WorldWideScience

Sample records for cations

  1. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  2. Cation-cation interaction in neptunyl(V) compounds

    International Nuclear Information System (INIS)

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  3. Cationic Antimicrobial Peptide Cytotoxicity

    OpenAIRE

    Laverty, Garry; Gilmore, Brendan

    2014-01-01

    Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofil...

  4. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  5. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl-, NO3-, C2O42-) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author)

  6. Cationic speciation in nonaqueous media

    International Nuclear Information System (INIS)

    Electronic spectra of solutions of d transition elements in the superacids HF, H2SO4, HSO3F, and CF3SO3H and in chloroaluminate melts indicate that in acidic monaqueous media the elements are present as solvated cations, whereas in basic media the speciation is anionic, the same situation as in aqueous solutions. Further, in very highly acidic media, cations in very low oxidation states are stable (e.g., Ti2+), but these disproportionate on addition of base to the system. In this paper spectra, where available, of U, Np, and Pu in oxidation states III and IV in aqueous media, in protonic superacids, and in chloroaluminates are presented to postulate cationic speciation of these early actinides in highly acidic media

  7. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  8. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  9. Polyelectrolyte Condensation Induced by Linear Cations

    OpenAIRE

    Guáqueta, Camilo; Luijten, Erik

    2007-01-01

    We examine the role of the condensing agent in the formation of polyelectrolyte bundles, via grand-canonical Monte Carlo simulations. Following recent experiments we use linear, rigid divalent cations of various lengths to induce condensation. Our results clarify and explain the experimental results for short cations. For longer cations we observe novel condensation behavior owing to alignment of the cations. We also study the role of the polyelectrolyte surface charge density, and find a non...

  10. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  11. Organometallic cation-exchanged phyllosilicates

    OpenAIRE

    Fleming, Shay

    1991-01-01

    Organotin (IV) complexes formed between 0 01 M dimethyltin dichloride solutions prepared at pH 2 6 and 4 0, and trimethyltin chloride prepared at pH 3 4, with Na- 119 montmori 1lonite clay have been characterised using Sn Mflssbauer spectroscopy, X-ray diffraction, thermogravimetric analysis and water sorption isotherms Following cation exchange, Mttssbauer spectroscopy identified two tin species in the dimethyltin (IV)-exchanged clay prepared at pH 2 6 A cis specie...

  12. Calorimetric study of cationic photopolymerization

    International Nuclear Information System (INIS)

    The photopolymerization of penta-erythritol tetra-glycidyl ether (initiator Degacure KI-85) was studied by a du Pont 910 type DSC. From our experimental results the following conclusions can be drawn: (1) During the cationic polymerization reaction the lifetime of the initiating centers are long compared to the lifetime of free radicals in case of radical polymerization. (2) The rate of deactivation of the initiating centers increases with increasing temperature. (author)

  13. Cation coordination in oxychloride glasses

    Science.gov (United States)

    Johnson, J. A.; Holland, D.; Bland, J.; Johnson, C. E.; Thomas, M. F.

    2003-02-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb2O3]x - [ZnCl2]1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Mössbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb)2(OZn)] and [Zn(ClZn)2(OSb)2].

  14. Cation coordination in oxychloride glasses

    International Nuclear Information System (INIS)

    Glasses containing mixtures of cations and anions of nominal compositions [Sb2O3]x - [ZnCl2]1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb)2(OZn)] and [Zn(ClZn)2(OSb)2

  15. Cation coordination in oxychloride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J A [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Holland, D [Physics Department, Warwick University, Coventry (United Kingdom); Bland, J [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom); Johnson, C E [Physics Department, Northern Illinois University, DeKalb, IL (United States); Thomas, M F [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom)

    2003-02-19

    Glasses containing mixtures of cations and anions of nominal compositions [Sb{sub 2}O{sub 3}]{sub x} - [ZnCl{sub 2}]{sub 1-x} where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb){sub 2}(OZn)] and [Zn(ClZn){sub 2}(OSb){sub 2}].

  16. Use of laser induced photoacoustic spectroscopy (LIPAS) to determine equilibrium constants of cation-cation complexes

    International Nuclear Information System (INIS)

    Laser Induced PhotoAcoustic Spectroscopy (LIPAS) is a relatively new, photothermal technique to examine solutions. Studies in the past have shown it to be more sensitive than conventional absorption spectroscopy, while, yielding the same information thus allowing lower concentrations to be used. This study is using LIPAS to examine solutions to determine the equilibrium constants of cation-cation complexes. It has been found that actinyl(V) cations form cation-cation complexes with a variety of cations, including actinyl(VI) cations. The radioactive nature of the actinide elements requires special handling techniques and also require limits be placed on the amount of material that can be used. The sensitivity of some oxidation states of the actinides to oxygen also presents a problem. Preliminary results will be presented for actinyl(V)-actinyl(VI) cation-cation complexes that were studied using a remote LIPAS system incorporating fiber optics for transmission of laser signals

  17. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  18. Anti-inflammatory activity of cationic lipids

    OpenAIRE

    Filion, Mario C; Phillips, Nigel C

    1997-01-01

    The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids.We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-α (TNF-α).In this study, we have evaluated the ability of different cationic lipids to reduce footpad inf...

  19. Anti-inflammatory activity of cationic lipids.

    Science.gov (United States)

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  20. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  1. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  2. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  3. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  4. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  5. Cation substitution in two coccolithophore species

    OpenAIRE

    Melteig, Hanna Elina

    2016-01-01

    Few things would be better than getting rid of CO2 while producing useful materials. Coccolithophores use CO2 in their photorespiration, in addition to using CO2 to produce coccoliths – small platelets made of calcite. Ca is a central cation in this process, and the goal of this project is to investigate to what extent other divalent cations can partially substitute for Ca and become part of the growing coccolith. The long term goal is to enable algae to harvest cations and produce mate...

  6. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558. ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  7. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  8. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  9. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  10. Silica-based cationic bilayers as immunoadjuvants

    OpenAIRE

    Carmona-Ribeiro Ana M; da Costa Maria; Faquim-Mauro Eliana; Santana Mariana RA; Lincopan Nilton

    2009-01-01

    Abstract Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6...

  11. Cations and activated sludge floc structure

    OpenAIRE

    Park, Chul

    2002-01-01

    This research was designed to investigate the effect of cations on activated sludge characteristics and also to determine their influence on digestion performance. For this purpose, cations in solution and in floc were evaluated along with various activated sludge characteristics and the collected waste activated sludge underwent both anaerobic and aerobic digestion. It was found that large amounts of biopolymer (protein + polysaccharide) remained in the effluent of WWTP that received high in...

  12. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  13. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99mTc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  14. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  15. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  16. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1996-12-31

    The problems associated with the disposal of toxic metals in an environmentally acceptable manner continues to plague industry. Such metals as nickel, vanadium, molybdenum, cobalt, iron, and antimony present physiological and ecological challenges that are best addressed through minimization of exposure and dispersion. A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  17. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural and...

  18. Sorption of alkylammonium cations on montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Z.; Wojtowicz, P.; Vaculíková, Lenka; Šugárková, Věra

    2007-01-01

    Roč. 4, 3/147/ (2007), s. 59-65. ISSN 1214-9705 R&D Projects: GA ČR GA205/05/0871 Institutional research plan: CEZ:AV0Z30860518 Keywords : montmorillonite * adsorption * alkylammonium cations Subject RIV: CB - Analytical Chemistry, Separation

  19. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.)

  20. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  1. Cation-cation interactions, magnetic communication and reactivity of the pentavalent uraniumion [U(NR)2]+

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Schelter, Eric J [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Gsula, Robyn L [NON LANL; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Kiplinger, Jacqueline L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory

    2009-01-01

    The dimeric bis(imido) uranium complex [{l_brace}U(NtBu)2(I)(tBu2bpy){r_brace}2] (see picture; U green, N blue, I red) has cation-cation interactions between [U(NR)2]+ ions. This f1-f1 system also displays f orbital communication between uranium(V) centers at low temperatures, and can be oxidized to generate uranium(VI) bis(imido) complexes.

  2. Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae.

    Science.gov (United States)

    Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2016-06-01

    Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes. PMID:27233115

  3. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  4. Mechanism of adsorption of cations onto rocks

    International Nuclear Information System (INIS)

    Adsorption behavior of cations onto granite was investigated. The distribution coefficient (Kd) of Sr2+ and Ba2+ onto granite was determined in the solution of which pH was ranged from 3.5 to 11.3 and ionic strength was set at 10-2 and 10-1. The Kd values were found to increase with increasing pH and with deceasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the mechanism of adsorption of cations onto granite was discussed. Feldspar was found to play an important role in their adsorption. (author)

  5. Planar Chiral, Ferrocene-Stabilized Silicon Cations.

    Science.gov (United States)

    Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin

    2016-04-01

    The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29) Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3) )-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen. PMID:26929105

  6. Ultrafast dynamics of water in cationic micelles.

    Science.gov (United States)

    Dokter, Adriaan M; Woutersen, Sander; Bakker, Huib J

    2007-03-28

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles. PMID:17411144

  7. Ultrafast dynamics of water in cationic micelles

    Science.gov (United States)

    Dokter, Adriaan M.; Woutersen, Sander; Bakker, Huib J.

    2007-03-01

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D2O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.

  8. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH2(CH3)2]+Bi2J9- and [NH2(CH3)2]+SbJ9-. Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  9. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  10. Rabbit cationic protein enhances leukocyte adhesiveness.

    OpenAIRE

    Oseas, R S; Allen, J; Yang, H. H.; Baehner, R. L.; Boxer, L A

    1981-01-01

    Cationic protein purified from rabbit peritoneal polymorphonuclear leukocytes (PMN) was demonstrated to incite autoaggregation of the rabbit PMN and promote adhesiveness of human PMN to endothelial cells. PMN aggregation induced by supernatants derived from secretory PMN was blocked by a specific anticationic protein antibody. These studies reveal that a positively charged protein derived from the PMN can alter surface properties of the PMN itself and imply a role for this protein in PMN immo...

  11. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  12. Low cation coordination in oxide melts

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrie [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL); Du, Jincheng [University of North Texas; Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL; Parise, John B [Stony Brook University (SUNY)

    2014-01-01

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  13. Cation-Exchange Equilibria with Fused Salts

    International Nuclear Information System (INIS)

    Solute distributions of alkali metal, alkaline- earth, transition metal, and actinide ions have been studied in fused salt-cation exchanger systems. The fused salts employed were alkali halides and nitrates. The cation exchangers used were natural zeolites, synthetic zeolites, high-porosity glasses, and molten oxide mixtures. The molten exchangers were composed of Na2O and B2O3 in various proportions. The relative quantities not only determined the exchanger capacity and electrolyte penetration but also produced distribution coefficients for a given solute which varied over several orders of magnitude. Moreover, they produced marked reversals in the selectivity series. Additional studies on the anion distributions, miscibility diagrams, vapour pressures and diffusion rates in these systems have elucidated the mechanisms involved and the relation of selectivity to solute properties, system thermodynamics, exchanger structure and available functional groups. In the region of high Na2O composition, the distribution coefficients for mono-, di- and trivalent cations in NaCl have not only the same order of selectivity found in Dowex 50-HCl systems but also similar values for the distribution coefficients. The results are summarized qualitatively and compared to behaviour in aqueous systems (Table VII). (author)

  14. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  15. Inorganic magnetic support for sodium cation scavenging

    International Nuclear Information System (INIS)

    Three different magnetic iron oxide-silica matrices with polyoxaalkyl units have been obtained in a multi-step synthesis. The structures of the matrices were confirmed by Fourier transform infrared spectroscopy, while their surface morphology was analyzed by scanning electron microscopy. The scavenging ability was studied by ultraviolet-visible measurements. The results demonstrate very good scavenging efficiency of compounds studied against sodium cations (Na+). The complexing abilities of the magnetic iron oxide-silica surfaces were compared with those of the previously studied analogously modified non-magnetic silica surfaces.

  16. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen

    2007-01-01

    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  17. Mobility of cations in magnesium aluminate spinel

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, J.R.; Sonder, E.; Weeks, R.A.; Zuhr, R.A.

    1986-04-15

    Transport of cations in magnesium aluminate spinel due to an applied electric field at approximately 1000 /sup 0/C has been measured by observing changes in elemental concentrations near the cathode and anode surfaces using ion backscattering techniques. The results indicate that magnesium ions are the mobile species at 1000 /sup 0/C and that these ions combine with ambient oxygen at the cathode surface to form a MgO layer. Quantitative interpretation of the data leads to the conclusion that the ionic transference number of spinel becomes approximately 0.5 after treatment in an electric field.

  18. Mobility of cations in magnesium aluminate spinel

    International Nuclear Information System (INIS)

    Transport of cations in magnesium aluminate spinel due to an applied electric field at approximately 1000 0C has been measured by observing changes in elemental concentrations near the cathode and anode surfaces using ion backscattering techniques. The results indicate that magnesium ions are the mobile species at 1000 0C and that these ions combine with ambient oxygen at the cathode surface to form a MgO layer. Quantitative interpretation of the data leads to the conclusion that the ionic transference number of spinel becomes approximately 0.5 after treatment in an electric field

  19. Mobility of cations in magnesium aluminate spinel

    Science.gov (United States)

    Martinelli, J. R.; Sonder, E.; Weeks, R. A.; Zuhr, R. A.

    1986-04-01

    Transport of cations in magnesium aluminate spinel due to an applied electric field at approximately 1000 °C has been measured by observing changes in elemental concentrations near the cathode and anode surfaces using ion backscattering techniques. The results indicate that magnesium ions are the mobile species at 1000 °C and that these ions combine with ambient oxygen at the cathode surface to form a MgO layer. Quantitative interpretation of the data leads to the conclusion that the ionic transference number of spinel becomes approximately 0.5 after treatment in an electric field.

  20. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  1. Cation-Cation Complexes of Pentavalent Uranyl: From Disproportionation Intermediates to Stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Horeglad, Pawel; Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [CEA, INAC, SCIB, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, CEA-Grenoble, 38054 GRENOBLE, Cedex 09 (France)

    2010-07-01

    Three new cation cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO{sub 2}py{sub 5})-(KI{sub 2}py{sub 2})]{sub n} (1) with the Schiff base ligands salen{sup 2-}, acacen{sup 2-}, and salophen{sup 2-} (H{sub 2}salen N, N'-ethylene-bis(salicylidene-imine), H{sub 2}acacen=-N, N'-ethylenebis(acetylacetone-imine), H{sub 2}salophen=N, N'-phenylene-bis(salicylidene-imine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen{sup 2-} in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetra-nuclear complexes ([UO{sub 2}-(acacen)]{sub 4}[{mu}{sub 8}-]{sub 2}[K([18]C-6)(py)]{sub 2}) (3) and ([UO{sub 2}(acacen)](4)[{mu}{sub 8}-]).2[K([222])(py)] (4) ([UO{sub 2}(salophen)](4)[{mu}{sub 8}-K]{sub 2}[mu(5)-KI]{sub 2}[(K([18]C-6)]).2 [K([18]C-6)-(thf){sub 2}].2I (5), and ([UO{sub 2}(salen)(4)][{mu}{sub 8}-Rb]{sub 2}[Rb([18]C-6)]{sub 2}) (9) ([222] = [222]cryptand, py =pyridine), presenting a T-shaped cation cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetra-nuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U{sup V}O{sub 2}(salen)(py)][Cp*{sub 2}Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation cation complexes. The nature of the cation plays a key role in the preparation of stable cation cation complexes. Stable tetra-nuclear complexes form in the presence of K

  2. Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

    International Nuclear Information System (INIS)

    The simultaneous determination of anions (SO4 2-, Cl-, and NO3 -) and cations (Na+, NH4+, K+, Mg2+, and Ca2+) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cation exchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the H+-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters

  3. Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Pill; Choi, Seong Ho; Park, Yu Chul; Bae, Zun Ung; Lee, Mu Sang; Lee, Sang Hak; Chang, Hye Yong [Graduate School, Kyungpook National University, Daegu (Korea, Republic of); Kwon, Se Mok [Ulsan City Health and Environmental Research Institute, Ulsan (Korea, Republic of); Tanaka, Kazuhiko [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2003-09-15

    The simultaneous determination of anions (SO{sub 4} {sup 2-}, Cl{sup -}, and NO{sub 3} {sup -}) and cations (Na{sup +}, NH{sup 4+}, K{sup +}, Mg{sup 2+}, and Ca{sup 2+}) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cation exchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the H{sup +}-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

  4. Cationic polymers in water treatment: Part 1: Treatability of water with cationic polymers

    Czech Academy of Sciences Publication Activity Database

    Polasek, P.; Mutl, Silvestr

    2002-01-01

    Roč. 28, č. 1 (2002), s. 69-82. ISSN 0378-4738 R&D Projects: GA AV ČR KSK2067107 Keywords : cationic polymers * treatability * water quality Subject RIV: BK - Fluid Dynamics Impact factor: 0.481, year: 2002

  5. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  6. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  7. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  8. Ground state of naphthyl cation: Singlet or triplet?

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Achintya Kumar; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav, E-mail: s.pal@ncl.res.in [Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008 (India); Manohar, Prashant U. [Department of Chemistry, BITS Pilani, Pilani Campus (India)

    2014-03-21

    We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (π,σ) type, whereas in 2-naphthyl cation it is (σ,σ{sup ′}) type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

  9. Bespoke cationic nano-objects via RAFT aqueous dispersion polymerisation

    OpenAIRE

    Williams, M.; Penfold, NJW; Lovett, JR; Warren, NJ; Douglas, CWI; Doroshenko, N; Verstraete, P; Smets, J; Armes, SP

    2016-01-01

    A range of cationic diblock copolymer nanoparticles are synthesised via polymerisation-induced self-assembly (PISA) using a RAFT aqueous dispersion polymerisation formulation. The cationic character of these nanoparticles can be systematically varied by utilising a binary mixture of two macro-CTAs, namely non-ionic poly(glycerol monomethacrylate) (PGMA) and cationic poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PQDMA), with poly(2-hydroxypropyl methacrylate) (PHPMA) being selected...

  10. Development of Recombinant Cationic Polymers for Gene Therapy Research

    OpenAIRE

    Canine, Brenda F.; Hatefi, Arash

    2010-01-01

    Cationic polymers created through recombinant DNA technology have the potential to fill a void in the area of gene delivery. The recombinant cationic polymers to be discussed here are amino acid based polymers synthesized in E.coli with the purpose to not only address the major barriers to efficient gene delivery but offer safety, biodegradability, targetability and cost-effectiveness. This review helps the readers to get a better understanding about the evolution of recombinant cationic poly...

  11. Effect of Headgroup on DNA−Cationic Surfactant Interactions

    OpenAIRE

    Dasgupta, Antara; Das, Prasanta Kumar; Dias, Rita S.; Miguel, Maria G.; Lindman, Björn; Jadhav, Vaibhav M.; Gnanamani, Muthaiah; Maiti, Souvik

    2007-01-01

    The interaction behavior of DNA with different types of hydroxylated cationic surfactants has been studied. Attention was directed to how the introduction of hydroxyl substituents at the headgroup of the cationic surfactants affects the compaction of DNA. The DNA−cationic surfactant interaction was investigated at different charge ratios by several methods like UV melting, ethidium bromide exclusion, and gel electrophoresis. Studies show that there is a discrete transition in the DNA chain fr...

  12. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.; Wilbrandt, R.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...... the Raman spectrum excited in resonance with the absorption band at 425 nm. The spectrum was interpreted with the help of density functional theory calculations. (C) 1998 Elsevier Science B.V.......The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution and...

  13. Interaction of actinide cations with synthetic polyelectrolytes

    International Nuclear Information System (INIS)

    The binding of Am+3, Th+4 and UO2+2 to polymaleic acid, polyethylenemaleic acid and polymethylvinylethermaleic acid has been measured by a solvent extraction technique at 250C and either 0.02 or 0.10 M ionic strength. The solutions were buffered over a pH range such that the percent of carboxylate groups ionized ranged from 25 to 74%. The binding was described by two constants, β1 and β2, which were evaluated after correction for complexation of the actinide cations by acetate and hydrolysis. For comparable degrees of ionization, all three polyelectrolytes showed similar binding strengths. In general, these results indicated that the binding of actinides to these synthetic polyelectrolytes is basically similar to that of natural polyelectrolytes such as humic and fulvic acids. (orig.)

  14. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  15. Univalent-cation-elicited acidification by yeasts.

    Science.gov (United States)

    Kotyk, A; Georghiou, G

    1994-08-01

    Addition of univalent cations to sugar-metabolizing Saccharomyces cerevisiae, Schizosaccharomyces pombe and Lodderomyces elongisporus brought about a powerful acidification of the external medium with rates up to nearly 20 nmol H+ per min per mg dry wt. in S. cerevisiae, over 15 nmol in S. pombe, and 4.7 nmol in L. elongisporus. These rates were as much as 20 times, 5.5 times and 10.3 times, respectively. higher than in the absence of K+. Use of galactose-induced cells, of H(+)-ATPase-deficient mutants and observations over the entire growth curve indicated that the K+ effect on H+ extrusion is not connected with the H(+)-ATPase function as such but rather depends on metabolic reactions producing ATP. The effect has apparently nothing to do with the electrical potential across the plasma membrane. PMID:7804140

  16. Cationic nanofibrillar cellulose with high antibacterial properties.

    Science.gov (United States)

    Chaker, Achraf; Boufi, Sami

    2015-10-20

    Cationic nanofibrillar cellulose (C-NFC) has been prepared via a high pressure homogenization using quaternized cellulose fibers with glycidyltrimethylammonium chloride. It has been shown that the quaternization of dried softwood pulp facilitated the defibrillation processes and prevented clogging of the homogenizer. The effects of the trimethylammonium chloride content on the fibrillation yield, the transparency degree of the gel, the rheological behavior of the NFC suspension and their electrokinetic properties were investigated. AFM observation showed that the NFC suspension consisted of individualized cellulose I nanofibrils 4-5nm in width and length in the micronic scale. In addition to their strong reinforcing potential, the inclusion of C-NFC into a polymer matrix was shown to efficiently enhance the antibacterial activity. The reinforcing potential of C-NFC, studied by dynamic mechanical analysis (DMA), was compared to anionic NFC and the difference was explained in terms of the nanofibrils capacities to build up a strong networks held by hydrogen bonding. PMID:26256179

  17. Electronic structure near cationic defects in magnetite

    International Nuclear Information System (INIS)

    We used the DFT + U method to describe the modification of the physical properties induced by cationic point defects in cubic magnetite Fe3O4. We considered the case of Fe vacancies and interstitial atoms in non-stoichiometric magnetite, and of Frenkel defects in a stoichiometric crystal. For each of these defects, we give results on the modification of the magnetic moment of atoms near the defect. We describe the local reorganization of the electric charge which is responsible for changes in the average oxidation degree of Fe atoms. We show that gap states, when they exist, do not destroy the half-metallic character of magnetite. Fe defects, however, change the filling of bands crossing the Fermi level and must be mostly responsible for a decrease in the magnetization. (paper)

  18. Molecular machines: stimulation of cation motion in molecular switches

    International Nuclear Information System (INIS)

    The theoretical aspects of the mechanism of the motion of cations and ligands in molecular machines referred to as redox switches are presented. The interrelated properties of cations - the energetic, electrochemical, spectral, and magnetic properties; their propensity to form either covalent or ionic bonds; and the relative softness and hardness of cations and ligands - stimulate molecular motion. These properties determine the thermal stability and stability to destruction caused by electrochemical processes and, eventually, the maximal number of transformation cycles. The maximal efficiency of redox switches is attained when the redox reaction involves a cation with a half-filled (d5, f7) or complete (d10, f14) electronic shell. The role of the Jahn-Teller effect is considered: it is responsible for geometry distortion, which stimulates cation motion. The properties of nd- and 4f-block cations are compared from the standpoint of their use for designing redox switches. In switches constructed on the basis of supramolecular compounds containing hard and soft moieties, softer cations (Fe2+, Co2+, Cu+, etc.) prefer to coordinate to soft ligands and harder cations (Fe3+, Co3+, Cu2+, etc.) prefer to coordinate to hard ligands. A cation moves due to the soft-hard change of its coordination sphere in the course of the redox reaction. Design of redox switches based on solid compounds with a cation in mixed oxidation state is shown to be promising. Cations can change their oxidation state with a change in temperature or pressure. The possibility of designing magnetic switches is considered

  19. Polyenyl cations and radical cations – synthesis, spectroscopic properties and reactions

    OpenAIRE

    Kildahl-Andersen, Geir

    2007-01-01

    In the present work, polyene precursors for the formation of charged polyenyl species were synthesised. Their conversion to charge delocalised radical cations and diamagnetic mono- and dications was carried out by treatment with Brønsted and Lewis acids. Reaction conditions were optimised to achieve sufficient stability of the charged polyenes for characterisation by modern spectroscopic methods; in particular nearinfrared absorption spectroscopy (NIR), two-dimensional nuclear magnetic resona...

  20. Effects of cationic hydroxyethyl cellulose on glucose tolerance and obesity

    Science.gov (United States)

    Cholestyramine is a cationic polymer prescribed to lower cholesterol in humans. We investigated the effects of cationic hydroxyethyl cellulose (cHEC) on weight loss and metabolic disorders associated with obesity using both hamster and diet-induced obese mouse models. Golden Syrian hamsters and ob...

  1. Photodynamic Inactivation of Bacteria and Biofilms Using Cationic Bacteriochlorins

    Science.gov (United States)

    Meerovich, G. A.; Tiganova, I. G.; Makarova, E. A.; Meerovich, I. G.; Romanova Ju., M.; Tolordova, E. R.; Alekseeva, N. V.; Stepanova, T. V.; Yu, Koloskova; Luk'anets, E. A.; Krivospitskaya, N. V.; Sipailo, I. P.; Baikova, T. V.; Loschenov, V. B.; Gonchukov, S. A.

    2016-02-01

    This work is devoted to the study of two new synthetic bacteriochlorins with four and eight cationic substitutes as the photosensitizers in the photodynamic process. The spectral and antibacterial properties of these photosensitizers in saline solution were investigated. It is shown, that the aggregation ability decreases and the antibacterial efficiency grows as the cationic substitute number increases.

  2. Decomplexing metallic cations from metallo-organic compounds

    OpenAIRE

    Melian, C.I.; Kapteijn F.; Moulijn, J.A.

    2006-01-01

    The invention is directed to a process for liberating metallic cations from metallo-organic compounds, said process comprising contacting an aqueous solution of the metallo-organic compound with an oxidising agent, thereby oxidising the organic component and obtaining the free cation

  3. Effects of metallic cations in the beryl flotation

    International Nuclear Information System (INIS)

    The beryl zeta potential in microelectrophoretic cell is studied in the presence of neutral electrolyte, cations of calcium, magnesium and iron. The petroleum sulfonate is used how collector in Hallimond tube. Hydroxy complex of metallic cations seems activate the ore and precipitates of colloidal metallic hidroxies seems lower him when added to the mixture. (M.A.C.)

  4. Stable polyfluorinated cycloalkenyl cations and their NMR spectra

    International Nuclear Information System (INIS)

    New stable 1-methoxyperfluoro-2-ethylcyclobutenyl, 1-methoxyperfluoro-2-methylcyclo-pentenyl, and 1-methoxyperfluoro-2-ethylcyclohexenyl cations were obtained by the action of antimony pentafluoride on the corresponding olefins. The distribution of the charges in the investigated polyfluorinated cycloalkenyl cations was investigated by 13C NMR method

  5. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar;

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  6. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  7. Promotion of radiation-induced cationic polymerization by onium salts

    International Nuclear Information System (INIS)

    The radiation-induced cationic polymerization of styrene derivatives was studied in the presence of diphenyliodonium and triphenylsulfonium hexafluorophosphates in dichloromethane. A remarkable promotion of the polymerization was observed in the presence of the salts. The pulse radiolysis study revealed that the promotion of the polymerization is due to the ion-pair formation between the initiating cations and the nonnucleophilic complex metal halide anions of the salts resulting in the stabilization of the cations toward neutralization. An additional effect observed in the case of diphenyliodonium salt is the oxidation of free radical species to the cations responsible for the polymerization. An increase in molecular weight at low temperature suggested that the propagating cations are also paired with the counterions derived from the salts. (author)

  8. Therapeutic potential of cationic steroid antibacterials.

    Science.gov (United States)

    Salmi, Chanaz; Brunel, Jean M

    2007-08-01

    Antibiotics were one of the great health successes of the 20th century. Antibiotics, both naturally derived and synthetic, have resulted in huge decreases in both morbidity and mortality from bacterial infections. As a consequence, the 'antibiotic age' has changed public expectations about the results of infectious disease. However, this has led to high levels of inappropriate prescribing, where antibiotics may be administered to fulfil patient expectations rather than for clinical benefit. Along with unwise uses in agriculture and elsewhere, this has contributed to recent rises in numbers of antibiotic-resistant bacteria. As a result, many commentators have described this as the end of the antibiotic age and the term 'superbug' has entered the common vocabulary for multi-drug-resistant bacteria such as vancomycin-resistant Enterococcus, multi-drug-resistant Staphylococcus aureus and multi-drug-resistant Pseudomonas aeruginosa. In this context, an attractive approach for the development of antibacterial agents is the use of a new class of cationic steroidal compounds mimicking polymyxin activities. The permeabilization properties of these agents of the outer membranes of Gram-negative bacteria are reported in this review, as well as a discussion of literature results. PMID:17685865

  9. INTERACTIONS BETWEEN CATIONIC POLYELECTROLYTE AND PULP FINES

    Directory of Open Access Journals (Sweden)

    Elina Orblin

    2011-05-01

    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  10. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment.

    Science.gov (United States)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C; Anand, Atul; Cederkvist, Luise; Petersen, Nikolaj H T; Nylandsted, Jesper; Stenvang, Jan; Mellemgaard, Anders; Østerlind, Kell; Friis, Søren; Jäättelä, Marja

    2016-07-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy. PMID:27333030

  11. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  12. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions

    Science.gov (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2016-04-01

    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  13. Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes

    OpenAIRE

    Chen, Jiumei; Hessler, Jessica A.; Putchakayala, Krishna; Panama, Brian K.; Khan, Damian P.; Hong, Seungpyo; Mullen, Douglas G.; DiMaggio, Stassi C.; Som, Abhigyan; Tew, Gregory N.; Lopatin, Anatoli N.; Baker, James R.; Banaszak Holl, Mark M.; Orr, Bradford G

    2009-01-01

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper we show that non-cytotoxic concentrations of cationic nanoparticles induce 30–2000 pA currents in 293A and KB cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm2 in total area....

  14. Competitive Solvation of the Imidazolium Cation by Water and Methanol

    CERN Document Server

    Chaban, Vitaly

    2014-01-01

    Imidazolium-based ionic liquids are widely used in conjunction with molecular liquids for various applications. Solvation, miscibility and similar properties are of fundamental importance for successful implementation of theoretical schemes. This work reports competitive solvation of the 1,3-dimethylimidazolium cation by water and methanol. Employing molecular dynamics simulations powered by semiempirical Hamiltonian (electronic structure level of description), the local structure nearly imidazolium cation is described in terms of radial distribution functions. Although water and methanol are chemically similar, water appears systematically more successful in solvating the 1,3-dimethylimidazolium cation. This result fosters construction of future applications of the ternary ion-molecular systems.

  15. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    International Nuclear Information System (INIS)

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  16. Isomerization of propargyl cation to cyclopropenyl cation: Mechanistic elucidations and effects of lone pair donors

    Indian Academy of Sciences (India)

    Zodinpuia Pachuau; Kiew S Kharnaior; R H Duncan Lyngdoh

    2013-03-01

    This ab initio study examines two pathways (one concerted and the other two-step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites. Fully optimized geometries at the B3LYP/6-31G(d) level were used, along with single point QCISD(T)/6-311+G(d,p) and accurate G3 level calculations upon the DFT optimized geometries. For the unsolvated reaction, the two-step second pathway is energetically favoured over the one-step first pathway. Lone pair donor affinity for the various C3H$^{+}_{3}$ species follows the uniform order NH3 > H2S>H2O>HF. The activation barriers for the solvated isomerizations decrease in the order HF>H2O>H2S>NH3 for both pathways. The number of lone pairs on the donor heteroatom as well as the heteroatom electronegativity are factors related to both these trends. Compared to the unsolvated cases, the solvated reactions have transition states which are usually ‘later’ in position along the reaction coordinate, validating the Hammond postulate.

  17. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  18. SITING OF LITHIUM CATIONS IN FERRIERITE. MULTINUCLEAR NMR CRYSTALLOGRAPHY STUDY

    Czech Academy of Sciences Publication Activity Database

    Klein, Petr; Dědeček, Jiří; Sklenák, Štěpán; Thomas, Haunani M.

    Segovia: CIS-5, 2013. s. 1. [Czech-Italian- Spanish Conference on Molecular Sieves and Catalysis /5./. 16.06.2013-19.06.2013, Segovia] Institutional support: RVO:61388955 Keywords : lithium cations * crystallography Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Infrared spectroscopy of mass-selected metal carbonyl cations

    Science.gov (United States)

    Ricks, A. M.; Reed, Z. E.; Duncan, M. A.

    2011-04-01

    Metal carbonyl cations of the form M(CO)n+ are produced in a molecular beam by laser vaporization in a pulsed nozzle source. These ions, and their corresponding rare gas atom "tagged" analogs, M(CO)n(RG)m+, are studied with mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region and with density functional theory computations. The number of infrared-active bands, their frequency positions, and their relative intensities provide distinctive patterns allowing determination of the geometries and electronic structures of these complexes. Cobalt penta carbonyl and manganese hexacarbonyl cations are compared to isoelectronic iron pentacarbonyl and chromium hexacarbonyl neutrals. Gold and copper provide examples of "non-classical" carbonyls. Seven-coordinate carbonyls are explored for the vanadium group metal cations (V +, Nb + and Ta +), while uranium cations provide an example of an eight-coordinate carbonyl.

  20. Study on cationic photopolymerization reaction of epoxy polysiloxane

    Science.gov (United States)

    Sun, F.; Jiang, S. L.; Liu, J.

    2007-11-01

    The effects of epoxy monomers, concentration of photoinitiator and radical photoinitiators on the photosensitive properties of cationic phopolymerization system with a novel epoxy polysiloxane oligomer (CEPS) were investigated via a gel yield method. The results showed that among the tested epoxy monomers, the reactivity of ERL-4221 with cycloaliphatic epoxy groups was the highest. The optimum concentration of diaryldiodonium salt (SR-1012) was determined as 4-5 wt.%. Increasing the amounts of ERL-4221 in the CEPS cationic photopolymerization system, UV-curing rate increased. Radical photoinitiators with ArC dbnd O structure possessed sensitization capacity to the cationic photoinitiator SR-1012. The photosensitivity of the CEPS system could be up to 165 mJ/cm 2. Adding a small amount of IPA and BP could greatly improve the photosensitivity of CEPS cationic photosensitive system. The optimal quantity of isopropanol added to the system was not more than 2 wt.%.

  1. Cation antisite disorder in uranium-doped gadolinium zirconate pyrochlores

    International Nuclear Information System (INIS)

    The incorporation of uranium into gadolinium zirconate (Gd2Zr2O7) is investigated by synchrotron X-ray powder diffraction and X-ray absorption near-edge structure (XANES) spectroscopy. The results suggest that the uranium cation is largely located on the pyrochlore B-site instead of the targeted A-site. Cation disorder in Gd2Zr2O7 and U-doped Gd2Zr2O7 is investigated by positron annihilation lifetime spectroscopy (PALS) which demonstrates the absence of cation vacancies in these systems. This work provides direct evidence for cation antisite (A- and B-site mixing) disorder in U-doped and off-stoichiometric Gd2Zr2O7 pyrochlore

  2. Study on cationic photopolymerization reaction of epoxy polysiloxane

    International Nuclear Information System (INIS)

    The effects of epoxy monomers, concentration of photoinitiator and radical photoinitiators on the photosensitive properties of cationic phopolymerization system with a novel epoxy polysiloxane oligomer (CEPS) were investigated via a gel yield method. The results showed that among the tested epoxy monomers, the reactivity of ERL-4221 with cycloaliphatic epoxy groups was the highest. The optimum concentration of diaryldiodonium salt (SR-1012) was determined as 4-5 wt.%. Increasing the amounts of ERL-4221 in the CEPS cationic photopolymerization system, UV-curing rate increased. Radical photoinitiators with ArC=O structure possessed sensitization capacity to the cationic photoinitiator SR-1012. The photosensitivity of the CEPS system could be up to 165 mJ/cm2. Adding a small amount of IPA and BP could greatly improve the photosensitivity of CEPS cationic photosensitive system. The optimal quantity of isopropanol added to the system was not more than 2 wt.%

  3. Degradation Mechanism of Cationic Red X-GRL by Ozonation

    Institute of Scientific and Technical Information of China (English)

    Wei Rong ZHAO; Xin Hua XU; Hui Xiang SHI; Da Hui WANG

    2003-01-01

    The degradation mechanism of Cationic Red X-GRL was investigated when the intermediates, the nitrate ion and the pH were analyzed in the ozonation. The degradation of the Cationic Red X-GRL includes the de-auxochrome stage, the decolour stage, and the decomposition of fragment stage. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one becomes the form of an amine compound, and the rest four are transformed into two molecules of nitrogen. In the course of the ozonation of Cationic Red X-GRL, the direct attack of ozone is the main decolour effect.

  4. Investigation of Fragmentation of Tryptophan Nitrogen Radical Cation

    Science.gov (United States)

    Piatkivskyi, Andrii; Happ, Marshall; Lau, Justin Kai-Chi; Siu, K. W. Michael; Hopkinson, Alan C.; Ryzhov, Victor

    2015-08-01

    This work describes investigation of the fragmentation mechanism of tryptophan N-indolyl radical cation, H3N+-TrpN• ( m/ z 204) studied via DFT calculations and several gas-phase experimental techniques. The main fragment ion at m/ z 131, shown to be a mixture of up to four isomers including 3-methylindole (3MI) π-radical cation, was found to undergo further loss of an H atom to yield one of the two isomeric m/ z 130 ions. 3-Methylindole radical cation generated independently (via CID of [CuII(terpy)3MI]•2+) displayed gas-phase reactivity partially similar to that of the m/ z 131 fragment, further confirming our proposed mechanism. CID of deuterated tryptophan N-indolyl radical cation ( m/ z 208) suggested that up to six H atoms are involved in the pathway to formation of the m/ z 131 ion, consistent with hydrogen atom scrambling during CID of protonated Trp.

  5. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite

    OpenAIRE

    Mishael, Y. G.; Undabeytia López, Tomás; Rytwo, Giora; Papahadjopoulos Sternberg, B.; Rubin, Baruch; Nir, Shlomo

    2002-01-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption o...

  6. Microscopic Theory of Cation Exchange in CdSe Nanocrystals

    OpenAIRE

    Ott, Florian D.; Spiegel, Leo L.; Norris, David J.; Erwin, Steven C.

    2014-01-01

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We used density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key...

  7. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.;

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...... the Raman spectrum excited in resonance with the absorption band at 425 nm. The spectrum was interpreted with the help of density functional theory calculations. (C) 1998 Elsevier Science B.V....

  8. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  9. Mercury release from deforested soils triggered by base cation enrichment.

    Science.gov (United States)

    Farella, N; Lucotte, M; Davidson, R; Daigle, S

    2006-09-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide. PMID:16781764

  10. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    Science.gov (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  11. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils

    OpenAIRE

    Ciesielski, H.; Sterckeman, T.

    1997-01-01

    The object of this study is to compare the results obtained with three standardized methods of determination of cationic exchange capacity (CEC) and exchangeable cations (Ca, Mg, K) in soils. The three methods are based on different exchange reagents: cobalt hexamine (Cohex) trichloride, barium chloride and ammonium acetate. Exchange procedures are different as well; they are, respectively, single extraction, successive extractions and percolation. Values measured with barium and Cohex as ind...

  12. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.

    2014-01-10

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  13. Radiolytically generated cation radicals and their intramolecular transformations

    International Nuclear Information System (INIS)

    Recent theoretical and experimental results indicate that conventional cation radicals derived directly from their neutral precursors are often less stable than their nonconventional isomers with no stable counterparts. Many organic cation radicals may spontaneously isomerise, often by a single intramolecular hydrogen transfer, to more stable distonic forms characterised by spatially separated charge and radical side. Cation radicals radiolytically generated in Freon matrices were investigated using low temperature EPR spectroscopy and DFT quantum chemical calculations, which helped to assign the observed transients and to explain the underlying transformations. Different types of transformations of the cation radicals were comprehensively studied. The primary cation radicals of the 2,5-dihydrofuran (2,5-DHF) and 2,5-dihydropyrrol (2,5-DHP) are not stable and undergo irreversible transformation to 2,4-DHF.+ or 2,4-DHP.+, respectively, by intramolecular H-shift within the molecular ring to the former double bond. The 2,4-DHF.+ and 2,4-DHP.+ are stable only at a small temperature range and undergo further intramolecular rearrangements through 2→3 and 3→4 H-shifts, which can be induced by illumination with visible light. In case of lactone cation radicals intramolecular H-transfer occurs from the methylene group in α-position to the primary radical centre localized on carbonyl oxygen. The stability of the primary species depends on geometrical parameters of the lactones studied. The cation radicals of 5-membered ring lactones are most stable, due to the largest separation between the H-atom on the ring and the carbonyl oxygen and, as follows, the largest activation energy. The formation of two new cyclic species was observed in the case of the cation radical of ethyl acrylate (EA), in a reaction sequence of hydrogen transfer from the ester group to the carbonyl oxygen and subsequent intramolecular cycloaddition of the terminal radical to the vinyl double bond

  14. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite.

    Science.gov (United States)

    Mishael, Yael Golda; Undabeytia, Tomas; Rytwo, Giora; Papahadjopoulos-Sternberg, Brigitte; Rubin, Baruch; Nir, Shlomo

    2002-05-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption of hexadecyltrimethylammonium (HDTMA) and octadecyltrimethylammonium (ODTMA) on montmorillonite was studied above and below their critical micelle concentrations (CMC). At concentrations above the CMC, the loading exceeded the clay's cation exchange capacity (CEC) and indicated higher affinity of the cation with the longer alkyl chain. An adsorption model could adequately simulate adsorption at concentrations below the CMC, and yield fair predictions for the effect of ionic strength. The model indicated that above the CMC adsorbed micelles contributed significantly to the amount of ODTMA adsorbed. Evidence for adsorption of ODTMA micelles on montmorillonite was provided by X-ray diffraction, freeze-fracture electron microscopy, and dialysis bag measurements. SFM was not adsorbed directly on the clay mineral, and adsorbed at low levels, when the organic cation was adsorbed as monomers. In contrast, a large fraction of SFM adsorbed on the clay mineral when incorporated in micelles that adsorbed on the clay. PMID:11982411

  15. Cationic polymers and their self-assembly for antibacterial applications.

    Science.gov (United States)

    Deka, Smriti Rekha; Sharma, Ashwani Kumar; Kumar, Pradee

    2015-01-01

    The present article focuses on the amphiphilic cationic polymers as antibacterial agents. These polymers undergo self-assembly in aqueous conditions and impart biological activity by efficiently interacting with the bacterial cell wall, hence, used in preparing chemical disinfectants and biocides. Both cationic charge as well as hydrophobic segments facilitate interactions with the bacterial cell surface and initiate its disruption. The perturbation in transmembrane potential causes leakage of cytosolic contents followed by cell death. Out of two categories of macromolecules, peptide oligomers and cationic polymers, which have extensively been used as antibacterials, we have elaborated on the current advances made in the area of cationic polymer-based (naturally occurring and commonly employed synthetic polymers and their modified analogs) antibacterial agents. The development of polymer-based antibacterials has helped in addressing challenges posed by the drug-resistant bacterial infections. These polymers provide a new platform to combat such infections in the most efficient manner. This review presents concise discussion on the amphiphilic cationic polymers and their modified analogs having low hemolytic activity and excellent antibacterial activity against array of fungi, bacteria and other microorganisms. PMID:25858132

  16. Cationization of Alpha-Cellulose to Develop New Sustainable Products

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Papermaking has been using high quantities of retention agents, mainly cationic substances and organic compounds such as polyamines. The addition of these agents is related to economic and environmental issues, increasing contamination of the effluents. The aim of this work is to develop a cationic polymer for papermaking purposes based on the utilization of alpha-cellulose. The cationization of mercerized alpha-cellulose with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC is governed by a pseudo-second-order reaction. The initial amorphous fraction of cellulose is reacted with CHPTAC until the equilibrium value of nitrogen substitution is reached. Nitrogen is incorporated as a quaternary ammonium group in the polymer. Also, the kinetic constant increased with decreasing crystallinity index, showing the importance of the previous alkalization stage. The use of modified natural polysaccharides is a sustainable alternative to synthetic, nonbiodegradable polyelectrolytes and thus is desirable with a view to developing new products and new processes.

  17. Magnetic susceptibilities of actinide cations in aqueous solution

    International Nuclear Information System (INIS)

    Paramagnetic cations serve as a useful and efficient NMR probes of coordination environment and can also give insight into dynamics on the millisecond timescale. In an effort to extend the powerful analytical techniques employed with the lanthanide series, some studies to characterize the actinide paramagnetic behavior have been undertaken in our labs under the auspices of the European ACTINET Integrated Infrastructure Initiative and the DOE, NEUP program. We will present a series of magnetic susceptibility measurements spanning all of the readily accessible actinide cations. Variable temperature data has been collected to gather information on the ground electronic state of the cations. The effects of the counter anion in solution are also discussed as they relate to 'softness' and the apparent reduction in free electron character on the metal. Comparisons with first-order Van Vleck and Russell-Saunders predictions will also be shown. (authors)

  18. Changing of Cations Concentrations in Waters of Polluted Urban River

    Directory of Open Access Journals (Sweden)

    Andrianova Maria

    2016-01-01

    Full Text Available Water from urban river Okhta polluted with domestic and industrial wastewaters was investigated. Specific electric conductivity (k, molar concentrations of ions Na+, K+, Mg++ and Ca++, concentration of total nitrogen (TN were measured in water samples. Increasing of k happened together with increasing of molar fraction of sodium-ion (RNa among all studied cations (and correspondingly decreasing of molar fractions of other cations. Good correlations were found between RNa and TN (r = 0.67, k and TN (r = 0.84. The results support the idea of the leading role of wastewaters in changing of k and cations concentrations. Electric conductivity and RNa could be used to distinguish between polluted and not polluted waters in the Okhta.

  19. Surface hopping investigation of the relaxation dynamics in radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, Mariana; Matsika, Spiridoula, E-mail: smatsika@temple.edu [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States); Weinacht, Thomas [Department of Physics, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-01-21

    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in these systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.

  20. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  1. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber

    2014-10-01

    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  2. Gamma-irradiated cationic starches: Paper surface-sizing agents

    International Nuclear Information System (INIS)

    Cationic starches, precisely depolymerized by gamma-irradiation (60Co), were dispersed in mild alkali and evaluated as surface sizes for bond paper on a pilot paper machine. The irradiated products had excellent dispersion properties, were well retained on fibers when sized wastepaper (broke) was repulped and had an ability to enhance paper properties that was comparable to that of starch-based materials used commercially. A yellow corn flour, cationized by an essentially dry reaction process recently developed at this Center, was also radiolyzed and evaluated as a size. This latter product was unique in that all drying steps were eliminated in the preparation of a cationic ceral product of reduced viscosity. (orig.)

  3. Low-Temperature Cationic Rearrangement in a Bulk Metal Oxide.

    Science.gov (United States)

    Li, Man-Rong; Retuerto, Maria; Stephens, Peter W; Croft, Mark; Sheptyakov, Denis; Pomjakushin, Vladimir; Deng, Zheng; Akamatsu, Hirofumi; Gopalan, Venkatraman; Sánchez-Benítez, Javier; Saouma, Felix O; Jang, Joon I; Walker, David; Greenblatt, Martha

    2016-08-16

    Cationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C. The irreversible ionic motion at ambient pressure, as evidenced by real-time powder synchrotron X-ray and neutron diffraction, and second harmonic generation, leads to a transition from a Ni3 TeO6 -type to an ordered-ilmenite structure, and dramatic changes of the electrical and magnetic properties. This work demonstrates a remarkable cationic rearrangement, with corresponding large changes in the physical properties in a bulk oxide at unprecedented low temperatures. PMID:27203790

  4. Effect of cation exchange of major cation chemistry in the large scale redox experiment at Aespoe. Revision 1

    International Nuclear Information System (INIS)

    Geochemical modeling was used to test the hypothesis that cation exchange with fracture-lining clays during fluid mixing in the Aespoe Hard Rock Laboratory can significantly affect major element chemistry. Conservative mixing models do not adequately account for changes in Na, Ca and Mg concentrations during mixing. Mixing between relatively dilute shallow waters and more concentrated waters at depth along fracture zones was modeled using the EQ3/6 geochemical modeling package. A cation exchange model was added to the code to describe simultaneously aqueous speciation, mineral precipitation/dissolution, and equilibration between a fluid and a cation exchanger. Fluid chemistries predicted to result from mixing were compared with those monitored from boreholes intersecting the fracture zone. Modeling results suggest that less than 0.1 equivalent of a smectite exchanger per liter of groundwater is necessary to account for discrepancies between predictions from a conservative mixing model and measured Na and Ca concentrations. This quantity of exchanger equates to an effective fracture coating thickness of 20 microm or less given a fracture aperture width of 1,000 microm or less. Trends in cation ratios in the fluid cannot be used to predict trends in cation ratios on the exchanger because of the influence of ionic strength on heterovalent exchange equilibrium. It is expected that Na for Ca exchange will dominate when shallow waters such as HBHO2 are mixed with deeper waters. In contrast, Na for Mg exchange will dominate mixing between deeper waters

  5. Modeling cation exchange using EQ3/6

    International Nuclear Information System (INIS)

    Geochemical modeling codes must be able to predict solid-solution and ion-exchange behavior of zeolites and smectites in order to design and assess strategies for containing and cleaning up toxic and/or radioactive wastes. Cation-exchange and solid-solution models have been implemented in the EQ3/6 geochemical modeling package and used to predict the composition of clinoptilolite under a variety of conditions. Published free energies of cation exchange on clinoptilolite at 25 degrees C were combined with the calorimetric data for clinoptilolite to derive free energies of formation of the component end members of a solid solution in which mixing is allowed only on the exchange site. The solid-solution model and component end-member data were incorporated into EQ3/6 and its data base. An option to treat cation exchange independently of the solid-solution model was also developed and implemented in EQ3/6. This option allows the user to model mixed-phase exchangers, multisite exchangers, and systems in which the exchanger is not in overall equilibrium with the solution. Two open-quotes idealclose quotes cation-exchange conventions [Vanselow (mole fraction) and Gapon (equivalent fraction)] are currently implemented in the code. A description of the cation-exchange models and their implementation into EQ3/6 is presented, and the relationship between the exchange formalisms and the solid-solution models is discussed. The advantages and limitations of the models and currently available thermodynamic data are addressed by comparing cation-exchange compositions of clinoptilolites with (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; and (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff

  6. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  7. Formation and Dissociation of Phosphorylated Peptide Radical Cations

    OpenAIRE

    Kong, Ricky P. W.; Quan, Quan; Hao, Qiang; Lai, Cheuk-kuen; Siu, Chi-Kit; Chu, Ivan K.

    2012-01-01

    In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal–ligand phosphorylated peptide complexes [CuII(terpy) p M]·2+ and [CoIII(salen) p M]·+ [ p M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ( p M·+) revealed fascinating gas-phase radi...

  8. Biosorption of radiocesium by deinococcus radiodurans influenced by cations

    International Nuclear Information System (INIS)

    Deinococcus radiodurans has a strong ability to withstand high doses of radiation, which makes it as an ideal candidate for bioremediation of sites contaminated with radionuclides and toxic chemicals. However, no data is available on whether D. radiodurans has a specific sorption capacity to radiocesium for bioremediation purpose. The radiocesium biosorption capacity of live cells of D. radiodurans in the presence of other interfering cations was investigated. The maximum biosorption capacity of radiocesium by D. radiodurans in equilibrium state was about 2,100 kBq/kg (fresh weight basis). Among the tested monovalent cations, NH4+ had the strongest antagonism on 134Cs biosorption for D. radiodurans. However, this antagonism could only be observed at a concentration as high as 100 mmol/L. Divalent cations, such as Ca2+ and Pb2+ could reduced the biosorption of radiocesium by D. radiodurans. Al3+ and Cr3+ were cytotoxic to D. radiodurans cells, the growth of D. radiodurans cells was inhibited when the concentrations of these cations were greater than 1 mmol/L. (authors)

  9. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    We show the quantitative correlation between the degree of crystallization and the cationic diffusion extent in iron-containing diopside glass–ceramics at the glass transition temperature. We find a critical degree of crystallization, above which the diffusion extent sharply drops with the degree...... disconnected glass phase....

  10. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    Science.gov (United States)

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes. PMID:19606833

  11. Gene delivery by cationic lipid vectors : overcoming cellular barriers

    NARCIS (Netherlands)

    Zuhorn, Inge S; Engberts, Jan B F N; Hoekstra, Dirk

    2007-01-01

    Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suff

  12. Cr/nanodiamond composite plating with cobalt cation additive

    Institute of Scientific and Technical Information of China (English)

    Viet-Hue NGUYEN; Thi-Nam HOANG; Ngoc-Phong NGUYEN; Sik-Chol KWON; Man KIM; Joo-Yul LEE

    2009-01-01

    The effect of cationic additive on Cr/nanodiamond plating was studied. Chromium plating was performed in Sargent bath. Morphology of deposit was observed by scanning electron microscope(SEM); microhardness by hardness tester; wear rate by tribometer; amount of diamond in deposit by combustion method and passivity by potentiodynamic scan. Experimental results show that in the presence of cobalt cation, the amount of nanodiamond particle in the deposit is increased. With increasing diamond particle amount, the metallurgical, mechanical and electrochemical properties of Cr/nanodiamond deposit are improved. However, this improvement seems to be constrained. In the presence of 10 g/L of nanodiamond powder and 2.5 g/L of cobalt cation in the bath, the amount of diamond particle in deposit is increased by 4 times; and wear rate of Cr-Co/nanodiamond deposit is decreased by 2-3 times as compared with pure Cr/deposit. The passive current of Cr-Co/nanodiamond composite deposit is decreased from 18 to 8 ìA. The morphology of Cr/nanodiamond is smooth remarkably in the presence of cobalt cation.

  13. Peak metamorphic temperatures from cation diffusion zoning in garnet

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik; Mezger, Klaus

    2013-01-01

    A model that relates the characteristic diffusion length and average cooling rate to peak temperature was developed for chemical diffusion in spherical geometries on the basis of geospeedometry principles and diffusion theory. The model is quantitatively evaluated for cation diffusion profiles in...

  14. Copper cation removal in an electrokinetic cell containing zeolite.

    Science.gov (United States)

    Elsayed-Ali, Omar H; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E

    2011-01-30

    Zeolites are used in environmental remediation of soil or water to immobilize or remove toxic materials by cation exchange. An experiment was conducted to test the use a low electric field to direct the toxic cations towards the zeolite. An electrokinetic cell was constructed using carbon electrodes. Synthetic Linde Type A (LTA) zeolite was placed in the cell. Copper(II) chloride dissolved in water was used as a contaminant. The Cu(2+) concentration was measured for ten hours with and without an applied electric field. The removal of the Cu(2+) ions was accelerated by the applied field in the first two hours. For longer time, the electric field did not improve the removal rate of the Cu(2+) ions. The presence of zeolite and applied electric field complicates the chemistry near the cathode and causes precipitation of Cu(2+) ions as copper oxide on the surface of the zeolite. With increased electric field the zeolite farther away from the cathode had little cation exchange due to the higher drift velocity of the Cu(2+) ions. The results also show that, in the LTA Zeolite A pellets, the cation exchange of Cu is limited to a shell of several tens of micrometers. PMID:21109348

  15. Cationic zinc enolates as highly active catalysts for acrylate polymerization.

    Science.gov (United States)

    Garner, Logan E; Zhu, Hongping; Hlavinka, Mark L; Hagadorn, John R; Chen, Eugene Y-X

    2006-11-22

    Unprecedented cationic zinc enolates have been generated by a novel activation route involving the amido to imino ligand transformation with B(C6F5)3, structurally characterized, and utilized as highly active catalysts for the production of high molecular weight polyacrylates at ambient temperature. PMID:17105289

  16. Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

    Science.gov (United States)

    Punia, Ashish; He, Edward; Lee, Kevin; Banerjee, Probal; Yang, Nan-Loh

    2014-07-01

    Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported. PMID:24854366

  17. Planar Homotropenylium Cation : A Transition State with Reversed Aromaticity

    NARCIS (Netherlands)

    Gibson, Christopher M.; Havenith, Remco W. A.; Fowler, Patrick W.; Jenneskens, Leonardus W.

    2015-01-01

    In contrast to the equilibrium structure of the homoaromatic C-s homotropenylium cation, C8H9+ (1), which supports a pinched diatropic ring current, the C(2)v transition state (2) for inversion of the methylene bridge of 1 is antiaromatic and supports a two-lobe paratropic pi current, as detected by

  18. Photo-fragmentation spectroscopy of benzylium and 1-phenylethyl cations

    CERN Document Server

    Féraud, Géraldine; Soorkia, Satchin; Jouvet, Christophe

    2014-01-01

    The electronic spectra of cold benzylium (C6H5-CH2+) and 1-phenylethyl (C6H5-CH-CH3+)cations have been recorded via photofragment spectroscopy. Benzylium and 1-phenylethyl cations produced from electrosprayed benzylamine and phenylethylamine solutions, respectively, were stored in a cryogenically cooled quadrupole ion trap and photodissociated by an OPO laser, scanned in parts of the UV and visible regions (600-225 nm). The electronic states and active vibrational modes of the benzylium and 1-phenylethyl cations as well as those of their tropylium or methyl tropylium isomers have been calculated with ab initio methods for comparison with the spectra observed. Sharp vibrational progressions are observed in the visible region while the absorption features are much broader in the UV. The visible spectrum of the benzylium cation is similar to that obtained in an argon tagging experiment [V. Dryza, N. Chalyavi, J.A. Sanelli, and E.J. Bieske, J. Chem. Phys. 137, 204304 (2012)], with an additional splitting assigned...

  19. Two different cationic positions in Cu-SSZ-13?

    Science.gov (United States)

    Hun Kwak, Ja; Zhu, Haiyang; Lee, Jong H; Peden, Charles H F; Szanyi, János

    2012-05-16

    H(2)-TPR and FTIR were used to characterize the nature of the Cu ions present in the Cu-SSZ-13 zeolite at different ion exchange levels. The results obtained are consistent with the presence of Cu ions at two distinct cationic positions in the SSZ-13 framework. PMID:22473309

  20. Two different cationic positions in Cu-SSZ-13?

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Zhu, Haiyang; Lee, Jong H.; Peden, Charles HF; Szanyi, Janos

    2012-04-18

    H2-TPR and FTIR were used to characterize the Cu ions present in Cu-SSZ-13 zeolite at different ion exchange levels. The results obtained are consistent with the presence of Cu ions in two distinct cationic positions of the SSZ-13 framework.

  1. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  2. Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Rong; CHEN Guo-Liang

    2003-01-01

    The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.

  3. Fibrin solubilizing properties of certain anionic and cationic detergents.

    Science.gov (United States)

    Chakrabarty, S

    1989-08-15

    The fibrinolytic (fibrin dissolving) properties of several anionic, cationic, nonionic and zwitterionic detergents were assessed in an in vitro fibrin agarose assay. Of the 4 anionic detergents tested, only sodium dodecyl sulfate (SDS) was found to be fibrinolytic. SDS was fibrinolytic either in the absence or presence of factor XIII. Four other cationic detergents were found to possess similar fibrinolytic properties. These cationic detergents were cetyltrimethylammonium bromide (CTAB), mix alkyltrimethyl ammonium bromide (MTAB), hexadecyltrimethylammonium bromide (HTAB) and cetylpyridium chloride (CPC). The nonionic (digitonin, triton X-100/tween 20) and zeitterionic (CHAPS, zeittergent 3-08) detergents were not fibrinolytic. Detergents mediated fibrinolysis, unlike that of tissue type plasminogen activator and urokinase, was independent of the presence of plasminogen. Non-detergents such as polyethylene glycol and highly charged compounds such as poly-1-lysine and poly-1-glutamic acid were not fibrinolytic. Fibrinolytic activity was observed for SDS and the cationic detergents at concentrations ranging from 0.1-10 percent. The effects of these fibrinolytic detergents (SDS, CTAB, MTAB, HTAB and CPC) on clot formation and on pre-formed clots were then assessed, using freshly drawn human venous blood. Incorporation of these detergents into blood inhibited the formation of clots in a concentration dependent manner. The detergents were also able to dissolve pre-formed clots in a similar fashion. SDS was found to be most potent in these properties. PMID:2510356

  4. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  5. Versatile cation transport in imidazolium based polymerized ionic liquids

    Science.gov (United States)

    Evans, Christopher; Segalman, Rachel

    Polymerized ionic liquids (PIL) with tethered imidazolium groups are able to conduct a diverse array of cations relevant for energy applications. The well-known complexation of imidazolium with transition metals is exploited to bind ions such as H +, Li+, Cu2+, and Ni2+ by doping the neutral PIL with the appropriate Cation-TFSI- salt. Conductivities were first determined via AC impedance indicating that H+ salts lead to the highest conductivity (due to low ion mass and potential Grotthus mechanism) followed by Cu2+, Li+, Ag+, and Ni2+. The equilibrium constant for imidazolium complexation is larger for Cu2+ relative to Li-, Ag-, and Ni-imidazolium complexes leading to greater salt dissociation and higher conductivities. For LiTFSI and CuTFSI2 salts, metallic lithium or copper electrodes were employed in battery cells to pass a steady DC current and confirm that the cations are in fact carrying current. Interestingly, the divalent Cu2+ also ionically crosslinks the polymer leading to a plateau in the viscosity. Thus, divalent ions provide an unique route to high conductivity, high modulus polymeric electrolytes. Future studies involving ZnTFSI2 and MgTFSI2 for battery applications are proposed to examine how versatile the PIL platform is for cation transport.

  6. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  7. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pKa2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d001) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  8. Oxetanes: curing properties in photo-cationic polymerization

    International Nuclear Information System (INIS)

    Novel mono- and di-functional oxetane monomers are evaluated for photo-cationic curing system in the formulation with cycloaliphatic diepoxide monomer. The viscosity of the formulations were reduced effectively keeping high surface cure rate as epoxide alone. Difunctional oxetanes exhibited improved solvent resistance

  9. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations.

    Science.gov (United States)

    Webster, Thomas J; Massa-Schlueter, Elizabeth A; Smith, Jennifer L; Slamovich, Elliot B

    2004-05-01

    The present in vitro study doped hydroxyapatite (HA) with various metal cations (Mg(2+), Zn(2+), La(3+), Y(3+), In(3+), and Bi(3+)) in an attempt to enhance properties of HA pertinent to orthopedic and dental applications. X-ray diffraction material characterization indicated that the metal cations may have substituted for calcium in the HA crystal structure and that all of the doped HA formulations were single-phase and crystalline. Scanning electron microscopy analysis revealed a variety of grain sizes, depending on the dopant utilized. Energy-dispersive spectroscopy confirmed that the dopants added during synthesis were present and that all of the HA formulations synthesized were within the defined range of HA phase in the CaO-P(2)O(5)-H(2)O system. Lastly, Bi-doped HA had a slower dissolution rate than either undoped HA or HA doped with other cations when exposed to simulated physiological conditions for 21 days. In terms of cell function, results provided the first evidence that osteoblasts, bone-forming cells, adhered and differentiated (as measured by alkaline phosphatase synthesis) in response to HA doped with trivalent cations (specifically, La(3+), Y(3+), In(3+), Bi(3+)) at earlier time points than either HA doped with divalent cations (Mg(2+), Zn(2+)) or undoped HA. Of the dopants examined, Bi(3+) most enhanced osteoblast long-term calcium-containing mineral deposition. For these reasons, this study revealed for the first time the potential benefits of doping HA with Bi(3+) according to criteria critical for bone prosthetic clinical success. PMID:14741626

  10. Voltammetry of Lead Cations on a New Type of Silver Composite Electrode in the Presence of Other Cations

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šebková, Světlana; Kopanica, M.

    2004-01-01

    Roč. 379, - (2004), s. 294-301. ISSN 1618-2642 Grant ostatní: GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : voltammetry * silver composite electrode * lead cations Subject RIV: CG - Electrochemistry Impact factor: 2.098, year: 2004

  11. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Science.gov (United States)

    2010-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  12. Star-like superalkali cations featuring planar pentacoordinate carbon.

    Science.gov (United States)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically

  13. Star-like superalkali cations featuring planar pentacoordinate carbon

    Science.gov (United States)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-01

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5+ (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5+ (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5+ range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically unstable and

  14. The Influence of Cationization on the Dyeing Performance of Cotton Fabrics with Direct Dyes

    Directory of Open Access Journals (Sweden)

    M. F. Shahin

    2015-08-01

    Full Text Available The effect of cationic modification of cotton fabrics, using cationic agent (Chromatech 9414 on direct dyeing characteristics was studied in this work. Cationization of cotton fabric at different conditions (pH, cationic agent concentration, temperature and time was investigated and the optimum conditions were determined . Nitrogen content of cotton samples pretreated with cationic agent was indicated. The results showed that increasing cationic agent concentration lead to higher nitrogen content on cotton fabric . The cationized cotton fabrics were dyed with two direct dyes (C.I. Direct Yellow 142 - C.I. Direct red 224 and the results were compared to untreated cotton fabrics. The parameters which may affect the dyeing process such as dye concn., addition of salt, time and temperature of dyeing were studied. The dyeing results illustrate that cationization improves the fabric dyeability compared to the uncationized cotton and the magnitude of increase in colour depth depends on the nitrogen content of the cationized cotton fabric .The results also refer to possibility of dyeing cationized cotton fabric with direct dyes without addition of electrolytes to give colour strength higher than that achieved on uncationized cotton using conventional dyeing method .Another important advantage of cationic treatment is in the saving of dye concn., energy ,dyeing time , rinse water and subsequently saving of waste water treatment , and finally minimizes the environmental pollution . The changes in surface morphology of fibres after cationization were identified by various methods such as wettability and scanning with the electron microscope. Different fastness properties were evaluated.

  15. Gene vectors based on DOEPC/DOPE mixed cationic liposomes : a physicochemical study

    NARCIS (Netherlands)

    Munoz-Ubeda, Monica; Rodriguez-Pulido, Alberto; Nogales, Aurora; Llorca, Oscar; Quesada-Perez, Manuel; Martin-Molina, Alberto; Aicart, Emilio; Junquera, Elena

    2011-01-01

    A double approach, experimental and theoretical, has been followed to characterize from a physicochemical standpoint the compaction process of DNA by means of cationic colloidal aggregates. The colloidal vectors are cationic liposomes constituted by a mixture of a novel cationic lipid, 1,2-dioleoyl-

  16. Structure of heavy cation molecules: from experiment to simulation

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Fillaux, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P. [CEA Marcoule DEN/DRCP/SCPS, 30207 Bagnols sur Ceze (France); Conradson, S.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Di Giandomenico, V.; Le Naour, C.; Simoni, E. [IPN Orsay, 91405 Orsay (France); Hennig, C. [Forschungszentrum Rossendorf, ROBL at ESRF, 38043 Grenoble (France)

    2008-07-01

    For industrial, environmental and public health purposes, actinide chemistry has been the subject of considerable efforts since the 50's. Aqueous redox chemistry, ionic selective recognition, uptake by specific biomolecules or compartments of the geosphere are some of the major fields of investigation. The physical-chemical properties of the actinide elements strongly depend on the 5f/6d electronic configuration. X-ray photons are an ideal spectroscopic tool for structure and bonding in actinide molecules. At high photon energies, actinide Extended X-ray Absorption Fine Structure (EXAFS) is a structural probe of the cation coordination sphere. Furthermore, coupling EXAFS with molecular dynamics or quantum chemical calculations leads to a better description of the 'cation in its close environment', like polyhedron, disorder, solvent effects etc.. (authors)

  17. Characterisation of heavy cations from dysprosium to plutonium

    International Nuclear Information System (INIS)

    For industrial, environmental and public health purposes, actinide chemistry has been the subject of considerable efforts since the 50's. Aqueous redox chemistry, ionic selective recognition, uptake by specific biomolecules or compartments of the geosphere are some of the major fields of investigation. The physical-chemical properties of the actinide and lanthanide elements strongly depend on the frontier orbital electronic configuration. This paper is divided in two parts. In the first one, coupling XAS with molecular dynamics allows to take into account solvent and disorder effects while fitting the EXAFS data of aqueous uranyl and dysprosium cations. In the second one EXAFS structural parameters of oxo-cations from protactinium to plutonium are compared to quantum chemical calculations. (authors)

  18. On inversion of cations in compounds with cryolite structure

    International Nuclear Information System (INIS)

    IR and Raman spectra for polycrystalline niobates and tantalates, crystallizing in cryolite structural type, (40Ca - 44Ca) isotope-substituted by calcium samples among them, are investigated. Oscillation frequencies for cations of alkaline-earth and rare-earth elements in octahedral and cubooctahedral positions are found. Calculation for normal oscillation forms and frequencies of Ca2LaNbO6 and Ca2LuNbO6, which are characterized by the inverted position of alkaline-earth and rare-earth elements in crystal lattice, is carried out. Negligible difference of dynamic coefficients for these compounds agrees with structural data and explains the possibility of cations inversion within one structural type frameworks

  19. Removal of both cationic and anionic contaminants by amphoteric starch.

    Science.gov (United States)

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. PMID:26794754

  20. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.; Gumennaya, M. A.; Fomenko, A. A.; Trachevsky, V. V.; Davydenko, V. V.; Bliznyuk, V. N.; Dorokhin, Andriy

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...... temperature, but ethanesulfonate imidazolium and pyridinium oligomeric ionic liquids form a low melting crystalline phase. The proton conductivities of the oligomeric ionic liquids are determined by the type of cation in the temperature range 80-120 degrees C under anhydrous conditions and vary within five...

  1. Aggregation behavior of quaternary salt based cationic surfactants

    International Nuclear Information System (INIS)

    The aggregation behavior of pure cationic surfactants (quaternary salts) in water has been studied by electrical conductivity (at 293.15-333.15K), surface tension, dye solubilization and viscosity measurements (at 303.15K). Critical micelle concentrations (CMCs), degree of counter ion dissociation (β), aggregation number and sphere-to-rod transition for cationic surfactants are reported. Using law of mass action model, the thermodynamic parameters, viz. Gibbs energy (ΔGm-bar ), enthalpy (ΔHm-bar ) and entropy (ΔSm-bar ) were evaluated. The plots of differential conductivity (dk/dc)T,P, versus the total surfactant concentration enables us to determine the CMC values more precisely than the conventional method. Surfactants with longer hydrocarbon chain are adapted to rodlike micelle better than to a spherical micelle. The data are explained in terms of molecular characteristics of surfactants viz. nonpolar chain length, polar head group size and counter ion

  2. Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors.

    Directory of Open Access Journals (Sweden)

    Bruno Ramos-Molina

    Full Text Available Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.

  3. Removal of cationic dye from water by activated pine cones

    Directory of Open Access Journals (Sweden)

    Momčilović Milan Z.

    2012-01-01

    Full Text Available Adsorption of a cationic phenothyazine dye methylene blueonto activated carbon prepared from pine cones was investigated with the variation in parameters of contact time, dye concentration and pH. The kinetic data were found to follow the pseudo-second-order kinetic modelclosely. The equilibrium data were best represented by the Langmuir isotherm with maximum adsorption capacity of 233.1 mg g-1. Adsorption was favored by using a higher solution pH. Textural analysis by nitrogen adsorption was used to determine specific surface area and pore structure of the obtained carbon. Boehm titrations revealed that carboxylic groups are present in the highest degree on the carbon surface. The results indicate that the presented method for activation of pine cones could yield activated carbon with significant porosity, developed surface reactivity and considerable adsorption affinity toward cationic dye methylene blue.

  4. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    Science.gov (United States)

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  5. Identification of bilinear systems using differential evolution algorithm

    Indian Academy of Sciences (India)

    Saban Ozer; Hasan Zorlu

    2011-06-01

    In this work, a novel identification method based on differential evolution algorithm has been applied to bilinear systems and its performance has been compared to that of genetic algorithm. Box–Jenkins system and different type bilinear systems have been identified using differential evolution and genetic algorithms. The simulation results have shown that bilinear systems can be successfully and efficiently identified using these algorithms.

  6. Effect of cationic polyelectrolytes addition in cement cohesion

    OpenAIRE

    Edison Albert Zuluaga-Hernández; Bibian A Hoyos

    2014-01-01

    Here is studied the variation in cohesion of cement main phase (C-S-H) as a result of cationic polyelectrolytes addition (quaternary amines spermine and norspermidine). Cohesion study was carried out by molecular simulation techniques (Monte Carlo) using a primitive model in a canonical ensemble (NVT). The proposed model takes into account the influence of ionic size of each particle and the addition of polyelectrolytes with different charge number and separation. The results obtained show th...

  7. Interactions of microfibrillated cellulose and cellulosic fines with cationic polyelectrolytes

    OpenAIRE

    Taipale, Tero

    2010-01-01

    The overall aim of this work was to produce and characterize different types of cellulosic fines and microfibrillated cellulose; to study their interactions with high molar mass cationic polyelectrolytes; and to demonstrate novel examples of their utilization. The work was performed, and its results discussed mainly from papermaking point of view, but the results are also well applicable in other fields of industry. Cellulosic fines are an essential component of papermaking fiber suspens...

  8. Cationic Antimicrobial Peptides Disrupt the Streptococcus pyogenes ExPortal

    OpenAIRE

    Vega, Luis Alberto; Caparon, Michael G.

    2012-01-01

    Although they possess a well-characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behavior at levels that are sub-lethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human pathogen Streptococcus pyogenes. At sub-lethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, sp...

  9. Collectins and Cationic Antimicrobial Peptides of the Respiratory Epithelia

    OpenAIRE

    Grubor, B.; Meyerholz, D. K.; Ackermann, M R

    2006-01-01

    The respiratory epithelium is a primary site for the deposition of microorganisms that are acquired during inspiration. The innate immune system of the respiratory tract eliminates many of these potentially harmful agents preventing their colonization. Collectins and cationic antimicrobial peptides are antimicrobial components of the pulmonary innate immune system produced by respiratory epithelia, which have integral roles in host defense and inflammation in the lung. Synthesis and secretion...

  10. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    OpenAIRE

    Alexandro Rodríguez-Rojas; Olga Makarova; Uta Müller; Jens Rolff

    2015-01-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the ...

  11. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L−1). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH3-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  12. Insertion of cations into WO3 investigated by QCM techniques

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Sedlaříková, M.; Velická, Jana; Špičák, P.; Svoboda, V.; Kazelle, J.

    2007-01-01

    Roč. 11, č. 10 (2007), s. 1459-1462. ISSN 1432-8488 R&D Projects: GA MŽP SN/3/171/05; GA AV ČR(CZ) KJB208130604; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : tungsten trioxide * insertion of cations * quartz crystal microbalance Subject RIV: CG - Electrochemistry Impact factor: 1.535, year: 2007

  13. Naphthoxy Bounded Ferrocenium Salts as Cationic Photoinitiators for Epoxy Photopolymerization

    OpenAIRE

    Zh. Q. Li; Li, M; Li, G L; Chen, Y; Wang, X. N.; T. Wang

    2009-01-01

    To improve the absorption and the bulk of arene ligands, two naphthoxy bounded ferrocenium salts as new cationic photoinitiators, (η6-α-naphthoxybenzene) (η5-cyclopentadienyl) iron hexafluorophosphate (NOFC-1) and (η6-β-naphthoxybenzene) (η5-cyclopentadienyl) iron hexafluorophosphate (NOFC-2), were synthesized, characterized, and studied. NOFC-1 and NOFC-2 were prepared by the reaction of nucleophilic substitution (SNAr) with naphthol and chlorobenzen...

  14. Nitrogen heteroaromatic cations by [2+2+2] cycloaddition

    Czech Academy of Sciences Publication Activity Database

    Čížková, Martina; Kolivoška, Viliam; Císařová, I.; Šaman, David; Pospíšil, Lubomír; Teplý, Filip

    2011-01-01

    Roč. 9, č. 2 (2011), s. 450-462. ISSN 1477-0520 R&D Projects: GA ČR GA203/09/1614; GA ČR GA203/09/0705; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : modular synthesis * N-heteroaromatic cation * [2+2+2] cycloaddition Subject RIV: CC - Organic Chemistry Impact factor: 3.696, year: 2011

  15. THE CHARACTERISTICS OF HIGH MOLECULAR WEIGHT CATIONIC POLYACRYLAMIDE

    Institute of Scientific and Technical Information of China (English)

    Hongjie Zhang; Huiren Hu; Fushan Chen

    2004-01-01

    In this paper, the cationic polyacrylamide (CPAM)with high molecular weight was prepared in aqueous solution through a complex initiator system. The CPAM was characterized by Fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance spectroscopy (13C NMR), and the charge density of the CPAM was determined by colloid titration. The results obtained indicated that the copolymerization technology used in the experiment was successful.

  16. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  17. Structure, spectra and dynamics of alkali cation microhydration clusters

    OpenAIRE

    Schulz, Franziska

    2005-01-01

    The main focus of this work was the theoretical investigation of alkali cation microhydration clusters with sodium, potassium, and caesium as central ion and up to 24 water molecules per cluster. Structures were obtained applying global geometry optimisation, using a specialised version of genetic algorithms and the common TIP4P/OPLS model potential. The global and most important local minimum energy structures have been investigated and the results obtained constitute a first complete and sy...

  18. Specific versus Nonspecific Binding of Cationic PNAs to Duplex DNA

    OpenAIRE

    Abibi, Ayome; Protozanova, Ekaterina; Demidov, Vadim V.; Frank-Kamenetskii, Maxim D.

    2004-01-01

    Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the nonspecific effects in the kinetics of formation of sequence-specific PNA-DNA complexes. We find that ...

  19. Synthesis of cationic star polymers by simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    P. Chmielarz

    2016-10-01

    Full Text Available Cyclodextrin-based cationic star polymers were synthesized using β-cyclodextrin (β-CD core, and 2-(dimethylamino ethyl methacrylate (DMAEMA as hydrophilic arms. Star-shaped polymers were prepared via a simplified electrochemically mediated ATRP (seATRP under potentiostatic and galvanostatic conditions. The polymerization results showed molecular weight (MW evolution close to theoretical values, and maintained narrow molecular weight distribution (MWD of obtained stars. The rate of the polymerizations was controlled by applying more positive potential values thereby suppressing star-star coupling reactions. Successful chain extension of the ω-functional arms with a hydrophobic n-butyl acrylate (BA formed star block copolymers and confirmed the living nature of the β-CD-PDMAEMA star polymers prepared by seATRP. Novelty of this work is that the β-CD-PDMAEMA-b-PBA cationic star block copolymers were synthesized for the first time via seATRP procedure, utilizing only 40 ppm of catalyst complex. The results from 1H NMR spectral studies support the formation of cationic star (copolymers.

  20. Drug loading to lipid-based cationic nanoparticles

    International Nuclear Information System (INIS)

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures

  1. Cationic lipid membranes-specific interactions with counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Ryhaenen, Samppa J; Saeily, V Matti J; Kinnunen, Paavo K J [Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, Biomedicum, University of Helsinki, PO Box 63 (Haartmaninkatu 8), Helsinki FIN-00014 (Finland)

    2006-07-19

    Lipids bearing net electric charges in their hydrophilic headgroups are ubiquitous in biological membranes. Recently, the interest in cationic lipids has surged because of their potential as non-viral transfection vectors. In order to utilize cationic lipids in transfer of nucleic acids and to elucidate the role of charged lipids in cellular membranes in general, their complex interactions within the membrane and with the molecules in the surrounding media need to be thoroughly characterized. Yet, even interactions between monovalent counter-ions and charged lipids are inadequately understood. We studied the interactions of the cationic gemini surfactant (2R,3R)-2,3-dimethoxy-1,4- bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide (RR-1) with chloride, bromide, fluoride, and iodide as counter-ions by differential scanning calorimetry and Langmuir balance. Chloride interacts avidly with RR-1, efficiently condensing the monolayer, decreasing the collapse pressure, and elevating the main transition temperature. With bromide and iodide clearly different behaviour was observed, indicating specific interactions between RR-1 and these counter-ions. Moreover, with fluoride as a counter-ion and in pure water identical results were obtained, demonstrating inefficient electrostatic screening of the headgroups of RR-1 and suggesting fluoride being depleted on the surface of RR-1 membranes.

  2. Cationic polymer mud solves gumbo problems in North Sea

    International Nuclear Information System (INIS)

    This paper reports on a recently developed cationic polymer mud, compatible with conventional polymer additives and designed to meet environmental regulations, which significantly minimized the gumbo problems common to the water-sensitive shales in the North Sea. The cationic polymer mud was used to drill highly reactive Tertiary shale formations which have caused severe gumbo problems on nearby wells drilled with other inhibitive water-based muds. Although many citonic polymers are toxic, aquatic toxicity tests performed by the Norwegian Statens Forurensningstilsyn (SFT) at the end of the test wells showed results far exceeding the SFT limits on the three species tested. The mud system on these wells was a seawater-based 15.0-ppg mud enhanced with 3% NaCl. A low molecular weight quaternary polyamine and a high molecular weight cationic polyacrylamide were used to suppress the swelling and dispersion of shales, respectively. Starch and polyanionic cellulose (PAC) polymers maintained fluid-loss control, and a lubricant reduced the torque and drag

  3. Electron exchange involving a sulfur-stabilized ruthenium radical cation.

    Science.gov (United States)

    Shaw, Anthony P; Ryland, Bradford L; Norton, Jack R; Buccella, Daniela; Moscatelli, Alberto

    2007-07-01

    Half-sandwich Ru(II) amine, thiol, and thiolate complexes were prepared and characterized by X-ray crystallography. The thiol and amine complexes react slowly with acetonitrile to give free thiol or amine and the acetonitrile complex. With the thiol complex, the reaction is dissociative. The thiolate complex has been oxidized to its Ru(III) radical cation and the solution EPR spectrum of that radical cation recorded. Cobaltocene reduces the thiol complex to the thiolate complex. The 1H and 31P NMR signals of the thiolate complex in acetonitrile become very broad whenever the thiolate and thiol complexes are present simultaneously. The line broadening is primarily due to electron exchange between the thiolate complex and its radical cation; the latter is generated by an unfavorable redox equilibrium between the thiol and thiolate complexes. Pyramidal inversion of sulfur in the thiol complex is fast at room temperature but slow at lower temperatures; major and minor conformers of the thiol complex were observed by 31P NMR at -98 degrees C in CD2Cl2. PMID:17569530

  4. Naphthoxy Bounded Ferrocenium Salts as Cationic Photoinitiators for Epoxy Photopolymerization

    Directory of Open Access Journals (Sweden)

    Zh. Q. Li

    2009-01-01

    Full Text Available To improve the absorption and the bulk of arene ligands, two naphthoxy bounded ferrocenium salts as new cationic photoinitiators, (η6-α-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-1 and (η6-β-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-2, were synthesized, characterized, and studied. NOFC-1 and NOFC-2 were prepared by the reaction of nucleophilic substitution (SNAr with naphthol and chlorobenzene-cyclopentadienyliron salt. Their activity as cationic photoinitiators was studied using real-time infrared spectroscopy. The results obtained showed that NOFC-1 and NOFC-2 are capable of photoinitiating the cationic polymerization of epoxy monomer directly on irradiation with long-wavelength UV light (365 nm. Comparative studies also demonstrated that they exhibited better efficiency than cyclopentadienyl-Fe-cymene hexafluorophosphate (I-261. When NOFC-1 and NOFC-2 were used to efficiently initiate polymerization of epoxide, both rate of polymerization and final conversion increased using benzoyl peroxide (BPO as sensitizer. DSC studies showed that NOFC-1 and NOFC-2 photoinitiators in epoxides possess good thermal stability in the absence of light.

  5. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  6. Mono- and di-cationic hydrido boron compounds.

    Science.gov (United States)

    Ghadwal, Rajendra S; Schürmann, Christian J; Andrada, Diego M; Frenking, Gernot

    2015-08-28

    Brønsted acid HNTf2 (Tf = SO2CF3) mediated dehydrogenative hydride abstraction from (L(1))BH3 () and (L(2))BH3 () (L(1) = IPrCH2 = 1,3-(2,6-di-isopropylphenyl)imidazol-2-methylidene (); L(2) = SIPrCH2 = 1,3-(2,6-di-isopropylphenyl)imidazolidin-2-methylidiene ()) affords thermally stable hydride bridged mono-cationic hydrido boron compounds [{(L(1))BH2}2(μ-H)](NTf2) () and [{(L(2))BH2}2(μ-H)](NTf2) (). Furthermore, hydride abstraction yields di-cationic hydrido boron compounds [{(L(1))BH}2(μ-H)2](NTf2)2 () and [{(L(2))BH}2(μ-H)2](NTf2)2 (). Unique cationic boron compounds with CH2BH2(μ-H)BH2CH2 ( and ) and CH2BH(μ-H)2BHCH2 ( and ) moieties feature a 3c-2e bond and have been fully characterized. Interesting electronic and structural features of compounds are analysed using spectroscopic, crystallographic, and computational methods. PMID:26200103

  7. Specific cationic emission of cisplatin following ionization by swift protons

    Science.gov (United States)

    Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre

    2016-05-01

    We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.

  8. Cationic lipid membranes-specific interactions with counter-ions

    International Nuclear Information System (INIS)

    Lipids bearing net electric charges in their hydrophilic headgroups are ubiquitous in biological membranes. Recently, the interest in cationic lipids has surged because of their potential as non-viral transfection vectors. In order to utilize cationic lipids in transfer of nucleic acids and to elucidate the role of charged lipids in cellular membranes in general, their complex interactions within the membrane and with the molecules in the surrounding media need to be thoroughly characterized. Yet, even interactions between monovalent counter-ions and charged lipids are inadequately understood. We studied the interactions of the cationic gemini surfactant (2R,3R)-2,3-dimethoxy-1,4- bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide (RR-1) with chloride, bromide, fluoride, and iodide as counter-ions by differential scanning calorimetry and Langmuir balance. Chloride interacts avidly with RR-1, efficiently condensing the monolayer, decreasing the collapse pressure, and elevating the main transition temperature. With bromide and iodide clearly different behaviour was observed, indicating specific interactions between RR-1 and these counter-ions. Moreover, with fluoride as a counter-ion and in pure water identical results were obtained, demonstrating inefficient electrostatic screening of the headgroups of RR-1 and suggesting fluoride being depleted on the surface of RR-1 membranes

  9. Oxygen and cation diffusion in YBCO coated conductors

    International Nuclear Information System (INIS)

    Biaxially textured YBa2Cu3Ox (YBCO) films 0.3 μm thick were deposited on single-crystal LaAlO3 and buffered Hastelloy C276 substrates. After annealing in 18O at 400 deg. C, secondary-ion mass spectrometry was used to determine oxygen-diffusion profiles and several cation-diffusion profiles within the various layers of the conductors. Oxygenation in the YBCO/LaAlO3 specimen was relatively slow and hours would be required for full oxygenation of the YBCO. Oxygen diffusion was rapid in the coated conductor. It was dominated by diffusion along a-b planes and full oxygenation of a 0.3-μm-thick YBCO layer was achieved in several minutes. Cation interdiffusion was limited in the YBCO/LaAlO3 specimen, but was significant within the coated conductor. Although Cu diffused out of the superconductor, an SrTiO3 layer between textured MgO and YBCO limited diffusion of cations from the various substrate layers into the superconductor

  10. Oxygen and cation diffusion in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, S.; Koritala, R.E.; Li, M.; Goretta, K.C.; Adachi, M.; Baker, J.E.; Routbort, J.L

    2003-10-15

    Biaxially textured YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) films 0.3 {mu}m thick were deposited on single-crystal LaAlO{sub 3} and buffered Hastelloy C276 substrates. After annealing in {sup 18}O at 400 deg. C, secondary-ion mass spectrometry was used to determine oxygen-diffusion profiles and several cation-diffusion profiles within the various layers of the conductors. Oxygenation in the YBCO/LaAlO{sub 3} specimen was relatively slow and hours would be required for full oxygenation of the YBCO. Oxygen diffusion was rapid in the coated conductor. It was dominated by diffusion along a-b planes and full oxygenation of a 0.3-{mu}m-thick YBCO layer was achieved in several minutes. Cation interdiffusion was limited in the YBCO/LaAlO{sub 3} specimen, but was significant within the coated conductor. Although Cu diffused out of the superconductor, an SrTiO{sub 3} layer between textured MgO and YBCO limited diffusion of cations from the various substrate layers into the superconductor.

  11. Oxygen and cation diffusion in YBCO coated conductors

    Science.gov (United States)

    Tsukui, S.; Koritala, R. E.; Li, M.; Goretta, K. C.; Adachi, M.; Baker, J. E.; Routbort, J. L.

    2003-10-01

    Biaxially textured YBa 2Cu 3O x (YBCO) films 0.3 μm thick were deposited on single-crystal LaAlO 3 and buffered Hastelloy C276 substrates. After annealing in 18O at 400 °C, secondary-ion mass spectrometry was used to determine oxygen-diffusion profiles and several cation-diffusion profiles within the various layers of the conductors. Oxygenation in the YBCO/LaAlO 3 specimen was relatively slow and hours would be required for full oxygenation of the YBCO. Oxygen diffusion was rapid in the coated conductor. It was dominated by diffusion along a- b planes and full oxygenation of a 0.3-μm-thick YBCO layer was achieved in several minutes. Cation interdiffusion was limited in the YBCO/LaAlO 3 specimen, but was significant within the coated conductor. Although Cu diffused out of the superconductor, an SrTiO 3 layer between textured MgO and YBCO limited diffusion of cations from the various substrate layers into the superconductor.

  12. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Matsumura

    2015-03-01

    Full Text Available The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP inhibited two group IC3 ribozymes (Syn Rz and Azo Rz and a group IC1 ribozyme (Tet Rz. In the case of a group IA2 ribozyme (Td Rz, however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules.

  13. Effect of heavy metal cations on the activity of cathepsin D (in vitro study) Effect of heavy metal cations on the activity of cathepsin D (in vitro study)

    OpenAIRE

    Alicja Karwowska; Radosław Łapiński; Marek Gacko; Ewa Grzegorczyk; Joanna Żurawska; Jan K. Karczewski

    2012-01-01

    We studied the effect of heavy metal cations: Fe 2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ on the activity of
    cathepsin D in human aorta homogenate and blood serum. The concentration of cations was 1 mmol/l. Hemoglobin
    was the cathepsin D substrate. The activity of cathepsin D was determined at pH 3.5. Only Hg2+ cations
    inhibit the activity of cathepsin D. Cations Hg2+ damage lysosomes and release cathepsin D from these organelles.We studied the effect of heavy metal c...

  14. Ultrasonic dyeing of cationized cotton fabric with natural dye. Part 1: cationization of cotton using Solfix E.

    Science.gov (United States)

    Kamel, M M; El Zawahry, M M; Ahmed, N S E; Abdelghaffar, F

    2009-02-01

    The dyeing of cationized cotton fabric with Solfix E using colouring matter extracted from Cochineal dye has been studied using both conventional and ultrasonic techniques. Factors affecting dye extraction such as ultrasound power, particle size, extraction temperature and time were studied. The results indicated that the extraction by ultrasound at 300 W was more effective at lower temperature and time than conventional extraction. The effect of various factors of dye bath such as pH, salt concentration, ultrasound power, dyeing time and temperature were investigated. The colour strength values obtained were found to be higher with ultrasound than with conventional techniques. The results of fastness properties of the dyed fabrics were fair to good. The scanning electron microscope (SEM) images of the morphological and X-ray analyzes were measured for cationized cotton fabrics dyed with both conventional and ultrasound methods, thus showing the sonicator efficiency. PMID:18812264

  15. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    OpenAIRE

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange com...

  16. Extraction of cesium and barium by dicarbollide and polyethylene glycol in the presence of alkylammonium cations

    International Nuclear Information System (INIS)

    The extraction of cesium and barium cations into nitrobenzene and 60 % (vol.%) nitrobenzene + 40 % CCl4 mixture in the presence of dicarbollide (+Slovafol 909), and primary alkylammonium cations has been studied. Extraction constants determined for three methylammonium cations correlate well with their hydration enthalpies. Reverse order of the hydrophobicity of methylammonium cations (competition with bare Cs+ ion) and for their tendency to enter the polyethylene glycol complex (competition with polyethylene glycol complexed Cs+ and Ba2+ ions) is recorded. The possibility of the regeneration of the organic phase after stripping of Cs+ and Ba2+ ions with methylammonium cations has been investigated. (author) 18 refs.; 7 figs.; 3 tabs

  17. The heats of adsorption of metal cations on silica gel with covalently fixed polyaspartic acid

    International Nuclear Information System (INIS)

    Temperature dependence of retaining cations of alkali (Li-Cs), alkaline-earth (Mg, Ca, Sr, Ba) metals and cadmium on silica gel with covalently fixed polyaspartic acid, as well as on carboxylic cation exchangers Universal Cation and Selekton K, was studied by the method of chromatography in the temperature range of 27-62 deg C. On the basis of the experimental data obtained adsorption heat of alkali and alkaline-earth metal cations was calculated. It was ascertained that for all the sorbents studied ion exchange prevails in retaining mechanism. Three types of cation retaining dependence on chromatographic column temperature were considered

  18. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. PMID:27374596

  19. Electronic spectra of isolated cations in supersonic jets by mass-selected ion-dip spectroscopy. Cations of benzene, p-difluorobenzene, and 1,3,5-trifluorobenzene

    Science.gov (United States)

    Tsuchiya, Yuko; Fujii, Masaaki; Ito, Mitsuo

    1989-06-01

    The electronic transitions of the cations of benzene, p-difluorobenzene (p-DFB), and 1,3,5-trifluorobenzene (1,3,5-TFB) have been measured by mass-selected ion-dip spectroscopy which utilizes the dissociation of a parent cation in an excited state. This spectroscopy was successfully applied to the vibrational level selected cation in the ground electronic state which was prepared by 1+1 REMPI (resonant enhanced multiphoton ionization) of the neutral molecule in a supersonic jet. For all the cations, the spectra due to the transition from the ground state to the excited π,π state were observed. Ion-dip spectra having sharp vibrational structures were found for p-DFB and 1,3,5-TFB cations, while a broad spectrum was observed for a benzene cation. It was also found that the vibrational structure of the ion-dip spectrum of the 1,3,5-TFB cation is quite different from that of the fluorescence excitation spectrum. The assignments of the ion-dip spectra and dissociation mechanisms of the excited cations will be discussed.

  20. Effect of heavy metal cations on the activity of cathepsin D (in vitro study Effect of heavy metal cations on the activity of cathepsin D (in vitro study

    Directory of Open Access Journals (Sweden)

    Alicja Karwowska

    2012-10-01

    Full Text Available We studied the effect of heavy metal cations: Fe 2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ on the activity of
    cathepsin D in human aorta homogenate and blood serum. The concentration of cations was 1 mmol/l. Hemoglobin
    was the cathepsin D substrate. The activity of cathepsin D was determined at pH 3.5. Only Hg2+ cations
    inhibit the activity of cathepsin D. Cations Hg2+ damage lysosomes and release cathepsin D from these organelles.We studied the effect of heavy metal cations: Fe 2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ on the activity of
    cathepsin D in human aorta homogenate and blood serum. The concentration of cations was 1 mmol/l. Hemoglobin
    was the cathepsin D substrate. The activity of cathepsin D was determined at pH 3.5. Only Hg2+ cations
    inhibit the activity of cathepsin D. Cations Hg2+ damage lysosomes and release cathepsin D from these organelles.

  1. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  2. Effects of exchanged cation on the microporosity of montmorillonite

    Science.gov (United States)

    Rutherford, D.W.; Chiou, C.T.; Eberl, D.D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz- 1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and ??s-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K> Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 A??, the limiting molecular dimension of neo -hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 A?? determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 A?? determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  3. Solvent extraction of niobium cations with products of nitrobenzene radiolysis

    International Nuclear Information System (INIS)

    Radiolysis of nitrobenzene solution of cobalt(III) dicarbollide, which is used for solvent extraction of cesium from fission products results in enhanced extraction of 95Nb. The isomeric nitrophenols, 2,4-dinitrophenol, p-nitrosophenol and m-aminophenol exhibit antergism towards extraction of niobium cations. Synergistic effect is exhibited by 2,5-dinitrophenol, o-and p-aminophenol, o-nitroaniline and 2,4,6-trinitrophenol which are among the products of two-phase systems with nitrobenzene radiolysis. Two competing processes, complexation of niobium and protonation of ligand, both depending on the ligand benzene ring substituents are discussed. (author) 15 refs.; 4 tabs

  4. Stretch-activated cation channel from larval bullfrog skin

    OpenAIRE

    Hillyard, Stanley D.; Willumsen, Niels J.; Marrero, Mario B.

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (−1 kPa to −4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a variable pattern of opening and closing with continuing suction. Current–voltage plots demonstrated linear or inward rectification and single channel conductances of 44–56 pS with NaCl or KCl Ringer...

  5. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    Science.gov (United States)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  6. Extracytoplasmic Stress Responses Induced by Antimicrobial Cationic Polyethylenimines

    OpenAIRE

    Lander, Blaine A.; Checchi, Kyle D.; Koplin, Stephen A.; Smith, Virginia F.; Domanski, Tammy L.; Isaac, Daniel D.; Lin, Shirley

    2012-01-01

    The ability of an antimicrobial, cationic polyethylenimine (PEI+) to induce the three known extracytoplasmic stress responses of Escherichia coli was quantified. Exposure of E. coli to PEI+ in solution revealed specific, concentration-dependent induction of the Cpx extracytoplasmic cellular stress response, ~2.0-2.5 fold at 320 μg/mL after 1.5 hours without significant induction of the σE or Bae stress responses. In comparison, exposure of E. coli to a non-antimicrobial polymer, polyethylene ...

  7. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  8. Searching for Naphthalene Cation Absorption in the Interstellar Medium

    Science.gov (United States)

    Searles, Justin M.; Destree, Joshua D.; Snow, Theodore P.; Salama, Farid; York, Donald G.; Dahlstrom, Julie

    2011-05-01

    Interstellar naphthalene cations (C10H+ 8) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C10H+ 8 is not a DIB carrier in typical reddened sight lines.

  9. SEARCHING FOR NAPHTHALENE CATION ABSORPTION IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Interstellar naphthalene cations (C10H+8) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C10H+8 is not a DIB carrier in typical reddened sight lines.

  10. Gas-phase folding and unfolding of cytochrome c cations.

    OpenAIRE

    Wood, T D; Chorush, R A; Wampler, F M; Little, D P; O'Connor, P B; McLafferty, F. W.

    1995-01-01

    Water is thought to play a dominant role in protein folding, yet gaseous multiply protonated proteins from which the water has been completely removed show hydrogen/deuterium (H/D) exchange behavior similar to that used to identify conformations in solution. Indicative of the gas-phase accessibility to D2O, multiply-charged (6+ to 17+) cytochrome c cations exchange at six (or more) distinct levels of 64 to 173 out of 198 exchangeable H atoms, with the 132 H level found at charge values 8+ to ...

  11. A NEW METHOD TO SYNTHESIZE THE CATIONIC GRAFT STARCH

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Bingyue Liu; Yafeng Cao

    2004-01-01

    The cationic graft copolymer was synthesized by reversed phase emulsion copolymerization of starch with diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization was carried out using (NH4)2S2O8-NH2CONH2 redox as initiator and selecting Span-20 as emulsifier. The effects of emulsifier content in oil phase, volume ratio of oil to water, initiator concentration and mole ratio of DADMAC to AM on the graft copolymerization were discussed. The optimum condition of synthetics was found with the orthogonal test method.

  12. Spectroscopy and interactions of metal and metal cation complexes

    OpenAIRE

    Plowright, Richard J.

    2010-01-01

    The work in this thesis looks at the spectroscopy and interactions of metals and metal cation complexes. There are two aspects of this vast subject that are considered: the electronic spectroscopy of Au-RG complexes and the ion-molecule chemistry of metals important in the mesosphere-lower thermosphere (MLT) region of the atmosphere. The spectroscopy of the molecular states in the vicinity of the strong Au 2P3/2, 1/2 ← 2S1/2 atomic transition, have been studied for the Au-RG (RG = Ne, Ar...

  13. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;

    2012-01-01

    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances and...... lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure and...... stability of SF6-based clusters....

  14. Synthesis of Branch Fluorinated Cationic Surfactant and Surface Properties

    Directory of Open Access Journals (Sweden)

    Hongke Wu

    2014-01-01

    Full Text Available A novel fluorinated quaternary ammonium salt cationic surfactant N,N,N-trimethyl-2-[[4-[[3,4,4,4-tetrafluoro-2-[1,2,2,2-tetrafluoro-1-(trifluoromethylethyl]-1,3-bis(tri-fluoromethyl-1-buten-1-yl]oxy]-benzoyl]amino]-iodide (FQAS was synthesized successfully, and its structure was characterized by FTIR, 1H-NMR, 19F-NMR, and MS. The surface activities of FQAS and the effect of temperature, electrolyte, and combination with hydrocarbon surfactant were investigated. The results showed that FQAS exhibited excellent surface activity and combination with hydrocarbon surfactant.

  15. Electroconductivity of sodium pyrophosphate modified with divalent cations

    International Nuclear Information System (INIS)

    The temperature and concentration dependences of sodium-cation conductivity of solid solutions on the basis of sodium pyrophosphate in the Na4-2xMxP2O7 (M = Mg, Sr, Ba, Zn, Cd, Pb) systems are studied. The cadmium-containing electrolytes have the maximum conductivity (6.3 x 10-2 Cm cm-1 at 500 Deg C, 1.65 x 10-1 Cm cm-1 at 700 Deg C). Effect of dimensional factor on transport properties of the solid solutions under study is considered

  16. Biocompatibility of Cation Coated on Plasma-Polymerized Ti Surface

    Science.gov (United States)

    Lee, Kang; Ko, Yeong-Mu; Kim, Byung-Hoon

    2012-08-01

    In this study, we investigated the bone formation properties and cell responses on Na-, Mg-, K-, and Ca-ion-exchanged carboxyl plasma polymerized titanium (Ti) surfaces. The phase and morphologies of deposits bonelike apatite were significantly influence by the cation species. Na and Mg ions promote bonelike apatite nucleation and growth on plasma-functionalized Ti surfaces in simulated body fluid (SBF) and improves the crystallinity of the bonelike apatite deposited layer. The cell viability tests revealed significantly enhanced viability on the Ca-ion-exchanged plasma-functionalized Ti surface than on any other surface.

  17. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes.

    Science.gov (United States)

    Kono, K; Henmi, A; Takagishi, T

    1999-09-21

    To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. PMID:10561483

  18. Differential modulation by cations of sigma and phencyclidine binding sites in rat brain

    International Nuclear Information System (INIS)

    The present investigation attempted to differentiate haloperidol-sensitive sigma sites (sigma H) from phencyclidine (PCP) binding sites in rat brain membranes. We studied the effects of several cations at physiologically relevant concentrations on the binding of radioligands selective for sigma H sites ([3H]haloperidol, [3H](+)3-PPP**), and [3H](+)SKF10,047, or for PCP sites ([3H]PCP and [3H]TCP). The PCP sites displayed a markedly greater sensitivity to cations than sigma H sites. This property was reflected by a greater extent of inhibition of the binding of PCP-selective relative to sigma H-selective ligands at a given cation concentration, as well as by lower IC50's and by steeper slopes of the cation dose-response curves. Divalent cations were approximately 100 times more potent than monovalent cations. All cations were inhibitory, except Sr2+ and Ba2+ which, at micromolar concentrations, enhanced PCP binding but not sigma H binding. Thus, PCP-selective sites appeared to be distinct from sigma H sites with regards to several aspects of cation modulation. This is consistent with the view that PCP and sigma H sites are distinct molecular entities. Further, the marked cation sensitivity of the PCP site is consistent with the current hypothesis according to which the PCP site is linked to the N-methyl-D-aspartate (NMDA) receptor-cation channel complex

  19. Maitotoxin activates cation channels distinct from the receptor-activated non-selective cation channels of HL-60 cells

    OpenAIRE

    Musgrave, I. F.; Seifert, Roland; Schultz, Günter

    1994-01-01

    We investigated whether maitotoxin activates non-selective cation channels, as was recently proposed [Soergel, Yasumoto, Daly and Gusovsky (1992) Mol. Pharmacol. 41, 487-493]. Stimulation of dibutyryl cyclic AMP-differentiated HL-60 cells with the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 0.1 microM), the Ca(2+)-ATPase inhibitor thapsigargin (0.1 microM) or maitotoxin (25 ng/ml) resulted in an increase in cytoplasmic free calcium concentration ([Ca2+]i). Unlike ...

  20. Cation charge dependence of the forces driving DNA assembly.

    Science.gov (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge. PMID:20959102

  1. High and rapid alkali cation storage in ultramicroporous carbonaceous materials

    Science.gov (United States)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon

    2016-05-01

    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  2. Cationic zinc organyls as precatalysts for hydroamination reactions.

    Science.gov (United States)

    Chilleck, Maren A; Hartenstein, Larissa; Braun, Thomas; Roesky, Peter W; Braun, Beatrice

    2015-02-01

    The cationic zinc triple-decker complex [Zn2 Cp*3 ](+) [BAr(F) 4 ](-) (BAr(F) 4 =B(3,5-(CF3 )2 C6 H3 )4 ) exhibits catalytic activity in intra- and intermolecular hydroamination reactions in the absence of a cocatalyst. These hydroaminations presumably proceed through the activation of the C-C multiple bond of the alkene or alkyne by a highly electrophilic zinc species, which is formed upon elimination of the Cp* ligands. The reaction of [Zn2 Cp*3 ](+) [BAr(F) 4 ](-) with henylacetylene gives the hydrocarbonation product (Cp*)(Ph)CCH2 , which might be formed via a similar reaction pathway. Additionally, several other structurally well-defined cationic zinc organyls have been examined as precatalysts for intermolecular hydroamination reactions without the addition of a cocatalyst. These studies reveal that the highest activity is achieved in the absence of any donor ligands. The neutral complex [ZnCp(2S) 2 ] (Cp(2S) =C5 Me4 (CH2 )2 SMe) shows a remarkably high catalytic activity in the presence of a Brønsted acid. PMID:25522205

  3. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    International Nuclear Information System (INIS)

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500-bar C in the vacancy range below 4mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially

  4. Metal cations inserted in vanadium-oxide nanotubes

    International Nuclear Information System (INIS)

    Vanadium-oxide nanotubes (VO x-NTs) consist of nanosize cylinders of thin, easily bent vanadyl (VO x) wall chains, which are open at both ends. Surfactant molecules (e.g. C12H27N) can be easily trapped in the interior of the nanotube walls. The structure of as-synthesized VO x-NTs are observed to collapse to an amorphous vanadium oxide at temperatures greater than 250 deg, C. This happens, even under a protective atmosphere. This property makes the VO x-NTs unusable as a catalyst at temperatures between 400-500 deg, C, which is the temperature range where many applications would exist. In order to increase the thermal stability of VO x-NTs several exchange reactions have been used to modify the original nanotubes. In these reactions metallic cations (Cd2+, Co2+, Mn2+ or Zn2+) were introduced. It was observed that that the morphology of the nanotubes remained unchanged after the exchange reactions were performed. In order to characterize the exchanged VO x-NTs the following analytic techniques were used: scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, particle-induced X-ray emission and Rutherford backscattering spectrometry. The results showed that the VO x-NTs exchanged with metallic cations have preserved their tubular morphology. However, it has not been possible to fully perform a 100% efficient exchange reaction

  5. Cationic gadolinium chelate for magnetic resonance imaging of cartilaginous defects.

    Science.gov (United States)

    Nwe, Kido; Huang, Ching-Hui; Qu, Feini; Warden-Rothman, Robert; Zhang, Clare Y; Mauck, Robert L; Tsourkas, Andrew

    2016-05-01

    The ability to detect meniscus defects by magnetic resonance arthrography (MRA) can be highly variable. To improve the delineation of fine tears, we synthesized a cationic gadolinium complex, (Gd-DOTA-AM4 )(2+) , that can electrostatically interact with Glycosaminoglycans (GAGs). The complex has a longitudinal relaxivity (r1) of 4.2 mM(-1) s(-1) and is highly stable in serum. Its efficacy in highlighting soft tissue tears was evaluated in comparison to a clinically employed contrast agent (Magnevist) using explants obtained from adult bovine menisci. In all cases, Gd-DOTA-AM4 appeared to improve the ability to detect the soft tissue defect by providing increased signal intensity along the length of the tear. Magnevist shows a strong signal near the liquid-meniscus interface, but much less contrast is observed within the defect at greater depths. This provides initial evidence that cationic contrast agents can be used to improve the diagnostic accuracy of MRA. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26853708

  6. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a...... markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction....... Stretch activation was not affected by varying the pipette concentrations of Ca(2+) between 0 mmol l(-1) and 4 mmol l(-1) or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l(-1) Ca(2+). Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin...

  7. NMR investigation of cation distribution in HLW wasteform glass

    International Nuclear Information System (INIS)

    Magic-angle-spinning NMR has been used to establish the structural roles of various cations added to the borosilicate glass which is used for the vitrification of high-level nuclear waste (HLW). Representative surrogate oxides with nominal valencies of +1, +2 and +3 have been studied which span the range of oxides from modifier to intermediate and conditional glass former. NMR has been carried out on those nuclei which are accessible and the species observed have been correlated with the physical and chemical behaviour. The controlling factor is the manner in which the alkali cations partition between the various network groups, changing the distribution of silicon Qn species and the boron N4 ratio. Identifiable super-structural units are also present in these glasses. The aqueous corrosion rate increases with Q3 content, as does the weight loss due to evaporation from the melt. The activation energy for DC conduction scales with N4. Values of N4 obtained for these glasses deviate significantly from those predicted by the currently accepted model (Dell and Bray) and are strongly affected by the modifier or intermediate nature of the surrogate oxide and also by its effect on the distribution of non bridging oxygens between the silicate and borate polyhedra. (authors)

  8. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    International Nuclear Information System (INIS)

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations

  9. PEMFC contamination model: Foreign cation exchange with ionomer protons

    Science.gov (United States)

    St-Pierre, Jean

    2011-08-01

    A generic, transient fuel cell ohmic loss mathematical model was developed for the case of contaminants that ion exchange with ionomer protons. The model was derived using step changes in contaminant concentration, constant operating conditions and foreign cation transport via liquid water droplets. In addition, the effect of ionomer cations redistribution within the ionomer on thermodynamic, kinetic and mass transport losses and migration were neglected. Thus, a simpler, ideal, ohmic loss case is defined and is applicable to uncharged contaminant species and gas phase contaminants. The closed form solutions were validated using contamination data from a membrane exposed to NH3. The model needs to be validated against contamination and recovery data sets including an NH4+ contaminated membrane exposed to a water stream. A method is proposed to determine model parameters and relies on the prior knowledge of the initial ionomer resistivity. The model expands the number of previously derived cases. Most models in this inventory, derived with the assumption that the reactant is absent, lead to different dimensionless current vs. time behaviors similar to a fingerprint. These model characteristics facilitate contaminant mechanism identification. Separation between membrane and catalyst (electroinactive contaminant) contamination is conceivably possible using additional indicative cell resistance measurements. Contamination is predicted to be significantly more severe under low relative humidity conditions.

  10. USING COLLOIDAL LAYERED DOUBLE HYDROXIDES AS CATIONIC MICROPARTICULATE COMPONENT

    Institute of Scientific and Technical Information of China (English)

    Songlin Wang; Wenxia Liu

    2004-01-01

    Layered double hydroxides consisting of layers with cationic charges may be potential candidates of cationic microparticles forming synergetic retention effect with anionic polyacrylamide. In this work, the layered double hydroxides with various molar ratios of Mg/Al were synthesized by co-precipitation of magnesium chloride and aluminum chloride and peptized by intense washing with water. The chemical formula, particle size, Zeta potential of the layered double hydroxide were analyzed. It was found that positively charged magnesium aluminum hydroxide with particle diameter in nanoparticle size could be prepared. The Zeta potential and particle size vary with the feed molar ratio of Mg/Al and the peptizing process, respectively. The Zeta potential is also pH dependent. The retention experiments carried out on DDJ show that when used together with anionic polyacrylamide, the positively charged colloidal double hydroxide greatly improves the retention of reed pulps. The chemical formula, particle size and Zeta potential of the colloidal double hydroxide all affect its retention behavior.

  11. Influence of a cationic polysaccharide on starch functionality.

    Science.gov (United States)

    Raguzzoni, Josiane C; Delgadillo, Ivonne; Lopes da Silva, José A

    2016-10-01

    Fundamental rheology, differential scanning calorimetry and infrared spectroscopy have been used to evaluate the effect of a cationic polysaccharide, chitosan, on the gelatinization, gel formation and retrogradation of maize starch samples, under acidic aqueous conditions. Moderate acidic conditions (0.1molL(-1) acetic acid) have shown a (slight) positive effect on starch gelatinization process and structure development. The presence of chitosan increased the DSC onset gelatinization temperature and also shifted the onset of the storage modulus increase to higher temperatures. Formation of the starch gel, mainly gelation of the leached-out amylose, is somehow hindered by the presence of the cationic polysaccharide and, therefore, the retrogradation of starch at very early stage can be delayed by addition of chitosan. However, long-term retrogradation was slightly increased. FTIR pectroscopy did not reveal any significant interaction between both polysaccharides what is in accordance with the observed rheological behavior. Small additions of chitosan to starch-rich systems may be a useful strategy to obtain new textures with novel phase transition behaviors. PMID:27312647

  12. Effects of cation concentration on photocatalytic performance over magnesium vanadates

    International Nuclear Information System (INIS)

    A series of magnesium vanadates (MgV 2O6, Mg2V 2O7, and Mg3V 2O8) were synthesized to investigate the effect of cation concentration on photocatalytic performance. The samples were characterized by X-ray diffraction, field emission-scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, and fluorescence spectroscopy. The photocatalytic O2 evolution experiments under visible light irradiation showed Mg2V 2O7 exhibits the best performance, while Mg3V 2O8 has the lowest activity. The density functional theory calculations indicated that the lowest unoccupied states of Mg3V 2O8 are the mostly localized by the cation layers. The fluorescence spectra and fluorescence decay curves gave evident performances of excited states of magnesium vanadates and pointed out MgV 2O6 has a very short excited electron lift-time. Mg2V 2O7 performs high photocatalytic activity because of its high electron mobility and long electron life-time

  13. Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy

    Directory of Open Access Journals (Sweden)

    Susana Machado

    2014-01-01

    Full Text Available Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE or cholesterol (Chol. Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane-carbamoyl]-cholesterol (DC-Chol and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.

  14. Dendrisomes: vesicular structures derived from a cationic lipidic dendron.

    Science.gov (United States)

    Al-Jamal, Khuloud T; Sakthivel, Thiagarajan; Florence, Alexander T

    2005-01-01

    The behavior of a novel synthetic lipidic cationic lysine-based dendron (partial dendrimer) in aqueous media and its ability, with and without cholesterol, to self-assemble into higher order structures was studied to gain an understanding of these structures as potential drug carriers. The dendron was prepared by solid-phase peptide synthesis. A reverse-phase evaporation (REV) technique was used to prepare cationic vesicular aggregates of the dendron with different molar ratios of cholesterol. The size and zeta potential of these supramolecular aggregates or "dendrisomes" was determined by photon correlation spectroscopy (PCS). Dendrisome morphology and thermotropic properties were studied by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). Radiolabeled penicillin G was used as a model of a negatively charged water-soluble compound to investigate the encapsulation efficiency of the dendrisomes. In vitro release of the drug was determined using as a comparator a REV liposome formulation. Dendrisomes of all compositions have higher encapsulation efficiencies and slower release rates compared to the comparator. Cholesterol was found both to increase the size of the aggregates from around 310 to 560 nm and to increase shape irregularities, but did not change the positive zeta potential, in the order of +50 mV, of the dendrisomes. Cholesterol decreases penicillin G entrapment efficiency but increases solute leakage at 25 degrees C. PMID:15761934

  15. Excited state dynamics of the astaxanthin radical cation

    Science.gov (United States)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  16. Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling.

    Science.gov (United States)

    Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem

    2015-11-17

    We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped. PMID:26503882

  17. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs+ and Sr2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs+ and Sr2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  18. Formation and Dissociation of Phosphorylated Peptide Radical Cations

    Science.gov (United States)

    Kong, Ricky P. W.; Quan, Quan; Hao, Qiang; Lai, Cheuk-Kuen; Siu, Chi-Kit; Chu, Ivan K.

    2012-12-01

    In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal-ligand phosphorylated peptide complexes [CuII(terpy) p M]·2+ and [CoIII(salen) p M]·+ [ p M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N, N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ( p M·+) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M - H3PO4]·+ species through phosphate ester bond cleavage. The CID spectra of the p M·+ species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H3PO4 loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H3PO4 from a prototypical model— N-acetylphosphorylserine methylamide—revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.

  19. In ovo transfection of chicken embryos using cationic liposomes.

    Science.gov (United States)

    Rosenblum, C I; Chen, H Y

    1995-05-01

    It is reported that cationic liposomes are capable of transfecting embryos in unincubated fertile chicken eggs and that the cationic liposome, TransfectAce, has superior properties to Lipofectin. In order to determine the duration of expression of genes introduced in this way, embryos were transfected with an expression vector encoding the firefly luciferase cDNA under the control of the Rous sarcoma virus long terminal repeat (LTR). Luciferase activity could be observed consistently in day 3 embryos and activity was detectable up to day 8 of incubation. The relative expression of luciferase under the control of different viral promoters was compared in transfected chicken embryo fibroblasts and day 3 embryos. The cytomegalovirus immediate early promoter and the SV40 early promoter directed the highest amount of expression in fibroblasts while the Rous sarcoma virus LTR caused the highest amount of expression in embryos. Chicken embryo fibroblasts were transfected with the luciferase vector in order to examine duration of reporter gene expression in vitro. Luciferase expression was decreased exponentially over a 24-day period after which point luciferase activity could no longer be detected. These data suggest that stable integration of transfected DNA using liposomes is a rare event. Nevertheless, liposome-mediated transfection of embryos is suitable for the examination of promoter activity in vivo and may be a useful method to transfect genes to study embryonic development. PMID:7795662

  20. Cation distribution and magnetic properties of natural chromites

    Energy Technology Data Exchange (ETDEWEB)

    Rais, A.; Yousif, A.A.; Al-shihi, M.H.; Al-rawas, A.D.; Gismelseed, A.M.; El-zain, M.E. [Department of Physics, College of Science, Sultan Qaboos University (Oman)

    2003-10-01

    Ten specimens of chromites from Oman ophiolites have been studied using magnetic susceptibility {chi} measurements, Moessbauer spectroscopy (MS), Scanning electron microscopy (SEM), and X-ray diffraction (XRD). XRD shows that all samples have a face-centered cubic spinel structure. MS analysis and SEM data at room temperature enabled to derive the chemical formula and the cations distribution among tetrahedral (A1 and A2) and octahedral (B) sites. For all specimens, paramagnetic variations of 1/{chi} with the temperature T show a systematic curve bending at a critical temperature T{sub 0}, which indicates a change of the effective paramagnetic moment {mu}{sub eff}. This deviation from Curie-Weiss law is interpreted as due to spin inversion of a fraction {delta} of Cr{sup 3+} cations located in the octahedral sites of the spinel structure. This interpretation is supported by a decrease in the Moessbauer peak areas of Fe{sup 2+} located in A1 sites from 300 to 80 K at the expense of Fe{sup 2+} located in A2 sites. The values of {delta} and {mu}{sub eff} for each specimen are calculated by fitting this model separately to the experimental 1/{chi} versus T above and below T{sub 0}. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Effect of cationic monomer on properties of fluorinated acrylate latex

    Institute of Scientific and Technical Information of China (English)

    Li Jun Chen

    2012-01-01

    Cationic fluorinated acrylate latex was prepared via semi-continuous emulsion copolymerization of cationic monomer and other monomers.The resultant latex and its film were characterized with dynamic light scattering detector and contact angle meter.Influences of amount of DMDAAC on the properties of resultant latex and its film were investigated in detail.Results show that the particle size of the latex has the minimum value and the zeta potential of the latex is increased when the amount of DMDAAC is increased.In addition,the particle size of the latex is unimodal distribution when the amount of DMDAAC is not more than 2.5%.However,the particle size of the latex is bimodal distribution when the amount of DMDAAC is more than 2.5%.The contact angle is varied slightly with the increase of amount of DMDAAC when it is not more than 2.5%.Nevertheless,the contact angle is decreased with the increase of the amount of DMDAAC when it is more than 25%.

  2. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultane......Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations...... reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are: The hydration number for all of these cations seems to follow the same simple relation....

  3. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants

    Science.gov (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.

    2015-11-01

    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  4. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    Science.gov (United States)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-05-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core-shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core-shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals.

  5. Improving reactive ink jet printing via cationization of cellulosic linen fabric.

    Science.gov (United States)

    Rekaby, M; Abd-El Thalouth, J I; Abd El-Salam, Sh H

    2013-11-01

    Cellulose linen fabric samples subjected to cationization using different cationizing agents: dodecyl trimethyl ammonium bromide (DTAB), tetra methyl ammonium hydroxide (TMAH), and Quat-188, via pad batch technique, followed by ink jet printing with reactive dyes. The %N as well as the K/S of the cationized samples was found to be depends on: (a) the nature of the cationizing agent and (b) on the time of batching. As the latter increases both of the nitrogen content and K/S increases to a maximum depending on the nature of the reagent used. Further increase in the batching time up to 30 h is accompanied by a decrease in both the %N and K/S irrespective of the nature of the cationizing agent used. Cationization improves the printability of reactive dye ink jet printed linen fabrics with no remarkable effect on the overall color fastness properties. PMID:24053816

  6. Electrochemistry of cations in diopsidic melt - Determining diffusion rates and redox potentials from voltammetric curves

    Science.gov (United States)

    Colson, Russell O.; Haskin, Larry A.; Crane, Daniel

    1990-01-01

    Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.

  7. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    International Nuclear Information System (INIS)

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials

  8. Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin.

    Science.gov (United States)

    Wang, G; Wang, A J; Hu, K S

    2000-12-01

    Tryptophan quenching by the addition of alkaline earth metal cations to deionized bacteriorhodopsin suspensions was determined. The results show that the addition of cation primarily quenches fluorescence from surface tryptophan residues. The quenched intensity exhibits a 1/R dependence, where R is the ionic radius of the corresponding metal ion. This observation results from a stronger energy transfer coupling between the tryptophan and the retinal. The membrane curvature may be involved as a result of cations motion and correlated conformational changes. PMID:11332888

  9. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes

    OpenAIRE

    Kitching, H; Kenyon, A. J.; Parkin, I. P.

    2014-01-01

    We describe the synthesis of charge-stabilised gold and silver nanoparticles by a modified Turkevich method and their interaction with a selection of cationic and anionic dyes. It was found that gold nanoparticles interact strongly with cationic dyes and in some cases enhanced absorption was observed by UV-visible spectroscopy. It is also shown that addition of cationic dyes to gold nanoparticles triggers aggregation of the nanoparticles into large, micrometre-scale clusters. Simultaneous fra...

  10. Surface-Active and Performance Properties of Cationic Imidazolinium Surfactants Based on Different Fatty Acids

    Science.gov (United States)

    Bajpai, Divya; Tyagi, V. K.

    Imidazoline surfactants belong to the category of cationic surfactants. Cationic surfactants are often quaternary nitrogen salts and are widely used both in nonaqueous systems and in applications such as textile softeners, dispersants, and emulsifiers. This study describes the surface-active properties of cationic imidazolinium surfactants synthesized from different fatty acids. Their laundry performance in combination with nonionic surfactants like detergency, foaming property, softening property, rewettability etc., is also emphasized.

  11. Study on degradation of cation exchange resin for condensate polishing plant

    International Nuclear Information System (INIS)

    The degradation of condensate polisher resin might cause the deterioration of water chemistry in power plants. The cause of cation resin degradation was studied in laboratory tests which simulated actual operating condition in a condensate polishing plant. It was found that air-scrubbing and unregenerated storage accelerate the decomposition of the cation exchange resin. Decrease of air-scrubbing times and regenerated storage are suggested as countermeasures against cation exchange resin degradation. (author)

  12. Correlation between the Increasing Conductivity of Aqueous Solutions of Cation Chlorides with Time and the “Salting-Out” Properties of the Cations

    Directory of Open Access Journals (Sweden)

    Nada Verdel

    2016-02-01

    Full Text Available The time-dependent role of cations was investigated by ageing four different aqueous solutions of cation chlorides. A linear correlation was found between the cations’ Setchenov coefficient for the salting-out of benzene and the increase in the conductivity with time. The conductivity of the structure-breaking cations or the chaotropes increased more significantly with time than the conductivity of the kosmotropes. Since larger water clusters accelerate the proton or hydroxyl hopping mechanism, we propose that the structuring of the hydration shells of the chaotropes might be spontaneously enhanced over time.

  13. SANS study on the complex of cationic micelles and anionic polyelectrolytes

    International Nuclear Information System (INIS)

    We investigated the complex of cationic micelles and anionic polyelectrolytes. The cationic micelles have the composition of nonionic surfactant, Octa-ethyleneglycol mono n-tetradecyl ether (C14E8) and cationic surfactant, Tetradecyltrimethylammonium Bromide (TTAB), and the polyelectrolyte is Poly Styrene Sulfonic Acid, Sodium Salt (Mw.= 73900, PSS80k). By the charge interaction, they formed the complexes in the aqueous solution. This complex was studied by Small Angle Neutron Scattering (SANS). SANS study showed that the size distribution changed by the cationic surfactant-to-polyelectrolyte charge ratio. The structure of this complex was also studied

  14. Radiochemical study of gas-phase reactions of free methyl cations with tetraalkylsilanes

    International Nuclear Information System (INIS)

    Interaction of free methyl-cations with tetraalkylsilanes was studied. Free methyl-cations were prepared by the nuclear-chemical method, based on processes of tritium β-decomposition in the content of many times tritiated methane. Reactions of methyl-cations with tetraalkylsilanes (C1-C4) are accompanied by formation of saturated hydrocarbons. This testifies to elimination of alkyl anions on Si-C and C-C bonds. Intensity of carbamin elimination on Si-C bonds decreases with increase of radical chain length. Processes of methyl-cation substitution for alkyl radical in tetraalkylsilanes with charge transfer to this radical take place along with processes of carbanion elimination

  15. Effect of heavy metal cations on the activity of cathepsin D (in vitro study).

    Science.gov (United States)

    Karwowska, Alicja; Łapiński, Radosław; Gacko, Marek; Grzegorczyk, Ewa; Żurawska, Joanna; Karczewski, Jan K

    2012-01-01

    We studied the effect of heavy metal cations: Fe²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Pb²⁺ on the activity of cathepsin D in human aorta homogenate and blood serum. The concentration of cations was 1 mmol/l. Hemoglobin was the cathepsin D substrate. The activity of cathepsin D was determined at pH 3.5. Only Hg²⁺ cations inhibit the activity of cathepsin D. Cations Hg²⁺ damage lysosomes and release cathepsin D from these organelles. PMID:23042275

  16. Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes

    Science.gov (United States)

    Marchini, Cristina; Montani, Maura; Amici, Augusto; Pozzi, Daniela; Caminiti, Ruggero; Caracciolo, Giulio

    2009-01-01

    We have applied electrophoresis on agarose gels to investigate the DNA-binding capacity of cationic liposomes made of cationic DC-cholesterol and neutral dioleoylphosphatidylethanolamine as a function of membrane charge density and cationic lipid/DNA charge ratio. While each cationic liposome formulation exhibits a distinctive DNA-protection ability, here we show that such a capacity is universally regulated by surface area of lipid membranes available for binding in an aspecific manner. The relevance of DNA protection for gene transfection is also discussed.

  17. Stimulation of cation transport in mitochondria by gramicidin and truncated derivatives

    International Nuclear Information System (INIS)

    Gramicidin and the truncated derivatives desformylgramicidin (desfor) and des(formylvalyl)gramicidin (desval) stimulate monovalent cation transport in rat liver mitochondria. Cation fluxes were compared indirectly from the effect of cations on the membrane potential at steady state (state 4) or from the associated stimulation of electron transport. Rb+ transport was measured directly from the uptake of 86Rb. The truncated gramicidins show enhanced selectivity for K+ and Rb+ when compared to gramicidin. Moreover, the pattern of selectivity within the alkali cation series is altered. The cation fluxes through the truncated derivatives are more strongly dependent on the cation concentration. The presence of high concentrations of permeating cation enhances the transport of other cations through the truncated derivative channels, suggesting that cations are required for stabilizing the channel structure. In high concentrations of KCl, desfor and desval are nearly as effective as gramicidin in collapsing the mitochondrial membrane potential, and consequently, in the uncoupling of oxidative phosphorylation and enhancement of ATP hydrolysis. Preliminary experiments with liposomes show that 86Rb exchange is stimulated by desfor and desval almost to the same extend at gramicidin. These results strongly suggest that the truncated gramicidins form a novel conducting channel which differs from the gramicidin head-to-head, single-stranded β6.3-helical dimer (channel) in its conductance characteristic and its structure. On the basis of the secondary structure of the truncated derivatives, the authors suggest that the antiparallel double-stranded helix dimer (pore) is a likely alternative structure for this novel channel

  18. Disposal of heavy metal cations in aqueous media by adsorption on coal to Ghazni

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2008-03-01

    Full Text Available  Adsorption of Pb and Cu cations and their mixture on the surface of modified and non-modified anti-gas coal trough different time intervals have been studied. The maximum adsorption capacity of coal relative to each cations have been determined. Absence  of concurrence between cations of Pb and Cu during adsorption from mixture is explained by difference of  types of their interaction with coal surface. The high effectiveness and perspectivities of application of anti-gas coal for neutralization of heavy metal cations in aqueous solution was shown.

  19. Mechanistic views on aromatic substitution reactions by gaseous cations.

    Science.gov (United States)

    Fornarini, S

    1996-01-01

    Recent advances in the understanding of the gas-phase reaction of aromatics with cationic electrophiles in a thermally equilibrated domain are described. The overall substitution reaction is analyzed in terms of its elementary steps. Their contribution to the overall reactivity pattern is dissected by the use of selected systems, which allowed one to highlight the kinetic role of single elementary events. Mechanistic studies have focused on the structure and reactivity of covalent and non-covalent ionic intermediates, which display a rich chemistry and provide benchmark reactivity models. Particular interest has been devoted to proton transfer reactions, which may occur in either an intra- or intermolecular fashion in arenium intermediates. A quantitative study of their rates and associated kinetic isotope effects is reported. © 1997 John Wiley & Sons, Inc. Mass Spectrom Rev 15(6), 365-389, 1997. PMID:27082944

  20. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  1. Cationic ruthenium-nitrosyl complexes in radioactive waste solutions

    International Nuclear Information System (INIS)

    By means of counterpressure column electrophoresis using Lichroprep Si 60 as carrier medium it has been possible for the first time to preparatively isolate and thus analyse all cationic ruthenium-nitrosylnitrato complexes. The composition of the various complexes is determined from the ion charge revealed by the migration path during the electrophoresis, and from the content of Ru, NO and NO3-. The denitration of simulated high-activity and medium-activity waste solution with formaldehyde or formic acid results in the formation of formiato complexes, the composition of which can be determined by a new method corresponding to the one used for nitrato complexes. The extraction of ruthenium with TBP Dodecan will predominantly yield neutral complexes, but a reduction in temperature and a high amount of impurity electrolytes will favour the extraction of all complexes. (orig./RB)

  2. Characterization of an aluminum pillared montmorillonite with cation exchange properties

    International Nuclear Information System (INIS)

    The methods of PIGE and XRF were used to determine the elemental composition and the structural formulae of a specially tailored PILC material during the steps of its preparation. The CEC, a crucial property for the characterization of a cation exchanger, was monitored through all stages of preparation. In addition, the charge carried by the pillars, a critical quantity of the pillaring process, was estimated. Exchange isotherms of strontium and cesium were performed through the use of radiotracers' exchange isotherms of 137Cs and 85Sr with typical γ-ray spectroscopy. These isotherms were of the Langmuir type and PILCs adsorption capacity was determined. The latter property was compared with the CEC determined by the elemental analysis and was found equal to the amount of the exchangeable interlamellar sodium ions. (author)

  3. Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes.

    Science.gov (United States)

    Dale, Edward J; Vermeulen, Nicolaas A; Juríček, Michal; Barnes, Jonathan C; Young, Ryan M; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-16

    Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor-acceptor interactions to form host-guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with boxlike geometries, dubbed Ex(n)Boxm(4+) for short, have been prepared by altering a number of variables: (i) n, the number of "horizontal" p-phenylene spacers between adjoining pyridinium units, to modulate the "length" of the cavity; (ii) m, the number of "vertical" p-phenylene spacers, to modulate the "width" of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles (ExBoxes) and macrobicycles (ExCages), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry. Ex(1)Box(4+) (or simply ExBox(4+)) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host-guest complexes allow the development of artificial photosystems. Ex(2)Box(4+) boasts the ability to bind both π-electron-rich and -poor aromatic

  4. Synthesis and Properties of Gemini Cationic Surfactants with Amide Spacers

    Institute of Scientific and Technical Information of China (English)

    DENG Qi-gang; YU Hong-wei; LIN Hong; JIA Li-hua; GUO Xiang-feng; ZHOU De-rui

    2005-01-01

    Four gemini cationic surfactants {N,N'-di[2-(lauryldimethylamino)acetyl]polymethylenediamine dichloride, LAA-s-LAA, s=2,3,4,6} were synthesized by using four bis(α-chloroacetamide)s and N,N-dimethyllaurylamine, respectively. The molecular structures were characterized by means of IR, 1H NMR, 13C NMR and MS, and the behavior of their aqueous solutions was studied. The critical micell concentrations(CMC) of LAA-s-LAA were one order of magnitude lower than that of dodecyltrimethyl ammonium chloride(DTAC). With the change of the length of spacer chain(s), their CMC values change, and CMC reaches the top value at s=4.

  5. Porphyrin Analogues of a Trityl Cation and Anion.

    Science.gov (United States)

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-05-17

    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  6. Cation self-diffusion in Fe2O3

    International Nuclear Information System (INIS)

    Self-diffusion of 59Fe in single crystals of Fe2O3 parallel to the c-axis has been measured as a function of temperature (1150 to 13400C) and oxygen partial pressure (2 x 10-3) less than or equal to Po2 less than or equal to 1 atm). The oxygen partial pressure dependence of the diffusivity indicates that cation self-diffusion occurs by an interstitial-type mechanism. The simultaneous diffusion of 52Fe and 59Fe has been measured in Fe2O3 at 12510C and Po2 = 1.91 x 10-2 atm. The small value of the isotope effect (fΔK = 0.067 +- 0.016) is consistent with diffusion of Fe ions by an interstitially mechanism

  7. Modulation of mechanosensitive calcium-selective cation channels by temperature

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    Gating of associations of mechanosensitive Ca(2+)-selective cation co-channels in the plasmalemma of onion epidermis has a strong and unusual temperature dependence. Tension-dependent activity rises steeply as temperature is lowered from 25 degrees C to about 6 degrees C, but drops to a low level at about 5 degrees C. Under the conditions tested (with Mg2+ and K+ at the cytosolic face of outside-out membrane patches), promotion results both from more bursting at all observed linkage levels and from longer duration of bursts of co-channels linked as quadruplets and quintuplets. Co-channel conductance decreases linearly, but only modestly, with declining temperature. It is proposed that these and related mechanosensitive channels may participate in a variety of responses to temperature, including thermonasty, thermotropism, hydrotropism, and both cold damage and cold acclimation.

  8. Preliminary Testing For Anionic, Cationic and Non-ionic

    Directory of Open Access Journals (Sweden)

    Bokic, Lj.

    2007-11-01

    Full Text Available Detergents present a major environmental problem due to large quantities of surfactants released from laundries. For this reason, it is important to apply an appropriate analytical method for their determination. In this work, we propose two simple, fast and inexpensive analytical methods for anionic, cationic and non-ionic surfactant determination: thin layer chromatography (TLC separation for qualitative screening and quantitative potentiometric determination with ion-selective electrodes. These methods have been chosen because of their many advantages: rapidity, ease of operation, low cost of analysis and a wide variety of TLC application possibilities. The advantage of potentiometric titration is its very high degree of automation and very low detection limits obtained with different ion-selective electrodes applied for different surfactants.

  9. Cation disorder in high dose neutron irradiated spinel

    International Nuclear Information System (INIS)

    The crystal structures of MgAl2O4 spinel single crystals irradiated to high neutron fluences (>5·1026 n/m2 (En>0.1 MeV)), were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼20% while increasing by ∼8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this result is consistent with site exchange between Mg2+ ions on tetrahedral sites and Al3+ ions on octahedral sites. Least squares refinements also indicated that in all irradiated samples, at least 35% of Mg2+ and Al3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  10. Soil exchangeable cations: A geostatistical study from Russia

    Directory of Open Access Journals (Sweden)

    Tayfun Aşkın

    2012-01-01

    Full Text Available In present study, geostatistical techniques was applied to assess the spatial variability of exchangeable cations such as; calcium (Ex-Ca2+, magnesium (Ex-Mg2+, potassium (Ex-K+ and sodium (Ex-Na+ in the tillaged layer in a Perm State Agricultural Academy Farm site in Perm region, West Urals, Russia. A 250x100 m plot (approximately 2.35 ha was divided into grids with 25x25 m spacing that included 51 sampling points from 0-0.2 m in depth. Soil reaction (pH was the least variable property while the Ex-K was the most variable. The greatest range of influence (237.6 m occurred for Ex-Ca and the least range (49.7 m for Ex-Mg.

  11. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  12. Cationic chalcone antibiotics. Design, synthesis, and mechanism of action.

    Science.gov (United States)

    Nielsen, Simon F; Larsen, Mogens; Boesen, Thomas; Schønning, Kristian; Kromann, Hasse

    2005-04-01

    This paper describes how the introduction of "cationic" aliphatic amino groups in the chalcone scaffold results in potent antibacterial compounds. It is shown that the most favorable position for the aliphatic amino group is the 2-position of the B-ring, in particular in combination with a lipophilic substituent in the 5-position of the B-ring. We demonstrate that the compounds act by unselective disruption of cell membranes. Introduction of an additional aliphatic amino group in the A-ring results in compounds that are selective for bacterial membranes combined with a high antibacterial activity against both Gram-positive and -negative pathogens. The most potent compound in this study (78) has an MIC value of 2 muM against methicillin resistant Staphylococus aureus. PMID:15801857

  13. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini

    2010-01-01

    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  14. Synthesis and Spectroscopic Characterization of Two Tetrasubstituted Cationic Porphyrin Derivatives

    Directory of Open Access Journals (Sweden)

    Newton M. Barbosa Neto

    2011-07-01

    Full Text Available An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II complex with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by 1H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.

  15. Preparation of cationic polyacrylamide by aqueous two-phase polymerization

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Cationic polyacrylamide (CPAM was synthesized by aqueous two-phase polymerization technique using acrylamide (AM and dimethylaminoethyl methacrylate methyl chloride (DMC as raw materials, aqueous polyethylene glycol 20000 (PEG 20000 solution as dispersant, 2,2′-azobis(2-amidinopropane dihydrochloride (V-50 as initiator and poly(dimethylaminoethyl methacrylate methyl chloride (PDMC as stabilizer. The polymer was characterized by infrared (IR spectroscopy, 1H-NMR spectrum and transmission electron microscopy (TEM. The copolymer composition was analyzed. The effect of monomers concentration, PEG 20000 concentration and stabilizer concentration on copolymer were investigated, respectively. The optimum reaction conditions for obtaining a stable CPAM aqueous two-phase system were monomers concentration 8~15%, PEG 20000 concentration 15~25%, and PDMC concentration 0.5~1.5%. Finally, the formation process of copolymer particles was investigated by optical microscope.

  16. Preparation and characterization of UV-curable cationic composite adhesive

    International Nuclear Information System (INIS)

    UV-curable cationic composite adhesives containing TiO2 nanostructures were prepared by using 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate(CE) as monomer, triphenylsulfonium hexafluorophosphate salt (PI-432) as photoinitiator and titanium isopropoxide (TIP) as inorganic precursor. The morphology of the composite adhesives was characterized by atom force microscopy (AFM). The effect of TIP content on refractive index and transmittance of adhesives were studied. The results show that TiO2 nanostructures, the average diameter of which is 20 nm or so, can be uniformly dispersed in polymers of composite adhesives. The refractive index of adhesives can be adjusted from 1.501 9 to 1.544 9 with the change of TIP content. The transmittance of adhesives has a slight reduce with the increase of TIP content. When TIP content is up to 40%, the transmittance of composite adhesives remains around 90% or so. (authors)

  17. Binding properties of oxacalix[4]arenes derivatives toward metal cations

    International Nuclear Information System (INIS)

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) 1H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na+, K+, Ca2+, Pb2+ and Mn2+ of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li+, Ba2+, Zn2+ and Hg2+. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs+, Ba2+, Cu2+ and Hg2+ were noted. (author)

  18. Understanding electrochromic processes initiated by dithienylcyclopentene cation-radicals.

    Science.gov (United States)

    Guirado, Gonzalo; Coudret, Christophe; Hliwa, Mohamed; Launay, Jean-Pierre

    2005-09-22

    Simple photochromic dithienylethylenes with either a perfluoro or a perhydro cyclopentene ring, and a variety of substituents (chlorine, iodine, trimethylsilyl, phenylthio, aldehyde, carboxylic acid, and ethynylanisyl), have been prepared and their electrochemical behavior was explored by cyclic voltammetry. All dithienylethylenes present two-electron irreversible oxidation waves in their open form, but the cation-radical of the open isomers can follow two different reaction pathways: dimerization or ring closure, whereas the halogen derivatives follow a dimerization mechanism, the presence of donor groups, such as the phenylthio-substituted compound, promote an efficient oxidative ring closure following an ECE/DISP mechanism. Electrochromic properties are also found in the corresponding ring-closed isomers. Depending on the substituents on the thiophene ring, and the perfluro or perhydro cyclopentene ring, open isomers can be obtained from oxidation (chemical or electrochemical) of the corresponding ring-closed isomers via an EC mechanism. This reaction pathway is favored by the presence of electron-withdrawing groups in the molecule. For all these compounds, closed or open, the oxidation lies between 0.8 and 1.5 V vs SCE, and provokes a permanent modification of the color, even after an oxidation-reduction cycle. This could be qualified as "electrochromism with memory". On the other hand, the ring-closed electron-rich isomers (E degrees electrochromism", for which no structural changes are observed. The experimental study was completed by theoretical calculations at the DFT level, using B3LYP density functional, which gave information on the total energy, the geometry, and the electronic structures of several representative compounds, either in the neutral form or in the cation-radical state. These results are important for the potential design of photochromic systems, such as three-state conjugated systems and photoelectrical molecular switching devices. PMID

  19. Effect of competing cations on strontium sorption to surficial sediments

    International Nuclear Information System (INIS)

    The following study was conducted to determine strontium distribution coefficients (Kd's) of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine Kd's which describe the partitioning of a solute between the solution and solid phase. A surficial sediment was mixed with synthesized aqueous solutions designed to chemically simulate wastewater disposed to infiltrations ponds near the Idaho Chemical Processing Plant at the INEL with respect to major ionic character and pH. The effects of variable concentrations of competing cations (sodium, potassium, calcium and magnesium) on strontium sorption were investigated at a fixed pH of 8.00. The pH of the natural system shows no appreciable variation, whereas a marked variability in cation concentration has been noted. Strontium sorption was impacted to a greater degree by the concentration of calcium and magnesium in solution than by the presence of sodium or potassium. However, extreme sodium solution concentrations of 1.0 to 5.0 g/L dramatically reduced strontium sorption. In all cases, strontium Kd's decreased as the concentration of calcium and magnesium in solution increased. Linear isotherm model Kd's ranged from 12.0 to 84.7 mL/g. Analysis of data from these experiments indicated that moderate concentrations of calcium and magnesium (less than 40 mg/L) and high concentrations of sodium (1.0 to 5.0 g/L) in wastewater increase strontium mobility by decreasing the sorption of strontium on surficial sediments beneath infiltration ponds at the INEL

  20. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    International Nuclear Information System (INIS)

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  1. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    Science.gov (United States)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  2. Perturbing peptide cation-radical electronic states by thioxoamide groups: formation, dissociations, and energetics of thioxopeptide cation-radicals.

    Science.gov (United States)

    Zimnicka, Magdalena; Chung, Thomas W; Moss, Christopher L; Tureček, František

    2013-02-14

    Thioxodipeptides Gly-thio-Lys (GtK), Ala-thio-Lys (AtK), and Ala-thio-Arg (AtR) in which the amide group has been modified to a thioxoamide were made into dications by electrospray ionization and converted to cation-radicals, (GtK + 2H)(+•), (AtK + 2H)(+•), and (AtR + 2H)(+•), by electron transfer dissociation (ETD) tandem mass spectrometry using fluoranthene anion-radical as an electron donor. The common and dominant dissociation of these cation-radicals was the loss of a hydrogen atom. The dissociation products were characterized by collision-induced dissociation (CID) multistage tandem mass spectrometry up to CID-MS(5). The ground electronic states of several (GtK + 2H)(+•), (AtK + 2H)(+•), and (AtR + 2H)(+•) conformers were explored by extensive ab initio and density functional theory calculations of the potential energy surface. In silico electron transfer to the precursor dications, (GtK + 2H)(2+), (AtK + 2H)(2+), and (AtR + 2H)(2+), formed zwitterionic intermediates containing thioenol anion-radical and ammonium cation groups that were local energy minima on the potential energy surface of the ground electronic state. The zwitterions underwent facile isomerization by N-terminal ammonium proton migration to the thioenol anion-radical group forming aminothioketyl intermediates. Combined potential energy mapping and RRKM calculations of dissociation rate constants identified N-C(α) bond cleavages as the most favorable dissociation pathways, in a stark contrast to the experimental results. This discrepancy is interpreted as being due to the population upon electron transfer of low-lying excited electronic states that promote loss of hydrogen atoms. For (GtK + 2H)(+•), these excited states were characterized by time-dependent density functional theory as A-C states that had large components of Rydberg-like 3s molecular orbitals at the N-terminal and lysine ammonium groups that are conducive to hydrogen atom loss. PMID:22765351

  3. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows.

    Science.gov (United States)

    Catterton, T L; Erdman, R A

    2016-08-01

    Many studies have focused on the influence of dietary cation-anion difference (DCAD) on animal performance but few have examined the effect of DCAD on the rumen ionic environment. The objective of this study was to examine the effects of DCAD, cation source (Na vs. K), and anion source (Cl vs. bicarbonate or carbonate) on rumen environment and fermentation. The study used 5 rumen-fistulated dairy cows and 5 dietary treatments that were applied using a 5×5 Latin square design with 2-wk experimental periods. Treatments consisted of (1) the basal total mixed ration (TMR); (2) the basal TMR plus 340mEq/kg of Na (dry matter basis) using NaCl; (3) the basal TMR plus 340mEq/kg of K using KCl; (4) the basal TMR plus 340mEq/kg of Na using NaHCO3; and (5) the basal TMR plus 340mEq/kg of K using K2CO3. On the last day of each experimental period, rumen samples were collected and pooled from 5 different locations at 0, 1.5, 3, 4.5, 6, 9, and 12h postfeeding for measurement of rumen pH and concentrations of strong ions and volatile fatty acids (VFA). Dietary supplementation of individual strong ions increased the corresponding rumen ion concentration. Rumen Na was decreased by 24mEq/L when K was substituted for Na in the diet, but added dietary Na had no effect on rumen K. Rumen Cl was increased by 10mEq/L in diets supplemented with Cl. Cation source had no effect on rumen pH or total VFA concentration. Increased DCAD increased rumen pH by 0.10 pH units and increased rumen acetate by 4mEq/L but did not increase total VFA. This study demonstrated that rumen ion concentrations can be manipulated by dietary ion concentrations. If production and feed efficiency responses to DCAD and ionophores in the diet are affected by rumen Na and K concentrations, then manipulating dietary Na and K could be used either to enhance or diminish those responses. PMID:27289159

  4. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B

    2006-11-15

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  5. Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake.

    NARCIS (Netherlands)

    Verdurmen, W.P.R.; Thanos, M.; Ruttekolk, I.R.R.; Gulbins, E.; Brock, R.E.

    2010-01-01

    Cationic cell-penetrating peptides (CPP) are receiving increasing attention as molecular transporters of membrane-impermeable molecules. Import of cationic CPP occurs both via endocytosis and - at higher peptide concentrations - in an endocytosis-independent manner via localized regions of the plasm

  6. Photochemical generation of a primary vinyl cation from (E)-bromostyrene: Mechanisms of formation and reaction

    NARCIS (Netherlands)

    Gronheid, R.; Zuilhof, H.; Hellings, M.G.

    2003-01-01

    The photochemistry of (E)-bromostyrene was investigated to determine the nature of the product-forming intermediates and to clarify the mechanism of formation of vinylic cations and vinylic radicals. Both a cation- and a radical-derived product are formed, and the ionic origin of the former product

  7. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    DEFF Research Database (Denmark)

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen

    2010-01-01

    cations because of forces related to osmotic pressure difference. The two processes have very different time constants: The solvated H2O molecules are associated directly with the cations, and are therefore inserted in a faster process, whereas the second type enters the film much more slowly. At higher...

  8. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyacrylamide polymer (modified cationic) denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3480 Polyacrylamide polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer...

  9. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  10. A spin-crossover ionic liquid from the cationic iron(III) Schiff base complex.

    Science.gov (United States)

    Okuhata, Megumi; Funasako, Yusuke; Takahashi, Kazuyuki; Mochida, Tomoyuki

    2013-09-01

    A thermochromic magnetic ionic liquid containing a cationic iron(III) Schiff-base complex has been developed, whose color and magnetic moment change with temperature because of spin crossover in the liquid state. This spin-crossover behavior closely resembles that of a solid having the same cation. PMID:23872624

  11. Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration

    Energy Technology Data Exchange (ETDEWEB)

    Sudilovskiy, P.S.; Kagramanov, G.G.; Trushin, A.M.; Kolesnikov, V.A. [D.I. Mendeleyev University of Chemical Technology of Russia, Moscow (Russian Federation)

    2007-08-15

    A new water treatment process - membrane flotation - is presented. The hydrodynamics of air sparging with the use of microporous membranes was studied as well as the membrane flotation efficacy for cationic wastewater treatment. The performance of membrane filtration processes was evaluated. Ways of integration of flotation and membrane filtration in cationic wastewater treatment practice are discussed. (orig.)

  12. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shoji, E-mail: nagaoka@kmt-iri.go.jp [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Ryu, Naoya [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Yamanouchi, Akio [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Shirosaki, Tomohiro [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Horikawa, Maki [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Sakurai, Hideo; Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan)

    2015-02-02

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging.

  13. Comparison of Cationic and Unmodified Starches in Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers

    Science.gov (United States)

    Graft copolymers of starch and polyacrylamide (PAAm) were prepared using reactive extrusion in a corotating twin screw extruder. The effect of cationic starch modification was examined using unmodified and cationic dent starch (approximately 23% amylose) and waxy maize starch (approximately 2% amyl...

  14. Novel Cholesterol-Based Cationic Lipids as Transfecting Agents of DNA for Efficient Gene Delivery

    Directory of Open Access Journals (Sweden)

    Jia Ju

    2015-03-01

    Full Text Available The design, synthesis and biological evaluation of the cationic lipid gene delivery vectors based on cholesterol and natural amino acids lysine or histidine are described. Cationic liposomes composed of the newly synthesized cationic lipids 1a or 1b and neutral lipid DOPE (1,2-dioleoyl-l-α-glycero-3-phosphatidyl-ethanolamine exhibited good transfection efficiency. pEGFP-N1 plasmid DNA was transferred into 293T cells by cationic liposomes formed from cationic lipids 1a and 1b, and the transfection activity of the cationic lipids was superior (1a or parallel (1b to that of the commercially available 3β-[N-(N',N'-dimethylaminoethyl-carbamoyl] cholesterol (DC-Chol derived from the same cholesterol backbone with different head groups. Combined with the results of agarose gel electrophoresis, transfection experiments with various molar ratios of the cationic lipids and DOPE and N/P (+/− molar charge ratios, a more effective formulation was formed, which could lead to relatively high transfection efficiency. Cationic lipid 1a represents a potential agent for the liposome used in gene delivery due to low cytotoxicity and impressive gene transfection activity.

  15. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    International Nuclear Information System (INIS)

    Highlights: ► Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. ► The alkaline cation adsorption may raise potential barrier of the electron emission. ► The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li+, Na+, and K+) and alkaline earth (Be2+, Mg2+, and Ca2+) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54–1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be2+ ≫ Mg2+ ≫ Ca2+ ≫ Li+ ∼ Na+ ∼ K+.

  16. Size effects on cation heats of formation. I. Methyl substitutions in nitrogenous compounds

    International Nuclear Information System (INIS)

    Graphical abstract: Heat of formation of cations as a function of ln(n) where n is the number of atoms in the ion: methyl substituted immonium cations. N = substitution at nitrogen sites, C = substitution at carbon sites. Highlights: ► Heats of formation of nitrogenous cations by graphical method relating to ion size. ► Methyl substitution in formamides, acetamides, immonium, amine, and imine cations. ► Methyl substitution in ammonium and amino cations. ► New studies ionization energies and heats of formation required in several cases. - Abstract: The heats of formation of molecular ions are often not known to better than 10 or 20 kJ/mol. The present study on nitrogenous compounds adopts the graphical approach of Holmes and Lossing which relates cation heats of formation to cation size. A study of methyl substitution in formamides and acetamides is followed by an examination of heat of formation data on carbon-site and nitrogen-site methyl substitution in immonium, amine, imine, ammonium and amino cations. The results provide tests of the validity of this graphical method and also suggest investigating or re-investigating the ionization energies and the heats of formation of several of the molecules studied.

  17. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    International Nuclear Information System (INIS)

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging

  18. Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2

    NARCIS (Netherlands)

    van der Gun, Bemardina T. F.; Monami, Amlie; Laarmann, Sven; Rasko, Tamas; Slaska-Kiss, Krystyna; Weinhold, Elmar; Wasserkort, Reinhold; de Leij, Lou F. M. H.; Ruiters, Marcel H. J.; Kiss, Antal; McLaughlin, Pamela M. J.

    2007-01-01

    Cationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Label

  19. Americium and samarium determination in aqueous solutions after separation by cation-exchange

    International Nuclear Information System (INIS)

    The concentration of trivalent americium and samarium in aqueous samples has been determined by means of alpha-radiometry and UV-Vis photometry, respectively, after chemical separation and pre-concentration of the elements by cation-exchange using Chelex-100 resin. Method calibration was performed using americium (241Am) and samarium standard solutions and resulted in a high chemical recovery for cation-exchange. Regarding, the effect of physicochemical parameters (e.g. pH, salinity, competitive cations and colloidal species) on the separation recovery of the trivalent elements from aqueous solutions by cation-exchange has also been investigated. The investigation was performed to evaluate the applicability of cation-exchange as separation and pre-concentration method prior to the quantitative analysis of trivalent f-elements in water samples, and has shown that the method could be successfully applied to waters with relatively low dissolved solid content. (author)

  20. Adsorptive bubble separation of zinc and cadmium cations in presence of ferric and aluminum hydroxides.

    Science.gov (United States)

    Jurkiewicz, Kazimierz

    2005-06-15

    The adsorptive bubble separation of zinc and cadmium cations from solution in the presence of ferric and aluminum hydroxides was carried out by means of Tween 80 (nonionic surfactant), and sodium laurate and stearate (anionic surfactants). The mechanism of metal removal is different depending on the nature of the surfactant used. The removal of zinc cations by adsorbing colloid flotation is higher than that of cadmium cations. It increases with increases in the amount of hydroxide precipitate and the concentration of Tween 80. The removal of zinc cations by ion flotation is lower than that of cadmium cations. It does not change with increases in the hydroxide amount. It increases, however, with increased sodium laurate or stearate concentration. Both separation methods turned out to be helpful for studying both the solution's structure and the interactions at the solution-solid interface. PMID:15897071

  1. THE INFLUENCE OF CATIONIZED BIRCH XYLAN ON WET AND DRY STRENGTH OF FINE PAPER

    Directory of Open Access Journals (Sweden)

    Janne Kataja-aho,

    2012-02-01

    Full Text Available Cationized birch xylan was prepared and its use as a papermaking chemical was evaluated. The focus was on studying the effects of cationized birch xylan on the wet and dry strength of fine paper. The results of the laboratory experiments show that the addition of 3 percent of cationized birch xylan to birch kraft pulp improved the initial wet strength of the web by 30 percent compared to base stock at a solids content of 55%. Furthermore, the tensile stiffness of the wet web increased by approximately a third and the dry tensile strength improved by 26%, while the dry elastic modulus was not changed. The improvements in the strength properties were clear when compared to the base stock, but not as high as achieved with conventionally used cationized starch. The difference between the xylan and starch is most likely due to the shorter polymer chain length of the cationized xylan.

  2. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn0.552+Fe0.183+)tet[Zr0.452+Fe1.823+]octO4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  3. Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cations

    International Nuclear Information System (INIS)

    Two sulfonated ionomers based on poly(triethylmethyl ammonium 2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) and containing mixtures of Li+ and quaternary ammonium cations are characterised. The first system contains Li+ and the methyltriethyl ammonium cation (N1222) in a 1:9 molar ratio, and the 7Li NMR line widths showed that the Li+ ions are mobile in this system below the glass transition temperature (105 °C) and are therefore decoupled from the polymer segmental motion. The conductivity in this system was measured as 10−5 S cm−1 at 130 °C. A second PAMPS system containing Li+ and the dimethylbutylmethoxyethyl ammonium cation (N114(2O1)) in a 2:8 molar ratio showed much lower conductivities despite a significantly lower Tg (60 °C), possibly due to associations between the Li+ and the ether group on the ammonium cation, or between the latter cations and the sulfonate groups

  4. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun

    2008-01-01

    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.

  5. Modification of potato peel waste with base hydrolysis and subsequent cationization.

    Science.gov (United States)

    Lappalainen, Katja; Kärkkäinen, Johanna; Joensuu, Päivi; Lajunen, Marja

    2015-11-01

    Potato peel waste (PW) is a starch containing biomaterial produced in large amounts by food processing industry. In this work, the treatment of PW by alkaline hydrolysis and cationization in the water phase is reported. In order to improve the cationization of starch, PW was hydrolyzed by heating with alkaline (NaOH) ethanol solution (80%) in a water bath. The impact of variable molar ratios of anhydroglucose unit (AGU):NaOH, heating temperatures and times was studied on the degradation of starch and the molecular size distribution of the product. The hydrolyzed PW was cationized subsequently in water by using glycidyltrimethylammonium chloride and catalyzed by NaOH under microwave irradiation or in an oil bath. The impact of the various reaction conditions on the cationization and degree of substitution of starch was studied. The degree of substitution of the cationized starch varied in the range of 0-0.35. PMID:26256329

  6. Preparation and characterization of cationic and amphoteric mannans from Candida albicans.

    Science.gov (United States)

    Čížová, Alžbeta; Neščáková, Zuzana; Malovíková, Anna; Bystrický, Slavomír

    2016-09-20

    Cationic and amphoteric mannans from Candida albicans were prepared by chemical modification with (3-chloro-2-hydroxypropyl)trimethylammonium chloride (CHPTAC) and sodium chloroacetate under aqueous alkaline conditions. The optimal reaction conditions for mannan cationization were found to be 6h, 60°C, and NaOH/CHPTAC ratio of 1.0. Adjusting the molar ratio of cationization agent to anhydromannose unit, cationic and amphoteric mannans with degree of substitution ranging from 0.07 to 0.57 were obtained. Their structure was confirmed by elemental analysis as well as FTIR and NMR spectroscopies. Moderate decrease of molecular weight of both cationic and amphoteric mannans was recorded by size exclusion chromatography. With increasing level of modification, reduction of the antibody-binding capacity was observed by enzyme-linked immunosorbent assay. PMID:27261724

  7. Electromagnetic Properties of Substituted Ba - Ferrites by Selected Cations

    Directory of Open Access Journals (Sweden)

    Anna Gruskova

    2004-01-01

    Full Text Available The powdered samples of barium hexaferrite BaFe12-2x(Me1Me2 with x varying from 0.0 to 0.6 were prepared by citrate precursor method. The cation preference of mainly four-valence Me1=(Zr, Ti, Sn ions and two-valence Me2=(Co, Ni, Zn ions and their combinations in substituted Ba ferrites were investigated by the thermomagnetic analysis, Mossbauer spectroscopy and measurement of the magnetic properties. Mossbaur studies reveal that Zr4+, Sn4+ and less Co2+, Zn2+ ions have a strong preference to occupy 2b position, this position has the greatest contribution to the magnetocrystalline anisotropy. The La3+, Ti4+, Ni2+ ions preferently enter 4f2 sites and Zn2+, Co2+ ions also prefer to occupy 4f1 tetrahedral sites. The specific saturation magnetic polarisation Js-m and remanence Js-r increased with small x due to th substitution of non-magnetic and less magnetic ions in 4f1 and 4f2 sites. The coercivity Hc was casily controllable by the sustituions level x.

  8. Docetaxel in cationic lipid nanocapsules for enhanced in vivo activity.

    Science.gov (United States)

    Jain, Ankitkumar S; Makhija, Dinesh T; Goel, Peeyush N; Shah, Sanket M; Nikam, Yuvraj; Gude, Rajiv P; Jagtap, Aarti G; Nagarsenker, Mangal S

    2016-01-01

    The usefulness of Docetaxel (DT) as an anti-cancer agent is limited to parenteral route owing to its very poor oral bioavailability. Thus, to improve its oral efficacy, DT was loaded in novel cationic lipid nanocapsules (DT CLNC). The DT CLNC possessed size of 130-150 nm, zeta potential of +72mV, adequate DT loading and over 95% encapsulation efficiency. TEM revealed capsular structure of DT CLNC. Lipolysis study indicated improved solubilization of DT by nanocapsules in comparison to DT solution. DT CLNC exhibited significantly higher release of DT in comparison to DT solution during in vitro permeation studies employing non-reverted rat-intestinal sac. Superior uptake of DT in zebra fishes exposed to DT CLNC resulted in greater apoptosis-based cell death as compared to those exposed to DT solution. This correlated well with the significantly superior (p zebra fish model. DT CLNC also inhibited tumor growth in melanoma cell line induced tumors in C57BL/6 mice significantly, as compared to DT solution (p < 0.05). The DT CLNC system demonstrated adequate stability, with tremendous potential to improve oral efficacy of DT and can serve as an alternative to existing DT formulations available commercially for parenteral use. PMID:25329444

  9. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    K Saravanan; S Govindarajan

    2002-02-01

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.H2O (where, M =Ca, Sr, Ba or Pb and = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3:1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.

  10. Activation energies for diffusion of cations in compacted sodium montmorillonite

    International Nuclear Information System (INIS)

    For safety assessments of geological disposal of high-level radioactive wastes, it is important to study the migration behavior of radioactive nuclides in compacted bentonite. In the present study, the apparent diffusion coefficients and activation energies of the diffusion were determined for sodium, cesium and strontium ions in compacted montmorillonite, a major clay mineral in bentonite. Most activation energies obtained in the present study were different from those for the diffusion of the cations in free water, and showed higher values for montmorillonite specimens with dry density of 1.6 Mg m-3 or above. Three-water layer hydrate in the interlamellar space was observed by the X-ray diffraction method for the water-saturated montmorillonite with dry densities of 1.0 and 1.2 Mg m-3, while the two-water layer hydrate was found in the montmorillonite with dry densities of 1.6 and 1.8 Mg m-3, where higher activation energies were obtained. These findings cannot be explained by the pore water diffusion model. Possible explanations for the dry density dependence of the activation energy are the changes of the temperature dependence of the distribution coefficients and/or of the diffusion process with increasing dry density. (author)

  11. Cationic micellar nanoparticles for DNA and doxorubicin co-delivery.

    Science.gov (United States)

    Lin, Jian-Tao; Zou, Ying; Wang, Chao; Zhong, Yue-Chun; Zhao, Yi; Zhu, Hui-Er; Wang, Guan-Hai; Zhang, Li-Ming; Zheng, Xue-Bao

    2014-11-01

    Cationic micellar nanoparticles for chemotherapeutic drugs and therapeutic gene co-delivery were prepared based on a poly-(N-ε-carbobenzyloxy-l-lysine) (PZLL) and dendritic polyamidoamine (PAMAM) block copolymer (PZLL-D3). PZLL-D3 was synthesized by a copper-catalyzed azide alkyne cyclization (click) reaction between α-alkyne-PZLL and azide focal point PAMAM dendrons. Its structure was characterized by (1)H NMR and FTIR, and its buffering capability was determined by acid-base titration. MTT, agarose gel electrophoresis and flow cytometry studies showed that PZLL-D3 revealed low in vitro cytotoxicity, strong pDNA condensation ability, protection of pDNA against deoxyribonuclease I degradation and high gene transfection efficiency in 293T and HeLa cells. In addition, the micellar nanoparticles delivered pDNA and anticancer drug doxorubicin (DOX) simultaneously and efficiently to tumor cells, and the DOX loaded nanoparticles showed sustained in vitro release at pH=7.4 and 5.8. PMID:25280725

  12. Script identification in printed bilingual documents

    Indian Academy of Sciences (India)

    D Dhanya; A G Ramakrishnan; Peeta Basa Pati

    2002-02-01

    Identification of the script of the text in multi-script documents is one of the important steps in the design of an OCR system for the analysis and recognition of the page. Much work has already been reported in this area relating to Roman, Arabic, Chinese, Korean and Japanese scripts. In the Indian context, though some results have been reported, the task is still at its infancy. In the work presented in this paper, a successful attempt has been made to identify the script, at the word level, in a bilingual document containing Roman and Tamil scripts. Two different approaches have been proposed and thoroughly tested. In the first method, words are divided into three distinct spatial zones. The spatial spread of a word in upper and lower zones, together with the character density, is used to identify the script. The second technique analyses the directional energy distribution of a word using Gabor filters with suitable frequencies and orientations. Words with various font styles and sizes have been used for the testing of the proposed algorithms and the results are quite encouraging.

  13. Optimization of actinide precipitate flotation using cationic tensides

    International Nuclear Information System (INIS)

    In the framework of an earlier project of the Federal Ministry for Research and Technology, a separation method for 4-valent f elements from nitrate-containing solutions was developed in the Institute for Physical and Macromolecular Chemistry at the University of Regensburg. These 4-valent f elements gradually form nitrate complexes. The highest complex e.g. the hexanitrato complex carries two negative charges, and thus it can be precipitated with a cationic tenside. Up to now, alkyl pyridinium salts have proved to be the best precipitants. The precipitates are hydrophobic and slightly soluble. They can be easily filtrated, and due to their hydrophobic property, they can also be removed by flotation. In addition to that, the flotation offers the possibility of a continuous separation process. The objective of this study was to determine the influence of the chain length of the alkyl pyridinium salts, the temperature and the nitrate concentration on the precipitation. Here, in all cases, thorium was used as a simulant for plutonium. (orig./RB)

  14. Cation-exchange separation of uranium in dimethylsulphoxide medium.

    Science.gov (United States)

    Janauer, G E; Korkisch, J; Hubbard, S A

    1971-08-01

    Cation-exchange chromatography in a dimethylsulphoxide (DMSO) medium is a suitable means for separating uranium from metal ions, including copper, iron, nickel and molybdenum. Quantitative separations of uranium from 26 elements can best be effected on a column of Dowex 50W-X8 (200-400 mesh), using as the eluent a 20% v/v DMSO solution which is 0.6Min hydrochloric acid and 0.25M in sodium acetate. Only calcium is eluted with the uranium and all other elements studied are eluted either before or after uranium. The elution characteristics of uranium and of other metal ions were investigated with respect to changes in eluent and resin compositions. Separations were much less effective at higher concentrations of sodium ion or DMSO. None of the organic solvents methanol, ethanol, methyl glycol, acetone, dioxan or acetic acid was found to produce favourable separation conditions. Results with Dowex 50 resins of lower or higher cross-linkage were inferior to those obtained with the X8 resin. PMID:18960944

  15. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  16. Measurement of cation movement in primary cultures using fluorescent dyes.

    Science.gov (United States)

    Reynolds, I J

    2001-05-01

    Ca(2+), Na(+), K(+), and Mg(2+) have a central role in neuronal excitability. The concentration of these cations in the cytoplasm of neurons (generically termed [ion(+)]i) provides a marker of the excitation state of the neurons, and may also illuminate the activity of specific signaling mechanisms that involve Ca(2+)- or Mg(2+)-activated enzymes. The measurement of [ion(+)]i in cultured neurons is achieved with the use of an ion-sensitive fluorescent dye in combination with equipment designed to quantitatively measure fluorescence. Specificity is obtained by choosing dyes with the appropriate selectivity for the ion of interest. Measurements of steady state ion concentrations can be made, as well as measurements of the net difference between ion movement into the cytoplasm (in response to a stimulus) and the physiological buffering of that ion. The procedures in this unit for loading and recording from dyes are broadly similar for each ion when ratiometric dyes are used as described, and can readily be modified for use with single-wavelength dyes. Support protocols are provided for calibration of individual dyes, which can be more problematic. PMID:18428522

  17. Crystal chemistry and cation ordering in zirconolite 2M

    International Nuclear Information System (INIS)

    Structural studies of single phase or nearly single phase zirconolite ceramic samples have been conducted using electron microscopy and microanalysis, X-ray diffraction, neutron diffraction, and spectroscopic methods. We show that it is possible to produce a complete series of zirconolite 2M samples with substitution of 2Ti by Nb+Fe in the HTB layer. The samples are single phase up to about 80% Nb +Fe substitution, with the appearance of a minor perovskite phase at higher Nb+Fe levels. Electron probe microanalysis reveals that the samples are homogeneous and close to their nominal compositions, except for those containing perovskite, which have a slight excess of Zr and a deficiency in the Fe content. The lattice parameters and the positions of certain Raman bands are non-linear as a function of composition, suggesting the possibility of cation ordering over the three available Ti sites within the HTB layer. Rietveld refinement of Synchrotron X-ray powder data for the Nb+Fe end-member have been conducted for the disordered case and for six trial models each with a different ordering scheme. Results of this exercise indicate that Fe preferentially occupies the Ti2 (split) site with partial ordering of Nb and the remaining Fe over the Ti1 and Ti2 octahedra. The preference of Fe for the five coordinated Ti2 site has been confirmed by 57Fe Mossbauer spectroscopy. (author)

  18. New methodology for a person identification system

    Indian Academy of Sciences (India)

    R Bremananth; A Chitra

    2006-06-01

    Reliable person identification is a key factor for any safety measure. Unlike other biometrics such as the palm, retina, gait, face and fingerprints, the characteristic of the iris is stable in a person’s lifetime. Iris patterns are chaotically distributed and well suited for recognizing persons throughout their lifetime with a single conscription. This paper proposes a new approach to person recognition based on iris patterns, which works with indoor outdoor conditions, spectacles contact lens wearing persons and diseased eyes. A challenge-response method is used for eye aliveness checking that puts off artificial sources from entering the iris database. The proposed algorithm can work with 84 statistical iris features that are extracted from an individual. Space and time complexity of the proposed approach is lesser than the existing methods. This algorithm has been implemented and results have been analysed on 2500 different iris patterns acquired in India under different real-time conditions. Experimental results illustrate that the proposed method has been easily espoused in elections, bank transactions and other security applications.

  19. Cation dynamics in PVdF-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mustarelli, P.; Quartarone, E.; Capiglia, C.; Tomasi, C.; Magistris, A. [Department of Physical Chemistry and C.S.T.E.-C.N.R., University of Pavia, Via Taramelli 16, 27100 Pavia (Italy)

    1999-07-25

    Poly(vynilidene fluoride) P(VdF)/hexafluoropropylene (HFP) copolymers are well suited to prepare hybrid electrolytes which can be useful in solid-state electrochemical devices. We study with modulated differential scanning calorimetry (MDSC) and nuclear magnetic resonance (NMR) the polymer-solution interactions in 30 wt% P(VdF-HFP)-70 wt% (ethylene carbonate-propylene carbonate-LiN(CF{sub 3}SO{sub 2}){sub 3}) hybrid electrolyte. We show that both {sup 7}Li-NMR lineshape narrowing and spin-lattice relaxation are driven by the ion dynamics. The behaviour of the longitudinal relaxation times, T{sub 1}, confirms that the host polymer matrix simply behaves like an inert cage for the cations, at least at the polymer-to-solution ratio examined in the present study. These results are confined by {sup 13}C-NMR-MAS data, which show that the presence of the polymer does not significantly affect the chemical shift changes induced in the EC/PC carbons by the imide salt

  20. Cation disorder in high-dose, neutron-irradiated spinel

    International Nuclear Information System (INIS)

    The objective of this effort is to determine whether MgAl2O4 spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl2O4 spinel single crystals irradiated to high neutron fluences [>5·1026 n/m2 (En > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼ 20% while increasing by ∼ 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg2+ ions on tetrahedral sites and Al3+ ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg2+ and Al3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  1. Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles.

    Science.gov (United States)

    Fosso, Marina Y; Shrestha, Sanjib K; Green, Keith D; Garneau-Tsodikova, Sylvie

    2015-12-10

    Cationic amphiphiles derived from aminoglycosides (AGs) have been shown to exhibit enhanced antimicrobial activity. Through the attachment of hydrophobic residues such as linear alkyl chains on the AG backbone, interesting antibacterial and antifungal agents with a novel mechanism of action have been developed. Herein, we report the design and synthesis of seven kanamycin B (KANB) derivatives. Their antibacterial and antifungal activities, along with resistance/enzymatic, hemolytic, and cytotoxicity assays were also studied. Two of these compounds, with a C12 and C14 aliphatic chain attached at the 6″-position of KANB through a thioether linkage, exhibited good antibacterial and antifungal activity, were poorer substrates than KANB for several AG-modifying enzymes, and could delay the development of resistance in bacteria and fungi. Also, they were both relatively less hemolytic than the known membrane targeting antibiotic gramicidin and the known antifungal agent amphotericin B and were not toxic at their antifungal MIC values. Their oxidation to sulfones was also demonstrated to have no effect on their activities. Moreover, they both acted synergistically with posaconazole, an azole currently used in the treatment of human fungal infections. PMID:26592740

  2. An Overview on Metal Cations Extraction by Azocalixarenes

    Directory of Open Access Journals (Sweden)

    Hasalettin Deligöz

    2011-12-01

    Full Text Available In this overview, our main aim is to present the design, preparation, characterization, and extraction/sorption properties of chromogenic azocalix[4]arenes (substituted with different groups toward metal cations. Azocalixarenes, which contain a conjugated chromophore, i.e. azo (-N=N- group are synthesized in “one-pot” procedures in satisfactory yields. A wide variety of applications is expected by the functionalization of the side arms. Some of them are used to complex with metal ions. These macrocycles due to their bowl-shaped geometry are indeed used as hosts allowing ionic or organic guests to coordinate onto their cavity. The azocalixarene based ionophores are generally applied in various fields such as catalyst recovery, power plant, agriculture, metals finishing, microelectonics, biotechnology processes, rare earths speciation, and potable water purification. Besides these, they find applications in the area of selective ion extractions, receptors, optical devices, chemical sensor devices, the stationary phase for capillary chromatography, ion transport membranes, and luminescence probes etc. This survey is focused to provide overview an of the versatile nature of azocalix[n]arenes as highly efficient extractants for metal ions treated as pollutants.

  3. Cation distribution and mixing thermodynamics in Fe/Ni thiospinels

    Science.gov (United States)

    Haider, Saima; Grau-Crespo, Ricardo; Devey, Antony J.; de Leeuw, Nora H.

    2012-07-01

    The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe, Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1-xNix)3S4, using a combination of density functional theory (DFT) calculations and Monte Carlo simulations. We find that the equilibrium distribution of the cations deviates significantly from a random distribution: at low Ni concentrations, Ni dopants are preferably located in octahedral sites, while at higher Ni concentrations the tetrahedral sites become much more favourable. The thermodynamic mixing behaviour between greigite and polydymite (Ni3S4) is dominated by the stability field of violarite (FeNi2S4), for which the mixing enthalpy exhibits a deep negative minimum. The analysis of the free energy of mixing shows that Ni doping of greigite is very unstable with respect to the formation of a separate violarite phase. The calculated variation of the cubic cell parameter with composition is found to be non-linear, exhibiting significant deviation from Vegard’s law, but in agreement with experiment.

  4. Iridium containing honeycomb Delafossites by topotactic cation exchange.

    Science.gov (United States)

    Roudebush, John H; Ross, K A; Cava, R J

    2016-06-01

    We report the structure and magnetic properties of two new iridium-based honeycomb Delafossite compounds, Cu3NaIr2O6 and Cu3LiIr2O6, formed by a topotactic cation exchange reaction. The starting materials Na2IrO3 and Li2IrO3, which are based on layers of IrO6 octahedra in a honeycomb lattice separated by layers of alkali ions, are transformed to the title compounds by a topotactic exchange reaction through heating with CuCl below 450 °C; higher temperature reactions cause decomposition. The new compounds display dramatically different magnetic behavior from their parent compounds - Cu3NaIr2O6 has a ferromagnetic like magnetic transition at 10 K, while Cu3LiIr2O6 retains the antiferromagnetic transition temperature of its parent compound but displays significantly stronger dominance of antiferromagnetic coupling between spins. These results reveal that a surprising difference in the magnetic interactions between the magnetic Ir ions has been induced by a change in the non-magnetic interlayer species. A combination of neutron and X-ray powder diffraction is used for the structure refinement of Cu3NaIr2O6 and both compounds are compared to their parent materials. PMID:27147423

  5. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    CERN Document Server

    Aziz, M

    1996-01-01

    force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO sub 8 :FeBr sub 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle-spike plot but the Fe(lll) samples displayed an extra semicircle before the spike reflecting a surface effect. This is also manifested in the Arrhenius plots of the same samples where a dip was shown at 100 deg C. From the conductivity studies on the iron systems it was found that for the dry samples the optimum conductivity was observed in PEO sub 8 :FeBr sub x irrespective of the valence state of the cation. For the air-cast samples the optimum conductivity composition depends on the...

  6. Role of organic cation transporters (OCTs) in the brain.

    Science.gov (United States)

    Couroussé, Thomas; Gautron, Sophie

    2015-02-01

    Organic cation transporters (OCTs) are polyspecific facilitated diffusion transporters that contribute to the absorption and clearance of various physiological compounds and xenobiotics in mammals, by mediating their vectorial transport in kidney, liver or placenta cells. Unexpectedly, a corpus of studies within the last decade has revealed that these transporters also fulfill important functions within the brain. The high-affinity monoamine reuptake transporters (SERT, NET and DAT) exert a crucial role in the control of aminergic transmission by ensuring the rapid clearance of the released transmitters from the synaptic cleft and their recycling into the nerve endings. Substantiated evidence indicate that OCTs may serve in the brain as a compensatory clearance system in case of monoamine spillover after high-affinity transporter blockade by antidepressants or psychostimulants, and in areas of lower high-affinity transporter density at distance from the aminergic varicosities. In spite of similar anatomical profiles, the two brain OCTs, OCT2 and OCT3, show subtle differences in their distribution in the brain and their functional properties. These transporters contribute to shape a variety of central functions related to mood such as anxiety, response to stress and antidepressant efficacy, but are also implicated in other processes like osmoregulation and neurotoxicity. In this review, we discuss the recent knowledge and emerging concepts on the role of OCTs in the uptake of aminergic neurotransmitters in the brain and in these various physiological functions, focusing on the implications for mental health. PMID:25251364

  7. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  8. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials. PMID:25125117

  9. Radical cations of some water-soluble organoselenium compounds: Insights from pulse radiolysis studies

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarsini, K. Indira [Radiation and Photochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)], E-mail: kindira@barc.gov.in; Mishra, B. [Radiation and Photochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2008-10-15

    Radical cations of three water-soluble organoselenium compounds, viz., selenourea, selenomethionine, and selenocystine, were produced and their reactions in the pH range 1-7 were studied using nanosecond pulse radiolysis technique. The radical cations, centered on the selenium atom, were generated by one-electron oxidation using hydroxyl ({sup {center_dot}}OH) radicals and Cl{sub 2}{sup {center_dot}}{sup -} and Br{sub 2}{sup {center_dot}}{sup -} radicals. The radical cations of selenourea were converted to dimer radical cations in the entire pH range, which in presence of oxygen released elemental selenium as one of the products. The monomer radical cations of selenomethionine are stabilized at neutral pH by the lone pair of electrons on the N atom of the amino group and undergo partial decarboxylation to produce {alpha}-amino selenyl radicals, which are reducing in nature. At highly acidic conditions, when the lone pair is not available due to protonation, they were converted to dimer radical cations. Selenocystine, being a diselenide, produced monomer radical cations on one-electron oxidation in the entire pH range and acquires stability by sharing the electrons between the two adjacent selenium atoms.

  10. Cholesterol derived cationic lipids as potential non-viral gene delivery vectors and their serum compatibility.

    Science.gov (United States)

    Ju, Jia; Huan, Meng-Lei; Wan, Ning; Hou, Yi-Lin; Ma, Xi-Xi; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2016-05-15

    Cholesterol derivatives M1-M6 as synthetic cationic lipids were designed and the biological evaluation of the cationic liposomes based on them as non-viral gene delivery vectors were described. Plasmid pEGFP-N1, used as model gene, was transferred into 293T cells by cationic liposomes formed with M1-M6 and transfection efficiency and GFP expression were tested. Cationic liposomes prepared with cationic lipids M1-M6 exhibited good transfection activity, and the transfection activity was parallel (M2 and M4) or superior (M1 and M6) to that of DC-Chol derived from the same backbone. Among them, the transfection efficiency of cationic lipid M6 was parallel to that of the commercially available Lipofectamine2000. The optimal formulation of M1 and M6 were found to be at a mol ratio of 1:0.5 for cationic lipid/DOPE, and at a N/P charge mol ratio of 3:1 for liposome/DNA. Under optimized conditions, the efficiency of M1 and M6 is greater than that of all the tested commercial liposomes DC-Chol and Lipofectamine2000, even in the presence of serum. The results indicated that M1 and M6 exhibited low cytotoxicity, good serum compatibility and efficient transfection performance, having the potential of being excellent non-viral vectors for gene delivery. PMID:27072908

  11. Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Useli-Bacchitta, F.; Bonnamy, A. [Universite de Toulouse, UPS, CESR, 9 Avenue du Colonel Roche, F-31028 Toulouse cedex 4 (France); CNRS, UMR5187, F-31028 Toulouse (France); Mulas, G.; Malloci, G. [Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Cagliari, Strada n. 54, Loc. Poggio dei Pini, 09012 Capoterra, CA (Italy); Toublanc, D. [Universite de Toulouse, UPS, CESR, 9 Avenue du Colonel Roche, F-31028 Toulouse cedex 4 (France); CNRS, UMR5187, F-31028 Toulouse (France); Joblin, C., E-mail: christine.joblin@cesr.fr [Universite de Toulouse, UPS, CESR, 9 Avenue du Colonel Roche, F-31028 Toulouse cedex 4 (France); CNRS, UMR5187, F-31028 Toulouse (France)

    2010-05-25

    Graphical abstract: Measured multiphoton dissociation spectra of gas-phase coronene cation and its doubly-dehydrogenated derivative. - Abstract: The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons (PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy in the 430-480 nm spectral range using the radiation of a mid-band optical parametric oscillator laser. We present here the spectra recorded for different species of increasing size, namely the pyrene cation (C{sub 16}H{sub 10}{sup +}), the 1-methylpyrene cation (CH{sub 3}-C{sub 16}H{sub 9}{sup +}), the coronene cation (C{sub 24}H{sub 12}{sup +}), and its dehydrogenated derivative C{sub 24}H{sub 10}{sup +}. The experimental results are interpreted with the help of time-dependent density functional theory calculations and analysed using spectral information on the same species obtained from matrix isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in the case of pyrene and coronene cations, to estimate the absorption cross-sections of the measured electronic transitions. Gas-phase spectra of highly reactive species such as dehydrogenated PAH cations are reported for the first time.

  12. A novel Ag+ cation sensor based on polyamidoamine dendrimer modified with 1,8-naphthalimide derivatives

    Science.gov (United States)

    Dodangeh, Mohammad; Gharanjig, Kamaladin; Arami, Mokhtar

    2016-02-01

    In this study, 4-amino-1,8-naphthalimide-conjugated polyamidoamine dendrimer was synthesized and characterized and its potentiality as a cation sensor was investigated. 4-Amino-1,8-naphthalic anhydride reacted with polyamidoamine dendrimer and the product was characterized using FTIR, 1H NMR, 13C NMR and melting point analysis method. The synthesized compound was applied to detect various cations in water media and N,N-dimethylformamide (DMF) via monitoring the quenching of the fluorescence intensity. Furthermore, various metal cations including Cu2 +, Ni2 +, Zn2 +, Pb2 +,Ca2 +, Ba2 +, Cd2 +, Hg2 +, Fe2 +, Fe3 + and Ag+ were tested. The complexes formed between the synthesized compound and metal cations in solution and their effects on Photoinduced Electron Transfer (PET) process were investigated regarding the potential application of the newly-synthesized dendrimer as a colorimetric and fluorescent sensor for such cations. The results clearly confirmed that the 1,8-naphthalimide groups surrounding the central dendrimer core showed strong green fluorescence emission at 553 nm. This effect considerably decreased with the introduction of all cations, except Ag+ where the fluorescence quenching effect was remarkable and more dominant. Therefore, it can be concluded that the synthesized dye has the potentiality of being a highly sensitive and selective fluorescence sensor for Ag+ cation.

  13. An electron spin resonance investigation of ester cation radicals at low temperatures

    International Nuclear Information System (INIS)

    The cation radicals of a series of esters have been produced by γ-irradiation of CFCl3 matrices containing the ester at 77 K. In previous work cations of methyl and ethyl esters were investigated. In this work we report results for larger esters. The cations of these esters are found to undergo immediate internal proton-transfer reactions involving specific sites on one of the alkyl substituents. For example, deuteration studies show that proton transfer occurs from the terminal methyl group in propyl formate to produce -OCH2CH2CH2; whereas in propyl acetate -OCH2CHCH3 is produced. The proton lost from these groups is assumed to add to an oxygen on the ester functional group. In the case of propyl acetate and esters with branched side chains we find that fragmentation reactions follow the proton transfer. In the cases of t-butyl acetate and isobutyl formate the fragmentation process occurs at 77 K and results in the isobutylene cation. Neopentyl formate gives evidence for the cation radical, an RCH2 radical and the fragmentation radical cation as the sample is annealed. These results show that ester cation radicals are highly reactive even at low temperatures where proton-transfer and fragmentation reactions are found. (author)

  14. Electrical properties of AC3B4O12-type perovskite ceramics with different cation vacancies

    International Nuclear Information System (INIS)

    Highlights: • AC3B4O12 perovskite with different concentration cation vacancies were prepared. • Cell parameter decreases with the increase of concentration of cation vacancies. • PTCO and CTO remain high dielectric permittivity but depress loss greatly. • Dielectric loss associates with cation vacancies and motion of oxygen vacancies. - Abstract: AC3B4O12-type perovskite CaCu3Ti4O12 (CCTO), □0.34Pr0.67Cu3Ti4O12 (PCTO), □1Cu3Ta2Ti2O12 (CTTO), □2Cu2Ta4O12 (CTO) ceramics with different concentration cation vacancies were prepared through traditional solid state reaction method. X-ray diffraction analysis indicated that CCTO and PCTO are perovskite cubic with space group Im-3 (no. 204) while CTTO and CTO are Pm-3 (no. 200). Cell parameter of the samples dramatically increases with the increase of cation vacancies. Dielectric permittivity of them maintains very high value of ∼104 from room temperature to 550 K but the dielectric loss is depressed with the increase of cation vacancies in the same space group. The dielectric properties and conductivity behavior were described by the Debye relaxation and the universal dielectric response, respectively. The effect mechanism of cation vacancy and crystal structure on carrier transposition were discussed

  15. The effect of chronic osmotic disturbance on the concentrations of cations in cerebrospinal fluid.

    Science.gov (United States)

    Bradbury, M W; Kleeman, C R

    1969-09-01

    1. Adult cats were rendered hypo- and hypernatraemic by peritoneal dialysis. These states were maintained for periods of 2-5 days.2. The concentrations in cerebrospinal fluid (c.s.f.) of the cations, potassium, calcium and magnesium all decreased in the hyponatraemic animals and increased in the hypernatraemic animals. These shifts in c.s.f. cation concentrations did not relate to plasma changes in the same cations, which were often in the opposite direction.3. The relations of the cation concentrations to c.s.f. sodium were not linear and, in the cases of calcium and magnesium, the relevant cation concentration related better to the square rather than the first power of the c.s.f. sodium concentration.4. Brain water changed much less in the hypo- and hypernatraemic animals than might be anticipated from the shifts in blood osmolarity, plasma sodium concentration and muscle water.5. Isotonicity of the fluids in brain with blood plasma and c.s.f. appeared to be largely maintained by loss or gain of sodium and chloride ions by this tissue.6. The c.s.f. results may be partly due to a constant influx of the cation in question being diluted with more formed c.s.f. in hyponatraemia and less c.s.f. in hypernatraemia, but the deviations from linearity in the plots of c.s.f. cation against c.s.f. sodium suggest the influence of other factors. PMID:5352043

  16. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties.

    Science.gov (United States)

    Sehaqui, Houssine; Mautner, Andreas; Perez de Larraya, Uxua; Pfenninger, Numa; Tingaut, Philippe; Zimmermann, Tanja

    2016-01-01

    Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process. PMID:26453885

  17. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    Science.gov (United States)

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions. PMID:26823461

  18. Potential Modulated Intercalation of Alkali Cations into Metal Hexacyanoferrate Coated Electrodes

    International Nuclear Information System (INIS)

    Nickel hexacyanoferrate is a polynuclear inorganic ion intercalation material that loads (intercalates) and elutes (deintercalates) alkali cations from its structure when electrochemically reduced and oxidized, respectively. Nickel hexacyanoferrrate (NiHCF) is known to preferentially intercalate cesium over all other alkali cations, thus providing a basis for a separation scheme that can tackle DOE's radiocesium contamination problem. This program studied fundamental issues in alkalization intercalation and deintercalation in nickel hexacyanoferrate compounds, with the goal of (1) quantifying the ion exchange selectivity properties from cation mixtures, (2) enhancing ion exchange capacities, and (3) and understanding the electrochemically-switched ion exchange process (ESIX)

  19. Cation-π versus anion-π interactions: A theoretical NMR study

    Science.gov (United States)

    Ebrahimi, Ali; Khorassani, Mostafa Habibi; Masoodi, Hamid Reza

    2011-03-01

    The influences of cation-π and anion-π interactions on NMR data have been investigated in complexes of cations and anions with 1,3,5-trifluorobenzene (TFB). Cation-π interaction increases 1JC-F, 1JC-H and the chemical shifts of hydrogen and fluorine while it decreases 1JC-C. The changes are in reverse direction in the presence of anion-π interaction. The role of geometry and electronic effects on the NMR data was considered. The distance dependence of NMR parameters has been studied in these complexes. The NMR data have been investigated in isoelectronic complexes.

  20. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sarker SR

    2013-04-01

    Full Text Available Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the

  1. Influence of the kinetic demixing of cations on ceramic ageing and alloy corrosion

    OpenAIRE

    Petot, C.; Petot-Ervas, G.; Monceau, D.; Klimczyk, H.

    1993-01-01

    This paper concerns the kinetic demixing of cations in semiconducting oxides. From the general equations of matter transport, time-dependent cation redistributions are given for (Co, Mg)O and (Fe, Cr)O solid solutions for which thermodynamical and kinetic data are available. The cation kinetic demixing effects on the reaction rates are described. The conclusions are used to analyse the behavior of (Fe, Cr)O solid solutions under a chemical potential gradient and the effect of Cr on the intern...

  2. Composition of outer-sphere cations as a tool for electrochemical synthesis of novel niobium compounds

    Directory of Open Access Journals (Sweden)

    Grinevitch V.V.

    2003-01-01

    Full Text Available The individual alkali-metal cation influence on the chemical and phase composition of electrosynthesis products has been studied in fluoride solvents with different O/Nb ratios. It was shown that the cation nature of molten electrolytes is a powerful tool to control the chemical and phase composition of the cathodic products of electrolysis in oxy-fluoride and fluoride melts. New niobium compounds were obtained by electrochemical synthesis using the outer-sphere cations composition control: tetragonal Nb6O, rhombohedral sub-oxide NbxO (x<6 and composite compounds "NbO" ⋅n"MeF" (Me=K, Rb, n=1, 2.

  3. Aftertreatment of Conventional Direct Dyeings of Cotton with a Bis-reactive Cationic Fixing Agent

    Institute of Scientific and Technical Information of China (English)

    SHARIF Saima; SAEED Ahmad; MUHAMMAD Naeem Khan; MUHAMMAD Fauz-uI-Azeem

    2009-01-01

    A his-reactive cationic fixing agent,ethylenebis[N-(2,3-epoxypropyl)-N,N-dimethylammonium chloride] has been used as an aftertreatment reagent to improve the wash fasmess of direct dyes on cotton.The effects of different pH conditions and concentrations on the effectiveness of this cationic fixing agent have been investigated.The results showed that aftertreatment at pH 11 produced dyeings with higher colour strength and better wash fastness than that at pH 7.In addition,the cationic agent at a low concentration was found to be more effective under both neutral and alkaline conditions.

  4. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus;

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...

  5. On the Route to the Photogeneration of Heteroaryl Cations. The Case of Halothiophenes.

    Science.gov (United States)

    Raviola, Carlotta; Chiesa, Francesco; Protti, Stefano; Albini, Angelo; Fagnoni, Maurizio

    2016-08-01

    2-Chloro-, 2-bromo-, and 2-iodothiophenes undergo photochemical dehalogenation via the triplet state. In the presence of suitable π-bond nucleophiles, thienylation occurs with modest yield from chloro and bromo derivatives (via photogenerated triplet 2-thienyl cation). Specific trapping by using oxygen along with computational analysis carried out by means of a density functional method support that, in the case of iodo derivatives, homolytic thienyl-I bond fragmentation occurs first and heteroaryl cations are formed by electron transfer within the triplet radical pair, thus opening an indirect access to such cations. PMID:27383725

  6. Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters.

    Science.gov (United States)

    Costa, Liliana; Carvalho, Carla M B; Faustino, Maria A F; Neves, Maria G P M S; Tomé, João P C; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Almeida, Adelaide

    2010-08-01

    Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m(-2)), sun light (600 W m(-2)) and an halogen lamp (40-1690 W m(-2)). Phage suspensions and two cationic photosensitizers (Tetra-Py(+)-Me, Tri-Py(+)-Me-PF) at concentrations of 0.5, 1.0 and 5.0 microM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 microM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol. PMID:20563346

  7. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  8. Mechanosensory calcium-selective cation channels in epidermal cells

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  9. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-10-01

    Full Text Available Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.

  10. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent.

    Science.gov (United States)

    Prieto, M J; Bacigalupe, D; Pardini, O; Amalvy, J I; Venturini, C; Morilla, M J; Romero, E L

    2006-12-01

    The high doses of sulfadiazine (SDZ), used in synergistic combination with pyrimethamine, are mainly responsible for severe side effects and discontinuation of toxoplasmosis treatments. In the search for new strategies that improve the efficacy of treatments with reduced doses of SDZ, we have determined the performance of cationic G4 (DG4) and anionic G4.5 (DG4.5) poly(amidoamine) (PAMAM) dendrimers to act as SDZ nanocarriers. Both dendrimers could efficiently load SDZ (SDZ-DG4 and SDZ-DG4.5) up to a ratio of 30 molecules SDZ per dendrimer molecule. The MTT assay on Vero and J774 cells showed no cytotoxicity for DG4.5 and its SDZ complex incubated between 0.03 and 33 microM of dendrimer concentration. On the other hand, DG4 and its SDZ complex resulted cytotoxic when incubated at dendrimer concentrations higher than 3.3 microM. Finally, complexes and empty dendrimers were in vitro tested against Vero cells infected with RH strain of Toxoplasma gondii along 4h of treatment. For SDZ-DG4.5 and DG4.5 to cause an infection decrease between 25 and 40%, respectively, a dendrimer concentration of 33 microM was required; however, SDZ-DG4 produced the highest infection decrease of 60% at 0.03 microM. These preliminary results, achieved with nanomolar doses of SDZ-DG4 as unique active principle, point to this complex as a suitable potential candidate for antitoxoplasmic therapy. PMID:16920292

  11. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-10-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  12. Black Carbon Increases Cation Exchange Capacity in Soils

    International Nuclear Information System (INIS)

    Black Carbon (BC) may significantly affect nutrient retention and play a key role in a wide range of biogeochemical processes in soils, especially for nutrient cycling. Anthrosols from the Brazilian Amazon (ages between 600 and 8700 yr BP) with high contents of biomass-derived BC had greater potential cation exchange capacity (CEC measured at pH 7) per unit organic C than adjacent soils with low BC contents. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy coupled with scanning transmission X-ray microscopy (STXM) techniques explained the source of the higher surface charge of BC compared with non-BC by mapping cross-sectional areas of BC particles with diameters of 10 to 50 (micro)m for C forms. The largest cross-sectional areas consisted of highly aromatic or only slightly oxidized organic C most likely originating from the BC itself with a characteristic peak at 286.1 eV, which could not be found in humic substance extracts, bacteria or fungi. Oxidation significantly increased from the core of BC particles to their surfaces as shown by the ratio of carboxyl-C/aromatic-C. Spotted and non-continuous distribution patterns of highly oxidized C functional groups with distinctly different chemical signatures on BC particle surfaces (peak shift at 286.1 eV to a higher energy of 286.7 eV) indicated that non-BC may be adsorbed on the surfaces of BC particles creating highly oxidized surface. As a consequence of both oxidation of the BC particles themselves and adsorption of organic matter to BC surfaces, the charge density (potential CEC per unit surface area) was greater in BC-rich Anthrosols than adjacent soils. Additionally, a high specific surface area was attributable to the presence of BC, which may contribute to the high CEC found in soils that are rich in BC

  13. Riparian zone controls on base cation concentrations in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-01-01

    Full Text Available Forest riparian zones are a major in control of surface water quality. Base cation (BC concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  14. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition. PMID:24728575

  15. The non-selective voltage-activated cation channel in the human red blood cell membrane: reconciliation between two conflicting reports and further characterisation

    DEFF Research Database (Denmark)

    Kaestner, Lars; Christophersen, Palle; Bernhardt, Ingolf; Bennekou, P.

    Erythrocyte; Patch-clamp; Non-specific; cation channel; Voltage dependence; Acetylcholin receptor......Erythrocyte; Patch-clamp; Non-specific; cation channel; Voltage dependence; Acetylcholin receptor...

  16. Separation of Clay Minerals from Host Sediments Using Cation Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    I.S. Ismael; H.M. Baioumy

    2003-01-01

    Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC-50H and amberlite IR-120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments,such as Ca and Mg from dolomite; Ca from calcite,gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum,calcite,dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments.The efficiency of amberlite IRC-50H in the removal of associated minerals is greater than that of amberlite IR-120.

  17. Cationic polycarbonate-grafted superparamagnetic nanoparticles with synergistic dual-modality antimicrobial activity.

    Science.gov (United States)

    Pu, Lu; Xu, Jinbao; Sun, Yimin; Fang, Zheng; Chan-Park, Mary B; Duan, Hongwei

    2016-05-26

    We report a new class of antimicrobial nanomaterials with biodegradable cationic polycarbonates grafted on superparamagnetic nanoparticles. Our results have shown that end-functionalized cationic polycarbonates, synthesized by organocatalytic ring opening polymerization, can be grafted onto superparamagnetic MnFe2O4 nanoparticles via ligand exchange. In comparison with the individual building blocks, the core-shell hybrid nanoparticles led to improved antimicrobial activities in two ways: first, the cationic polycarbonates in a brush form afforded a greater charge density than that of free polymer chains, resulting in stronger interactions with bacterial surfaces. Second, the structural integration of the "soft" polycarbonate shell and the "hard" superparamagnetic core in the hybrid nanoparticles brings about a synergistic action of membrane disruption by the cationic shell and magnetic hyperthermia by the nanoparticle core. The combination of two physical killing mechanisms holds great promise in fighting against a broad spectrum of bacterial pathogens. PMID:26906640

  18. NMR study of guanidinium cation dynamics in C(NH 2 ) 3 SbCl 6

    Science.gov (United States)

    Grottel, M.; Pajak, Z.; Jakubas, R.

    Proton NMR second moment and spin-lattice relaxation times T 1 and T 1 ρ have been studied for polycrystalline guanidinium hexachloroantimonate C(NH 2 ) 3 SbCl 6 in a wide temperature range. A dynamic inequivalence of two cations has been detected in spite of their crystallographical equivalence. Activation parameters for C 3 reorientation and self-diffusion of the more mobile cation have been determined. It was shown that the para-ferroelastic phase transition at 351 K is connected with abrupt changes in the dynamics of the two cations. The weaker, second-order transition at 265 K is thought to be related to a change in the dynamics of one of the cations.

  19. Photoinduced Fluorescence from the Perylene Cation Isolated in Ne and Ar Matrices

    Science.gov (United States)

    Joblin, C.; Salama, F.; Allamandola, L.

    1995-01-01

    The fluorescence and fluorescence excitation spectra of the perylene cation isolated in neon and argon matrices are reported. This is the first report of the fluorescence spectrum of a polycyclic aromatic hydrocarbon ion in any phase.

  20. [Effect of univalent cations on synthesis of surfactants by Acinetobacter calcoaceticus IMV B-7241].

    Science.gov (United States)

    Pirog, T P; Shevchuk, T A; Antoniuk, S I; Kravchenko, E Iu; Iutinskaia, G A

    2013-01-01

    The effect of univalent cations on activity of key enzymes of C2-metabolism has been investigated in the producer of biosurfactants, Acinetibacter calcoaceticus IMV B-7241 grown on ethanol. It was established that potassium cations are inhibitors of pyroquinolinequinone-dependent alcohol- and acetaldehyde dehydrogenases, the enzymes of biosynthesis of surface-active aminolipids (NADP-dependent glutamate dehydrogenase) and glycolipids (phosphoenopyruvate (PhEP)-carboxikinase), while ammonium cations are activators of these enzymes and PhEP-carboxylase. A decrease of potassium cations concentration in the cultivation medium to 1 mM and increase of the content of amine nitrogen to 10 mM as a result of potassium nitrate substitution by equimolar, as to nitrogen, urea concentration were accompanied by the increase of activity of enzymes of ethanol metabolism and SAS biosynthesis, as well as by the 2-fold increase of conditional concentration of the biosurfactants. PMID:23720959

  1. Method for in situ determination cation exchange capacities of subsurface formations

    International Nuclear Information System (INIS)

    A method is disclosed for the in situ examination of each subsurface formation penetrated by a borehole to ascertain the cation exchange capacity of such formations within a geological region. Natural γ ray logging is used to develop signals functionally related to the total γ radiation and to the potassium-40, uranium and thorium energy-band radiations. A first borehole is traversed by a potential γ ray spectrometer to provide selected measurements of natural γ radiation. Core samples are taken from the logged formation and laboratory tests performed to determine the cation exchange capacity thereof. The cation exchange capacities thus are developed then correlated with selected parameters provided by the γ ray spectrometer to establish functional relationships. Cation exchange capacities of formations in subsequent boreholes within the region are then determined in situ by use of the natural γ ray spectrometer and these established relationships. (author)

  2. Metal-Cation Recognition in Water by a Tetrapyrazinoporphyrazine-Based Tweezer Receptor

    Czech Academy of Sciences Publication Activity Database

    Lochman, L.; Švec, J.; Roh, J.; Kirakci, Kaplan; Lang, Kamil; Zimčík, P.; Nováková, V.

    2016-01-01

    Roč. 22, č. 7 (2016), s. 2417-2426. ISSN 0947-6539 Institutional support: RVO:61388980 Keywords : cations * crown compounds * fluorescent probes * phthalocyanines * sensor s Subject RIV: CA - Inorganic Chemistry Impact factor: 5.731, year: 2014

  3. Mechanism of selective ion flotation. 1. Selective flotation of transition metal cations

    International Nuclear Information System (INIS)

    An experimental investigation is presented of the batch ion flotation of the transition metal cations Cr3+, Fe3+, Mn2+, Co2+, Zn2+, Ag+, Cd2+, and In3+ from acidic aqueous solutions with sodium dodecylsulfonate and sodium dodecylbenzenesulfonate as anionic surfactants. The selectivity sequences Mn2+ 2+ 2+ 3+ 3+ and Ag+ 2+ 3+ are established, both from data for single and multi-ion metal cations solutions, where sublate was not formed in the bulk solution. Good agreement between the selectivity sequences and the values of ionic potential of metal cations was found. An experimental investigation was also performed on the solubility of sublates. The sublates solubility values are discussed in terms of ionic potentials of metal cations as well as of the surfactant size

  4. Cation Intercalation in Manganese Oxide Nanosheets: Effects on Lithium and Sodium Storage.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Xiang, Zhonghua; Ma, Jizhen; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-08-22

    The rapid development of advanced energy-storage devices requires significant improvements of the electrode performance and a detailed understanding of the fundamental energy-storage processes. In this work, the self-assembly of two-dimensional manganese oxide nanosheets with various metal cations is introduced as a general and effective method for the incorporation of different guest cations and the formation of sandwich structures with tunable interlayer distances, leading to the formation of 3D Mx MnO2 (M=Li, Na, K, Co, and Mg) cathodes. For sodium and lithium storage, these electrode materials exhibited different capacities and cycling stabilities. The efficiency of the storage process is influenced not only by the interlayer spacing but also by the interaction between the host cations and shutter ions, confirming the crucial role of the cations. These results provide promising ideas for the rational design of advanced electrodes for Li and Na storage. PMID:27458045

  5. Utility of anion and cation combinations for phasing of protein structures.

    Science.gov (United States)

    Sharma, Ashwani; Yogavel, Manickam; Sharma, Amit

    2012-09-01

    We report the use of anionic (I(-)), cationic (Ba(2+), Cd(2+)) and ionic mixtures (I(-) plus Ba(2+)) for derivatizing liver fatty acid binding protein (LFABP) crystals. Use of cationic and anionic salts in phasing experiments revealed distinct non-overlapping sites for these ions, suggesting exclusive binding regions on LFABP. Interestingly, cations of identical charge and valency (like Ba(2+) and Cd(2+)) bound to distinct pockets on the protein surface. Furthermore, a mixture of salts containing both I(-) and Ba(2+) was very useful in phasing experiments as these oppositely charged ions bound to different regions of LFABP. Our data therefore suggest that cationic and anionic salt mixtures like BaCl(2) with NH(4)I or salts like CdI, BaI where each ion has a significant anomalous signal for a given X-ray wavelength may be valuable reagents for phasing during structure determination. PMID:22562242

  6. Effect of paramagnetic manganese cations on H-1 MRS of the brain

    DEFF Research Database (Denmark)

    Madsen, K. S.; Holm, David Alberg; Søgaard, L. V.;

    2008-01-01

    Manganese cations (Mn2+) call be used as all intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn2+ is neurotoxic and play influence the concentration of H-1 MR-detectable metabolites. Furthermore, the paramagnetic Mn2......+ cations may also influence the relaxation of the metabolites under investigation. Consequently, the purpose of this study was to investigate the effect of paramagnetic Mn2+ cations on H-1-MR spectra of the brain using in vivo and phantom models at 4.7T. To investigate the direct paramagnetic effects of Mn...... expected at this concentration. Consequently, this study indicates that. ill this model. the presence of Mn2+ cations does not significantly affect H-1-MR spectra despite possible toxic and paramagnetic effects....

  7. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells.

    Science.gov (United States)

    Filion, M C; Phillips, N C

    1997-10-23

    Liposomal vectors formulated with cationic lipids (cationic liposomes) and fusogenic dioleoylphosphatidylethanolamine (DOPE) have potential for modulating the immune system by delivering gene or antisense oligonucleotide inside immune cells. The toxicity and the immunoadjuvant activity of cationic liposomes containing nucleic acids toward immune effector cells has not been investigated in detail. In this report, we have evaluated the toxicity of liposomes formulated with various cationic lipids towards murine macrophages and T lymphocytes and the human monocyte-like U937 cell line. The effect of these cationic liposomes on the synthesis of two immunomodulators produced by activated macrophages, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha), has also been determined. We have found that liposomes formulated from DOPE and cationic lipids based on diacyltrimethylammonium propane (dioleoyl-, dimyristoyl-, dipalmitoyl-, disteroyl-: DOTAP, DMTAP, DPTAP, DSTAP) or dimethyldioctadecylammonium bromide (DDAB) are highly toxic in vitro toward phagocytic cells (macrophages and U937 cells), but not towards non-phagocytic T lymphocytes. The rank order of toxicity was DOPE/DDAB > DOPE/DOTAP > DOPE/DMTAP > DOPE/DPTAP > DOPE/DSTAP. The ED50's for macrophage toxicity were 1000 nmol/ml for DOPE/DSTAP. The incorporation of DNA (antisense oligonucleotide or plasmid vector) into the cationic liposomes marginally reduced their toxicity towards macrophages. Although toxicity was observed with cationic lipids alone, it was clearly enhanced by the presence of DOPE. The replacement of DOPE by dipalmitoylphosphatidylcholine (DPPC) significantly reduced liposome toxicity towards macrophages, and the presence of dipalmitoylphosphatidylethanolamine-PEG2000 (DPPE-PEG2000: 10 mol%) in the liposomes completely abolished this toxicity. Cationic liposomes, irrespective of their DNA content, downregulated NO and TNF-alpha synthesis by lipopolysaccharide (LPS)/interferon-gamma (IFN

  8. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe3+ > Al3+ > Cu2+ >> Ca2+ > K+ > Na+, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na+-smectite and K+-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe3+, Al3+, and Cu2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2−· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  9. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.

    OpenAIRE

    Kolber, M A; Haynes, D H

    1981-01-01

    The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somew...

  10. Combinatorial Evaluation of Cations, pH-sensitive and Hydrophobic Moieties for Polymeric Vector Design

    OpenAIRE

    Wong, Sharon Y.; Sood, Nimil; Putnam, David

    2009-01-01

    Three combinatorial libraries of polymeric vectors were evaluated to investigate the functional roles of molecular weight (MW), cations, pH-sensitive moieties, and hydrophobic derivitization in polymer-mediated gene delivery. Four cationic and pH-sensitive moieties (imidazole, primary, secondary, and tertiary amino) and three hydrophobic residues (C4 butyl, C6 hexyl, and C8 octyl) were assessed in single and serially incremented, binary combinations. Three MWs were evaluated—10, 30, and 50 kD...

  11. Development and Characterization of a Cationic Emulsion Formulation as a Potential pDNA Carrier System

    OpenAIRE

    BARUT, Kudret Dilşad; ARI, Fatma Filiz COŞKUN; ÖNER, Filiz

    2005-01-01

    The development of efficient and stable carriers for the delivery of DNA to the body is becoming an increasingly important issue in the fields of gene therapy and vaccination. The present study was designed to prepare an emulsion-based gene delivery system. Oil-in-water emulsions containing cetyltrimethylammonium bromide (CTAB) as a cationic surfactant and Pluronic F-68 as a nonionic co-surfactant were formulated and their physical characteristics were investigated. The cationic emu...

  12. Influence of the nature of supporting electrolyte cation on the impedance of indium(III) hexacyanoferrate

    International Nuclear Information System (INIS)

    Electrochemical behavior of indium(III) hexacyanoferrate films was studied by the methods of cyclic voltammetry and Faraday impedance in nitrate solutions of lithium, sodium, potassium and ammonium. Influence of the background electrolyte cation nature on equivalent scheme parameters corresponding to the recorded impedance spectra was analyzed. Conclusion is made about delayed charge transfer in the electrode/film interface. The effect of cations binding in the film is discussed

  13. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  14. Ammonothermal Synthesis and Photocatalytic Activity of Lower Valence Cation-Doped LaNbON2

    OpenAIRE

    2014-01-01

    Highly crystalline pure perovskite-type LaNbON2 powders were synthesized in supercritical ammonia using sodium hydroxide as an oxygen source. Additionally, doping LaNbON2 with cations of lower valence than that of the parent cation was performed to inhibit reduction of Nb5+. Various characterization methods indicated that crystallinity, particle morphology, and absorption edge of the product, that is, the factors possibly affecting photocatalytic activity, were not significantly changed by th...

  15. Altervalent cation-doped MCM-41 supported palladium catalysts and their catalytic properties

    OpenAIRE

    HAIHUI JIANG; LIGANG GAI; YAN TIAN

    2011-01-01

    Metal cation-doped MCM-41 (M-MCM-41, M = Al, Ce, Co, V or Zr) supported Pd catalysts (Pd/M-MCM-41) were prepared by a solution-based reduction method. The catalysts were characterized by X-ray diffraction (XRD) analysis, infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and further evaluated by selective hydrogenation of para-chloronitrobenzene (p-CNB) in anhydrous ethanol. The metal cation-containing Pd catalysts can efficiently enhanc...

  16. Preparation of oligodeoxynucleotide encapsulated cationic liposomes and release study with models of cellular membranes

    OpenAIRE

    Tamaddon AM.; Hosseini-Shirazi F.; Moghimi HR

    2007-01-01

    Cationic liposomes are used for cellular delivery of antisense oligodeoxynucleotide (AsODN), where release of encapsulated AsODN is mainly controlled by endocytosis and fusion mechanisms. In this investigation, it was tried to model such a release process that is difficult to evaluate in cell culture. For this purpose, an AsODN model (against protein kinase C-α) was encapsulated in a DODAP-containing cationic liposome and evaluated for size, zeta-potential, encapsulation and ODN stab...

  17. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    International Nuclear Information System (INIS)

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  18. The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum

    OpenAIRE

    Previdello, B.; E. Machado; Varela, H.

    2014-01-01

    Non-covalent interactions between hydrated alkali metal cations and adsorbed oxygenated species on platinum might considerably inhibit some electrocatalytic reactions. We report in this communication the effect exerted by electrolyte alkali metal cations on the electro-oxidation of formate ions on platinum. The system was investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing Li+, Na+, or K+. As already observed for other systems, the ge...

  19. Binding of alkaline cations to the double-helical form of gramicidin.

    OpenAIRE

    Chen, Y; Wallace, B.A.

    1996-01-01

    Gramicidin is a polypeptide antibiotic that forms monovalent cation-specific channels in membrane environments. In organic solvents and in lipids containing unsaturated fatty acid chains, it forms a double-helical "pore" structure, in which two monomers are intertwined. This form of gramicidin can bind two cations inside its lumen, and the crystal structures of both an ion complex and an ion-free form have been determined. In this study, we have used circular dichroism (CD) spectroscopy to ex...

  20. Uptake of Cationic Dyes from Aqueous Solution by Biosorption Using Granulized Annona squmosa Seed

    OpenAIRE

    Santhi, T.; S. Manonmani

    2009-01-01

    A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A sample of granulized Annona squmosa seeds had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g., contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of...

  1. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  2. [6]Helicene as a novel molecular tweezer for the univalent silver cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, B.; Makrlík, E.; Jaklová Dytrtová, Jana; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 1097, Oct 5 (2015), s. 124-128. ISSN 0022-2860 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : univalent silver cation * [6]helicene * cation-pi interaction * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2014

  3. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    OpenAIRE

    Misra, Santosh K; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background: Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)(n)- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings: To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using ...

  4. Arginine-Rich Cationic Polypeptides Amplify Lipopolysaccharide-Induced Monocyte Activation

    OpenAIRE

    Bosshart, Herbert; Heinzelmann, Michael

    2002-01-01

    The human neutrophil-derived cationic protein CAP37, also known as azurocidin or heparin-binding protein, enhances the lipopolysaccharide (LPS)-induced release of tumor necrosis factor alpha (TNF-α) in isolated human monocytes. We measured the release of the proinflammatory cytokine interleukin-8 (IL-8) in human whole blood and found that in addition to CAP37, other arginine-rich cationic polypeptides, such as the small structurally related protamines, enhance LPS-induced monocyte activation....

  5. Adsorption equilibrium of fructose, glucose and sucrose for cationic resins in the sodium and potassium form

    OpenAIRE

    Nobre, Clarisse; Santos, M. J.; Dominguez, Ana; Torres, Duarte; Peres, António M.; Rocha, Isabel; Ferreira, Eugénio C.; Rodrigues, Lígia R.; Teixeira, José A.

    2009-01-01

    Separation of glucose from mixtures of fructose and sucrose in molasses is a major challenge in industrial sugar chromatographic separations. The efficiency of a chromatographic process is largely dependent on the adsorbent used. Sulfonated poly(styrene-co-divinylbenzene) (PS-DVB) ion exchange resins are the most frequently used for sugars separation, generally in a cationic form. The cation will complex with the hydroxyl group of the sugar leading to a selective adsorption accord...

  6. Infrared photodissociation spectroscopy of mass-selected silver and gold nitrosyl cation complexes.

    Science.gov (United States)

    Li, Yuzhen; Wang, Lichen; Qu, Hui; Wang, Guanjun; Zhou, Mingfei

    2015-04-16

    The [M(NO)n](+) cation complexes (M = Au and Ag) are studied for exploring the coordination and bonding between nitric oxide and noble metal cations. These species are produced in a laser vaporization supersonic ion source and probed by infrared photodissociation spectroscopy in the NO stretching frequency region using a collinear tandem time-of-flight mass spectrometer. The geometric and electronic structures of these complexes are determined by comparison of the distinctive experimental spectra with simulated spectra derived from density functional theory calculations. All of these noble metal nitrosyl cation complexes are characterized to have bent NO ligands serving as one-electron donors. The spectrum of [Au(NO)2Ar](+) is consistent with 2-fold coordination with a near linear N-Au-N arrangement for this ion. The [Au(NO)n](+) (n = 3-4) cations are determined to be a mixture of 2-fold coordinated form and 3- or 4-fold coordinated form. In contrast, the spectra of [Ag(NO)n](+) (n = 3-6) provide evidence for the completion of the first coordination shell at n = 5. The high [Au(NO)n](+) and [Ag(NO)n](+) (n ≥ 3 for Au, n ≥ 4 for Ag) complexes each involve one or more (NO)2 dimer ligands, as observed in the copper nitrosyl cation complexes, indicating that ligand-ligand coupling plays an important role in the structure and bonding of noble metal nitrosyl cation complexes. PMID:25811327

  7. Neutron irradiation effect on site distribution of cations in non-stoichiometric magnesium aluminate spinel

    International Nuclear Information System (INIS)

    Neutron irradiation effects on cation distribution in non-stoichiometric Mg-Al spinel were examined by ALCHEMI (Atom Location by Channeling Enhanced Microanalysis) method. Parameter n, or non-stoichiometry of MgO . nAl2O3 of the specimens, were n = 1.00, 1.01, 1.10, 1.48. These specimens were neutron-irradiated up to a fluence of 2.3 x 1024 n/m2 (E > 0.1 MeV) at 500-530 deg. C in JMTR. Some specimens contracted by the irradiation and the arrangement of cations became more disorder. The other specimens showed very small swelling by the irradiation and the cation distribution became slightly ordered. The cation distribution of the contracted specimen returned stepwise to the pre-irradiated condition after the annealing at 700 deg. C. The cation distribution of the slightly swollen specimens did not change after the annealing up to 700 deg. C. Cation distribution in the T-site was more sensitively influenced by the irradiation

  8. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.

    Science.gov (United States)

    Rottenberg, H

    1984-01-01

    The uptake and binding of the lipophilic cations ethidium+, tetraphenylphosphonium+ (TPP+), triphenylmethylphosphonium+ (TPMP+), and tetraphenylarsonium+ (TPA+) in rat liver mitochondria and submitochondrial particles were investigated. The effects of membrane potential, surface potentials and cation concentration on the uptake and binding were elucidated. The accumulation of these cations by mitochondria is described by an uptake and binding to the matrix face of the inner membrane in addition to the binding to the cytosolic face of the inner membrane. The apparent partition coefficients between the external medium and the cytosolic surface of the inner membrane (K'o) and the internal matrix volume and matrix face of the inner membrane (K'i) were determined and were utilized to estimate the membrane potential delta psi from the cation accumulation factor Rc according to the relation delta psi = RT/ZF ln [(RcVo - K'o)/(Vi + K'i)] where Vo and Vi are the volume of the external medium and the mitochondrial matrix, respectively, and Rc is the ratio of the cation content of the mitochondria and the medium. The values of delta psi estimated from this equation are in remarkably good agreement with those estimated from the distribution of 86Rb in the presence of valinomycin. The results are discussed in relation to studies in which the membrane potential in mitochondria and bacterial cells was estimated from the distribution of lipophilic cations. PMID:6492133

  9. Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer

    International Nuclear Information System (INIS)

    The carbenium ion with nominal formula [C,H4,O]+ is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm−1 using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as the precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H4,O]+ potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion

  10. Neutron irradiation effect on site distribution of cations in non-stoichiometric magnesium aluminate spinel

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, Takashi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)], E-mail: 06d19012@nr.titech.ac.jp; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2008-02-15

    Neutron irradiation effects on cation distribution in non-stoichiometric Mg-Al spinel were examined by ALCHEMI (Atom Location by Channeling Enhanced Microanalysis) method. Parameter n, or non-stoichiometry of MgO . nAl{sub 2}O{sub 3} of the specimens, were n = 1.00, 1.01, 1.10, 1.48. These specimens were neutron-irradiated up to a fluence of 2.3 x 10{sup 24} n/m{sup 2} (E > 0.1 MeV) at 500-530 deg. C in JMTR. Some specimens contracted by the irradiation and the arrangement of cations became more disorder. The other specimens showed very small swelling by the irradiation and the cation distribution became slightly ordered. The cation distribution of the contracted specimen returned stepwise to the pre-irradiated condition after the annealing at 700 deg. C. The cation distribution of the slightly swollen specimens did not change after the annealing up to 700 deg. C. Cation distribution in the T-site was more sensitively influenced by the irradiation.

  11. Neutron irradiation effect on site distribution of cations in non-stoichiometric magnesium aluminate spinel

    Science.gov (United States)

    Sawabe, Takashi; Yano, Toyohiko

    2008-02-01

    Neutron irradiation effects on cation distribution in non-stoichiometric Mg-Al spinel were examined by ALCHEMI (Atom Location by Channeling Enhanced Microanalysis) method. Parameter n, or non-stoichiometry of MgO · nAl 2O 3 of the specimens, were n = 1.00, 1.01, 1.10, 1.48. These specimens were neutron-irradiated up to a fluence of 2.3 × 10 24 n/m 2 ( E > 0.1 MeV) at 500-530 °C in JMTR. Some specimens contracted by the irradiation and the arrangement of cations became more disorder. The other specimens showed very small swelling by the irradiation and the cation distribution became slightly ordered. The cation distribution of the contracted specimen returned stepwise to the pre-irradiated condition after the annealing at 700 °C. The cation distribution of the slightly swollen specimens did not change after the annealing up to 700 °C. Cation distribution in the T-site was more sensitively influenced by the irradiation.

  12. Specific distributions of anions and cations of an ionic liquid through confinement between graphene sheets.

    Science.gov (United States)

    Alibalazadeh, Mahtab; Foroutan, Masumeh

    2015-07-01

    This work was aimed to investigate the behavior, morphology, structure, and dynamical properties of pure ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) confined between two parallel and flat graphene sheets at different interwall distances, H. Thus, molecular dynamic (MD) simulations were performed for different interwall distances including (10, 14, 16, 20, 23, and 28) Å at seven temperatures from 278 to 308 K. These results showed that the distribution and orientation of cations and anions on the graphene sheets depended on H. At the shortest H, a dense monolayer of the anions and cations was formed between two graphene sheets. The number of these layers increased as H increased. The potential energy diagram as a function of H demonstrated a minimum potential energy at H = 16 Å. Also, there was a minimum overlap between the density profiles of the cations and anions at H = 16 Å. Diffusion coefficients of the cations and anions increased as temperature and H increased. Moreover, slope of the plot of the diffusion coefficients of the cations and anions versus H significantly changed at H = 16 Å. Orientation functions revealed that most of the cations oriented parallel to the graphene sheets. PMID:26048248

  13. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    Science.gov (United States)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  14. Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, J. D.; Young, J. W.; Duncan, M. A., E-mail: mccoy@chemistry.ohio-state.edu, E-mail: maduncan@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Huang, M.; McCoy, A. B., E-mail: mccoy@chemistry.ohio-state.edu, E-mail: maduncan@uga.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-03-21

    The carbenium ion with nominal formula [C,H{sub 4},O]{sup +} is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm{sup −1} using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as the precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H{sub 4},O]{sup +} potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.

  15. Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer

    Science.gov (United States)

    Mosley, J. D.; Young, J. W.; Huang, M.; McCoy, A. B.; Duncan, M. A.

    2015-03-01

    The carbenium ion with nominal formula [C,H4,O]+ is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm-1 using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as the precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H4,O]+ potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.

  16. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  17. Cation export by overland flow in a recently burnt forest area in north-central Portugal.

    Science.gov (United States)

    Machado, A I; Serpa, D; Ferreira, R V; Rodríguez-Blanco, M L; Pinto, R; Nunes, M I; Cerqueira, M A; Keizer, J J

    2015-08-15

    The current fire regime in the Mediterranean Basin constitutes a serious threat to natural ecosystems because it drastically enhances surface runoff and soil erosion in the affected areas. Besides soil particles themselves, soil cations can be lost by fire-enhanced overland flow, increasing the risk of fertility loss of the typically shallow and nutrient poor Mediterranean soils. Although the importance of cations for land-use sustainability is widely recognized, cation losses by post-fire runoff have received little research attention. The present study aimed to address this research gap by assessing total exports of Na(+), K(+), Ca(2+) and Mg(2+) in a recently burnt forest area in north-central Portugal. These exports were compared for two types of planted forest (eucalypt vs. maritime pine plantations), two types of parent materials (schist vs. granite) and for two spatial scales (micro-plot vs. hill slope). The study sites were a eucalypt plantation on granite (BEG), a eucalypt plantation on schist (BES) and a maritime pine plantation on schist (BPS). Overland flow samples were collected during the first six months after the wildfire. Cation losses differed strikingly between the two forest types on schist, being higher at the eucalypt than pine site. This difference was evident at both spatial scales, and probably due to the extensive cover of a needle cast from the scorched pine crowns. The role of parent material in cation export was less straightforward as it varied with spatial scale. Cation losses were higher for the eucalypt plantation on schist than for that on granite at the micro-plot scale, whereas the reverse was observed at the hill slope scale. Finally, cation yields were higher at the micro-plot than slope scale, in agreement with the general notion of scaling-effect in runoff generation. PMID:25897728

  18. Theoretical study of the coordination of lanthanide trivalent cations with nitrate ions, diamides and nitrogen ligands

    International Nuclear Information System (INIS)

    Quantum chemical and molecular dynamics simulations have been performed on the coordination of lanthanide(III) cations (La(III), Eu(III), Lu(III)) by nitrate ions NO3-, diamides TEEEMA (tetra-ethyl-ethyl-ethoxy-malonamide) and TMDGA (tetra-methyl-diglycolamide), and by Btp ligands (bis-triazinyl-pyridine) in the gas phase and in water or methanol solution. In the gas phase, the NO3- anions may present monodentate or bidentate coordination to the cation in presence of water molecules. In water, nitrates remain monodentate, whereas they usually are bidentate in the solid state. For the [Ln(TEEEMA)2]3+ and [Ln(TMDGA2]3+ complexes, except in water solution (where the complexes dissociate), the ligands coordinate the cation by the amidic oxygens, with or without NO3- counter-ions. The coordination by ethoxy oxygen atoms, whose position differs between TEEEMA and TMDGA, is influenced by the presence of nitrates in the gas phase. In methanol, the ethoxy oxygen of TEEEMA does not coordinate the cations but the one of TMDGA does directly, or via a MeOH molecule. The cation-ligand interaction has been characterized for [Ln(Btp)1]3+ complexes in the gas phase, and for 1:1 to 1:3 complexes in solvent phase. In water, all complexes dissociate. In dry methanol, with or without chlorides, 1:1 complexes also dissociate, but in methanol with some water molecules and with chlorides, the ligand remains in the second sphere of the cation. 1:3 complexes for Eu(III) and Lu(III) remain associated in methanol, whereas the La(III) complex dissociates. As far as the QC and MD models are relatively simple, the results give information on the complexation behaviour of ligands with these lanthanide(III) cations. (author)

  19. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Bernt; Ingemarsson, Rolf; Settervik, Gustav [Ringhals AB, Vaeroebacka (Sweden); Velin, Anna [Vattenfall Research and Development AB, Stockholm (Sweden)

    2011-03-15

    At Ringhals Nuclear Power Plant (NPP), more than four years of successful operation with a full-scale electrode ionization (EDI) unit for the recycling of steam generator blowdown gave the inspiration to modify and scale down this EDI process. As part of this project, the possibility of replacing the cation exchanger columns used for cation conductivity analysis with some small and integrated electrochemical ion exchange cells was explored. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, there is the disadvantage of rapid exhaustion of the resins, necessitating frequent replacement or regeneration. This causes interruptions in the monitoring and gives rise to a high workload for the maintenance staff. This paper reports on the optimization and testing of two different two-compartment electrochemical cells for possible replacement of the cation resin columns for analyzing cation conductivity in the secondary steam circuit at Ringhals NPP. Field tests during start-up conditions and more than four months of steady operation together with real and simulated tests for impurity influences indicate that an electrical ion exchange (ELIX) process could be successfully used to replace the resin columns in Ringhals while operating with high-pH all-volatile treatment (AVT) using hydrazine and ammonia. Installation of an ELIX system downstream of a particle filter and upstream of a small cation resin column will introduce additional safety and further reduce the maintenance and possible interruptions. Performance of the ELIX process together with other chemical additives (morpholine, ethanolamine, 3-methoxypropylamine, dimethylamine) and dispersants may be further evaluated to qualify the ELIX process as well as steam generator blowdown electrodeionization for wider use in

  20. Electron spin resonance study of lactone radical cations formed in -irradiated freon matrices

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, J.; Symons, M.C.R.; Swarts, S.; Besler, B.; Sevilla, M.D.

    1985-11-21

    Exposure of dilute solutions of a number of lactones in trichlorofluoromethane at 77 K to Co-60 -rays resulted in electron loss centers which underwent fragmentation, or complex formation with the solvent, but gave no evidence for uncomplexed primary cations. For propiolactone the authors suggest that ring opening occurs to give the .CH2CH2OCO radical cation. For US -butyrolactone fragmentation of the ring is suggested to occur. Although the cyclic four-membered rings are suggested to open or fragment their results show that the larger five-, six-, and seven-membered rings form complex cations with the freon solvent. The complexes have large chlorine couplings (A/sub max/(Cl-35) = 62-73 G) which are in accord with sigma*-bonding between an oxygen lone pair and a chlorine atom on a CFCl3 molecule. Photobleaching or annealing the complexes results in new species in which H transfer has occurred. For -butyrolactone hydrogen atom migration from one of the methylene groups to the carbonyl oxygen of the primary cation is inferred. In the case of -valerolactone the results suggest that it is the unique tertiary hydrogen atom that migrates. Similar reactions are proposed for the cations of delta-valerolactones and epsilon-caprolactone. Molecular orbital calculations at the MINDO/2 level with full geometry optimization for several lactone cation radicals and propiolactone cation's likely ring-opened product were performed and clarify the nature and identity of the radicals. The experimental results are discussed in relation to recent work on esters and other carbonyl compounds. 24 references, 5 figures, 1 table.

  1. Electron spin resonance study of lactone radical cations formed in Σ-irradiated freon matrices

    International Nuclear Information System (INIS)

    Exposure of dilute solutions of a number of lactones in trichlorofluoromethane at 77 K to Co-60 Σ-rays resulted in electron loss centers which underwent fragmentation, or complex formation with the solvent, but gave no evidence for uncomplexed primary cations. For propiolactone the authors suggest that ring opening occurs to give the .CH2CH2OCO+ radical cation. For β-butyrolactone fragmentation of the ring is suggested to occur. Although the cyclic four-membered rings are suggested to open or fragment their results show that the larger five-, six-, and seven-membered rings form complex cations with the freon solvent. The complexes have large chlorine couplings (A/sub max/(Cl-35) = 62-73 G) which are in accord with sigma*-bonding between an oxygen lone pair and a chlorine atom on a CFCl3 molecule. Photobleaching or annealing the complexes results in new species in which H transfer has occurred. For Σ-butyrolactone hydrogen atom migration from one of the methylene groups to the carbonyl oxygen of the primary cation is inferred. In the case of Σ-valerolactone the results suggest that it is the unique tertiary hydrogen atom that migrates. Similar reactions are proposed for the cations of delta-valerolactones and epsilon-caprolactone. Molecular orbital calculations at the MINDO/2 level with full geometry optimization for several lactone cation radicals and propiolactone cation's likely ring-opened product were performed and clarify the nature and identity of the radicals. The experimental results are discussed in relation to recent work on esters and other carbonyl compounds. 24 references, 5 figures, 1 table

  2. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  3. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios.

    Science.gov (United States)

    Bourgeois, J C; Walsh, M E; Gagnon, G A

    2004-03-01

    Spent filter backwash water (SFBW) and clarifier sludge generally comprise the majority of the waste residual volume generated and in relative terms, these can be collectively referred to as combined filter backwash water (CFBW). CFBW is essentially a low-solids wastewater with metal hydroxide flocs that are typically light and slow to settle. This study evaluates the impact of adding calcium and magnesium carbonates to CFBW in terms of assessing the impacts on the sedimentation and DAF separation processes. Representative CFBW samples were collected from two surface water treatment plants (WTP): Lake Major WTP (Dartmouth, Nova Scotia, Canada) and Victoria Park WTP (Truro, Nova Scotia, Canada). Bench-scale results indicated that improvements in the CFBW settled water quality could be achieved through the addition of the divalent cations, thereby adjusting the monovalent to divalent (M:D) ratios of the wastewater. In general, the DAF process required slightly higher M:D ratios than the sedimentation process. The optimum M:D ratios for DAF and sedimentation were determined to be 1:1 and 0.33:1, respectively. It was concluded that the optimisation of the cation balance between monovalent cations (e.g., Na(+), K(+)) and added divalent cations (i.e., Ca(2+), Mg(2+)) aided in the settling mechanism through charge neutralisation-precipitation. The increase in divalent cation concentrations within the waste residual stream promoted destabilisation of the negatively charged colour molecules within the CFBW, thereby causing the colloidal content to become more hydrophobic. PMID:14975650

  4. Effect of cation enrichment on dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface.

    Science.gov (United States)

    Adams, Ellen M; Casper, Clayton B; Allen, Heather C

    2016-09-15

    The effect of highly concentrated salt solutions of marine-relevant cations (Na(+), K(+), Mg(2+), and Ca(2+)) on Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), and infrared reflection-absorption spectroscopy (IRRAS). It was found that monovalent cations and Mg(2+) have similar phase behavior, causing DPPC monolayers to expand, while Ca(2+) induces condensation. All cations disrupted the surface morphology at high cation concentration, resulting in decreased reflectivity from the monolayer. Monolayer refractive index was calculated from BAM image intensity in the liquid condensed phase and decreased with increasing cation concentration, which suggests that orientation of the alkyl chains change. Monovalent ions increase ordering of the alkyl chains, more than divalents, yet have little interaction with the DPPC headgroup. Mg(2+) induces gauche defects in the alkyl chain and increases headgroup hydration at low lipid coverage but increases chain ordering and dehydrates the headgroup at high lipid coverage. Ca(2+) orders alkyl chains and dehydrates the phosphate moiety, independent of lipid phase. At the highest salt concentration investigated, significant narrowing of the asymmetric PO2(-) vibrational mode occurs and is attributed to considerable dehydration of the DPPC headgroup. PMID:27322949

  5. Application of cationic hemicelluloses produced from corn husk as polyelectrolytes in sewage treatment

    Directory of Open Access Journals (Sweden)

    Alan Soares Landim

    2013-01-01

    Full Text Available Hemicelluloses were extracted from corn husk and converted into cationic hemicelluloses using 2,3-epoxypropyltrimethylammonium chloride. The degree of substitution was determined as 0.43 from results of elemental analysis. The cationic derivative was also characterized by Fourier transform infrared spectroscopy and Carbon-13 magnetic nuclear ressonance. The produced polymer was employed as coagulant aid in a sewage treatment station (STS of the municipal department of water and sewer (Departamento Municipal de Água e Esgoto - DMAE in Uberlândia-Minas Gerais, Brazil, using Jar test experiments. Its performance was compared to ACRIPOL C10, a commercial cationic polyacrylamide regularly used as a coagulant at the STS. The best result of the jar-test essays was obtained when using cationic hemicelluloses (10 mg L- 1 as coagulant aid and ferric chloride as coagulante (200 mg L- 1. The resultsof color and turbidity reduction, 37 and 39%, respectively, were better than when using only ferric chloride. These results were also higher than those of commercial polyacrylamide, on the order of 32.4 and 38.7%, respectively. The results showed that the cationic hemicelluloses presented similar or even superior performance when compared to ACRIPOL C10, demonstrating that the polyelectrolytes produced from recycled corn husks can replace commercial polymers in sewage treatment stations.

  6. Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals.

    Science.gov (United States)

    Mittal, Mona; Jana, Atanu; Sarkar, Sagar; Mahadevan, Priya; Sapra, Sameer

    2016-08-18

    A few approaches have been employed to tune the band gap of colloidal organic-inorganic trihalide perovskites (OTPs) nanocrystals by changing the halide anion. However, to date, there is no report of electronic structure tuning of perovskite NCs upon changing the organic cation. We report here, for the first time, the room temperature colloidal synthesis of (EA)x(MA)1-xPbBr3 nanocrystals (NCs) (where, x varies between 0 and 1) to tune the band gap of hybrid organic-inorganic lead perovskite NCs from 2.38 to 2.94 eV by varying the ratio of ethylammonium (EA) and methylammonium (MA) cations. The tuning of band gap is confirmed by electronic structure calculations within density functional theory, which explains the increase in the band gap upon going toward larger "A" site cations in APbBr3 NCs. The photoluminescence quantum yield (PLQY) of these NCs lies between 5% to 85% and the average lifetime falls in the range 1.4 to 215 ns. A mixture of MA cations and its higher analog EA cations provide a versatile tool to tune the structural as well as optoelectronic properties of perovskite NCs. PMID:27494515

  7. Change Color Effect and Spectral Properties of Gold Nanoparticle-cationic Surfactants System

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-liang; PAN Hong-cheng; YUAN Wei-en

    2004-01-01

    The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at 600-700 nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100 : 1 -100 : 1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm.The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.

  8. Desorption behavior of cesium from cesium bearing smectite by major cations

    International Nuclear Information System (INIS)

    The desorption behaviors of Cs from Cs bearing smectite by major cations (Na+, K+, Mg2+, Ca2+ and NH4+) were systematically examined. The suspension of the Cs bearing smectite was prepared by reaction of 1 g/L smectite with 75 nM Cs+ solution in 0.02 M NaCl solutions. The desorption behaviors of Cs were examined by adding the major cations of which concentrations ranged from 10-3 to 10-1 N to the smectite suspensions. All cations except for K+ lead to the desorption of Cs from smectite when the concentrations of the added cations increased. On the other hand, K+ plays a role for inhibition of Cs desorption from smectite. The order of the ability for the desorption of Cs from smectite by the major cations was summarized as follow: Ca2+ nearly equals Mg2+ > NH4+ > Na+ > K+. The selectivity coefficients based on Gaines-Thomas convention were estimated from the observed desorption behaviors. (author)

  9. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    International Nuclear Information System (INIS)

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed

  10. Association of ionic liquids with cationic dyes in aqueous solution: A thermodynamic study

    International Nuclear Information System (INIS)

    Highlights: ► Precipitate was formed between cationic dye and ionic liquid in aqueous solution. ► Precipitates are 1:1 formed by cation of the dyes and anion of the ionic liquids. ► Association constants decrease with increasing temperature. ► The associates can be used as active materials of ion-selective electrode. - Abstract: In this paper, the interactions between cationic dyes and the ionic liquids (ILs) have been studied by 31P nuclear magnetic resonance (NMR), UV–Vis spectroscopy and conductometric measurements at different temperatures. It was shown that a decrease in the measured specific conductance of the (dye + IL) mixtures was caused by the formation of non-conducting or less conducting (dye + IL) associates. The associates were formed by 1:1 ratio of cation of the cationic dyes and anion of the ILs by using the 31P NMR and UV–Vis spectroscopy methods. The association constants were calculated by theoretical model based on the deviation from linear behavior, and the association constants were as high as 106 (L · mol−1)2. Thermodynamic results imply that the formation process of association was exothermic nature. It is expected that the associates reported here would have promising application as active materials for the preparation of ion-selective electrode used in the determination of ILs concentrations.

  11. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  12. Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.

    Science.gov (United States)

    Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed. PMID:24527930

  13. Ion-pair reversed phase liquid chromatography with ultraviolet detection for analysis of ultraviolet transparent cations.

    Science.gov (United States)

    He, Yan; Cook, Kenneth S; Littlepage, Eric; Cundy, John; Mangalathillam, Ratish; Jones, Michael T

    2015-08-21

    This paper describes the use of an anionic ion-pair reagent (IPR) to impove the ultraviolet (UV) detection and hydrophobic retention of polar and UV transparent cations. Anionic IPR added to the mobile phase forms an ion-pair with cations. Formation of the ion-pair causes a redshift in the absorption wavength, making it possible for direct UV detection of UV-inactive cations. The ion-pairs with increased hydrophobicity were separated by reversed phase liquid chromatography (RPLC). Different perfluorinated caboxylic acids (trifluoroacetic acid, heptafluorobutyric acid, nonafluoropentanoic acid) were evaluted as IPR in the separation and detection of the common cations sodium, ammonium and Tris(hydroxymethyl)aminomethane (Tris). The effects of the IPR type and concentration on separation and detection have been investigated to understand the separation and detection mechanisms. The optimal separation and detection condtions were attained with mobile phase containing 0.1% nonafluoropentanoic acid and with the UV detection at 210nm. UV detection and charged aerosol detection (CAD) were compared in the quantitation of the cations. The limit of quantitation (LOQ) of sodium and Tris with UV detection is comparable to that by CAD. The LOQ of ammonium with UV detection (1ppm or 3ng) is about 20-fold lower than that (20ppm or 60ng) by CAD. The RPLC-UV method was used to monitor ammonium clearance during ultrafiltration and diafiltration in the manfucaturing of biopharmceutical drug substance. PMID:26195039

  14. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations

    International Nuclear Information System (INIS)

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment. - Highlights: ► Application of the biochars for PCBs sorption was a new and effective way. ► The biochars had higher adsorption affinity for PCBs in the soil extracted solution. ► Pine needle chars adsorbed less nonplanar PCBs than planar ones. ► Coexisting humic acid or metal cations increased PCBs sorption on the biochars. - The biochars had higher adsorption affinity for PCBs in the extracted soil solution because coexisting humic acid and metal cations increased their sorption.

  15. Linear free energy relationship applied to trivalent cations with lanthanum and actinium oxide and hydroxide structure

    International Nuclear Information System (INIS)

    Linear free energy relationships for trivalent cations with crystalline M2O3 and, M(OH)3 phases of lanthanides and actinides were developed from known thermodynamic properties of the aqueous trivalent cations, modifying the Sverjensky and Molling equation. The linear free energy relationship for trivalent cations is as ΔGf,MvX0=aMvXΔGn,M3+0+bMvX+βMvXrM3+, where the coefficients aMvX, bMvX, and βMvX characterize a particular structural family of MvX, rM3+ is the ionic radius of M3+ cation, ΔGf,MvX0 is the standard Gibbs free energy of formation of MvX and ΔGn,M3+0 is the standard non-solvation free energy of the cation. The coefficients for the oxide family are: aMvX=0.2705, bMvX=-1984.75 (kJ/mol), and βMvX=197.24 (kJ/molnm). The coefficients for the hydroxide family are: aMvX=0.1587, bMvX=-1474.09 (kJ/mol), and βMvX=791.70 (kJ/molnm).

  16. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    Science.gov (United States)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  17. Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment

    CERN Document Server

    Useli-Bacchitta, F; Mulas, G; Malloci, G; Toublanc, D; Joblin, C; 10.1016/j.chemphys.2010.03.012

    2010-01-01

    The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons (PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy in the 430-480 nm spectral range using the radiation of a mid-band optical parametric oscillator laser. We present here the spectra recorded for different species of increasing size, namely the pyrene cation (C16H10+), the 1-methylpyrene cation (CH3-C16H9+), the coronene cation (C24H12+), and its dehydrogenated derivative C24H10+. The experimental results are interpreted with the help of time-dependent density functional theory calculations and analysed using spectral information on the same species obtained from matrix isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in the case of pyrene and coronene cations, to estimate the absorption cross-sections of the measured electronic transitions. Gas-phase spectra of highly reactive species such as dehydrog...

  18. Selective adsorption of cationic dyes by UiO-66-NH2

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH2. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH2 had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N2 adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH2 and its more negative zeta potential resulted from the charge balance for the protonation of –NH2, UiO-66-NH2 displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66

  19. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  20. A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA.

    Science.gov (United States)

    Luo, Cong; Miao, Lei; Zhao, Yi; Musetti, Sara; Wang, Yuhua; Shi, Kai; Huang, Leaf

    2016-09-01

    Metformin (dimethylbiguanide) has been found to be effective for the treatment of a wide range of cancer. Herein, a novel lipid (1,2-di-(9Z-octadecenoyl)-3-biguanide-propane (DOBP)) was elaborately designed by utilizing biguanide as the cationic head group. This novel cationic lipid was intended to act as a gene carrier with intrinsic antitumor activity. When compared with 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), a commercially available cationic lipid with a similar structure, the blank liposomes consisting of DOBP showed much more potent antitumor effects than DOTAP in human lung tumor xenografts, following an antitumor mechanism similar to metformin. Given its cationic head group, biguanide, DOBP could encapsulate TNF-related apoptosis-inducing ligand (TRAIL) plasmids into Lipid-Protamine-DNA (LPD) nanoparticles (NPs) for systemic gene delivery. DOBP-LPD-TRAIL NPs demonstrated distinct superiority in delaying tumor progression over DOTAP-LPD-TRAIL NPs, due to the intrinsic antitumor activity combined with TRAIL-induced apoptosis in the tumor. These results indicate that DOBP could be used as a versatile and promising cationic lipid for improving the therapeutic index of gene therapy in cancer treatment. PMID:27344367

  1. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    Science.gov (United States)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  2. Ozonation of Cationic Red X-GRL in aqueous solution: degradation and mechanism.

    Science.gov (United States)

    Zhao, Weirong; Shi, Huixiang; Wang, Dahui

    2004-12-01

    Ozonation of the azo dye Cationic Red X-GRL was investigated in a bubble column reactor at varying operating parameters such as oxygen flow rate, temperature, initial Cationic Red X-GRL concentration, and pH. The conversion of dye increased with the increasing of pH and oxygen flow rate. As the reaction rate constant and the volumetric mass transfer coefficient increase while the ozone equilibrium concentration decreases with the temperature, there is a minimum conversion of dye at 25 degrees C. The increasing of initial dye concentration leads to a decreasing conversion of dye while the ozonation rate increases. The formation of intermediates and the variation of pH, TOC, and nitrate ion during ozonation were investigated by the use of some analytical instruments such as GC/MS, GC, and IC. The intermediates of weak organic acids lower the pH value of the solution. The probable degradation mechanism of the Cationic Red X-GRL in aqueous solution was deliberated with the aid of Molecular Orbital calculations. The N(12)-C(13) site in Cationic Red X-GRL, instead of the N(6)-N(7) site, is found to be the principal site for ozone cycloaddition in the degradation processes. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one is converted into an amine compound, and the remaining four are transformed into two molecules of nitrogen. PMID:15504479

  3. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P., E-mail: jcoutinho@ua.pt [CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Gonçalves, Fernando [Departamento de Biologia e CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro (Portugal); Esperança, José [Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras (Portugal); Mutelet, Fabrice [Laboratoire Réactions et Génie des Procédés, CNRS (UPR3349), Nancy-Université, 1 rue Grandville, BP 20451 54001 Nancy (France)

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  4. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    Science.gov (United States)

    Li, Peng; Liu, Donghua; Sun, Xiaoli; Liu, Chunxi; Liu, Yongjun; Zhang, Na

    2011-06-01

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  5. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    International Nuclear Information System (INIS)

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  6. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Di; Pan Bo; Wu Min; Wang Bin; Zhang Huang; Peng Hongbo; Wu Di [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Ning Ping, E-mail: pingning58@gmail.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2011-10-15

    The environmental risks of antibiotics have attracted lots of research attention, but their environmental behavior is not clear yet. Functionalized carbon nanotubes (CNTs) were used as model adsorbents and sulfamethoxazole (SMX) was used as a model antibiotic to investigate the effect of both cations (Ca{sup 2+}, Cs{sup +}) and anions (phosphate) on antibiotics adsorption. Various mechanisms (such as electrostatic interaction, hydrophobic interaction, {pi}-{pi} and hydrogen bonds) play roles in SMX adsorption. Cations and anions could 'wedge into' these mechanisms and thus alter SMX adsorption. This study emphasized that both increased and decreased SMX adsorption could be observed with the addition of cations/anions, depending on environmental conditions (such as pH in this current study). The net effect is the balance between the increased and decreased effects. The contribution of different mechanisms to the overall antibiotic adsorption on solid particles should be identified to accurately predict the apparent effect by cations and anions. - Highlights: > Various mechanisms play role in SMX sorption on CNTs. > The presence of cations and anions may decrease or increase SMX sorption. > The net effect is dependent on the balance among different mechanisms. > It is essential to identify the contribution of different mechanisms. - The balance between decreasing and increasing roles determines the apparent sulfamethoxazole adsorption on carbon nanotubes depending on environmental conditions.

  7. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions

    International Nuclear Information System (INIS)

    The environmental risks of antibiotics have attracted lots of research attention, but their environmental behavior is not clear yet. Functionalized carbon nanotubes (CNTs) were used as model adsorbents and sulfamethoxazole (SMX) was used as a model antibiotic to investigate the effect of both cations (Ca2+, Cs+) and anions (phosphate) on antibiotics adsorption. Various mechanisms (such as electrostatic interaction, hydrophobic interaction, π-π and hydrogen bonds) play roles in SMX adsorption. Cations and anions could 'wedge into' these mechanisms and thus alter SMX adsorption. This study emphasized that both increased and decreased SMX adsorption could be observed with the addition of cations/anions, depending on environmental conditions (such as pH in this current study). The net effect is the balance between the increased and decreased effects. The contribution of different mechanisms to the overall antibiotic adsorption on solid particles should be identified to accurately predict the apparent effect by cations and anions. - Highlights: → Various mechanisms play role in SMX sorption on CNTs. → The presence of cations and anions may decrease or increase SMX sorption. → The net effect is dependent on the balance among different mechanisms. → It is essential to identify the contribution of different mechanisms. - The balance between decreasing and increasing roles determines the apparent sulfamethoxazole adsorption on carbon nanotubes depending on environmental conditions.

  8. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    International Nuclear Information System (INIS)

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834x10-6 and 1323x10-6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes

  9. Cation coordination in mono-urethanesil hybrids doped with sodium triflate

    International Nuclear Information System (INIS)

    Infrared and Raman spectroscopies were used to elucidate the cation/polyether, cation/urethane, cation/anion and hydrogen bonding interactions occurring in poly(oxyethylene), POE/siloxane materials doped with sodium triflate (NaCF3SO3). The hybrid host matrix of these xerogels (mono-urethanesils) is composed of methyl terminated POE chains (with about 17 repeat units) grafted through urethane groups to the siliceous framework. Samples with n≥3 (where n is the molar ratio of oxyethylene moieties per Na+ ion) were examined. The results obtained demonstrate that the POE chains of the host framework participate actively in the complexation of the alkali ions in the mono-urethanesils with n≤10. In the more dilute compounds, while a few cations coordinate to the carbonyl oxygen atoms of the urethane linkages, the great majority will bond to the oxygen atoms of the triflate ions, producing ion contact pairs, negatively charged triplets and an ionic aggregate. In the xerogels with n=6 and 3, these ionic species coexist with positively charged triplets and another aggregate. The crystalline POE1.1NaCF3SO3 compound is formed in the latter materials. This study provides conclusive evidence that the nature of the cations incorporated in the mono-urethanesil-type structure plays a major role in the properties of these composites

  10. Radical cation of hydrogen sulfide and reactions of cyclization of 1,5-diketones with its participation

    International Nuclear Information System (INIS)

    Hydrogen sulfide radical cation was generated by electrochemical method during γ-radiation in freon matrix induced by one-electron oxidants (spatially hindered o-benzoquinones). According to ESR spectroscopy data H2S+. radical cation is extremely unstable, even ata temperature of 77 K in freon matrix it exists for 15 min at most. It is shown that hydrogen sulfide radical cation has the properties of a superacid

  11. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.

    Science.gov (United States)

    Gadad, Praveen; Nanny, Mark A

    2008-12-01

    The influence of cations (Na(+), Ca(2+) and Mg(2+)) on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic acids (FAs) (Norman landfill leachate fulvic acid (NLFA) and Suwannee River fulvic acid (SRFA)) and dissolved humic acids (HAs) (Suwannee River humic acid (SRHA) and Leonardite humic acid (LHA)) was examined using steady-state fluorescence spectroscopy at pH 4, 7 and 10 as a function of cation concentration (up to 25-100mM). Regardless of pH and cation concentration, PRODAN quenching by FA was unaffected by cations. However, interactions between PRODAN and HA decreased in the presence of cations at pH 7 and 10. Cation concentrations below the HA charge density resulted in the greatest decrease of PRODAN quenching, while very little additional decrease in PRODAN quenching occurred at cation concentrations above the HA charge density. This suggests that as the HA carboxylic acid functional groups form inner sphere complexes with divalent cations, intramolecular interactions result in a contraction of the HA molecular structure, thereby preventing PRODAN from associating with the condensed aromatic, electron accepting moieties inherent within HA molecules and responsible for PRODAN quenching. However, once the HA carboxylic acid functional groups are fully titrated with divalent cations, PRODAN quenching is no longer significantly influenced by the further addition of cations, even though these additional cations facilitate intermolecular interactions between the HA molecules to form supramolecular HA aggregates that can continue to increase in size. Regardless of FA and HA type, pH, cation type and concentration, the lack of blue-shifted fluorescence emission spectra indicated that micelle-like hydrophobic regions, amenable to PRODAN partitioning, were not formed by intra- and intermolecular interactions of FA and HA. PMID:18849058

  12. Synergy in lipofection by cationic lipid mixtures: Superior activity at the gel-liquid crystalline phase transition

    OpenAIRE

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C.

    2007-01-01

    Some mixtures of two cationic lipids including phospholipid compounds (O-ethylphosphatidylcholines), as well as common, commercially available cationic lipids, such as dimethylammonium bromides and trimethylammonium propanes, deliver therapeutic DNA considerably more efficiently than do the separate molecules. In an effort to rationalize this widespread “mixture synergism”, we examined the phase behavior of the cationic lipid mixtures and constructed their binary phase diagrams. Among a group...

  13. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    OpenAIRE

    Yin-lin Lei; Yun-jie Luo; Fei Chen; Le-he Mei

    2014-01-01

    With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF) alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN) cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB) in the alloy particles on the...

  14. Two uranyl-organic frameworks with pyridinecarboxylate ligands. A novel hetero-metallic uranyl-copper(II) complex with a cation-cation interaction

    International Nuclear Information System (INIS)

    Reaction of uranyl nitrate with pyridine-2-carboxylic acid (HL1) under hydrothermal conditions gives the complex [(UO2)3(L1)4(NO3)2], 1, which differs from the previously reported molecular complex, obtained at room temperature, by the absence of water, coordinated and free, and the extended carboxylate bridging. Although the tri-metallic basic unit is similar in both cases, 1 crystallizes as a two-dimensional assembly. A hetero-metallic complex results from the reaction of uranyl nitrate and copper(II) trifluoromethanesulfonate with nicotinic acid (pyridine-3-carboxylic acid, HL2), [UO2Cu(L2)2(NO3)2], 2, in which copper nicotinate two-dimensional subunits are bridged by uranyl nitrate groups to give a three-dimensional framework. The copper atom environment geometry is elongated octahedral. with one of the axial donors being a uranyl oxo group (cation-cation interaction). (author)

  15. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    Science.gov (United States)

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  16. Selective separation of actinyl(V,VI) cations from aqueous solutions by Chelex-100

    Energy Technology Data Exchange (ETDEWEB)

    Kiliari, T.; Pashalidis, I. [Cyprus Univ., Nicosia (Cyprus). Chemistry Dept.

    2012-07-01

    Experimental studies on the selectivity of Chelex-100 resin for the separation of actinide cations at different oxidation states (III, IV, V and VI) from aqueous solution have shown that Chelex-100 presents increased selectivity for actinyl cations at near neutral pH (pH {proportional_to} 4.5). The effect of salinity on the chemical recovery indicates that the increased selectivity could be attributed to the formation of complexes with specific interactions and the pH area, in which the formation of the respective complexes is favored, indicates the occurrence of guest-host interactions. The specific interaction of Chelex-100 with actinyl cations could be of particular interest not only for the separation and preconcentration of uranium from natural waters prior its analysis but also for the recovery of uranium from seawater on a large scale. (orig.)

  17. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid

    Science.gov (United States)

    Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y.

    2016-02-01

    Glycosyl cations are universally accepted key ionic intermediates in the mechanism of glycosylation, the reaction that covalently links carbohydrates to other molecules. These ions have remained hypothetical species so far because of their extremely short life in organic media as a consequence of their very high reactivity. Here, we report the use of liquid hydrofluoric acid-antimony pentafluoride (HF/SbF5) superacid to generate and stabilize the glycosyl cations derived from peracetylated 2-deoxy and 2-bromoglucopyranose in a condensed phase. Their persistence in this superacid medium allows their three-dimensional structure to be studied by NMR, aided by complementary computations. Their deuteration further confirms the impact of the structure of the glycosyl cation on the stereochemical outcome of its trapping.

  18. Characterization and cation exchange capacity of seeds of Ziziphus spina-christi

    Directory of Open Access Journals (Sweden)

    Shadia M. Sirry

    2014-09-01

    Full Text Available There are several naturally existing materials have ability to utilize as ion-exchangers. Most of these materials are by-products of waste material from industry or agriculture. Agriculture ion exchange materials include: lemon orange, grapefruit, apple, peas, broad bean, and meddler peels, kernel core, and grape skins. This research deals with the utilization of agriculture waste biomass of napak seed as natural cation exchanger for removal of cationic pollutant from aqueous solution. Methylene blue dye method was used to determine the cation exchange capacity of the stone and it was characterized by IR and TGA methods. The results showed that the highest dye sorption capacity was found at pH 7, the equilibrium time was 60 min, sorbent dose = 0.1g, particle size 177μm and methylene blue concentration range 10-50 ppm. The equilibrium sorption data were analyzed by Langmuir and Freundlich isotherm models.

  19. Molecular design of high performance fused heteroacene radical cations: A DFT study

    International Nuclear Information System (INIS)

    Hybrid density functional theory (DFT) calculations have been carried out for neutral and radical cation of fused furan oligomer, denoted by F(n) where n means number of furan rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused furan was also investigated using one-dimensional periodic boundary condition (PBC) for comparison. It was found that the reorganization energy of radical cation of F(n) from vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that F(n) has an effective hole transport property. It was found that the cation radical of F(n) has a low energy band at near IR region, which is strongly correlated to hole conductivity. The relation between the electronic states and hole conductivity was discussed on the basis of theoretical calculations

  20. Synthetic crystalline calcium silicate hydrate (I): cation exchange and caesium selectivity

    International Nuclear Information System (INIS)

    Solid crystalline calcium silicate hydrate (I) synthesized from equimolar amounts of Ca and Si under hydrothermal conditions at 120 oC shows cation exchange properties towards divalent metal cations such as Ni, Cu, Cd, or Hg. It also exhibits caesium selectivity in the presence of Na+. The exchange capacity and selectivity of the solid can be increased by 10 and 28 %, respectively, upon substitution of 0.01 mol of the Ca2+ in its structure by Na+. The ability of metal cation uptake by the solid was found to obey the order Ni2+ > Hg2+ > Cu2+ > Cd2+. The different affinities of calcium silicate hydrate (I) towards these ions can be used for their separation from solutions and also in nuclear waste treatment. The mechanism of the exchange reaction is discussed. (author)

  1. STUDYING THE EFFECT OF CATIONIC STARCH- ANIONIC NANOSILICA SYSTEM ON RETENTION AND DRAINAGE

    Directory of Open Access Journals (Sweden)

    Amir Khosravani

    2010-03-01

    Full Text Available Nanoparticles are widely used in the papermaking industry as retention/ drainage aids, usually in conjunction with a high mass cationic polyelectrolyte such as cationic starch. However, little convincing knowledge of their role and mechanism in the wet-end system is yet found. This work focused on the role of nanosilica on papermaking wet end system in response to some processing parameters (drainage, retention, and electrostatic force of the whole system. The observations indicated that the nanosilica performance is defined by interactions of nanosilica with the complex aqueous environment of wet end system. The interaction mechanism seems to rely on introduction of nanoparticles into a cationic starch-fines-fibers network, converting the fiber mat on the forming wire into a porous structure that is responsive to retention and drainage.

  2. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  3. Study on the Cation-π Interactions between Ammonium Ion and Aromatic π Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Xu; ZHANG Jing-Chang; CAO Wei-Liang

    2006-01-01

    The nature and strength of the cation-π interactions between NH4+ and toluene, p-cresol, or Me-indole were studied in terms of the topological properties of molecular charge density and binding energy decomposition. The results display that the diversity in the distribution pattern of bond and cage critical points reflects the profound influenceof the number and nature of substituent on the electron density of the aromatic rings. On the other hand, the energy decomposition shows that dispersion and repulsive exchange forces play an important role in the organic cation ( NH4+ )-π interaction, although the electrostatic and induction forces dominate the interaction. In addition, it isintriguing that there is an excellent correlation between the electrostatic energy and ellipticity at the bond critical point of the aromatic π systems, which would be helpful to further understand the electrostatic interaction in the cation-π complexes.

  4. Use of cationic polymers to reduce pathogen levels during dairy manure separation.

    Science.gov (United States)

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy

    2016-01-15

    Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. PMID:26513324

  5. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  6. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  7. Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans.

    Science.gov (United States)

    't Lam, G P; Giraldo, J B; Vermuë, M H; Olivieri, G; Eppink, M H M; Wijffels, R H

    2016-05-10

    A mechanistic study was performed to evaluate the effect of salinity on cationic polymeric flocculants, that are used for the harvesting of microalgae. The polyacrylamide Synthofloc 5080H and the polysaccharide Chitosan were employed for the flocculation of Neochloris oleoabundans. In seawater conditions, a maximum biomass recovery of 66% was obtained with a dosage of 90mg/L Chitosan. This recovery was approximately 25% lower compared to Synthofloc 5080H reaching recoveries greater than 90% with dosages of 30mg/L. Although different recoveries were obtained with both flocculants, the polymers exhibit a similar apparent polymer length, as was evaluated from viscosity measurements. While both flocculants exhibit similar polymer lengths in increasing salinity, the zeta potential differs. This indicates that polymeric charge dominates flocculation. With increased salinity, the effectivity of cationic polymeric flocculants decreases due to a reduction in cationic charge. This mechanism was confirmed through a SEM analysis and additional experiments using flocculants with various charge densities. PMID:27002231

  8. The Noah's Ark experiment: species dependent biodistributions of cationic 99mTc complexes

    International Nuclear Information System (INIS)

    The time dependent biodistributions of three related 99mTc complexes of 1, 2-bis(dimethylphosphino)ethane (DMPE) were evaluated in several animal species including humans: trans-[99mTcv(DMPE)2O2]+, trans-[99mTcIII(DMPE)2Cl2]+ and [99mTcI(DMPE)3]+. Imaging studies were performed in 10 animal species to evaluate these complexes as myocardial perfusion imaging agents. Animal models adequately predict the uninteresting behaviour of the Tc(V) cation in humans, predict to only a very limited extent the behaviour of the Tc(III) cation in humans and totally fail to predict the behaviour of the Tc(I) cation in humans. (U.K.)

  9. Study of the chemical interactions of actinide cations in solution at macroscopic concentrations

    International Nuclear Information System (INIS)

    The aim of this work was to study the interactions of pentavalent neptunium in dodecane-diluted tributyl phosphate with other metallic cations, especially uranium VI and ruthenium present in reprocessing solutions. Pentavalent neptunium on its own was shown to exist in several forms complexed by water and TBP and also to dimerise. In the complex it forms with uranium VI the interaction via the neptunyl oxygen is considerably enhanced in organic solution. Dibutyl phosphoric acid strengthens the interaction between neptunium and uranium. The Np V-ruthenium interaction reveals the existence of a new cation-cation complex; the process takes place in two successive stage and leads to the formation, reinforced and accelerated by HDBP, of a highly to the formation, reinforced and accelerated by HDBP, of a highly stable complex. These results contribute towards a better knowledge of the behaviour of neptunium in the reprocessing operation

  10. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity?

    Directory of Open Access Journals (Sweden)

    Ana Martínez

    2012-01-01

    Full Text Available In this Density Functional Theory study, it became apparent that astaxanthin (ASTA may form metal ion complexes with metal cations such as Ca+2, Cu+2, Pb+2, Zn+2, Cd+2 and Hg+2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

  11. The sequence to hydrogenate coronene cations: A journey guided by magic numbers

    CERN Document Server

    Cazaux, Stéphanie; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas

    2016-01-01

    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms att...

  12. Experimental and theoretical study on cation-pi interaction of the univalent silver cation with [7]helicene in the gas phase and in the solid state

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Klepetářová, Blanka; Sýkora, D.; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 635, Aug 16 (2015), s. 355-359. ISSN 0009-2614 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : [7]helicene * univalent silver cation * crystal structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.897, year: 2014

  13. Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation

    DEFF Research Database (Denmark)

    Bogdanova, Anna; Goede, Jeroen S; Weiss, Erwin;

    2009-01-01

    blockers of anion and cation channels was assessed. RESULTS: In the cold, the cryohydrocytosis patient's erythrocytes swelled in KCl-containing, but not in NaCl-containing or KNO(3)-containing media indicating that volume changes were mediated by an anion-coupled cation transporter. In NaCl......-selective cation channel. The present study was performed to characterize so far unexplored ion transport pathways that may render erythrocytes of a single cryohydrocytosis patient cation-leaky. DESIGN AND METHODS: Cold-induced changes in cell volume were monitored using ektacytometry and density gradient...

  14. Modelling of cation concentrations in the outflow of NaNO3 percolation experiments through Boom Clay cores

    International Nuclear Information System (INIS)

    A laboratory percolation experiment was performed to study the effect of a NaNO3 plume on the Boom Clay. In this experiment, Boom Clay cores were consecutively percolated with Boom Clay pore water and Boom Clay pore water to which NaNO3 was added. The concentration of NaNO3 in the pore water was increased stepwise (0.1, 0.5, and 1 M NaNO3). The concentrations of Na, K, Ca, Mg and Sr in the eluted water were measured. After every switch of the NaNO3 concentration, the concentration profiles of K, Ca, Mg, and Sr showed a sharp rise, followed by a slow decrease. It was hypothesised that the cation elution curves are mainly determined by cation exchange processes. Reactive coupled transport modelling with the PHREEQC-2 code was used to describe the experimentally observed elution curves for the cations. Solute transport and water-clay interaction mechanisms, namely cation exchange, were accounted for in the model. Cation exchange parameters (cation exchange capacity and selectivity coefficients) previously determined on non-perturbed Boom Clay (De Craen et al., 2004) were used. A sensitivity analysis was performed to assess the influence of these parameter values on the goodness of the model to describe the experimental data. The model could fairly well describe the experimentally observed cation concentrations in the eluted water, confirming that cation exchange is indeed the dominant mechanism regulating the cation elution in the percolation experiments. (authors)

  15. MODIFICATION OF TRANSITION METAL CATIONS TO POLYMER- STABILIZED PLATINUM COLLOIDAL CLUSTERS IN ENANTIOSELECTIVE HYDROGENATION OF METHYL PYRUVATE

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping Yan; Bao-lin He; Jie Zhang; Han-fan Liu

    2005-01-01

    Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate. Compared to the enantiomeric excess (e.e.) value (71.4%)obtained without the presence of metal cations, obvious e.e. enhancement (up to 82.5%) was resulted from the addition of Zn2+ but with a certain decrease in activity. The reaction parameters in the presence of Zn2+ were also studied. It was found that the Pt colloidal catalysts in the presence of metal cations performed very differently from that in the absence of metal cations.

  16. Lipid Phases Eye View to Lipofection. Cationic Phosphatidylcholine Derivatives as Efficient DNA Carriers for Gene Delivery

    Directory of Open Access Journals (Sweden)

    Rumiana Koynova

    2008-01-01

    Full Text Available Efficient delivery of genetic material to cells is needed for tasks of utmost importance in laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising non-viral gene carriers. They form complexes (lipoplexes with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. According to the current understanding, the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies with cationic phospha- tidylcholine derivatives showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar (precisely lamellar-cubic phase transition upon mixing with cellular lipids, were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release subsequent to lipoplex fusion with the cellular membranes. Further, hydrophobic moiety of the cationic phospholipids was found able to strongly modulate liposomal gene delivery into primary human umbilical artery endothelial cells; superior activity was found for cationic phosphatidylcholine derivatives with two 14-carbon atom monounsaturated hydrocarbon chains, able to induce formation of cubic phase in membranes. Thus, understanding the lipoplex structure and the phase changes upon interacting

  17. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Science.gov (United States)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-09-01

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  18. Wettability alteration by trimeric cationic surfactant at water-wet/oil-wet mica mineral surfaces

    International Nuclear Information System (INIS)

    The wettability of oil reservoir rock affects the efficiency of the oil recovery process by reducing the capillary force. Methyldodecylbis [2-(dimethyldodecylammonio) ethyl] ammonium tribromide is a trimeric cationic surfactant that contains three dodecyl chains and three quaternary ammonium head groups connected by divinyl groups. The surfactant was synthesized, purified and used as a new wetting alteration agent. This paper focuses on the ability of this trimeric cationic surfactant to alter the wettability of water-wet and oil-wet mica mineral surfaces. The contact angle data of the solid-liquid interface in oil/water/solid three-phase system show that the trimeric cationic surfactant, when compared with single- and double-chain cationic surfactant, is a more effective wetting agent for water-wet and oil-wet mica surfaces at lower concentration. Measurements by atomic force microscopy (AFM) show that the surfactant molecules have formed a monolayer to reverse the wetting properties. On the water-wet surface, the surface is suffused with negative charge, which could attract the cationic head of surfactant, and leave the hydrophobic tails exposed. In contrast, on the oil-wet surface, the hydrophobic tails were attracted by hydrophobic interactions to the oil film between the surfactant and the crude oil. The hydrophilic heads were left outside to form a hydrophilic layer, which could explain the wettable to hydrophilic trend. Alteration to the degree of wettability is mainly dependent on the adsorption areas of the surfactant. The data show that the ability of the trimeric cationic surfactant affect the wettability is independent of surface tension.

  19. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei

    2009-01-01

    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  20. Effect of cations on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system.

    Science.gov (United States)

    Chen, Yuanbo; Hu, Yongyou; Guo, Qian; Yan, Jia; Wu, Wenjin

    2016-09-01

    Cations had great influence on the self-assembly of rhamnolipid, which in turn affected the fate of triclosan. The migration of triclosan from sediment to water benefited its biodegradation but it could be transformed into more toxic compounds. To regulate the fate of triclosan and reduce environmental risks extremely, the effect of four common cations in surface water (Na(+)/K(+)/Ca(2+)/Mg(2+)) on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system was investigated. The interaction among cations, triclosan and rhamnolipid was explored based on self-assembly of rhamnolipid and water solubility of triclosan in rhamnolipid solutions. Results showed that cations had little influence on the fate of triclosan in the absence of rhamnolipid. Cations, especially Ca(2+)/Mg(2+), reduced the critical micelle concentration, micellar size and zeta potential of rhamnolipid solutions. The changes in self-assembly of rhamnolipid with different cations led to the difference of residual rhamnolipid concentration in water, which was nearly invariant with 0.01 M Na(+)/K(+) while decreased significantly with 0.01 M Ca(2+)/Mg(2+). Consequently, water solubility of triclosan in rhamnolipid solutions increased with the addition of Na(+)/K(+) whereas decreased with Ca(2+)/Mg(2+). In sediment-water- rhamnolipid system, triclosan was slightly solubilized from sediment to water with Na(+)/K(+) while deposited in sediment with Ca(2+)/Mg(2+). These findings provided an alternative application of rhamnolipid for the remediation of triclosan-polluted sediment. PMID:27341150

  1. Occurrence of an Octa-nuclear Motif of Uranyl Isophthalate with Cation-Cation Interactions through Edge-Sharing Connection Mode

    International Nuclear Information System (INIS)

    An uranyl isophthalate has been hydrothermally synthesized at 200 degrees C for 24 h, from a mixture of uranyl nitrate, isophthalic acid, and hydrazine in water. It was characterized by single-crystal analysis [triclinic, P1-bar a = 7.3934(3) Angstrom, b = 13.3296(5) Angstrom, = 15.4432(5) Angstrom, α = 111.865(2)degrees, β = 90.637(2)degrees, γ 104.867(2)degrees, V = 1355.49(9) Angstrom3] and different spectroscopic techniques (Raman, IR-ATR, UV visible), The 3D structure of the phase (UO2)8O2(OH)4(H2O)4(1,3-bdc)4.4H2O (1,3-bdc = 1,3-benzenedicarboxylate) reveals octa-nuclear units based on the association of 7-fold coordinated uranyl cations (pentagonal bipyramid) involving a rare case of cation cation interaction together with edge-sharing polyhedral connection mode. UV visible absorption spectroscopy confirmed that uranium was only involved in the structure as uranyl forms (excluding the assigning four uranyl presence of tetravalent or pentavalent uranium). Additionally, μ-Raman and IR-ATR experiments allowed contributions to the four types of uranyl entities in the structure, in agreement with the XRD analysis. (authors)

  2. Gas-phase solvolysis type reactions of SiCl3+ cations

    OpenAIRE

    Thiago Diamond Reis Firmino; Jair J. Menegon; Riveros, José M.

    2010-01-01

    Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition st...

  3. CaSO4 and cationic polyelectrolyte as possible pectin precipitants in sugar beet juice clarification

    OpenAIRE

    Kuljanin Tatjana; Lončar Biljana; Pezo Lato; Nićetin Milica; Knežević Violeta; Jevtić-Mučibabić Rada

    2015-01-01

    Three pectin preparations were isolated from fresh sugar beet pulp during the 150 minutes of extraction, at pH values of 1, 3.5 and 8.5. CaSO4 precipitant was added to 100 cm3 of 0.1% (wt) solution of pectin. Studies were performed with 9 different concentrations of CaSO4 solution (50-450 mg dm-3) with the addition of a cationic polyelectrolyte (cationic PAM) in concentrations of 3 and 5 mg dm-3. The efficiency of pectin precipitation was monitored by measu...

  4. Diferrocenyl oligothiophene wires: Raman and quantum chemical study of valence-trapped cations

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Gonzalez, Sandra; Lopez Navarrete, Juan T.; Casado, Juan [Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071 Malaga (Spain); Arago, Juan; Viruela, Pedro M.; Orti, Enrique [Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Valencia (Spain); Sato, Masa-aki [Graduate School of Maritime Science, Kobe University, 5-1-1 Fukae-Minami, Higashinada, Kobe 658-0022 (Japan)

    2011-12-21

    A combination of Raman spectroscopy and density functional theory calculations is used to describe the structural and spectroscopic properties of the different isomeric cations of diferrocenyl quaterthiophenes. Isomerisation of the thienyl {beta}-positions provides site selective oxidation, which gives rise to species that can interconvert by moving the charge over the bridge. The spectroscopic study allows us to describe a sequence of stationary trapped cationic, either ferrocenyl or thienyl, states which constitutes an energy cascade of accessible sites through which the charge transfer can proceed.

  5. RESEARCH ON THE VARIATION OF SOME BIVALENT CATIONS IN PATIENTS WITH DISEASES OF THE ORAL CAVITY

    Directory of Open Access Journals (Sweden)

    Daniel PAVAL

    2016-03-01

    Full Text Available The concentration of bivalent cations affects a large number of processes that occur in the oro-maxillary region. A connection has been established between chronic periodontitis, on one side, and the salivary concentration of calcium, magnesium, zinc and copper and the concentration of magnesium in blood, on the other. Patients with suppurations on oro-maxillo-facial area show decreased blood calcium concentration and increased salivary magnesium concentration. In the synthesis of dental enamel, calcium, magnesium, zinc and copper play important roles. Changes in the salivary concentration of bivalent cations are directly involved in some maxillary diseases and in tooth decay.

  6. Effect of outer-sphere cation on Moessbauer and infrared spectra

    International Nuclear Information System (INIS)

    Position and structure of resonance lines and absorption bands in infrared spectra of mixed complexes of the type MK[Fe(CN)6]x4H2D, where M=La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, have been studied. The effect of the outer-sphere rare earth cation on spectral assignments of the complexes investigated is considered. Changes in the spectral parameters are interpreted both on the basis of polarizing effect of a rare earth cation and on its ability to form σ- and π-bonds with nitrogen of CN-ligands

  7. Electroflotation of uranium and optimization of the precipitate flotation of actinides by means of cationic tensides

    International Nuclear Information System (INIS)

    With the help of electroflotation (the electrolytic establishment of valency combined with precipitate flotation), cerium(IV) was separated under anodic conditions with a cationic tenside from U(VI), which remains dissolved, can be reduced and again precipitated with a cationic tenside, and can be separated under cathodic conditions. To separate actinides by means of precipitate flotation, the solubility of tensides (pyridinium salts) and their salts was determined with thorium and dissociation constants of hexanitrato complexes in solutions containing nitrate, the aim being to obtain optimum conditions for the separation of Pu from MAW solutions. (RB)

  8. Stability of phenol and thiophenol radical cations - interpretation by comparative quantum chemical approaches

    Science.gov (United States)

    Hermann, R.; Naumov, S.; Mahalaxmi, G. R.; Brede, O.

    2000-07-01

    The deprotonation kinetics of phenol-type radical cations, formed via a very efficient electron transfer in the pulse radiolysis of non-polar solutions, for example n-chlorobutane, is governed mainly by electronic effects due to the nature of the phenol substituents, whereas steric effects are of minor importance; thiophenols, which are sulphur analogues of phenols, exhibit a similar behavior. Comparative quantum chemical calculations show that the calculated spin densities at the hetero atoms correlate well with the experimentally determined radical cation lifetimes. Not only the Density Functional Theory (DTF) B3LYP but also the semiempirical quantum chemical model PM3 can be applied for the open shell systems mentioned.

  9. Efficient luminescent solar cells based on tailored mixed-cation perovskites

    OpenAIRE

    Bi, Dongqin; Tress, Wolfgang; Dar, M. Ibrahim; Gao, Peng; Luo, Jingshan; Renevier, Clémentine; Schenk, Kurt; Abate, Antonio; Giordano, Fabrizio; Correa Baena, Juan-Pablo; Decoppet, Jean-David; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Hagfeldt, Anders

    2016-01-01

    We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar ce...

  10. Cationic zinc (II) dimers and one dimensional coordination polymer from ionic carboxylic acid

    Indian Academy of Sciences (India)

    Paladugu Suresh; Ganesan Prabusankar

    2014-09-01

    A rare example of chelating two tetra cationic paddle-wheel zinc dimers were synthesized from the reaction between flexible imidazolium carboxylate (LH2Br2) and corresponding zinc precursors. A zinc coordination polymer was synthesised by treating in situ generation of 2 in the presence of 4,4′-bipyridine. These new molecules, dimers and polymer, were characterized by FT-IR, NMR, UV-vis, fluorescent and single crystal X-ray diffraction techniques. Zinc polymer is the first example of 1D coordination polymer constructed by tetra cationic zinc dimer as a secondary building unit in coordination polymer.

  11. Cation distribution in ferrites and its effects on the chemical dissolution behaviour

    International Nuclear Information System (INIS)

    Ferrites are formed on the steel surfaces as a protective corrosion oxide film on the heat transport surfaces in the water cooled nuclear reactors. These oxides film acts as a host to many neutron activated corrosion products (ACPs) leading to man-rem problem during the service maintenance. Understanding of chemical dissolution kinetics of these ferrites is important aspect in the development of decontamination process with aim of good decontamination factors. Ferrite shows a cation distribution as a function of parameter like metal ion substitution, crystallite size and temperature. Change in the cation distribution in ferrite can effect its dissolution process. The following three ferrites namely CoFe2O4/ZnFe2O4/MgFe2O4 were studied for its chemical dissolution behaviour as a function of the cation distribution. CoFe2O4, MgFe2O4 and ZnFe2O4 shows an inversion parameters of 0.95, 0.46 and 0.06 respectively. The above ferrites with different cation distribution were achieved by the thermal treatment. The variation of cation distribution in ferrite was monitored/characterised by the Raman spectroscopy. Chemical dissolution of these ferrites were carried out in NAC formulation. Dissolution process was monitored by the metal ion dissolution in the solution. Dissolution data was fitted to the following two models 'Shrinking sphere model' and 'Factual chain mechanism model' to elucidate the kinetic parameter. We tried to establish correlation between the cation distribution in the ferrite and the dissolution kinetics of ferrites. ZnFe2O4 ('δ'= ∼ 0.06) showed k80obs(Fe) = 1.250 x 10-3 min-1and ZnFe2O4 ('δ' = ∼ 0.30) showed k80obs(Fe) =2.295 x 10-3min-1, indicating ZnFe2O4 with high inversion parameter showed higher dissolution rate. Activation energy for the ZnFe2O4 ('δ'= ∼ 0.30) and ZnFe2O4 ('δ'= ∼ 0.06) in NAC formulation was 58.4 and 61.5 kJ mol-1 respectively. CoFe2O4 and MgFe2O4 also showed the

  12. Investigation of electrochemical intrusion of cations by the method of contact electric resistance

    International Nuclear Information System (INIS)

    Paper shows the possibility and prospects of application of contact electric resistance technique (CER) to study in-situ the initial stages of electrochemical admission of cations (ECA). ECA is shown to increase CER of metals. It enables to determine ECA potential and to investigate kinetics of this process. Using ECA in copper, silver and zinc from alkali solutions as an example one has shown that CER technique enables to obtain results that do not contradict well-known published data. Potentials of ECA cations from acid and neutral solutions in copper, platinum, iron, titanium and tungsten are determined

  13. Anion and cation partitioning between olivine, plagioclase phenocrysts and the host magma

    International Nuclear Information System (INIS)

    Partition coefficients for -1, -2, -3, +1, +2, +3, +4 and +5 valent ions between the groundmass of tholeiite basalt and coexisting olivine and plagioclase phenocrysts from the Mid-Atlantic Ridge have been determined by secondary ion mass spectrometry. The present cation partitioning strongly supports the 'crystal structure control' mechanism. The partition coefficient for an anion is also under control of the crystal structure, so that each of the cation and anion positions in the crystal structure gives rise to a parabola-shaped peak on the partition coefficient vs. ionic radius diagram. (author)

  14. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    Science.gov (United States)

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed. PMID:27391279

  15. Analytical potentialities of an AI-05 instrument for capillary electrophoresis in the determination of metal cations

    International Nuclear Information System (INIS)

    The analytical potentialities of an AI-05 instrument for capillary zone electrophoresis were examined using the determination of alkali, alkaline earth, and transition metal cations as an example. The plot of the analytical signal of Sr2+ against the concentration of the sample was linear within the range 1 x 10-5 - 1 x 10-4 M. The phenomenon of discrimination of the ionic composition of a sample in the electromigration method of sample injection is discussed. The time taken to separate a mixture of metal cations (M = K, Na, Mg, Sr, Ca, Cd, Co, Ni and Zn) was 16 min

  16. Effect of outer-sphere cation on Moessbauer and infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zakharieva-Pencheva, O.; Tsankov, L.; Bonchev, Ts. (Sofia Univ. (Bulgaria))

    1984-01-01

    Position and structure of resonance lines and absorption bands in infrared spectra of mixed complexes of the type MK(Fe(CN)/sub 6/)x4H/sub 2/D, where M=La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, have been studied. The effect of the outer-sphere rare earth cation on spectral assignments of the complexes investigated is considered. Changes in the spectral parameters are interpreted both on the basis of polarizing effect of a rare earth cation and on its ability to form sigma- and ..pi..-bonds with nitrogen of CN-ligands.

  17. The First Example of Cation Radical Induced Ether Cleavage of Benzyl Phenyl Ether

    International Nuclear Information System (INIS)

    A thermally stable benzyl phenyl ether has been shown to cleavage under mild conditions. The new reaction described herein further expands the chemistry of the ether cleavage by cation radicals. Over the last several years, our lab has discovered cation radical-induced oxidative C-O bond cleavages such as carbonates (eq 1), carbamates (eq 2), peroxides (eq 3), and alcohols (eq 4), where R is either tert-butyl or benzyl. It was recognized from those reactions that carbocationic chemistry with C-O bond cleavages was predominant, with a 2:1 stoichiometry of Th+·:oxidized molecules

  18. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  19. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shirani, Hossein, E-mail: shiranihossein@gmail.com [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  20. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

    Directory of Open Access Journals (Sweden)

    V. Romero

    2012-01-01

    A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.

  1. Quantum-chemical analysis of lithium cation coordination with dimethylsulfoxide molecules

    International Nuclear Information System (INIS)

    Coordination of lithium cation by molecules of dimethylsulfoxide (DMSO) was studied in the framework of the HF and B3LYP methods, structural parameters of the complexes formed and charge distribution on them being identified. Thermal effects for each stage of the complexing process were calculated. It was ascertained that coordination number of Li+ cation in DMSO is 4, moreover, stability of Li+ · 4DMSO complex in gaseous phase is higher than that of Li+ · 4HO. Formation of the [Li+ · 4DMSO] · OH- · nH2O type associates is possible in superbasic environment of LiOH - H2O - DMSO

  2. NOVEL SYNTHESIS OF POLYARYLENESULFONIUM CATIONS THROUGH A MULTI-ELECTRON TRANSFER PROCESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The oxidative polymerization of aryl sulfoxides provides a novel polysulfonium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantitative yield. The polymerization proceeds efficiently in an acidic solution under atmospheric conditions. Oxygen, chemical and electrochemical oxidations are available. Vanadyl acetylacetonate and cerium ammonium nitrate act as an effective catalyst for the oxygen oxidative polymerization. The polymerization mechanism involves multielectron oxidation of the sulfides followed by successive electrophilic substitution. The resulting polyarylenesulfonium cations are useful as a soluble precursor for the synthesis of high molecular weight (Mw>105) poly(thio arylne)s.

  3. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    International Nuclear Information System (INIS)

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed

  4. An Efficient Cationic Cyclization Approach for the Construction of Labdane Diterpenoid Decalin Ring Skeleton

    Institute of Scientific and Technical Information of China (English)

    Jin Hui YANG; Wei Dong Z.LI

    2005-01-01

    An effective approach for the construction of the decalin ring skeleton of labdane diterpenoids was developed based on a key biomimetic cationic polyene cyclization of an epoxy allylsilane precursor. The synthetic approach demonstrated here would be useful in the enantioselective and diastereoselective total synthesis of natural labdane diterpenoids in general.

  5. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    Science.gov (United States)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  6. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    International Nuclear Information System (INIS)

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer

  7. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2015-01-01

    peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membraneactive peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show...

  8. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    Science.gov (United States)

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations. PMID:24651934

  9. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Science.gov (United States)

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  10. Cation-π vs anion-π interactions: a complete π-orbital analysis

    Science.gov (United States)

    Garau, Carolina; Frontera, Antonio; Quiñonero, David; Ballester, Pablo; Costa, Antoni; Deyà, Pere M.

    2004-11-01

    A complete orbital analysis of two isoelectronic complexes of trifluorobenzene (TFB), TFB ⋯ F - and TFB ⋯ Na +, as models for anion-π and cation-π interactions, respectively, has been performed at the MP2/6-31++G** level of theory. There are important orbital differences between both interactions, which are discussed in detail herein.

  11. Non-covalent (iso)guanosine-based ionophores for alkali(ne earth) cations

    NARCIS (Netherlands)

    Leeuwen, van Fijs W.B.; Davis, Jeffery T.; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the d

  12. Allergen-induced increase of eosinophil cationic protein in nasal lavage fluid

    DEFF Research Database (Denmark)

    Bisgaard, H; Grønborg, H; Mygind, N;

    1990-01-01

    It was our aim to study the effect of nasal allergen provocation on the concentration of eosinophil cationic protein (ECP) in nasal lavage fluid, with and without glucocorticoid pretreatment. Twenty grass-pollen sensitive volunteers were provoked outside the pollen season on 2 consecutive days af...

  13. Complexation of the cesium cation with lithium ionophore VIII: extraction and DFT study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Novák, Vít; Vaňura, P.; Bouř, Petr

    2013-01-01

    Roč. 298, č. 3 (2013), s. 2065-2068. ISSN 0236-5731 Institutional support: RVO:61388963 Keywords : cesium cation * lithium ionophore VIII * complexation * extraction and stability constants * water-nitrobenzene system * DFT calculations * structures Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.415, year: 2013

  14. Lithium ionophore VIII as an extraordinarily effective receptor for the strontium cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Novák, Vít; Vaňura, P.; Bouř, Petr

    2014-01-01

    Roč. 1061, Mar 5 (2014), s. 110-113. ISSN 0022-2860 Institutional support: RVO:61388963 Keywords : strontium cation * lithium ionophore VIII * complexation * extraction and stability constants * DFT calculations * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2014

  15. Experimental study on desorption of soluble matter as influenced by cations in static water

    Institute of Scientific and Technical Information of China (English)

    Wen-sheng XU; Li CHEN; Xiao-xia TONG; Xiao-ping CHEN; Ping-cang ZHANG

    2014-01-01

    With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  16. Role of defect interaction in boundary mobility and cation diffusivity of CeO2

    International Nuclear Information System (INIS)

    Grain boundary mobility of CeO2 containing 0.1% and 1.0% trivalent dopant cations (Sc, Yb, Y, Gd, and La, in order of increasing ionic radius) has been measured. At the lower dopant concentration (intrinsic regime), mobility is controlled by grain boundary diffusion of host cations, whereas at the higher dopant concentration (extrinsic regime), mobility is controlled by solute drag through the lattice. The effect of trivalent dopants is closely associated with their ability to provide and to interact with oxygen vacancies. Evidence consistent with an interstitial mechanism for cation diffusion has been found which is remarkably affected by the presence of oxygen vacancies. Ce diffusion is enhanced by free oxygen vacancies in the system, while dopant diffusion is suppressed if a dopant-associated oxygen vacancy is not present. A bare Sc cation however, appears to be a fast-diffusing species, due to its highly distorted local environment, while Y at 1.0% emerges as the most effective grain growth suppressant

  17. Spectroscopic signatures of proton transfer dynamics in the water dimer cation

    Energy Technology Data Exchange (ETDEWEB)

    Kamarchik, Eugene; Kostko, Oleg; Bowman, Joel M.; Ahmed, Musahid; Krylov, Anna I.

    2009-12-21

    Using full dimensional EOM-IP-CCSD/aug-cc-pVTZ potential energy surfaces, the photoelectron spectrum, vibrational structure, and ionization dynamics of the water dimer radical cation, (H2O)+2, were computed. We also report an experimental photoelectron spectrum which is derived from photoionization efficiency measurements and compares favorably with the theoretical spectrum. The vibrational structure is also compared with the recent experimental work of Gardenier et al. [J. Phys. Chem. A 113, 4772 (2009)] and the recent theoretical calculations by Cheng et al. [J. Phys. Chem. A 113 13779 (2009)]. A reduced dimensionality nuclear Hamiltonian was used to compute the ionization dynamics for both the ground state and first excited state of the cation. The dynamics show markedly different behavior and spectroscopic signatures depending on which state of the cation is accessed by the ionization. Ionization to the ground-state cation surface induces a hydrogen transfer which is complete within 50 femtoseconds, whereas ionization to the first excited state results in a much slower process.

  18. Biphasic Catalytic(Hydroformylation of 1-Dodecene in Micellar System with Cationic Gemini Surfactants

    Institute of Scientific and Technical Information of China (English)

    Min LI; Bin XU; Hua CHEN; Hong Jie ZHENG; Xue Yuan HUANG; Yao Zhong LI; Xian Jun LI

    2004-01-01

    The promotion effect of cationic gemini surfactants for the hydroformylation of 1-dodecene in the organic/aqueous biphasic catalytic system is reported. The hydroformylation reaction in the presence of gemini surfactant occurred with higher turnover frequency and higher selectivity for linear aldehyde than using conventional monomeric surfactant CTAB.

  19. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation

    Science.gov (United States)

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R.; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-06-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li+, Na+, K+, Ca2+) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

  20. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane. PMID:25954916