pain compromises the welfare of animals. A prerequisite for being able to alleviate pain is that we are able to recognize it. Potential behavioural signs of pain were investigated for dairy cattle with the aim of constructing a pain scale for use under production conditions. Forty-three cows were...... for the assessment of pain in dairy cattle under production conditions....

  6. Nonrespiratory diseases of stocker cattle.

    Science.gov (United States)

    Step, Douglas L; Smith, Robert A

    2006-07-01

    Bovine respiratory disease is the most common health issue affecting stocker cattle. There are several nonrespiratory diseases that affect stockers. The more common diseases include rumen tympany, infectious bovine keratoconjunctivitis, coccidiosis, photosensitization, and foot rot. Accurate diagnosis, early treatment, and incorporating appropriate preventive measures can assist cattle production.

  7. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  8. Mammary Fibromatosis: Sonographic Features and Pathologic Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Kyoung; Ko, Kyung Hee; Rho, Ji Young; Kang, Hye Yoon [Cha University College of Medicine, Pocheon (Korea, Republic of); Kim, Eun Kyung [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2010-09-15

    The purpose of this study was to determine if the sonographic features of mammary fibromatosis had correlation with the pathologic findings. We identified four cases of fibromatosis of the breast at our institution over a 10-year period. The patients were all women, and they ranged from 25 to 48 years of age (mean, 34.3 years). All four patients complained of palpable breast masses and were subsequently diagnosed with mammary fibromatosis. We retrospectively reviewed their imaging findings. Mammography obtained in one patient revealed architectural distortion. On sonography, all four cases showed spiculated, irregular, hypoechoic masses that could not be differentiated from malignant lesions. After surgical excision and vacuum assisted biopsy of the masses in four patients, there was no recurrence on clinical or sonographic follow-up over a 13-36 month period. Although mammary fibromatosis is a very rare condition, it should be included in the differential diagnosis when an un-calcified, spiculated, irregular and hypoechoic masses are encountered on breast sonography

  9. Fibronectin production by human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R. (Univ. of California, Berkeley); Vlodavsky, I.; Smith, H.S.; Ford, R.; Becker, F.F.; Riggs, J.

    1981-01-01

    Human mammary cells were examined for the presence of the high-molecular-weight surface glycoprotein fibronectin. Early passage mammary epithelial cell and fibroblast cultures from both carcinomas and normal tissues were tested for the presence of cell-associated fibronectin by immunofluorescence microscopy and for the synthesis and secretion of fibronectin by specific immunoprecipitation of metabolically labeled protein. In vivo frozen sections of primary carcinomas and normal tissues were tested for the localization of fibronectin by immunofluorescence microscopy. In contrast to the extensive fibrillar networks of fibronectin found in the fibroblast cultures, the epithelial cell cultures from both tissue sources displayed a pattern of cell-associated fibronectin characterizd by powdery, punctate staining. However, the cultured epithelial cells, as well as the fibroblasts, secreted large quantities of fibronectin into the medium. Putative myoepithelial cells also displayed extensive fibrillar networks of fibronectin. The difference in cell-associated fibronectin distribution between the epithelial cells and the fibroblasts and putative myoepithelial cells provided a simple means of quantitating stromal and myoepithelial cell contamination of the mammary epithelial cells in culture. In vivo, normal tissues showed fibronectin primarily localized in the basement membrane surrounding the epithelial cells and in the stroma. Most primary carcinomas displayed powdery, punctate staining on the epithelial cells in addition to the fibronectin present in the surrounding stroma.

  10. Mammary ductoscopy: past, present, and future.

    Science.gov (United States)

    Pereira, Bernadette; Mokbel, Kefah

    2005-04-01

    Mammary ductoscopy (MD) allows direct visual access to the mammary ducts, using fiberoptic microendoscopes inserted through the ductal opening onto the nipple surface. Therefore it has a potential role in the diagnosis and treatment of intraductal breast disease. This article describes the anatomy of the mammary ductal system, the early beginnings of MD, its ongoing evolution, and the need for further development for its future usage in increasing clinical indications. MD is a useful diagnostic adjunct in patients with pathological nipple discharge (PND) and can guide duct excision surgery. However, its potential use in the early detection of breast cancer, in guiding breast-conserving surgery (BCS) for cancer, and in the therapeutic ablation of intraductal disease, as well as in guiding risk-reducing strategies among high-risk women, requires further research and evaluation. The development of a biopsy kit that obtains adequate microbiopsy samples for histological diagnosis under direct visualization will enhance the use of this technique by breast surgeons and radiologists. Future developments also include combining MD with molecular diagnostic markers and optical biopsy systems for the diagnosis of premalignant and early malignant disease, and combining MD with radiofrequency for curative ablation of intraductal lesions.

  11. Mammary ductoscopy: current issues and perspectives.

    Science.gov (United States)

    Uchida, Ken; Fukushima, Hisaki; Toriumi, Yasuo; Kawase, Kazumi; Tabei, Isao; Yamashita, Akinori; Nogi, Hiroko

    2009-01-01

    Until recently, the mammary duct had not been directly observed in vivo. Starting with the success of Teboul et al., studies of mammary ductoscopy (MD) for nipple discharge have been performed in Japan and other East Asian countries. Ductal lavage screening trials for breast cancer started in the 2000s. Concurrently, the number of English-language articles about MD increased. Sixty-nine English-language and 74 Japanese-language papers published in the last 19 years were reviewed. Important reports and studies were analyzed. MD has undergone significant technological development, and studies of MD have taken place in many countries. As a result, endoscopic images of the mammary duct have developed, and the endoscopic diagnosis for nipple discharge has become possible. MD-guided biopsy and surgery have been studied. Findings of MD are useful for diagnosing intraductal lesions with nipple discharge. As a result, MD has reduced the number and extent of microdochectomies. MD is also helpful in guiding breast-conserving surgery. Many pioneers have tried direct biopsy or interventions under MD, but further developments are necessary for its practical use.

  12. Microbial community analysis of a full-scale DEMON bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  13. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA(®) and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA(®) bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  15. Sulfur formation and recovery in a thiosulfateoxidizing bioreactor

    NARCIS (Netherlands)

    Gonzalez-Sanchez, A.; Meulepas, R.J.W.; Revah, S.

    2008-01-01

    This work describes the design and Performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate

  16. Evaluation of woodchip bioreactors for improved water quality

    Science.gov (United States)

    Woodchip bioreactors are gaining popularity with farmers because of their edge-of-field nitrate removal capabilities, which do not require changes in land management practices. However, limited research has been conducted to study the potential of these bioreactors to also reduce downstream transpor...

  17. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  18. Denitrifying bioreactors for nitrate removal from tile drained cropland

    Science.gov (United States)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  19. Sulfur formation and recovery in a thiosulfateoxidizing bioreactor

    NARCIS (Netherlands)

    Gonzalez-Sanchez, A.; Meulepas, R.J.W.; Revah, S.

    2008-01-01

    This work describes the design and Performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate a

  20. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    Science.gov (United States)

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  1. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    Science.gov (United States)

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  2. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  3. Placentation in cloned cattle

    DEFF Research Database (Denmark)

    Miglino, M A; Pereira, F T V; Visintin, J A

    2007-01-01

    To elucidate the morphological differences between placentas from normal and cloned cattle pregnancies reaching term, the umbilical cord, placentomes and interplacentomal region of the fetal membranes were examined macroscopically as well as by light and scanning electron microscopy. In pregnancies...... than one primary villus, as opposed to a single villus in non-cloned placentae. Scanning electron microscopy of blood vessel casts revealed that there was also more than one stem artery per villous tree and that the ramification of the vessels failed to form dense complexes of capillary loops...

  4. Disposable bioreactors for inoculum production and protein expression.

    Science.gov (United States)

    Eibl, Regine; Löffelholz, Christian; Eibl, Dieter

    2014-01-01

    Disposable bioreactors have been increasingly implemented over the past ten years. This relates to both R & D and commercial manufacture, in particular, in animal cell-based processes. Among the numerous disposable bioreactors which are available today, wave-mixed bag bioreactors and stirred bioreactors are predominant. Whereas wave-mixed bag bioreactors represent the system of choice for inoculum production, stirred systems are often preferred for protein expression. For this reason, the authors present protocols instructing the reader how to use the wave-mixed BIOSTAT CultiBag RM 20 L for inoculum production and the stirred UniVessel SU 2 L for recombinant protein production at benchtop scale. All methods described are based on a Chinese hamster ovary (CHO) suspension cell line expressing the human placental secreted alkaline phosphatase (SEAP).

  5. Reduced-Gravity Experiments Conducted to Help Bioreactor Development

    Science.gov (United States)

    Niederhaus, Charles E.; Nahra, Henry K.; Kizito, John P.

    2004-01-01

    The NASA Glenn Research Center and the NASA Johnson Space Center are collaborating on fluid dynamic investigations for a future cell science bioreactor to fly on the International Space Station (ISS). Project Manager Steven Gonda from the Cellular Biotechnology Program at Johnson is leading the development of the Hydrodynamic Focusing Bioreactor--Space (HFB-S) for use on the ISS to study tissue growth in microgravity. Glenn is providing microgravity fluid physics expertise to help with the design and evaluation of the HFB-S. These bioreactors are used for three-dimensional tissue culture, which cannot be done in ground-based labs in normal gravity. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The bioreactor must provide a uniform distribution of oxygen and nutrients while minimizing the shear stresses on the tissue culture.

  6. Effect of Thyroid Function on MNU-Induced Mammary Carcinogenesis.

    Science.gov (United States)

    Vermey, Mackenzie L; Marks, Gregory T; Baldridge, Monika G

    2015-06-01

    Mammary cancer is a disease that affects many women. Extensive research has been conducted to elucidate which variables are involved in the development of this cancer. Studies have highlighted thyroid function as a modulator of tumor growth and development. Thyroxine and 3,3',5-triiodothyronine are responsible for regulating the development, differentiation, homeostasis, and metabolism of cells in the body including mammary tissue. Thyroid hormones also have estrogen-like effects on mammary cancer cell growth by regulating the estrogen receptor. The present study was designed to determine whether medically induced hyperthyroidism increases the multiplicity, prevalence, and mammary tumor burden in rats; and to elucidate whether surgically induced hypothyroidism conversely attenuates the rate of mammary cancer cell growth. Female Sprague-Dawley rats were randomly divided into three groups (euthyroid-control, hyperthyroid, and hypothyroid). Hyperthyroidism was induced via oral administration of levothyroxine; whereas, hypothyroidism was induced by thyroidectomy. Mammary carcinogenesis was induced with a single intraperitoneal injection of N-methyl-N-nitrosurea (MNU). Rats were sacrificed at 38 weeks, and the mammary tumors were excised, fixed for histology and analyzed. Analysis included evaluation of malignancy and immunohistochemistry for ER. MNU-induced mammary carcinogenesis among the groups resulted in a significant difference in tumor burden. The hyperthyroid group had a statistically higher tumor burden than did the euthyroid group, and the hypothyroid group had no tumors of mammary tissue origin at 38 weeks. All excised mammary tumors were ER alpha negative. These data support the hypothesis that thyroid function is one of potentially many factors that contribute to modulation of MNU-induced mammary tumor growth.

  7. Bioreactor Engineering of Stem Cell Environments

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-01-01

    Stem cells hold promise to revolutionize modern medicine by development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to translation of stem cell based therapies into the clinic. PMID:23531529

  8. Host resistance in cattle to infestation with the cattle tick Rhipicephalus microplus

    National Research Council Canada - National Science Library

    Jonsson, N. N; Piper, E. K; Constantinoiu, C. C

    2014-01-01

    .... The variation in resistance to tick infestation is most marked between B os taurus and B os indicus cattle, taurine cattle given the same exposure carrying between five and 10 times as many ticks as indicine cattle...

  9. Identification of rat mammary tumor-1 gene (RMT-1), which is highly expressed in rat mammary tumors.

    Science.gov (United States)

    Chiou, S; Yoo, J; Loh, K C; Guzman, R C; Gopinath, G R; Rajkumar, L; Chou, Y C; Yang, J; Popescu, N C; Nandi, S

    2001-12-10

    Full-term pregnancy early in life results in a permanent reduction in lifetime breast cancer risk in women. Parous rats and mice are also refractory to chemical carcinogenesis. Therefore, investigation of the differences between mammary glands from virgin and parous rats would provide valuable information regarding the protective effects of early full-term pregnancy. In this report, we examined the gene expression patterns in mammary glands from virgin and parous Lewis rats. Using differential display technology, a novel 4.2 kb cDNA, designated rat mammary tumor-1 (RMT-1) was isolated. Northern blot analysis of RMT-1 showed that RMT-1 expression was higher in the pre-pubertal and pubertal stages during rat mammary gland development while it was down-regulated in mammary glands from mature virgin and parous rats. RMT-1 expression was highest in rat mammary cancers compared with either the mammary glands of virgin or parous rats. At the Northern blot sensitivity level, RMT-1 expression was found only in the mammary gland. Northern blot analysis also showed that the expression of this gene was found in 74% of N-methyl-nitrosourea (MNU)-induced mammary cancers while it was not found in MNU-induced cancers from other organs. The examination of the RMT-1 gene structure revealed that it consists of five exons spanning 5.9 kb. Using fluorescence in situ hybridization, the gene was localized on rat chromosome 1 band q 43-51. The present data show that there is a correlation between high RMT-1 expression and rat mammary carcinogenesis or decreased RMT-1 expression and parity associated refractoriness to chemically induced mammary carcinogenesis. However, whether or not RMT-1 gene has a functional role in these processes remains to be investigated.

  10. P-Cadherin Expression in Feline Mammary Tissues

    Directory of Open Access Journals (Sweden)

    Ana Catarina Figueira

    2012-01-01

    Full Text Available The search for molecular markers in the feline mammary gland, namely, the adhesion molecules belonging to the cadherin family, is useful in the understanding of the development of mammary carcinomas in felines and humans. To study P-cadherin expression in the feline mammary gland, 61 samples of normal (n=4, hyperplastic (n=12, and neoplastic (n=45 feline mammary tissues were examined. In both normal and hyperplastic mammary tissues as well as in benign tumours, P-cadherin immunolabelling was restricted to myoepithelial cells. In malignant tumours, however, there was an aberrant epithelial P-cadherin immunoexpression in 64.1% (n=25 of cases, with a membranous and/or cytoplasmic pattern of distribution. A statistically significant relationship was seen between epithelial P-cadherin expression and malignant mammary lesions (P=0.0001. In malignant mammary tumours, there was likewise a statistically significant relationship between aberrant P-cadherin immunoexpression and histological grade (P=0.0132. Aberrant epithelial P-cadherin expression seems to be related to malignancy in the feline mammary gland. To confirm the results of this investigation, further studies with larger samples and follow-up studies are warranted.

  11. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  12. Mammary Development and Breast Cancer: A Wnt Perspective

    OpenAIRE

    Qing Cissy Yu; Verheyen, Esther M.; Yi Arial Zeng

    2016-01-01

    The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.

  13. Bipotent mammary stem cells: now in amazing 3D

    NARCIS (Netherlands)

    van Amerongen, R.

    2014-01-01

    For many decades, developmental biologists and cancer researchers alike have been trying to understand the relationship between the basal and luminal cell compartments in the mouse mammary epithelium. Delineating the mammary stem and progenitor cell hierarchy will provide fundamental knowledge of ho

  14. Resident macrophages influence stem cell activity in the mammary gland

    NARCIS (Netherlands)

    Gyorki, D.E.; Asselin-Labat, M.L.; Rooijen, van N.; Lindeman, G.J.; Visvader, J.E.

    2009-01-01

    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells

  15. Changes in Some Biochemical Parameters and Somatic Cell Counts in the Milk of Buffalo and Cattle Suffering from Mastitis

    Directory of Open Access Journals (Sweden)

    Riaz Hussain§, Muhammad Tariq Javed and Ahrar Khan*

    2012-06-01

    Full Text Available The study was conducted on a total of 592 buffaloes and 453 cattle in their different stages of lactation to investigate the biochemical changes occurring in milk due to mastitis. California Mastitis Test (CMT was used to diagnose the mammary gland infection. The results revealed significant (P<0.0001 increase in pH, electrical conductivity, malondialdehyde and total dissolved solids, while decrease in fat, protein, lactose and solids not fat in milk samples of both mastitic buffaloes and cattle. The total somatic cell and neutrophil counts were significantly higher, while the macrophage and lymphocytes were lower in the milk of mastitic animals. The enzymes including lactate dehydrogenase, aspartate aminotransferase and alkaline phosphatase along with sodium were significantly higher in mastitic than healthy buffaloes. It was similar in cattle as well, with the exception of aspartate aminotransferase which was non-significant in cattle. The values of potassium, phosphorous, calcium, magnesium, zinc and iron were significantly higher in the milk of mastitic animals. The copper levels were significantly (P<0.0001 lower in mastitic than in healthy buffaloes, while it showed non-significant difference in cattle. The investigation of enzymes, lipid peroxidation product and milk electrical conductivity in present study appeared suitable diagnostic tools for identification of mastitis.

  16. Water intoxication in adult cattle.

    Science.gov (United States)

    Kawahara, Naoya; Ofuji, Sosuke; Abe, Sakae; Tanaka, Ai; Uematsu, Masami; Ogata, Yoshimi

    2016-05-01

    Water intoxication is a common disorder in calves and is usually characterized by transient hemoglobinuria. In contrast, the condition is very rare in adult cattle, with few reports on naturally occurring cases. In the present report, four female Japanese Black cattle, aged 16-25 months, showed neurological signs when they drank water following a water outage. Hemoglobinuria was not grossly observed, while severe hyponatremia was revealed by laboratory tests. Autopsy indicated cerebral edema with accumulation of serous fluid in expanded Virchow-Robin spaces. These results indicate the possibility of water intoxication associated with cerebral edema due to severe dilutional hyponatremia in adult cattle.

  17. Huntingtin Regulates Mammary Stem Cell Division and Differentiation

    Directory of Open Access Journals (Sweden)

    Salah Elias

    2014-04-01

    Full Text Available Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington’s disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties.

  18. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis

    Science.gov (United States)

    Karantza-Wadsworth, Vassiliki; Patel, Shyam; Kravchuk, Olga; Chen, Guanghua; Mathew, Robin; Jin, Shengkan; White, Eileen

    2007-01-01

    Autophagy is a catabolic process involving self-digestion of cellular organelles during starvation as a means of cell survival; however, if it proceeds to completion, autophagy can lead to cell death. Autophagy is also a haploinsufficient tumor suppressor mechanism for mammary tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in breast carcinomas. However, the mechanism by which autophagy suppresses breast cancer remains elusive. Here we show that allelic loss of beclin1 and defective autophagy sensitized mammary epithelial cells to metabolic stress and accelerated lumen formation in mammary acini. Autophagy defects also activated the DNA damage response in vitro and in mammary tumors in vivo, promoted gene amplification, and synergized with defective apoptosis to promote mammary tumorigenesis. Therefore, we propose that autophagy limits metabolic stress to protect the genome, and that defective autophagy increases DNA damage and genomic instability that ultimately facilitate breast cancer progression. PMID:17606641

  19. Luminal progenitors restrict their lineage potential during mammary gland development.

    Science.gov (United States)

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  20. Mammary development and breast cancer: the role of stem cells.

    Science.gov (United States)

    Ercan, C; van Diest, P J; Vooijs, M

    2011-06-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.

  1. Stem cells in normal mammary gland and breast cancer.

    Science.gov (United States)

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  2. Luminal progenitors restrict their lineage potential during mammary gland development.

    Directory of Open Access Journals (Sweden)

    Veronica Rodilla

    2015-02-01

    Full Text Available The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  3. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts

    Directory of Open Access Journals (Sweden)

    Marion eBoutinaud

    2015-10-01

    Full Text Available Milk is produced in the udder by mammary epithelial cells (MEC. Milk contains MEC, which are gradually exfoliated from the epithelium during lactation. Isolation of MEC from milk using immunomagnetic separation may be a useful non-invasive method to investigate transcriptional regulations in ruminants’ udder. This review aims to describe the process of isolating MEC from milk, to provide an overview on the studies that use this method to analyze gene expression by qRT PCR and to evaluate the validity of this method by analysing and comparing the results between studies. In several goat and cow studies, consistent reductions in alpha-lactalbumin mRNA levels during once-daily milking (ODM and in SLC2A1 mRNA level during feed restriction are observed. The effect of ODM on alpha-lactalbumin mRNA level was similarly observed in milk isolated MEC and mammary biopsy. Moreover, we and others showed decreasing alpha-lactalbumin and increasing BAX mRNA levels with advanced stages of lactation in dairy cows and buffalo. The relevance of using the milk-isolated MEC method to analyze mammary gene expression is proven, as the transcript variations were also consistent with milk yield and composition variations under the effect of different factors such as prolactin inhibition or photoperiod. . However, the RNA from milk-isolated MEC is particularly sensitive to degradation. This could explain the differences obtained between milk-isolated MEC and mammary biopsy in two studies where gene expression was compared using qRT-PCR or RNA Sequencing analyses. As a conclusion, when the RNA quality is conserved, MEC isolated from milk are a valuable, non-invasive source of mammary mRNA to study various factors that impact milk yield and composition (ODM, feeding level, endocrine status, photoperiod modulation and stage of lactation.

  4. Dynamic global sensitivity analysis in bioreactor networks for bioethanol production.

    Science.gov (United States)

    Ochoa, M P; Estrada, V; Di Maggio, J; Hoch, P M

    2016-01-01

    Dynamic global sensitivity analysis (GSA) was performed for three different dynamic bioreactor models of increasing complexity: a fermenter for bioethanol production, a bioreactors network, where two types of bioreactors were considered: aerobic for biomass production and anaerobic for bioethanol production and a co-fermenter bioreactor, to identify the parameters that most contribute to uncertainty in model outputs. Sobol's method was used to calculate time profiles for sensitivity indices. Numerical results have shown the time-variant influence of uncertain parameters on model variables. Most influential model parameters have been determined. For the model of the bioethanol fermenter, μmax (maximum growth rate) and Ks (half-saturation constant) are the parameters with largest contribution to model variables uncertainty; in the bioreactors network, the most influential parameter is μmax,1 (maximum growth rate in bioreactor 1); whereas λ (glucose-to-total sugars concentration ratio in the feed) is the most influential parameter over all model variables in the co-fermentation bioreactor.

  5. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  6. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production.

    Science.gov (United States)

    Jain, Era; Kumar, Ashok

    2013-05-01

    Low cost and high efficiency make disposable bioreactors feasible for small-scale therapeutic development and initial clinical trials. We have developed a cryogel-based disposable bioreactor matrix, which has been used for production of protein therapeutics such as urokinase and monoclonal antibodies (mAbs). The protocol discusses the application of a cryogel bioreactor for mAb production. Cryogels composed of either polyacrylamide (PAAm) coupled to gelatin or semi-interpenetrating PAAm-chitosan are synthesized by free-radical polymerization at -12 °C. Hybridoma cells are immobilized over the cryogel bioreactor and incubated for 48 h. Medium is circulated thereafter at 0.2 ml min(-1) and bioreactors can be run continuously for 60 d. The cryogel-based packed-bed bioreactor can be formulated as a monolith or as beads; it also has an efficiency four times what can be obtained using a tissue-culture flask, a high surface-to-volume ratio and effective nutrient transport. After incubation, the bioreactor setup will take about 60 min using a pre-prepared sterilized cryogel.

  7. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  8. Novel Hydrogen Bioreactor and Detection Apparatus.

    Science.gov (United States)

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C.

  9. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  10. LTCC based bioreactors for cell cultivation

    Science.gov (United States)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  11. Alcohol exposure in utero leads to enhanced prepubertal mammary development and alterations in mammary IGF and estradiol systems.

    Science.gov (United States)

    Polanco, Tiffany A; Crismale-Gann, Catina; Cohick, Wendie S

    2011-08-01

    Exposure to alcohol during fetal development increases susceptibility to mammary cancer in adult rats. This study determined if early changes in mammary morphology and the insulin-like growth factor (IGF)/estradiol axis are involved in the mechanisms that underlie this increased susceptibility. Pregnant Sprague-Dawley rats were fed a liquid diet containing 6.7% ethanol (alcohol), an isocaloric liquid diet (pair-fed), or rat chow ad libitum from days 11 to 21 of gestation. At birth, female pups were cross-fostered to ad libitum-fed control dams. Offspring were euthanized at postnatal days (PND) 20, 40, or 80. Animals were injected with BrdU before euthanasia, then mammary glands, serum, and livers were collected. Mammary glands from animals exposed to alcohol in utero displayed increased epithelial cell proliferation and aromatase expression at PND 20 and 40. Mammary IGF-I mRNA was higher in alcohol-exposed animals relative to controls at PND 20, while mammary IGFBP-5 mRNA was lower in this group at PND 40. Hepatic IGF-I mRNA expression was increased at all time points in alcohol-exposed animals, however, circulating IGF-I levels were not altered. These data indicate that alcohol exposure in utero may advance mammary development via the IGF and estradiol systems, which could contribute to increased susceptibility to mammary cancer later in life.

  12. Development of mammary glands of fat sheep submitted to restricted feeding during late pregnancy

    DEFF Research Database (Denmark)

    Nørgaard, J V; Nielsen, M O; Theil, P K;

    2008-01-01

    Mammary gland development in sheep occurs mainly during puberty and pregnancy. We have investigated the effects of a late gestation feed restriction on mammary gland development in sheep.......Mammary gland development in sheep occurs mainly during puberty and pregnancy. We have investigated the effects of a late gestation feed restriction on mammary gland development in sheep....

  13. Comparative proteomics of milk fat globule membrane proteins from transgenic cloned cattle.

    Directory of Open Access Journals (Sweden)

    Shunchao Sui

    Full Text Available The use of transgenic livestock is providing new methods for obtaining pharmaceutically useful proteins. However, the protein expression profiles of the transgenic animals, including expression of milk fat globule membrane (MFGM proteins, have not been well characterized. In this study, we compared the MFGM protein expression profile of the colostrum and mature milk from three lines of transgenic cloned (TC cattle, i.e., expressing recombinant human α-lactalbumin (TC-LA, lactoferrin (TC-LF or lysozyme (TC-LZ in the mammary gland, with those from cloned non-transgenic (C and conventionally bred normal animals (N. We identified 1, 225 proteins in milk MFGM, 166 of which were specifically expressed only in the TC-LA group, 265 only in the TC-LF group, and 184 only in the TC-LZ group. There were 43 proteins expressed only in the transgenic cloned animals, but the concentrations of these proteins were below the detection limit of silver staining. Functional analysis also showed that the 43 proteins had no obvious influence on the bovine mammary gland. Quantitative comparison revealed that MFGM proteins were up- or down-regulated more than twofold in the TC and C groups compared to N group: 126 in colostrum and 77 in mature milk of the TC-LA group; 157 in colostrum and 222 in mature milk of the TC-LF group; 49 in colostrum and 98 in mature milk of the TC-LZ group; 98 in colostrum and 132 in mature milk in the C group. These up- and down-regulated proteins in the transgenic animals were not associated with a particular biological function or pathway, which appears that expression of certain exogenous proteins has no general deleterious effects on the cattle mammary gland.

  14. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  15. Mammary fibroadenoma with pleomorphic stromal cells.

    Science.gov (United States)

    Abid, Najla; Kallel, Rim; Ellouze, Sameh; Mellouli, Manel; Gouiaa, Naourez; Mnif, Héla; Boudawara, Tahia

    2015-01-01

    The presence of enlarged and pleomorphic nuclei is usually regarded as a feature of malignancy, but it may on occasion be seen in benign lesions such as mammary fibroadenomas. We present such a case of fibroadenoma occurring in a 37-year-old woman presenting with a self-palpable right breast mass. Histological examination of the tumor revealed the presence of multi and mononucleated giant cells with pleomorphic nuclei. The recognition of the benign nature of these cells is necessary for differential diagnosis from malignant lesions of the breast. fibroadenoma - pleomorphic stromal cells - atypia - breast.

  16. Mammary Cancer and Activation of Transposable Elements

    Science.gov (United States)

    2015-03-01

    derived adipo- cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We...Mesendoderm 2353 765 051 59 5 92% H9-IMR90 5875 7 669 782 605 58 91% oocyte - ES cell (mouse) 4727 1 204 883 334 25 93% sperm - ES cell (mouse) 4580 4 364 748...engineered mouse model in which a specific mammary cell population is fluorescently marked upon initial transcriptional activation of the SV40 large T

  17. Negative Effects of Sludge Bulking in Membrane Bio-Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; HUANG Zhi; REN Nanqi; MENG Qingjuan

    2006-01-01

    Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.

  18. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  19. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    A current problem in tissue culturing technology is the unavailability of an effective Bioreactor for the in vitro cultivation of cells and explants. It has, in fact, proved extremely difficult to promote the high-density three-dimensional in vitro growth of human tissues that have been removed from the body and deprived of their normal in vivo vascular sources of nutrients and gas exchange. A variety of tissue explants can be maintained for a short period of time on a supportive collagen matrix surrounded by culture medium. But this system provides only limited mass transfer of nutrients and wastes through the tissue, and gravity-induced sedimentation prevents complete three- dimensional cell-cell and cell-matrix interactions. Several devices presently on the market have been used with only limited success since each has limitations, which restrict usefulness and versatility. Further, no Bioreactor or culture vessel is known that will allow for unimpeded growth of three dimensional cellular aggregates or tissue. Extensive research on the effect of mechanical stimuli on cell metabolism suggests that tissues may respond to mechanical stimulation via loading-induced flow of the interstitial fluids. During the culture, cells are subject to a flow of culture medium. Flow properties such as flow field, flow regime (e.g. turbulent or laminar), flow pattern (e.g. circular), entity and distribution of the shear stress acting on the cells greatly influence fundamental aspects of cell function, such as regulation and gene expression. This has been demonstrated for endothelial cells and significant research efforts are underway to elucidate these mechanisms in various other biological systems. Local fluid dynamics is also responsible of the mass transfer of nutrients and catabolites as well as oxygenation through the tissue. Most of the attempts to culture tissue-engineered constructs in vitro have utilized either stationary cultures or systems generating relatively small

  20. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  1. Extra-mammary findings in breast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Pierluigi; Costantini, M.; Belli, P.; Giuliani, M.; Bufi, E.; Fubelli, R.; Distefano, D.; Romani, M.; Bonomo, L. [Catholic University - Policlinic A. Gemelli, Department of Bio-Imaging and Radiological Sciences, Rome (Italy)

    2011-11-15

    Incidental extra-mammary findings in breast Magnetic Resonance Imaging (MRI) may be benign in nature, but may also represent a metastasis or another important lesion. We aimed to analyse the prevalence and clinical relevance of these unexpected findings. A retrospective review of 1535 breast MRIs was conducted. Only axial sequences were reassessed. Confirmation examinations were obtained in all cases. 285 patients had a confirmed incidental finding, which were located in the liver (51.9%), lung (11.2%), bone (7%), mediastinal lymph nodes (4.2%) or consisted of pleural/pericardial effusion (15.4%). 20.4% of incidental findings were confirmed to be malignant. Positive predictive value for MRI to detect a metastatic lesion was high if located within the bone (89%), lymph nodes (83%) and lung (59%), while it was low if located within the liver (9%) or if it consisted of pleural/pericardial effusion (6%). The axial enhanced sequence showed superior sensitivity to unenhanced images in detecting metastatic lesions, especially if only smaller ({<=}10 mm.) lesions were considered. The prevalence of metastatic incidental extra-mammary findings is not negligible. Particular attention should be to incidental findings located within the lung, bone and mediastinal lymph nodes. (orig.)

  2. Bioreactors Drive Advances in Tissue Engineering

    Science.gov (United States)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  3. A review of mammary ductoscopy in breast cancer.

    Science.gov (United States)

    Yamamoto, Daigo; Tanaka, Kanji

    2004-01-01

    Breast carcinoma and hyperplasia are thought to start in the lining of the breast duct. Mammary ductoscopy is an emerging technique allowing direct visual access of the ductal system of the breast through the nipple. This article reviews and discusses the utility of mammary ductoscopy. Abnormalities can be identified successfully by mammary ductoscopy, and intraductal biopsy can be used when the tumor is a polypoid type. Ductal lavage using microcatheters is effective in identifying malignant cells in high-risk women and this has stimulated interest in exploring the role of mammary ductoscopy in breast cancer screening. Mammary ductoscopy combined with ductal lavage may have a role in the management of patients with nipple discharge, the guiding of breast-conserving surgery for cancer, and in screening for high-risk women. The addition of molecular and genetic analysis of cells obtained by mammary ductoscopy are likely to enhance the use of this technique. Mammary ductoscopy techniques are safe and appear useful for detecting abnormalities in the breast. The additional molecular biologic study or ductal lavage may enhance the ability to direct and limit subsequent surgery when removing the offending lesions.

  4. Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle

    Science.gov (United States)

    Hou, Qinlei; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Li, Liming; Wang, Changfa; Sun, Tao; Wang, Lingling; Hou, Minghai

    2012-01-01

    Major histocompatibility complex, class II, DQ alpha 2, also named BOLA-DQA2, belongs to the Bovine Leukocyte Antigen (BOLA) class II genes which are involved in the immune response. To explore the variability of the BOLA-DQA2 gene and resistance to mastitis in cows, the splice variants (SV), targeted microRNAs (miRNAs), and single nucleotide polymorphisms (SNPs) were identified in this study. A new SV (BOLA-DQA2-SV1) lacking part of exon 3 (195 bp) and two 3′-untranslated regions (UTR) (52 bp+167 bp) of the BOLA-DQA2 gene was found in the healthy and mastitis-infected mammary gland tissues. Four of 13 new SNPs and multiple nucleotide polymorphisms resulted in amino acid changes in the protein and SNP (c. +1283 C>T) may affect the binding to the seed sequence of bta-miR-2318. Further, we detected the relative expressions of two BOLA-DQA2 transcripts and five candidated microRNAs binding to the 3′-UTR of two transcripts in the mammary gland tissues in dairy cattle by using the quantitative real-time polymerase chain reaction. The result showed that expression of the BOLA-DQA2-SV1 mRNA was significantly upregulated 2.67-fold (pmastitis-infected mammary tissues (n=5) compared with the healthy mammary gland mammary tissues (n=5). Except for bta-miR-1777a, miRNA expression (bta-miR-296, miR-2430, and miR-671) was upregulated 1.75 to 2.59-fold (pmastitis cows. Our findings reveal that BOLA-DQA2-SV1 may play an important role in the mastitis resistance in dairy cattle. Whether the SNPs affect the structure of the BOLA-DQA2 gene or association with mastitis resistance is unknown and warrants further investigation. PMID:22084936

  5. Upflow bioreactor with septum and pressure release mechanism

    Science.gov (United States)

    Hansen, Conly L.; Hansen, Carl S.; Pack, Kevin; Milligan, John; Benefiel, Bradley C.; Tolman, C. Wayne; Tolman, Kenneth W.

    2010-04-20

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes means for releasing pressure buildup in the lower chamber. In one configuration, the septum includes a releasable portion having an open position and a closed position. The releasable portion is configured to move to the open position in response to pressure buildup in the lower chamber. In the open position fluid communication between the lower chamber and the upper chamber is increased. Alternatively the lower chamber can include a pressure release line that is selectively actuated by pressure buildup. The pressure release mechanism can prevent the bioreactor from plugging and/or prevent catastrophic damage to the bioreactor caused by high pressures.

  6. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...... that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what...... are the limitations of different types of mod - els? This paper will provide examples of models that have been published in the literature for use across bioreactor scales, including computational fluid dynamics (CFD) and population balance models. Furthermore, the importance of good modeling practice...

  7. Hairy root culture: bioreactor design and process intensification.

    Science.gov (United States)

    Stiles, Amanda R; Liu, Chun-Zhao

    2013-01-01

    The cultivation of hairy roots for the production of secondary metabolites offers numerous advantages; hairy roots have a fast growth rate, are genetically stable, and are relatively simple to maintain in phytohormone free media. Hairy roots provide a continuous source of secondary metabolites, and are useful for the production of chemicals for pharmaceuticals, cosmetics, and food additives. In order for hairy roots to be utilized on a commercial scale, it is necessary to scale-up their production. Over the last several decades, significant research has been conducted on the cultivation of hairy roots in various types of bioreactor systems. In this review, we discuss the advantages and disadvantages of various bioreactor systems, the major factors related to large-scale bioreactor cultures, process intensification technologies and overview the mathematical models and computer-aided methods that have been utilized for bioreactor design and development.

  8. Efficiency evaluation of three fluidised aerobic bioreactor based ...

    African Journals Online (AJOL)

    Dil

    2013-04-24

    Apr 24, 2013 ... bioreactor based sewage treatment plants in Kashmir ... systems: a physical and a biological purification steps. In ... in Germany, Netherlands, Europe and Canada successfully. This ..... treatment of meat industry wastewater.

  9. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals.

    Science.gov (United States)

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-06-17

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals.

  10. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  11. Microbial Bioreactor Development in the ALS NSCORT

    Science.gov (United States)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  12. Start-up Strategy for Continuous Bioreactors

    Directory of Open Access Journals (Sweden)

    A.C. da Costa

    1997-06-01

    Full Text Available Abstract - The start-up of continuous bioreactors is solved as an optimal control problem. The choice of the dilution rate as the control variable reduces the dimension of the system by making the use of the global balance equation unnecessary for the solution of the optimization problem. Therefore, for systems described by four or less mass balance equations, it is always possible to obtain an analytical expression for the singular arc as a function of only the state variables. The steady state conditions are shown to satisfy the singular arc expression and, based on this knowledge, a feeding strategy is proposed which leads the reactor from an initial state to the steady state of maximum productivity

  13. Vortex breakdown in a truncated conical bioreactor

    Science.gov (United States)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2015-12-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small Hw, the AMF effect dominates. As Hw increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

  14. Platelet bioreactor-on-a-chip

    Science.gov (United States)

    Mazutis, Linas; Wu, Stephen; Sylman, Joanna L.; Ehrlicher, Allen; Machlus, Kellie R.; Feng, Qiang; Lu, Shijiang; Lanza, Robert; Neeves, Keith B.; Weitz, David A.; Italiano, Joseph E.

    2014-01-01

    Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition, micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs. PMID:25606631

  15. Mammary artery harvesting using the Da Vinci Si robotic system

    Directory of Open Access Journals (Sweden)

    Leonardo Secchin Canale

    2014-03-01

    Full Text Available Internal mammary artery harvesting is an essential part of any coronary artery bypass operation. Totally endoscopic coronary artery bypass graft surgery has become reality in many centers as a safe and effective alternative to conventional surgery in selected patients. Internal mammary artery harvesting is the initial part of the procedure and should be performed equally safely if one wants to achieve excellence in patency rates for the bypass. We here describe the technique for mammary harvesting with the Da Vinci Si robotic system.

  16. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  17. Bioprocess kinetics in a horizontal rotating tubular bioreactor.

    Science.gov (United States)

    Ivancić, M; Santek, B; Novak, S; Horvat, P; Marić, V

    2004-04-01

    A horizontal rotating tubular bioreactor (HRTB) is a plug flow bioreactor whose interior is provided with O-ring-shaped partition walls that serve as carriers for microbial biomass. During this investigation, microbial biomass was grown in suspension and on the bioreactor inner surface as a microbial biofilm with average mass that was considerably higher than suspended biomass. The dynamics of bioprocess in HRTB was studied by different combinations of process parameters (bioreactor rotation speed and mean residence time) and it was monitored by withdrawing the samples from five positions along the bioreactor. During this investigation it was also observed that mean residence time had a more pronounced effect on the bioprocess dynamics than bioreactor rotation speed. For the description of bioprocess kinetics in HRTB an unstructured kinetic model was established that defines biomass growth, product formations and substrate consumption rate by using a modified Monod (Levenspiel) model. This kinetic model defines changes in suspension and in microbial biofilm, and it shows relatively good agreement with experimental data.

  18. Performance of a partially packed charcoal pellet bioreactor for acetic acid fermentation.

    Science.gov (United States)

    Horiuchi, J; Ando, K; Watanabe, S; Tada, K; Kobayashi, M; Kanno, T

    2001-01-01

    The performance of a partially packed charcoal pellet bioreactor was compared to that of a fully packed bioreactor for aerobic acetic acid production. In the fully packed charcoal pellet bioreactor, it was considered that the shortening of an actual retention time of the culture broth limited the bioreactor performance under high dilution rate and high aeration conditions. By reducing the filling ratio of charcoal pellets to 44%, which increased the actual retention time of the culture broth, the maximum productivity increased from 3.9 g/l/h in the fully packed bed bioreactor to 5.7 g/l/h in the partially packed bioreactor without affecting the operational stability.

  19. Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Philip Owens

    Full Text Available Bone Morphogenetic Proteins (BMPs are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.

  20. The cattle crush strategy: trading opportunities for cattle producers The cattle crush strategy: trading opportunities for cattle producers

    Directory of Open Access Journals (Sweden)

    Nicolás Acevedo Vélez

    2007-04-01

    Full Text Available This research shows that it is possible for U.S. cattle feeders to obtain additional profits if a consistent technical strategy for trading is applied to the cattle crush spread. However, when trading costs are introduced, the likelihood of obtaining profit from trading the crush reduces considerably. It also shows that the level of gains from the cattle crush is related to the month the cattle are marketed. When the crush is used as a hedging strategy it decreases the profit from the feeding operation and reduces the volatility of those returns, helping producers to transfer part of the price risk associated with their production. To provide evidence of these findings, this study utilizes daily prices for 1995 to 2006 of the futures contracts of corn, feeder and live cattle to construct the daily cattle crush spread for two different combinations of futures contracts traded in the Chicago Board of Trade and Chicago Mercantile Exchange. These contract combinations suppose that cattle are fed in feedlots for 170 days before being marketed in April and in October. Two different scenarios are also evaluated using the cattle crush spread: one in which the crush is employed as a pre-placement hedging tool and another in which the crush is used as a post-placement hedging method.En este estudio se muestra que es posible para un productor de ganado de carne en EE.UU obtener utilidades adicionales cuando estrategias de operación en el mercado financiero de futuros de Chicago son utilizadas (i.e. la estrategia “cattle crush”. No obstante, los costos de transacción presentes reduce la probabilidad de obtener utilidades mediante la estrategia de análisis técnico. También se muestra que el nivel de ganancia derivado del uso del “cattle crush” está relacionado con el ciclo ganadero en el cual se realice la operación. Cuando el “cattle crush” se utiliza como alternativa para cubrir riesgo, se reduce considerablemente la volatilidad de los

  1. Vaginal myofibroblastoma with glands expressing mammary and prostatic antigens.

    Science.gov (United States)

    Wallenfels, I; Chlumská, A

    2012-01-01

    A case of unusual vaginal myofibroblastoma containing glands which expressed mammary and prostatic markers is described. The tumor occurred in 70-year-old woman in the proximal third of the vagina. It showed morphology and immunophenotype typical of so-called cervicovaginal myofibroblastoma. The peripheral zone of the lesion contained a few groups of glands suggesting vaginal adenosis or prostatic-type glands on initial examination. The glands showed a surprising simultaneous expression of mammary markers mammaglobin and GCDFP-15 and prostatic markers prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP). Immunostains for alpha-smooth muscle actin, p63 and CD10 highlighted the myoepithelial cell layer of the glands. The finding indicates that simultaneous use of both mammary and prostatic markers for examination of unusual glandular lesions in the vulvovaginal location can be helpful for an exact diagnosis, and can contribute to better understanding of prostatic and mammary differentiations in the female lower genital tract.

  2. Notch in mammary gland development and breast cancer.

    Science.gov (United States)

    Politi, Katerina; Feirt, Nikki; Kitajewski, Jan

    2004-10-01

    Notch signaling has been implicated in many processes including cell fate determination and oncogenesis. In mice, the Notch1 and Notch4 genes are both targets for insertion and rearrangement by the mouse mammary tumor virus and these mutations promote epithelial mammary tumorigenesis. Moreover, expression of a constitutively active form of Notch4 in mammary epithelial cells inhibits epithelial differentiation and leads to tumor formation in this organ. These data implicate the Notch pathway in breast tumorigenesis and provide the foundation for future experiments that will aid in our understanding of the role of Notch in human breast cancer development. Here, we review studies of mammary tumorigenesis induced by Notch in mouse and in vitro culture models providing evidence that Notch activation is a causal factor in human breast cancer.

  3. 7 CFR 1260.118 - Cattle.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cattle. 1260.118 Section 1260.118 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BEEF PROMOTION AND RESEARCH Beef Promotion and Research Order Definitions § 1260.118 Cattle. Cattle means live domesticated bovine animals...

  4. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    Science.gov (United States)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  5. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    Science.gov (United States)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  6. Radiogenic neoplasia in thyroid and mammary clonogens

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, K.H.

    1991-05-31

    We have developed rat thyroid and mammary clonogen transplantation systems for the study of radiogenic cancer induction at the target cell level in vivo. The epithelial cell populations of both glands contain small subpopulations of cells which are capable of giving rise to monoclonal glandular structures when transplanted and stimulated with appropriate hormones. During the end of the last grant year and the first half of the current grant year, we have completed analyses and summarized for publication: investigations on the relationship between grafted thyroid cell number and the rapidity and degree of reestablishment of the thyroid-hypothalamicpituitary axis in thyroidectomized rats maintained on a normal diet or an iodine deficient diet; studies of the persistence of, and the differentiation potential and functional characteristics of, the TSH- (thyrotropin-) responsive sub-population of clonogens during goitrogenesis, the plateau-phase of goiter growth, and goiter involution; studies of changes in the size of the clonogen sub-population during goitrogenesis, goiter involution and the response to goitrogen rechallenge; and the results of the large carcinogenesis experiment on the nature of the grafted thyroid cell number-dependent suppression of promotion/progression to neoplasia in grafts of radiation-initiated thyroid cells. We are testing new techniques for the culture, cytofluorescent analysis and characterization mammary epithelial cells and of clonogens in a parallel project, and plan to apply similar technology to the thyroid epithelial cells and clonogen population. Data from these studies will be used in the design of future carcinogenesis experiments on neoplastic initiation by high and low LET radiations and on cells interactions during the neoplastic process.

  7. Differential Acupuncture Treatment of Hyperplasia of Mammary Glands

    Institute of Scientific and Technical Information of China (English)

    王进才

    2002-01-01

    @@ Hyperplasia of mammary glands is a common disease in the middle-aged women, and it is a precancerous lesion of mammary glands. For many years, the author has used Rugen (ST 18) of the Stomach Meridian of Foot-Yangming as the main point withcertain auxiliary points chosen on basis of the differentiation types to treat the disease and obtained satisfactory therapeutic effects. A report follows.

  8. Malignant mammary tumor in female dogs: environmental contaminants

    OpenAIRE

    Bissacot Denise Z; Bersano Paulo RO; Figueiroa Fernanda C; Andrade Fábio HE; Rocha Noeme S

    2010-01-01

    Abstract Mammary tumors of female dogs have greatly increased in recent years, thus demanding rapid diagnosis and effective treatment in order to determine the animal survival. There is considerable scientific interest in the possible role of environmental contaminants in the etiology of mammary tumors, specifically in relation to synthetic chemical substances released into the environment to which living beings are either directly or indirectly exposed. In this study, the presence of pyrethr...

  9. Expression and significance of CHIP in canine mammary gland tumors

    OpenAIRE

    Wang, Huanan; Yang, Xu; Jin, Yipeng; Pei, Shimin; Zhang, Di; Ma, Wen; Huang, Jian; QIU, Hengbin; Zhang, Xinke; JIANG, Qiuyue; Sun, Weidong; Zhang, Hong; Lin, Degui

    2015-01-01

    CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can induce ubiquitination and degradation of several oncogenic proteins. The expression of CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We investigated the potential correlation between CHIP expression and mammary gland tumor prognosis in female dogs. CHIP expression was measured i...

  10. Sequencing the transcriptome of milk production: milk trumps mammary tissue

    OpenAIRE

    Lemay, Danielle G; Hovey, Russell C.; Hartono, Stella R; Hinde, Katie; Smilowitz, Jennifer T.; Ventimiglia, Frank; Schmidt, Kimberli A; Lee, Joyce WS; Islas-Trejo, Alma; Silva, Pedro Ivo; Korf, Ian; Medrano, Juan F.; Barry, Peter A.; German, J. Bruce

    2013-01-01

    Abstract Background Studies of normal human mammary gland development and function have mostly relied on cell culture, limited surgical specimens, and rodent models. Although RNA extracted from human milk has been used to assay the mammary transcriptome non-invasively, this assay has not been adequately validated in primates. Thus, the objectives of the current study were to assess the suitability of lactating rhesus macaques as a model for lactating ...

  11. Integrin Signaling in Mammary Epithelial Cells and Breast Cancer

    OpenAIRE

    Lambert, Arthur W.; Sait Ozturk; Sam Thiagalingam

    2012-01-01

    Cells sense and respond to the extracellular matrix (ECM) by way of integrin receptors, which facilitate cell adhesion and intracellular signaling. Advances in understanding the mammary epithelial cell hierarchy are converging with new developments that reveal how integrins regulate the normal mammary gland. But in breast cancer, integrin signaling contributes to the development and progression of tumors. This paper highlights recent studies which examine the role of integrin signaling in mam...

  12. Hippo pathway in mammary gland development and breast cancer.

    Science.gov (United States)

    Shi, Peiguo; Feng, Jing; Chen, Ceshi

    2015-01-01

    Accumulated evidence suggests that the Hippo signaling pathway plays crucial roles in mammary gland development and breast cancer. Key components of the Hippo pathway regulate breast epithelial cell proliferation, migration, invasion, and stemness. Additionally, the Hippo pathway regulates breast tumor growth, metastasis, and drug resistance. It is expected that the Hippo pathway will provide novel therapeutic targets for breast cancer. This review will discuss and summarize the roles of several core components of the Hippo pathway in mammary gland development and breast cancer.

  13. Role of p53 Mammary Epithelial Cell Senescence

    Science.gov (United States)

    2005-05-01

    AD Award Number: DAMD17-02-1-0509 TITLE: Role of p53 Mammary Epithelial Cell Senescence PRINCIPAL INVESTIGATOR: Goberdhan P. Dimri, Ph.D. CONTRACTING ...type and However, Mucl , K-18, and ASMA were not expressed in luminal cell type groups [12,68]. Interestingly, a significant cells present in...13,17,27], the has also attracted a great interest in the field of breast cancer candidate mammary stem cells appear to be ESA+, Mucl -, research, and

  14. Immunohistochemical characterization of mammary squamous cell carcinoma of the dog.

    Science.gov (United States)

    Sassi, Francesco; Sarli, Giuseppe; Brunetti, Barbara; Morandi, Federico; Benazzi, Cinzia

    2008-11-01

    Squamous cell carcinoma of the mammary gland is rare in both veterinary and human medicine. Whereas human metaplastic and squamous variants are known, the objectives of the current study were to ascertain the presence of such entities in canine mammary tumors and to distinguish them from other (epidermal, sweat gland) squamous tumors that may develop in the same area. A panel of antibodies (anti-cytokeratin [CK] 19, CK 14, CK 5/6, pancytokeratin, and vimentin) was used on 18 mammary gland malignancies with squamous features and 16 malignant skin tumors (11 squamous cell carcinomas of the skin and 5 sweat glands). Fifteen of the 18 mammary carcinomas were classified as metaplastic carcinomas, and the remaining 3 were classified as squamous cell carcinomas. The 2 most useful markers to establish the histogenesis of mammary tumors were pancytokeratin and CK 19. All other antibodies were equally expressed (CK 14 and 5/6) in all histotypes. The antibody panel discriminated primary epidermal squamous tumors (pancytokeratin positive and CK 19 negative) from gland-derived squamous neoplasms (pancytokeratin positive and CK 19 positive) but failed to distinguish primary mammary tumors from other squamous tumors of glandular origin.

  15. The role of tight junctions in mammary gland function.

    Science.gov (United States)

    Stelwagen, Kerst; Singh, Kuljeet

    2014-03-01

    Tight junctions (TJ) are cellular structures that facilitate cell-cell communication and are important in maintaining the three-dimensional structure of epithelia. It is only during the last two decades that the molecular make-up of TJ is becoming unravelled, with two major transmembrane-spanning structural protein families, called occludin and claudins, being the true constituents of the TJ. These TJ proteins are linked via specific scaffolding proteins to the cell's cytoskeleton. In the mammary gland TJ between adjacent secretory epithelial cells are formed during lactogenesis and are instrumental in establishing and maintaining milk synthesis and secretion, whereas TJ integrity is compromised during mammary involution and also as result of mastitis and periods of mammary inflamation (including mastitis). They prevent the paracellular transport of ions and small molecules between the blood and milk compartments. Formation of intact TJ at the start of lactation is important for the establishment of the lactation. Conversely, loss of TJ integrity has been linked to reduced milk secretion and mammary function and increased paracellular transport of blood components into the milk and vice versa. In addition to acting as a paracellular barrier, the TJ is increasingly linked to playing an active role in intracellular signalling. This review focusses on the role of TJ in mammary function of the normal, non-malignant mammary gland, predominantly in ruminants, the major dairy producing species.

  16. Mammary hypoplasia: not every breast can produce sufficient milk.

    Science.gov (United States)

    Arbour, Megan W; Kessler, Julia Lange

    2013-01-01

    Breast milk is considered the optimal form of nutrition for newborn infants. Current recommendations are to breastfeed for 6 months. Not all women are able to breastfeed. Mammary hypoplasia is a primary cause of failed lactogenesis II, whereby the mother is unable to produce an adequate milk volume. Women with mammary hypoplasia often have normal hormone levels and innervation but lack sufficient glandular tissue to produce an adequate milk supply to sustain their infant. The etiology of this rare condition is unclear, although there are theories that refer to genetic predisposition and estrogenic environmental exposures in select agricultural environments. Women with mammary hypoplasia may not exhibit the typical breast changes associated with pregnancy and may fail to lactate postpartum. Breasts of women with mammary hypoplasia may be widely spaced (1.5 inches or greater), asymmetric, or tuberous in nature. Awareness of the history and clinical signs of mammary hypoplasia during the prenatal period and immediate postpartum increases the likelihood that women will receive the needed education and physical and emotional support and encouragement. Several medications and herbs demonstrate some efficacy in increasing breast milk production in women with mammary hypoplasia.

  17. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle.

    Science.gov (United States)

    Sahana, G; Guldbrandtsen, B; Thomsen, B; Holm, L-E; Panitz, F; Brøndum, R F; Bendixen, C; Lund, M S

    2014-11-01

    Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Comparative study of the gut microbiome potentially related to milk protein in Murrah buffaloes (Bubalus bubalis) and Chinese Holstein cattle

    Science.gov (United States)

    Zhang, Jiachao; Xu, Chuanbiao; Huo, Dongxue; Hu, Qisong; Peng, Qiannan

    2017-01-01

    Previous studies suggested a close relationship between ruminant gut microbes and the mammary gland. In this study, shotgun metagenomic sequencing was used to reveal the differences in the intestinal microbiome potentially related to milk components in Murrah buffaloes and Chinese Holstein cattle. A PCoA based on the weighted Unifrac distances showed an apparent clustering pattern in the structure of intestinal microbiota between buffalo and cattle. We could attribute the structural difference to the genera of Sutterella, Coprococcus and Dorea. A further analysis of microbial functional features revealed that the biosynthesis of amino acids (including lysine, valine, leucine and isoleucine), lipopolysaccharide biosynthesis and cofactor/vitamin biosynthesis were enriched in the buffalo. In contrast, dairy cattle had higher levels of pyruvate metabolism and carbon fixation in photosynthetic organisms. A further correlation analysis based on different milk components and the typical microbiome uncovered a significant positive correlation between milk protein and the microbial biosynthesis of amino acids, which was also positively correlated in the genera of Parabacteroides, Dorea and Sutterella. This study will expand our understanding of the intestinal microbiome of buffalo and cattle as representative ruminants, as well as provide new views about how to improve the production and nutritional qualities of animal milk. PMID:28176851

  19. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters: The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor, providi

  20. Modular bioreactor for the remediation of liquid streams and methods for using the same

    Science.gov (United States)

    Noah, Karl S.; Sayer, Raymond L.; Thompson, David N.

    1998-01-01

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.

  1. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  2. Characterization of Genetic Variation in Icelandic Cattle

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Das, Ashutosh; Momeni, Jamal

    Identification of genetic variation in cattle breeds using next-generation sequencing technology has focused on the modern production cattle breeds. We focused on one of the oldest indigenous breeds, the Icelandic cattle breed. Sequencing of two individuals enabled identification of more than 8...... million SNPs and more than one million short indels. Annotation of the genetic variants identified a substantial number of functional SNPs and variants. The number of genetic variants identified in the Icelandic cattle breed is on the same level as previously seen in other studies on Holstein cattle...

  3. The modern feedlot for finishing cattle.

    Science.gov (United States)

    Wagner, John J; Archibeque, Shawn L; Feuz, Dillon M

    2014-02-01

    The modern beef feedlot has evolved into a complex system that is very dependent upon technology. Modern feedlots are organized into departments, often including the office, cattle, yard, feed milling, and feed departments, that allow for improvements in production efficiency through the specialization of management and labor. Regardless of size, feedlots must succeed at the following tasks: cattle procurement, cattle receiving, cattle processing, daily cattle observations, health treatments, cattle marketing, feed procurement, feed commodity receiving, feed commodity storage, diet formulation, diet delivery, bunk management, and environmental management. Apart from cattle ownership, feedlots create most of their gross income from feed sales, yardage, inventory gain on flaked grain, and combinations of these sources. The future of the industry is filled with economic and political challenges, including high grain prices owing to competition from the ethanol industry, environmental regulations, excess feedlot capacity, and a diminishing labor pool owing to declining rural populations.

  4. Functional study on two artificial liver bioreactors with collagen gel

    Directory of Open Access Journals (Sweden)

    XU Bing

    2014-10-01

    Full Text Available ObjectiveTo improve the hollow fiber bioreactor of artificial liver. MethodsRat hepatocytes mixed with collagen solution were injected into the external cavity of a hollow fiber reactor to construct a bioreactor of hepatocytes suspended in collagen gel (group Ⅰ. Other rat hepatocytes suspended in solution were injected into the external cavity of a hollow fiber reactor with a layer of collagen on the wall of the external cavity to construct a bioreactor of collagen layer and hepatocytes (group Ⅱ. For each group, the culture solution circulated through the internal cavity of the hollow fiber bioreactor; the bioreactor was put in a culture box for 9 d, and the culture solution in the internal cavity was exchanged for new one every 24 h; the concentrations of albumin (Alb, urea, and lactate dehydrogenase (LDH in the culture solution samples were measured to examine the hepatocyte function of the bioreactor. Statistical analysis was performed using SPSS 130. Continuous data were expressed as mean±SD, and comparison between groups was made by paired t test. ResultsFor groups Ⅰ and Ⅱ, Alb levels reached peak values on day 3 of culture (1.41±0.08 g/L and 0.65±0.05 g/L; from day 3 to 9, group I had a significantly higher Alb level than group Ⅱ (t>7.572, P<0.01. For groups Ⅰ and Ⅱ, urea levels reached peak values on days 3 and 5 of culture (1.73±0.14 mmol/L and 1.56±0.18 mmol/L; from days 5 to 9, group I had a significantly higher urea level than group Ⅱ (t>8.418, P<0.01. For groups Ⅰ and Ⅱ, LDH levels reached peak values on day 9 of culture (32.03±9.13 U/L and 70.17±25.28 U/L; from days 1 to 9, group I had a significantly lower LDH level than group Ⅱ(t>5.633, P<0.01. Therefore, the bioreactor of hepatocytes suspended in collagen gel (group Ⅰ showed a better hepatocyte function and less hepatic enzyme leakage compared with the bioreactor of collagen layer and hepatocytes (group Ⅱ. Conclusion

  5. A versatile modular bioreactor platform for Tissue Engineering.

    Science.gov (United States)

    Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike; Hansmann, Jan

    2017-02-01

    Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue-specific, non-disposable bioreactor systems. To ensure a high level of standardization, a suitable cost-effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher high efficiency and stability because it held a large amount of biomass in the bioreactor.

  7. Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor

    Science.gov (United States)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti

    2010-01-01

    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth.

  8. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  9. Bioreactor for acid mine drainage control

    Science.gov (United States)

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  10. [Production of ligninolytic enzymes in bioreactor].

    Science.gov (United States)

    Gao, Da-wen; Wen, Xiang-hua; Qian, Yi

    2006-02-01

    Production of ligninolytic enzymes under nitrogen limited conditions(C/N = 56/2.2) was studied in a 5-L stirred tank bioreactor with a working volume of 2 L for obtaining higher production of ligninolytic enzymes by white rot fungus Phanerochaete chrysosporium BKM-F-1767 and its control strategy. Results show that the manganese peroxidase (MnP) and laccase (Lac) reached peak at the sixth day and the seventh day, respectively, and the variation of them with time in a batch cultivation are similar to the results by agitated Erlenmeyer flasks; however higher enzyme activity was not achieved by applying a fed-batch strategy, in which nitrogen limited medium was fed to the reactor. In addition, variation of pH during cultivation was related to the growth of P. chrysosporium and enzymes production during both batch and fed-batch cultivation. The pH value of liquid medium began to decline when the enzyme activity occurred in the system, and the decline became more and more slow along with the decrease of enzyme activity at the end of fermentation. So, pH would be as a control parameter to find out the growth of P. chrysosporium and enzymes production during incubating P. chrysosporium. However, fed-batch strategy still need further study.

  11. Vortex breakdown in a truncated conical bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Adnan; Brøns, Morten [DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Herrada, Miguel A [E.S.I, Universidad de Sevilla, Camino de los Descubrimientos s/n, E-41092 (Spain); Shtern, Vladimir N, E-mail: mobr@dtu.dk [Shtern Research and Consulting, Houston, TX 77096 (United States)

    2015-12-15

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H{sub w}, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as H{sub w} varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H{sub w}, the AMF effect dominates. As H{sub w} increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors. (paper)

  12. Proteins causing membrane fouling in membrane bioreactors.

    Science.gov (United States)

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  13. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  14. Integrating Sequence-based GWAS and RNA-Seq Provides Novel Insights into the Genetic Basis of Mastitis and Milk Production in Dairy Cattle.

    Science.gov (United States)

    Fang, Lingzhao; Sahana, Goutam; Su, Guosheng; Yu, Ying; Zhang, Shengli; Lund, Mogens Sandø; Sørensen, Peter

    2017-03-30

    Connecting genome-wide association study (GWAS) to biological mechanisms underlying complex traits is a major challenge. Mastitis resistance and milk production are complex traits of economic importance in the dairy sector and are associated with intra-mammary infection (IMI). Here, we integrated IMI-relevant RNA-Seq data from Holstein cattle and sequence-based GWAS data from three dairy cattle breeds (i.e., Holstein, Nordic red cattle, and Jersey) to explore the genetic basis of mastitis resistance and milk production using post-GWAS analyses and a genomic feature linear mixed model. At 24 h post-IMI, genes responsive to IMI in the mammary gland were preferentially enriched for genetic variants associated with mastitis resistance rather than milk production. Response genes in the liver were mainly enriched for variants associated with mastitis resistance at an early time point (3 h) post-IMI, whereas responsive genes at later stages were enriched for associated variants with milk production. The up- and down-regulated genes were enriched for associated variants with mastitis resistance and milk production, respectively. The patterns were consistent across breeds, indicating that different breeds shared similarities in the genetic basis of these traits. Our approaches provide a framework for integrating multiple layers of data to understand the genetic architecture underlying complex traits.

  15. Integrating Sequence-based GWAS and RNA-Seq Provides Novel Insights into the Genetic Basis of Mastitis and Milk Production in Dairy Cattle

    Science.gov (United States)

    Fang, Lingzhao; Sahana, Goutam; Su, Guosheng; Yu, Ying; Zhang, Shengli; Lund, Mogens Sandø; Sørensen, Peter

    2017-01-01

    Connecting genome-wide association study (GWAS) to biological mechanisms underlying complex traits is a major challenge. Mastitis resistance and milk production are complex traits of economic importance in the dairy sector and are associated with intra-mammary infection (IMI). Here, we integrated IMI-relevant RNA-Seq data from Holstein cattle and sequence-based GWAS data from three dairy cattle breeds (i.e., Holstein, Nordic red cattle, and Jersey) to explore the genetic basis of mastitis resistance and milk production using post-GWAS analyses and a genomic feature linear mixed model. At 24 h post-IMI, genes responsive to IMI in the mammary gland were preferentially enriched for genetic variants associated with mastitis resistance rather than milk production. Response genes in the liver were mainly enriched for variants associated with mastitis resistance at an early time point (3 h) post-IMI, whereas responsive genes at later stages were enriched for associated variants with milk production. The up- and down-regulated genes were enriched for associated variants with mastitis resistance and milk production, respectively. The patterns were consistent across breeds, indicating that different breeds shared similarities in the genetic basis of these traits. Our approaches provide a framework for integrating multiple layers of data to understand the genetic architecture underlying complex traits. PMID:28358110

  16. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice.

    Science.gov (United States)

    Kerr, D E; Plaut, K; Bramley, A J; Williamson, C M; Lax, A J; Moore, K; Wells, K D; Wall, R J

    2001-01-01

    Infection of the mammary gland, in addition to causing animal distress, is a major economic burden of the dairy industry. Staphylococcus aureus is the major contagious mastitis pathogen, accounting for approximately 15-30% of infections, and has proved difficult to control using standard management practices. As a first step toward enhancing mastitis resistance of dairy animals, we report the generation of transgenic mice that secrete a potent anti-staphylococcal protein into milk. The protein, lysostaphin, is a peptidoglycan hydrolase normally produced by Staphylococcus simulans. When the native form is secreted by transfected eukaryotic cells it becomes glycosylated and inactive. However, removal of two glycosylation motifs through engineering asparagine to glutamine codon substitutions enables secretion of Gln(125,232)-lysostaphin, a bioactive variant. Three lines of transgenic mice, in which the 5'-flanking region of the ovine beta-lactoglobulin gene directed the secretion of Gln(125,232)-lysostaphin into milk, exhibit substantial resistance to an intramammary challenge of 104 colony-forming units (c.f.u.) of S. aureus, with the highest expressing line being completely resistant. Milk protein content and profiles of transgenic and nontransgenic mice are similar. These results clearly demonstrate the potential of genetic engineering to combat the most prevalent disease of dairy cattle.

  17. Heat Stress in Feedlot Cattle.

    Science.gov (United States)

    The objective of this study was to determine if supplementing the diet of near-finished beef cattle with a yeast product would mitigate the negative impact of a controlled HS on the physiological and endocrine responses. Crossbred beef heifers (n=111; BW=281.07 kg) were divided into 2 pens in a comm...

  18. Beef Cattle: Selection and Evaluation.

    Science.gov (United States)

    Clemson Univ., SC. Vocational Education Media Center.

    Designed for secondary vocational agriculture students, this text provides an overview of selecting and evaluating beef cattle in Future Farmers of America livestock judging events. The first of four major sections addresses topics such as the ideal beef animal, selecting steers, selecting breeding animals, studying the animal systematically, and…

  19. Beef Cattle: Selection and Evaluation.

    Science.gov (United States)

    Clemson Univ., SC. Vocational Education Media Center.

    Designed for secondary vocational agriculture students, this text provides an overview of selecting and evaluating beef cattle in Future Farmers of America livestock judging events. The first of four major sections addresses topics such as the ideal beef animal, selecting steers, selecting breeding animals, studying the animal systematically, and…

  20. Tuberculosis-resistant transgenic cattle

    Science.gov (United States)

    Tuberculosis is a devastating disease that affects humans and many animal species. In humans, tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, while most cases in cattle are caused by Mycobacterium bovis. However, Mb can also cause, albeit rarely, human TB. In this issue, Wu et al. ...

  1. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk.

    Science.gov (United States)

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2016-10-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7(+/-) mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight.

  2. Comparison of Milk Fat Globule Membrane (MFGM Proteins of Chianina and Holstein Cattle Breed Milk Samples Through Proteomics Methods

    Directory of Open Access Journals (Sweden)

    Lorraine Pariset

    2009-12-01

    Full Text Available Identification of proteins involved in milk production is important to understand the biology of lactation. Many studies have advanced the understanding of mammary function and milk secretion, but the critical molecular mechanisms implicated in milk fat secretion is still incomplete. Milk Fat Globules are secreted from the apical surface of the mammary cells, surrounded by a thin membrane bilayer, the Milk Fat Globule Membrane (MFGM, formed by proteins which have been suggested to be cholesterolemia-lowering factors, inhibitors of cancer cell growth, vitamin binders, bactericidal, suppressors of multiple sclerosis. Using a proteomic approach, we compared MFGM from milk samples of individuals belonging to two different cattle breeds, Chianina and Holstein, representative of selection for milk and meat traits, respectively. We were able to isolate some of the major MFGM proteins in the examined samples and to identify differences between the protein fractions of the two breeds. We detected differences in the amount of proteins linked to mammary gland development and lipid droplets formation, as well as host defence mechanisms. We have shown that proteomics is a suitable, unbiased method for the study of milk fractions proteins and a powerful tool in nutritional genomics.

  3. Specific posttranslational modification regulates early events in mammary carcinoma formation.

    Science.gov (United States)

    Guo, Hua-Bei; Johnson, Heather; Randolph, Matthew; Nagy, Tamas; Blalock, Ryan; Pierce, Michael

    2010-12-07

    The expression of an enzyme, GnT-V, that catalyzes a specific posttranslational modification of a family of glycoproteins, namely a branched N-glycan, is transcriptionally up-regulated during breast carcinoma oncogenesis. To determine the molecular basis of how early events in breast carcinoma formation are regulated by GnT-V, we studied both the early stages of mammary tumor formation by using 3D cell culture and a her-2 transgenic mouse mammary tumor model. Overexpression of GnT-V in MCF-10A mammary epithelial cells in 3D culture disrupted acinar morphogenesis with impaired hollow lumen formation, an early characteristic of mammary neoplastic transformation. The disrupted acinar morphogenesis of mammary tumor cells in 3D culture caused by her-2 expression was reversed in tumors that lacked GnT-V expression. Moreover, her-2-induced mammary tumor onset was significantly delayed in the GnT-V null tumors, evidence that the lack of the posttranslational modification catalyzed by GnT-V attenuated tumor formation. Inhibited activation of both PKB and ERK signaling pathways was observed in GnT-V null tumor cells. The proportion of tumor-initiating cells (TICs) in the mammary tumors from GnT-V null mice was significantly reduced compared with controls, and GnT-V null TICs displayed a reduced ability to form secondary tumors in NOD/SCID mice. These results demonstrate that GnT-V expression and its branched glycan products effectively modulate her-2-mediated signaling pathways that, in turn, regulate the relative proportion of tumor initiating cells and the latency of her-2-driven tumor onset.

  4. Selenium in Cattle: A Review

    Directory of Open Access Journals (Sweden)

    Youcef Mehdi

    2016-04-01

    Full Text Available This review article examines the role of selenium (Se and the effects of Se supplementation especially in the bovine species. Selenium is an important trace element in cattle. Some of its roles include the participation in the antioxidant defense the cattle farms. The nutritional requirements of Se in cattle are estimated at 100 μg/kg DM (dry matter for beef cattle and at 300 μg/kg DM for dairy cows. The rations high in fermentable carbohydrates, nitrates, sulfates, calcium or hydrogen cyanide negatively influence the organism’s use of the selenium contained in the diet. The Se supplementation may reduce the incidence of metritis and ovarian cysts during the postpartum period. The increase in fertility when adding Se is attributed to the reduction of the embryonic death during the first month of gestation. A use of organic Se in feed would provide a better transfer of Se in calves relative to mineral Se supplementation. The addition of Se yeasts in the foodstuffs of cows significantly increases the Se content and the percentage of polyunsaturated fatty acids (PUFA in milk compared to the addition of sodium selenite. The enzyme 5-iodothyronine deiodinase is a seleno-dependent selenoprotein. It is one of the last proteins to be affected in the event of Se deficiency. This delay in response could explain the fact that several studies did not show the effect of Se supplementation on growth and weight gain of calves. Enrichment of Se in the diet did not significantly affect the slaughter weight and carcass yield of bulls. The impact and results of Se supplementation in cattle depend on physiological stage, Se status of animals, type and content of Se and types of Se administration. Further studies in Se supplementation should investigate the speciation of Se in food and yeasts, as well as understanding their metabolism and absorption. This constitute a path to exploit in order to explain certain different effects of Se.

  5. Carbon Footprint of Beef Cattle

    Directory of Open Access Journals (Sweden)

    Jim Dyer

    2012-12-01

    Full Text Available The carbon footprint of beef cattle is presented for Canada, The United States, The European Union, Australia and Brazil. The values ranged between 8 and 22 kg CO2e per kg of live weight (LW depending on the type of farming system, the location, the year, the type of management practices, the allocation, as well as the boundaries of the study. Substantial reductions have been observed for most of these countries in the last thirty years. For instance, in Canada the mean carbon footprint of beef cattle at the exit gate of the farm decreased from 18.2 kg CO2e per kg LW in 1981 to 9.5 kg CO2e per kg LW in 2006 mainly because of improved genetics, better diets, and more sustainable land management practices. Cattle production results in products other than meat, such as hides, offal and products for rendering plants; hence the environmental burden must be distributed between these useful products. In order to do this, the cattle carbon footprint needs to be reported in kg of CO2e per kg of product. For example, in Canada in 2006, on a mass basis, the carbon footprint of cattle by-products at the exit gate of the slaughterhouse was 12.9 kg CO2e per kg of product. Based on an economic allocation, the carbon footprints of meat (primal cuts, hide, offal and fat, bones and other products for rendering were 19.6, 12.3, 7 and 2 kg CO2e per kg of product, respectively.

  6. Hosting the plant cells in vitro: recent trends in bioreactors.

    Science.gov (United States)

    Georgiev, Milen I; Eibl, Regine; Zhong, Jian-Jiang

    2013-05-01

    Biotechnological production of high-value metabolites and therapeutic proteins by plant in vitro systems has been considered as an attractive alternative of classical technologies. Numerous proof-of-concept studies have illustrated the feasibility of scaling up plant in vitro system-based processes while keeping their biosynthetic potential. Moreover, several commercial processes have been established so far. Though the progress on the field is still limited, in the recent years several bioreactor configurations has been developed (e.g., so-called single-use bioreactors) and successfully adapted for growing plant cells in vitro. This review highlights recent progress and limitations in the bioreactors for plant cells and outlines future perspectives for wider industrialization of plant in vitro systems as "green cell factories" for sustainable production of value-added molecules.

  7. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  8. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  9. Enhancing inhibited fermentations through a dynamic electro-membrane bioreactor

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Garde, Arvid; Rype, Jens-Ulrik

    its strong potential for increasing productivity and product yield has been verified. REED uses ion exchange membranes and electrical potential gradients to selectively separate the target ion. The main limitation of using membrane separation combined with bioreactors is membrane fouling. REED...... technology ensures long operation time by reversing periodically the polarity of the imposed electrical field to significantly reduce the influence of membrane fouling. The periodic nature of the electrically driven membrane separation process makes the membrane bioreactor operation non trivial....... This challenging operation is associated with different dynamic behaviors of the individual units plus their interaction. The purpose of this contribution is to show the results of experimental and model based efforts done in order to investigate the operation of a membrane bioreactor. From modeling point of view...

  10. Bioreactor technology in marine microbiology: from design to future application.

    Science.gov (United States)

    Zhang, Yu; Arends, Jan B A; Van de Wiele, Tom; Boon, Nico

    2011-01-01

    Marine micro-organisms have been playing highly diverse roles over evolutionary time: they have defined the chemistry of the oceans and atmosphere. During the last decades, the bioreactors with novel designs have become an important tool to study marine microbiology and ecology in terms of: marine microorganism cultivation and deep-sea bioprocess characterization; unique bio-chemical product formation and intensification; marine waste treatment and clean energy generation. In this review we briefly summarize the current status of the bioreactor technology applied in marine microbiology and the critical parameters to take into account during the reactor design. Furthermore, when we look at the growing population, as well as, the pollution in the coastal areas of the world, it is urgent to find sustainable practices that beneficially stimulate both the economy and the natural environment. Here we outlook a few possibilities where innovative bioreactor technology can be applied to enhance energy generation and food production without harming the local marine ecosystem.

  11. The Fluid Mechanics of a Wavy-Wall Bioreactor

    Science.gov (United States)

    Sucosky, Philippe; Bilgen, Bahar; Aleem, Alexander; Neitzel, Paul; Barabino, Gilda

    2004-11-01

    Bioreactors are devices used for the production of mammalian tissue in vitro. Although mixing has been shown to stimulate the growth of cartilage constructs, high shear-stress levels can damage the cells. In order to enhance mixing while minimizing shear, a wavy-wall bioreactor (WWB) featuring a sinusoidal internal profile has been designed. The turbulent hydrodynamic environment produced in this device is investigated experimentally using particle-image velocimetry. A model bioreactor made of acrylic and filled with an index-matching solution of zinc iodide is used to compensate for the refraction of light at the walls. The flow observed in different planes is shown to be periodic, spatially dependent, and dominated by mean-shear rather than Reynolds stresses in the vicinity of constructs. Finally, a comparison between the mean-shear stresses obtained in the WWB and in a standard spinner flask reveals similar stress levels near the construct walls.

  12. Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Meir Israelowitz

    2012-01-01

    Full Text Available The purpose of this study is to improve the design of a bioreactor for growing bone and other three-dimensional tissues using a computational fluid dynamics (CFD software to simulate flow through a porous scaffold, and to recommend design changes based on the results. Basic requirements for CFD modeling were that the flow in the reactor should be laminar and any flow stagnation should be avoided in order to support cellular growth within the scaffold. We simulated three different designs with different permeability values of the scaffold and tissue. Model simulation addressed flow patterns in combination with pressure distribution within the bioreactor. Pressure build-up and turbulent flow within the reactor was solved by introduction of an integrated bypass system for pressure release. The use of CFD afforded direct feedback to optimize the bioreactor design.

  13. Bioreactor design for continuous dark fermentative hydrogen production.

    Science.gov (United States)

    Jung, Kyung-Won; Kim, Dong-Hoon; Kim, Sang-Hyoun; Shin, Hang-Sik

    2011-09-01

    Dark fermentative H2 production (DFHP) has received increasing attention in recent years due to its high H2 production rate (HPR) as well as the versatility of the substrates used in the process. For most studies in this field, batch reactors have been applied due to their simple operation and efficient control; however, continuous DFHP operation is necessary from economical and practical points of view. Continuous systems can be classified into two categories, suspended and immobilized bioreactors, according to the life forms of H2 producing bacteria (HPB) used in the reactor. This paper reviews operational parameters for bioreactor design including pH, temperature, hydraulic retention time (HRT), and H2 partial pressure. Also, in this review, various bioreactor configurations and performance parameters including H2 yield (HY), HPR, and specific H2 production rate (SHPR) are evaluated and presented.

  14. Overexpression of Id1 in transgenic mice promotes mammary basal stem cell activity and breast tumorigenesis

    OpenAIRE

    Shin, Dong-Hui; Park, Ji-Hye; Lee, Jeong-Yeon; Won, Hee-Young; Jang, Ki-Seok; MIN, KYUENG-WHAN; Jang, Si-Hyong; Woo, Jong-Kyu; Oh, Seung Hyun; Kong, Gu

    2015-01-01

    Inhibitor of differentiation/DNA binding (Id)1 is a crucial regulator of mammary development and breast cancer progression. However, its effect on stemness and tumorigenesis in mammary epithelial cells remains undefined. Herein, we demonstrate that Id1 induces mammary tumorigenesis by increasing normal and malignant mammary stem cell (MaSC) activities in transgenic mice. MaSC-enriched basal cell expansion and increased self-renewal and in vivo regenerative capacity of MaSCs are observed in th...

  15. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  16. Breast cancer detection using mammary ductoscopy.

    Science.gov (United States)

    Sauter, Edward

    2005-06-01

    Mammary ductoscopy (MD) has been used as a tool to evaluate the breast for cancer for over 10 years. MD allows the direct visualization of the duct lumen, providing a more targeted approach to the diagnosis of disease arising in the ductal system, since the lesion can be visualized and samples collected in the area of interest. Initial studies of MD evaluated women with pathologic spontaneous nipple discharge (PND), while more recent reports are also using MD to assess women without PND for the presence of breast cancer. Cytologic assessment of MD is highly specific but less sensitive in the detection of breast cancer. Nonetheless, a MD sample from a breast with PND may rarely undergo cytologic review and be interpreted as consistent with malignancy, only later to undergo surgical resection demonstrating benign pathology. For this reason, PND specimens interpreted as malignant on cytologic review require histopathologic confirmation prior to instituting therapy. Additional sample evaluation using image or molecular analysis may improve the sensitivity and specificity of MD in breast cancer detection.

  17. Internal mammary sentinel lymph node biopsy: abandon or persist?

    Directory of Open Access Journals (Sweden)

    Qiu PF

    2016-06-01

    Full Text Available Peng-Fei Qiu, Yan-Bing Liu, Yong-Sheng Wang Breast Cancer Center, Shandong Cancer Hospital and Institute, Jinan, Shandong, People’s Republic of China Abstract: Although the 2009 American Joint Committee on Cancer incorporated the internal mammary sentinel lymph node biopsy (IM-SLNB concept, there has been little change in surgical practice patterns due to the low visualization rate of internal mammary sentinel lymph nodes with the traditional injection technique. Meanwhile, as internal mammary lymph nodes (IMLN metastases are mostly found concomitantly with axillary lymph nodes (ALN metastases, previous IM-SLNB clinical trials fail to evaluate the status of IMLN in patients who are really in need (only in clinically ALN negative patients. Our modified injection technique (periareolar intraparenchymal, high volume, and ultrasonographic guidance significantly improved the visualization rate of internal mammary sentinel lymph nodes, making the routine IM-SLNB possible in daily practice. IM-SLNB could provide individual minimally invasive staging, prognosis, and decision-making for breast cancer patients, especially for patients with clinically positive ALN. Moreover, IMLN radiotherapy should be tailored and balanced between the potential benefit and toxicity, and IM-SLNB-guided IMLN radiotherapy could achieve this goal. In the era of effective adjuvant therapy, within the changing treatment approach – more systemic therapy, less loco-regional therapy – clinicians should deliberate the application of regional IMLN therapy. Keywords: breast cancer, internal mammary lymph node, axillary lymph node, sentinel lymph node biopsy 

  18. Differentiation of mammary stem cells in vivo and in vitro.

    Science.gov (United States)

    Barraclough, R; Rudland, P S

    1989-03-01

    The fully differentiated cells of the rat mammary parenchyma, the ductal epithelial, alveolar, and myoepithelial cells, are distinguished by their ultrastructure and by their accumulation of immunocytochemically detectable marker proteins. The different cell types probably develop from primative ductal structures called terminal end buds, which are present in the developing rat mammary glands, and these structures contain relatively undifferentiated cells. Clonal epithelial stem cell lines, obtained from normal rat mammary glands or benign mammary tumors, differentiate under appropriate conditions along a pathway to droplet-cell/doming cultures of primative alveolarlike cells. Under different culture conditions, the epithelial stem cells differentiate along a separate pathway to myoepitheliallike cells. They accumulate some of the specific marker proteins of myoepithelial cells in vivo, including type IV collagen, laminin, and Thy-1 antigen. In addition, these myoepitheliallike cells in culture contain an abundance of a potential calcium-binding protein, p9Ka, which also occurs in myoepithelial cells of histological sections from mammary glands. The accumulation of type IV collagen, laminin, Thy-1, and p9Ka occurs asynchronously along the pathway to the myoepitheliallike cells in vitro. Furthermore, the steady-state levels of these different marker proteins arise by alterations in the controls at the transcriptional, the posttranscriptional processing, and the translational stages of their production. These results suggest a stepwise control of synthesis of myoepithelial cell marker proteins, and in the case of p9Ka and Thy-1 antigen, this altered control may arise through their possession of novel transcriptional promoters.

  19. Sensor equipment for quantification of spatial heterogeneity in large bioreactor

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Formenti, Luca Riccardo; Stocks, Stuart M.

    of sensors and in order to apply more sensor equipment the bioreactor has to be modified which is both costly and results in production downtime. The presence of three phases (gas, liquid, and solid), and the opaque nature of the fermentation broth together with the necessity of heat sterilization further...... of the bioreactor. The method leaves a minimal footprint and can be applied to running production to gather large scale fermentation data, without the need of dedicated experimental cultivations. Ultimately, data describing the spatial heterogeneity can be used to enhance existing process models and to create...

  20. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  1. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  2. Over-pressurized bioreactors: application to microbial cell cultures.

    Science.gov (United States)

    Lopes, Marlene; Belo, Isabel; Mota, Manuel

    2014-01-01

    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.

  3. Computer control of a microgravity mammalian cell bioreactor

    Science.gov (United States)

    Hall, William A.

    1987-01-01

    The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.

  4. Quantification of mammary organoid toxicant response and mammary tissue motility using OCT fluctuation spectroscopy (Conference Presentation)

    Science.gov (United States)

    Yu, Xiao; Blackmon, Richard L.; Carabas-Hernendez, Patricia; Fuller, Ashley; Troester, Melissa A.; Oldenburg, Amy L.

    2016-03-01

    Mammary epithelial cell (MEC) organoids in 3D culture recapitulate features of breast ducts in vivo. OCT has the ability to monitor the evolution of MEC organoids non-invasively and longitudinally. The anti-cancer drug Doxorubicin (Dox) is able to inhibit proliferation of cancer cells and has been widely used for chemotherapy of breast cancers; while environmental toxins implicated in breast cancer such as estrogen regulates mammary tumor growth and stimulates the proliferation and metastatic potential of breast cancers. Here we propose a quantitative method for measuring motility of breast cells in 3D cultures based upon OCT speckle fluctuation spectroscopy. The metrics of the inverse power-law exponent (α) and fractional modulation amplitude (M) were extracted from speckle fluctuation spectra. These were used to quantify the responses of MEC organoids to Dox, and estrogen. We investigated MEC organoids comprised of two different MEC lines: MCF10DCIS.com exposed to Dox, and MCF7 exposed to estrogen. We found an increase (pbreast cancer development and assessing anti-cancer drugs.

  5. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    Science.gov (United States)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    A methodology for growing three-dimensional plant tissue models in a hydrodynamic focusing bioreactor (HFB) has been developed. The methodology is expected to be widely applicable, both on Earth and in outer space, as a means of growing plant cells and aggregates thereof under controlled conditions for diverse purposes, including research on effects of gravitation and other environmental factors upon plant growth and utilization of plant tissue cultures to produce drugs in quantities greater and at costs lower than those of conventional methodologies. The HFB was described in Hydro focus - ing Bioreactor for Three-Dimensional Cell Culture (MSC-22358), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 66. To recapitulate: The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear liquid culture environment simultaneously with the herding of suspended cells and tissue assemblies and removal of unwanted air bubbles. The HFB includes a rotating cell-culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can be made to rotate at the same speed and direction or different speeds and directions to tailor the flow field and the associated hydrodynamic forces in the vessel in order to obtain low-shear suspension of cells and control of the locations of cells and air bubbles. For research and pharmaceutical-production applications, the HFB offers two major benefits: low shear stress, which promotes the assembly of cells into tissue-like three-dimensional constructs; and randomization of gravitational vectors relative to cells, which affects production of medicinal compounds. Presumably, apposition of plant cells in the absence of shear forces promotes cell-cell contacts, cell aggregation, and cell differentiation. Only gentle mixing is necessary for distributing nutrients and oxygen. It has been postulated that inasmuch as cells in the simulated

  6. File list: Unc.Brs.05.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_glands mm9 Unclassified Breast Mammary glands SRX216177 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_glands.bed ...

  7. File list: Unc.Brs.10.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_glands mm9 Unclassified Breast Mammary glands SRX216177 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_glands.bed ...

  8. File list: Unc.Brs.50.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_glands mm9 Unclassified Breast Mammary glands SRX216177 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_glands.bed ...

  9. File list: Unc.Brs.20.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Mammary_glands mm9 Unclassified Breast Mammary glands SRX216177 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.20.AllAg.Mammary_glands.bed ...

  10. File list: ALL.Brs.50.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_glands mm9 All antigens Breast Mammary glands SRX396744,SR...31072,SRX031071,SRX031211,SRX216177,SRX1078980,SRX396747,SRX396745,SRX1078982 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_glands.bed ...

  11. File list: Pol.Brs.20.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_glands mm9 RNA polymerase Breast Mammary glands SRX1184165...,SRX1078976,SRX1078977,SRX1078989,SRX1078990 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_glands.bed ...

  12. File list: ALL.Brs.20.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_glands mm9 All antigens Breast Mammary glands SRX209678,SR...31209,SRX031208,SRX031071,SRX216177,SRX1078980,SRX396747,SRX396745,SRX1078982 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_glands.bed ...

  13. File list: ALL.Brs.05.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_glands mm9 All antigens Breast Mammary glands ERX200400,ER...216177,ERX200416,ERX200438,SRX1078980,ERX200398,ERX200402,ERX200399,ERX200405 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_glands.bed ...

  14. File list: Oth.Brs.20.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_glands mm9 TFs and others Breast Mammary glands SRX209678,...200399 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_glands.bed ...

  15. File list: InP.Brs.10.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Mammary_glands mm9 Input control Breast Mammary glands SRX213411,E...200398,ERX200420,ERX200438,ERX200429,ERX200402,SRX396747 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.10.AllAg.Mammary_glands.bed ...

  16. File list: His.Brs.10.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_glands mm9 Histone Breast Mammary glands SRX396744,SRX1184...,ERX200437,ERX200405,ERX200401 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_glands.bed ...

  17. File list: Oth.Brs.05.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_glands mm9 TFs and others Breast Mammary glands ERX200430,...200399 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_glands.bed ...

  18. File list: Oth.Brs.10.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_glands mm9 TFs and others Breast Mammary glands SRX209678,...200399 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_glands.bed ...

  19. File list: ALL.Brs.10.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Mammary_glands mm9 All antigens Breast Mammary glands SRX213411,SR...X200417,ERX200426,ERX200435,SRX396747,ERX200437,ERX200399,ERX200405,ERX200401 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.10.AllAg.Mammary_glands.bed ...

  20. File list: Pol.Brs.50.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_glands mm9 RNA polymerase Breast Mammary glands SRX1078976...,SRX1184165,SRX1078977,SRX1078989,SRX1078990 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_glands.bed ...

  1. File list: His.Brs.50.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_glands mm9 Histone Breast Mammary glands SRX396744,SRX1184...,SRX031072,SRX031071,SRX031211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_glands.bed ...

  2. File list: His.Brs.05.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_glands mm9 Histone Breast Mammary glands ERX200400,SRX2134...,ERX200419,ERX200401,ERX200405 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_glands.bed ...

  3. File list: InP.Brs.20.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Mammary_glands mm9 Input control Breast Mammary glands SRX213420,S...0406,ERX200402,SRX1078980,SRX396747,SRX396745,SRX1078982 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.20.AllAg.Mammary_glands.bed ...

  4. File list: Pol.Brs.05.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_glands mm9 RNA polymerase Breast Mammary glands SRX1078977...,SRX1184165,SRX1078989,SRX1078976,SRX1078990 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_glands.bed ...

  5. File list: Oth.Brs.50.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_glands mm9 TFs and others Breast Mammary glands SRX209679,...200399 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_glands.bed ...

  6. File list: Pol.Brs.10.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_glands mm9 RNA polymerase Breast Mammary glands SRX1184165...,SRX1078977,SRX1078976,SRX1078989,SRX1078990 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_glands.bed ...

  7. File list: InP.Brs.05.AllAg.Mammary_glands [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.Mammary_glands mm9 Input control Breast Mammary glands SRX213417,S...00420,ERX200416,ERX200438,SRX1078980,ERX200398,ERX200402 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.05.AllAg.Mammary_glands.bed ...

  8. Bovine mammary stem cells: Transcriptome profiling and the stem cell niche

    Science.gov (United States)

    Identification and transcriptome analysis of mammary stem cells (MaSC) are important steps toward understanding the molecular basis of mammary epithelial growth, homeostasis and tissue repair. Our objective was to evaluate the molecular profiles of four categories of cells within the bovine mammary ...

  9. File list: Pol.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_cells mm9 RNA polymerase Breast Mammary cells SRX852566,SR...X852567,SRX187510,SRX187515 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_cells.bed ...

  10. File list: InP.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187517,SRX187512,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.20.AllAg.Mammary_cells.bed ...

  11. File list: Pol.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_cells mm9 RNA polymerase Breast Mammary cells SRX187510,SR...X187515,SRX852567,SRX852566 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_cells.bed ...

  12. File list: ALL.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187511,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.10.AllAg.Mammary_cells.bed ...

  13. File list: ALL.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187511,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_cells.bed ...

  14. File list: Oth.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_cells mm9 TFs and others Breast Mammary cells SRX187508,SR...X187509,SRX187514,SRX403482,SRX852562,SRX187513,SRX403483,SRX852565,SRX852563,SRX852564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_cells.bed ...

  15. File list: Oth.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_cells mm9 TFs and others Breast Mammary cells SRX187508,SR...X403482,SRX852565,SRX187509,SRX403483,SRX187514,SRX852563,SRX852562,SRX187513,SRX852564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_cells.bed ...

  16. File list: Pol.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_cells mm9 RNA polymerase Breast Mammary cells SRX852566,SR...X187510,SRX852567,SRX187515 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_cells.bed ...

  17. File list: Pol.Brs.05.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_stem_cells mm9 RNA polymerase Breast Mammary stem cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_stem_cells.bed ...

  18. File list: His.Brs.50.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_stem_cells mm9 Histone Breast Mammary stem cells SRX213393...,SRX185869,SRX185809,SRX213410,SRX213404,SRX213407 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_stem_cells.bed ...

  19. File list: ALL.Brs.05.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_stem_cells mm9 All antigens Breast Mammary stem cells SRX1...85841,SRX188640,SRX191028,SRX213393,SRX213410,SRX213404,SRX185809,SRX185869,SRX213407 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_stem_cells.bed ...

  20. File list: Pol.Brs.20.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_stem_cells mm9 RNA polymerase Breast Mammary stem cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_stem_cells.bed ...

  1. File list: Oth.Brs.05.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_stem_cells mm9 TFs and others Breast Mammary stem cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_stem_cells.bed ...

  2. File list: His.Brs.20.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_stem_cells mm9 Histone Breast Mammary stem cells SRX213393...,SRX213410,SRX185869,SRX185809,SRX213404,SRX213407 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_stem_cells.bed ...

  3. File list: Unc.Brs.10.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_stem_cells mm9 Unclassified Breast Mammary stem cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_stem_cells.bed ...

  4. File list: DNS.Brs.10.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Mammary_stem_cells mm9 DNase-seq Breast Mammary stem cells SRX1910...28,SRX188640 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.10.AllAg.Mammary_stem_cells.bed ...

  5. File list: His.Brs.05.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_stem_cells mm9 Histone Breast Mammary stem cells SRX213393...,SRX213410,SRX213404,SRX185809,SRX185869,SRX213407 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_stem_cells.bed ...

  6. File list: Pol.Brs.50.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_stem_cells mm9 RNA polymerase Breast Mammary stem cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_stem_cells.bed ...

  7. File list: Pol.Brs.10.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_stem_cells mm9 RNA polymerase Breast Mammary stem cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_stem_cells.bed ...

  8. File list: Oth.Brs.10.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_stem_cells mm9 TFs and others Breast Mammary stem cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_stem_cells.bed ...

  9. File list: ALL.Brs.10.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Mammary_stem_cells mm9 All antigens Breast Mammary stem cells SRX1...91028,SRX188640,SRX213393,SRX213410,SRX213404,SRX213407,SRX185869,SRX185809,SRX185841 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.10.AllAg.Mammary_stem_cells.bed ...

  10. File list: Unc.Brs.05.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_stem_cells mm9 Unclassified Breast Mammary stem cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_stem_cells.bed ...

  11. File list: Unc.Brs.50.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_stem_cells mm9 Unclassified Breast Mammary stem cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_stem_cells.bed ...

  12. File list: InP.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187517,SRX187512,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.10.AllAg.Mammary_cells.bed ...

  13. File list: ALL.Brs.05.AllAg.Mammary_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_tumor mm9 All antigens Breast Mammary tumor SRX700365,SRX7...00366 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_tumor.bed ...

  14. File list: ALL.Brs.10.AllAg.Mammary_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Mammary_tumor mm9 All antigens Breast Mammary tumor SRX700365,SRX7...00366 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.10.AllAg.Mammary_tumor.bed ...

  15. File list: Pol.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_cells mm9 RNA polymerase Breast Mammary cells SRX187510,SR...X852566,SRX187515,SRX852567 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_cells.bed ...

  16. File list: InP.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187517,SRX187512,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.05.AllAg.Mammary_cells.bed ...

  17. File list: His.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_cells mm9 Histone Breast Mammary cells SRX187511,SRX187516...,SRX403479,SRX403480 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_cells.bed ...

  18. File list: His.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_cells mm9 Histone Breast Mammary cells SRX187511,SRX187516...,SRX403480,SRX403479 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_cells.bed ...

  19. File list: ALL.Brs.20.AllAg.Mammary_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_tumor mm9 All antigens Breast Mammary tumor SRX700365,SRX7...00366 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_tumor.bed ...

  20. File list: His.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_cells mm9 Histone Breast Mammary cells SRX187511,SRX187516...,SRX403480,SRX403479 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_cells.bed ...

  1. File list: Oth.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_cells mm9 TFs and others Breast Mammary cells SRX187508,SR...X187509,SRX187514,SRX403482,SRX403483,SRX852562,SRX852565,SRX187513,SRX852563,SRX852564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_cells.bed ...

  2. File list: InP.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.Mammary_cells mm9 Input control Breast Mammary cells SRX403481,SRX...187512,SRX187517,SRX403484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.50.AllAg.Mammary_cells.bed ...

  3. File list: Oth.Brs.20.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_cells mm9 TFs and others Breast Mammary cells SRX187508,SR...X187509,SRX187514,SRX403482,SRX403483,SRX852565,SRX852562,SRX852563,SRX187513,SRX852564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_cells.bed ...

  4. File list: His.Brs.10.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_cells mm9 Histone Breast Mammary cells SRX187511,SRX187516...,SRX403480,SRX403479 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_cells.bed ...

  5. File list: ALL.Brs.50.AllAg.Mammary_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_tumor mm9 All antigens Breast Mammary tumor SRX700365,SRX7...00366 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_tumor.bed ...

  6. File list: DNS.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  7. File list: ALL.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX031066,SRX031214,SRX396750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  8. File list: Oth.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  9. File list: His.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  10. File list: DNS.Brs.20.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Mammary_stem_cells mm9 DNase-seq Breast Mammary stem cells SRX1886...40,SRX191028 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.20.AllAg.Mammary_stem_cells.bed ...

  11. File list: ALL.Brs.20.AllAg.Mammary_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_stem_cells mm9 All antigens Breast Mammary stem cells SRX1...88640,SRX191028,SRX213393,SRX213410,SRX185869,SRX185809,SRX185841,SRX213404,SRX213407 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_stem_cells.bed ...

  12. File list: ALL.Brs.50.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187508,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_cells.bed ...

  13. File list: ALL.Brs.05.AllAg.Mammary_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_cells mm9 All antigens Breast Mammary cells SRX187511,SRX1...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_cells.bed ...

  14. File list: DNS.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: Unc.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: DNS.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  17. File list: Oth.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  18. File list: ALL.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: His.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  20. File list: Unc.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  1. File list: Pol.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  2. File list: His.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX403485,SRX396749,SRX403486,SRX031075,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: Unc.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  4. File list: DNS.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: His.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  6. File list: Pol.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  7. File list: Unc.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  8. File list: Pol.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  9. File list: Oth.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  10. File list: ALL.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  11. File list: Oth.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330635,SRX330636 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  12. File list: Pol.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  13. Diet and fertility in cattle

    Directory of Open Access Journals (Sweden)

    Petrujkić Tihomir

    2003-01-01

    Full Text Available The diet of high-yield dairy cows process a very complex and acute problem. Much new knowledge in the area of production and preparation of feedstuffs, diet technology, and the interactions that occur between the components of the nutritive feed ration are required in order to resolve this problem. It is necessary constantly to coordinate feed norms with genetic potential which is ever changing and advanced. The observed problems must be resolved using multidisciplinary methods so that a diet can yield good health, and that health contribute to better reproduction and possibilities for more successful breeding and improved performance in cattle farming. In certain countries, thanks to their geographic position and climatic conditions which allow rainfall throughout the year, a natural green diet can be applied, which provides large numbers of green mass components, and with additives which can be supplemented relatively easily. This type of diet is not possible in our farms. It is very important to know which feedstuff components are laking for certain categories of cattle. The used ration must be constant and administered to animals of certain age or production characteristics in order to improve production results at cattle farms. A great problem occurs when diet is reduced due to dried grass and the resulting stress in animals. A 50% diet reduction in young cattle often results in the occurrence of respiratory diseases. Following 10-14 days of treatment, the disease disappears in young animals, but the energy deficit leads to the weakening (depression of the immune system. Even a so-called high-energy diet often causes respiratory diseases. A diet deficient in proteins also affects cows after lactation, as opposed to a normative diet, and a reduced protein diet disturbs the microbial activity in the rumen and the synthesis of compounds which are important for both the cow and the calf, making room for the incidence of metabolic diseases, most

  14. Regulation of DNA methylation on EEF1D and RPL8 expression in cattle.

    Science.gov (United States)

    Liu, Xuan; Yang, Jie; Zhang, Qin; Jiang, Li

    2017-06-30

    Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.

  15. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.

    Science.gov (United States)

    Zhang, Zhi-Yong; Teoh, Swee Hin; Teo, Erin Yiling; Khoon Chong, Mark Seow; Shin, Chong Woon; Tien, Foo Toon; Choolani, Mahesh A; Chan, Jerry K Y

    2010-11-01

    Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.

  16. Optimizing of Bioreactor Heat Supply and Material Feeding by Numerical Calculation

    Science.gov (United States)

    Zhou, Zhiwei; Song, Boyan; Zhu, Likuan; Li, Zuntao; Wang, Yang

    Cell culture at large scale normally uses stirred structure. And the situation of temperature field distribution is very important to the cell culture at large scale. Some cells are very sensitive to the circumstances. The local temperature is too high or too low all influences the cell survival and low the cell quantity at unit volume. This paper simulates the temperature field under three different heating conditions. Then analysis and contrast the simulation results. The mixed situation in bioreactor is extremely significant for nutrition transmit. Usually, use ways to measure the average mixture time in bioreactor, and improve the mixture circumstance in the bioreactor through stirred impeller and bioreactor structure change. This paper adopts numerical calculation method to investigate the flow field in bioreactor. It gets the mixture time of bioreactor through virtual tracer in simulate flow field and detects the tracer density time variation curve in the bioreactor.

  17. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  18. Mammary Gland Reprogramming: Metalloproteinases Couple Form with Function

    Science.gov (United States)

    Khokha, Rama; Werb, Zena

    2011-01-01

    The adult mammary structure provides for the rapid growth, development, and immunological protection of the live-born young of mammals through its production of milk. The dynamic remodeling of the branched epithelial structure of the mammary gland in response to physiological stimuli that allow its programmed branching morphogenesis at puberty, cyclical turnover during the reproductive cycle, differentiation into a secretory organ at parturition, postlactational involution, and ultimately, regression with age is critical for these processes. Extracellular metalloproteinases are essential for the remodeling programs that operate in the tissue microenvironment at the interface of the epithelium and the stroma, coupling form with function. Deregulated proteolytic activity drives the transition of a physiological mammary microenvironment into a tumor microenvironment, facilitating malignant transformation. PMID:21106646

  19. Autoradiographic localization of estrogen binding sites in human mammary lesions

    Energy Technology Data Exchange (ETDEWEB)

    Buell, R.H.

    1984-01-01

    The biochemical assay of human mammary carcinomas for estrogen receptors is of proven clinical utility, but the cellular localization of estrogen binding sites within these lesions is less certain. The author describes the identification of estrogen binding sites as visualized by thaw-mount autoradiography after in vitro incubation in a series of 17 benign and 40 malignant human female mammary lesions. The results on the in vitro incubation method compared favorably with data from in vivo studies in mouse uterus, a well-characterized estrogen target organ. In noncancerous breast biopsies, a variable proportion of epithelial cells contained specific estrogen binding sites. Histologically identifiable myoepithelial and stromal cells were, in general, unlabeled. In human mammary carcinomas, biochemically estrogen receptor-positive, labeled and unlabeled neoplastic epithelial cells were identified by autoradiography. Quantitative results from the autoradiographic method compared favorably with biochemical data.

  20. Nutritional regulation of mammary cell apoptosis in lactating ewes

    Directory of Open Access Journals (Sweden)

    M. Colitti

    2011-03-01

    Full Text Available Recent advances in understanding the control of the mammary cell population now offer new insights to understand the decline in milk yield of dairy animals, which has long been a biological conundrum for the mammary biologists. Evidence indicates that change in mammary cell number is the result of an imbalance between cell proliferation and cell removal and that this is a principal cause of declining production (Stefanon et al., 2001. Further, it suggests that the persistency of lactation, the rate of decline in milk yield with stage of lactation, is strongly influenced by the rate of cell death by apoptosis in the lactating gland (Wilde et al., 1997. The most significant advance in understanding the cell biology underpinning persistency of lactation has come from the demonstration that cell loss during lactation occurs by apoptosis. Several researches obtained in cell cultures in mouse and rat have indicated that gene expression and cellular activities are modulated by the reactive oxygen species..........

  1. Mammary blood flow regulation in the nursing rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  2. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  3. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  4. Malignant mammary tumor in female dogs: environmental contaminants

    Directory of Open Access Journals (Sweden)

    Bissacot Denise Z

    2010-06-01

    Full Text Available Abstract Mammary tumors of female dogs have greatly increased in recent years, thus demanding rapid diagnosis and effective treatment in order to determine the animal survival. There is considerable scientific interest in the possible role of environmental contaminants in the etiology of mammary tumors, specifically in relation to synthetic chemical substances released into the environment to which living beings are either directly or indirectly exposed. In this study, the presence of pyrethroid insecticide was observed in adjacent adipose tissue of canine mammary tumor. High Precision Liquid Chromatography - HPLC was adapted to detect and identify environmental contaminants in adipose tissue adjacent to malignant mammary tumor in nine female dogs, without predilection for breed or age. After surgery, masses were carefully examined for malignant neoplastic lesions. Five grams of adipose tissue adjacent to the tumor were collected to detect of environmental contaminants. The identified pyrethroids were allethrin, cyhalothrin, cypermethrin, deltamethrin and tetramethrin, with a contamination level of 33.3%. Histopathology demonstrated six female dogs (66.7% as having complex carcinoma and three (33.3% with simple carcinoma. From these tumors, seven (77.8% presented aggressiveness degree III and two (22.2% degree I. Five tumors were positive for estrogen receptors in immunohistochemical analysis. The contamination level was observed in more aggressive tumors. This was the first report in which the level of environmental contaminants could be detected in adipose tissue of female dogs with malignant mammary tumor, by HPLC. Results suggest the possible involvement of pyrethroid in the canine mammary tumor carcinogenesis. Hence, the dog may be used as a sentinel animal for human breast cancer, since human beings share the same environment and basically have the same eating habits.

  5. Malignant mammary tumor in female dogs: environmental contaminants.

    Science.gov (United States)

    Andrade, Fábio He; Figueiroa, Fernanda C; Bersano, Paulo Ro; Bissacot, Denise Z; Rocha, Noeme S

    2010-06-30

    Mammary tumors of female dogs have greatly increased in recent years, thus demanding rapid diagnosis and effective treatment in order to determine the animal survival. There is considerable scientific interest in the possible role of environmental contaminants in the etiology of mammary tumors, specifically in relation to synthetic chemical substances released into the environment to which living beings are either directly or indirectly exposed. In this study, the presence of pyrethroid insecticide was observed in adjacent adipose tissue of canine mammary tumor. High Precision Liquid Chromatography - HPLC was adapted to detect and identify environmental contaminants in adipose tissue adjacent to malignant mammary tumor in nine female dogs, without predilection for breed or age. After surgery, masses were carefully examined for malignant neoplastic lesions. Five grams of adipose tissue adjacent to the tumor were collected to detect of environmental contaminants. The identified pyrethroids were allethrin, cyhalothrin, cypermethrin, deltamethrin and tetramethrin, with a contamination level of 33.3%. Histopathology demonstrated six female dogs (66.7%) as having complex carcinoma and three (33.3%) with simple carcinoma. From these tumors, seven (77.8%) presented aggressiveness degree III and two (22.2%) degree I. Five tumors were positive for estrogen receptors in immunohistochemical analysis. The contamination level was observed in more aggressive tumors. This was the first report in which the level of environmental contaminants could be detected in adipose tissue of female dogs with malignant mammary tumor, by HPLC. Results suggest the possible involvement of pyrethroid in the canine mammary tumor carcinogenesis. Hence, the dog may be used as a sentinel animal for human breast cancer, since human beings share the same environment and basically have the same eating habits.

  6. Vitamin C Nutrition in Cattle

    OpenAIRE

    Matsui, T.

    2012-01-01

    Domestic animals, including ruminants, can synthesize vitamin C (VC) in their liver; as such, the dietary requirement for VC has not been confirmed in these animals. The adequacy of VC has been evaluated by quantifying VC levels in plasma, but the reported values in bovine plasma have been widely variable. Plasma VC concentration is decreased by heat stress, hepatic lesions, fattening, and infectious diseases such as mastitis in cattle. Therefore, VC supplementation is potentially beneficial ...

  7. Mammary-type myofibroblastoma with the nephrotic syndrome.

    Science.gov (United States)

    Colbert, Gates B; Vankawala, Preksha; Kuperman, Michael B; Mennel, Robert G

    2016-07-01

    We describe a 23-year-old white man who presented with anasarca and a new periumbilical mass. He had preserved kidney function and laboratory findings consistent with nephrotic syndrome, including 9.7 g/day albuminuria. Serum serologies were positive for anti-SSa and anti-SSb and low complements but were negative for antinuclear antibody. Pathologic findings of the abdominal mass showed a mammary-type myofibroblastoma. A kidney biopsy revealed a diffuse proliferative and membranous immune-mediated glomerulonephritis with 10% interstitial fibrosis. This is a novel case of mammary-type myofibroblastoma associated with nephrotic syndrome mimicking a proliferative lupus pattern.

  8. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Adelina Gama

    2012-01-01

    Full Text Available Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis.

  9. Large mammary hamartoma with focal invasive ductal carcinoma

    Directory of Open Access Journals (Sweden)

    Pervatikar Suneet

    2009-04-01

    Full Text Available Mammary hamartomas are uncommon benign lesions rarely associated with malignancy. We report a case of a 25-year-old female patient presenting with a lump in the left breast. Fine needle aspiration cytology showed features of invasive ductal carcinoma along with normal benign glands that were mistaken for normal breast tissue. However, the mastectomy specimen revealed the malignant mass within a larger hamartomatous mass. Mammary hamartomas are benign lesions but, on exceedingly rare occasions, they may be involved by incidental, coexisting carcinoma, as illustrated in this case report.

  10. Radiogenic neoplasia in thyroid and mammary clonogens

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, K.H.

    1992-05-20

    We have developed rat thyroid and mammary clonogen transplantation systems for the study of radiogenic cancer induction at the target cell level in vivo. The epithelial cell populations of both glands contain small subpopulations of cells which are capable of giving rise to monoclonal glandular structures when transplanted and stimulated with appropriate hormones. Previous results indicated that these clonogens are the precursor cells of radiogenic cancer, and that initiation, is common event at the clonegenic cell level. Detailed information on the physiologic control of clonogen proliferation, differentiation, and total numbers is thus essential to an understanding of the carcinogenic process. We report here studies on investigations on the relationships between grafted thyroid cell number and the rapidity and degree of reestablishment of the thyroid-hypothalamus-pituitary feedback axis in thyroidectomized rats maintained on a normal diet or an iodine deficient diet; studies of the persistence of, and the differentiation potential and functional characteristics of, the TSH-(thyrotropin-) responsive sub- population of clonogens during goitrogenesis, the plateau-phase of goiter growth, and goiter involution; studies of changes in the size of the clonogen sub-population during goitrogenesis, goiter involution and the response to goitrogen rechallenge; and a large carcinogenesis experiment on the nature of the grafted thyroid cell number-dependent suppression of promotion/progression to neoplasia in grafts of radiation-initiated thyroid cells. Data from these studies will be used in the design of future carcinogenesis experiments on neoplastic initiation by high and low LET radiations and on cell interactions during the neoplastic process.

  11. The mammary glands of the Amazonian manatee, Trichechus inunguis (Mammalia: Sirenia): morphological characteristics and microscopic anatomy.

    Science.gov (United States)

    Rodrigues, Fernanda Rosa; da Silva, Vera Maria Ferreira; Barcellos, José Fernando Marques

    2014-08-01

    The mammaries from carcasses of two female Amazonian manatees were examined. Trichechus inunguis possesses two axillary mammaries beneath the pectoral fins, one on each side of the body. Each papilla mammae has a small hole on its apex--the ostium papillare. The mammaries are covered by a stratified squamous keratinized epithelium. The epithelium of the mammary ducts became thinner more deeply in the tissue and varied from stratified to simple cuboidal. There was no evidence of glandular activity or secretion into the ducts of the mammary glands.

  12. Mammary gland development: cell fate specification, stem cells and the microenvironment.

    Science.gov (United States)

    Inman, Jamie L; Robertson, Claire; Mott, Joni D; Bissell, Mina J

    2015-03-15

    The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the 'stem/progenitor' cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.

  13. On adaptive optimal input design: A bioreactor case study

    NARCIS (Netherlands)

    Stigter, J.D.; Vries, D.; Keesman, K.J.

    2006-01-01

    The problem of optimal input design (OID) for a fed-batch bioreactor case study is solved recursively. Here an adaptive receding horizon optimal control problem, involving the so-called E-criterion, is solved on-line, using the current estimate of the parameter vector at each sample instant {tk, k =

  14. On modelling, monitoring and control of fixed bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Tali-Maamar, N.; Babary, J.P. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Dochain, D. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

    1995-12-31

    The working of a denitrification fixed bed bioreactor strongly depends on time and location of observing point, resulting in partial differential equations systems for the functional model. This project tries to extend the application of adaptative linearizing control schemes to non linear distributed parameters bio process. A second goal is to optimize the sensors position. (D.L.) 23 refs.

  15. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  16. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  17. Modelling and characterization of an airlift-loop bioreactor.

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and oxygen tra

  18. Optimising Microbial Growth with a Bench-Top Bioreactor

    Science.gov (United States)

    Baker, A. M. R.; Borin, S. L.; Chooi, K. P.; Huang, S. S.; Newgas, A. J. S.; Sodagar, D.; Ziegler, C. A.; Chan, G. H. T.; Walsh, K. A. P.

    2006-01-01

    The effects of impeller size, agitation and aeration on the rate of yeast growth were investigated using bench-top bioreactors. This exercise, carried out over a six-month period, served as an effective demonstration of the importance of different operating parameters on cell growth and provided a means of determining the optimisation conditions…

  19. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  20. Thiosulphate conversion in a methane and acetate fed membrane bioreactor

    NARCIS (Netherlands)

    Suarez Zuluaga, D.A.; Timmers, P.H.A.; Plugge, C.M.; Stams, A.J.M.; Buisman, C.J.N.; Weijma, J.

    2016-01-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its li

  1. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  2. NASA's Bioreactor: Growing Cells in a Microgravity Environment. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses growing cells in a microgravity environment for grades 9-12. Students are provided with plans for building a classroom bioreactor that can then be used with the included activity on seed growth in a microgravity environment. Additional experimental ideas are also suggested along with a history and background on microgravity…

  3. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Science.gov (United States)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  4. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  5. Simulating woodchip bioreactor performance using a dual-porosity model

    Science.gov (United States)

    Nitrate in the Nation's surface waters has been a persistent health and ecological problem. The major source of nitrate is tile drainage from agricultural row crops. Denitrification bioreactors have been shown to be effective in removing much of the nitrate from tile drains. While we understand i...

  6. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Science.gov (United States)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  7. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  8. Bioreactors for removing methyl bromide following contained fumigations

    Science.gov (United States)

    Miller, L.G.; Baesman, S.M.; Oremland, R.S.

    2003-01-01

    Use of methyl bromide (MeBr) as a quarantine, commodity, or structural fumigant is under scrutiny because its release to the atmosphere contributes to the depletion of stratospheric ozone. A closed-system bioreactor consisting of 0.5 L of a growing culture of a previously described bacterium, strain IMB-1, removed MeBr (> 110 ??mol L-1) from recirculating air. Strain IMB-1 grew slowly to high cell densities in the bioreactor using MeBr as its sole carbon and energy source. Bacterial oxidation of MeBr produced CO2 and hydrobromic acid (HBr), which required continuous neutralization with NaOH for the system to operate effectively. Strain IMB-1 was capable of sustained oxidation of large amounts of MeBr (170 mmol in 46 d). In an open-system bioreactor (10-L fermenter), strain IMB-1 oxidized a continuous supply of MeBr (220 ??mol L-1 in air). Growth was continuous, and 0.5 mol of MeBr was removed from the air supply in 14 d. The specific rate of MeBr oxidation was 7 ?? 10-16 mol cell-1 h-1. Bioreactors such as these can therefore be used to remove large quantities of contaminant MeBr, which opens the possibility of biodegradation as a practical means for its disposal.

  9. Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety

    Science.gov (United States)

    2014-01-01

    In order to cultivate healthy bacteria in bioreactors, Kennedy Space Center awarded SBIR funding to Needham Heights, Massachusetts-based Polestar Technologies Inc. to develop sensors that could monitor oxygen levels. The result is a sensor now widely used by pharmaceutical companies and medical research universities. Other sensors have also been developed, and in 2013 alone the company increased its workforce by 50 percent.

  10. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is k

  11. Reduced Order Dead-Beat Observers for a Bioreactor

    CERN Document Server

    Karafyllis, Iasson

    2010-01-01

    This paper studies the strong observability property and the reduced-order dead-beat observer design problem for a continuous bioreactor. New relationships between coexistence and strong observability, and checkable sufficient conditions for strong observability, are established for a chemostat with two competing microbial species. Furthermore, the dynamic output feedback stabilization problem is solved for the case of one species.

  12. Performance of Submerged Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present research, a submerged membrane bioreactor was tested to treat domestic wastewater. Three experimental runs were conducted all with a hydraulic retention time of 5h and sludge retention times (SRTs) of 5, 10, and 20 d. The pollutant removal performance of the membrane bioreactor, the membrane effluent quality, and a kinetic model for sludge growth in the bioreactor were investigated. The combined process was capable of removing over 90% of both COD (chemical oxygen demand) and NH3-N on the average. The total removal for COD was almost independent of SRT, but that for NH3-N improved with increasing SRT. Membrane effluent quality meets the water quality standard for reuse issued by the Ministry of Construction of China. Increasing SRT causes the concentrations of suspended solids (SS) and volatile suspended solids (VSS) in the bioreactor to increase. However, the ratio of VSS/SS did not change much. Kinetic analysis showed that the sludge yield coefficient (kg-VSS·kg-COD-1) and the endogenous coefficient of microorganisms were 0.25 and 0.04d-1, which are similar to those of the conventional activated sludge process.

  13. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  14. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  15. Activation of p21(CIP1/WAF1) in mammary epithelium accelerates mammary tumorigenesis and promotes lung metastasis.

    Science.gov (United States)

    Cheng, Xiaoyun; Xia, Weiya; Yang, Jer-Yen; Hsu, Jennifer L; Chou, Chao-Kai; Sun, Hui-Lung; Wyszomierski, Shannon L; Mills, Gordon B; Muller, William J; Yu, Dihua; Hung, Mien-Chie

    2010-12-03

    While p21 is well known to inhibit cyclin-CDK activity in the nucleus and it has also been demonstrated to have oncogenic properties in different types of human cancers. In vitro studies showed that the oncogenic function of p21is closely related to its cytoplasmic localization. However, it is unclear whether cytoplasmic p21 contributes to tumorigenesis in vivo. To address this question, we generated transgenic mice expressing the Akt-phosphorylated form of p21 (p21T145D) in the mammary epithelium. The results showed that Akt-activated p21 was expressed in the cytoplasm of mammary epithelium. Overexpression of Akt-activated p21 accelerated tumor onset and promoted lung metastasis in MMTV/neu mice, providing evidence that p21, especially cytoplasmic phosphorylated p21, has an oncogenic role in promoting mammary tumorigenesis and metastasis.

  16. Reconstruction of liver organoid using a bioreactor

    Institute of Scientific and Technical Information of China (English)

    Masaya Saito; Tomokazu Matsuura; Takahiro Masaki; Haruka Maehashi; Keiko Shimizu; Yoshiaki Hataba; Tohru Iwahori; Tetsuro Suzuki; Filip Braet

    2006-01-01

    AIM: To develop the effective technology for reconstruction of a liver organ in vitro using a bio-artificial liver.METHODS: We previously reported that a radial-flow bioreactor (RFB) could provide a three-dimensional highdensity culture system. We presently reconstructed the liver organoid using a functional human hepatocellular carcinoma cell line (FLC-5) as hepatocytes together with mouse immortalized sinusoidal endothelial cell (SEC) line M1 and mouse immortalized hepatic stellate cell (HSC) line A7 as non parenchymal cells in the RFB. Two x 107 FLC-5 cells were incubated in the RFB. After 5 d, 2 x 107 A7 cells were added in a similar manner followed by another addition of 107 M1 cells 5 d later. After three days of perfusion, some cellulose beads with the adherent cells were harvested. The last incubation period included perfusion with 200 nmol/L swinholide A for 2 h and then the remaining cellulose beads along with adherent cells were harvested from the RFB. The cell morphology was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). To assess hepatocyte function, we compared mRNA expression for urea cycle enzymes as well as albumin synthesis by FLC-5 in monolayer cultures compared to those of single-type cultures and cocultures in the RFB.RESULTS: By transmission electron microscopy, FLC-5,M1, and A7 were arranged in relation to the perfusion side in a liver-like organization. Structures resembling bile canaliculi were seen between FCL-5 cells. Scanning electron microscopy demonstrated fenestrae on SEC surfaces. The number of vesiculo-vacuolar organelles (WO) and fenestrae increased when we introduced the actin-binding agent swinholide-A in the RFB for 2h. With respect to liver function, urea was found in the medium,and expression of mRNAs encoding arginosuccinate synthetase and arginase increased when the three cell types were cocultured in the RFB. However, albumin synthesis decreased.CONCLUSION: Co-culture in the RFB

  17. Biological hydrogen production using a membrane bioreactor.

    Science.gov (United States)

    Oh, Sang-Eun; Iyer, Prabha; Bruns, Mary Ann; Logan, Bruce E

    2004-07-01

    A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

  18. Pueraria mirifica Exerts Estrogenic Effects in the Mammary Gland and Uterus and Promotes Mammary Carcinogenesis in Donryu Rats

    Science.gov (United States)

    Kakehashi, Anna; Yoshida, Midori; Tago, Yoshiyuki; Ishii, Naomi; Okuno, Takahiro; Gi, Min; Wanibuchi, Hideki

    2016-01-01

    Pueraria mirifica (PM), a plant whose dried and powdered tuberous roots are now widely used in rejuvenating preparations to promote youthfulness in both men and women, may have major estrogenic influence. In this study, we investigated modifying effects of PM at various doses on mammary and endometrial carcinogenesis in female Donryu rats. Firstly, PM administered to ovariectomized animals at doses of 0.03%, 0.3%, and 3% in a phytoestrogen-low diet for 2 weeks caused significant increase in uterus weight. Secondly, a 4 week PM application to non-operated rats at a dose of 3% after 7,12-dimethylbenz[a]anthracene (DMBA) initiation resulted in significant elevation of cell proliferation in the mammary glands. In a third experiment, postpubertal administration of 0.3% (200 mg/kg body weight (b.w.)/day) PM to 5-week-old non-operated animals for 36 weeks following initiation of mammary and endometrial carcinogenesis with DMBA and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG), respectively, resulted in significant increase of mammary adenocarcinoma incidence. A significant increase of endometrial atypical hyperplasia multiplicity was also observed. Furthermore, PM at doses of 0.3%, and more pronouncedly, at 1% induced dilatation, hemorrhage and inflammation of the uterine wall. In conclusion, postpubertal long-term PM administration to Donryu rats exerts estrogenic effects in the mammary gland and uterus, and at a dose of 200 mg/kg b.w./day was found to promote mammary carcinogenesis initiated by DMBA. PMID:27827907

  19. Pueraria mirifica Exerts Estrogenic Effects in the Mammary Gland and Uterus and Promotes Mammary Carcinogenesis in Donryu Rats

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    2016-11-01

    Full Text Available Pueraria mirifica (PM, a plant whose dried and powdered tuberous roots are now widely used in rejuvenating preparations to promote youthfulness in both men and women, may have major estrogenic influence. In this study, we investigated modifying effects of PM at various doses on mammary and endometrial carcinogenesis in female Donryu rats. Firstly, PM administered to ovariectomized animals at doses of 0.03%, 0.3%, and 3% in a phytoestrogen-low diet for 2 weeks caused significant increase in uterus weight. Secondly, a 4 week PM application to non-operated rats at a dose of 3% after 7,12-dimethylbenz[a]anthracene (DMBA initiation resulted in significant elevation of cell proliferation in the mammary glands. In a third experiment, postpubertal administration of 0.3% (200 mg/kg body weight (b.w./day PM to 5-week-old non-operated animals for 36 weeks following initiation of mammary and endometrial carcinogenesis with DMBA and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG, respectively, resulted in significant increase of mammary adenocarcinoma incidence. A significant increase of endometrial atypical hyperplasia multiplicity was also observed. Furthermore, PM at doses of 0.3%, and more pronouncedly, at 1% induced dilatation, hemorrhage and inflammation of the uterine wall. In conclusion, postpubertal long-term PM administration to Donryu rats exerts estrogenic effects in the mammary gland and uterus, and at a dose of 200 mg/kg b.w./day was found to promote mammary carcinogenesis initiated by DMBA.

  20. HORMONAL INFLUENCES ON MAMMARY TUMORS OF THE RAT

    Science.gov (United States)

    Huggins, Charles; Torralba, Yolanda; Mainzer, Klaus

    1956-01-01

    A transplanted mammary fibroadenoma was found to grow in 95 per cent of intact adult female rats and the increment of tumor weights was progressive and logarithmic. The growth of the tumor was retarded by ovariectomy and still more when this was combined with adrenalectomy. In ovariectomized rats the growth of the tumor was stimulated by phenolic estrogens, this increase being enhanced when progesterone was added. In these responses to hormonal changes the mammary gland and the tumor resembled each other. Yet there are many differences between the growth of the fibroadenoma and that of the mammary gland. In contrast to the progressive growth which occurred in intact adult females there was a prolonged period of indolent growth of transplants in hypophysectomized rats; but after many weeks active growth began and the tumors eventually reached large size. During the period of quiescent growth the tumor was cytologically atrophic but after the growth spurt had started the microscopic appearance of the fibroadenoma resembled that of tumors growing in normal adult females. The mammary gland remained atrophic during both the slow and the accelerated phases of tumor growth, and so too with the other secondary sex expressions. In hypophysectomized rats estrone and progesterone, when combined, stimulated the growth of the tumor, and this growth was accelerated by the additional administration of lactogenic or growth hormones. None of these hormones, separately, stimulated the growth of the tumor. In ovariectomized rats other differences were demonstrated between the growth of the mammary gland and the fibroadenoma. Progesterone, injected alone, accelerated the growth of the tumor but not that of the mammary glands. The administration of phenolic estrogens exerted a biphasic effect on the growth of the tumor whilst that on the breast of its hosts was monophasic. With progressively increasing doses of these phenols there occurred primarily an augmentation of the rate of

  1. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    Directory of Open Access Journals (Sweden)

    Costa Eunice M

    2009-09-01

    Full Text Available Abstract Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors.

  2. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  3. BIOREACTOR ECONOMICS, SIZE AND TIME OF OPERATION (BEST) COMPUTER SIMULATOR FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    Science.gov (United States)

    BEST (bioreactor economics, size and time of operation) is an Excel™ spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...

  4. Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system.

    Science.gov (United States)

    Xia, Lei; Arooz, Talha; Zhang, Shufang; Tuo, Xiaoye; Xiao, Guangfa; Susanto, Thomas Adi Kurnia; Sundararajan, Janani; Cheng, Tianming; Kang, Yuzhan; Poh, Hee Joo; Leo, Hwa Liang; Yu, Hanry

    2012-11-01

    Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7 cm of height and 5.5 cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.

  5. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2011-11-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.

  6. The bioreactor: a powerful tool for large-scale culture of animal cells.

    Science.gov (United States)

    Wang, Dianliang; Liu, Wanshun; Han, Baoqin; Xu, Ruian

    2005-10-01

    Bioreactors play a key role in the field of biologics, where they are used for the production of recombinant therapeutic proteins by large-scale cultivation of animal cells. There are several types of bioreactors, including stirred-tank, airlift, hollow-fiber, and Rotary Cell Culture System (RCCS) designs. The stirred-tank bioreactor is one of the most commonly used types, and is used both for industrial applications and laboratory research. The RCCS, invented by NASA, is increasingly used in the area of tissue engineering for medical purposes. Important improvements have been made in the design of traditional bioreactors, and new types of bioreactor are also being developed such as Couette-Taylor bioreactor, multifunctional-membrane bioreactor, and shaking bioreactor. Work is also progressing on techniques to improve the performance of bioreactors, including perfusion culture, the use of microcarriers, and methods of suppressing apoptosis and of monitoring cell growth in real time. Given the demand for the production by animal cells for use in the growing number of clinical applications, further advances in bioreactor technology can be expected during the next few years. Two main goals will be pursued: firstly, to increase output by high density cultivation of animal cells to produce high value protein pharmaceutics or viral vectors for clinical gene therapy; and secondly, to create a three-dimension space similar to that of an in vivo environment to regenerate tissue or organ and to reproduce valuable cells that are hard to culture in the traditional culture system.

  7. Characterization of the Six1 homeobox gene in normal mammary gland morphogenesis

    Directory of Open Access Journals (Sweden)

    McManaman James L

    2010-01-01

    Full Text Available Abstract Background The Six1 homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy. However, Six1 is re-expressed in breast cancers, suggesting that its re-instatement in the adult mammary gland may contribute to breast tumorigenesis via initiating a developmental process out of context. Indeed, recent studies demonstrate that Six1 overexpression in the adult mouse mammary gland is sufficient for initiating invasive carcinomas, and that its overexpression in xenograft models of mammary cancer leads to metastasis. These data demonstrate that Six1 is causally involved in both breast tumorigenesis and metastasis, thus raising the possibility that it may be a viable therapeutic target. However, because Six1 is highly expressed in the developing mammary gland, and because it has been implicated in the expansion of mammary stem cells, targeting Six1 as an anti-cancer therapy may have unwanted side effects in the breast. Results We sought to determine the role of Six1 in mammary development using two independent mouse models. To study the effect of Six1 loss in early mammary development when Six1 is normally expressed, Six1-/- embryonic mammary glands were transplanted into Rag1-/- mice. In addition, to determine whether Six1 downregulation is required during later stages of development to allow for proper differentiation, we overexpressed Six1 during adulthood using an inducible, mammary-specific transgenic mouse model. Morphogenesis of the mammary gland occurred normally in animals transplanted with Six1-/- embryonic mammary glands, likely through the redundant functions of other Six family members such as Six2 and Six4, whose expression was increased in response to Six1 loss. Surprisingly, inappropriate expression of Six1 in the adult mammary gland, when levels are normally low to absent, did not inhibit

  8. Iodine concentrations in milk of dairy cattle fed various amounts of iodine as ethylenediamine dihydroiodide.

    Science.gov (United States)

    Berg, J N; Padgitt, D; McCarthy, B

    1988-12-01

    Due to concerns about high I in milk, the dairy industry has proposed a voluntary standard of 500 micrograms of I/L as the maximum allowable I in milk sold for processing and human consumption. This study was undertaken to determine the amount of ethylenediamine dihydroiodide that could be fed to dairy cattle without exceeding this standard. Various amounts (0 to 45 mg/head per d) of the I compound were fed to a commercial dairy herd for 50 wk. Individual and bulk milk samples were analyzed for total iodine. Milk I in herd bulk milk was directly correlated (r = .92) with the amounts fed. However, the correlation of milk I of individual cows was not as high (r = .66), indicating some individual variation in metabolism and secretion of the I into the mammary gland. Milk production and number of lactations did not correlate with I in milk. Regression analysis indicated that 25 to 30 mg of ethylenediamine dihydroiodide per day can be fed to dairy cattle receiving a diet otherwise low in I without exceeding a 500 micrograms concentration in milk.

  9. RUMINAL CONDITION BETWEEN MADURA CATTLE AND ONGOLE CROSSBRED CATTLE RAISED UNDER INTENSIVE FEEDING

    Directory of Open Access Journals (Sweden)

    M. Umar

    2011-09-01

    Full Text Available Each four young bulls of Madura cattle and Ongole Crossbred (OC cattle were used to study the efficiency of ruminal fermentation by comparing the proportion of Volatile Fatty Acid (VFA of these two breeds which were raised under intensive feeding. All the cattle were in about 1.5 years-old with an average body weight of 147.75 ± 14.57 kg and 167 ± 22.57 kg, for Madura and OC cattle, respectively. They were fed Napier grass (Pennisetum purpureum hay, and concentrate feeding consists of pollard, soybean meal and rice bran for 10 weeks. Parameters measured were concentration of VFA at 0, 3 and 6 h post-feeding and pH. The concentration of VFA in both Madura and OC cattle was peaked at 3 h post-feeding, being 136.1 mmol and 158.9 mmol, respectively, and then were decreased at 6 h post-feeding at a level of 58.1 and 98.2 mmol, respectively. The proportion of acetic acid in Madura and OC cattle were 53.33% and 52.0% of total VFA, respectively, while the proportion of propionic acid and butyric acid were 28.80% and 17.87% for Madura cattle, and 30.71% and 17.28% for OC cattle, respectively. In addition, the Acetic/Propionic ratios were 1.85 and 1.69 for Madura and OC cattle, respectively. Rumen pH conditions of both cattle breeds tended to be basic, i.e. Madura cattle was ranged at 8.0-8.4, while the PO cattle was ranged at 7.6-8.4. In conclusion, both cattle breeds (Madura and OC cattle have a similar efficiency to utilize the feeds in the rumen.

  10. RUMINAL CONDITION BETWEEN MADURA CATTLE AND ONGOLE CROSSBRED CATTLE RAISED UNDER INTENSIVE FEEDING

    Directory of Open Access Journals (Sweden)

    M. Umar

    2014-10-01

    Full Text Available Each four young bulls of Madura cattle and Ongole Crossbred (OC cattle were used to study theefficiency of ruminal fermentation by comparing the proportion of Volatile Fatty Acid (VFA of thesetwo breeds which were raised under intensive feeding. All the cattle were in about 1.5 years-old with anaverage body weight of 147.75 ± 14.57 kg and 167 ± 22.57 kg, for Madura and OC cattle, respectively.They were fed Napier grass (Pennisetum purpureum hay, and concentrate feeding consists of pollard,soybean meal and rice bran for 10 weeks. Parameters measured were concentration of VFA at 0, 3 and 6h post-feeding and pH. The concentration of VFA in both Madura and OC cattle was peaked at 3 h postfeeding,being 136.1 mmol and 158.9 mmol, respectively, and then were decreased at 6 h post-feeding ata level of 58.1 and 98.2 mmol, respectively. The proportion of acetic acid in Madura and OC cattle were53.33% and 52.0% of total VFA, respectively, while the proportion of propionic acid and butyric acidwere 28.80% and 17.87% for Madura cattle, and 30.71% and 17.28% for OC cattle, respectively. Inaddition, the Acetic/Propionic ratios were 1.85 and 1.69 for Madura and OC cattle, respectively. RumenpH conditions of both cattle breeds tended to be basic, i.e. Madura cattle was ranged at 8.0-8.4, while thePO cattle was ranged at 7.6-8.4. In conclusion, both cattle breeds (Madura and OC cattle have a similarefficiency to utilize the feeds in the rumen.

  11. Mammary remodeling in primiparous and multiparous dairy goats during lactation

    DEFF Research Database (Denmark)

    Safayi, Sina; Theil, Peter Kappel; Elbrønd, Vibeke Sødring

    2010-01-01

    Milk production is generally lower but lactation persistency higher in primiparous (PP) than in multiparous (MP) goats. This may be related to differences in development and maintenance of mammary gland function, but the underlying mechanisms are not well understood. The present study aimed to el...

  12. Cat Mammary Tumors: Genetic Models for the Human Counterpart

    Directory of Open Access Journals (Sweden)

    Filomena Adega

    2016-08-01

    Full Text Available The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively, but also to present a critical point of view of some of the issues that really need to be investigated in future research.

  13. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  14. [Controversy about internal mammary chain irradiation in breast cancer].

    Science.gov (United States)

    Hennequin, C; Fourquet, A

    2014-10-01

    Irradiation of lymph nodes areas after surgery of breast cancer, and specifically of the internal mammary chain, is an open question, frequently discussed. Three randomised trials (French, European-EORTC, Canadian) have been recently published or presented. The French trial did not show any benefit for internal mammary chain irradiation, but it was probably underpowered. The EORTC and Canadian trials demonstrated an improvement in overall survival after lymph nodes irradiation, including the internal mammary chain. The absolute benefit is 1.6% (hazard ratio-0.88 in a recent meta-analysis). Because this benefit is limited, it is important to define the characteristics of the patients who may benefit from this irradiation. Analyses of the randomized trials are not complete, and it is difficult at this moment to accurately define this population. However, cardiac and pulmonary toxicity of lymph nodes irradiation is well known. For each patient, evaluation of the potential late toxicity must be evaluated and so an accurate dosimetry for critical organs must be performed: the indication of internal mammary chain irradiation depends of the benefit/risk ratio. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Culture and characterization of mammary cancer stem cells in mammospheres.

    Science.gov (United States)

    Piscitelli, Eleonora; Cocola, Cinzia; Thaden, Frank Rüdiger; Pelucchi, Paride; Gray, Brian; Bertalot, Giovanni; Albertini, Alberto; Reinbold, Rolland; Zucchi, Ileana

    2015-01-01

    Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.

  16. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    Science.gov (United States)

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  17. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  18. Collagen density promotes mammary tumor initiation and progression

    Directory of Open Access Journals (Sweden)

    Knittel Justin G

    2008-04-01

    Full Text Available Abstract Background Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma. Despite the strong clinical correlation, breast density has not been causally linked to tumorigenesis, largely because no animal model has existed for studying breast tissue density. Importantly, regions of high breast density are associated with increased stromal collagen. Thus, the influence of the extracellular matrix on breast carcinoma development and the underlying molecular mechanisms are not understood. Methods To study the effects of collagen density on mammary tumor formation and progression, we utilized a bi-transgenic tumor model with increased stromal collagen in mouse mammary tissue. Imaging of the tumors and tumor-stromal interface in live tumor tissue was performed with multiphoton laser-scanning microscopy to generate multiphoton excitation and spectrally resolved fluorescent lifetimes of endogenous fluorophores. Second harmonic generation was utilized to image stromal collagen. Results Herein we demonstrate that increased stromal collagen in mouse mammary tissue significantly increases tumor formation approximately three-fold (p p Conclusion This study provides the first data causally linking increased stromal collagen to mammary tumor formation and metastasis, and demonstrates that fundamental differences arise and persist in epithelial tumor cells that progressed within collagen-dense microenvironments. Furthermore, the imaging techniques and signature identified in this work may provide useful diagnostic tools to rapidly assess fresh tissue biopsies.

  19. Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer

    NARCIS (Netherlands)

    Poortmans, P.M.P.; Collette, S.; Kirkove, C.; Limbergen, E. van; Budach, V.; Struikmans, H.; Collette, L.; Fourquet, A.; Maingon, P.; Valli, M.; Winter, K. De; Marnitz, S.; Barillot, I.; Scandolaro, L.; Vonk, E.; Rodenhuis, C.; Marsiglia, H.; Weidner, N.; Tienhoven, G. van; Glanzmann, C.; Kuten, A.; Arriagada, R.; Bartelink, H.; Bogaert, W. Van den

    2015-01-01

    BACKGROUND: The effect of internal mammary and medial supraclavicular lymph-node irradiation (regional nodal irradiation) added to whole-breast or thoracic-wall irradiation after surgery on survival among women with early-stage breast cancer is unknown. METHODS: We randomly assigned women who had a

  20. Aflatoxins ingestion and canine mammary tumors: There is an association?

    Science.gov (United States)

    Frehse, M S; Martins, M I M; Ono, E Y S; Bracarense, A P F R L; Bissoqui, L Y; Teixeira, E M K; Santos, N J R; Freire, R L

    2015-10-01

    The aim of this study was to determine the presence of mycotoxins on dogs feed and to explore the potential association between mycotoxins exposure and the chance of mamary tumors in a case-control study. The study included 256 female dogs from a hospital population, 85 with mammary tumors (case group) and 171 without mammary tumors (control group). An epidemiological questionnaire was applied to both groups, and the data were analyzed by the EpiInfo statistical package. For the study, 168 samples of the feed offered to dogs were analyzed for the presence of aflatoxins, fumonisins and zearalenone by high-performance liquid chromatography. Mycotoxins were found in 79 samples (100%) in the case group and 87/89 (97.8%) in the control group. Mycotoxins were detected in all types of feed, regardless feed quality. Level of aflatoxin B1 (p = 0.0356, OR = 2.74, 95%, CI 1.13 to 6.60), aflatoxin G1 (AFG1) (p = 0.00007, OR = 4.60, 95%, CI = 2.16 to 9.79), and aflatoxin G2 (AFG2) (p = 0.0133, OR = 9.91, 95%, CI 1.21 to 81.15) were statistically higher in case of mammary cancer. In contrast, neutering was a protective factor for mammary cancer (p = 0.0004, OR = 0.32, 95%, CI = 0.17 to 0.60).