WorldWideScience

Sample records for cations organic acids

  1. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  2. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  3. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    OpenAIRE

    Vet, Robert; Pienaar, Jacobus J.; Artz, Richard S.; Carou, Silvina; Shaw, Mike; Ro, Chul-Un; Aas, Wenche

    2014-01-01

    A global assessment of precipitation chemistry and deposition has been carried out under the direction of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Scientific Advisory Group for Precipitation Chemistry (SAG-PC). The assessment addressed three questions: (1) what do measurements and model estimates of precipitation chemistry and wet, dry and total deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity, and phosphorus show glob...

  4. Cation transfer across a hydrogel/organic phase: Effect of cation size, hydrophobicity and acid-base properties

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Ana V. [Departamento de Quimica Organica, IMBIV, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Yudi, Lidia M. [Departamento de Fisico Quimica, INFIQC, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Alvarez Igarzabal, Cecilia [Departamento de Quimica Organica, IMBIV, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Strumia, Miriam C., E-mail: mcs@fcq.unc.edu.a [Departamento de Quimica Organica, IMBIV, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2010-02-28

    The transfers of tetraethylammonium (TEA{sup +}) and protonated triflupromazine (HTFP{sup +}) through a hydrogel/liquid interface (g/o) and a liquid/liquid interface (w/o) were compared using cyclic voltammetry. After the two phases were put in contact, the behavior of each molecule was analyzed at different pH values and at different time points. The gel induces hydrophobic and electrostatic interactions with TEA{sup +} and HTFP{sup +}, shifting the peak potentials to more positive values. The diffusion coefficients, D, in both phases (g and w) at different pH values were calculated. In the case of TEA{sup +}, the D value remains constant in both systems. However, the D value of HTFP{sup +} is lower in the gel phase than in the liquid phase. HTFP{sup +} is transferred from the aqueous phase to the organic phase via a direct mechanism that involves coupled acid-base and partition processes. At the g/o interface, the coupled chemical reactions of HTFP{sup +} were inhibited by the drug/gel interaction. The results demonstrate that the g/o system could be used as a model to study the controlled release of charged drugs.

  5. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    Science.gov (United States)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  6. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  7. Decomplexing metallic cations from metallo-organic compounds

    OpenAIRE

    Melian, C.I.; Kapteijn F.; Moulijn, J.A.

    2006-01-01

    The invention is directed to a process for liberating metallic cations from metallo-organic compounds, said process comprising contacting an aqueous solution of the metallo-organic compound with an oxidising agent, thereby oxidising the organic component and obtaining the free cation

  8. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter

    International Nuclear Information System (INIS)

    The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag+ by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl2 and MgCl2 was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV–vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments. Highlights: ► Formation of SRNOM-AgNPs under environmentally relevant conditions ► Influence of monovalent versus divalent cations on SRHA- and SRNOM-AgNP stability ► Effect of AgNPs on organic matter removal from water columns

  9. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations

    International Nuclear Information System (INIS)

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment. - Highlights: ► Application of the biochars for PCBs sorption was a new and effective way. ► The biochars had higher adsorption affinity for PCBs in the soil extracted solution. ► Pine needle chars adsorbed less nonplanar PCBs than planar ones. ► Coexisting humic acid or metal cations increased PCBs sorption on the biochars. - The biochars had higher adsorption affinity for PCBs in the extracted soil solution because coexisting humic acid and metal cations increased their sorption.

  10. Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

    International Nuclear Information System (INIS)

    The simultaneous determination of anions (SO4 2-, Cl-, and NO3 -) and cations (Na+, NH4+, K+, Mg2+, and Ca2+) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cation exchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the H+-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters

  11. Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Pill; Choi, Seong Ho; Park, Yu Chul; Bae, Zun Ung; Lee, Mu Sang; Lee, Sang Hak; Chang, Hye Yong [Graduate School, Kyungpook National University, Daegu (Korea, Republic of); Kwon, Se Mok [Ulsan City Health and Environmental Research Institute, Ulsan (Korea, Republic of); Tanaka, Kazuhiko [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2003-09-15

    The simultaneous determination of anions (SO{sub 4} {sup 2-}, Cl{sup -}, and NO{sub 3} {sup -}) and cations (Na{sup +}, NH{sup 4+}, K{sup +}, Mg{sup 2+}, and Ca{sup 2+}) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cation exchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the H{sup +}-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

  12. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.

    Science.gov (United States)

    Kureha, Takuma; Shibamoto, Takahisa; Matsui, Shusuke; Sato, Takaaki; Suzuki, Daisuke

    2016-05-10

    Changes in a microscopic structure of an anionic poly(N-isopropylacrylamide-co-acrylic acid) microgel were investigated using small- and wide-angle X-ray scattering (SWAXS). The scattering profiles of the microgels were analyzed in a wide scattering vector (q) range of 0.07 ≤ q/nm(-1) ≤ 20. In particular, the microscopic structure of the microgel in the presence of a cationic dye rhodamine 6G (R6G) was characterized in terms of its correlation length (ξ), which represents the length scale of the spatial correlation of the network density fluctuations, and characteristic distance (d*), which originated from the local packing of isopropyl groups of two neighboring chains. In the presence of cationic R6G, ξ exhibited a divergent-like behavior, which was not seen in the absence of R6G, and d* was decreased with decreasing the volume of the microgel upon increasing temperature. At the same time, the amount of R6G adsorbed per unit mass of the microgel increased upon heating. These results suggested that a coil-to-globule transition of the poly(N-isopropylacrylamide) chains in the present anionic microgel occurred because of efficiently screened, thus, short ranged electrostatic repulsion between the charged groups, and hydrophobic interaction between the isopropyl groups in the presence of cationic R6G. The combination of hydrophobic and electrostatic interaction between the cationic dye and the microgel affected the separation and volume transition behavior of the microgel. PMID:27101468

  13. Microorganisms for producing organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  14. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency

    OpenAIRE

    Wang, Yuhuan; Ye, Jing; Ganapathy, Vadivel; Longo, Nicola

    1999-01-01

    Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation caused by defective carnitine transport. This disease presents early in life with hypoketotic hypoglycemia or later in life with skeletal myopathy or cardiomyopathy. The gene for this condition maps to 5q31.2–32 and OCTN2, an organic cation/carnitine transporter, also maps to the same chromosomal region. Here we test the causative role of OCTN2 in primary carnitine deficiency by searching for mutations in ...

  15. Organic Ligand, Competing Cation, and pH Effects on Dissolution of Zinc in Soils

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of experiments were conducted to examine the interactive effects of an organic ligand,a competing cation,and pH on the dissolution of zinc(Zn)from three California soils,Maymen sandy loam,Merced clay,and Yolo clay loam.The concentrations of soluble Zn of the three soils were low in a background solution of Ca(NO3)2.Citric acid,a common organic ligand found in the rhizosphere,was effective in mobilizing Zn in these soils; its presence enhanced the concentration of Zn in soil solution by citrate forming a complex with Zn.The ability of Zn to form a complex with citric acid in the soil solution was dependent on the concentration of citric acid,pH,and the concentration of the competing cation Ca2+.The pH of the soil solution determined the extent of desorption of Zn in solid phase in the presence of citric acid.The amounts of Zn released from the solid phase were proportional to the concentration of citric acid and inversely proportional to the concentration of Ca(NO3)2 background solution,which supplied the competing cation Ca2+ for the formation of a complex with citrate.When the soil suspension was spiked with Zn,the adsorption of Zn by the soils was retarded by citric acid via the formation of the soluble Zn-citrate complex.The dissolution of Zn in the presence of citric acid was pH dependent in both adsorption and desorption processes.

  16. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  17. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  18. Irradiation effects on the storage and disposal of radwaste containing organic ion-exchange media. [3 functional forms of resin - sulfonic acid cation exchanger, quarternary ammonium anion exchanger and mixed bed combination of the two

    Energy Technology Data Exchange (ETDEWEB)

    Swyler, K.J.; Dodge, C.J.; Dayal, R.

    1983-10-01

    Polystyrene-divinylbenzene (PS-DVB) based ion exchangers are commonly used in water demineralization or decontamination operations at nuclear facilities. Self-irradiation from sorbed radionuclides may affect the properties of radwaste containing these ion-exchange media. The effects of external irradiation on anion, cation, and mixed bed PS-DVB ion exchangers have been investigated under conditions relevant to radwaste storage and disposal. Three effects are emphasized in the present report: (1) release of acids, radionuclides or chemically aggressive species through radiolytic attack on the functional group, (2) radiolytic generation/uptake of corrosive or combustible gases, (3) effect of irradiation on solidification of resins in cement. Special consideration was placed on external variables such as radiation dose rate, resin chemical loading and moisture conditions, accessibility to atmospheric oxygen, and interactions in multicomponent systems. Such variables may affect the correspondence between laboratory results and field performance. 40 references, 24 figures, 28 tables.

  19. The heats of adsorption of metal cations on silica gel with covalently fixed polyaspartic acid

    International Nuclear Information System (INIS)

    Temperature dependence of retaining cations of alkali (Li-Cs), alkaline-earth (Mg, Ca, Sr, Ba) metals and cadmium on silica gel with covalently fixed polyaspartic acid, as well as on carboxylic cation exchangers Universal Cation and Selekton K, was studied by the method of chromatography in the temperature range of 27-62 deg C. On the basis of the experimental data obtained adsorption heat of alkali and alkaline-earth metal cations was calculated. It was ascertained that for all the sorbents studied ion exchange prevails in retaining mechanism. Three types of cation retaining dependence on chromatographic column temperature were considered

  20. Surface-Active and Performance Properties of Cationic Imidazolinium Surfactants Based on Different Fatty Acids

    Science.gov (United States)

    Bajpai, Divya; Tyagi, V. K.

    Imidazoline surfactants belong to the category of cationic surfactants. Cationic surfactants are often quaternary nitrogen salts and are widely used both in nonaqueous systems and in applications such as textile softeners, dispersants, and emulsifiers. This study describes the surface-active properties of cationic imidazolinium surfactants synthesized from different fatty acids. Their laundry performance in combination with nonionic surfactants like detergency, foaming property, softening property, rewettability etc., is also emphasized.

  1. Complexation of americium(III) with humic acid by cation exchange and solvent extraction

    International Nuclear Information System (INIS)

    Complexation of Am(III) with humic acid was studied at various pHs in 0.1M NaClO4. The stability constants of the Am(III)-humate complexes were determined by a cation-exchange method. The values of logβ1 and logβ2 increased slightly with increases of pH from 4 to 6 and were found to be 6.9 and 11.6, respectively, at a pH of 5. Markedly larger values than these were obtained by a solvent extraction method. This discrepancy was also revealed by summarizing data from several literature sources. It is very likely that this can be ascribed to decreases in either humic acid and/or the extractant from the extraction system due to humate interactions at the aqueous-organic interface. (author)

  2. Role of organic cation transporters (OCTs) in the brain.

    Science.gov (United States)

    Couroussé, Thomas; Gautron, Sophie

    2015-02-01

    Organic cation transporters (OCTs) are polyspecific facilitated diffusion transporters that contribute to the absorption and clearance of various physiological compounds and xenobiotics in mammals, by mediating their vectorial transport in kidney, liver or placenta cells. Unexpectedly, a corpus of studies within the last decade has revealed that these transporters also fulfill important functions within the brain. The high-affinity monoamine reuptake transporters (SERT, NET and DAT) exert a crucial role in the control of aminergic transmission by ensuring the rapid clearance of the released transmitters from the synaptic cleft and their recycling into the nerve endings. Substantiated evidence indicate that OCTs may serve in the brain as a compensatory clearance system in case of monoamine spillover after high-affinity transporter blockade by antidepressants or psychostimulants, and in areas of lower high-affinity transporter density at distance from the aminergic varicosities. In spite of similar anatomical profiles, the two brain OCTs, OCT2 and OCT3, show subtle differences in their distribution in the brain and their functional properties. These transporters contribute to shape a variety of central functions related to mood such as anxiety, response to stress and antidepressant efficacy, but are also implicated in other processes like osmoregulation and neurotoxicity. In this review, we discuss the recent knowledge and emerging concepts on the role of OCTs in the uptake of aminergic neurotransmitters in the brain and in these various physiological functions, focusing on the implications for mental health. PMID:25251364

  3. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and protons and metal cations. A concise definition of natural organic matter is given and their properties are outlined. These materials are macromolecules which exhibit a polyelectrolyte character owing to numerous dissociable functional groups which are attached to their carbon backbone or from integral parts of the structure. The polyelectrolyte character is thought to be responsible for their conformation, hydrogen bonding or bridging by metal cations between subunits being important mechanisms. Environmental parameters like pH and ionic strength thus will have profound effects on the conformation of natural organic matter, the properties of which can change from being a flexible polymer to being a rigid gel. Binding mechanisms and binding strengh are discussed and an overview of relevant techniques of investigation is given. This work is part of the Commission's Mirage project - Phase 2, research area Geochemistry of actinides and fission products in natural aquifer systems

  4. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    International Nuclear Information System (INIS)

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  5. Kojic acid in organic synthesis

    OpenAIRE

    ZIRAK, MARYAM; Eftekhari-Sis, Bagher

    2015-01-01

    The reactions of kojic acid in organic synthesis are reviewed. The aim of this review is to cover the literature up to the end of 2014, showing the distribution of publications involving kojic acid chemistry in the synthesis of various pyrone containing compounds, pyridine and pyridone heterocycles, and also other organic compounds. First, introductory text about the preparation, biological, and industrial applications, and the chemical properties of kojic acid is given. Then its uses in orga...

  6. The role of multivalent metal cations and organic complexing agents in bitumen-mineral interactions in aqueous solutions

    Science.gov (United States)

    Gan, Weibing

    A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments

  7. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Carro, Leticia; Barriada, Jose L. [Departamento de Quimica Fisica e Ingenieria Quimica I, Universidad de A Coruna, c/Rua da Fraga 10, 15008 A Coruna (Spain); Herrero, Roberto, E-mail: r.herrero@udc.es [Departamento de Quimica Fisica e Ingenieria Quimica I, Universidad de A Coruna, c/Rua da Fraga 10, 15008 A Coruna (Spain); Sastre de Vicente, Manuel E. [Departamento de Quimica Fisica e Ingenieria Quimica I, Universidad de A Coruna, c/Rua da Fraga 10, 15008 A Coruna (Spain)

    2011-08-15

    Highlights: {yields} Native and protonated macroalga S. muticum are good materials for mercury removal. {yields} Fast kinetic process and high mercury uptakes have been found for those materials. {yields} Diffusion control is the rate limiting step of the process. {yields} Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. {yields} Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  8. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    International Nuclear Information System (INIS)

    Highlights: → Native and protonated macroalga S. muticum are good materials for mercury removal. → Fast kinetic process and high mercury uptakes have been found for those materials. → Diffusion control is the rate limiting step of the process. → Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. → Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  9. Tuning hydrophobicity of highly cationic tetradecameric Gramicidin S analogues using adamantane amino acids

    NARCIS (Netherlands)

    Knijnenburg, A.D.; Kapoerchan, V.V.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2010-01-01

    Ring extended Gramicidin S analogues containing adamantane amino acids and six cationic residues were designed and evaluated. Systematic replacement of the hydrophobic residues with adamantane amino acids resulted in a small set of compounds with varying amphipathic character. It was found that the

  10. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    Directory of Open Access Journals (Sweden)

    Anna-Maria Hartmann

    2015-01-01

    Full Text Available Cation chloride cotransporters (CCC play an essential role for neuronal chloride homeostasis. KCC2 is the principal Cl--extruder, whereas NKCC1 is the major Cl--uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters GABA and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of cation chloride cotransporters. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids. A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features.

  11. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric acid......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  12. A REVIEW ON ACID BASE STATUS IN DAIRY COWS: IMPLICATIONS OF DIETARY CATION-ANION BALANCE

    OpenAIRE

    D. Afzaal, M. Nisa, M. A. Khan and M. Sarwar

    2004-01-01

    The acid base status of a dairy cow is maintained within a narrow range. The key mechanisms involving blood, cells and lungs, perform this function. Although other minerals have an impact on acid base metabolism, the minerals used in dietary cation-anion balance (DCAB) namely sodium (Na), potassium (K) and chloride (Cl) have the greatest effect. Hence, acid base status implicates other biological functions of dairy cows. Low DCAB prepartum reduces the incidence of milk fever and increases the...

  13. Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support

    Directory of Open Access Journals (Sweden)

    Leclerc Mario

    2005-04-01

    Full Text Available Abstract Background Nucleic acids detection using microarrays requires labelling of target nucleic acids with fluorophores or other reporter molecules prior to hybridization. Results Using surface-bound peptide nucleic acids (PNA probes and soluble fluorescent cationic polythiophenes, we show a simple and sensitive electrostatic approach to detect and identify unlabelled target nucleic acid on microarray. Conclusion This simple methodology opens exciting possibilities for applied genetic analysis for the diagnosis of infections, identification of genetic mutations, and forensic inquiries. This electrostatic strategy could also be used with other nucleic acid detection methods such as electrochemistry, silver staining, metallization, quantum dots, or electrochemical dyes.

  14. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Esterification of oleic acid with ethanol was investigated in the presence of sulfonated cation exchange resin. • We studied kinetic model of the esterification of oleic acid with ethanol according to experimental data. • The proposed kinetic model can well predict oleic acid conversion. - Abstract: This paper investigated the effects of ethanol to oleic acid molar ratio, reaction temperature, catalyst loading, water content and catalyst recycling on sulfonated cation exchange resin in a stirred batch reactor under atmospheric pressure. When the esterification was carried out with an ethanol to oleic acid (42.4 g) molar ratio of 9:1, reflux of ethanol at 82 °C, 20 g of catalyst and 8 h of reaction time, the oleic acid conversion rate reached approximately 93%. A pseudo-homogeneous kinetic model for describing the esterification of oleic acid with ethanol by the sulfonated cation exchange resin was developed on the basis of laboratorial results. The kinetic model can well predict the oleic acid conversion

  15. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane. PMID:25954916

  16. Macromolecular organic acids in the Murchison meteorite

    OpenAIRE

    Watson, J.S.; Sephton, M.A.; Gilmour, I.

    2005-01-01

    This study has detected bound organic acids within the Murchison meteorite organic macromolecule. Benzoic acid was the most abundant compound; other abundant compounds include C1 and C2 benzoic acids. Their origin and significance will be discussed.

  17. Sorption of Acid Dyes onto Silica Modified with Cetrltrimethylammonium Cations

    Institute of Scientific and Technical Information of China (English)

    TahirImranQureshi; Dong-IkSong; 等

    2002-01-01

    The sorption behavior of acid dyes onto cetyltrimethylammonium bromide (CTAB)-modified silica as a function of pH in the aqueous medium was studied. Single-and multi-solute sorption equilibria of orange Ⅱ(OR), phenol red (PR) and Eriochrome Black T (EBT) were studied at pH 3, unbuffered water pH and pH 11. Sorption behavior of EBT could not be conducted at pH3 due to its aggregation in acidic medium. All the reaction conditions, experimental protocols and techniques remained the same throughout the sorption process. Sorption isotherms for single-solute system were fitted by the Langmuir model, while Langmuir competitive model (LCM) and the ideal adsorbed solution theory (IAST) coupled with Langmuir model (IAST/Langmuir) were used for the prediction of multisolute competitive sorption. Sorption affinities influenced by the factors like physical interactive forces between the molecules of CTA on silica and sorbate, structural limitations of the dyes based on their geometrical arrangement were investigated. Sorption affinity of OR was found to be higher than that of EBT and PR at all the pH values investigated. Magnitude of the sorption capacities was observed to be higher in acidic medium but lower in alkaline medium. Trends of the sorption affinities in multisolute system were simlar to those in single-solute system but magnitude of the sorption capacities was significantly reduced due to the prevailing competition among the sorbates.

  18. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.

    Science.gov (United States)

    Gadad, Praveen; Nanny, Mark A

    2008-12-01

    The influence of cations (Na(+), Ca(2+) and Mg(2+)) on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic acids (FAs) (Norman landfill leachate fulvic acid (NLFA) and Suwannee River fulvic acid (SRFA)) and dissolved humic acids (HAs) (Suwannee River humic acid (SRHA) and Leonardite humic acid (LHA)) was examined using steady-state fluorescence spectroscopy at pH 4, 7 and 10 as a function of cation concentration (up to 25-100mM). Regardless of pH and cation concentration, PRODAN quenching by FA was unaffected by cations. However, interactions between PRODAN and HA decreased in the presence of cations at pH 7 and 10. Cation concentrations below the HA charge density resulted in the greatest decrease of PRODAN quenching, while very little additional decrease in PRODAN quenching occurred at cation concentrations above the HA charge density. This suggests that as the HA carboxylic acid functional groups form inner sphere complexes with divalent cations, intramolecular interactions result in a contraction of the HA molecular structure, thereby preventing PRODAN from associating with the condensed aromatic, electron accepting moieties inherent within HA molecules and responsible for PRODAN quenching. However, once the HA carboxylic acid functional groups are fully titrated with divalent cations, PRODAN quenching is no longer significantly influenced by the further addition of cations, even though these additional cations facilitate intermolecular interactions between the HA molecules to form supramolecular HA aggregates that can continue to increase in size. Regardless of FA and HA type, pH, cation type and concentration, the lack of blue-shifted fluorescence emission spectra indicated that micelle-like hydrophobic regions, amenable to PRODAN partitioning, were not formed by intra- and intermolecular interactions of FA and HA. PMID:18849058

  19. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    Science.gov (United States)

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-01

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  20. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    Science.gov (United States)

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  1. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    Science.gov (United States)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  2. Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals.

    Science.gov (United States)

    Mittal, Mona; Jana, Atanu; Sarkar, Sagar; Mahadevan, Priya; Sapra, Sameer

    2016-08-18

    A few approaches have been employed to tune the band gap of colloidal organic-inorganic trihalide perovskites (OTPs) nanocrystals by changing the halide anion. However, to date, there is no report of electronic structure tuning of perovskite NCs upon changing the organic cation. We report here, for the first time, the room temperature colloidal synthesis of (EA)x(MA)1-xPbBr3 nanocrystals (NCs) (where, x varies between 0 and 1) to tune the band gap of hybrid organic-inorganic lead perovskite NCs from 2.38 to 2.94 eV by varying the ratio of ethylammonium (EA) and methylammonium (MA) cations. The tuning of band gap is confirmed by electronic structure calculations within density functional theory, which explains the increase in the band gap upon going toward larger "A" site cations in APbBr3 NCs. The photoluminescence quantum yield (PLQY) of these NCs lies between 5% to 85% and the average lifetime falls in the range 1.4 to 215 ns. A mixture of MA cations and its higher analog EA cations provide a versatile tool to tune the structural as well as optoelectronic properties of perovskite NCs. PMID:27494515

  3. Modification of cation-exchange properties of activated carbon by treatment with nitric acid

    International Nuclear Information System (INIS)

    The uptake of inorganic cations by high-surface-area activated carbon can be increased by an order of magnitude by controlled exposure to high concentrations of nitric acid at elevated temperatures. Distribution coefficients of cations are also increased. Oxidation treatment causes some loss in particle strength. Acid strength of the functional groups from the nitric acid treatment is greater than those of the starting material. Surface area measurements from small-angle neutron scattering indicate that the increase in effective ion-exchange capacity is not accompanied by gross changes in the structure of the material. 13C-NMR on solid samples suggests that the concentration of carboxyl and phenolic functional groups in the carbon is increased by the treatment

  4. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    International Nuclear Information System (INIS)

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834x10-6 and 1323x10-6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes

  5. A REVIEW ON ACID BASE STATUS IN DAIRY COWS: IMPLICATIONS OF DIETARY CATION-ANION BALANCE

    Directory of Open Access Journals (Sweden)

    D. Afzaal, M. Nisa, M. A. Khan and M. Sarwar

    2004-10-01

    Full Text Available The acid base status of a dairy cow is maintained within a narrow range. The key mechanisms involving blood, cells and lungs, perform this function. Although other minerals have an impact on acid base metabolism, the minerals used in dietary cation-anion balance (DCAB namely sodium (Na, potassium (K and chloride (Cl have the greatest effect. Hence, acid base status implicates other biological functions of dairy cows. Low DCAB prepartum reduces the incidence of milk fever and increases the productivity by simmering down the severity of hypocalcaemia. High DCAB diets have proved to increase dry mater and water intake and production and to mitigate the effects of heat stress.

  6. The role of organic solvent radical cations in separations ligand degradation

    International Nuclear Information System (INIS)

    The dodecane radical cation reaction rate constant with CMPO was measured using ps electron pulse radiolysis/ absorption spectroscopy as k = (1.30 ± 0.11) x 1010 M-1s-1 in dodecane/0.10 M CH2Cl2 solution. No reactivity increase occurred when these solutions were pre-contacted with nitric acid, similar to the behavior observed for TODGA. To corroborate these kinetic data with steady-state radiolysis measurements, where acid pre-contacted CMPO showed significantly less degradation, it is proposed that the dodecane radical cation always reacts directly with TODGA, but for CMPO the charge-transfer occurs with the CMPO·HNO3 complex formed in the acid contacted solvent. (author)

  7. Oxatub[4]arene: a molecular "transformer" capable of hosting a wide range of organic cations.

    Science.gov (United States)

    Jia, Fei; Wang, Hao-Yi; Li, Dong-Hao; Yang, Liu-Pan; Jiang, Wei

    2016-04-14

    The molecular "transformer", oxatub[4]arene, was found to be able to host a wide range of organic cations. The strong binding ability is believed to originate from its four interconvertible and deep-cavity conformers. The binding behavior of such adaptable receptors may provide implications for molecular recognition in nature. PMID:26955919

  8. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    Energy Technology Data Exchange (ETDEWEB)

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  9. Chemical behavior of organic compounds in the interface ofwater/dual-cation organobentonite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sorption behavior of polar or ionizable organiccompounds, such as p-nitrophenol, phenol and aniline, in thewater/organobentonite systems is investigated. Both adsorption andpartition occur to the sorption of organic compounds to dual-cationorganobentonites. The separate contributions of adsorption andpartition to the total sorption of organic compounds to dual-cationorganobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual-cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual-cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.

  10. Cation hydration in hydrogelic polyacrylamide-phosphoric acid network: A study by Raman spectroscopy

    OpenAIRE

    Costa, A. M. Amorim da; Amado, A. M.

    2001-01-01

    The effects upon the structure and morphology of adding lithium, calcium and magnesium chlorides to a phosphoric acid/polyacrylamide 2:1 molar ratio proton conducting hydrogel are examined by observing the changes in the vibrational features of the polyacrylamide chain, in the phosphate group and in the interstitial water molecules as a function of the concentration and the cationic nature of the additive, at 295 K. On adding H3PO4 to the polyacrylamide hydrogel matrix, the amide groups becom...

  11. Well-defined Cationic Shell Crosslinked Nanoparticles for Efficient Delivery of DNA or Peptide Nucleic Acids

    OpenAIRE

    Zhang, Ke; Fang, Huafeng; Gang SHEN; Taylor, John-Stephen A.; Wooley, Karen L.

    2009-01-01

    This mini-review highlights developments that have been made over the past year to advance the construction of well-defined nanoscale objects to serve as devices for cell transfection. Design of the nanoscale objects originated from biomimicry concepts, using histones as the model, to afford cationic shell crosslinked knedel-like (cSCK) nanoparticles. Packaging and delivery of plasmid DNA, oligonucleotides, and peptide nucleic acids were studied by dynamic light scattering, transmission elect...

  12. Method of producing weakly acidic cation exchange resin particles charged with uranyl ions

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmonem, N.; Ringel, H.; Zimmer, E.

    1981-07-21

    Weakly acidic cationic ion exchange resin particles are charged with uranyl ions by contacting the particles step wise with aqueous uranyl nitrate solution at higher uranium concentrations from stage to stage. An alkaline medium is added to the uranyl nitrate solution in each stage to increase the successive pH values of the uranyl nitrate solution contacting the particles in dependence upon the uranium concentration effective for maximum charging of the particles with uranyl ions.

  13. Influence of organic matter type and medium composition on the sorption affinity of C12-benzalkonium cation.

    Science.gov (United States)

    Chen, Yi; Hermens, Joop L M; Droge, Steven T J

    2013-08-01

    We used the 7-μm polyacrylate ion-exchange SPME fibers to investigate C12-benzalkonium sorption to 10 mg/L natural organic matter at concentrations well below the cation-exchange capacity. C12-BAC sorption at constant medium conditions differed within 0.4 log units for two humic acids (Aldrich, Leonardite) and peat (Sphagnum, Pahokee), with similar nonlinear sorption isotherms (KF ∼ 0.8). Sorption to the SPME fibers and Aldrich humic acid (AHA) was reduced at both low pH and high electrolyte concentration, and reduced more strongly by Ca²⁺ compared with Na⁺ at similar concentrations. Sorption isotherms for AHA (5-50-500 mM Na⁺, pH 6) was modeled successfully by the NICA-Donnan approach, resulting in an intrinsic sorption coefficient of 5.35 (Caq = 1 nM). The NICA-Donnan model further explained the stronger specific binding of Ca²⁺ compared to Na⁺ by differences in Boltzmann factors. This study provides relevant information to interpret bioavailability of quaternary ammonium compounds, and possibly for other organic cations. PMID:23676325

  14. Cation-anion balance in organic silage in relation to prevention of milk fever

    OpenAIRE

    Henriksen, Britt I. F.

    2003-01-01

    Studies of organic farms in Norway have documented that cows in organic herds are less prone to milk fever compared to the overall average incidence of milk fever in Norway. Milk fever occurs most frequently in high-yielding cows, fat cows and older cows. On average, cows on organic farms are lower yielding, but also older. Dry cow diets relatively high in the anion chloride (Cl–) and low in the cations potassium (K+) and sodium (Na+) can prevent milk fever. In organic farming no inorganic fe...

  15. Investigation of the influence of cations in phosphoric acid on the extraction of uranium by factorial design

    International Nuclear Information System (INIS)

    Uranium is extracted from commercial phosphoric acid by phosphoorganic solvents in inert diluents. several studies were carried out to investigate the influence of temperature, P2O5 concentration, solvent concentration, mixing time and other variables on the distribution coefficient of uranium between organic and aqueous phases. Commercial phosphoric acid produced by the wet method is not a pure compound. It contains many contaminants. A previous study was undertaken to study the influence of certain anions present in commercial phosphoric acid such as SO42-, F-, Cl- on the extraction of UO22+ in commercial Syrian phosphoric acid by D2EHPA/TOPO method. The effect of certain cations in the commercial phosphoric acid produced by SIAPE wet method in Homs General Fertilizer Company on the distribution coefficient was studied. The effect of Fe3+, Fe2+, Mg2+, Ca2+, Al3+, V5+ on uranium extraction by D2EHPA/TOPO was investigated according to factorial design method. The results obtained showed that Al3+, Ca2+ have marked beneficial effect on extraction while Mg2+, Fe3+, V5+ have a negligible effect. An Fe2+ increase leads to a decrease of the extraction of UO22+ from phosphoric acid. (Author)

  16. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    Science.gov (United States)

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  17. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction.

    Science.gov (United States)

    Ma, Heping; Liu, Bailing; Li, Bin; Zhang, Liming; Li, Yang-Guang; Tan, Hua-Qiao; Zang, Hong-Ying; Zhu, Guangshan

    2016-05-11

    Mimicking proton conduction mechanism of Nafion to construct novel proton-conducting materials with low cost and high proton conductivity is of wide interest. Herein, we have designed and synthesized a cationic covalent organic framework with high thermal and chemical stability by combining a cationic monomer, ethidium bromide (EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide), with 1,3,5-triformylphloroglucinol (TFP) in Schiff base reactions. This is the first time that the stable cationic crystalline frameworks allowed for the fabrication of a series of charged COFs (EB-COF:X, X = F, Cl, Br, I) through ion exchange processes. Exchange of the extra framework ions can finely modulate the COFs' porosity and pore sizes at nanoscale. More importantly, by introducing PW12O40(3-) into this porous cationic framework, we can greatly enhance the proton conductivity of ionic COF-based material. To the best of our knowledge, EB-COF:PW12 shows the best proton conductivity at room temperature among ever reported porous organic materials. PMID:27094048

  18. Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption.

    Science.gov (United States)

    Zhu, Xuhai; Wen, Yangbing; Cheng, Dong; Li, Changmo; An, Xingye; Ni, Yonghao

    2015-11-01

    In this work, Micro-fibrillated Cellulose (MFC) was cationically modified by quaternary ammonium groups with different chemical structures aiming to improve the sorption capacity to bile acid. The in-vitro bile acid sorption was performed by investigating various factors, such as quaternary ammonium group content and length of its alkyl substituent of the modified cationic MFC (CMFC), ionic strength, initial concentration and hydrophobicity of bile acid. The results showed that the sorption behavior of the modified CMFC was strongly influenced by the quaternary ammonium group content and the lengths of its alkyl substituent, the sorption capacity for the modified CMFC with a C18 alkyl substituent, was approximately 50% of that of Cholestyramine. The experimental isotherm results were well fitted into the Temkin model. The effect of salts in the solution was smaller for the bile acid sorption onto the hydrophobic CMFC than the CMFC. It was also found that the binding capacity of CMFC was higher for more hydrophobic deoxycholate in comparison with cholate. PMID:26256387

  19. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment.

    Science.gov (United States)

    Farias, Ana Paula S F; Carneiro, Cristine E A; de Batista Fonseca, Inês C; Zaia, Cássia T B V; Zaia, Dimas A M

    2016-06-01

    Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis. PMID:26984319

  20. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.

    OpenAIRE

    Hao, Y.; Pear, M R; Busath, D D

    1997-01-01

    The free energy profiles for four organic cations in right-handed single-helix gramicidin A dimers were computed by using umbrella sampling molecular dynamics with CHARMM. Ion-water column translocations were facilitated by using a novel "water-tunnel" approach. The overlapping pieces of free energy profile for adjacent windows were selected from three trajectories that differed in initial ion rotation and were aligned by the method of umbrella potential differences. Neglected long-range elec...

  1. Thermodynamics of the adsorption of organic cations on kaolinite. Temperature dependence and calorimetry.

    OpenAIRE

    Mehrian Isfahany, T.

    1992-01-01

    The present work is aimed at understanding the interactions involved in the adsorption of cationic surfactants on heterogeneous surfaces. The relevance of the study derives from the environmental aspects of the adsorption of small organic molecules onto soil constituents. This thesis emphasizes the experimental aspects.In order to achieve a better understanding of the driving forces involved in the adsorption process, classical equilibrium thermodynamics is used to estimate the energetic and ...

  2. Functional significance of conserved cysteines in the human organic cation transporter 2

    OpenAIRE

    Pelis, Ryan M.; Dangprapai, Yodying; Cheng, Yaofeng; Zhang, Xiaohong; Terpstra, Jennifer; Wright, Stephen H.

    2012-01-01

    The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated >20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C...

  3. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria

    International Nuclear Information System (INIS)

    Carnitine is a zwitterion essential for the β-oxidation of fatty acids. We report novel localization of the organic cation/carnitine transporter, OCTN1, to mitochondria. We made GFP- and RFP-human OCTN1 cDNA constructs and showed expression of hOCTN1 in several transfected mammalian cell lines. Immunostaining of GFP-hOCTN1 transfected cells with different intracellular markers and confocal fluorescent microscopy demonstrated mitochondrial expression of OCTN1. There was striking co-localization of an RFP-hOCTN1 fusion protein and a mitochondrial-GFP marker construct in transfected MEF-3T3 and no co-localization of GFP-hOCTN1 in transfected human skin fibroblasts with other intracellular markers. L-[3H]Carnitine uptake in freshly isolated mitochondria of GFP-hOCTN1 transfected HepG2 demonstrated a K m of 422 μM and Western blot with an anti-GFP antibody identified the expected GFP-hOCTN1 fusion protein (90 kDa). We showed endogenous expression of native OCTN1 in HepG2 mitochondria with anti-GST-hOCTN1 antibody. Further, we definitively confirmed intact L-[3H]carnitine uptake (K m 1324 μM), solely attributable to OCTN1, in isolated mitochondria of mutant human skin fibroblasts having <1% of carnitine acylcarnitine translocase activity (alternate mitochondrial carnitine transporter). This mitochondrial localization was confirmed by TEM of murine heart incubated with highly specific rabbit anti-GST-hOCTN1 antibody and immunogold labeled goat anti-rabbit antibody. This suggests an important yet different role for OCTN1 from other OCTN family members in intracellular carnitine homeostasis

  4. Two uranyl-organic frameworks with pyridinecarboxylate ligands. A novel hetero-metallic uranyl-copper(II) complex with a cation-cation interaction

    International Nuclear Information System (INIS)

    Reaction of uranyl nitrate with pyridine-2-carboxylic acid (HL1) under hydrothermal conditions gives the complex [(UO2)3(L1)4(NO3)2], 1, which differs from the previously reported molecular complex, obtained at room temperature, by the absence of water, coordinated and free, and the extended carboxylate bridging. Although the tri-metallic basic unit is similar in both cases, 1 crystallizes as a two-dimensional assembly. A hetero-metallic complex results from the reaction of uranyl nitrate and copper(II) trifluoromethanesulfonate with nicotinic acid (pyridine-3-carboxylic acid, HL2), [UO2Cu(L2)2(NO3)2], 2, in which copper nicotinate two-dimensional subunits are bridged by uranyl nitrate groups to give a three-dimensional framework. The copper atom environment geometry is elongated octahedral. with one of the axial donors being a uranyl oxo group (cation-cation interaction). (author)

  5. The influence of cations in phosphoric acid on the extraction of uranium

    International Nuclear Information System (INIS)

    Commercial phosphoric acid produced by the wet method is not a pure compound. It contains many contaminants. Effect of certain cations in the commercial phosphoric acid produced by SIAPE wet method in Homs General Fertilizer Company on the distribution coefficient (Kd) of uranium is studied. The effect of Fe3+, Fe2+, Mg2+, Ca2+, Al3+ and V5+ on uranium extraction by D2EHPA/TOPO was investigated according to the factorial design method. The results obtained showed that Al3+ and Ca2+ had a marked beneficial effect on uranium extraction while Mg2+, Fe3+ and V5+ had a negligible effect. An increase in Fe2+ led to a decrease in the extraction of UO22+ from phosphoric acid. (author)

  6. A high-performance "sweeper" for toxic cationic herbicides: an anionic metal-organic framework with a tetrapodal cage.

    Science.gov (United States)

    Jia, Yan-Yuan; Zhang, Ying-Hui; Xu, Jian; Feng, Rui; Zhang, Ming-Shi; Bu, Xian-He

    2015-12-21

    This communication reports a novel metal-organic framework exhibiting an excellent performance in adsorbing small toxic cationic herbicides, i.e. methyl viologen and diquat, with large adsorption capacities and ultratrace residue levels. To the best of our knowledge, this is the first example of high-performance MOFs trapping toxic cationic herbicides. PMID:26468513

  7. The putative Cationic Amino acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis

    Directory of Open Access Journals (Sweden)

    Huaiyu eYang

    2015-04-01

    Full Text Available Amino acids are major primary metabolites. Their uptake, translocation, compartmentation and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9 was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order to probe whether and how these compartments are involved in amino acid homeostasis, a loss-of-function cat9-1 mutant and ectopic over-expressor plants were isolated. Under restricted nitrogen supply in soil, cat9-1 showed a chlorotic phenotype, which was reversed in the over-expressors. The total soluble amino acid pools were affected in the mutants, but this was only significant under poor nitrogen supply. Upon nitrogen starvation, the major soluble amino acid leaf pools decreased. This decrease was lower in cat9-1 and augmented in the over-expressor. Over-expression generally affected total soluble amino acid concentrations and finally improved the survival upon severe nitrogen starvation. The results potentially identify a novel function of vesicular amino acid transport mediated by CAT9 in the cellular nitrogen-dependent amino acid homeostasis.

  8. Cationic Mucic Acid Polymer-Based siRNA Delivery Systems.

    Science.gov (United States)

    Pan, Dorothy W; Davis, Mark E

    2015-08-19

    Nanoparticle (NP) delivery systems for small interfering RNA (siRNA) that have good systemic circulation and high nucleic acid content are highly desired for translation into clinical use. Here, a family of cationic mucic acid-containing polymers is synthesized and shown to assemble with siRNA to form NPs. A cationic mucic acid polymer (cMAP) containing alternating mucic acid and charged monomers is synthesized. When combined with siRNA, cMAP forms NPs that require steric stabilization by poly(ethylene glycol) (PEG) that is attached to the NP surface via a 5-nitrophenylboronic acid linkage (5-nitrophenylboronic acid-PEGm (5-nPBA-PEGm)) to diols on mucic acid in the cMAP in order to inhibit aggregation in biological fluids. As an alternative, cMAP is covalently conjugated with PEG via two methods. First, a copolymer is prepared with alternating cMAP-PEG units that can form loops of PEG on the surface of the formulated siRNA-containing NPs. Second, an mPEG-cMAP-PEGm triblock polymer is synthesized that could lead to a PEG brush configuration on the surface of the formulated siRNA-containing NPs. The copolymer and triblock polymer are able to form stable siRNA-containing NPs without and with the addition of 5-nPBA-PEGm. Five formulations, (i) cMAP with 5-nPBA-PEGm, (ii) cMAP-PEG copolymer both (a) with and (b) without 5-nPBA-PEGm, and (iii) mPEG-cMAP-PEGm triblock polymer both (a) with and (b) without 5-nPBA-PEGm, are used to produce NPs in the 30-40 nm size range, and their circulation times are evaluated in mice using tail vein injections. The mPEG-cMAP-PEGm triblock polymer provides the siRNA-containing NP with the longest circulation time (5-10% of the formulation remains in circulation at 60 min postdosing), even when a portion of the excess cationic components used in the formulation is filtered away prior to injection. A NP formulation using the mPEG-cMAP-PEGm triblock polymer that is free of excess components could contain as much as ca. 30 wt % siRNA. PMID

  9. Cationic lioposomes with folic acid as targeting ligand for gene delivery.

    Science.gov (United States)

    Cui, Shao-Hui; Zhi, De-Fu; Zhao, Yi-Nan; Chen, Hui-Ying; Meng, Yao; Zhang, Chuan-Min; Zhang, Shu-Biao

    2016-08-15

    In our previous Letter, we have carried out the synthesis of a novel DDCTMA cationic lipid which was formulated with DOPE for gene delivery. Herein, we used folic acid (FA) as targeting ligand and cholesterol (Chol) as helper lipid instead of DOPE for enhancing the stability of the liposomes. These liposomes were characterized by dynamic laser scattering (DLS), transmission electron microscopy (TEM) and agarose gel electrophoresis assays of pDNA binding affinity. The lipoplexes were prepared by using different weight ratios of DDCTMA/Chol (1:1, 2:1, 3:1, 4:1) liposomes and different concentrations of FA (50-200μg/mL) combining with pDNA. The transfection efficiencies of the lipoplexes were evaluated using pGFP-N2 and pGL3 plasmid DNA against NCI-H460 cells in vitro. Among them, the optimum gene transfection efficiency with DDCTMA/Chol (3:1)/FA (100μg/mL) was obtained. The results showed that FA could improve the gene transfection efficiencies of DDCTMA/Chol cationic liposome. Our results also convincingly demonstrated FA (100μg/mL)-coated DDCTMA/Chol (3:1) cationic liposome could serve as a promising candidate for the gene delivery. PMID:27426864

  10. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    Science.gov (United States)

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  11. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations.

    Science.gov (United States)

    Jansen, J; De Napoli, I E; Fedecostante, M; Schophuizen, C M S; Chevtchik, N V; Wilmer, M J; van Asbeck, A H; Croes, H J; Pertijs, J C; Wetzels, J F M; Hilbrands, L B; van den Heuvel, L P; Hoenderop, J G; Stamatialis, D; Masereeuw, R

    2015-01-01

    The bioartificial kidney (BAK) aims at improving dialysis by developing 'living membranes' for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)) as a fluorescent substrate. Initial ASP(+) uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a 'living membrane' of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering. PMID:26567716

  12. The effect of cation-πinteractions in electrolyte/organic nanofiltration systems

    Institute of Scientific and Technical Information of China (English)

    Gang Yang; Yu Ma; Weihong Xing

    2016-01-01

    The rejection properties of a nanofiltration organic membrane were investigated using KCl solutions, NaCl solutions, NaCl/benzyl alcohol hybrid solutions and KCl/benzyl alcohol hybrid solutions. The presence of benzyl alcohol (3.7 mol · m−3) caused a decrease in electrolyte rejection within the range of 0 to 6%. The mechanism of the decrease was discussed. The cation–πbond was assumed to form in the hybrid solution and to further induce the partial dehydration of the cation. The steric and charge density inhibition of the salt activity was strength-ened, and the salt rejection was thus decreased. A simulation was performed to evaluate the radius of the cation. © 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  13. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  14. Some investigations on the radiation stability of a strongly acidic cation exchange resin

    Science.gov (United States)

    Dessouki, A. M.; Zahran, A. H.; Rabie, A. M.; Amer, S. I.

    The radiation-chemical stability of Merck Cation Exchanger I, a strongly acidic sulphonated cation exchanger of the polymerization type based on styrene-divinylbenze (DVB) copolymers was investigated. The radiation stability of the resin was assessed from the change in exchange capacity, loss in weight, change in swelling behaviour and formation of new exchange groups. The loss in capacity was 44 and 32% for resin specimens in the H +-form irradiated to 1000 Mrad in air and in vacuum, respectively. The Na +-form of the exchanger showed high resistance to radiation and the loss in capacity did not exceed 7% at a dose of 1000 Mrad. The loss in capacity was accompanied by a loss in weight and a decrease in the degree of swelling of the irradiated resin. The formation of new functional groups of the carboxylic and phenolic types was confirmed. The amount of these group increases with the increase in the integral dose. The amount of sulphuric acid formed as a result of irradiating the resin in the dry and moist states was determined. An increase in the moisture content of the resin resulted in a marked decrease in its radiation stability.

  15. Heteropoly acids triggered self-assembly of cationic peptides into photo- and electro-chromic gels.

    Science.gov (United States)

    Li, Jingfang; Xu, Jing; Li, Xiaodong; Gao, Wenmei; Wang, Liyan; Wu, Lixin; Lee, Myongsoo; Li, Wen

    2016-07-01

    A series of cationic peptides with alternating lysines and hydrophobic residues were designed and synthesized. These kinds of short peptides with protonated lysines can complex with anionic heteropoly acids (HPAs) to form a stable gel in water/ethanol mixed solution. Circular dichroism spectroscopy showed that the short peptides adopted a mixed conformation (β-sheet and random-coil) within the gel matrix. Scanning and transmission electron microscopy revealed that the heteropoly acids, acting as nanosized cross-linkers, first initiated the self-assembly of the cationic peptides into spherical nanostructures. Then these nanospheres accumulated with each other through hydrogen bonds and hydrophobic interactions to form large sheet-like assemblies, which further interconnected with each other forming continuous 3D network structures. Fourier-transform infrared spectroscopy showed that the structural integrity of the HPAs was maintained during the gelation process. The resultant hybrid gels showed reversible photo- and elecrtro-chromic properties. X-ray photoelectron spectroscopy revealed that the hybrid gels, capable of persistent and reversible changes of their colour, are attributed to the intervalence charge-transfer transition of the HPAs. Reversible information writing and erasing were demonstrated through a repeated photo-lithograph or electric stimuli without significant loss of the gel performance. PMID:27240759

  16. On the determination of exchangeable cations in acid forest soils. Zur Bestimmung austauschbarer Kationen in sauren Waldboeden

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, E. (Goettingen Univ. (Germany, F.R.). Forschungszentrum Waldoekosysteme); Buerstinghaus, C. (Goettingen Univ. (Germany, F.R.). Inst. fuer Bodenkunde und Waldernaehrung)

    1990-12-01

    Different samples from acid forest soils were percolated with large amounts of H{sub 2}O. Significant amounts of anions, especially sulfate, were found in the percolates mainly accompanied by Na, K, Ca and Mg (M{sub b}-cations). The dissolution of Al-sulfates and subsequent exchange of M{sub b}-cations by Al as dominant mechanism is proposed. Thus the common method for determination of the cation exchange capacity (CEC) of acid forest soils, the percolation with NH{sub 4}Cl may overestimate the CEC. The overestimation may be related to the sulfate content of the soil and also influences the calculation of relative CEC proportions of individual cations. (orig.).

  17. SYNTHESIS OF 2—HYDROXYETHYL ACRYLATE BY USING STRONG ACIDIC CATION ION EXCHANGE RESIN AS CATALYST

    Institute of Scientific and Technical Information of China (English)

    GAODabin

    1992-01-01

    2-Hydroxyethyl acrylate is synthesized from acrylic acid and ethylene glycol under a simple and mild condition by using strong acidic cation ion exchange resin as a catalyst,which could be recycled as long as 10 times with high activation.

  18. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  19. Organic Acid Production by Filamentous Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  20. Asymmetric Synthesis Using Novel Cationic Diether-Coordinated Lewis Acid and Stereoselective Synthesis of Piperidones and 1,2-Amino Alcohols

    OpenAIRE

    Ishimaru, Kaori

    1997-01-01

    CONTENTS Chapter 1.Asymmetric Synthesis Using Novel Cationic Diether-Coordinated Lewis Acids  1-1.Introduction / p1  1-2.Cationic Lewis Acids for [4+2]Type Cycloaddition of α-Chiral Aldimines / p12  1-3.Development of Novel Cationic Lewis Acids Coordinated by a Chiral Diether Ligand / p18  1-4.Attempt to Develop Novel Lewis Acids Bearinga Monoether-Coordinated Ligand / p31  1-5.Aldol Reaction by Using the Novel Cationic Lewis Acids / p39  1-6.Synthesis of the Modified Chi...

  1. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    Science.gov (United States)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.

  2. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression. PMID:12830884

  3. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels

    OpenAIRE

    Schneider, Elke; Machavoine, François; Pléau, Jean-Marie; Bertron, Anne-France; Thurmond, Robin L.; Ohtsu, Hiroshi; Watanabe, Takehiko; Schinkel, Alfred H; Dy, Michel

    2005-01-01

    In this study, we identify the bidirectional organic cation transporter 3 (OCT3/Slc22a3) as the molecule responsible for histamine uptake by murine basophils. We demonstrate that OCT3 participates in the control of basophil functions because exogenous histamine can inhibit its own synthesis—and that of interleukin (IL)-4, IL-6, and IL-13—through this means of transport. Furthermore, ligands of H3/H4 histamine receptors or OCT3 inhibit histamine uptake, and outward transport of newly synthesiz...

  4. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Bawolak, Marie-Thérèse [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Lodge, Robert [Centre de recherche en infectiologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Bouthillier, Johanne; Gagné-Henley, Angélique [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Gaudreault, René C. [Unité des Biotechnologies et de Bioingénierie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1L 3L5 (Canada); Morissette, Guillaume [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada)

    2012-02-15

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.

  5. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs.

    Science.gov (United States)

    Stawiński, Wojciech; Freitas, Olga; Chmielarz, Lucjan; Węgrzyn, Agnieszka; Komędera, Kamila; Błachowski, Artur; Figueiredo, Sónia

    2016-06-01

    The influence of different acid treatments over vermiculite was evaluated. Equilibrium, kinetic and column studies have been conducted. The results showed that vermiculite first treated with nitric acid and then with citric acid has higher adsorption capacity, presenting maximum adsorption capacities in column experiments: for Astrazon Red (AR), 100.8 ± 0.8 mg g(-1) and 54 ± 1 mg g(-1) for modified and raw material, respectively; for Methylene Blue (MB) 150 ± 4 mg g(-1) and 55 ± 2 mg g(-1) for modified and raw material, respectively. Materials characterization by X-ray diffraction, UV-vis-diffuse reflectance spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, X-ray fluorescence, N2 adsorption and CEC determination, has been performed. The results suggest the existence of exchange of interlayer cations, leaching of metals from vermiculite's sheets and formation of an amorphous phase in the material. Adsorption follows pseudo 2(nd) order model kinetics for both dyestuffs and equilibrium occurs accordingly to Langmuir's model for AR and Freundlich's model for MB. In column systems Yan's model is the best fit. The enhanced properties of acid treated vermiculite offer new perspectives for the use of this adsorbent in wastewater treatment. PMID:27015571

  6. Measurement of the acidities of several cation-exchange resins using hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    The hydrogen-isotope exchange reaction between ethanol (unlabeled) and one of three cation-exchange resins labeled with tritium has been observed at 40-80degC. The acidity (acidity based on kinetic logic) at each temperature has been obtained from a A'-McKay plot based on the respective data obtained. The following results have been obtained on the basis of both the acidities obtained in this work and the acidities (of several materials) obtained previously. (1) The order of the reactivity is (Amberlite IRC-76)>(Dowex A-1)>(PVA2000>(Amberlite IRC-50) at 60degC. (2) The higher the temperature, the larger is the reactivity of each material. (3) The temperature dependence of the reactivity of Dowex A-1 is the largest in the four. (4) The reactivity of the functional group (i.e., COOH group or OH group) bonded to the polymer chain can be clarified using the A'-McKay plot method. (5) It seems that method can be applied to analyze other reactions, e.g., other isotope-exchange reactions, surface reactions, catalytic reactions, etc. (author)

  7. Novel compound, organic cation transporter 3 detection agent and organic cation transporter 3 activity inhibitor, WO2015002150 A1: a patent evaluation.

    Science.gov (United States)

    Hu, Tao; Wang, Li; Pan, Xiaolei; Qi, Hualin

    2016-08-01

    Increasing pharmacological studies have demonstrated that organic cation transporter 3 (OCT3) plays an important role in controlling the extracellular concentrations of released monoamine neurotransmitter, suggesting that OCT3 might be a promising target in the treatment of depression. As a consequence, compounds showing inhibitory effects on the function of OCT3 have the potential for depression treatment. The current patent WO2015002150 A1 described the synthesis of 59 novel guanidine derivatives. All investigated compounds exhibited significant inhibitory effects (41.9-88.2%) on human OCT3 activity at 30 µM, using human OCT3-transfected human embryonic kidney 293 cell. Concentration-response curves (IC50 values) were determined for seven compounds with higher inhibition potency from the initial screening. IC50 values ranged from 1.9 to 24 µM. In addition, the concentration of these compound in aqueous solution with artificial membranes containing human OCT3 protein was measured. The concentration of compound 6 (SR-2045) was significantly reduced in the presence of human OCT3. Therefore, these compounds have the potential to be further developed as novel antidepressant and human OCT3 detection agent. Future investigations are needed to study the pharmacokinetic and pharmacological properties of these compounds and potential interaction with other transporters. PMID:27097290

  8. Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.

    Science.gov (United States)

    Shi, Wenqing; Bi, Lei; Pan, Gang

    2016-07-01

    Modified soils (MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch (CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water. This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils (CS-MSs). Results showed that the dissolved organic carbon (DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and 0.293meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7mg/L, respectively. The excitation-emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044meq/g was used, DOC was increased from 3.4 to 3.9mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures (e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation. PMID:27372131

  9. Relevance of Co, Ag-ferrierite catalysts acidity and cation siting to CH4-NOx-SCR activity

    International Nuclear Information System (INIS)

    The influence of acidity on Ag.Co exchanged ferrierite obtained from different parent forms was tested in CH4-DeNOx reaction. Ag and Co cation siting distribution and residual zeolite acidity were evaluated by means of a quantitative evaluation of catalyst acidity through NH3-TPD experiments and a detailed structural catalyst characterization by Rietveld refinement. A new nomenclature for the cation sites in hydrated and dehydrated cation exchange ferrierites was introduced for sake of clarity. The sites relative populations obtained by the UV-Vis spectra did not agree with the values given by the Rietveld refinement and the SCR. activity scale since the high abundance of Co cations in the retained most active position. Co2a, was shown by the less active catalyst obtained from the Na,K form. It was concluded that SCR activity does not only depend on Co and Ag siting within the zeolite framework but also by the presence of residual acidity evidenced on the most active catalysts. CH4 combustion tests showed that the presence of residual acidity appears relevant to SCR catalytic performances, likely related to its ability in methane activation. The importance of the coexistence of Co and zeolitic, acid sites for the HC-SCR suggested that SCR reaction could proceed on a dual site.

  10. Spontaneous formation of biocompatible vesicles in aqueous mixtures of amino acid-based cationic surfactants and SDS/SDBS.

    Science.gov (United States)

    Shome, Anshupriya; Kar, Tanmoy; Das, Prasanta K

    2011-02-01

    The spontaneous formation of vesicles by six amino acid-based cationic surfactants and two anionic surfactants (sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS)) is reported. The head-group structure of the cationic surfactants is minutely altered to understand their effect on vesicle formation. To establish the regulatory role of the aromatic group in self-aggregation, both aliphatic and aromatic side-chain-substituted amino acid-based cationic surfactants are used. The presence of aromaticity in any one of the constituents favors the formation of vesicles by cationic/anionic surfactant mixtures. The formation of vesicles is primarily dependent on the balance between the hydrophobicity and hydrophilicity of both cationic and anionic surfactants. Vesicle formation is characterized by surface tension, fluorescence anisotropy, transmission electron microscopy, dynamic light scattering, and phase diagrams. These vesicles are thermally stable up to 65 °C, determined by temperature-dependent fluorescence anisotropy. According to the MTT assay, these catanionic vesicles are nontoxic to NIH3T3 cells, thus indicating their wider applicability as delivery vehicles to cells. Among the six cationic surfactants examined, tryptophan- and tyrosine-based surfactants have the ability to reduce HAuCl(4) to gold nanoparticles (GNPs), which is utilized to obtain in-situ-synthesized GNPs entrapped in vesicles without the need for any external reducing agent. PMID:21275029

  11. Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth

    Directory of Open Access Journals (Sweden)

    W. Mindari

    2014-10-01

    Full Text Available Humic acid is believed to maintain the stability of the soil reaction, adsorption / fixation / chelate of cation, thereby increasing the availability of water and plant nutrients. On the other hand, the dynamics of saline soil cation is strongly influenced by the change of seasons that disrupt water and plant nutrients uptake. This experiment was aimed to examine the characteristics of the humic acid from compost, coal, and peat and its function in the adsorption of K+ and NH4+ cations, thus increasing the availability of nutrients and of maize growth. Eighteen treatments consisted of three humic acid sources (compost, peat and coal, two cation additives (K+ and NH4+, and three doses of humic acid-based buffer (10, 20, and 30 g / 3kg, were arranged in a factorial completely randomized with three replicates. The treatments were evaluated against changes in pH, electric conductivity (EC, cation exchange capacity (CEC, chlorophyll content, plant dry weight and plant height. The results showed that the addition of K+ and NH4+ affected pH, CEC, K+, NH4+, and water content of the buffer. Application of humic acid-based buffer significantly decreased soil pH from > 7 to about 6.3, decreased soil EC to 0.9 mS / cm, and increased exchangeable Na from 0.40 to 0.56 me / 100g soil, Ca from 15.57 to 20.21 me/100 g soil, Mg from 1.76 to 6.52 me/100 g soil, and K from 0.05-0.51 me / 100g soil. Plant growth (plant height, chlorophyll content, leaf area, and stem weight at 35 days after planting increased with increasing dose of humic acid. The dose of 2.0g peat humic acid + NH4+ / 3 kg of soil or 30g peat humic acid + K+ / 3 kg of oil gave the best results of maize growth.

  12. Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells.

    Science.gov (United States)

    Xu, Weidong; Liu, Lijia; Yang, Linju; Shen, Pengfei; Sun, Baoquan; McLeod, John A

    2016-07-13

    Organic-inorganic lead perovskites have shown great promise as photovoltaic materials, and within this class of materials (CH3NH3)PbI3-xClx is of particular interest. Herein we use soft X-ray spectroscopy and density functional theory calculations to demonstrate that the methylammonium cations in a typical photovoltaic layer may dissociate into a metastable arrangement of CH3I-Pb2 defects and trapped NH3. The possibility that other metastable configurations of the organic components in (CH3NH3)PbI3-xClx is rarely considered but adds an entirely new dimension in understanding the charge trapping, ionic transport, and structural degradation mechanisms in these materials. Understanding the influence of these other configurations is of critical importance for further improving the performance of these photovoltaics. PMID:27337149

  13. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing.

    Science.gov (United States)

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R

    2016-07-28

    Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivoThis article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298431

  14. Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2005-12-01

    Full Text Available The partitioning of reactive nitrogen compounds between the gas and the aerosol phase, as observed during the MINOS (Mediterranean INtensive Oxidant Study campaign in Crete, Greece, in July and August 2001, has been studied with three thermodynamic gas-aerosol equilibrium models (EQMs of different chemical complexity: ISORROPIA, which is limited to the ammonium sulfate-nitrate-sodium-chloride-water-system, SCAPE2, which also includes mineral elements (calcium, magnesium and potassium, and EQSAM2, which additionally accounts for organic acids. The different EQMs, as applied at the same level of complexity, generally produce comparable results within the range of measurement uncertainties (on average within ~10%, although they differ considerably in particular aspects. Model simulations of three distinct air pollution episodes during MINOS show that organic acids (lumped and soluble mineral cations need to be included in EQMs to accurately simulate the gas-aerosol partitioning of ammonia and nitric acid.

  15. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    Science.gov (United States)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  16. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  17. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  18. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  19. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  20. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells

    OpenAIRE

    Cui, Hongmei; Chen, Bernadette; Chicoine, Louis G.; Nelin, Leif D.

    2011-01-01

    1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2.

  1. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331. ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  2. Adsorption behavior and mechanism of cadmium on strong-acid cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; WANG Lian-jun; LI Jian-sheng; SUN Xiu-yun; HAN Wei-qing

    2009-01-01

    The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.

  3. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  4. PPARα agonists up-regulate organic cation transporters in rat liver cells

    International Nuclear Information System (INIS)

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-α agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPARα agonists in livers of rats and in Fao cells. We conclude that PPARα agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis

  5. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.

    Science.gov (United States)

    Hao, Y; Pear, M R; Busath, D D

    1997-10-01

    The free energy profiles for four organic cations in right-handed single-helix gramicidin A dimers were computed by using umbrella sampling molecular dynamics with CHARMM. Ion-water column translocations were facilitated by using a novel "water-tunnel" approach. The overlapping pieces of free energy profile for adjacent windows were selected from three trajectories that differed in initial ion rotation and were aligned by the method of umbrella potential differences. Neglected long-range electrostatic energies from the bulk water and the bilayer were computed with DelPhi and added to the profile. The approach was corroborated for the formamidinium-guanidinium pair by using perturbation dynamics at axial positions 0, 6, 12, and 15 A from the channel center. The barrier to ethylammonium entry was prohibitive at 21 kcal/mol, whereas for methylammonium it was 5.5 kcal/mol, and the profile was quite flat through the channel, roughly consistent with conductance measurements. The profile for formamidinium was very similar to that of methylammonium. Guanidinium had a high entry barrier (deltaF = +8.6 kcal/mol) and a narrow deep central well (deltaF = -2.6 kcal/mol), qualitatively consistent with predictions from voltage-dependent potassium current block measurements. Its deep central well, contrasting with the flat profile for formamidinium, was verified with perturbation dynamics and was correlated with its high propensity to form hydrogen bonds with the channel at the dimer junction (not shared by the other three cations). Analysis of the ensemble average radial forces on the ions demonstrates that all four ions undergo compressive forces in the channel that are at maximum at the center of the monomer and relieved at the dimer junction, illustrating increased flexibility of the channel walls in the center of the channel. PMID:9336167

  6. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  7. Real-time functional characterization of cationic amino acid transporters using a new FRET sensor.

    Science.gov (United States)

    Vanoaica, Liviu; Behera, Alok; Camargo, Simone M R; Forster, Ian C; Verrey, François

    2016-04-01

    L-arginine is a semi-essential amino acid that serves as precursor for the production of urea, nitric oxide (NO), polyamines, and other biologically important metabolites. Hence, a fast and reliable assessment of its intracellular concentration changes is highly desirable. Here, we report on a genetically encoded Förster resonance energy transfer (FRET)-based arginine nanosensor that employs the arginine repressor/activator ahrC gene from Bacillus subtilis. This new nanosensor was expressed in HEK293T cells, and experiments with cell lysate showed that it binds L-arginine with high specificity and with a K d of ∼177 μM. Live imaging experiments showed that the nanosensor was expressed throughout the cytoplasm and displayed a half maximal FRET increase at an extracellular L-arginine concentration of ∼22 μM. By expressing the nanosensor together with SLC7A1, SLC7A2B, or SLC7A3 cationic amino acid transporters (CAT1-3), it was shown that L-arginine was imported at a similar rate via SLC7A1 and SLC7A2B and slower via SLC7A3. In contrast, upon withdrawal of extracellular L-arginine, intracellular levels decreased as fast in SLC7A3-expressing cells compared with SLC7A1, but the efflux was slower via SLC7A2B. SLC7A4 (CAT4) could not be convincingly shown to transport L-arginine. We also demonstrated the impact of membrane potential on L-arginine transport and showed that physiological concentrations of symmetrical and asymmetrical dimethylarginine do not significantly interfere with L-arginine transport through SLC7A1. Our results demonstrate that the FRET nanosensor can be used to assess L-arginine transport through plasma membrane in real time. PMID:26555760

  8. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    Science.gov (United States)

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  9. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Directory of Open Access Journals (Sweden)

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  10. Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake.

    NARCIS (Netherlands)

    Verdurmen, W.P.R.; Thanos, M.; Ruttekolk, I.R.R.; Gulbins, E.; Brock, R.E.

    2010-01-01

    Cationic cell-penetrating peptides (CPP) are receiving increasing attention as molecular transporters of membrane-impermeable molecules. Import of cationic CPP occurs both via endocytosis and - at higher peptide concentrations - in an endocytosis-independent manner via localized regions of the plasm

  11. Fast detection of oxygen by the naked eye using a stable metal-organic framework containing methyl viologen cations.

    Science.gov (United States)

    Gong, Yun-Nan; Lu, Tong-Bu

    2013-09-11

    A stable porous metal-organic framework (MOF) containing methyl viologen cations exhibits reversible photochromic, thermochromic and fluorescence changes via host-guest interactions, and can be used for fast and selective detection of oxygen by naked eye recognition of color change within five seconds. PMID:23877538

  12. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  13. Two anionic metal-organic frameworks with tunable luminescent properties induced by cations

    Science.gov (United States)

    Chen, Shu-Mei; Chen, Yan-Fei; Liu, Liyang; Wen, Tian; Zhang, Hua-Bin; Zhang, Jian

    2016-03-01

    Two three-dimensional (3-D) MOFs, [(C2H5)4N)]3[H3O]2[Cd6Br(H2-DHBDC)8(DMF)4] (1; H4-DHBDC=2,5-dihydroxy-1,4-benzenedicarboxylic acid, DMF=N,N-dimethylformamide) and [(CH3)2NH2]2[Cd3(H2-DHBDC)4(DMF)2]·2DMF(2), are prepared from the self-assembly reactions between Cd(CH3COO)2 and H4-DHBDC, respectively. Both anionic frameworks consist of linear trinuclear Cd units (e.g., 1: [Cd3BrO2(CO2)7] and [Cd3O2(CO2)8]; 2: [Cd3O2(CO2)8]) linked by the H2-DHBDC ligands. The photoluminescent properties of compound 1 are tunable through cation-exchange with different metal ions. The results demonstrated an effective ion-exchange approach toward the functional modification of MOF materials.

  14. STUDY OF ORGANIC ACIDS IN ALMOND LEAVES

    Directory of Open Access Journals (Sweden)

    Lenchyk L.V.

    2015-05-01

    Full Text Available Introduction. Almond (Amygdalus communis is a stone fruit, from the Rosaceae family, closest to the peach. It is spread throughout the entire Mediterranean region and afterwards to the Southwestern USA, Northern Africa, Turkey, Iran, Australia and South Africa. It is sensitive to wet conditions, and therefore is not grown in wet climates. Iran is located in the semi-arid region of the world. Because of its special tolerance to water stress, almond is one of the main agricultural products in rainfed condition in Iran. Almond leaves have been investigated for their phenolic content and antioxidant activity. It was found that total antioxidant activity and phenolic compounds exhibited variations according to season, plant organ (leaf and stem and variety. Analysis of previous research on almonds focused on investigating compounds mostly in seeds and phenolic compounds in leaves, but organic acids in leaves have not been studied. Aim of this study was investigation of organic acids in leaves of almond variety which is distributed in Razavi Khorasan province of Iran. Materials and Methods. In August 2012 almond leaves were collected in Iran, dried and grinded. The study of qualitative composition and quantitative determination of carboxylic acids in almond leaves was carried out by gas chromatography with mass spectrometric detection. For determination organic acids content, to 50 mg of dried plant material in 2 ml vial internal standard (50 μg of tridecane in hexane was added and filled up with 1.0 ml of methylating agent (14 % BCl3 in methanol, Supelco 3-3033. The mixture was kept in a sealed vial during 8 hours at 65 °C. At this time fatty oil was fully extracted, and hydrolyzed into its constituent fatty acids and their methylation was done. At the same time free organic and phenolcarbonic acids were methylated too. The reaction mixture was poured from the plant material sediment and was diluted with 1 ml of distilled water. To extract methyl

  15. Acidity of cations and the solubility of oxides in the eutectic KCl-LiCl melt at 700 Deg C

    International Nuclear Information System (INIS)

    Products of MgO, NiO and CoO solubility in KCl-LiCl melt at 700 Deg C were determined by the method of potentiometric titration using Pt(O2)IZrO2(Y2O3) membrane oxygen electrode. It was ascertained that acid properties of Cd2+ and Pb'2+ cations are levelled to Li+ properties, a break in E-pO graduation dependence in KCl-LiCl melt was observed at pO ∼ 2. Increase in oxides solubility in the melt studied compared with KCl-NaCl and CsCl-KCl-NaCl melts stems from the presence of Li+ cations in the melt studied, which possess stronger acid properties than those of Na+ or K+

  16. Uranium adsorption from the sulphuric acid leach liquor containing more chlorides with cation-exchange resin SL-406

    International Nuclear Information System (INIS)

    The feasibility of uranium adsorption was studied from the sulphuric acid leach liquor of a uranium ore containing more chlorides with cation-exchange resin SL-406. The influence of some factors on uranium adsorption was investigated. It was shown that the resin possesses better selectivity, stability and higher capacity. It can be effectively used to recovery uranium from leach liquors of uranium ores containing more chlorides

  17. The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs

    Science.gov (United States)

    Commodore, Juliette J.; Cassady, Carolyn J.

    2016-06-01

    Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met -H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met - H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu - H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.

  18. Synergistic extraction of transition metal cations from aqueous media by two separated organic phases

    International Nuclear Information System (INIS)

    We have therefore initiated novel approaches to the study of the mechanism of the synergistic extraction of metal ions by means of two separated organic phases, which are brought in contact with the same aqueous phase. The present work is concerned with the extraction of transition metals and actinides ions from nitric acid by chelating agents e.g., HTTA thenoyltrifluoroacetone in a diluent - the first organic phase, and by natural donor, e.g., TBP, tri-butyl phosphate in a diluent the second organic phase. The adduct formation was studied by means of spectrochemical and radiochemical methods. In the first approach the aqueous phase was attacked with both organic phases simultanously (the static or parallel extraction). In this method organic phase are separated one from the other. It was shown that even in the absence of mixing, synergism is observed under this experimental conditions. The results indicate, that adduct formation occurs in both organic phases. Nevertheless the enhanchment of extraction in the TBP phase is by far greater than that in the HTTA containing phase. This approach has one disadvatage, viz., the experiments are very time consuming, a typical experiment requiring over 10 days. In order to overcome this difficulty, the following experiments were carried out: the aqueous phase were first shaken with diluent containing an anionic ligand and the phases were allowed to separate. Then the aqueous solution were shaken with diluent containing a netural donor and the phase again were allowed to separate. The concentration of the metal ions in all the phases were determined. The experiments were repeated with an other diluent replacing the first diluent in one or both organic phases. In this way eight sequences of experiments were carried out for each concentration set chosen. The results thus point out that this experimental approach open new possibilities to investigate the mechanism and the kinetics of synergistic extraction processes. (author) the

  19. Treatment of broiler litter with organic acids.

    Science.gov (United States)

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  20. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    Science.gov (United States)

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  1. A novel triazole-based cationic gemini surfactant: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid

    International Nuclear Information System (INIS)

    A triazole-based cationic gemini surfactant, 3,5-bis(methylene octadecyl dimethylammonium chloride)-1,2,4-triazole (18-triazole-18) has been synthesized, and its effect on corrosion inhibition of A3 steel in 1 M HCl has been studied using the weight-loss method. The result showed that 18-triazole-18 acted as an excellent inhibitor in 1 M HCl. It was found that the adsorption mechanism of 18-triazole-18 on the steel surface in acid medium was quite different from that of cationic gemini surfactants containing dimethylene as a spacer, as well as that of conventional cationic single-chained surfactants, which is due to unique molecular structure of 18-triazole-18. 18-Triazole-18 may be adsorbed on the steel surface in acid medium through a maximum of four atoms or groups, i.e., the two nitrogen atoms of triazole ring and two quaternary ammonium head groups. Four regions of surfactant concentration could be divided to illustrate the adsorption of 18-triazole-18 on the steel surface, and four different adsorption mechanisms may take place in different regions of surfactant concentration

  2. Complexing properties of the main organic acids used in decontamination solutions for nuclear power plants and reactions involved in their degradation or elimination

    International Nuclear Information System (INIS)

    Deposited activity on PWR equipment and component surfaces sometimes has to be decontaminated. An appropriate method for the dissolution of contaminated chromium-rich grow-on oxides uses an alternation of oxidizing steps (generally alkaline permanganate) and a reducing step made of organic acids. These organic acids have simultaneously reducing and chelating properties. Then, chelates are destroyed on cation exchangers in the H+ form and the resulting acids are oxidized with the permanganate of the first step. Basic information on chemical properties important in these three steps has been determined: acid-base properties of the considered organic acids, stability constants of the complexes formed between these acids and the metal cations originating from the stainless steel constituents (Fe, Ni, Cr, Co), ion exchange process, oxidation of the organic acids with emphasis on various products generated before the final products (CO2, H2O). (orig.)

  3. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  4. Cationic zinc (II) dimers and one dimensional coordination polymer from ionic carboxylic acid

    Indian Academy of Sciences (India)

    Paladugu Suresh; Ganesan Prabusankar

    2014-09-01

    A rare example of chelating two tetra cationic paddle-wheel zinc dimers were synthesized from the reaction between flexible imidazolium carboxylate (LH2Br2) and corresponding zinc precursors. A zinc coordination polymer was synthesised by treating in situ generation of 2 in the presence of 4,4′-bipyridine. These new molecules, dimers and polymer, were characterized by FT-IR, NMR, UV-vis, fluorescent and single crystal X-ray diffraction techniques. Zinc polymer is the first example of 1D coordination polymer constructed by tetra cationic zinc dimer as a secondary building unit in coordination polymer.

  5. Optimization of Adsorption of Hydrophobic Herbicides on Montmorillonite Preadsorbed by Monovalent Organic Cations: Interaction between Phenyl Rings

    OpenAIRE

    Undabeytia López, Tomás; Yaron Marcovich, D.; El-Nahhala, Yasser; Polubesova, T.; Serban, T.; Rytwo, Giora; Lagaly, G.; Rubin, Baruch; Nir, Shlomo

    2000-01-01

    This study aimed to optimize organo-clay formulations for reduction of leaching of the herbicides alachlor, metolachlor, and norflurazon, which include a phenyl ring in the structure. The adsorbed amounts of herbicides increased severalfold when montmorillonite was preadsorbed by an organic cation; benzyltrimethylammonium (BTMA) was more effective than benzyltriethylammonium (BTEA). Fourier transform infrared studies indicated interactions between alachlor molecules and adsorbed BTMA. The ads...

  6. Network diversity through decoration of trigonal-prismatic nodes: Two-step crystal engineering of cationic metal-organic materials

    KAUST Repository

    Schoedel, Alexander

    2011-10-05

    MOMs the word! In a two-step process, first a trigonal-prismatic Primary Molecular Building Block ([Cr3O(isonic)6]+, tp-PMBB-1) was formed and then it was connected to linear linkers or square-planar nodes to afford three novel highly charged cationic metal-organic materials (MOMs) with snx, snw, and stp topologies. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Formation of [b3 - 1 + cat]+ ions from metal-cationized tetrapeptides containing beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid residues.

    Science.gov (United States)

    Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J

    2008-11-01

    The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed. PMID:18449851

  8. Non-covalent bonded 2D-3D supramolecular architectures based on 4-dimethylaminopyridine and organic acids

    Science.gov (United States)

    Zhang, Huan; Jin, Shouwen; Wen, Xianhong; Liu, Bin; Fang, Yang; Zhang, Yani; Wang, Daqi

    2015-07-01

    Studies concentrating on non-covalent weak interactions between the organic base of 4-dimethylaminopyridine, and acidic derivatives have led to an increased understanding of the role 4-dimethylaminopyridine has in binding with the organic acid derivatives. Here anhydrous and hydrous multicomponent organic acid-base adducts of 4-dimethylaminopyridine have been prepared with organic acids such as 1,3-benzodioxole-5-carboxylic acid, p-aminobenzoic acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 5-chlorosalicylic acid, 5-bromosalicylic acid, 5-nitrosalicylic acid, and 5-sulfosalicylic acid. The 4-dimethylaminopyridine is only monoprotonated. All compounds are organic salts with the 1:1 ratio of the cation and the anion. For the 5-sulfosalicylic acid only one H is ionized to exhibit the valence number of -1. The eight crystalline complexes were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted the hetero supramolecular synthons. Analysis of the crystal packing of 1-8 suggests that there are Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds (charge assisted or neutral) between the organic acid and the 4-dimethylaminopyridine moieties in the studied compounds. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. For the synergistic effect of the various non-covalent interactions, the complexes displayed 2D-3D framework structures.

  9. Simple method of isolating humic acids from organic soils

    Science.gov (United States)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  10. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Anderson R. Meda

    2001-06-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.Foram conduzidos experimentos de laboratórios para avaliar os efeitos de extratos de plantas solúveis em água na acidez do solo. Os materiais de plantas foram: aveia preta, nabo, tremoço branco e azul, mucuna cinza e anã, Crotalaria spectabilis e C. breviflora, milheto, guandu, grama estrela, grama mato grosso, folhas de café, folhas de cana-de-açúcar, palhada de arroz e palhada de trigo. Foi utilizado o seguinte procedimento para o extrato da planta solúvel em água: pesar 3g de material de planta, adicionar 150 ml de água, agitar por 8h e filtrar. Os extratos de plantas foram adicionados na superfície do solo em uma coluna de PVC (1 ml min-1. Após, adicionou-se água deionizada em quantidade equivalente a três volumes de poros. Os extratos de plantas aumentaram o pH, Ca e K trocável e diminuíram Al. Nabo, aveia preta e tremoço azul foram os melhores e milheto o pior material para amenizar a acidez do solo. Nabo aumentou Al na água de drenagem. As altera

  11. Complexing properties of the main organic acids used in decontamination solutions and reactions involved in their degradation or elimination

    International Nuclear Information System (INIS)

    In a PWR primary cooling system, the oxides produced are chromium enriched and then difficult to dissolve. So the chemical decontamination processes often uses the alternation of oxidizing and reducing steps. The reducing step generally uses a mixture of organic acids, most often oxalic and citric acids. In the EMMA decontamination process, developed by EDF, ascorbic acid is used in addition as a stronger reducing agent. It is important for a good control of the process to know accurately which complexes are formed and which products result from reactions of organic acids with oxides or from final destruction during waste treatment. This is necessary to assess the risks of radioactive elements leaching by complex formation during the storage of the concrete embedded polymers. So, it has been necessary to study accurately: - the acid-base and redox properties of these organic acids; - the nature and the stability constants of the complexes formed with the metal cations originating from the stainless steel constituents: Fe, Ni, Cr, Co. This corresponds to the first part of the present study. The second one deals with the dissolution of hydroxides and the destruction of the complexes formed through reaction with a cation exchanger in H+ form, leading, by ion-exchange, to the fixation of the metal cations and the regeneration of the acids. (authors). 3 figs., 4 tabs., 8 refs

  12. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir; Pankratova, Stanislava; Nielsen, Peter E

    2008-01-01

    and therefore mechanisms that promote endosomal escape (or avoid the endosomal route) are required for improving bioavailability. A variety of auxiliary agents (chloroquine, calcium ions, or lipophilic photosensitizers) has this effect, but improved, unaided delivery would be highly advantageous in...... particular for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect...... increases with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement...

  13. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell.

    Science.gov (United States)

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-01-01

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,(1)H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy. PMID:26902258

  14. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  15. Melt processing of poly(L‐lactic acid) in the presence of organomodified anionic or cationic clays

    DEFF Research Database (Denmark)

    Katiyar, Vimal; Gerds, Nathalie; Koch, Christian Bender;

    2011-01-01

    Poly(L‐lactic acid) (PLA) films are in use for various types of food packaging; however, a wider range of applications would be possible if the barrier properties of these films could be improved. To make such improvements, combinations of PLA with two nanofillers, laurate‐intercalated Mg......‐Al layered double hydroxide (LDH‐C12) and a cationic organomodified montmorillonite (MMT) clay (Cloisite® 30B), were investigated. The dispersion of these fillers in PLA by melt processing was explored using two methods, either by mixing the nanofillers with PLA granulate immediately before extrusion or by...... Periodicals, Inc. J Appl Polym Sci, 2011...

  16. Chemiluminogenic properties of 10-methyl-9-(phenoxycarbonyl)acridinium cations in organic environments.

    Science.gov (United States)

    Krzymiński, Karol; Roshal, Alexander D; Zadykowicz, Beata; Białk-Bielińska, Anna; Sieradzan, Andrzej

    2010-10-01

    The chemiluminogenic (CL) properties of aryl esters of 9-carboxy-10-methylacridinium acid and 9-carboxy-2-methoxy-10-methylacridinium acid (AE), variously substituted in the benzene ring (2-H, 2-CH(3), 2-Cl) were investigated in aliphatic alcohols, acetonitrile, and dimethyl sulfoxide in the presence of hydrogen peroxide and different bases-potassium hydroxide, tetra-n-butylammonium hydroxide, and 1,8-diazabicyclo[5.4.0]undec-7-ene. The dependence of their CL properties (decay rate constants (k(CL)) and relative efficiencies (RE)) on solvent parameters, the nature and concentration of base, as well as H(2)O(2) concentration were investigated. Comparison of the various AE revealed that substituents at the benzene ring strongly influence the reaction kinetics, while 2-OCH(3) substitution of the acridine nucleus is manifested, in general, by a red shift in the emission spectrum and slight increase in CL efficiency. The values of k(CL) depend linearly on polarity and acid-base properties of solvents as well as on concentration of bases (over certain concentration ranges) and demonstrate a nonlinear dependence on H(2)O(2) concentration. RE values depend on solvent polarity and nucleophilicity but are rather weakly dependent on base and oxidant concentrations. The CL properties of the above systems are discussed in the context of their physicochemical features gained from fluorescence spectroscopy, spectrophotometric titration, MS, and HPLC. Electronically excited 10-methyl-9-acridinones are the light-emitting entities in both organic and aqueous environments. It was also found that the tendency for an unwanted side-process, the production of a pseudobase form of AE, to take place was similar in alcoholic and aqueous media, although 2-methoxy ring-substituted derivatives seemed to be less susceptible to this dark-type conversion. On the basis of these results new CL systems are postulated that are more efficient than their aqueous counterparts. PMID:20831163

  17. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method. PMID:21558657

  18. Layered inorganic-organic hybrid with talc-like structure for cation removal at the solid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Badshah, Syed [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2013-01-20

    Graphical abstract: A lamellar inorganic-organic hybrid with talc-like structure has been synthesized through a single sol-gel step. Highlights: Black-Right-Pointing-Pointer New silylating agent isolated from acrylamide includes basic centers attached to enlarged chain. Black-Right-Pointing-Pointer Lamellar inorganic-organic talc-like structure has been synthesized through a single sol-gel step. Black-Right-Pointing-Pointer High basal distance accommodates the pendant chain in the cavities only in inclined disposition. Black-Right-Pointing-Pointer The pendant chain sorbs spontaneously and favorable cations as demonstrated by thermodynamic data. - Abstract: A new silylating agent N-((3-(3-(trimethoxysilyl)propylthio)propanamido)methyl)acrylamide synthesized from the reaction of N,N-methylenebisacrylamide and 3-mercaptopropyltrimethoxysilane yielded layered inorganic-organic talc-like magnesium phyllosilicate through the sol-gel process. Elemental analysis data based on sulfur demonstrated incorporation of 2.70 mmol g{sup -1} of organic moiety inside the lamellar cavities and the X-ray diffraction patterns confirmed the talc-like structure with a basal distance of 2.11 nm. Infrared spectroscopy, {sup 13}C and {sup 29}Si NMR in the solid state are in agreement with the presence of organic chains covalently bonded to the inorganic lamellar framework, as also supported by the presence of T{sup n} silicon species. Nitrogen, oxygen and sulfur basic centers sorb divalent lead, copper and cobalt cations with maximum capacity of 5.30, 3.82 and 1.60 mmol g{sup -1}. The thermodynamic data for cation/basic center interactions at the solid/liquid interface were determined through calorimetric titration with exothermic enthalpy, negative Gibbs energy and positive entropy, as expected for spontaneous and favorable reaction conditions.

  19. Sulfate retention and cation leaching of forest soils in response to acid additions

    International Nuclear Information System (INIS)

    Much research within the past decade has focused on the effects of increased sulfur (S) deposition on surface waters. As inputs of S deposition as SO4(2-) build up in the soil over time, the concentration of SO4(2-) leaching from soils may also increase. Leachate SO4(2-) concentrations were greater for the high-S than for the low-S treatment for each soil type, resulting in greater cation leachate concentrations for soils that received the high-S treatment. Calcium was the primary base cation in both the Spodosol and Alfisol leachates. Declining concentrations of base cations and NH4(+) over the length of the study led to an increase in Al(3+) concentrations and decrease in pH for some of the Spodosol leachates. It is difficult to extrapolate their laboratory rates of change to the BBWM catchments because of differences between the experiment and field conditions. Soil temperature, the amount and rate of S application, and the total mass of soil exposed to treatment were hypothesized to be important factors affecting net S retention in Spodosols under field conditions. However, the authors feel that SO4(2-) adsorption under field conditions would still be the primary mechanism of S retention because of similarities between SO4(2-) concentrations in treatment solutions used for the present experiment and those in natural throughfall solutions

  20. Silica gel modified with ethylenediamine and succinic acid-adsorption and calorimetry of cations in aqueous solution

    International Nuclear Information System (INIS)

    Highlights: ► Succinic acid-modified silica acted as an adsorbent for Cu (II), Ni (II), and Co (II) from aqueous solutions. ► Modified silica adsorbed metallic cations in the order Cu2+ > Co2+ > Ni2+. ► Succinic acid-modified silica could be employed as low-cost material for the removal of cations from aqueous solution. ► Thermodynamic data for these systems are favorable at the solid/liquid interface. - Abstract: Ethylenediamine molecules were covalently immobilized onto silica gel previously functionalized with 3-chlorosilylpropyltrimethoxysilane (Sil–Cl), producing a Sil–N surface. The Sil–N surface reacted with succinic acid, yielding a Sil–NSuc surface. This new synthesized silica gel surface was used to adsorb divalent cations from aqueous solutions at room temperature. The adsorption isotherms were fit to a modified Langmuir equation using the data obtained by suspending the solid in MCl2 (M = Cu, Ni, and Co) aqueous solutions, yielding the maximum number of moles adsorbed as 1.04 ± 0.01, 1.89 ± 0.02 and 1.85 ± 0.02 mmol g−1 for divalent copper, nickel and cobalt, respectively. The metal-basic center ratio for complexes on the surfaces varied with the nature of the metal. The spontaneity of these systems was reflected in the negative values of the Gibbs free energy calculated using calorimetric data. The net thermal effects obtained from the calorimetric titration measurements were adjusted to a modified Langmuir equation, and the calculation of the enthalpies of the interaction for the complexation with Sil–NSuc yielded the following exothermic values: 2.81 ± 0.08, 0.35 ± 0.04 ± and 0.69 ± 0.05 kJ mol−1 for Cu2+, Co2+ and Ni2+, respectively. Based on these values, the metals are preferentially adsorbed in the order Cu2+ > Co2+ > Ni2+. The other thermodynamic data for these systems are favorable at the solid/liquid interface, suggesting the efficacy of this modified silica for cation removal from solution

  1. Capture and release of acid-gasses with acid-gas binding organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  2. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    Science.gov (United States)

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses. PMID:27088457

  3. Dysfunction in macrophage toll-like receptor signaling caused by an inborn error of cationic amino acid transport.

    Science.gov (United States)

    Kurko, Johanna; Vähä-Mäkilä, Mari; Tringham, Maaria; Tanner, Laura; Paavanen-Huhtala, Sari; Saarinen, Maiju; Näntö-Salonen, Kirsti; Simell, Olli; Niinikoski, Harri; Mykkänen, Juha

    2015-10-01

    Amino acids, especially arginine, are vital for the well-being and activity of immune cells, and disruption of amino acid balance may weaken immunity and predispose to infectious and autoimmune diseases. We present here a model of an inborn aminoaciduria, lysinuric protein intolerance (LPI), in which a single mutation in y(+)LAT1 cationic amino acid transporter gene SLC7A7 leads to a multisystem disease characterized by immunological complications, life-threatening pulmonary alveolar proteinosis and nephropathy. Macrophages are suggested to play a central role in LPI in the development of these severe secondary symptoms. We thus studied the effect of the Finnish y(+)LAT1 mutation on monocyte-derived macrophages where toll-like receptors (TLRs) act as the key molecules in innate immune response against external pathogens. The function of LPI patient and control macrophage TLR signaling was examined by stimulating the TLR2/1, TLR4 and TLR9 pathways with their associated pathogen-associated molecular patterns. Downregulation in expression of TLR9, IRF7, IRF3 and IFNB1 and in secretion of IFN-α was detected, suggesting an impaired response to TLR9 stimulation. In addition, secretion of TNF-α, IL-12 and IL-1RA by TLR2/1 stimulation and IL-12 and IL-1RA by TLR4 stimulation was increased in the LPI patients. LPI macrophages secreted significantly less nitric oxide than control macrophages, whereas plasma concentrations of inflammatory chemokines CXCL8, CXCL9 and CXCL10 were elevated in the LPI patients. In conclusion, our results strengthen the relevance of macrophages in the pathogenesis of LPI and, furthermore, suggest that cationic amino acid transport plays an important role in the regulation of innate immune responses. PMID:26210182

  4. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    International Nuclear Information System (INIS)

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N2 adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m2 g−1) and pore volume (0.016 cm3 g−1), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m2 g−1 and 0.701 cm3 g−1, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH2) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH2 bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds

  5. The lightest organic radical cation for charge storage in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Lu

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.

  6. Organic acids composition of Cydonia oblonga Miller leaf

    OpenAIRE

    Andreia P. Oliveira; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; B.M. Silva

    2008-01-01

    Organic acid profiles of 36 Cydonia oblonga Miller leaf samples, from three different geographical origins of northern (Bragança and Carrazeda de Ansiães) and central Portugal (Covilhã), harvested in three collection months (June, August and October of 2006), were determined by HPLC/UV (214 nm). Quince leaves presented a common organic acid profile, composed of six constituents: oxalic, citric, malic, quinic, shikimic and fumaric acids. C. oblonga leaves total organic acid content varied from...

  7. Cationic modified nucleic acids for use in DNA hairpins and parallel triplexes

    DEFF Research Database (Denmark)

    Bomholt, Niels; Filichev, Vyacheslav V; Pedersen, Erik Bjerregaard

    2011-01-01

    Non-nucleosidic DNA monomers comprising partially protonated amines at low pH have been designed and synthesized. The modifications were incorporated into DNA oligonucleotides via standard DNA phosphoramidite synthesis. The ability of cationic modifications to stabilize palindromic DNA hairpins and...... parallel triplexes were evaluated using gel electrophoresis, circular dichroism and thermal denaturation measurements. The non-nucleosidic modifications were found to increase the thermal stability of palindromic hairpins at pH 8.0 as compared with a nucleosidic tetraloop (TCTC). Incorporation of...

  8. Enhanced photocatalytic activity of TiO2 by surface fluorination in degradation of organic cationic compound

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-ying; CHEN You-yuan; ZHENG Jian-guo; CUI Ying-jie

    2007-01-01

    Experiments were carried out to investigate the influence of TiO2 surface fluorination on the photodegradation of a representative organic cationic compound, Methylene Blue (MB). The electropositive MB shows poor adsorption on TiO2 surface; its degradation performs a HO· radical-mediated mechanism. In the F-modified system, the kinetic reaction rate enlarged more than 2.5 fold that was attributed mainly to the accumulating adsorption of MB and the increased photogenerated hole available on the F-modified TiO2 surface.

  9. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications. PMID:24275825

  10. Solubilities of p-coumaric and caffeic acid in ionic liquids and organic solvents

    International Nuclear Information System (INIS)

    Highlights: ► New solubility data of p-coumaric and caffeic acid in ionic liquids and organic solvents. ► Normal melting point temperature and enthalpy of fusion of p-coumaric and caffeic acid. ► Thermogravimetric analysis for p-coumaric and caffeic acid. ► Correlation with UNIQUAC and NRTL. -- Abstract: The solubilities of two cinnamic acid derivatives, namely p-coumaric acid and caffeic acid, in six 1-alkyl-3-methyl imidazolium based ionic liquids composed of the PF6−, BF4−, TFO− and TF2N− anions, and in two organic solvents, t-pentanol and ethyl acetate, have been measured at the temperature range of about (303 to 317) K. The p-coumaric acid was found to be more soluble than caffeic acid in all studied solvents. Higher solubilities of both acids were observed in the ionic liquids composed of the BF4− and TFO− anions. The increase of the alkyl chain length on the cation invokes a decrease in solubility in the case of hydrophilic ionic liquids composed of BF4− anion, while in the case of hydrophobic ones composed of PF6− anion an increase in the solubility is observed. Between the two organic solvents t-pentanol is better solvent than ethyl acetate for both acids. Moreover, using the van’t Hoff equations the apparent Gibbs energy, enthalpy, and entropy of solution were calculated. Finally, successful correlation of the experimental data was achieved with the UNIQUAC and the NRTL activity coefficient models, while poor predictions of the solubility of the two acids in the organic solvents were obtained with two UNIFAC models

  11. Analysis of organic acids in Macedonian wines by capillary electrophoresis

    OpenAIRE

    Jancovska, Maja; Ivanova, Violeta; Gulaboski, Rubin; Belder, Detlev

    2013-01-01

    Capillary electrophoresis as a separation technique can be applied for analysis of organic acids in white and red wines, providing high resolution separation of the analytes. Organic acids such as of tartaric, malic, lactic citric and succinic acids have been analysed in many Macedonian red and white wines by capillary electrophoresis, and results have been discussed.

  12. Application of the CPA equation of state to organic acids

    DEFF Research Database (Denmark)

    Derawi, Samer; Zeuthen, Frederik Jacob; Michelsen, Michael Locht;

    2004-01-01

    The CPA (Cubic-Plus-Association) equation of state has been extended to modeling of organic acids. We will focus in this work on formic, acetic, and propanoic acids due to their importance to the chemical and petrochemical industries. Organic acids, unlike many other associating compounds, have a...

  13. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction

    International Nuclear Information System (INIS)

    Dialysis equilibrium system was applied to investigate the roles of Cu(II) and Mg(II) on DOM-ofloxacin (OFL) interaction. The binding behavior of both cations and OFL were studied. The introduction of Cu(II) increased DOM-OFL interaction, while Mg(II) decreased DOM-OFL binding. Cu(II) binding to DOM was also increased by OFL, while Mg(II) binding was decreased by OFL. The change in OFL binding amount in the absence and presence of cations (ΔCb) was calculated and compared with cation binding (Cbm). ΔCb/Cbm was in the range of 1–3 for Cu(II) depending on the applied Cu concentration. Two ternary complexes of DOM-OFL-Cu and DOM-Cu-OFL were proposed. For Mg(II), ΔCb/Cbm was around −1 at Mg(II) concentrations lower than 1 mM, but decreased up to −5 with increasing Mg(II) concentration. The competitive effect of Mg(II) to OFL was thus proposed. FTIR spectra were collected for mechanistic discussion. - Highlights: ► Cu increased DOM-OFL binding while Mg inhibited DOM-OFL binding. ► OFL promoted DOM-Cu interaction but decreased DOM-Mg complexation. ► Ternary complexes of DOM-OFL-Cu and DOM-Cu-OFL increase Cu and OFL binding in DOM. ► Mg competes or shields binding sites for OFL in DOM. - Cu(II) promoted OFL-DOM interaction through the formation of ternary complexes, while the competitive binding between Mg(II) and OFL in DOM decreased OFL-DOM interaction.

  14. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies.

    Science.gov (United States)

    Reaves, B J; Row, P E; Bright, N A; Luzio, J P; Davidson, H W

    2000-11-01

    A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway

  15. Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Lingguang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)], E-mail: lgqiu@ahu.edu.cn; Wu Yun; Wang Yimin; Jiang Xia [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2008-02-15

    Corrosion inhibition of cold rolled steel in 0.5 mol L{sup -1} sulphuric acid by a quaternary ammonium gemini surfactant, l,3-propane-bis(dimethyl dodecylammonium bromide) (designated as 12-3-12), in the absence and presence of chloride ions was investigated at different temperatures. The results revealed significant synergistic effect between gemini 12-3-12 and chloride ions for the corrosion protection of cold rolled steel in sulphuric acid, and that the novel composite inhibitor system containing cationic gemini surfactant and chloride ions was efficient and low-cost for steel corrosion inhibition in sulphuric acid medium, even when concentration of 12-3-12 was as low as 1 x 10{sup -6} mol L{sup -1}. By fitting the obtained experimental data with Langmuir adsorption model and Arrhenius equation, some thermodynamic and kinetic parameters such as adsorption free energy, the apparent activation energy, and the pre-exponential factor were estimated. The adsorption mechanism of the gemini surfactant onto steel surface in acid medium in the absence and presence of chloride ions was also discussed, respectively.

  16. Electrodeposition from cationic cuprous organic complexes: Ionic liquids for high current density electroplating

    OpenAIRE

    Schaltin, Stijn; Brooks, Neil; Binnemans, Koen; Fransaer, Jan

    2011-01-01

    The electrochemical behavior of the low-melting copper salts [Cu(MeCN)(x)][Tf2N] and [Cu(PhCN)(x)][Tf2N] (x = 2-4), where MeCN is acetonitrile and PhCN is benzonitrile, is presented. In these compounds, the copper(I) ion is a main component of the ionic liquid cation. Consequently, the copper concentration is the highest achievable for an ionic liquid and this permits to obtain a good mass transport and high current densities for electrodeposition. The cathodic limit of the ionic liquid is th...

  17. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials. PMID:25125117

  18. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite

    Science.gov (United States)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin

    2016-01-01

    A novel environmental friendly adsorbent H6P2W18O62/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N2 adsorption-desorption isotherms. The removal rate of H6P2W18O62/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H6P2W18O62. Further study revealed that H6P2W18O62/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H6P2W18O62/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H6P2W18O62/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis illustrated that the MB adsorption onto H6P2W18O62 immobilized MOF-5 was spontaneous and endothermic process. Besides, these results implied that designing a novel material polyoxometalate-based metal-organic frameworks is great potential for removing cationic organic pollutants and even extended to improve other specific application.

  19. Effects of Headgroups and Serum on Gene Transfection of Alkaline Amino Acid Based Cationic Lipids

    Institute of Scientific and Technical Information of China (English)

    LI Li; YANG Yang; NIE Yu; HE Bin; GU Zhong-wei

    2009-01-01

    Three cationic lipids with lysylated(l), histidylated(2), and arginylated(3) headgroups and cholesterol hy-drophobic moiety were synthesized. The average sizes of liposomes and lipoplexes were around 100 and 160 nm, re-spectively. The gene transfection efficiency of the three lipoplexes loaded with pGL3 or pORF-LacZ was compared on 293T cells in the presence or the absence of serum. The transfection efficiency of the three lipoplexes in a se-rum-free medium was 2 to 3-fold higher than that of dioleoyl-trimethylammonium propane(DOTAP). In the presence of serum, however, most of the lipoplexes showed lower transfection activities; only lipoplex 3 retained its high transfection efficiency.

  20. Novel Brφnsted Acidic Ionic Liquid Based on a Cyclic Guanidinium Cation: a Green, Efficient, and Recyclable Dual Slovent-catalyst System for Fisher Esterification

    Institute of Scientific and Technical Information of China (English)

    GUO Xu; DUAN Hai-feng; SUN Hai; CAO Jun-gang; LIN Ying-jie

    2007-01-01

    A novel Brφnsted acidic ionic liquid(IL) based on the cyclic guanidinium cation has been synthesized. This IL,as a strong Brφnsted acid catalyst or solvent, shows high catalytic activity and biphsaic behavor in the esterifications of carboxylic acids and alcohols. The produced esters as a separate phase can be conveniently decanted out from the IL and the IL is recyclable without any loss of catalytic activity.

  1. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite.

    Science.gov (United States)

    Chen, Tianran; Foley, Benjamin J; Ipek, Bahar; Tyagi, Madhusudan; Copley, John R D; Brown, Craig M; Choi, Joshua J; Lee, Seung-Hun

    2015-12-14

    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3(+) cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3(+) cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327 K) and tetragonal (165 K energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3(+) and the associated dipole have important implications for understanding the low exciton binding energy and a slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance. PMID:26549203

  2. Kinetics of the Esterification Reaction between Pentanoic Acid and Methanol Catalyzed by Noncorrosive Cation Exchange Resin

    OpenAIRE

    Sharma, M.; Toor, A. P.; R. K. Wanchoo

    2014-01-01

    Methyl pentanoate, commonly known as methyl valerate, is the methyl ester of pentanoic acid (valeric acid) with a fruity odour. Methyl pentanoate is commonly used in fragrances, beauty care, soap, laundry detergents at levels of 0.1 – 1 %. In its very pure form (purity 99.5 %) it is used as a plasticizer in the manufacture of plastics. In the present investigation, kinetics of esterification of pentanoic acid with methanol catalyzed by heterogeneous catalyst in a batch-type reactor is reporte...

  3. Synthesis, crystal structure and luminescence properties of one inorganic-organic hybrid compound [FTMA] 2[Co(NCS) 4] (FTMA = ferrocenylmethyltrimethylammonium cation)

    Science.gov (United States)

    Bai, Yan; Zhang, Guo-Qiang; Dang, Dong-Bin; Ma, Peng-Tao; Niu, Jing-Yang

    2011-08-01

    A new inorganic-organic hybrid compound [FTMA] 2[Co(NCS) 4] (FTMA = ferrocenylmethyltrimethylammonium cation) has been synthesized and characterized by IR, UV, elemental analysis and X-ray crystallography. Co(II) atom has a distorted tetrahedral environment with four N atoms of four NCS - anions. In the solid state there are C-H⋯π interactions between adjacent ferrocenyl cations, which generate one-dimensional (1-D) supramolecular chain, and C-H⋯S hydrogen bonds between [FTMA] + cations and cobalt thiocyanate anions. The title compound shows strong purple fluorescence emission in the solid state at room temperature.

  4. Solid-phase route to Fmoc-protected cationic amino acid building blocks

    DEFF Research Database (Denmark)

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck;

    2012-01-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity was...... developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto a...... simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility....

  5. Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption

    OpenAIRE

    Sipponen, Mika Henrikki; Pihlajaniemi, Ville; Littunen, Kuisma; Pastinen, Ossi; Laakso, Simo

    2014-01-01

    A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determ...

  6. Lixiviação de cátions favorecida pela presença de ânions inorgânicos e ácidos orgânicos de baixa massa molecular em solos adubados com camas de aviário Cation leaching favored by inorganic anions and low molecular mass organic acids in soils fertilized with different poultry litters

    Directory of Open Access Journals (Sweden)

    Fabrício de Oliveira Gebrim

    2008-12-01

    to 1.200 mm, totaling 10 applications. Leachates were analyzed for cations (Ca, Mg, K and Na, anions (Cl-, NO3-and SO4(2- and low molecular mass organic acids by ion chromatography. Results indicate substantial base-leaching through the soil columns, particularly up to the third percolation. This was most likely a result of the presence of bases contained in the high poultry litter doses and the presence of accompanying anions (Cl-, NO3-and SO4(2-in the sandy loam soil and Cl-and NO3-in the clayey soil. Ca leaching was positively correlated with the malic and oxalic acid concentrations in the clayey soil. High acetic acid concentration in leachates of poultry litter-treated soils suggest that it may have favored base-leaching in the soil profile as a result of its action as an ion pair.

  7. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    OpenAIRE

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium.

  8. HTGR fuel development: loading of uranium on carboxylic acid cation-exchange resins using solvent extraction of nitrate

    International Nuclear Information System (INIS)

    The reference fuel kernel for recycle of 233U to HTGR's (High-Temperature Gas-Cooled Reactors) is prepared by loading carboxylic acid cation-exchange resins with uranium and carbonizing at controlled conditions. The purified 233UO2(NO3)2 solution from a fuel reprocessing plant contains excess HNO3 (NO3-/U ratio of approximately 2.2). The reference flowsheet for a 233U recycle fuel facility at Oak Ridge uses solvent extraction of nitrate by a 0.3 M secondary amine in a hydrocarbon diluent to prepare acid-deficient uranyl nitrate. This nitrate extraction, along with resin loading and amine regeneration steps, was demonstrated in 14 runs. No significant operating difficulties were encountered. The process is controlled via in-line pH measurements for the acid-deficient uranyl nitrate solutions. Information was developed on pH values for uranyl nitrate solution vs NO3-/U mole ratios, resin loading kinetics, resin drying requirements, and other resin loading process parameters. Calculations made to estimate the capacities of equipment that is geometrically safe with respect to control of nuclear criticality indicate 100 kg/day or more of uranium for single nitrate extraction lines with one continuous resin loading contactor or four batch loading contactors. (auth)

  9. Methane Sulphonic Acid is Green Catalyst in Organic Synthesis

    OpenAIRE

    Pramod Kulkarni

    2015-01-01

    Methane sulphonic acid is an alkanesulphonic acid and its chemical formula is CH3SO3H. MSA is a strong acid having pKa= 1.9 and completely ionized in 0.1 M in an aqueous solution and has small affinity to oxidize organic compounds, less corrosive and toxic than other mineral acids. MSA is also biodegradable and not evolve toxic gases. Therefore MSA is considered as green acid. Therefore its use in organic synthesis attracts many chemists to use in organic synthesis. In this review we describe...

  10. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high......Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...

  11. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl-, NO3-, C2O42-) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author)

  12. Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption.

    Science.gov (United States)

    Sipponen, Mika Henrikki; Pihlajaniemi, Ville; Littunen, Kuisma; Pastinen, Ossi; Laakso, Simo

    2014-10-01

    A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available. PMID:25033327

  13. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    International Nuclear Information System (INIS)

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R2C=O), where R could be H, OH, NH2, or CH3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  14. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  15. Purification of organic acids by chromatography with strong anionic resins: Investigation of uptake mechanisms.

    Science.gov (United States)

    Lemaire, Julien; Blanc, Claire-Line; Lutin, Florence; Théoleyre, Marc-André; Stambouli, Moncef; Pareau, Dominique

    2016-08-01

    Bio-based organic acids are promising renewable carbon sources for the chemical industry. However energy-consuming purification processes are used, like distillation or crystallization, to reach high purities required in some applications. That is why preparative chromatography was studied as an alternative separation technique. In a previous work dealing with the purification of lactic, succinic and citric acids, the Langmuir model was insufficient to explain the elution profiles obtained with a strong anionic resin. Consequently the Langmuir model was coupled with a usual ion-exchange model to take into account the retention of their conjugate bases (tailing and apparent delay observed with succinic and citric acids can be explained by the high affinity of succinate and citrate for resin cationic sites. The model was implemented in a preparative chromatography simulation program in order to optimize operating parameters of our pilot-scale ISMB unit (Improved Simulated Moving Bed). The comparison with experimental ISMB profiles was conclusive. PMID:27373374

  16. Uranium leaching using mixed organic acids produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Both of culture temperature and pH value had impacts on the degree of uranium extraction through changing types and concentrations of mixed organic acids produced by Aspergillus niger, and significant interactions existed between them though pH value played a leading role. And with the change of pH value of mixed organic acids, the types and contents of mixed organic acids changed and impacted on the degree of uranium extraction, especially oxalic acid, citric acid and malic acid. The mean degree of uranium extraction rose to peak when the culture temperature was 25 deg C (76.14 %) and pH value of mixed organic acids was 2.3 (82.40 %) respectively. And the highest one was 83.09 %. The optimal culture temperature (25 deg C) of A. niger for uranium leaching was different from the most appropriate growing temperature (37 deg C). (author)

  17. Effect of Organic Acids Supplement on Performance of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Ján Kopecký

    2012-05-01

    Full Text Available This study was conducted in order to evaluate effect of organic acids on broiler performance. Totally 180 chickens of Ross 308 hybrid were divided to three groups. Experimental group no. 1 (n=60 received acetic acid in drinking water with concentration 0.25% from day 1 to day 42. Experimental group no. 2 (n=60 received citric acid in drinking water with concentration 0.25% from day 1 to day 42. Control group (n=60 received drinking water without any additives. The average body weight, feed consumption, mortality and carcass characteristics were analyzed and compared finally. The results showed no significant effects of diets with addition of organic acids (P<0.05 on body weight. Supplementation of citric acid caused decrease in total feed consumption. Addition of organic acids affected positive total mortality of broiler chickens. There were no significant effects of organic acids supplementation on carcass characteristics.

  18. Unique properties of silver cations in solid-acid catalysis by zeolites and heteropolyacids.

    Science.gov (United States)

    Ono, Yoshio; Baba, Toshihide

    2015-06-28

    Ag(+)-exchanged zeolites exhibit unique catalytic properties caused by the combination of their redox and acidic properties. Partial reduction of Ag(+) ions in zeolites with hydrogen leads to the formation of acidic protons and silver metal particles, which can be observed using X-ray powder diffraction patterns (XRD). By simply evacuating hydrogen from the system, the silver metal particles are returned back to Ag(+) ions and at the same time, acidic protons are eliminated. This interconversion of Ag(+) ions and silver metal or gaseous hydrogen and surface protons is reflexed in the catalytic activities of Ag(+)-exchanged zeolites for acid-catalyzed reactions: the activity of Ag(+)-exchanged Y zeolite (Ag-Y) reversibly changes with the partial pressure of hydrogen. Furthermore, the activity of Ag-Y in the presence of hydrogen is higher than that of H(+)-exchanged Y zeolite (H-Y). Similar phenomena are also observed for the silver salt of dodecatungstophosphoric acid (Ag3PW12O40). Ag(+)-exchanged ZSM-5 zeolite (Ag-ZSM-5) is a very selective catalyst for aromatization of alkanes, alkenes and methanol. Examination of the activation step of lower alkanes revealed that Ag(+) ions dramatically enhance the dehydrogenation of the alkanes via heterolytic dissociation of the alkanes into carbenium ions and hydride species. Ag(+)-exchanged zeolites can also activate methane. The reaction of methane with ethene and benzene gives propene and toluene, respectively. Ag-ZSM-5 is a very stable catalyst under hydrothermal conditions because of the interconversion properties of Ag(+) ions and silver metal in the zeolite. PMID:26018842

  19. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  20. Synthesis and structural characterization of new inorganic–organic hybrid: arsenomolybdate compound with cytosinium cations

    Indian Academy of Sciences (India)

    Meriem Ayed; Brahim Ayed; Amor Haddad

    2015-02-01

    New organic–inorganic hybrid compound, with formula (C4H6N3O)6 [(HAsO4)2Mo6O19].7H2O, was prepared and characterized by IR and UV–visible spectroscopies and X-ray diffraction techniques. Thermal analysis was performed to study their thermal stability. The crystal structure of the title compound (triclinic, space group $P − 1$, = 2) was determined by X-ray diffraction. The compound contains the polyanion [(HAsO4)2Mo6O19]6−, which consists of the six molybdenum octahedral grouped into two parts consisting of four edge-sharing octahedral and two face-sharing octahedral, respectively, these two parts are connected by two corner-sharing O atoms to form a bent Mo6 ring. The polyanion framework derives from the Strandberg type and it is a new isomer. The cytosinium cations (Cyt+) are embedded in the channels and interact with the inorganic framework by way of N-H $\\cdots$ O and O-H $\\cdots$ O hydrogen bonds. Furthermore, the electrochemical property of this compound has been studied.

  1. Ruminal and Abomasal Starch Hydrolysate Infusions Selectively Decrease the Expression of Cationic Amino Acid Transporter mRNA by Small Intestinal Epithelia of Forage-fed Beef Steers

    Science.gov (United States)

    Although cationic amino acids (CAA) are consid-ered essential to maximize optimal growth of cattle, transporters responsible for CAA absorption by bovine small intestinal epithelia have not been described. This study was conducted to test 2 hypotheses: 1) the duo¬denal, jejunal, and ileal epithelia ...

  2. Transport of strontium cation through a hollow fiber supported dichlorobenzene membrane using 18-C-6 crown ether. Nitrate and anion of dinonylnaphtalen sulfonic acid

    International Nuclear Information System (INIS)

    The transport of strontium cation through a hollow fiber supported dichlorobenzene membrane using 18-C-6 crown ether, nitrate and anion of dinonylnaphtalen sulfonic acid has been studied. A permeation device-single hollow fiber module with on-line radiometric detection of strontium using 85Sr tracer was used, (author). 5 refs., 7 figs., 1 tab

  3. Temperature-Induced Aggregate Transitions in Mixtures of Cationic Ammonium Gemini Surfactant with Anionic Glutamic Acid Surfactant in Aqueous Solution.

    Science.gov (United States)

    Ji, Xiuling; Tian, Maozhang; Wang, Yilin

    2016-02-01

    The aggregation behaviors of the mixtures of cationic gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (C12C4(OH)2C12Br2) and anionic amino acid surfactant N-dodecanoylglutamic acid (C12Glu) in aqueous solution of pH = 10.0 have been studied. The mixture forms spherical micelles, vesicles, and wormlike micelles at 25 °C by changing mixing ratios and/or total surfactant concentration. Then these aggregates undergo a series of transitions upon increasing the temperature. Smaller spherical micelles transfer into larger vesicles, vesicles transfer into solid spherical aggregates and then into larger irregular aggregates, and entangled wormlike micelles transfer into branched wormlike micelles. Moreover, the larger irregular aggregates and branched micelles finally lead to precipitation and clouding phenomenon, respectively. All these transitions are thermally reversible, and the transition temperatures can be tuned by varying the mixing ratios and/or total concentration. These temperature-dependent aggregate transitions can be elucidated on the basis of the temperature-induced variations in the dehydration, electrostatic interaction, and hydrogen bonds of the headgroup area and in the hydrophobic interaction between the hydrocarbon chains. The results suggest that the surfactants carrying multiple binding sites will greatly improve the regulation ability and temperature sensitivity. PMID:26750978

  4. Influence of acid rain and organic matter on the adsorption of trace elements on soil

    International Nuclear Information System (INIS)

    Acid rain has become one of the most serious environmental problems. Soil loses its buffering capacity by long exposure to acid rain, and the soil pH value decreases significantly. The acidification of the soil disturbs the adsorption equilibrium of many elements in the soil-water system. Soil is a very complex heterogeneous system, primarily consisting of clay minerals, hydrous oxides and polymeric organic substances, which possess their own characteristic element-adsorbing properties. On the other hand, the intrinsic properties of elements are reflected in their adsorption process as a matter of course. Therefore, both the effects of the pH of acid rain and that of the components of the soil on the adsorption of different elements should be studied when the adsorption process in acid soils is to be clarified. Although leaching of major cations in soil, such as Ca2+, Mg2+ and Al3+, by acid rain, has been extensively studied, relatively little attention has been focused on trace elements which can also seriously affect the ecological system. We studied the acid rain effects on element adsorption by kaolin, forest soil, black soil, and also these soils with Fe- and Mn-oxides or organic matter selectively removed by using the radioactive multitracer technique. (author)

  5. Effects of humic acid and competing cations on metal uptake by Lolium perenne

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2006-01-01

    Within the biotic ligand model, which describes relationships between chemical speciation and metal binding at an organism's surface, multicomponent (long-term) metal uptake by plants has seldom been studied. In the present work, we exposed perennial ryegrass to nutrient solutions with two levels of

  6. Influence of Starch Cationization on Mechanical Properties of Organic / Inorganic Hybrid Material with Montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Duchek, P.; Dlouhý, J.; Šabata, Stanislav; Špírková, Milena

    2010, 132 /08-P-18/. ISBN N. [Eurasia Conference on Chemical Sciences /11./. Dead Sea (JO), 06.10.10-10.10.10] R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : organic/inorganic hybrid * thermoplastic starch * nanocomposite Subject RIV: CC - Organic Chemistry www.euasc2s-11.ju.edu.jo

  7. Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

    Energy Technology Data Exchange (ETDEWEB)

    Bertron, A., E-mail: bertron@insa-toulouse.fr [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Jacquemet, N. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Erable, B. [Université de Toulouse (France); INPT, UPS (France); CNRS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, F-31030 Toulouse (France); Sablayrolles, C. [Université de Toulouse (France); INP (France); LCA (Laboratoire de Chimie Agro-Industrielle), ENSIACET, 4 allée Emile Monso, BP 44 362, 31432 Toulouse Cedex 4 (France); INRA (France); LCA (Laboratoire de Chimie Agro-Industrielle), F-31029 Toulouse (France); Escadeillas, G. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Albrecht, A. [Andra, 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry (France)

    2014-03-01

    Highlights: • Interactions of cement paste and organic acid–nitrate solutions were investigated. • Cement leaching imposed alkaline pH (>10) very rapidly in the liquid media. • Acetic acid action on cement paste was similar to that of classical leaching. • Oxalic acid attack formed Ca-oxalate salts; organic matter in solution decreased. • Nitrate was stable under abiotic conditions and with organic matter. - Abstract: This study investigates the fate of nitrate and organic acids at the bitumen–concrete interface within repository cell for long-lived, intermediate-level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V cement paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the abiotic conditions of the experiments. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching in the absence of organic acids (i.e. carried out with water or strong acids); no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  8. Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

    International Nuclear Information System (INIS)

    Highlights: • Interactions of cement paste and organic acid–nitrate solutions were investigated. • Cement leaching imposed alkaline pH (>10) very rapidly in the liquid media. • Acetic acid action on cement paste was similar to that of classical leaching. • Oxalic acid attack formed Ca-oxalate salts; organic matter in solution decreased. • Nitrate was stable under abiotic conditions and with organic matter. - Abstract: This study investigates the fate of nitrate and organic acids at the bitumen–concrete interface within repository cell for long-lived, intermediate-level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V cement paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the abiotic conditions of the experiments. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching in the absence of organic acids (i.e. carried out with water or strong acids); no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium

  9. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  10. Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates

    Science.gov (United States)

    Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian

    2015-03-01

    Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE

  11. Synthesis and complexation properties towards uranyl cation of carboxylic acid derivatives of p-tert-butyl-calix[6]arene

    International Nuclear Information System (INIS)

    In the fuel reprocessing plants radioactive metals, and more particularly, uranium in UO22+ form in the various installations, have many varied physico-chemical forms and there is a risk of exposure and internal contamination in the nuclear industry. It is necessary to exert a medical control to ensure the protection of the health of the workers. This medical control is done by dosing uranyl cation in the urine of the exposed people. This work forms part of this context. Indeed, we prepared a ligand able to complex the ion uranyl and which is also to be grafted on a solid support. In the family of calixarenes, the calix[6]arenes functionalized by three or four carboxylic functions were selected like chelating molecules of the ion uranyl. The properties of complexation of these calixarenes were studied by potentiometry in methanol, under these conditions balances of protonation and complexation were determined and the constant partners were obtained using the Hyperquad program. We synthesized tri-carboxylic calix[6]arenes comprising of the groupings nitro (NO2) in para position of phenol in order to see the influence of a substitution in para position on the complexation. We also synthesized calix[6]arenes tetra-carboxylic in order to show the role of an additional carboxylic acid grouping. The potentiometric study determined thermodynamic parameters of protonation and complexation of carboxylic calix[6]arenes. The results of the complexation highlighted which complex UO2L corresponding to the ligand para-tert-butyl-calix[6]arene tetra-acid is more stable than that corresponding to the ligand mono-nitro calix[6]arene tri-acid (ΔlogΒ110 = 4.3), and than the effect of the groupings nitro in para position has low influence on the complexation of UO22+. This makes it possible to consider as possible the grafting of the calix[6]arenes which one knows the behaviour of trapping. To this end we synthesized the ligand 23. (author)

  12. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  13. Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids.

    Science.gov (United States)

    Silva, Branca M; Andrade, Paula B; Ferreres, Federico; Seabra, Rosa M; Oliveira, M Beatriz P P; Ferreira, Margarida A

    2005-04-01

    Phenolic compounds, organic acids and free amino acids of quince seeds were determined by HPLC/DAD, HPLC/UV and GC/FID, respectively. Quince seeds presented a phenolic profile composed of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and 3,5-dicaffeoylquinic acids, lucenin-2, vicenin-2, stellarin-2, isoschaftoside, schaftoside, 6-C-pentosyl-8-C-glucosyl chrysoeriol and 6-C-glucosyl-8-C-pentosyl chrysoeriol. Six identified organic acids constituted the organic acid profile of quince seeds: citric, ascorbic, malic, quinic, shikimic and fumaric acids. The free amino acid profile was composed of 21 identified free amino acids and the three most abundant were glutamic and aspartic acids and asparagine. PMID:15702641

  14. CATIONIC CONDUCTIVITY FOR THE CROSSLINKED P [OLIGO (OXYETHYLENE) METHACRYLATE-CO-METHACRYLOYL ALKYLSULFONIC ACID LITHIUM

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengshui; DENG Zhenghua; WAN Guoxiang

    1991-01-01

    Crosslinked copolymers with single Li+ - ionic conductivity were prepared from oligo (oxyethylene) methacrylate (MEOn), methacryloyl alkylsulfonic acid lithium (SAMLi), and oligo (oxyethylene) dimethacrylate (DMEOn ). Li+ -ionic conductivity of the copolymer is improved by crosslinking and presented as a function of polymerization degree (n) in MEOn, comonomeric salt concentration (O/Li), and crosslinking degree .The crosslinked copolymer P (0.7MEO14-0.3DMEO14-SHMLi )without other small molecular additives exhibits an optimum Li+-ionic conductivity of 1.2×10-6 S/cm at 25 ℃ . Dc polarization test in the cell composed of Li/copolymer/Li shows a constant dc ionic conductivity which closes gradually to the ac one with decreasing dc polarization potential.

  15. Gastric emptying of organic acids in the dog.

    Science.gov (United States)

    Blum, A L; Hegglin, J; Krejs, G J; Largiadèr, F; Säuberli, H; Schmid, P

    1976-10-01

    Test meals of 300 ml. of six different organic acids were instilled into the stomach of six healthy mongrel dogs. Citric, acetic, propionic, lactic, tartaric and succinic acid were given in 50, 100, 150, and 200 mN concentrations. 2. During the emptying process, the gastric contents were aspirated and immediately re-instilled at 10 min intervals, and the following parameters were recorded: volume, concentration of the organic anion, pH, hydrogen ion concentration and osmolarity. 3. By multiple stepwise regression analysis, the combination of parameters which most effectively determines gastric emptying rate was found to be: concentration of the organic anion, followed by intragastric volume and number of previous test meals given on the same day. These three parameters appear in the equation for gastric emptying rate in which the individual characteristic of each acid is expressed by a constant. 4. Among the various acids, inhibition of emptying rate increases with rising number of carboxylic groups of the acid and its molecular weight. 5. After proximal gastric vagotomy, emptying rate of organic acids is independent of volume, and emptying approaches an exponential pattern. 6. A model for gastric emptying of organic acids with at least three different receptors is proposed: one for the structure of the organic acid, one for concentration and one for intragastric volume. PMID:10436

  16. Organic acids composition of Cydonia oblonga Miller leaf.

    Science.gov (United States)

    Oliveira, Andreia P; Pereira, José A; Andrade, Paula B; Valentão, Patrícia; Seabra, Rosa M; Silva, Branca M

    2008-11-15

    Organic acid profiles of 36 Cydonia oblonga Miller leaf samples, from three different geographical origins of northern (Bragança and Carrazeda de Ansiães) and central Portugal (Covilhã), harvested in three collection months (June, August and October of 2006), were determined by HPLC/UV (214nm). Quince leaves presented a common organic acid profile, composed of six constituents: oxalic, citric, malic, quinic, shikimic and fumaric acids. C. oblonga leaves total organic acid content varied from 1.6 to 25.8g/kg dry matter (mean value of 10.5g/kg dry matter). Quinic acid was the major compound (72.2%), followed by citric acid (13.6%). Significant differences were found in malic and quinic acids relative abundances and total organic acid contents according to collection time, which indicates a possible use of these compounds as maturity markers. Between June and August seems to be the best period to harvest quince leaves for preparation of decoctions or infusions, since organic acids total content is higher in this season. PMID:26047441

  17. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells

    International Nuclear Information System (INIS)

    Pig kidney renal epithelial cells (LLC-PK1) in culture were used to determine the effects of cyclopiazonic acid (CPA) on the uptake of the transmembrane potential probe, [3H]tetraphenylphosphonium bromide (TPP+). CPA had a significant stimulatory effect on TPP+ accumulation, which occurred in a dose-related manner. TPP+ accumulation in the presence of CPA was significantly reduced by high-potassium media (HK) and carbonylcyanide m-chlorophenylhydrazone (CCCP), but neither HK nor the protonophore CCCP, could completely abolish the stimulatory effect of CPA. The apparent transmembrane potential difference, calculated based on the difference in accumulation of TPP+ in low-potassium and HK media, ranged from -55.9 to -85.7 mV for control cells and -89.4 to -109.0 mV for CPA-treated cells (20 mg CPA/I). The mechanism of CPA stimulation of TPP+ accumulation was not known. However, it was hypothesized that the effect could be a result of alterations in ion pumps or altered membrane permeability

  18. Ferrocenyl-derived electrophilic phosphonium cations (EPCs) as Lewis acid catalysts.

    Science.gov (United States)

    Mallov, Ian; Stephan, Douglas W

    2016-04-01

    Oxidation of diphenylphosphinoferrocene and 1,1'-bis(diphenylphosphino)ferrocene with XeF2, resulted in the formation of CpFe(η(5)-C5H4PF2Ph2) 1 and Fe(η(5)-C5H4PF2Ph2)22 respectively. Subsequent reactions with [SiEt3][B(C6F5)4] yielded [CpFe(η(5)-C5H4PFPh2)][B(C6F5)4] 3 and [Fe(η(5)-C5H4PFPh2)2] [B(C6F5)4]24. PhP(η(5)-C5H4)2Fe 5 was prepared, converted to [PhMeP(η(5)-C5H4)2Fe][O3SCF3] 6 and then to [PhMeP(η(5)-C5H4)2Fe][B(C6F5)4] 7. The ability of the salts 3, 4 and 7 to catalyze Friedel-Crafts dimerization of 1,1-diphenylethylene, dehydrocoupling of phenol and triethylsilane, deoxygenation of acetophenone and hydrodefluorination of 1-fluoropentane were probed. While compound 7 proved to be ineffective, compounds 3 and 4 were useful Lewis acid catalysts. Compounds 3 and 4 were shown to catalyze the deoxygenation of a series of ketones. PMID:26911641

  19. Changes of Soil Water, Organic Matter, and Exchangeable Cations Along a Forest Successional Gradient in Southern China

    Institute of Scientific and Technical Information of China (English)

    YAN Jun-Hua; ZHOU Guo-Yi; ZHANG De-Qiang; CHU Guo-Wei

    2007-01-01

    Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus massoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SBC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K+ to Na+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca2+ concentration among the three forests and Ca2+:K+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.

  20. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  1. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth.

    Directory of Open Access Journals (Sweden)

    Priyanka Das

    Full Text Available Cationic amino acid transporters (mCAT1 and mCAT2B regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.

  2. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, K.K.; Zidovska, A.; Ahmad, A.; Bouxsein, N.F.; Evans, H.M.; McAllister, C.S.; Samuel, C.E.; Safinya, C.R.; /SLAC

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

  3. Recombinant microorganisms for increased production of organic acids

    Science.gov (United States)

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  4. Contribution to the study and use of cationic solvents. Extraction of copper and ammonium ions by di-2-ethylhexyl phosphoric acid in a pulsed column

    International Nuclear Information System (INIS)

    This study is devoted to the extraction of metals by D2EHPA and especially in the case of competitive reactions, as occurs when the pH of the aqueous phase is regulated by a base. The work is divided into five chapters. Part one concerns the interactions of a 0.3 M D2EHPA solution with an aqueous phase. A purification method certain to eliminate mono 2-ethylhexyl phosphoric acid (M2EHPA) has been developed. From the evaluation of the separation coefficients it is possible: to calculate the D2EHPA dissociation constant in the aqueous phase (pka = 1.72 at 22 deg. C); to study the pH effect on the separation of M2EHPA. Part two is devoted to the mechanisms of copper and ammonium ion extraction by D2EHPA. At small extractions the following equilibria correctly describe the separation of the two cations: Cu2+ + 2 (H2X2) ↔KC (CuX2, 2HX) + 2H+, NH4+ + 2 (H2X2) ↔KN (NH4X, 3HX) + H+. Extraction of the ammonium ion remains slight, even at strong concentrations in the aqueous phase, whereas the cupric compound of D2EHPA polymerises. Each cation influence the separation of the other by lowering the concentration of free extractant molecules. Part three deals with the problems of modelization of the chemical system. The expression of the equilibrium constants and the evaluation of the activity coefficients according to the Debye-Hueckel theory allow the concentrations of compounds extracted in the organic phase to be calculated, the characteristics of the organic phase (concentrations, pH) being known. By identifying the parameters of the model the constants of the two equilibria described above may be obtained KN = 4,6.10-3 Mol-1; Kc = 10-3. The last two parts concern the application of the process in a pulsed column. After a trial characterisation of the axial dispersion phenomenon an attempt was made to apply the piston-diffusion model to the profiles of matter obtained. The weakness of such a model is shown, being in our opinion inadequate to describe correctly the

  5. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    International Nuclear Information System (INIS)

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  6. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  7. Task-specific ionic liquids incorporating alkyl phosphate cations for extraction of U(VI) from nitric acid medium. Synthesis, characterization, and extraction performance

    International Nuclear Information System (INIS)

    Imidazole-based task-specific ionic liquids designed to extract U(VI) from nitric acid medium were synthesized through the introduction of tributyl phosphate functional group in cationic of these ionic liquids. Their structures were confirmed by Fourier transform infrared spectrometer, nuclear magnetic resonance spectrum and element analysis. These task-specific ionic liquids can be used simultaneously as solvents and extractants for extracting U(VI) in nitric acid medium. Preliminary extraction data showed that they could be efficiently used to extract U(VI) in nitric acid medium at room temperature. (author)

  8. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG0, δ S0 and δH0) have also been calculated for the adsorption of Pb2+, Cs+, Fe3+, Cd2+, Cu+2, Zn2+, Co2+ and Eu3+ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe3+, Co2+, Cu+2, Zn2+, Cd2+, Cs+, Pb2+ and Eu3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  9. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  10. Fluorescence properties of riboflavin-functionalized mesoporous silica SBA-15 and riboflavin solutions in presence of different metal and organic cations

    Science.gov (United States)

    Lewandowski, Dawid; Schroeder, Grzegorz; Sawczak, Mirosław; Ossowski, Tadeusz

    2015-10-01

    Riboflavin was covalently linked to mesoporous SBA-15 silica surface via grafting technique. Then fluorescence properties of the system obtained were analyzed in the presence of several metal and organic cations. Both quenching and strengthening of fluorescence as well as significant changes in the maximum fluorescence wavelength were observed. The results were compared with absorption and fluorescence data obtained for riboflavin water solutions.

  11. Effects of organic solvent and cationic additive on capillary electrophoresis of peptides

    International Nuclear Information System (INIS)

    Capillary electrophoresis (CE) of nine peptides namely, bradykinin, bradykinin fragment 1-5, substance P, Arg8-vasopressin, luteinizing hormone-releasing hormone (LHRH), bombesin, leucine-enkephalin, methionine-enkephalin and oxytocin were carried out using 0.5 % and 1.0 % formic acid (FA) as the separation buffers, added with acetonitrile (ACN) and triethylamine (TEA) as an additive at low pH. The electrophoretic behavior of these peptides was examined at different concentration of TEA (0, 10, 20, 30, 40 and 50 mM), and ACN (30, 40, 50, 60, 70 %) at their respective measured final pH. The results showed that all nine peptides were fully resolved with addition of 10-20 mM TEA. Peak efficiency was improved significantly by increasing TEA concentration up to 40 mM where 800 000 m-1 was obtained. Without TEA, the closely related enkephalins were co-migrating. Interestingly, by addition of as little as 5 mM TEA has sufficient to separate them almost at baseline. Increasing ACN to 40 % has shortened the analysis time by ca. 1 min. However, further increase of ACN can cause peak broadening and current instability. (author)

  12. Effects of organic solvent and cationic additive on capillary electrophoresis of peptides

    International Nuclear Information System (INIS)

    Capillary electrophoresis (CE) of nine peptides namely, bradykinin, bradykinin fragment 1-5, substance P, Arg8-vasopressin, luteinizing hormone-releasing hormone (LHRH), bombesin, leucine-enkephalin, methionine-enkephalin and oxytocin were carried out using 0.5 % and 1.0 % formic acid (FA) as the separation buffers, added with acetonitrile (ACN) and triethylamine (TEA) as an additive at low pH. The electrophoretic behaviour of these peptides was examined at different concentration of TEA (0, 10, 20, 30, 40 and 50 mM), and ACN (30, 40, 50, 60, 70 %) at their respective measured final pH. The results showed that all nine peptides were fully resolved with addition of 10 - 20 mM TEA. Peak efficiency was improved significantly by increasing TEA concentration up to 40 mM where 800 000 m-1 was obtained. Without TEA, the closely related enkephalins were co-migrating. Interestingly, by addition of as little as 5 mM TEA has sufficient to separate them almost at baseline. Increasing ACN to 40 % has shortened the analysis time by ca. 1 min. However, further increase of ACN can cause peak broadening and current instability. (author)

  13. Organic acid adsorption and mineralization in oxisols with different textures

    Directory of Open Access Journals (Sweden)

    Felipe Vaz Andrade

    2013-08-01

    Full Text Available Organic acids play an important role in the nutritional conditions of plants. Their relevance is related to their formation dynamics, mineralization rate and adsorption by soil colloids. This study was carried out to evaluate the dynamics of mineralization and adsorption of organic acid (acetic acid - AA, citric acid - CA and humic acid - HA applied to the soil. Samples of two Oxisols were used: Rhodic Haplustox (LV and Typic Haplustox (LVA. The mineralization experiment was arranged in a 2 x 3 x 5 factorial design, based on the factors: two soils (LV and LVA x three organic acid (OA types (AA, CA and HA x five OA rates (0, 1, 2, 4, and 8 mmol dm-3. Organic carbon mineralization in samples was measured by the C-CO2 efflux, produced by the microbial activity, in a 30-day (measurements after 4, 8, 12, 21, and 30 days and in a 4-day experiment (measured after 24, 48, 72 and 96 h. Organic acid adsorption was tested in a 2 x 2 x 5 x 4 factorial design, with the factors and levels: two Oxisols; two organic acids (AA and CA; five OA rates (0, 1, 2, 4, and 8 mmol dm-3 and four adsorption periods (6, 24, 48, and 72 h. The C-CO2 production of soil treated with CA was highest. In the adsorption experiment, the affinity of CA to soil adsorption sites was greatest. The adsorption of organic acids to soils may be an important mechanism by which bioavailability and thus mineralization capacity by microbial activity are reduced.

  14. 2-Acrylamido-2-methyl-1-propanesulfonic Acid Grafted Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Acid-/Oxidative-Resistant Cation Exchange for Membrane Electrolysis.

    Science.gov (United States)

    Pandey, Ravi P; Das, Arindam K; Shahi, Vinod K

    2015-12-30

    For developing acid-/oxidative-resistant aliphatic-polymer-based cation-exchange membrane (CEM), macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was carried out by controlled chemical grafting of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). To introduce the unsaturation suitable for chemical grafting, dehydrofluorination of commercially available PVDF-co-HFP was achieved under alkaline medium. Sulfonated copolymer (SCP) was prepared by the free radical copolymerization of dehydofluorinated PVDF-co-HFP (DHPVDF-co-HFP) and AMPS in the presence of free radical initiator. Prepared SCP-based CEMs were analyzed for their morphological characteristics, ion-exchange capacity (IEC), water uptake, conductivity, and stabilities (mechanical, chemical, and thermal) in comparison with state-of-art Nafion117 membrane. High bound water content avoids the membrane dehydration, and most optimal (SCP-1.33) membrane exhibited about ∼2.5-fold high bound water content in comparison with that of Nafion117 membrane. Bunsen reaction of iodine-sulfur (I-S) was successfully performed by direct-contact-mode membrane electrolysis in a two-compartment electrolytic cell using different SCP membranes. High current efficiency (83-99%) confirmed absence of any side reaction and 328.05 kJ mol-H2(-1) energy was required for to produce 1 mol of H2 by electrolytic cell with SCP-1.33 membrane. In spite of low conductivity for reported SCP membrane in comparison with that of Nafion117 membrane, SCP-1.33 membrane was assessed as suitable candidate for electrolysis because of its low-cost nature and excellent stabilities in highly acidic environment may be due to partial fluorinated segments in the membrane structure. PMID:26642107

  15. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    OpenAIRE

    Muhammad Faisal

    2009-01-01

    This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes) with or without oxidant (H2O2). Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa), acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the...

  16. Engineering of CH3 NH3 PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties.

    Science.gov (United States)

    Peng, Wei; Miao, Xiaohe; Adinolfi, Valerio; Alarousu, Erkki; El Tall, Omar; Emwas, Abdul-Hamid; Zhao, Chao; Walters, Grant; Liu, Jiakai; Ouellette, Olivier; Pan, Jun; Murali, Banavoth; Sargent, Edward H; Mohammed, Omar F; Bakr, Osman M

    2016-08-26

    The number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties. PMID:27468159

  17. Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal-Organic Framework.

    Science.gov (United States)

    Colinas, Ian R; Silva, Rachel C; Oliver, Scott R J

    2016-02-16

    We report the capture of ppm-level aqueous perchlorate in record capacity and kinetics via the complete anion exchange of a cationic metal-organic framework. Ambient conditions were used for both the synthesis of silver 4,4'-bipyridine nitrate (SBN) and the exchange, forming silver 4,4'-bipyridine perchlorate (SBP). The exchange was complete within 90 min, and the capacity was 354 mg/g, representing 99% removal. These values are greater than current anion exchangers such as the resins Amberlite IRA-400 (249 mg/g), Purolite A530E (104 mg/g), and layered double hydroxides (28 mg/g). Moreover, unlike resins and layered double hydroxides, SBN is fully reusable and displays 96% regeneration to SBN in nitrate solution, with new crystal formation allowing the indefinite cycling for perchlorate. We show seven cycles as proof of concept. Perchlorate contamination of water represents a serious health threat because it is a thyroid endocrine disruptor. This noncomplexing anionic pollutant is significantly mobile and environmentally persistent. Removal of other anionic pollutants from water such as chromate, pertechnetate, or arsenate may be possible by this methodology. PMID:26765213

  18. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide.

    Science.gov (United States)

    Malina, Amir; Shai, Yechiel

    2005-09-15

    Many studies have shown that an amphipathic structure and a threshold of hydrophobicity of the peptidic chain are crucial for the biological function of AMPs (antimicrobial peptides). However, the factors that dictate their cell selectivity are not yet clear. In the present study, we show that the attachment of aliphatic acids with different lengths (10, 12, 14 or 16 carbon atoms) to the N-terminus of a biologically inactive cationic peptide is sufficient to endow the resulting lipopeptides with lytic activity against different cells. Mode-of-action studies were performed with model phospholipid membranes mimicking those of bacterial, mammalian and fungal cells. These include determination of the structure in solution and membranes by using CD and ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy, membrane leakage experiments and by visualizing bacterial and fungal damage via transmission electron microscopy. The results obtained reveal that: (i) the short lipopeptides (10 and 12 carbons atoms) are non-haemolytic, active towards both bacteria and fungi and monomeric in solution. (ii) The long lipopeptides (14 and 16 carbons atoms) are highly antifungal, haemolytic only at concentrations above their MIC (minimal inhibitory concentration) values and aggregate in solution. (iii) All the lipopeptides adopt a partial alpha-helical structure in 1% lysophosphatidylcholine and bacterial and mammalian model membranes. However, the two short lipopeptides contain a significant fraction of random coil in fungal membranes, in agreement with their reduced antifungal activity. (iv) All the lipopeptides have a membranolytic effect on all types of cells assayed. Overall, the results reveal that the length of the aliphatic chain is sufficient to control the pathogen specificity of the lipopeptides, most probably by controlling both the overall hydrophobicity and the oligomeric state of the lipopeptides in solution. Besides providing us with basic

  19. Synthesis and Characterization of Cationic Glycidyl-Based Poly(aminoester-Folic Acid Targeting Conjugates and Study on Gene Delivery

    Directory of Open Access Journals (Sweden)

    Yu Che Hsiao

    2012-07-01

    Full Text Available A new poly(aminoester (EPAE-FA containing folic acid and amino groups in the backbone and side chain was synthesized. EPAE-FA self-assembled readily with the plasmid DNA (pCMV-βgal in HEPES buffer and was characterized by dynamic light scattering, zeta potential, fluorescence images, and XTT cell viability assays. To evaluate the transfection effect of graft ratio of FA on the EPAE system, EPAE-FA polymers with two different graft ratios (EPAE-FA12k and EPAE-FA14k were also prepared. This study found that all EPAE-FA polymers were able to bind plasmid DNA and yielded positively charged complexes with nano-sized particles ( < 200 nm. To assess the transfection efficiency mediated by EPAE and EPAE-FA polymers, we performed in vitro transfection activity assays using FR-negative (COS-7 and FR-positive (HeLa cells. The EPAE-FA12k/DNA and EPAE-FA14k/DNA complexes were able to transfect HeLa cell in vitro with higher transfection efficiency than PEI25k/DNA at the similar weight ratio. These results demonstrated that the introduction of FA into EPAE system had a significant effect on transferring ability for FR-positive cells (HeLa. Examination of the cytotoxicity of PEI25k and EPAE-FA system revealed that EPAE-FA system had lower cytotoxicity. In this paper, EPAE-FA seemed to be a novel cationic poly(aminoester for gene delivery and an interesting candidate for further study.

  20. Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1 regulation during development and maturation of the kidney proximal tubule.

    Directory of Open Access Journals (Sweden)

    Thomas F Gallegos

    Full Text Available Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways. Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.

  1. Influência da matéria orgânica na capacidade de troca de cations do solo Cation-exchange capacity of the organic fraction of soils

    Directory of Open Access Journals (Sweden)

    F. da Costa Verdade

    1956-01-01

    . The cation-exchange capacity and other data on these soils show that the organic fraction must play an important role in the cation-exchange process. The study of the adsorptive capacity of the organic matter was done by destruction of the organic fraction of the soil by 12% hydrogen peroxide. For heavy textured soils the results show that the organic fraction most resistant to oxidation had a higher cation-exchange capacity than the portion first oxidized. For sandy soils all organic fractions had the same magnitude in the base adsorbing power. It was observed that the organic matter seems to inhibit the base-exchange capacity of the mineral fraction. Plotting the percentage of cation-exchange capacity of the organic fraction against the percentage of organic carbon in the soil, a curve is determined which shows the inhibition phenomenon. The results were rather scattered and the experiments are now being repeated to elucidate these observations. The organic cation-exchange capacity of soils in São Paulo is 30-40% for fine textured soils and 50-60% for sandy soils. Since most of the farming land in São Paulo belongs to the sandy soil group called Bauru, the problem of maintaining or increasing the fertility of these soils is dependent on their organic matter content.

  2. Influence of "alternative" C-terminal amino acids on the formation of [b3 + 17 + Cat]+ products from metal cationized synthetic tetrapeptides.

    Science.gov (United States)

    Anbalagan, V; Silva, A T M; Rajagopalachary, S; Bulleigh, K; Talaty, E R; Van Stipdonk, M J

    2004-05-01

    The aim of this study was to investigate the dissociation patterns, and in particular the relative abundance of [b(3) + 17 + Cat](+), for peptides with C-termini designed to allow transfer of the -OH required to generate the product ion, but not necessarily as the most favored pathway. Working with the hypothesis that formation of a five-membered ring intermediate, including intramolecular nucleophilic attack by a carbonyl oxygen atom, is an important mechanistic step, several model peptides with general sequence AcFGGX were synthesized, metal cationized by electrospray ionization and subjected to collision-induced dissociation (CID). The amino acid at position X was one that either required a larger ring intermediate (beta-alanine, gamma-aminobutyric acid and epsilon-amino-n-caproic acid to generate six-, seven- or nine- membered rings, respectively) to transfer -OH, lacked a structural element required for nucleophilic attack (aminoethanol) or prohibited cyclization because of the inclusion of a rigid ring (p- and m-aminobenzoic acid). For Ag(+), Li(+) and Na(+) cationized peptides, our results show that amino acids requiring the adoption of larger ring intermediates suppressed the formation of [b(3) + 17 + Cat](+), while amino acids that prohibit cyclization eliminated the reaction pathway completely. Formation of [b(3) - 1 + Cat](+) from the alkali metal cationized versions was not a favorable process upon suppression or elimination of the [b(3) + 17 + Cat](+) pathway: the loss of H(2)O to form [M - H(2)O + Cat](+) was instead the dominant dissociation reaction observed. Multiple-stage dissociation experiments suggest that [M - H(2)O + Cat](+) is not [b(4) - 1 + Cat](+) arising from the loss of H(2)O from the C-terminus, but may instead be a species that forms via a mechanism involving the elimination of an oxygen atom from an amide group. PMID:15170745

  3. Effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline in nitric acid electrolyte

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; WANG Xindong; MENG Xu

    2005-01-01

    The effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline were cartied out under cyclovoltammetric conditions using nitrates of Li+, Na+, K+, and Cs+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the first scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of H+. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M+.

  4. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    Science.gov (United States)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  5. Formation and Crystal Structures of Lewis Acid Adducts of Ph3PCHP(O)Ph2; New Neutral and Cationic Species

    OpenAIRE

    Petz, Wolfgang; Neumüller, Bernhard; Aicher, Kathrin; Öxler, Florian

    2010-01-01

    Abstract The carbodiphosphorane C(PPh3)2 (1) is easily hydrolyzed from wet air to give the ylide Ph3PCHP(O)Ph2 (2), which forms addition compounds with various Lewis acids to give neutral or cationic compounds. According to pairs of electrons at the central carbon atom and the oxygen atom, respectively, addition compounds with coordination modes A (via oxygen), B (via carbon), and C (via carbon and oxygen) were isolated either as by-products from reactions of Lewis acids with 1 (co...

  6. Contribution to the study of the physico-chemical mechanisms of metallic cation extraction by alkylphosphoric acids. Extraction of zirconium (IV) by di-2-ethylhexyl phosphoric acid (DEHPA)

    International Nuclear Information System (INIS)

    Extraction of zirconium, especially at high concentration (0.1M), by dodecane diluted DEHPA (HA) from hydrochloric or nitric aqueous phases of 0.1 to 10 M acidity was studied. The composition, structure and polymerisation of the complexes extracted were determined by chemical analysis, viscosimetry, infrared spectrometry and light scattering. A Zr(OH)2A2.2HNO3, type structure is proposed for these complexes instead of the generally accepted form: Zr(OH)2(NO3)2.2HA. Similarly in hydrochloric solution: Zr(OH)2A2.2HCl. Polymerisation in the organic phase results from the juxtaposition of two factors; firstly zirconium saturation (formation of bridges by DEHPA between zirconium atoms) and secondly the nature the equeous phase. In slightly acid hydrochloric solution (pH = 1.3) the aqueous plymers of zirconium are extracted in the organic phase as polynuclear complexes; in nitric solution no polynuclear complexes are observed but the nitric acid molecules extracted set up hydrogen bonds which explain the increased viscosity and gelification of the organic phases

  7. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author)

  8. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  9. The Roles of Organic Acids in C4 Photosynthesis

    Science.gov (United States)

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  10. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Khalaji, A. D., E-mail: alidkhalaji@yahoo.com [Golestan University, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Maddahi, E. [Iran University of Science & Technology, Ms.C Educated, Department of Chemistry (Iran, Islamic Republic of); Dusek, M.; Fejfarova, K. [Institute of Physics of the ASCR, v.v.i. (Czech Republic); Chow, T. J. [Academia Sinica, Institute of Chemistry (China)

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  11. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    Science.gov (United States)

    Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.

    2015-12-01

    Metal-free organic compounds 24-SC (( E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC (( E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, 1H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  12. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    International Nuclear Information System (INIS)

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, 1H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC

  13. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms. PMID:25953362

  14. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells

    International Nuclear Information System (INIS)

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit 14C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited 14C-TEA uptake; IC50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5 μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with Ki values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7 μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics

  15. Sugars, organic acids, minerals and lipids in jabuticaba

    Directory of Open Access Journals (Sweden)

    Annete de Jesus Boari Lima

    2011-06-01

    Full Text Available The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed of the Paulista (Plinia cauliflora and Sabará (Plinia jaboticaba jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.

  16. 肾脏有机阳离子转运体家族研究进展%Progress in renal organic cation transporters family

    Institute of Scientific and Technical Information of China (English)

    谭朝丹; 马越鸣; 钟杰

    2012-01-01

    Renal drug transporters play an important role in drug distribution and elimination in the kidney. Renal organic cation transporters family was associated with the many drugs used in clinic. This article reviews the recent advances in members of the renal organic cation transporters family with their characteristics, influence factors, and experimental methods.%肾脏转运体在肾脏处置药物过程中发挥重要作用.临床所用药物与肾脏有机阳离子转运体家族密切相关.本文对肾脏有机阳离子转运体家族的主要成员及其特征、影响因素以及实验方法等研究进展进行综述.

  17. Organic acids emissions from natural-gas-fed engines

    Science.gov (United States)

    Zervas, Efthimios; Tazerout, Mohand

    A natural-gas-fed spark-ignition engine, operating under lean conditions, is used for the study of the organic acids exhaust emissions. These pollutants are collected by passing a sample of exhaust gas into deionised water. The final solution is directly analysed by HPLC/UV at 204 nm. Only formic acid is emitted in detectable concentration under the experimental conditions used. Its concentration decreases with the three engine operating parameters studied: spark advance, volumetric efficiency and fuel/air equivalence ratio. Exhaust formic acid concentration is also linked with exhaust oxygen concentration and exhaust temperature. A comparison with other engines (SI engines fed with gasoline and compression ignition engines) from bibliographic data proves that natural-gas-fed engines emit less organic acids than the other two types of engines.

  18. Inhibition of Gene Expression of Organic Cation/Carnitine Transporter and Antioxidant Enzymes in Oxazaphosphorines-Induced Acute Cardiomyopathic Rat Models

    OpenAIRE

    Sayed-Ahmed, Mohamed M; Meshan Lafi Aldelemy; Hafez, Mohamed M.; Al-Shabanah, Othman A

    2012-01-01

    It is well documented that high therapeutic doses of oxazaphosphorines, cyclophosphamide (CP) and ifosfamide (IFO), are associated with cardiomyopathy. This study investigated whether oxazaphosphorines alter the expression of organic cation/carnitine transporter (OCTN2) and antioxidant genes and if so, whether these alterations contribute to CP and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of six treatment groups namely, control, L carnitine, CP, IFO, CP p...

  19. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    OpenAIRE

    Mosayeb Heshmati; Arifin Abdu; Shamshuddin Jusop; Nik M. Majid

    2011-01-01

    Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC) and Soil Aggregate Stability (SAS) that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i) to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii) to evaluate the influence of lan...

  20. Chloroacetic acids - Degradation intermediates of organic matter in forest soil

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Schröder, P.; Forczek, Sándor; Uhlířová, H.; Fuksová, Květoslava; Rohlenová, Jana

    2007-01-01

    Roč. 39, č. 1 (2007), s. 382-385. ISSN 0038-0717 R&D Projects: GA ČR GA522/02/0874; GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Keywords : trichloroacetic acid * dichloroacetic acid * chlorination * soil organic matter Subject RIV: EF - Botanics Impact factor: 2.580, year: 2007

  1. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Dirk Taubert

    Full Text Available BACKGROUND: The etiology of neurodegenerative disorders, such as the accelerated loss of dopaminergic neurons in Parkinson's disease, is unclear. Current hypotheses suggest an abnormal function of the neuronal sodium-dependent dopamine transporter DAT to contribute to cell death in the dopaminergic system, but it has not been investigated whether sodium-independent amine transporters are implicated in the pathogenesis of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: By the use of a novel tandem-mass spectrometry-based substrate search technique, we have shown that the dopaminergic neuromodulators histidyl-proline diketopiperazine (cyclo(his-pro and salsolinol were the endogenous key substrates of the sodium-independent organic cation transporter OCT2. Quantitative real-time mRNA expression analysis revealed that OCT2 in contrast to its related transporters was preferentially expressed in the dopaminergic regions of the substantia nigra where it colocalized with DAT and tyrosine hydroxylase. By assessing cell viability with the MTT reduction assay, we found that salsolinol exhibited a selective toxicity toward OCT2-expressing cells that was prevented by cyclo(his-pro. A frequent genetic variant of OCT2 with the amino acid substitution R400C reduced the transport efficiency for the cytoprotective cyclo(his-pro and thereby increased the susceptibility to salsolinol-induced cell death. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that the OCT2-regulated interplay between cyclo(his-pro and salsolinol is crucial for nigral cell integrity and that a shift in transport efficiency may impact the risk of Parkinson's disease.

  2. Influence of a 4-aminomethylbenzoic acid residue on competitive fragmentation pathways during collision-induced dissociation of metal-cationized peptides.

    Science.gov (United States)

    Osburn, Sandra; Ochola, Sila; Talaty, Erach; Van Stipdonk, Michael

    2007-01-01

    Formation of [bn+17+cat]+ is a prominent collision-induced dissociation (CID) pathway for Li+- and Na+-cationized peptides. Dissociation of protonated and Ag+-cationized peptides instead favors formation of the rival bn+/[bn-1+cat]+ species. In this study the influence of a 4-aminomethylbenzoic acid (4AMBz) residue on the relative intensities of [b(3)-1+cat]+ and [b(3)+17+cat]+ fragment ions was investigated using several model tetrapeptides including those with the general formula A(4AMBz)AX and A(4AMBz)GX (where X=G, A, V). For Li+- and Na+-cationized versions of the peptides there was a significant increase in the intensity of [b(3)-1+cat]+ for the peptides that contain the 4AMBz residue, and in some cases the complete elimination of the [b(3)+17+cat]+ pathway. The influence of the 4AMBz residue may be attributed to the fact that [b(3)-1+cat]+ would be a highly conjugated species containing an aromatic ring substituent. Comparison of CID profiles generated from Na+-cationized AAGV and A(4AMBz)GV suggests an apparent decrease in the critical energy for generation of [b(3)-1+Na]+ relative to that of [b(3)+17+Na]+ when the aromatic amino acid occupies a position such that it leads to the formation of the highly conjugated oxazolinone, thus leading to an increase in formation rate for the former compared to the latter. PMID:17902197

  3. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal-organic framework

    Science.gov (United States)

    SK, Mostakim; Grzywa, Maciej; Volkmer, Dirk; Biswas, Shyam

    2015-12-01

    The modulated synthesis of the thienothiophene based zirconium metal-organic framework (MOF) material having formula [Zr6O4(OH)4(DMTDC)6]·4.8DMF·10H2O (1) (H2DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl4, H2DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl4/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achieved by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N2 and CO2 sorption analyses suggest that the material possesses remarkably high microporosity (SBET=1236 m2 g-1; CO2 uptake=3.5 mmol g-1 at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu2+ over Co2+ and Ni2+ ions.

  4. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs.

    Science.gov (United States)

    Cervantes-Ramírez, M; Mendez-Trujillo, V; Araiza-Piña, B A; Barrera-Silva, M A; González-Mendoza, D; Morales-Trejo, A

    2013-01-01

    Leucine (Leu) participates in the activity of cationic amino acid (aa) transporters. Also, branched-chain aa [Leu, isoleucine (Ile), and valine (Val)] share intestinal transporters for absorption. We conducted an experiment with 16 young pigs (body weight of about 16 kg) to determine whether Leu and Ile affect expression of aa transporters b(0,+) and CAT-1 in the jejunum and expression of myosin in muscle, as well as serum concentration of essential aa, and growth performance in pigs. Dietary treatments were: wheat-based diets fortified with Lys, Thr, and Met; basal diet plus 0.50% Leu; basal diet plus 0.50% Ile, and basal diet plus 0.50% Leu and 0.50% Ile. After 28 days, the pigs were sacrificed to collect blood, jejunum, and semitendinosus and longissimus muscle samples. The effects of single and combined addition of Leu and Ile were analyzed. Leu alone or combined with Ile significantly decreased daily weight gain and reduced feed conversion. Leu and Ile, alone or in combination, significantly decreased expression of b(0,+) and significantly increased CAT-1. Ile alone or combined with Leu significantly decreased myosin expression in semitendinosus and significantly decreased it in longissimus muscle. Leu alone significantly decreased Lys, Ile and Thr serum concentrations; Ile significantly decreased Thr serum concentration; combined Leu and Ile significantly decreased Thr and significantly increased Val serum concentration. We conclude that dietary levels of Leu and Ile affect growth performance, expression of aa transporters and myosin, and aa serum concentrations in pigs. PMID:23408397

  5. Expression of cationic amino acid transporters, carcass traits, and performance of growing pigs fed low-protein amino acid-supplemented versus high protein diets.

    Science.gov (United States)

    Morales, A; Grageola, F; García, H; Araiza, A; Zijlstra, R T; Cervantes, M

    2013-01-01

    Free amino acids (AA) appear to be absorbed faster than protein-bound AA (PB-AA). We conducted an experiment to assess the effect of feeding pigs with a partially free (F-AA) or totally PB-AA diet on expression of selected genes and performance of pigs. The expression of cationic AA transporters b(0,+) and CAT-1 in intestinal mucosa, liver, and longissimus (LM) and semitendinosus (SM) muscles, as well as that of myosin in LM and SM, was analyzed. Twelve pigs (31.7 ± 2.7 kg) were used. The F-AA diet was based on wheat, supplemented with 0.59% L-Lys, 0.33% L-Thr, and 0.10% DL-Met. The PB-AA diet was formulated with wheat-soybean meal. Average daily feed intake was 1.53 kg per pig. The expression of b(0,+) and CAT-1 was analyzed in jejunal and ileal mucosa, liver, LM, and SM; myosin expression was also analyzed in both muscles. Pigs fed the PB-AA diet tended to have higher weight gain and feed efficiency (P pigs fed the F-AA diet; CAT-1 tended to be lower in liver but higher in LM of PB-AA pigs. Myosin expression was not affected. Intestinal AA absorption was faster in pigs fed the F-AA diet, but AA uptake by the liver seemed to be faster in pigs fed the PB-AA. Performance and expression of AA transporters and myosin suggest that the dietary content of free or protein-bound AA does not affect their availability for protein synthesis in pigs. PMID:24222247

  6. Comparison of fatty acid composition in conventional and organic milk

    Directory of Open Access Journals (Sweden)

    Anka Popović Vranješ

    2010-03-01

    Full Text Available The goal of the scientific research was to establish the differences between fatty acid composition in conventional milk and milk produced according to the organic production principles. In the period between February and December in 2009, the samples of raw conventional milk were analysed using the gas chromographic method to determine the fatty acid composition. Conventional milk was produced at the farm with around 700 dairy cows of Holstein breed. The farm is located in the Vrbas municipality. Organic milk was sampled from ten smaller farms with 12 dairy cows of Simmental breed on the average, located in clean environment of Fruška Gora slopes (Grabovo settlement. The results of fatty acids content were processed with the statistical package (Statistica 9, and a significant differences were determined with t-test and shown as statistically significant (p0.05. The ratio of omega-6 to omega-3 in organic milk was lower than in conventional milk, which is crucial to human health. The differences in fatty acid composition between conventional and organic milk may result from different feeding practices, because the organic breeding of cows is primarily based on grazing, while the conventional breeding implies mixed ration.

  7. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    OpenAIRE

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrati...

  8. Structure of seven organic salts assembled from 2,6-diaminopyridine with monocarboxylic acids, dicarboxylic acids, and tetracarboxylic acids

    Science.gov (United States)

    Gao, Xingjun; Zhang, Huan; Wen, Xianhong; Liu, Bin; Jin, Shouwen; Wang, Daqi

    2015-08-01

    Studies concentrating on non-covalent interactions between the organic base of 2,6-diaminopyridine, and carboxylic acids have led to an increased understanding of the role 2,6-diaminopyridine in binding with carboxylic acid derivatives. Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the carboxylic acids as nicotinic acid, o-chlorobenzoic acid, 1,3-benzodioxole-5-carboxylic acid, 3,5-dinitrosalicylic acid, 4-nitro-phthalic acid, 1,4-cyclohexanedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid. The seven crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. All structures adopted the hetero R22(8) supramolecular synthons. The supramolecular architectures bear extensive Nsbnd H⋯N, Osbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, and CH⋯O associations as well as other nonbonding contacts as CHsbnd N, CH2sbnd O, π-π, C-π, O-π, Cl-π, Clsbnd O, and Osbnd O interactions. The role of weak and strong hydrogen bonding in the crystal packing is ascertained.

  9. Clinical CYP3A inhibitor alternatives to ketoconazole, clarithromycin and itraconazole, are not transported into the liver by hepatic organic anion transporting polypeptides and organic cation transporter 1.

    Science.gov (United States)

    Higgins, J William; Ke, Alice B; Zamek-Gliszczynski, Maciej J

    2014-11-01

    Ketoconazole is no longer available for clinical determination of worst-case victim drug-drug interaction (DDI) potential for cytochrome P450 3A (CYP3A)-substrate drugs; clarithromycin and itraconazole are the proposed replacements. Ketoconazole DDIs are described by unbound systemic exposures due to absence of carrier-facilitated hepatic uptake, but this aspect of clarithromycin and itraconazole disposition has not been investigated. At present, transport of clarithromycin, itraconazole, and hydroxyitraconazole by hepatic organic anion transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1) was examined in vitro and in vivo. As for ketoconazole, uptake of clarithromycin, itraconazole, and hydroxyitraconazole into OATP1B1, OATP1B3, OATP2B1, and OCT1 expressing human embryonic kidney 293 (HEK293) cells was not greater than in vector controls. Uptake into these HEK293 cells and human hepatocytes was not impaired by the prototypical OATP, OCT, and sodium/taurocholate cotransporting polypeptide inhibitors bromosulfophthalein, imipramine, and taurocholate, respectively. In contrast, uptake of the positive controls, atorvastatin for OATPs and metformin for OCT1, was significantly enhanced by relevant transporter expression, and uptake into both these HEK293 cells and human hepatocytes was significantly impaired by prototypical inhibitors. In Oatp1a/1b gene cluster knockout mice, which lack the major hepatic Oatps, and in Oct1/2 knockout mice, ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole oral exposure was not increased, and the liver-to-blood partition coefficient (Kp) was not decreased. By contrast relative to wild-type mice, in Oatp1a/1b- and Oct1/2-knockout mice, atorvastatin and metformin oral exposure was significantly increased, and liver Kp was significantly decreased. The present studies provide in vitro and in vivo evidence that, like ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole are not transported

  10. Improving the mining soil quality for a vegetation cover after addition of sewage sludges: inorganic ions and low-molecular-weight organic acids in the soil solution.

    Science.gov (United States)

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán-Carrizosa, Ignacio; Fernández-Espinosa, Antonio J

    2015-03-01

    We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment. PMID:25506677

  11. Organic anion and cation transport in vitro by dog choroid plexus: Effects of neuroleptics and tricyclic antidepressants

    International Nuclear Information System (INIS)

    Dog lateral choroid plexus accumulates the cation 14C-emepronium and the divalent anion 125I-iodipamide in vitro. At 10 μM, high potency neuroleptics with a substituted piperazine side chain and also haloperidol depress only the uptake of the cation and even stimulate the uptake of the anion. In contrast, at 1-10μM, the accumulation of both test substances is inhibited by neuroleptics and tricyclic antidepresssants with an aliphatic side chain. Such unspecific effects on seemingly unrelated transport systems at concentrations reached clinically in the CSF might explain some side actions of low potency neuroleptics and antidepressants. (author)

  12. Effect of a natural organic acid-icing system on the microbiological quality of commercially relevant chilled fish species

    OpenAIRE

    Sanjuás, Minia; García-Soto, Bibiana; Fuertes-Gamundi, José R.; Aubourg, Santiago P.; Barros-Velázquez, J.

    2012-01-01

    Natural preservative organic acids (ascorbic, citric and lactic acids) were used to prepare a novel organic acid-flake icing system for the chilled preservation of hake (Merluccius merluccius), megrim (Lepidorhombus whiffiagonis) and angler (Lophius piscatorius). The icing system was prepared with two different concentrations of a commercial acid mixture-formula containing the three organic acids at 800 mg/kg and 400 mg/kg (C-800 and C-400 batches, respectively). Aerobic mesophiles, psychrotr...

  13. Analysis of Organic Acids in Blueberry Juice and its Fermented Wine by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Hongxue Fu

    2015-08-01

    Full Text Available A rapid analytical method for simultaneous separation and determination of organic acids is of the essence for quality control of blueberry juice and its fermented wine. In this present study, a High Performance Liquid Chromatography (HPLC method for separation and determination of organic acids (oxalic acid, gluconic acid, tartaric acid, formic acid, pyruvic acid, malic acid, isocitric acid, shikimic acid, lactic acid, acetic acid, citric acid, succinic acid and propionic acid in blueberry juice and wine has been developed. The chromatographic separation was performed at 35°C by using an ammonium hydrogen phosphate buffer (pH 2.8 as mobile phase and 0.6 mL/min as the column flow rate. A C18 analytical column and Ultraviolet Detection (UV at &lembda = 210 nm were used for all acids above. The method was validated for linearity, limit of detection, limit of quantification, accuracy and precision. The applicability of the method was demonstrated by analyzing organic acids in real samples of six species of blueberry juices and wines. The results show that species significantly affect distribution of organic acids in samples but not the kinds of organic acids between six species. Oxalic acid, gluconic acid, malic acid, shikimic acid and citric acid are detected in blueberry juice. Citric acid, which accounts for a percentage >75% of the whole content of organic acids, is the major acid in four kinds of tested species (Sharpblue, Misty, Anna and Bluecrop. In the other two species (Britewell and Premier, malic acid, gluconic acid and citric acid own a mean percentage of 40, 32 and 25%, respectively. After yeast fermentation and aging, several new organic acids (pyruvic acid, isocitric acid, lactic acid, acetic acid, succinic acid and propionic acid appear in wine.

  14. Study of conformational and acid-base properties of norbadione A and pulvinic derivatives: Consequences on their complexation properties of alkaline and alkaline earth cations

    International Nuclear Information System (INIS)

    This work deals with the study of norbadione A, a pigment extracted from mushrooms and known to complex cesium cations. The study of the acid-base properties of norbadione A has allowed to determine the relative acidity of the seven protonable functions of the molecule and to reveal a reversible isomerization of the double exocyclic bond of the pulvinic moieties. The observed change of configuration is induced by a hydrogen bond of the H-O-H type and by electrostatic interactions. Moreover, the microscopic protonation mechanism of the norbadione A has been analyzed, considering three different study media where the acid-base properties of the norbadione A are compared. In the presence of 0.15 mol.l-1 of NaCl, it has been observed a remarkable cooperativity in the protonation of the enol groups. At last, the use of different analytical methods (NMR, potentiometry and calorimetry) has allowed to study the complexing properties of the norbadione A towards cesium and other alkaline and rare earth cations. (O.M.)

  15. Molecular physiology of weak organic acid stress in Bacillus subtilis

    OpenAIRE

    Brul, S.; Beilen, van, J.W.A.

    2013-01-01

    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they inhibit the growth of spore-forming bacteria (more specifically Bacillus subtilis).

  16. Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids.

    Science.gov (United States)

    Iwata, Tomotaka; Mori, Masanobu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2009-09-15

    In this study, a cation-exchange resin (CEX) of the K(+)-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH(3)COOH) separated by a weakly acidic CEX column of the H(+)-form converts into that of the K(+)-form (e.g., CH(3)COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO(3)) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO(3)) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0mM. The detection limits (signal-to-noise ratio=3) range from 0.10 microM to 0.39 microM in this system, as opposed to those in the range of 0.24-7.1 microM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample. PMID:19615503

  17. A novel Brönsted-Lewis acidic heteropoly organic-inorganic salt: preparation and catalysis for rosin dimerization.

    Science.gov (United States)

    Yuan, Bing; Xie, Congxia; Yu, Fengli; Yang, Xiaoying; Yu, Shitao; Zhang, Jianling; Chen, Xiaobing

    2016-01-01

    A novel Brönsted-Lewis acidic heteropoly organic-inorganic salt has been prepared via the replacement of protons in neat phosphotungstic acid with both organic and metal cations. This hybrid catalyst, Sm0.33[TEAPS]2PW12O40, exhibited satisfactory performance in the dimerization of rosin to prepare polymerized rosin Under optimum conditions (15.0 g rosin and 5.0 g Sm0.33[TEAPS]2PW12O40 catalyst in 18.0 mL toluene at 90 °C for 10 h), a polymerized rosin product with a softening point of 120.1 °C was obtained. In addition, the Sm0.33[TEAPS]2PW12O40 catalyst maintains excellent catalytic performance over five recycles. PMID:27119064

  18. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    Energy Technology Data Exchange (ETDEWEB)

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R. [Rutherglen Center, Rutherglen, Vic. (Australia)

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- and compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.

  19. Altering physiological conditions and semen acidity by manipulating dietary cation-anion difference and fish oil supplemenation of Garut breed rams

    OpenAIRE

    Rahmat Hidayat; T. Toharmat; A Boediono; I. G. Permana

    2016-01-01

    Contribution of Garut breed sheep as protein resources is not optimal yet.  Acceleration of population growth such as increasing of female offspring is neccesary.  This study was carried out to obtain information regarding the effect of dietary cation-anion difference (PKAR: meq [(Na + K) – (Cl+S)/100 g of dry matter]) and fish oil supplementation on acidity of blood and semen, blood gas and plasma and semen mineral. The dietary treatmens were as follows:   RN0= basal ration (PKAR +14) withou...

  20. Biomineralization of uraninite and uranyl phosphate controlled by organic acids

    International Nuclear Information System (INIS)

    Biomineralization of uraninite (UO2) and uranyl phosphate minerals are both able to decrease the mobility of uranium in the environment. We examined biomineralization of UO2 and uranyl phosphate by Shewanella putrefaciens in the basic medium containing lactate as an electron donor, β- glycerolphosphate as a phosphorous source, and uranyl nitrate in the absence and presence of weak or strong complexing organic acids (WCOA or SCOA) under an anaerobic condition. In the basic medium, only biomineralization of UO2 was observed because of rapid reduction of U(VI). Biomineralization of UO2 and uranyl phosphate occurred in the media with WCOA, however the no biomineralization was occurred in the presence of SCOA. It is thought that formation of stable U(VI)-, and U(IV)- organic complexes prevents the biomineralization. These finding suggest that coexisting organic acids control the biomineralization of UO2 and uranyl phosphate minerals by microorganisms. (author)

  1. Organic Field Effect Transistor Based Crosslinked Deoxyribonucleic Acid Gate Dielectric

    International Nuclear Information System (INIS)

    Deoxyribonucleic Acid (DNA) derived form marine waste products and modified with surfactant demonstrates excellent passive and active optical properties. In this study, we have fabricated organic field-effect transistors with DNA gate. In organic field effect transistors (OFETs) the gate dielectric plays a crucial role - these highly insulating thin film polymer layers are key-components in state of the art organic transistor devices. When replacing the polymer layer by introducing solution-processed thin film modified bio polymer (DNA) as gate insulator, transistor-characteristics are changed towards remanence-like hysteresis behaviours. The hysteresis-loops probed in bio-organic field effect transistors (BiOFETs) derived from DNA and fullerene derivatives form bistable states which can be used for memory devices at low operating voltage regime compared to similar organic thin film transistors using polymers as gate insulator

  2. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    Science.gov (United States)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  3. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  4. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    Directory of Open Access Journals (Sweden)

    Stanislava Vondráčková

    Full Text Available High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8 and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism.We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs.Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions.In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  5. Influence of cation nature of dialkyl phosphoric acid salts on stratification and interphase tension of extraction systems

    International Nuclear Information System (INIS)

    The influence of cation nature on interphase surface activity of DBPA salts in the system: n-dodecane-MeOH solution, where Me-Li+, Na+, K+, Cs+, NH4+, has been studied. It is shown that adsorption work practically does not vary in the series of equimolar solutions of the above-mentioned hydroxides and increases with hydroxide concentration growth in aqueous phase for all the cations mentioned, except NH4+. Area occupied by surfactant molecules in the interface increases insignificantly with the growth of cation hydration degree when passing from K+ to Li+. Stratification of extractant irradiated by the dose of 5.4x104 Gy and non-irradiated one in system with aqueous solutions of MeOH is investigated. It is ascertained that stratification rates are determined by the factors affecting the distribution in the system of ionogenic surfactants-decomposition products of extractant and diluent, as well as by the difference in the phase densities and, to a less degree, by the values of interphase tension. The highest stratification rates are observed in systems with LiOH and CsOH

  6. Density functional theory study of interaction, bonding and affinity of group IIb transition metal cations with nucleic acid bases

    Science.gov (United States)

    Bagchi, Sabyasachi; Mandal, Debasish; Ghosh, Deepanwita; Das, Abhijit K.

    2012-05-01

    The structure, bonding, and energetics of the complexes obtained from the interaction between the most stable tautomeric forms of free DNA and RNA bases and Zn2+, Cd2+ and Hg2+ cations have been studied using density functional B3LYP method. The 6-311+G (2df, 2p) basis set along with LANL2DZ pseudopotentials for the cations are used in the calculations. The tautomerization paths of the nucleobases are investigated and transition states between the tautomeric forms of the free bases are located. The relative stability of the complexes and the tautomers of the free nucleobases are discussed referring to MIA and relative energy values. For uracil, thymine and adenine, interaction of the metal cations with the most stable tautomers form the least stable molecular complexes. For cytosine and guanine, the stability of the metalated complexes differs significantly. The enthalpy (ΔH), entropy (TΔS) and free energy (ΔG) of the complexes at 298 K have also been calculated.

  7. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    Science.gov (United States)

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components. PMID:26143651

  8. Organic acid modeling and model validation: Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.'' The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  9. Organic acid modeling and model validation: Workshop summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  10. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    Energy Technology Data Exchange (ETDEWEB)

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R. [Rutgers Centre, Rutherglen, Vic. (Australia)

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  11. Role of antioxidant enzymes in bacterial resistance to organic acids.

    Science.gov (United States)

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  12. Determination and correlation of the solubility of four Brønsted-acidic ionic liquids based on benzothiazolium cations in six alcohols

    International Nuclear Information System (INIS)

    Highlights: • Solubility of four acidic benzothiazolium cations-based ILs was measured. • The solubilities vary with the polarity of the solvent. • The solubility of some ILs is with “temperature-sensitive” property. • The measured solubilities were correlated by Apelblat model and λh model. • The dissolution enthalpy and entropy of ILs were calculated using the van’t Hoff equation. - Abstract: Solubilities of four acidic ionic liquids based on benzothiazolium cations in six alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) from at temperatures from (253 to 384) K were determined using a static equilibrium method under atmospheric pressure. The modified Apelblat equation and λh equation were employed to correlate the experimental data with good agreement. The solubilities of ILs increase with increasing temperature. It is interesting to find that the solubility of some ILs in alcohols are with “temperature-sensitive” properties. The solubility is related with the polarity and molecular structures of the solvent, as well as the strength of hydrogen bonding between alcohols and anionic groups of ILs. The dissolution enthalpy and entropy of ILs were calculated by the van’t Hoff equation. This study provides useful information for further research and application of the ionic liquids

  13. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    Science.gov (United States)

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-01

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue. PMID:27322901

  14. Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes.

    Science.gov (United States)

    Tsai, Cheng-Hsun; Chang, Wei-Chieh; Saikia, Diganta; Wu, Cheng-En; Kao, Hsien-Ming

    2016-05-15

    In this work, we demonstrate that a high density of COOH groups loading, up to 60mol% based on silica, is successfully incorporated into SBA-16 via a one-pot synthesis route, which involves co-condensation of carboxyethylsilanetriol sodium salt (CES) and tetraethylorthosilicate (TEOS) templated by Pluronic F127 and P123 in an acidic medium. A variety of characterization techniques are performed to confirm quantitative incorporation of carboxylic groups into ordered cubic mesostructures. These functionalized materials are used to effectively remove two cationic dyes methylene blue (MB) and phenosafranine (PF) with the maximum adsorption capacities of 561 and 519mgg(-1), respectively, at pH 9. The zeta potential results reveal that the electrostatic interactions between cationic dye molecule and negatively charged surface of the adsorbent play a crucial role in their high adsorption capacities. For a binary component system consisting of MB and PF, competitive adsorption of these two dyes is observed with adsorption capacity values slightly lower than those of the corresponding single dye systems. The dye adsorbed material can be easily regenerated by simple acid washing and be reused for five times with MB removal efficiency still up to 98.6%, showing its great potentials in environmental remediation. PMID:26906434

  15. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    International Nuclear Information System (INIS)

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl4 and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN+radical) and the former to the known carbonium ion of malachite green dye (MG+). Observation of the consecutive charge transfer via the schemes: DCE+radical → BPh+radical → MGCN+radical and DCE+radical → MGCN+radical → TMPD+radical, allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV MGCN +radical radical cation is located in the ''aniline'' part of the molecule. (author)

  16. A comparative study on the effect of Curcumin and Chlorin-p6 on the diffusion of two organic cations across a negatively charged lipid bilayer probed by second harmonic spectroscopy

    Science.gov (United States)

    Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.

    2014-09-01

    The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.

  17. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.

    Science.gov (United States)

    Stoumpos, Constantinos C; Malliakas, Christos D; Kanatzidis, Mercouri G

    2013-08-01

    A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p

  18. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half of...... bioavailability, which is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate...

  19. Corrosion of iron in highly acidic hydro-organic solutions

    International Nuclear Information System (INIS)

    In acidic water-organic solvents of ethylene glycol (EGOH), propylene glycol (PGOH), methanol (MeOH) and ethanol (EtOH), iron corrosion was studied by monitoring the corrosion potential, the potentiodynamic polarization curves and electrochemical impedance diagrams. In these aqueous glycols and alcoholic solutions containing HCl having concentrations of 0.5 up to 9 M, it has been shown by electrochemical analysis (I-E curves) that dissolution mechanism of iron is similar to that one in pure acidic aqueous solutions if only we take into account the relative amount of water in the medium. Based in our experimental data, water has an important role in the transfer kinetics of protons to the metallic electrode and limits electro dissolution rate of iron. When water quantity is sufficient at the metal surface, the acidity is a governing factor in the evolution of corrosion process

  20. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NOx vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  1. Iron Dome’s Impact on the Military and Political Arena: Moral Justications for Israel to Launch a Military Operation against Terrorist and Guerrilla Organizations

    Directory of Open Access Journals (Sweden)

    Liram Stenzler-Koblentz

    2014-03-01

    Full Text Available The military and political arenas are closely linked in Israel’s !ght against terrorist and guerrilla organizations. Israel is a democratic country subject to legal and moral constraints and restraints, and therefore, when it initiates a military operation against such organizations, its justi!cations are important, as they will later a"ect its international legitimacy or lack thereof. This article discusses the Iron Dome system, which is designed to provide active protection for Israeli citizens. It attempts to answer the question whether there can be moral justification for Israel to launch a comprehensive military operation against a terrorist organization when it possesses such a system. The discussion of the question makes reference to a system of moral principles (jus ad bellum, which is part of just war theory and can help in making judgments about when there is moral justification for going to war.

  2. Propoxylation of cationic polymers provides a novel approach to controllable modulation of their cellular toxicity and interaction with nucleic acids.

    Science.gov (United States)

    Shevchenko, Vesta D; Salakhieva, Diana V; Yergeshov, Abdulla A; Badeev, Yuriy V; Shtyrlin, Yurii G; Abdullin, Timur I

    2016-12-01

    An effective chemical approach to modulation of biological interactions of cationic polymers was proposed and tested using polyethyleneimine (PEI) as a drug carrier. Branched 25kDa PEI was modified in the reaction with propylene oxide (PO) to produce a series of propoxylated PEIs with NH groups grafted by single or oligomer PO units. Clear relationships between the propoxylation degree and biological effects, such as interaction with plasmid DNA, hemolytic, cytotoxic, and pro-apoptotic activities were revealed for PEIs modified upon PO/NH molar ratio of 0.5, 0.75, 1.0 and 3.0. The partial modification of available cationic centers up to 100% is predominantly accompanied by a significant gradual reduction in polycation adverse effects, while ability of complex formation with plasmid DNA is being preserved. Grafted PEI with 0.75 PO/NH ratio provides better protection from nuclease degradation and transfection activity compared with other modified PEIs. Revealed relationships contribute to the development of safe polymeric systems with controllable physicochemical properties and biological interactions. PMID:27612689

  3. The Study of Organic Acids Changes with Different Lactic Acid Starters During Iranian White Brined Cheese Ripening

    Directory of Open Access Journals (Sweden)

    M.B. Habbibi

    2002-04-01

    Full Text Available For Iranian fermented cheese processing and ripening, different lactic acid bacteria (LAB that affect on the physicochemical properties and hence the organoleptic characteristics of the cheese is used. Determination of physicochemical changes of cheese, particularly, organic acids is of importance. In this study five cheese formulas with five different group of cheese starters were processed and ripened in 8% brine during two months at 12±1 °C. HPLC analysis of organic acids were accomplished, using SCR-101H column with U. V. detector at 214 nm and quantified with high purity standards concerning each organic acid recovery. Pyruvic, orotic, citric, propionic, lactic, butyric and acetic acids were analyzed after 1, 10, 20, 30, 40, 50 and 60 days of processing and storage. Each determined organic acid exhibited a specific profile changes during cheese ripening. Lactic acid was dominant organic acid in all samples. Total organic acids were increased significantly after 30 days of storage, but decreased up to the end of ripening. The profile changes of organic acids which was similar in all samples with different amounts related to dominant lactic acid with about 80-90% of the total organic acids. The aromatic mesophile group, CH-N-O1(including Lactococci and Leuconostocs and Lactobacillus casei and also the mixed mesophiles plus thermophile starters group, CH-1 (including Lactobacillus bulgaricus and Streptococcus salivarius ssp. thermophilus caused a significant decrease in citric acid and increase in acetic and propionic acid in related cheese samples compared with other cheeses (P < 0.01. But cheese containing only thermophiles or the mixed thermophile and mesophile (code 54 revealed a significant increase in butyric acid. In all samples the changes in pyruvic acid content was irregular. The ripening period of cheese samples were determined by the stepwise regression analysis in relation to their exact amount of organic acids.

  4. Effect of dietary cation-anion difference on ruminal metabolism, total apparent digestibility, blood and renal acid-base regulation in lactating dairy cows.

    Science.gov (United States)

    Martins, C M M R; Arcari, M A; Welter, K C; Gonçalves, J L; Santos, M V

    2016-01-01

    The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production. PMID:26289745

  5. Exceptional Morphology-Preserving Evolution of Formamidinium Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Mengjin; Pang, Shuping; Zhu, Kai; Padture, Nitin P

    2016-05-01

    Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(═NH)NH2 (formamidine or FA) gas at 150 °C, which leads to rapid displacement of the MA(+) cations by FA(+) cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapid chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach ∼18%. PMID:27088448

  6. Exceptional Morphology-Preserving Evolution of Formamidinium Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuanyuan; Yang, Mengjin; Pang, Shuping; Zhu, Kai; Padture, Nitin P.

    2016-05-04

    Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(=NH)NH2 (formamidine or FA) gas at 150 degrees C, which leads to rapid displacement of the MA+ cations by FA+ cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapid chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach -18%.

  7. Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol.

    Science.gov (United States)

    Tyler, Germund

    2004-08-15

    The root/organic soil concentration ratio; R/S) of 50 cationic mineral elements was related to their ionic properties, including ionic radius (r), ionic charge (z), and ionic potential (z/r or z2/r). The materials studied were ectomycorrhizal beech (Fagus sylvatica L.) roots and their almost purely organic soil substrate, the O-horizon (mor; raw humus) of a Podzol in South Sweden, developed in a site which has been untouched by forestry or other mechanical disturbance since at least 50 years and located in an area with no local sources of pollution. Elements determined by ICP-AES were aluminium, barium, calcium, iron, potassium, magnesium, manganese, sodium and strontium. Determined by ICP-MS were silver, beryllium, bismuth, cadmium, cerium, cobalt, chromium, caesium, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, mercury, holmium, indium, lanthanum, lithium, lutetium, niobium, neodymium, nickel, lead, praseodymium, rubidium, scandium, samarium, tin, terbium, thorium, titanium, thallium, thulium, uranium, vanadium, yttrium, ytterbium, zinc and zirconium. The R/S ratios were most clearly related to the ionic potential of the cationic elements studied, which accounted for approximately 60% of the variability in R/S among elements. The ionic charge of an element was more important than the ionic radius. Elements with high ionic charge had low R/S ratios and vice versa. No clear differences in R/S between essential and non-essential plant nutrients were observed, especially when ions of similar charge were compared. PMID:15262169

  8. Organic acid effect on calcium uptake by the wheat roots

    Directory of Open Access Journals (Sweden)

    Fabrize Caroline Nunes

    2009-02-01

    Full Text Available This work evaluated the effect of the natural organic acids on the uptake of Ca by the wheat roots in a hydroponic solution. The following organic acids were evaluated: citric, oxalic, tartaric, malic, malonic, maleic, DL-malic, p-hydroxybenzoic, aconitic, and salicilic. The organic acids neither enhanced the root growth nor increased Ca uptake. The salicilic and malic acids were highly toxic and decreased the root growth. The citric, tartaric, maleic, aconitic, and salicilic decreased the Ca uptake by the roots due to their higher capacity to form the stable complexes with Ca in solution at pH 6.0. Decreasing the Ca valence from Ca++ to CaL+ or CaL2(0 through the organic ligand complexation reactions decreased the Ca uptake. The results suggested that the wheat roots do not absorb Ca-organic complexes.Ácidos orgânicos possuem grupos funcionais com cargas negativas que complexam íons metálicos em solução. Este trabalho avaliou o efeito de ácidos orgânicos naturais na absorção de Ca pelas raízes de trigo. Foram avaliados os seguintes ácidos orgânicos: cítrico, oxálico, tartarico, málico, malônico, maleico, DL-málico, p-hidroxibenzoico, aconítico e salicílico. Os ácidos orgânicos não estimularam o crescimento das raízes e não aumentaram a absorção de Ca. Os ácidos salicílico e maleico diminuíram drasticamente o crescimento radicular. Os ácidos cítrico, tartárico, maleico, aconítico e salicílico diminuíram a absorção de Ca pelas raízes devido à maior capacidade de formar complexos estáveis com Ca em solução no pH 6,0. A redução da valência de Ca++ para CaL+ e CaL2(0, através das reações de complexação, diminuiu a absorção de Ca pelas raízes. Os resultados sugerem que os complexos de Ca-orgânico não são absorvidos pelas raízes de trigo.

  9. Nutritional value of organic acid lime juice (Citrus latifolia T.), cv. Tahiti

    OpenAIRE

    Carolina Netto Rangel; Lucia Maria Jaeger de Carvalho; Renata Borchetta Fernandes Fonseca; Antonio Gomes Soares; Edgar Oliveira de Jesus

    2011-01-01

    Acid lime can be used as fresh fruit or as juice to increase the flavor of drinks. Therefore, it is necessary to analyze organic acid lime nutritional composition in order to evaluate if there are important differences among those conventionally produced. No significant differences in total titrable acidity, pH, ascorbic acid, sucrose, calcium, and zinc were found between the acid lime juice from organic biodynamic crops and conventional crops. However, the organic biodynamic fruits presented...

  10. HPLC Organic Acid Analysis in Different Citrus Juices under Reversed Phase Conditions

    OpenAIRE

    Violeta NOUR; Ion TRANDAFIR; Mira Elena IONICA

    2010-01-01

    A reversed phase HPLC method for separation and quantification of organic acids (oxalic, citric, tartaric, malic, ascorbic and lactic acids) in fruit juices was developed. The chromatographic separation was performed with a Surveyor Thermo Electron system at 10C by using potassium dihydrogen orthophosphate buffer (pH 2.8) as mobile phase, an Hypersil Gold aQ Analytical Column and diode array detection at ?=254 nm for ascorbic acid and ?=214 nm for the other organic acids. Organic acid ...

  11. Pretreatment of various feedstocks for lactic acid production: detection of sugars, organic acids and furanics in liquid fractions

    OpenAIRE

    Harmsen, P.F.H.; Lips, S.J.J.; Bakker, R.R.C.

    2012-01-01

    Barley straw, sugarcane bagasse and empty fruit bunches were pretreated under acid- and alkaline conditions. Solid phase was separated from the liquid phase and the concentration of dissolved monomeric sugars, organic acids and furanics was determined. Acid hydrolysis yielded monomeric xylose concentrations (max 20 g/l) whereas for alkaline hydrolysis less than 1 g/l was found. Organic acids and furanics were detected with high concentrations when dried empty fruit bunches were used. Acetic a...

  12. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    Science.gov (United States)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value 88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  13. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry

    OpenAIRE

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L; Sinninghe Damste, J. S.

    2016-01-01

    RATIONALE: Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs havebeen observed to be involved in response to changing environmental conditions in various species of bacteri a. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has become the primary method for analysis ofIPLs. Many glycerol-free amino acid containing membrane lipids (AA-IPLs), which are structurally different thanabundant aminophospholipids, have not been char...

  14. DC diaphragm discharge in water solutions of selected organic acids

    Science.gov (United States)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  15. Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids.

    Science.gov (United States)

    Li, Guihua; Hu, Yuanyuan; Sui, Jianfei; Song, Aixin; Hao, Jingcheng

    2016-02-16

    The gelation and crystallization behavior of a biological surfactant, sodium deoxycholate (NaDC), mixed with l-taric acid (L-TA) in water is described in detail. With the variation of molar ratio of L-TA to NaDC (r = nL-TA/nNaDC) and total concentration of the mixtures, the transition from sol to gel was observed. SEM images showed that the density of nanofibers gradually increases over the sol-gel transition. The microstructures of the hydrogels are three-dimensional networks of densely packed nanofibers with lengths extending to several micrometers. One week after preparation, regular crystallized nanospheres formed along the length of the nanofibers, and it was typical among the transparent hydrogels induced by organic acids with pKa1 value diffraction demonstrated differences in the molecular packing between transparent and turbid gels, indicating a variable hydrogen bond mode between NaDC molecules. PMID:26783993

  16. Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations

    Science.gov (United States)

    Berdiyorov, G. R.; El-Mellouhi, F.; Madjet, M. E.; Alharbi, F. H.; Rashkeev, S. N.

    2016-02-01

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.

  17. Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations

    International Nuclear Information System (INIS)

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment

  18. Mechanistic Insight into Receptor-Mediated Delivery of Cationic-β-Cyclodextrin:Hyaluronic Acid-Adamantamethamidyl Host:Guest pDNA Nanoparticles to CD44(+) Cells.

    Science.gov (United States)

    Badwaik, Vivek; Liu, Linjia; Gunasekera, Dinara; Kulkarni, Aditya; Thompson, David H

    2016-03-01

    Targeted delivery is a key element for improving the efficiency and safety of nonviral vectors for gene therapy. We have recently developed a CD44 receptor targeted, hyaluronic acid-adamantamethamidyl based pendant polymer system (HA-Ad), capable of forming complexes with cationic β-cyclodextrins (CD-PEI(+)) and pDNA. Complexes formed using these compounds (HA-Ad:CD-PEI(+):pDNA) display high water solubility, good transfection efficiency, and low cytotoxicity. Spatial and dynamic tracking of the transfection complexes by confocal microscopy and multicolor flow cytometry techniques was used to evaluate the target specificity, subcellular localization, and endosomal escape process. Our data shows that cells expressing the CD44 receptor undergo enhanced cellular uptake and transfection efficiency with HA-Ad:CD-PEI(+):pDNA complexes. This transfection system, comprised noncovalent assembly of cyclodextrin:adamantamethamidyl-modified hyaluronic acid via host:guest interactions to condense pDNA, is a potentially useful tool for targeted delivery of nucleic acid therapeutics. PMID:26900622

  19. Influences of humic and fulvic acids and organic matter on leachate chemistry from acid coal spoil

    International Nuclear Information System (INIS)

    Column-leaching experiments were conducted on an acid pyritic coal spoil to determine the influence of acid rain, humic acid (HA), fulvic acid (FA), and undecomposed organic matter (OM) on pH and Al, Fe, Mn, and SO4 concentrations in the spoil leachate and on the spoil. Simulated acid rain of pH 4.0 was applied for 50 weeks under laboratory conditions to spoil columns modified with 0.5% FA or HA, or 2.0% OM from four forest trees and two herbs. Quality-control methods were used to evaluate treatment effects. Addition of HA and tall fescue leaf material to a Lily, KY, spoil created a greater and longer lasting desirable effect on leachate pH and Al, Fe, Mn, and SO4 than additions of FA or OM of five other species. Results suggest that revegetation resulting in rapid production of matured soil OM may reduce the amount of some ions commonly leached from acid mine spoils

  20. Thermodynamics of the extraction of scandium(III) by the liquid cation exchangers dinonylnaphthalenesulfonic acid and bis(2-ethylhexyl) phosphoric acid

    International Nuclear Information System (INIS)

    The thermodynamic functions for the extraction of Sc3+ by liquid cation exchangers HD and HDEHP are determined radiometrically by the temperature coefficient method. The role of the diluent dielectric constant on the extraction of Sc3+ by HD is also studied. The thermodynamic parameters determined indicated that the free energy variation for the extraction of Sc3+ by HD is mainly determined by the entropic terms arising from the hydration-dehydration process of the exchanged ions. In the case of HDEHP as extractant, the free energy variations are determined mainly by the entalpic terms of the system. (author)

  1. Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production.

    Science.gov (United States)

    Wu, Xianghao; Altman, Ronni; Eiteman, Mark A; Altman, Elliot

    2014-05-01

    Adaptive evolution was employed to generate sodium (Na(+))-tolerant mutants of Escherichia coli MG1655. Four mutants with elevated sodium tolerance, designated ALS1184, ALS1185, ALS1186, and ALS1187, were independently isolated after 73 days of serial transfer in medium containing progressively greater Na(+) concentrations. The isolates also showed increased tolerance of K(+), although this cation was not used for selective pressure. None of the adapted mutants showed increased tolerance to the nonionic osmolyte sucrose. Several physiological parameters of E. coli MG1655 and ALS1187, the isolate with the greatest Na(+) tolerance, were calculated and compared using glucose-limited chemostats. Genome sequencing showed that the ALS1187 isolate contained mutations in five genes, emrR, hfq, kil, rpsG, and sspA, all of which could potentially affect the ability of E. coli to tolerate Na(+). Two of these genes, hfq and sspA, are known to be involved in global regulatory processes that help cells endure a variety of cellular stresses. Pyruvate formate lyase knockouts were constructed in strains MG1655 and ALS1187 to determine whether increased Na(+) tolerance afforded increased anaerobic generation of lactate. In fed-batch fermentations, E. coli ALS1187 pflB generated 76.2 g/liter lactate compared to MG1655 pflB, which generated only 56.3 g/liter lactate. PMID:24584246

  2. Sodium montmorillonite (Na+-MMT) organically modified with regioselectively synthesized (ω-1)- morpholinododecanoic acid: preparation and characterization

    International Nuclear Information System (INIS)

    In this study, an organically modified sodium montmorillonite (Na+-MMT) was prepared by intercalation with a regioselectively synthesized (ω-1)-morpholinododecanoic acid. Regioselective synthesis of the organic modifier involved the preliminary preparation of (ω-1)-chlorododecanoic acid and its subsequent amination with morpholine. The synthesized aminated product was then intercalated into the interlayer spacing of montmorillonite via a cation exchange reaction. Gas chromatography (GC) results showed that 98.40% of the product was chlorinated dodecanoic acid, 45.66% of which indicates chlorination at the ω-1 position. Seventy two (72)-hour amination led to the production of 58.80% morpholinated dodecanoic, with 39.64% of the morpholino moiety positioned at ω-1. Characterization of the aminated product by infrared (IR) spectroscopy revealed the presence of C-N and C-O stretches at 116.78 cm -1 and 1240.23 cm-1, respectively, indicating successful synthesis of the morpholinated product. IR spectra of the (ω-1)-morpholinolauric acid modified montmorillonite (MLA-MMT) not only showed characteristic bands belonging to MMT but also several new absorption bands belonging to (ω-1)- morpholinolauric acid such as the aliphatic stretches at 2929.87 cm -1 and 2858.51 cm-1, C-O-C stretch at 1539.20 cm-1, and C-N stretch at 1624.06 cm-1. The presence of new peaks both for MLA-MMT indicated strong interaction of the organic modifier and the clay interlayer implying successful intercalation. X-ray diffraction (XRD) patterns of Na+-MMT and MLA-MMT showed reflection peaks at 20 = 7.0 degree and 20 = 6.5 degree, resulting to increased basal spacings from 1.31 nm to 1.38 nm. This increase in the interlayer spacing of montmorillonite proved the the organically modified clay has been successfully prepared. (author)

  3. Binding of alkaline cations to the double-helical form of gramicidin.

    OpenAIRE

    Chen, Y; Wallace, B.A.

    1996-01-01

    Gramicidin is a polypeptide antibiotic that forms monovalent cation-specific channels in membrane environments. In organic solvents and in lipids containing unsaturated fatty acid chains, it forms a double-helical "pore" structure, in which two monomers are intertwined. This form of gramicidin can bind two cations inside its lumen, and the crystal structures of both an ion complex and an ion-free form have been determined. In this study, we have used circular dichroism (CD) spectroscopy to ex...

  4. Study of the Dissolution of Chalcopyrite in Sulfuric Acid Solutions Containing Alcohols and Organic Acids

    International Nuclear Information System (INIS)

    Chalcopyrite dissolution under environmental conditions has been one of the major challenges facing researchers. The current processes for obtaining copper have pollution issues, which will severely limit their application as environmental controls become stricter. Faced with this problem, a number of eco-friendlier methods, such as GALVANOX and HydroCopper (Outokumpu), have been proposed, although they have not been industrialized, mainly due to their high operating costs. The authors previously proposed an alternative system to leach chalcopyrite, which is based on the use of aqueous polar organic solutions. In the process, copper extraction increases in mixtures of acetone or ethylene glycol with aqueous sulfuric acid solutions. The drawback is the large concentration of oxidizing agents needed to obtain high percentages of chalcopyrite dissolution, which can make the process lose viability. In this investigation, the effect of acetic acid, formic acid, methanol and ethanol, whose chemical characteristics are similar to those previously proposed, were evaluated by cyclic voltammetry. It was found that, in the presence of these organic solvents, higher electrochemical responses were obtained compared with those found with sulfuric acid alone, a similar behavior to that obtained with acetone. Leaching experiments results coincided with the corresponding findings of the electrochemical study and X-ray diffraction results provided evidence to support the proposed reactions

  5. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    Science.gov (United States)

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments. PMID:26841776

  6. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry

    NARCIS (Netherlands)

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L.; Sinninghe Damste, J.S.

    2016-01-01

    RATIONALE: Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs havebeen observed to be involved in response to changing environmental conditions in various species of bacteri a. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has be

  7. Pharmacological characterization of mouse GPRC6A, an L-alpha-amino-acid receptor modulated by divalent cations

    DEFF Research Database (Denmark)

    Christiansen, B; Hansen, K B; Wellendorph, P; Bräuner-Osborne, Hans

    2007-01-01

    GPRC6A is a novel member of family C of G protein-coupled receptors with so far unknown function. We have recently described both human and mouse GPRC6A as receptors for L-alpha-amino acids. To date, functional characterization of wild-type GPRC6A has been impaired by the lack of activity in quan...

  8. EXPLOITATION OF EM.1-TREATED BLEND OF ORGANIC RESOURCES AND HUMIC ACID FOR ORGANIC BERSEEM (Trifolium alexandrinum L.) PRODUCTION

    OpenAIRE

    Daur, Ihsanullah; ABUSUWAR, Awad Osman; ALGHABARI, Fahad

    2015-01-01

    A field trial was conducted to evaluate blends of organic resources and humic acids, in order to enhance organic berseem forage production. The objective of this study was to compare an EM.1 (effective microorganisms)-treated blend of organic resources with an untreated blend of organic resources, and thereby evaluate the usefulness of humic acid as an organic fertilizer. The two types of blends,each with 4 application levels(0, 15, 30, and 45 t·ha−1), and humic acid (4 application levels: 0,...

  9. Use of organosmectites to reduce leaching losses of acidic herbicides

    OpenAIRE

    Carrizosa, M. J.; Hermosín, M. C.; Koskinen, W. C.; Cornejo, J.

    2003-01-01

    The modification of smectitic clays with organic cations via cation-exchange reactions produces sorbents with an increased sorption capacity for organic compounds such as acidic herbicides. These organoclays (OCIs) could be used as carriers in controlled release formulations of herbicides to decrease their contamination potential. Various OCIs and two acidic herbicides (bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4 (3H) one 2,2-dioxide] and dicamba [2-methoxy-3,6-dichlorobenzoic acid]) we...

  10. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    International Nuclear Information System (INIS)

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al3+ form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al3+ stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al3+ to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al3+ activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  11. Xanthurenic acid binds to neuronal G-protein-coupled receptors that secondarily activate cationic channels in the cell line NCB-20.

    Science.gov (United States)

    Taleb, Omar; Maammar, Mohammed; Brumaru, Daniel; Bourguignon, Jean-Jacques; Schmitt, Martine; Klein, Christian; Kemmel, Véronique; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy

    2012-01-01

    Xanthurenic acid (XA) is a metabolite of the tryptophan oxidation pathway through kynurenine and 3-hydroxykynurenine. XA was until now considered as a detoxification compound and dead-end product reducing accumulation of reactive radical species. Apart from a specific role for XA in the signaling cascade resulting in gamete maturation in mosquitoes, nothing was known about its functions in other species including mammals. Based upon XA distribution, transport, accumulation and release in the rat brain, we have recently suggested that XA may potentially be involved in neurotransmission/neuromodulation, assuming that neurons presumably express specific XA receptors. Recently, it has been shown that XA could act as a positive allosteric ligand for class II metabotropic glutamate receptors. This finding reinforces the proposed signaling role of XA in brain. Our present results provide several lines of evidence in favor of the existence of specific receptors for XA in the brain. First, binding experiments combined with autoradiography and time-course analysis led to the characterization of XA binding sites in the rat brain. Second, specific kinetic and pharmacological properties exhibited by these binding sites are in favor of G-protein-coupled receptors (GPCR). Finally, in patch-clamp and calcium imaging experiments using NCB-20 cells that do not express glutamate-induced calcium signals, XA elicited specific responses involving activation of cationic channels and increases in intracellular Ca(2+) concentration. Altogether, these results suggest that XA, acting through a GPCR-induced cationic channel modulatory mechanism, may exert excitatory functions in various brain neuronal pathways. PMID:23139790

  12. Xanthurenic acid binds to neuronal G-protein-coupled receptors that secondarily activate cationic channels in the cell line NCB-20.

    Directory of Open Access Journals (Sweden)

    Omar Taleb

    Full Text Available Xanthurenic acid (XA is a metabolite of the tryptophan oxidation pathway through kynurenine and 3-hydroxykynurenine. XA was until now considered as a detoxification compound and dead-end product reducing accumulation of reactive radical species. Apart from a specific role for XA in the signaling cascade resulting in gamete maturation in mosquitoes, nothing was known about its functions in other species including mammals. Based upon XA distribution, transport, accumulation and release in the rat brain, we have recently suggested that XA may potentially be involved in neurotransmission/neuromodulation, assuming that neurons presumably express specific XA receptors. Recently, it has been shown that XA could act as a positive allosteric ligand for class II metabotropic glutamate receptors. This finding reinforces the proposed signaling role of XA in brain. Our present results provide several lines of evidence in favor of the existence of specific receptors for XA in the brain. First, binding experiments combined with autoradiography and time-course analysis led to the characterization of XA binding sites in the rat brain. Second, specific kinetic and pharmacological properties exhibited by these binding sites are in favor of G-protein-coupled receptors (GPCR. Finally, in patch-clamp and calcium imaging experiments using NCB-20 cells that do not express glutamate-induced calcium signals, XA elicited specific responses involving activation of cationic channels and increases in intracellular Ca(2+ concentration. Altogether, these results suggest that XA, acting through a GPCR-induced cationic channel modulatory mechanism, may exert excitatory functions in various brain neuronal pathways.

  13. Effects of CO2 enrichment on the metabolism of soluble amino acids and organic acids in barley primary leaves

    Science.gov (United States)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined with barley primary leaves (Hordeum vulgare L. cv. Brant) grown in controlled environment chambers. Total soluble amino acids were enhanced 33% by CO2 enrichment when determined 9 days after sowing (DAS). However,...

  14. The Extraction of Gelatine from Mackerel (Scomber scombrus) Heads with the use of Different Organic Acids

    OpenAIRE

    Khiari, Zied; Rico, Daniel; Martin-Diana, Ana Belen; Barry-Ryan, Catherine

    2011-01-01

    Fish processing by-products are considered a potential resource for bioactive and functional compounds. In this study, gelatines from mackerel (Scomber scombrus) heads were extracted using five different organic acids (acetic, citric, lactic, malic and tartaric acids). The organic acid slightly affected the extraction yield but there was no significant (p>0.05) differences were observed. The amino acid profiling found that 3 glycine, proline and hydroxyproline were the major amino acids prese...

  15. The use of organic acids to combat Salmonella in poultry : a mechanistic explanation of the efficacy

    OpenAIRE

    Van Immerseel, Filip; Russell, James; Flythe, Michael; Gantois, Inne; Timbermont, Leen; Pasmans, Frank; Haesebrouck, Freddy; Ducatelle, Richard

    2006-01-01

    Abstract Salmonella is a human pathogen that is commonly found in poultry products. It is possible to decrease chicken carcass and egg contaminations by adding organic acids to the feed or drinking water at appropriate times. Medium chain fatty acids are be more antibacterial against Salmonella than short-chain fatty acids. The antibacterial effect of these acids is species specific. Bacteria that are unable to decrease intracellular pH accumulate organic acid anions in accordance...

  16. Dissolution of Aluminum in Variably Charged Soils as Affected by Low-Molecular-Weight Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LI Jiu-Yu; XU Ren-Kou; JI Guo-Liang

    2005-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and Al detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of Al in the two investigated soils in the following order: citric > oxalic > malonic > malic > tartaric > salicylic > lactic > maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of Al increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-1, the dissolution of Al changed little with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L-1,the dissolution of Al increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of Al were also related to their sorption-desorption equilibrium in the soils.

  17. Extended metal-organic solids based on benzenepolycarboxylic and aminobenzoic acids

    Indian Academy of Sciences (India)

    R Murugavel; G Anantharaman; D Krishnamurthy; M Sathiyendiran; M G Walawalkar

    2000-06-01

    This article describes the recent results obtained in our laboratory on the interaction of polyfunctional ligands with divalent alkaline earth metal ions and a few divalent transition metal ions. Treatment of MCl2$\\cdot$ H2O (M = Mg, Ca, Sr or Ba) with 2-amino benzoic acid leads to the formation of complexes [Mg(2-aba)2] (1), [Ca(2-aba)2(OH2)3]∞ (2), [{Sr(2-aba)2(OH2)2}2$\\cdot$H2O)]∞ (3), [Ba(2-aba)2(OH2)]∞ (4), respectively. While the calcium ions in 2 are hepta-coordinated, the strontium and barium ions in 3 and 4 reveal a coordination number of nine apart from additional metal-metal interactions. Apart from the carboxylate functionality, the amino group also binds to the metal centres in the case of strontium and barium complexes 3 and 4. Complexes [{Mg(H2O)6}(4-aba)2$\\cdot$2H2O] (5), [Ca(4-aba)2(H2O)2] (6) prepared from 4-aminobenzoic acid reveal more open or layered structures. Interaction of 2-mercaptobenzoic acid with MCl2$\\cdot$6H2O (M = Mg, Ca), however, leads to the.oxidation of the thiol group resulting in the disulphide 2,2'-dithiobis(benzoic acid). New metal-organic framework based hydrogen-bonded porous solids [{M(btec)(OH2)4} $\\cdot$ (C4H12N2) 4H2O] (btec = 1,2,4,5-benzene tetracarboxylate) (M = Co 9; Ni 10; Zn 11) have been synthesized from 1,2,4,5-benzene tetracarboxylic acid in the presence of piperazine. These compounds are made up of extensively hydrogenbonded alternating layers of anionic M-btec co-ordination polymer and piperazinium cations. Compounds 2-11 described herein form polymeric networks in the solid-state with the aid of different coordinating capabilities of the carboxylate anions hydrogen bonding interactions.

  18. Recoded organisms engineered to depend on synthetic amino acids.

    Science.gov (United States)

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  19. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  20. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.; Dietzel, W.; Kainer, K. U.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because of......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  1. Altering physiological conditions and semen acidity by manipulating dietary cation-anion difference and fish oil supplemenation of Garut breed rams

    Directory of Open Access Journals (Sweden)

    Rahmat Hidayat

    2016-01-01

    Full Text Available Contribution of Garut breed sheep as protein resources is not optimal yet. Acceleration of population growth such as increasing of female offspring is neccesary. This study was carried out to obtain information regarding the effect of dietary cation-anion difference (PKAR: meq [(Na + K – (Cl+S/100 g of dry matter] and fish oil supplementation on acidity of blood and semen, blood gas and plasma and semen mineral. The dietary treatmens were as follows: RN0= basal ration (PKAR +14 without fish oil, RNI= basal ration (PKAR +14 with 3% fish oil, RB0= base ration (PKAR +40 without fish oil, RBI= base ration (PKAR +40 with 3% fish oil, RA0= acid ration (PKAR -40 without fish oil, and RAI= acid ration (PKAR -40 with 3% fish oil. The rations contained 150 ppm of zinc and were offered to 18 of Garut rams. The result indicated that blood pH, pCO2, and pO2 were not affected by PKAR and fish oil supplementation, but cHCO3 and cBase were affected (P<0.05. PKAR and fish oil supplementation affected (P<0.01 plasma Mg and S, but did not affect K, Na, Zn and Cl. Semen pH after day 28 of experimental period were highly significant different and that followed PKAR pattern. In conclution, PKAR affected cBase, cHCO3, concentration of Mg and S plasma and semen pH of Garut rams. The result suggested that PKAR could be applied to manipulate physiological condition and semen pH.

  2. Lewis acidic metal catalysed organic transformations by designed multi-component structures and assemblies

    Indian Academy of Sciences (India)

    Afsar Ali; Amit P Singh; Rajeev Gupta

    2010-05-01

    This paper presents the recent developments in designing multi-component structures including metal-organic frameworks containing Lewis acidic metal ions. The emphasis has been given to understand the design elements adopted to synthesize such structures bearing Lewis acidic metal ion. Further, few important Lewis acidic metal catalysed organic transformation reactions have been discussed demonstrating the importance of such materials for practical purposes.

  3. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  4. Speciation in organic phases of mixed solvent extraction systems including a malonamide and a dialkyl-phosphoric acid

    International Nuclear Information System (INIS)

    The aim of the thesis is to improve the understanding of chemical equilibria involved in the actinides(III) and lanthanides(III) extraction in the DIAMEX-SANEX hydrometallurgical process used for spent nuclear fuel treatment. The chemical extraction equilibria have to be better described in order to improve the modeling of extractant properties of this process. The organic phase is composed of a mixture of extractants: a malonamide, the DMDOHEMA, and a dialkyl-phosphoric acid, the HDEHP, both diluted in an alkane. The extractant mixture DMDOHEMA-HDEHP has a singular behavior compared to the behavior of the individual extractants. There is a synergistic effect during the extraction of Eu(III) and Am(III) in acid medium (about 1 mol/L aqueous nitric acid concentration) and an antagonist effect at low acidity (pH ≤ 1). In order to understand the behavior of this chemical system, molecular speciation was performed using various spectrometry methods (electro-spray ionization mass spectrometry, infrared spectroscopy, nuclear magnetic resonance spectrometry, time-resolved laser-induced fluorescence spectroscopy and UV-visible spectroscopy) but also quantum chemistry calculation to optimize geometry of the complexes. These studies have shown the existence of mixed complexes, thermodynamically more stable than the unit complexes, explaining the synergistic extraction of metal cations. The existence of an adduct between the two extractants, consuming the free extractants, may explain the antagonistic effect. (author)

  5. Dynamic change of organic acids secreted from wheat roots in Mn deficiency

    Institute of Scientific and Technical Information of China (English)

    Zheng FANG; Zhenfeng AN; Yingli LI

    2008-01-01

    Through solution culture experiment and liquid chromatogram technique, two wheat (Triticum aestivum L.) genotypes with different tolerances to Mn deficiency were used to study the dynamic change of organic acids secreted from wheat root in the conditions of no Mn, low Mn and normal Mn supply. Nine kinds of organic acids were measured in wheat root exudate. The results showed that there were significant differences of organic acids in root exudate between tolerant genotype and susceptible genotype under Mn-stressed conditions. Tolerant genotype 9023 secreted more organic acids from the plant roots than susceptible genotype CM28. The main organic acid exudate included tartaric acid, malic acid, acetic acid, maleic acid and fumaric acid. Of all these acids, the amounts of tartaric acid and malic acid in root exudate showed significant differences between the tolerant genotype and susceptible genotype under Mn-stressed conditions. The results also indicated that secreting organic acids into root rhizosphere was an active response to Mn deficiency for the tolerant genotype of wheat.

  6. Cationic speciation in nonaqueous media

    International Nuclear Information System (INIS)

    Electronic spectra of solutions of d transition elements in the superacids HF, H2SO4, HSO3F, and CF3SO3H and in chloroaluminate melts indicate that in acidic monaqueous media the elements are present as solvated cations, whereas in basic media the speciation is anionic, the same situation as in aqueous solutions. Further, in very highly acidic media, cations in very low oxidation states are stable (e.g., Ti2+), but these disproportionate on addition of base to the system. In this paper spectra, where available, of U, Np, and Pu in oxidation states III and IV in aqueous media, in protonic superacids, and in chloroaluminates are presented to postulate cationic speciation of these early actinides in highly acidic media

  7. Beneficiation of Iraqi Akash at Phosphate Ore Using Organic Acids for the Production of Wet Process Phosphoric Acid

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Eisa

    2013-12-01

    Full Text Available In the present work, leaching process studiedusing organic acids (acetic acid and lactic acid to extract phosphate from the Iraqi Akashat phosphate ore by separation of calcareous materials (mainly calcite. This approach characterized by energy conservation, environmental enhancement by recovery of calcite as calcium sulfate (gypsum, keeping the physical and chemical properties of apatite. Samples were analyzed using X-ray diffraction and FTIR spectrophotometer. From the obtained experimental data it was found that using the two organic acids yields closed purity values of the produced apatite at the optimum conditions, while at different acid concentrations, it was found that the efficiency of acetic acid is higher at the low acid concentration (2 wt%, and that lactic acid gives the higher efficiency at high acid concentration (10 wt%.Concerning the ratio of acid volume to ore weight ratio, it was found that reducing this ratio to 5 ml/gm cause an increase in the purity of apatite at the optimum concentrations of the two acids. In addition, it was found that the reaction ofthe two organic acids with the calcareous material are fast and that the optimum reaction time, in which high purity apatite produced is 10 minutes.

  8. Modeling the adsorption of weak organic acids on goethite: the ligand and charge distribution model

    OpenAIRE

    Filius, J.D.

    2001-01-01

    A detailed study is presented in which the CD-MUSIC modeling approach is used in a new modeling approach that can describe the binding of large organic molecules by metal (hydr)oxides taking the full speciation of the adsorbed molecule into account. Batch equilibration experiments were performed using the iron (hydr)oxide goethite to determine the adsorption of a series of weak organic acids (e.g. lactic acid, oxalic acid, malonic acid, phthalic acid, citric acid, and fulvic acid). In order t...

  9. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely. PMID:23819268

  10. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    Science.gov (United States)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  11. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solu

  12. The effect of degradation products of strong acidic cation exchange resins on radionuclide speciation: A case study with Ni2+

    International Nuclear Information System (INIS)

    Radiolytic degradation experiments with acidic ion-exchange resins revealed oxalate and an unidentified ligand X to be the most strongly complexing ligands of the degradation products. The influence of these ligands on the Ni speciation in groundwater and cement pore water of a repository is assessed. A complete and reliable thermodynamic database is built for this case study. Missing stability constants are estimated by chemical reasoning. Subsequent sensitivity analyses show whether these species are important or not. The backdoor approach used in this study addresses the following question: What concentrations must the ligand have to significantly influence the Ni speciation? In the case of oxalate, the concentration necessary to complex 90% Ni will never be exceeded within the repository or in its environment due to precipitation of Ca-oxalate solids. Thus, a negative effect of oxalate on Ni speciation and sorption need not be considered in safety assessments. In the case of ligand X, calculations demonstrate that Ni speciation is highly dependent on geochemical conditions and is occasionally ambiguous due to uncertainties in estimated stability constants. Hints are given to deal with these ambiguities in future safety assessment, and further experimental investigations are proposed to decrease uncertainties when necessary

  13. Nonaqueous preparation of stable silver nano particles dispersions from organic sulfonic acids.

    Directory of Open Access Journals (Sweden)

    Valentina Glushko

    2016-05-01

    Full Text Available The conditions for stable silver nano particles dispersions synthesis from organic sulfonic acids in an anhydrous medium of ethylene glycol and its methyl ester were studied. Ascorbic acid and potassium citrate were used as reducing agents.

  14. Test determination of aluminum, beryllium, and cationic surfactants using phenolcarboxylic acids of the triphenylmethane series immobilized on cloths from synthetic and natural fibers

    International Nuclear Information System (INIS)

    The use of cloth matrices from viscose and cotton fibers bearing phenolcarboxylic acids of the triphenylmethane series immobilized by adsorption in chemical test methods of analysis is considered. Chrome Azurol S, Sulfochrome, and Eriochrome Cyanine R were used for immobilization. It was found that the reagents are weakly retained on cellulose matrices. The degree of retention varied from 10 to 60%. It was observed that the reagent complexes of metal ions exhibited enhanced adsorbability on the matrices. Cloths with immobilized Chrome Azurol S were used in the test determination of 0.0005-0.5 mg/l beryllium and 0.0005-1.0 mg/l aluminum. When the reaction products were preconcentrated on the cloth from 100 ml of a test solution, the detection limit was 0.0001 mg/l. Procedures were developed for determining 0.1-100 mg/l aluminum and 0.02-0.6 mg/l beryllium in solutions using cloth test strips encapsulated into a polymeric film. It was demonstrated that Sulfochrome and Eriochrome Cyanine R immobilized on cloths can be used to determine 0.01-1 and 1-1000 mg/l cationic surfactants

  15. Effect of Organic Acids on Bacterial Cellulose Produced by Acetobacter xylinum

    Directory of Open Access Journals (Sweden)

    Hongmei Lu

    2016-03-01

    Full Text Available Based on the difference of bacterial cellulose production from rice saccharificate medium and chemical medium under static cultivation, effect of organic acids in the process of bacterial cellulose produced by A. xylinum was studied. The results showed that the kinds and contents of organic acids were different in both culture medium, in which accumulated oxalic acid and tartaric acid inhibited A. xylinum producing BC in chemical medium, while pyruvic acid, malic acid, lactic acid, acetic acid, citric acid and succinic acid, as ethanol, promoted A. xylinum to produce BC. Compared to the blank BC production 1.48 g/L, the optimum addition concentrations of pyruvic acid, malic acid, lactic acid, acetic acid, citric acid, succinic acid, and ethanol in chemical medium were 0.15%, 0.1%, 0.3%, 0.4%, 0.1%, 0.2% , 4% and the BC productions were 2.49 g/L, 2.83 g/L, 2.12 g/L, 2.54 g/L, 2.27 g/L, 1.88 g/L , 2.63 g/L, respectively. The co-existence of above organic acids and ethanol increased BC production even further.

  16. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter.

    Science.gov (United States)

    Banerjee, Antara; Hussainzada, Naissan; Khandelwal, Akash; Swaan, Peter W

    2008-03-01

    The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces. PMID:18028035

  17. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER SACCHAROMYCES CEREVIISIIAE FERMENTATION

    OpenAIRE

    Bayraktar, V.

    2013-01-01

    The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks fr...

  18. A novel Schiff base-based cationic gemini surfactants: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, M.A. [Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt)], E-mail: mohamed_hgazy@yahoo.com

    2009-11-15

    The corrosion inhibition characteristics of the synthesized cationic gemini surfactants, namely bis(p-(N,N,N-decyldimethylammonium bromide)benzylidene thiourea (10-S-10), bis(p-(N,N,N-dodecyldimethylammonium bromide)benzylidene thiourea (12-S-12) and bis(p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene thiourea (14-S-14) on the carbon steel corrosion in 1 M hydrochloric acid have been investigated at 25 deg. C by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiencies obtained from all methods employed are in good agreement with each other. The obtained results show that compound 14-S-14 is the best inhibitor with an efficiency of 97.75% at 5 x 10{sup -3} M additive concentration. Generally, the inhibition efficiency increased with increase of the inhibitor concentration. Changes in impedance parameters (charge transfer resistance, R{sub ct}, and double-layer capacitance, C{sub dl}) were indicative of adsorption of 14-S-14 on the metal surface, leading to the formation of a protective film. The potentiodynamic polarization measurements indicated that the inhibitors are of mixed type. The adsorption of the inhibitors on the carbon steel surface in the acid solution was found to obey Langmuir's adsorption isotherm. The free energy of adsorption processes were calculated and discussed. The surface parameters of each synthesized surfactant were calculated from its surface tension including the critical micelle concentration (CMC), maximum surface excess ({gamma}{sub max}) and the minimum surface area (A{sub min}). The free energies of micellization ({delta}G{sup o}{sub mic}) were calculated. The surface morphology of carbon steel sample was investigated by scanning electron microscopy (SEM)

  19. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established. PMID:26192454

  20. The Geometry and Structural Properties of the 4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System in the Cationic State. Structures of a Planar Organic Cation with Various Monovalent- and Divalent Anions

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Laursen, Bo W.; Johannsen, Ib;

    1999-01-01

    The geometry of the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo[cd,mn]pyrene system in the cationic state was established by X-ray structural resolution of the salts formed between the cationand various anions. The geometry was found to be planar for the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo...... [cd,mn]pyrenylium and 2,6,10-tri (tert-butyl)-4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyre nylium cations with the monovalentanions I-, BF4-, PF6- AsF6-, HNO3. NO3- and CF3SO3-, and the divalent anions S2O62- and Mo6Cl142-. The salts were found to crystallize in distinct space groups...... following a characteristic pattern. Mixed cation-anion stacking resulted in space groups with high symmetry: Pbca in three cases and R (3) over bar c in one; a temperature study of the latter was made at ten different temperatures. The formation of dimers of anions and cations resulted in lower...

  1. Assessing the effect of humic acid redox state on organic pollutant sorption by combined electrochemical reduction and sorption experiments.

    Science.gov (United States)

    Aeschbacher, Michael; Brunner, Sibyl H; Schwarzenbach, René P; Sander, Michael

    2012-04-01

    Natural Organic Matter (NOM) is a major sorbent for organic pollutants in soils and sediments. While sorption under oxic conditions has been well investigated, possible changes in the sorption capacity of a given NOM induced by reduction have not yet been studied. Reduction of quinones to hydroquinones, the major redox active moieties in NOM, increases the number of H-donor moieties and thus may affect sorption. This work compares the sorption of four nonionic organic pollutants of different polarities (naphthalene, acetophenone, quinoline, and 2-naphthol), and of the organocation paraquat to unreduced and electrochemically reduced Leonardite Humic Acid (LHA). The redox states of reduced and unreduced LHA in all sorption experiments were stable, as demonstrated by a spectrophotometric 2,6-dichlorophenol indophenol reduction assay. The sorption isotherms of the nonionic pollutants were highly linear, while paraquat sorption was strongly concentration dependent. LHA reduction did not result in significant changes in the sorption of all tested compounds, not even of the cationic paraquat at pH 7, 9, and 11. This work provides the first evidence that changes in NOM redox state do not largely affect organic pollutant sorption, suggesting that current sorption models are applicable both to unreduced and to reduced soil and sediment NOM. PMID:22372874

  2. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    International Nuclear Information System (INIS)

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent

  3. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyejeong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lim, Sangyong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Chung, Jinwoo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Soohyun [Glycomics Team, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Dongho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-06-15

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  4. Cobalt bis(dicarbollide) ions with covalently bonded CMPO groups as selective extraction agents for lanthanide and actinide cations from highly acidic nuclear waste solutions

    International Nuclear Information System (INIS)

    A new series of boron substituted cobalt bis(dicarbollide)(1-) ion (1) derivatives of the general formula [(8-CMPO-(CH2-CH2O)2-1,2-C2B9H10)(1',2'-C2B9H11)-3,3'-Co]- (CMPO = Ph2P(O)-CH2C(O)NR, R = C4H9 (3b), -C12H25 (4b), -CH2-C6H5 (5b)) was prepared by ring cleavage of the 8-dioxane-cobalt bis(dicarbollide) (2) bi-polar compound by the respective primary amines and by subsequent reaction of the resulting amino derivatives (3a-5a) with the nitrophenyl ester of diphenyl-phosphoryl-acetic acid. The compounds were synthesized with the aim to develop a new class of more efficient extraction agents for liquid/liquid extraction of polyvalent cations, i.e. lanthanides and actinides, from high-level activity nuclear waste. All compounds were characterized by a combination of 11B NMR, 1H high field NMR, Mass Spectrometry with Electro-spray and MALDI TOF ionisation, HPLC and other techniques. The molecular structure of the supramolecular Ln3+ complex of the anion 5b was determined by single crystal X-ray diffraction analysis. Crystallographic results proved that the Ln(m) atom is bonded to three functionalized cobalt bis(dicarbollide) anions in a charge compensated complex. The cation is tightly coordinated by six oxygen atoms of the CMPO terminal groups (two of each ligand) and by three water molecules completing the metal coordination number to 9. Atoms occupying the primary coordination sphere form a tri-capped trigonal prismatic arrangement. Very high liquid-liquid extraction efficiency of all anionic species was observed. Moreover, less polar toluene can be applied as an auxiliary solvent replacing the less environmentally friendly nitro- and chlorinated solvents used in the current dicarbollide liquid-liquid extraction process. The extraction coefficients are sufficiently high for possible technological applications. (authors)

  5. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    Directory of Open Access Journals (Sweden)

    Iwao Sugimoto

    2014-01-01

    Full Text Available Thin layers of pyroglutamic acid (Pygl have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  6. Comparison of epichlorohydrin-dimethylamine with other cationic organic polymers as coagulation aids of polyferric chloride in coagulation-ultrafiltration process.

    Science.gov (United States)

    Sun, Shenglei; Gao, Baoyu; Yue, Qinyan; Li, Ruihua; Song, Wen; Bu, Fan; Zhao, Shuang; Jia, Ruibao; Song, Wuchang

    2016-04-15

    Epichlorohydrin-dimethylamine (DAM-ECH) copolymer was acquired by polycondensation of hazardous reagents: epichlorohydrin (analytical reagent, A.R.) and dimethylamine (A.R.) with ethanediamine (A.R.) as cross-linker. Its coagulation and membrane performance as coagulation aid of polyferric chloride (PFC) was evaluated by comparing with other two cationic coagulation aids: poly dimethyl diallyl ammonium chloride (PDMDAAC) and polyacrylamide (PAM) in humic acid-kaolin (HA-Kaolin) simulated water treatment. Firstly, optimum dosages of PFC&DAM-ECH, PFC&PDMDAAC and PFC&PAM were identified according to their coagulation performance. Then their impacts (under optimum dosages) on membrane fouling of regenerated cellulose (RC) ultra-membrane disc in coagulation-ultrafiltration (C-UF) process were reviewed. Results revealed that small addition of DAM-ECH was the effective on turbidity and DOC removal polymer. Furthermore, in the following ultra-filtration process, external membrane fouling resistance was demonstrated to be the dominant portion of the total membrane fouling resistance under all circumstances. Meanwhile, the internal membrane fouling resistance was determined by residual of micro-particles(1) that cannot be intercepted by cake layer or ultrafiltration membrane. PMID:26775103

  7. Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2006-01-01

    Full Text Available The partitioning of reactive nitrogen compounds between the gas and the aerosol phase, as observed during the MINOS (Mediterranean INtensive Oxidant Study campaign in Crete, Greece, in July and August 2001, has been studied with three thermodynamic gas-aerosol equilibrium models (EQMs of different chemical complexity: ISORROPIA, which is limited to the ammonium-sulfate-nitrate-sodium-chloride-water-system; SCAPE2, which also includes mineral elements (calcium, magnesium and potassium; and EQSAM2, which additionally accounts for organic acids. The different EQMs are constrained by measured gas (g and aerosol (a concentrations: Total ammonia (NH3(g and NH4(a+, total nitrate (HNO3(g and NO3(a-, total sulfate (H2SO4(g and SO4(a2-, total chloride (HCl(g and Cl-(a, sodium (Na+(a, calcium (Ca2+(a, magnesium (Mg2+(a, potassium (K+(a and organic acids (a. Although the three EQMs differ considerably in particular aspects, their application at the same level of complexity yields comparable results for the equilibrium composition and phase partitioning of ammonia and nitric acid, i.e. within the range of measurement uncertainties (~10%. Their application at different levels of complexity, however, gives rise to substantial differences for the gas-aerosol partitioning of reactive nitrogen compounds. Our results show that only if (soluble mineral components and (lumped organic acids are accounted for, the observed gas-aerosol partitioning of ammonia and nitric acid can be accurately reproduced for air pollution episodes characterized by a complex chemical mixture, typical for the Mediterranean lower atmosphere.

  8. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  9. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    Science.gov (United States)

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  10. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  11. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets.

    Science.gov (United States)

    Sateesha, Sb; Rajamma, Aj; Narode, Mk; Vyas, Bd

    2010-07-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M (t) /M(∞) = Kt (n) and Higuchi's equation: Q (t) = K(1)t(1/2). The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  12. Effect of Low-Molecular-Weight Organic Acids on Cl- Adsorption by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; ANG Ma-Li; WANG Qiang-Sheng; JI Guo-Liang1

    2004-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Gl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.

  13. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  14. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes.

    Science.gov (United States)

    Quitain, Armando T; Faisal, Muhammad; Kang, Kilyoon; Daimon, Hiroyuki; Fujie, Koichi

    2002-07-22

    This article reports production of low-molecular-weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds (i.e. domestic sludge, proteinaceous, cellulosic and plastic wastes) with or without oxidant (H(2)O(2)). Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa), acetic acid of about 26 mg/g dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H(2)O(2). Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of polyethylene terephthalate (PET) plastic wastes and glucose, respectively. In addition, production of lactic acid, one of the interesting low-molecular-weight carboxylic acids, was discussed on the viewpoint of resources recovery. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. PMID:12117467

  15. Synthesis, crystal structure and luminescent properties of one new inorganic-organic hybrid compound [O 2NBzQL] 4[Cd(SCN) 4(NCS) 2] (O 2NBzQL = 1-(4'-NO 2-benzyl)quinolinium cation)

    Science.gov (United States)

    Bai, Yan; Hu, Xue-Fu; Dang, Dong-Bin; Bi, Feng-Lei; Niu, Jing-Yang

    2011-01-01

    A new inorganic-organic hybrid compound [O 2NBzQL] 4[Cd(SCN) 4(NCS) 2] (O 2NBzQL = 1-(4'-NO 2-benzyl)quinolinium cation) has been synthesized and characterized by IR, UV, elemental analysis and X-ray crystallography. Cd(II) atom has an distorted octahedral environment with an N 4S 2 donor set. In solid state there are three types of face-to-face π-π interactions between adjacent cations and multiform C-H⋯S and C-H⋯N hydrogen bonds between [O 2NBzQL] + cations and cadmium thiocyanate anions. The luminescent properties of the title compound were both investigated in H 2O solution and in solid state at room temperature, respectively.

  16. Different involvement of promoter methylation in the expression of organic cation/carnitine transporter 2 (OCTN2 in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Qiang Qu

    Full Text Available Organic cation/carnitine transporter 2 (OCTN2 is responsible for the cellular uptake of the antineoplastic agent, oxaliplatin. Epigenetic modification is a possible mechanism of altered drug-transporter expression in cancers, leading to altered efficacy of chemotherapeutic drugs. However, the mechanisms governing OCTN2 regulation are not completely understood. In this study, the low levels of OCTN2 in HepG2 and LS174T cells were elevated by the demethylating reagent, decitabine (DCA. To further reveal the epigenetic mechanism of down-regulation of OCTN2, we found that Region-1 within the OCTN2 promoter (spanning -354 to +85 was a determinant of OCTN2 expression in a luciferase reporter assay. Moreover, methylation-specific PCR (MSP and bisulfite genomic sequencing showed that the degree of individual methylated CpG sites within this region was inversely correlated with the levels of OCTN2 in different cancer cells. Application of DCA to HepG2 and LS174T cells reversed the hypermethylation status of the OCTN2 promoter and increased OCTN2 expression, enhancing cellular uptake of oxaliplatin. Thus, we identified that promoter methylation is responsible for epigenetic down-regulation of OCTN2 in HepG2 and LS174T cells. Given the essential role of OCTN2 in cancer cell uptake of chemotherapeutics, and thus treatment efficacy, pretreatment with a demethylating reagent is a possible strategy for optimizing pharmacotherapies against cancers.

  17. [Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain].

    Science.gov (United States)

    Chen, Hong-Xia; Du, Zhang-Liu; Guo, Wei; Zhang, Qing-Zhong

    2011-11-01

    A 3-year field experiment with randomized block design was conducted to study the effects of biochar amendment on the soil bulk density, cation exchange capacity (CEC), and particulate organic matter C (POM-C) and N (POM-N) contents in a high-yielding cropland in the North China Plain. Four treatments were installed, i.e., chemical NPK (CK), chemical NPK plus 2250 kg x hm(-2) of biochar (C1), chemical NPK plus 4500 kg x hm(-2) of biochar (C2), and 750 kg x hm(-2) of biochar-based slow release fertilizer (CN). Comparing with CK, treatments C1 and C2 significantly decreased the bulk density of 0-7.5 cm soil layer by 4.5% and 6.0%, respectively, and the treatments with biochar amendment increased the CEC in 0-15 cm soil layer, with an increment of 24.5% in treatment C2. Biochar amendment also increased the C (POM-C) and N (POM-N) contents in 0-7.5 cm soil layer, e.g., the POM-C and N contents in treatment C1 and C2 were 250% and 85%, and 260% and 120% higher than those of the CK, respectively. After three years of biochar amendment, the soil had obvious improvement in its physical and chemical properties, and played more active roles in soil carbon sequestration and greenhouse gases emission reduction. PMID:22303671

  18. Computational and Experimental Assessment of Benzene Cation Chemistry for the Measurement of Marine Derived Biogenic Volatile Organic Compounds with Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Zoerb, M.; Kim, M.; Zimmermann, K.; Bertram, T. H.

    2013-12-01

    Chemical ionization mass spectrometry (CIMS) is a highly selective and sensitive technique for the measurement of trace gases in the atmosphere. However, competing side reactions and dependence on relative humidity (RH) can make the transition from the laboratory to the field challenging. Effective implementation of chemical ionization requires a thorough knowledge of the elementary steps leading to ionization of the analyte. We have recently investigated benzene cations for the detection of marine derived biogenic volatile organic compounds (BVOCs), such isoprene and terpene compounds, from algal bloom events. Our experimental results indicate that benzene ion chemistry is an attractive candidate for field measurements, and the RH dependence is weak. To further understand the advantages and limitations of this approach, we have also used electronic structure theory calculations to compliment the experimental work. These theoretical methods can provide valuable insight into the physical chemistry of ion molecule reactions including thermodynamical information, the stability of ions to fragmentation, and potential sources of interference such as dehydration to form isobaric ions. The combined experimental and computational approach also allows validation of the theoretical methods and will provide useful information towards gaining predictive power for the selection of appropriate reagent ions for future experiments.

  19. Changes in soil acidity and organic carbon in a sandy typic hapludalf after medium-term pig-slurry and deep-litter application

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2012-11-01

    Full Text Available Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0, H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.

  20. Coordinated Regulation of Dimethylarginine Dimethylaminohydrolase-1 and Cationic Amino Acid Transporter-1 by Farnesoid X Receptor in Mouse Liver and Kidney and Its Implication in the Control of Blood Levels of Asymmetric Dimethylarginine

    OpenAIRE

    Li, Jiang; Wilson, Annette; Gao, Xiang; Kuruba, Ramalinga; Liu, Youhua; Poloyac, Samuel; Pitt, Bruce; Xie, Wen; Li, Song

    2009-01-01

    Asymmetric dimethylarginine (ADMA) is a potent endogenous inhibitor of endothelial nitric-oxide synthase (eNOS), and increased plasma concentrations of ADMA have been regarded as a risk factor for a number of cardiovascular diseases. Circulating ADMA is largely taken up by liver and kidney via system y+ carriers of the cationic amino acid (CAT) family and subsequently metabolized by dimethylarginine dimethylaminohydrolases (DDAHs). As such, agents targeted at enhancing ADMA metabolism may pro...

  1. Effects of Organic Acids on Adsorption of Cadmium onto Kaolinite, Goethite, and Bayerite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals(kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.

  2. Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils

    OpenAIRE

    MORADI, Neda; SADAGHIANI, Mir Hassan RASOULI; SEPEHR, Ebrahim

    2012-01-01

    Understanding the role of organic acids in phosphorus sorption in soils is very important for economic and environmentally friendly management of soil P. Thus, calcareous surface soils (0-30 cm) from West Azerbaijan Province, Iran, were sampled to study the effect of different organic acids on P sorption. Soil samples (2.5 g) were equilibrated with 25 mL of 0.01 M CaCl2 solution containing 0-20 mg P L-1 and 5 mmol L-1 of different organic acids (citric, oxalic, and malic acid). The sorption d...

  3. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    Full Text Available Aims: To monitor the changes in the concentration of organic acid and amino acid contents during the fermentation of castor oil bean seed into ogiri.Methodology and results: In this study, ogiri, a Nigerian fermented food condiment was prepared from castor oil bean using Bacillus subtilis as a monoculture starter for the production of three different fermented castor oil bean condiment samples: B1 (0% NaCl/lime, B2 (2% NaCl, B3 (3% lime. Variations in the composition of the castor oil bean with fermentation over 96 h periods were evaluated for organic acid and amino acid contents using High Performance Liquid Chromatography. Organic acids were detected in the fermented castor oil bean samples as fermentation period increased to 96 h. Organic acids identified were oxalic, citric, tartaric, malic, succinic, lactic, formic, acetic, propionic and butyric acids. The lactic acid contents in sample B1 (0% NaCl/lime decreased initially and then increased as the fermentation period progressed. The value at 96 h fermentation was 1.336 µg/mL as against 0.775 µg/mL at 0 h fermentation. Sample B3 (3% lime had lactic acid content that increased as fermentation period increased with lactic acid content of 1.298 µg/mL at 96 h fermentation. The acetic acid content of sample B1 increased as fermentation progressed and at 96 h fermentation, its value was 1.204 µg/mL while those of B2 and B3 were 0.677 µg/mL and 1.401 µg/mL respectively. The three fermented castor oil bean samples also contained sufficient amount of amino acids. Sample B1 had the highest values in isoleucine glycine and histidine with values 1.382 µg/mL, 0.814 µg/mL and 1.022 µg/mL respectively while sample B2 had the highest value in leucine content with 0.915 µg/mL at 96 h fermentation, closely followed by sample B3 and B1 with 0.798 µg/mL and 0.205 µg/mL respectively. The results of amino acid analysis indicated a high concentration of all amino acids at 96 h of fermentation

  4. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  5. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids

    Institute of Scientific and Technical Information of China (English)

    XU Ren-kou; ZHU Yong-guan; David Chittleborough

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by Iow-molecular-weight organic acids.Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with PKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearrly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  6. Influence of organic matter and humic acids in solution on uranium solvent extraction process

    International Nuclear Information System (INIS)

    The harmful in fluence of humic acids in solution on uranium solvent extraction is investigated. The influence is poor phase separation and forming stable emulsion when uranium is extracted or stripped and decreasing uranium loading of organic phase. Extractions of organic matter and solvent extraction of uranium were carried out from three sedimentary uranium deposits. The results show that stable emulsions of W/O or O/W type were formed separately with organic solvent containing tertiary amine or D2EHPA to extract uranium from uranium liquors containing humic acid. Several humic acids of different molecular weight were fractionated by means of fractional solution containing various volume ratios of ethanol and ethyl acetate. The physical properties and chemical composition of the humic acid were determined. It was found that there was distinct difference in emulsion-causing between the humic acids having different molecular weight. The removal methods of humic acid from aqueous and organic solution were discussed briefly

  7. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Science.gov (United States)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  8. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Su-Jin; Ju, Chang-Sik [Pukyoung National University, Busan (Korea, Republic of)

    2013-12-15

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination.

  9. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures.

    Science.gov (United States)

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Berti, William R; Landis, Richard C

    2015-03-01

    Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. PMID:26023986

  10. HPLC Organic Acid Analysis in Different Citrus Juices under Reversed Phase Conditions

    Directory of Open Access Journals (Sweden)

    Violeta NOUR

    2010-06-01

    Full Text Available A reversed phase HPLC method for separation and quantification of organic acids (oxalic, citric, tartaric, malic, ascorbic and lactic acids in fruit juices was developed. The chromatographic separation was performed with a Surveyor Thermo Electron system at 10C by using potassium dihydrogen orthophosphate buffer (pH 2.8 as mobile phase, an Hypersil Gold aQ Analytical Column and diode array detection at ?=254 nm for ascorbic acid and ?=214 nm for the other organic acids. Organic acid profiles of ten species of Citrus: sweet orange, minneola, clementine, mandarin orange, pomelo, lemon, lime, sweetie, white and pink grapefruit were established. Species significantly affect the organic acid distribution of citrus fruit juices. In all citrus juices, the most abundant organic acid was citric acid, ranging from 6.88 to 73.93 g/l. Citrus juices are good sources of ascorbic acid (0.215-0.718 g/l. Average ascorbic acid was the highest in lemon juice followed by sweet orange juice, sweetie and white grapefruit.

  11. Retention behavior of common mono- and divalent cations on calcinated silica gel columns in ion chromatography with conductimetric detection and the use of nitric acid, containing crown ethers, as eluents.

    Science.gov (United States)

    Ohta, Kazutoku; Kusumoto, Keiji; Takao, Yasumasa; Towata, Atsuya; Kawakami, Shoji; Murase, Yoshio; Ohashi, Masayoshi

    2002-05-17

    Ion chromatographic behavior of common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) on columns packed with silica gels (Super Micro Bead Silica Gel B-5, SMBSG B-5) calcinated at 200, 400, 600, 800 and 1000 degrees C for 5 h was investigated using nitric acid containing crown ethers [18-crown-6 (1,4,7,10,13,15-hexaoxacyclooctadecane) and 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane)] as eluent. When using 0.5 mM HNO3 as the eluent, the calcination had almost no effect on the improvement of peak resolution between these mono- and divalent cations. In contrast, when using 0.5 mM HNO3 containing crown ethers as the eluent, with increasing the calcinating temperature, the amount of crown ethers adsorbed on the corresponding calcinated SMBSG B-5 silica gels columns increased and, as a consequence, peak resolution between these mono- and divalent cations was quite improved. Excellent simultaneous separation of these mono- and divalent cations was achieved on column (150x4.6 mm I.D.) packed with the SMBSG B-5 silica gel calcinated at 1000 degrees C by elution with 0.5 mM HNO3 containing either 1.0 mM 18-crown-6 or 5.0 mM 15-crown-5. PMID:12108647

  12. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    International Nuclear Information System (INIS)

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 3130K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 2980K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory

  13. Comparative study of pertechnetate ionic associates extraction with 'onium' cations of arsenic(V), phosphorus(V), tin (IV) and their dissociation in water-insoluble organic solvents

    International Nuclear Information System (INIS)

    Solvent extraction of pertechnetate anions from aqueous solutions of some mineral acids like (HCl, HNO3, HClO4, H2SO4, salts (NaCl), NaNO3, NaClO4, K2CrO4, Na2CO3) and NaOH, NH4OH by different analytical reagents as tetraphenylarsonium (Ph4As+), tetraphenylphosphonium (Ph4P+), triphenyltin (Ph3Sn+), trioctyltin (Oct3Sn+) into organic solvents (chloroform, nitrobenzene, toluene, benzene) has been carried out at 22 +- 1 grad C. The dissertation contains following parts: (1) Introduction; (2) Aim of the dissertation; (3) Background; (4) Extraction characteristics of pertechnetate with tetraphenylarsonium in the presence of chloride, nitrate and perchlorate anions; (5) Extraction of pertechnetate with tetraphenylphosphonium in the presence of various acids, salts and hydroxides; (6) Extraction of pertechnetate with triphenyltin chloride and trioctyltin chloride; (7) Conductivity of tetraphenylarsonium, tetraphenylphosphonium triphenyltin and trioctyltin chloride and pertechnetate in nonaqueous solutions; (8) Conclusions

  14. Complex forming properties of natural organic acids. Pt. 2

    International Nuclear Information System (INIS)

    An ultrafiltration technique combined with ion-selective-electrode and atomic absorption methods have been employed to obtain information on the complex forming properties of fulvic acid with iron and calcium. A model for interpreting complexation of metal ions to fulvic acid at any pH, medium ionic strength and metal to fulvic acid ratio developed earlier has been used in an attempt to predict the nature of iron and calcium interaction to Armadale Horizon Bh fulvic acid. Binding of calcium to fulvic acid which is enhanced at pHs greater than 6.0 has reasonably been predicted by the model taking into consideration complications due to the polyelectrolyte nature and the heterogeneity of the fulvic acid. The lack of agreement observed between the model predicted binding behavior and the experimentally observed results for the fulvic acid-iron system has been attributed to the formation of metal-induced aggregation. Reduction of Fe(III) to Fe(II) by the fulvic acid as reported by other workers is corroborated. (orig.)

  15. Rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography using a monolithic column

    Institute of Scientific and Technical Information of China (English)

    Xu Huang; Hong Yu; Ying Jie Dong

    2012-01-01

    A method for rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography with ultraviolet detection was developed.Chromatographic separations were performed on a reversed-phase silica-based monolithic column using 1-heptanesulfonic acid sodium-acetonitrile as mobile phase.The effects of ion-pair reagent and acetonitrile concentration on retention of the cations were investigated.The retention times of the cations accord with carbon number rule.The method has been successfully applied to the determination of four ionic liquids synthesized by organic chemistry laboratory.

  16. Self-Assembled Cationic Biodegradable Nanoparticles from pH-Responsive Amino-Acid-Based Poly(Ester Urea Urethane)s and Their Application As a Drug Delivery Vehicle.

    Science.gov (United States)

    He, Mingyu; Potuck, Alicia; Kohn, Julie C; Fung, Katharina; Reinhart-King, Cynthia A; Chu, Chih-Chang

    2016-02-01

    The objective of this study is to develop a new family of biodegradable and biologically active copolymers and their subsequent self-assembled cationic nanoparticles as better delivery vehicles for anticancer drugs to achieve the synergism between the cytotoxicity effects of the loaded drugs and the macrophage inflammatory response of the delivery vehicle. This family of cationic nanoparticles was formulated from a new family of amphiphilic cationic Arginine-Leucine (Arg-Leu)-based poly(ester urea urethane) (Arg-Leu PEUU) synthesized from four building blocks (amino acids, diols, glycerol α-monoallyl ether, and 1,6 hexamethylene diisocyanate). The chemical, physical, and biological properties of Arg-Leu PEUU biomaterials can be tuned by controlling the feed ratio of the four building blocks. The Arg-Leu PEUU copolymers have weight-average molecular weights from 13.4 to 16.8 kDa and glass-transition temperatures from -3.4 to -4.6 °C. The self-assembled cationic nanoparticles (Arg-Leu PEUU NPs) were prepared using a facile dialysis method. Arg-Leu PEUU NPs have average diameters ranging from 187 to 272 nm, show good biocompatibility with 3T3 fibroblasts, and they support bovine aortic endothelial cell (BAEC) proliferation and adhesion. Arg-Leu PEUU NPs also enhanced the macrophages' production of tumor necrosis factor-α (TNF-α) and nitric oxide (NO), but produced relatively low levels of interleukin-10 (IL-10), and therefore, the antitumor activity of macrophages might be enhanced. Arg-Leu PEUU NPs were taken up by HeLa cells after 4 h of incubation. The in vitro hemolysis assay showed the cationic Arg-Leu PEUU NPs increased their chance of endosomal escape at a more acidic pH. Doxorubicin (DOX) was successfully incorporated into the Arg-Leu PEUU NPs, and the DOX-loaded Arg-Leu PEUU NPs exhibited a pH-dependent drug release profile with accelerated release kinetics in a mild acidic condition. The DOX-loaded 6-Arg-4-Leu-4 A/L-2/1 NPs showed higher HeLa cell

  17. A contribution to the study of the extraction of mineral acids and of actinide (IV) and (VI) cations by N,N-dialkylamides

    International Nuclear Information System (INIS)

    N,N-dialkylamides are alternate extractants to tributylphosphate, TBP, for the actinides separation in nuclear fuel reprocessing. N,N-di (2-ethyl hexyl) butyramide and N,N-di (2 ethyl hexyl) isobutyramide are selected for their sufficient extraction and partition ability towards actinides (IV) and (VI) without coextracting fission products. Mechanisms of HNO3, UO22+, Pu4+, Th4+ are investigated. Nitric acid extraction is due to the competitive formation of the species (HNO3)L2, (HNO3)L, (HNO3)2L (L: DOBA or DOiBA). An hydrogen bond is the driving force of the transfer. For low acidity media, amides are neutral extractants. Physical interactions, between free ligand and metallic complex, arise for high amide concentrations. Taking into account the non-ideality of the organic medium by a hard spheres mixture model, we estimate that such interactions are far from negligible and very specific to the amide group. Unlike TBP, when increasing acidity, amides behave as anionic extractants. DOBA and DOiBA appear to be satisfactory extractants for fuel reprocessing

  18. Toxicity of perfluorinated carboxylic acids for aquatic organisms.

    Science.gov (United States)

    Tichý, Miloň; Valigurová, Radka; Cabala, Radomír; Uzlová, Rut; Rucki, Marián

    2010-06-01

    Toxicity of perfluorinated carboxylic acids with carbon chain C(8) to C(12) were tested with oligochaeta Tubifex tubifex. Toxicity was evaluated as the exposure time ET(50) from onset of damage of the oligochaeta in saturated aqueous solutions. The ET(50) fluctuated between 25 and 257 minutes. No statistically significant difference was found among the C(8), C(9) and C(12) acids (ET(50) between 143 and 257 minutes with large standard deviation). The acids with carbon chain C(10) and C(11) induced the effect significantly quicker (25 to 47 minutes). No acute toxicity measured in the three-minute test was observed in any case. PMID:21217876

  19. Toxicity of perfluorinated carboxylic acids for aquatic organisms

    OpenAIRE

    Tichý, Miloň; Valigurová, Radka; Čabala, Radomír; Uzlová, Rut; Rucki, Marián

    2010-01-01

    Toxicity of perfluorinated carboxylic acids with carbon chain C8 to C12 were tested with oligochaeta Tubifex tubifex. Toxicity was evaluated as the exposure time ET50 from onset of damage of the oligochaeta in saturated aqueous solutions. The ET50 fluctuated between 25 and 257 minutes. No statistically significant difference was found among the C8, C9 and C12 acids (ET50 between 143 and 257 minutes with large standard deviation). The acids with carbon chain C10 and C11 induced the effect sign...

  20. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    Science.gov (United States)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  1. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    Directory of Open Access Journals (Sweden)

    A. M. K. Hansen

    2014-02-01

    Full Text Available Sources, composition and occurrence of secondary organic aerosols (SOA in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA, 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14 ng m−3, accounting for 7 (±2% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3 ng m−3 (accounting for 1 (±1% of total organic matter observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4 ng m−3 (accounting for 1.7 (±0.6% of total organic matter in late winter and early spring, and 2.2 (±1 ng m−3 (accounting for 0.9 (±0.4% of total organic matter during the rest of the year. At Zeppelin Mountain

  2. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    Science.gov (United States)

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  3. Organic cation transporter 3 is densely expressed in the intercalated cell groups of the amygdala: anatomical evidence for a stress hormone-sensitive dopamine clearance system.

    Science.gov (United States)

    Hill, Jonathan E; Gasser, Paul J

    2013-09-01

    The intercalated cell groups of the amygdala (ITCs) are clusters of GABAergic neurons which exert powerful modulatory control of amygdala output, and are thought to play key roles in the extinction of conditioned fear responses. Dopamine, acting through D1 receptors, inhibits ITC neuronal activity, an action that has the potential to disinhibit amygdala activity, leading to changes in behavioral responses. Dopaminergic neurotransmission in the ITC occurs through a combination of synaptic and volume transmission. Thus, mechanisms, including transport mechanisms, that regulate extracellular dopamine concentrations in the ITC, are likely to be important determinants of amygdala function. We have recently demonstrated the expression of organic cation transporter 3 (OCT3), a high-capacity transporter for dopamine and other monoamines, throughout the rat brain. In this study, we used immunohistochemical and immunofluorescence techniques to examine the distribution of OCT3 in the ITC, to identify the phenotype of OCT3-expressing cells, and to describe the spatial relationships of OCT3 to dopaminergic terminals and dopamine D1 receptors in these areas. We observed high densities of OCT3-immunoreactive perikarya and punctae throughout the D1 receptor-rich main, anterior and paracapsular ITCs, in contrast with the basolateral amygdala, where OCT3 immunoreactive perikarya and puncta were observed at much lower density. OCT3-immunoreactive perikarya in the ITC were identified as neurons. Tyrosine hydroxylase-immunoreactive fibers in the ITC were immunonegative for OCT3, though OCT3-immunoreactive punctae were observed in close proximity to TH+ terminals. Punctate OCT3-immunoreactivity in the ITCs was observed in very close proximity (mechanism. Inhibition of OCT3-mediated transport by corticosterone may represent a mechanism by which acute stress alters dopaminergic neurotransmission in the amygdala, leading to alterations in fear and anxiety-like behavior. PMID:23694905

  4. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions

    Science.gov (United States)

    Arimany-Nardi, Cristina; Minuesa, Gerard; Keller, Thorsten; Erkizia, Itziar; Koepsell, Hermann; Martinez-Picado, Javier; Pastor-Anglada, Marçal

    2016-01-01

    Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level. PMID:27445813

  5. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions.

    Science.gov (United States)

    Arimany-Nardi, Cristina; Minuesa, Gerard; Keller, Thorsten; Erkizia, Itziar; Koepsell, Hermann; Martinez-Picado, Javier; Pastor-Anglada, Marçal

    2016-01-01

    Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level. PMID:27445813

  6. Downregulation of organic cation transporters OCT1 (SLC22A1 and OCT3 (SLC22A3 in human hepatocellular carcinoma and their prognostic significance

    Directory of Open Access Journals (Sweden)

    Heise Michael

    2012-03-01

    Full Text Available Abstract Background Organic cation transporters (OCT are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC. Methods OCT1 (SLC22A1 and OCT3 (SLC22A3 mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST by real time PCR (n = 53. Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs. Results Real time PCR showed a downregulation of SLC22A1 and SLC22A3 in HCC compared to TST (p ≤ 0.001. A low SLC22A1 expression was associated with a worse patient survival (p SLC22A1 was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p SLC22A1 expression (SLC22A3 expression compared to HCC with high SLC22A1 expression (p SLC22A3 expression. In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC. Conclusion The downregulation of OCT1 is associated with tumor progression and a worse patient survival.

  7. Oil and fatty acid accumulation during coriander (Coriandrum sativum L. fruit ripening under organic cultivation

    Directory of Open Access Journals (Sweden)

    Quang-Hung Nguyen

    2015-08-01

    Full Text Available To evaluate the accumulation of oil and fatty acids in coriander during fruit ripening, a field experiment was conducted under organic cultivation conditions in Auch (near Toulouse, southwestern France during the 2009 cropping season. The percentage and composition of the fatty acids of coriander were determined by gas chromatography. Our results showed that rapid oil accumulation started in early stages (two days after flowering, DAF. Twelve fatty acids were identified. Saturated and polyunsaturated acids were the dominant fatty acids at earlier stages (2–12 DAF, but decreased after this date. After this stage, petroselinic acid increased to its highest amount at 18 DAF. In contrast, palmitic acid followed the opposite trend. Saturated and polyunsaturated fatty acids decreased markedly and monounsaturated fatty acids increased during fruit maturation. It appears that the fruit of coriander may be harvested before full maturity.

  8. Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced.

    Science.gov (United States)

    Nakamura, Y; Daidai, M; Kobayashi, F

    2004-01-01

    Treatment methods comprising ozonolysis and microbial treatment of lignin discharged from the pulp manufacture industries were investigated by using a sulfite pulp wastewater and a lignin model compound, i.e. sodium lignosulfonate. Dynamic behaviors for the formations of intermediate derivatives such as muconic acid, maleic acid, and oxalic acid produced from the ozonolysis of sulfite pulp wastewater were observed from data of UV absorption at 280 nm by a spectrophotometer and at 210 nm by high performance liquid chromatography. The microorganisms that were isolated by the enrichment culture method were used to degrade the organic acids such as oxalic acid and acetic acid. Time courses of biological degradation of these organic acids indicated diauxic growth, which was found in a culture with mixed substrates. In the treatment of sodium lignosulfonate, the ozonolysis and microbial treatment using activated sludge converted sodium lignosulfonate into carbon dioxide and water almost completely. PMID:15461411

  9. Study of conformational and acid-base properties of norbadione A and pulvinic derivatives: Consequences on their complexation properties of alkaline and alkaline earth cations; Etude des proprietes conformationnelles et acido-basiques de la norbadione A et de derives pulviniques: consequences sur leurs proprietes complexantes de cations alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Kuad, P

    2006-01-15

    This work deals with the study of norbadione A, a pigment extracted from mushrooms and known to complex cesium cations. The study of the acid-base properties of norbadione A has allowed to determine the relative acidity of the seven protonable functions of the molecule and to reveal a reversible isomerization of the double exocyclic bond of the pulvinic moieties. The observed change of configuration is induced by a hydrogen bond of the H-O-H type and by electrostatic interactions. Moreover, the microscopic protonation mechanism of the norbadione A has been analyzed, considering three different study media where the acid-base properties of the norbadione A are compared. In the presence of 0.15 mol.l{sup -1} of NaCl, it has been observed a remarkable cooperativity in the protonation of the enol groups. At last, the use of different analytical methods (NMR, potentiometry and calorimetry) has allowed to study the complexing properties of the norbadione A towards cesium and other alkaline and rare earth cations. (O.M.)

  10. Reducing Dietary Cation-Anion Difference on Acid-Base Balance, Plasma Minerals Level and Anti-Oxidative Stress of Female Goats

    Institute of Scientific and Technical Information of China (English)

    WU Wen-xuan; YANG Yi; ZHANG Ji-kun; LI Sheng-li

    2013-01-01

    Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg;and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (H2O2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-Cl-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+150 mEq kg-1 DM, CON), high DCAD (+300 mEq kg-1 DM, HD), low DCAD (0 mEq kg-1 DM, LD) and negative DCAD (-150 mEq kg-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P0.05) plasma Mg level. There was no significant (P>0.05) difference in plasma GSH-Px activity and H2O2, but anionic salts supplementation in LD and ND significantly increased (P<0.05) plasma T-SOD activity and tended to reduce MDA (P<0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.

  11. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken

    Directory of Open Access Journals (Sweden)

    Vikrant Laxman Bagal

    2016-04-01

    Full Text Available Aim: The objective of this study was to evaluate the effect of organic acids as replacer to antibiotics in their various combinations on feed consumption, body weight gain, and feed conversion ratio (FCR in broiler chicks during different phases of growth. Materials and Methods: Antibiotics and organic acids were incorporated into boiler feed in different combinations to form 10 maize based test diets (T1 to T10. Each test diet was offered to four replicates of 10 birds each constituting a total of 400 birds kept for 45 days. Results: Significantly better effect in terms of body weight gain from supplementation of 1% citric acid and 1% citric acid along with antibiotic was observed throughout the entire study, whereas the effect of tartaric acid supplementation was similar to control group. Citric acid (1% along with antibiotic supplementation showed highest feed intake during the experimental period. Significantly better FCR was observed in groups supplemented with 1% citric acid and 1% citric acid along with antibiotic followed by antibiotic along with organic acids supplemented group. Conclusion: Growth performance of birds in terms of body weight, body weight gain, and FCR improved significantly in 1% citric acid which was significantly higher than antibiotic supplemented group. 1% citric acid can effectively replace antibiotic growth promoter (chlortetracycline without affecting growth performance of birds.

  12. 阳离子型有机高分子絮凝剂的制备及性能研究%Research on preparation and performance of cationic organic polymer flocculant

    Institute of Scientific and Technical Information of China (English)

    万用波; 杨旭; 徐燕; 李兰; 王红娟

    2011-01-01

    Organic phosphonic acid was used as the esterification catalyst to synthesize methylacrylic higher alcohols ester. With acrylamide (AM) and dimethyl diallyl ammonium chloride (DMDAAC) as the monomers, a cationic water-soluble polymer flocculant(PAD-l) was synthetized by redox system, and the effect of it on oily wastewater treatment was studied. The test results showed that: when the PAD-1 dosage was 40 mg/L, the pH value was 7, the wastewater temperature was 25 t, the removal rate of turbidity of the oily wastewater reached 96.5%. It can draw a conclusion that, PAD-1 is a high efficient flocculant, which could get high turbidity removal rate with lower reagent dosage, therefore, its industrial application prospect will be bright.%以有机膦酸作为酯化反应催化剂合成中间体甲基丙烯酸高碳醇酯,以丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)为单体,采用氧化还原体系合成出一种阳离子型水溶性高分子絮凝剂(PAD-1),将其应用于含油废水处理的试验研究.试验结果表明:在PAD-I投加量为40 mg/L、pH值为7、废水温度为25℃的条件下,含油废水的浊度去除率达到96.5%.PAD-1是一种高效的絮凝剂,浊度去除率高,药品投加量少,具有不错的工业应用前景.

  13. Liver function and bacteriology of organs in broiler inoculated with nalidixic acid-resistant Salmonella Typhimurium and treated with organic acids

    Directory of Open Access Journals (Sweden)

    Tatiane M. Rocha

    2013-07-01

    Full Text Available AbAns etxrpaecritment was carried out with 630 one-day-old chicks to evaluate the effects of organic acids when birds were experimentally inoculated with Salmonella Typhimurium. Liver damage and the persistence of the bacterium in the organs were evaluated as well. Broilers were distributed in a completely randomised experimental design in a 3×2 factorial arrangement of six treatments with seven replicates of 15 birds each. Birds were inoculated with saline solution or the bacterium via gavage at 1 day of age, or were offered a feed containing or not the organic acid blend for the period of 7 to 14 days of age. A dose of 5.0x102 colony-forming units (CFU/0.5 mL of Salmonella Typhimurium was used for inoculation both via gavage and feed. The parameters evaluated are weight, liver histopathology, liver and serum biochemistry, and bacteriological analyses of the caeca, crop, spleen, and liver and heart pool. At 21 and 28 days of age, the liver of the non-inoculated groups was significantly lighter as compared to the other treatments. Birds fed organic acids presented lower bacterial isolation rates in all organs tested. Birds inoculated in the crop and treated with organic acids presented lower E. coli CFU counts (P<0.05. Birds inoculated with Salmonella presented significant changes (P<0.05 in liver enzymes, as detected by serum biochemistry, and in liver histopathology. It was concluded that organic acids effectively controlled Salmonella Typhimurium and did not cause any liver damage.

  14. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  15. Organic acids for control of Salmonella in different feed materials

    DEFF Research Database (Denmark)

    Koyuncu, Sevinc; Andersson, Mats Gunnar; Löfström, Charlotta;

    2013-01-01

    FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal. Results The efficacy....... Typhimurium. The tolerance of the S. Infantis strain compared with the S. Typhimurium strain was statistically significant (p<0.05). The lethal effect of FA on the S. Typhimurium strain and the S. Infantis strain was lower at 5°C and 15°C compared to room temperatures. Conclusions Acid treatment of Salmonella...... tolerance between different Salmonella strains, and the treatment temperature....

  16. The Use of Supported Acidic Ionic Liquids in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Rita Skoda-Földes

    2014-06-01

    Full Text Available Catalysts obtained by the immobilisation of acidic ionic liquids (ILs on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability.

  17. Influence of organic acids on the transport of heavy metals in soil.

    Science.gov (United States)

    Schwab, A P; Zhu, D S; Banks, M K

    2008-06-01

    Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable. PMID:18482743

  18. Effect of the donor addition nature on noncation-exchange extraction of uranyl sulfate by the mixtures of di-2-ethylhexylphosphoric acid with organic oxides

    International Nuclear Information System (INIS)

    Solvent extraction of uranyl sulfate in a wide range of its concentration by the mixtures of di-2-ethylhexylphosphoric acid (HX) with organic oxides (B)-triisoamyl (TAPO)-, triphenyl(TPPO)-phosphine oxides, 2-nonylpyridine-N-oxide (2-NPO) and diphenyl sulfoxide (DPSO) is studied. Cation exchange and noncation exchange (after HX saturation) synergistic effects are stated. By synergistic effect in uranyl sulfate noncation exchange extraction (UO2X2+B mixture is in fact an extracting agent) organic oxides are arranged in TAPO>2-NPO>TPPO>DPSO series coinsiding with the sequence of decreasing donor ability of B in hydrogen bond. A quantitative description of UO2SO4xB addition to UO2X2 is presented. It is stated that regularities of coordination extraction of metals by different class oxides and of uranyl sulfate extraction by UO2X2+B mixtures are similar

  19. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Science.gov (United States)

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  20. Susceptibility of Campylobacter jejuni to Organic Acids and Monoacylglycerols

    Czech Academy of Sciences Publication Activity Database

    Molatová, Z.; Skřivanová, E.; Macias, B.; McEwan, N. R.; Březina, P.; Marounek, Milan

    2010-01-01

    Roč. 55, č. 3 (2010), s. 215-220. ISSN 0015-5632 R&D Projects: GA ČR GD525/08/H060 Institutional research plan: CEZ:AV0Z50450515 Keywords : CHAIN FATTY-ACIDS * POULTRY * COLONIZATION Subject RIV: EE - Microbiology, Virology Impact factor: 0.977, year: 2010

  1. Side-by-side comparison of analytical techniques; organic acids, total organic carbon, and anions in PWR secondary cycles

    International Nuclear Information System (INIS)

    Total Organic Carbon TOC samples should be analyzed no later than one week after they are taken and they should be stored in a refrigerated condition, if at all possible. It can be inferred that for TOC levels in the range of 50 to 120 ppb, state-of-the-art sampling and analysis techniques can produce results varying by 20 to 50 ppb. Any proposed limits for TOC should be reviewed in that light. Agreement between anion results appeared to improve over the course of the project. Both contractors agree that increased attention and care with sampling and analytical techniques probably accounted for this improvement. Utility personnel can therefore conclude that proper employee training, supervision, and motivation for proper sampling and analysis are critical if accurate anion results are to be obtained. Resonable agreement between calculated and measured values of cation conductivity suggest that both contractors had accurately determined all major anionic species

  2. Determination of Vitamin C and Organic Acid Changes in Strawberry by HPLC During Cold Storage

    Directory of Open Access Journals (Sweden)

    Mehmet Ali KOYUNCU

    2010-12-01

    Full Text Available High pressure liquid chromatographic (HPLC methods were used for measurement of vitamin C and organic acid changes of two strawberry cultivars (‘Dorit’ and ‘Selva’ during cold storage. Harvested strawberries at the last stage of commercial ripeness were placed in perforated (8 perforations, 10 mm diameter plastic boxes and stored at 0°C temperature and 90-95% relative humidity for 10 days. Vitamin C content decreased in both cultivars but no significant differences were found in ‘Dorit’ from the beginning to the end of the storage. The highest share of total acids was contributed by citric acid. It decreased with increase in storage time in both cultivars. Malic acid content of cultivars also decreased with storage time. Tartaric, oxalic and fumaric acid contents fluctuated during storage, but at the end of cold storage these organic acids had decreased in comparison to initial values.

  3. The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions of trilaurylammoniumnitrate in cyclohexane

    International Nuclear Information System (INIS)

    The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions and solutions of trilaurylammoniumnitrate in cyclohexane has been investigated. The distribution of acid rises with increasing concentrations of nitric acid, methanol, ethanol and acetone in the mixed aqueous-organic phase. The effect of the organic additives in increasing the distribution of the acid is methanol< ethanol< acetone. The concentration of nitric acid in the organic phase can be calculated by a formula similar to that describing the extraction from pure aqueous solutions. The distribution curves of water, methanol and ethanol resemble each other, all of them showing a minimum, when the distribution ratio is plotted versus the nitric acid concentration in the mixed aqueous-organic phase. The acetone distribution decreases steadily with increasing nitric acid concentration. The shape of the curves is briefly discussed. (T.G.)

  4. The sensory interactions of organic acids and various flavors in ramen soup systems.

    Science.gov (United States)

    Kang, M-W; Chung, S-J; Lee, H-S; Kim, Y; Kim, K-O

    2007-11-01

    This study was conducted to investigate the sensory interactions between various organic acids and flavorants in 3 types of ramen soup ('beef,' seafood, and 'kimchi') when types and levels of organic acids (citric, malic, and lactic) varied. For 'beef' and seafood ramen soup, weak suprathreshold levels of acids (0.0039% to 0.0071%) were applied to the system and medium suprathreshold of acids (0.0128% to 0.0299%) were applied to the kimchi ramen soup. The amount of acid applied to each system was chosen based on the equiweight level. Descriptive analyses were performed separately for each ramen soup system using 8 trained panelists. A total of 11, 13, and 12 flavor descriptors were generated for 'beef,' seafood, and 'kimchi' soup, respectively. Analysis of variance was conducted to evaluate the effect of organic acid on the sensory characteristics of ramen soup. Principal component analysis was conducted to summarize the relationship between the soup samples and attributes. The effect of organic acids on the flavor attributes of ramen soup was dependent on the soup system as well as adding levels of acid. Addition of lactic acid power (at 0.0066%) in 'beef'ramen soup showed enhancement effect on the sour, salty, beefy, 'mushroom' flavor, and fermented soybean paste soup flavor, whereas lactic acid powder (at 0.0071%) showed enhancement effect only on the sour and fermented soybean paste soup flavor in seafood ramen soup due to the strong 'hot' flavor characteristics of the soup. In kimchi ramen soup, flavor attributes congruent to sourness were enhanced by the addition of organic acids to the system. PMID:18034748

  5. Organic acid excretion in Penicillium ochrochloron increases with ambient pH

    Directory of Open Access Journals (Sweden)

    PamelaVrabl

    2012-04-01

    Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e. overflow metabolism, charge balance and aggressive acidification hypothesis.

  6. Methodology adjustments for organic acid tolerance studies in oat under hydroponic systems

    OpenAIRE

    Mauricio Marini Kopp; Viviane Kopp da Luz; Velci Queiróz de Souza; Jefferson Luis Meirelles Coimbra; Rogério Oliveira de Sousa; Fernando Irajá Félix de Carvalho; Antonio Costa de Oliveira

    2009-01-01

    The occurrence of anaerobic conditions in hydromorphic soils favors the development of anaerobic microorganisms that produce phytotoxic substances representing primarily by organic acids. The selection of promising oat (Avena sativa L.) genotypes for use in those situations requires field evaluations that can be cumbersome, making hydroponics a viable alternative. The objective of this work was to adjust a methodology to use in studies of tolerance to organic acids in oat under hydroponic sys...

  7. Resource recovery from waste LCD panel by hydrothermal transformation of polarizer into organic acids.

    Science.gov (United States)

    Li, Feng; Bai, Lan; He, Wenzhi; Li, Guangming; Huang, Juwen

    2015-12-15

    Based on the significant advantages of hydrothermal technology, it was applied to treat polarizer from the waste LCD panel with the aim of transforming it into organic acids (mainly acetic acid and lactic acid). Investigation was done to evaluate the effects of different factors on yields of organic acids, including the reaction temperature, reaction time and H2O2 supply, and the degradation process of polarizer was analyzed. Liquid samples were analyzed by GC/MS and HPLC, and solid-phase products were characterized by SEM and FTIR. Results showed that at the condition of temperature 300 °C and reaction time 5 min, the organic materials reached its highest conversion rate of 71.47% by adding 0.2 mL H2O2 and acetic acid was dominant in the products of organic acids with the yield of 6.78%. When not adding H2O2 to the system, the yields of lactic and acetic acid were respectively 4.24% and 3.80% at a nearly equal degree, they are suitable for esterification to form ethyl lactate instead of separating them for this case. In the hydrothermal process, polarizer was first decomposed to monosaccharides, alkane, etc., and then furfural and acids are produced with further decomposition. PMID:26094243

  8. Physicochemical aspects of inhibition of acid corrosion of metals by unsaturated organic compounds

    Science.gov (United States)

    Avdeev, Ya G.; Kuznetsov, Yurii I.

    2012-12-01

    The state-of-the-art in the development and improvement of methods for protecting metals from corrosion in mineral acid solutions using unsaturated organic compounds is considered. Characteristic features of the mechanism of their protective action on metal corrosion in acidic media are discussed. The bibliography includes 203 references.

  9. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    Science.gov (United States)

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  10. Analysis of organic acids in selected forest litters of Northeast China

    Institute of Scientific and Technical Information of China (English)

    SONGJin-feng; CUIXiao-yang

    2003-01-01

    Larch (Larix olgensis), Manchurian ash (Fraxinus mandshurica), Korean pine (Pinus koraiensis) and White birch (Betula platyphylla) are the major planting species in northeast China. The samples of forest litters were collected from the stands of the above 4 species in Laoyeling and Jianlagou experiment stations of Maorshan Exp. Forest Farm (45°12′-45°30′N,127°30′-127°48′E), Northeast Forestry University, in early October 2002. Quantitative analysis and qualitative analysis were carried out on the organic acids existing in freshly fallen litters (L layer) and hemi-decomposed litters (F layer) of the four forest species by using Gas Chromatogram system. A wide variety of organic acids were identified, including oxalic, malonic, fumaric,succinic, maleic, malic, citric, C16:0, C18:0, C18:1, C18:2, C18:3 and C20:0 acids. In respect of L litters of all samples, the oxalic acid content (over 30 mg/g) was the highest of the seven low-molecular-weight organic acids identified, while the content of oleic or linoleic (above 40 mg/g) was found to be highest among the six high aliphatic acids identified. As to F litters, oxalic acid content was also the highest, followed by linoleic and oleic. For the same tree species or the same forest, the kinds and contents of organic acids in L litters were more abundant than that in F litters.

  11. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth;

    2009-01-01

    factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...

  12. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    OpenAIRE

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were gen...

  13. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    OpenAIRE

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles w...

  14. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells. PMID:26700958

  15. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    Directory of Open Access Journals (Sweden)

    Mosayeb Heshmati

    2011-01-01

    Full Text Available Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC, Cation Exchange Capacity (CEC and Soil Aggregate Stability (SAS that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii to evaluate the influence of land use practices on SOC, CEC and SAS. Results: It was found that soil texture was silty and clay, while soil reaction was alkaline (pH was 7.75. The respective amount of carbonates was 32 and 36% in the top-soil and sub-soil respectively, indicating high level of alkalinity in the soils of the study area. The mean SAS of the surface soil layer for agriculture, rangeland and forest was 53, 61 and 64%, respectively with its mean in the topsoil of agriculture is significantly lower (P≤0.05 than the other zones. SOC level in the agriculture, rangeland and forest were 1.35, 1.56, 2.14 % in the topsoil and 1.03, 1.33 and 1.45%, in the subsoil of the respective areas. The results of t-test and ANOVA analyses showed that SOC means are significantly different from each other within soil depth and among agro-ecological zones. The CEC in the agriculture, rangeland and forest areas were 25.8, 24.6 and 35.1 cmolckg-1 for the top-soil and 31.1, 26.8 and 26.9 cmolckg-1 in the sub-soil, respectively. All the above changes are due to the negative effects of agricultural activities. Conclusion: Improper tillage practice (up-down the slope, conversion of the rangeland and forest to rain-fed areas, crop residue burning, over grazing and forest clearance contribute to reduction in SOC and SAS in the Merek catchment, Iran.

  16. Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance

    International Nuclear Information System (INIS)

    Organic cation transporters (OCT) are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC). OCT1 (SLC22A1) and OCT3 (SLC22A3) mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST) by real time PCR (n = 53). Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs. Real time PCR showed a downregulation of SLC22A1 and SLC22A3 in HCC compared to TST (p ≤ 0.001). A low SLC22A1 expression was associated with a worse patient survival (p < 0.05). Downregulation was significantly associated with advanced HCC stages, indicated by a higher number of T3 tumors (p = 0.025) with a larger tumor diameter (p = 0.035), a worse differentiation (p = 0.001) and higher AFP-levels (p = 0.019). In accordance, SLC22A1 was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p < 0.001) and liver transplantation (p = 0.001). Tumors with a low SLC22A1 expression (< median) showed a higher SLC22A3 expression compared to HCC with high SLC22A1 expression (p < 0.001). However, there was no significant difference in tumor characteristics according to the level of the SLC22A3 expression. In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC. The downregulation of OCT1 is associated with tumor progression and a

  17. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations

    International Nuclear Information System (INIS)

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  18. The response of quartz crystals coated with thin fatty acid film to organic gases

    International Nuclear Information System (INIS)

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C14), palmitic acid (C16), stearic acid (C18), and arachidic acid (C20) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quartz crystals coated with stearic-acid LB film were more sensitive to organic gas than bare quartz crystals at room temperature

  19. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  20. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid; Mecanismo de la elucion del erbio en un cambiador cationico con el acido n-hidroxietil-etilen-diamono-triacetico

    Energy Technology Data Exchange (ETDEWEB)

    Amer Amezaga, S.

    1963-07-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs.

  1. Effects of organic acids on Cd adsorption and desorption by two anthropic soils

    Institute of Scientific and Technical Information of China (English)

    Jingui WANG; Jialong LV; Yaolong FU

    2013-01-01

    The objective of this experiment was to study the effects of malic, tartaric, oxalic, and citric acid on the adsorption and desorption characteristics of Cd by two typical anthropic soils (lou soil and irrigation-silted soil) in North-west China. Cadmium adsorption and desorption were studied under a range of temperatures (25℃, 30℃, 35℃, 40℃), organic acid concentrations (0.5-5.0 mmol·L-1), and pH values (2-8). The results showed that the Cd adsorption capacity of the lou soil was significantly greater than that of the irrigation-silted soil. Generally, Cd adsorption increased as the temperature increased. In the presence of NaNO3, the adsorption of Cd was endothermic with △H values of 31.365 kJ·mo1-1 for lou soil and 28.278 kJ·mol-1 for irrigation-silted soil. The endothermic reaction indicated that H bonds were the main driving force for Cd adsorption in both soils. However, different concentrations of organic acids showed various influences on the two soils. In the presence of citric acid, chemical adsorption and van der Waals interactions were the main driving forces for Cd adsorption rather than H bonds. Although the types of organic acids and soil properties were different, the effects of the organic acids on the adsorption and desorption of Cd were similar in the two soils. The adsorption percentage of Cd generally decreased as organic acid concentrations increased. In contrast, the adsorption percentage increased as the pH of the initial solution increased. The exception was that adsorption percentage of Cd increased slightly as oxalic acid concentrations increased. In contrast, the desorption percentage of Cd increased with increasing concentrations of organic acids but decreased as the initial solution pH increased.

  2. Fluorescence of UO22+ in different acidic media containing cationic and anionic impurities. Application to the elaboration of a very sensitive dosing method of Uranium in solution by fluorimetry and to the study of the kinetics of U-6 reduction by Iron

    International Nuclear Information System (INIS)

    The use of the fluorimetric analysis method in phosphoric medium proved that this method is very sensitive for detecting Uranium traces (10 E-10 M). The dosing can be carried out after a simple calibration of the device and without calling for the addition techniques. The interference of most organic matters is eliminated by the 337 nm exciting radiation. The inhibition of the fluorescence induced by anions and cations is generally resolved by a simple dilution. The nitrates that have a harmful effect on the Uranium fluorescence have been eliminated by successive evaporations. This method, as it has been improved in this work, is applied to the study of U-6 reduction by metallic Iron and Fe-2 in orthophosphoric acid medium in case the absorption spectrophotometry becomes inoperative. 37 figs., 14 tabs., 50 refs. (author)

  3. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    Science.gov (United States)

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  4. Calix[4]arene based selective fluorescent chemosensor for organic acid recognition

    Institute of Scientific and Technical Information of China (English)

    Runhe WANG; Jianhua BU; Junmin LIU; Shijun LIAO

    2008-01-01

    A novel calix[4]arene,based fluorescent chemosensor bearing a 2,aminopyridine moiety and a naphthalenic fluorophore was synthesized The chemical structure of the product was elucidated by FT,IR, MS,FAB, NMR and elemental analyses. Then, the properties and identification mechanism of the synthesized chemosensor were investigated. The results show that the chemosensor exhibits selective fluorescent quenching in the presence of aromatic organic acid in acetonitrile solution, and that the binding ability of the chemosensor with organic acid is in the order of p,cyanic,benzyl acid>p,chloric,benzyl acid>p,methoxyl,benzyl acid>benzyl acid.

  5. Microencapsulated organic acid blend with MCFAs can be used as analternative to antibiotics for laying hens

    OpenAIRE

    Lee, Sang In; Kim, Hyun Soo; Kim, Inho

    2015-01-01

    A total of 144 Hy-Line brown laying hens were used in a 10-week trial to evaluate the effects of a microencapsulated organic acid blend with medium chain fatty acids (MCFAs) on egg production, weight, quality, fecal microflora, and nutrient digestibility in the hens. The hens were divided into four groups and different dietary treatments were given to each group. The control group received no microencapsulated organic acid blend with MCFAs. The second group received 0.05%, the third group rec...

  6. Organic acids concentration in citrus juice from conventional versus organic farming

    OpenAIRE

    Duarte, Amílcar; Caixeirinho, Dalila da Cruz; Miguel, Maria Graça; Sustelo, V.; Nunes, Carla; Fernandes, M.M.; Marreiros, António

    2012-01-01

    Every day consumers make choices about what to eat and ask themselves “Should I be buying organic food?” For producers, is very important to have technical information about the quality of organic products. It can facilitate to demonstrate the quality of organic products, in comparison with conventional ones. The purpose of our work was to compare internal and external characteristics of citrus, produced in organic versus conventional farming. The study was carried out in the south of Port...

  7. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    Science.gov (United States)

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  8. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    Science.gov (United States)

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  9. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    Science.gov (United States)

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  10. Control of Listeria monocytogenes in Turkey Deli Loaves using Organic Acids as Formulation Ingredients

    Science.gov (United States)

    The growth of Listeria monocytogenes (LM) in further processed meat products has become a major concern and an important food safety issue. The meat and poultry industries have incorporated interventions such as organic acids in marinades in order to inhibit the growth of LM. In this study, organic...

  11. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk;

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  12. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    Science.gov (United States)

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  13. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    Science.gov (United States)

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  14. What are humic substances? : a molecular approach to the study of organic matter in acid soils

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner

    2004-01-01

    Molecular studies on the composition of organic matter in soils are scarce. In this thesis, a molecular approach to the study of organic matter in acid soils is presented, with a focus on andic, i.e. volcanic, soils. Analyses include both chemical extractions as well as pyrolysis-GC/MS and CPMAS 13C

  15. Joint effect of organic acids and inorganic salts on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2011-04-01

    Full Text Available We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid and one inorganic salt (sodium chloride or ammonium sulphate. Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not

  16. Anti-inflammatory activity of cationic lipids.

    Science.gov (United States)

    Filion, M C; Phillips, N C

    1997-10-01

    induction in macrophages, was not modified in vitro or in situ by cationic lipids. The synthesis of NO and TNF-alpha in macrophages, both of which are PKC-dependent, was downregulated by cationic lipids. 7. These results demonstrate that cationic lipids can be considered as novel anti-inflammatory agents. The downregulation of pro-inflammatory mediators through interaction of cationic lipids with the PKC pathway may explain this anti-inflammatory activity. Furthermore, since cationic lipids have intrinsic anti-inflammatory activity, cationic liposomes should be used with caution to deliver nucleic acids for gene therapy in vivo. PMID:9351514

  17. Mobilization of Phosphorus by Naturally Occurring Organic Acids in Oxisols and Ultisols

    Institute of Scientific and Technical Information of China (English)

    HANXING-GUO; C.F.JORDAN; 等

    1995-01-01

    Citric and malic acids at concentrations of 0.1,1.0,10,and 100 mmol/L were added to three Ultisols and one Oxisol,The amount of P in solution increased with increasing organic acid concentrations,while the amount of Fe-and Al-bound P decreased.This result suggested that naturally occurring products of organicmatter decomposition could increase the P availability to plants in soils where there is a relatively large pool of Fe-and Al-bound P.The interactions between citric and malic acids at the above concentrations,and p added at rates of 10,20,40,and 80mg/kg were determined.At zero levels of organic acids,all added P became either labile or bound ,and greater proportions remained soluble as the concentration of orgaic acids increased,which suggested that organic acids reduced fixation of dissolved P in Fe-and AL-rich soils .Agricultural practices which increase organic matter input on P-deficient acid soild could decrease P deficiency,This would be important in many tropical and subtropical regions where these soils are common,and where the costs of fertilizers and lime are relatively high.

  18. Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization

    International Nuclear Information System (INIS)

    Liquid manure, stored in silos often made of concrete, contains volatile fatty acids (VFAs) that are chemically very aggressive for the cementitious matrix. Among common cements, blast-furnace slag cements are classically resistant to aggressive environments and particularly to acidic media. However, some standards impose the use of low C3A content cements when constructing the liquid manure silos. Previous studies showed the poor performance of low-C3A ordinary Portland cement (OPC). This article aims at clarifying this ambiguity by analyzing mechanisms of organic acid attack on cementitious materials and identifying the cement composition parameters influencing the durability of agricultural concrete. This study concentrated on three types of hardened cement pastes made with OPC, low-C3A OPC and slag cement, which were immersed in a mixture of several organic acids simulating liquid manure. The chemical and mineralogical modifications were analyzed by electronic microprobe, XRD and BSE mode SEM observations. The attack by the organic acids on liquid manure may be compared with that of strong acids. The alteration translates into a lixiviation, and the organic acid anions have no specific effect since the calcium salts produced are soluble in water. The results show the better durability of slag cement paste and the necessity to limit the amount of CaO, to increase the amount of SiO2 (i.e., reduction of the Ca/Si ratio of C-S-H is not sufficient) and to favor the presence of secondary elements in cement

  19. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Four types of soils, including brown coniferous forest soil, dark brown soil, black soil, and black calic soil, sampled from three different places in northeast China were used in this test. The functions of two root-derived organic acids and water were simulated and compared in the activation of mineral nutrients from the rhizosphere soil. The results showed that the organic acids could activate the nutrients and the activated degree of the nutrient elements highly depended on the amount and types of the organic acid excreted and on the physiochemical and biochemical properties of the soil tested. The activation effect of the citric acid was obviously higher than that of malic acid in extracting Fe, Mn, Cu, and Zn for all the tested soil types. However, the activation efficiencies of P, K, Ca, and Mg extracting by the citric acid were not much higher, sometimes even lower, than those by malic acid. The solution concentration of all elements increased with increase of amount of the citric acid added.

  20. Microbial production of specialty organic acids from renewable and waste materials.

    Science.gov (United States)

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  1. Tocopherol, carotenoids and fatty acid composition in organic and conventional milk

    DEFF Research Database (Denmark)

    Slots, Tina; Sørensen, John; Nielsen, Jacob Holm

    2008-01-01

    Organic and conventional milk from silo tanks on Danish dairy plants was compared monthly during one year. The contents of α-tocopherol, carotenoids and α-linolenic acid (C18:3 ω-3) were higher in organic milk, where the content of synthetic 2R-stereo-isomers of α-tocopherol, the ratio between ω-6...... fatty acids and ω-3 fatty acids (ω-6/ω-3) and of the content of oleic acid (C18:1 (c9)) were higher in the conventional milk. The contents of α-tocopherol, the natural stereoisomer RRR-α-tocopherol, the carotenoids (β-carotene, lutein and zeaxanthine), almost all of the saturated fatty acids and of α...

  2. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    Science.gov (United States)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  3. Protocatechuic Acid Levels Discriminate Between Organic and Conventional Wheat from Denmark.

    Science.gov (United States)

    Weesepoel, Yannick; Heenan, Samuel; Boerrigter-Eenling, Rita; Venderink, Tjerk; Blokland, Marco; van Ruth, Saskia

    2016-01-01

    Organic wheat retails at higher market prices than the conventionally grown counterparts. In view of fair competition and sustainable consumer confidence, the organic nature of organic wheat needs to be assured. Amongst other controls this requires analytical tests based on discriminating traits. In this paper, phenolic acids were examined by liquid chromatography analysis as biomarkers for discriminating between the two groups by means of a controlled grown full factorial design Danish wheat sample set. By combining baseline and retention-time correction pre-treatments and principal component analysis, discrimination between organic and conventional produce was found to be expressed in the first principal component (93%), whilst the second principal component accounted for the production year (4%). Upon examination of the loadings plot, a single chromatographic peak was found to account for a large part in the discrimination between the two wheat production systems. This was further underpinned by statistically significant differences found in concentrations between the organic and conventional production systems of this phenolic acid (ANOVA, P<0.05). The phenolic acid was tentatively identified as protocatechuic acid by negative mode mass spectrometry. The results obtained implied that protocatechuic acid may serve as a single marker for discrimination between organic and conventional produced wheat. PMID:27198816

  4. The drying method affects the organic acid content of alfalfa forages

    Directory of Open Access Journals (Sweden)

    P. Pezzi

    2011-03-01

    Full Text Available Malic acid (the main organic acid contained in alfalfa; Callaway et al., 1997 is an important metabolite for ruminal microbial population since it improves the uptake of lactic acid by Selenomonas ruminantium (Evans and Martin, 1997 and Megasphaera elsdenii (Rossi and Piva, 1999. Several studies have shown the effect of adding malic acid to the diet of steers and dairy cows on ruminal fermentation (Martin et al., 1999; Martin et al., 2000 and animal performances (Krummrey et al., 1979; Stallcup, 1979; Kung et al., 1982. Aim of this study was the evaluation of the influence of drying method.......

  5. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    Science.gov (United States)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  6. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    Science.gov (United States)

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  7. Crystal Structure of Nicotinic Acid(3,5-dinitrobenzoic Acid Organic Adduct

    Institute of Scientific and Technical Information of China (English)

    朱军; 郑吉民

    2004-01-01

    The title compound nicotinic acid(3,5-dinitrobenzoic acid(NDNT)has been obtained by the reaction of nicotinic acid with 3,5-dinitrobenzoic acid in deionic water at room temperature.The crystal is of monoclinic,space group P21/n with a=14.053(6),b=5.046(2),c=20.105(8)A,β=103.573(8)°,C13H9N3O8,Mr=335.23,Z=4,V=1385.8(10)A3,Dc=1.607g/cm3,μ(MoKα)=0.137 mm-1,F(000)=688,R=0.0435 and wR=0.0993 for 1239 observed reflections (I>2σ(I)).In the crystals,the asymmetric unit contains one nicotinic acid (C6H5NO2)and one 3,5-dinitrobenzoic acid (C7H4N2O6)molecules which are linked by some hydrogen bonds to form a twenty-membered hydrogen-bonded ring and an extended linear structure.

  8. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  9. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  10. Extraction and characterisation of aqueous organic acids from natural waters

    International Nuclear Information System (INIS)

    Humic and fulvic acids were extracted from large volumes of groundwater associated with the Broubster and Needle's Eye natural analogue sites, and the BGS research site at Drigg in Cumbria. Extractions were performed by both batchwise extraction and radial flow chromatography using DEAE-cellulose. Retained humic substances were eluted using NaOH and separated into humic and fulvic components by acidification to pH 1. After separation the humic component was purified by repetitive precipitation and dissolution whilst the fulvic component was purified by absorption chromatography. The resulting humic substances were shown to be of high purity with respect to metallic elements, with less than 1% of available sites being occupied. During elution the association of trace elements with humic substances was monitored and a high degree of association between humic substances, U and the Rare Earth Elements was noted. (author)

  11. Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Huang, Hsi-Ya; Wei, Mercury; Lin, Yu-Ru; Lu, Pin-Hsuan

    2009-03-20

    In this study, a microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect several aromatic acids (benzoic acid (BA), isophthalic acid (IPA), terephthalic acid (TPA), p-toluic acid (p-TA), 4-carboxylbenzaldehyde (4-CBA), trimesic acid (TSA), trimellitic acid (TMA), o-phthalic acid (OPA), and hemimellitic acid (HMA)), which are common organic impurities produced by liquid-phase catalytic oxidation of p-xylene to TPA. The effects of microemulsion composition, column temperature, column length and applied voltage were examined in order to optimize the aromatic acid separations. This work demonstrated that variation in the concentration of surfactant (sodium dodecyl sulfate (SDS)) and oil phase (octane) had a pronounced effect on separation of the nine aromatic acids. It was also found that a decrease in column length had the greatest effect on shortening separation time and improving separation resolution for these aromatic acids when compared to that of an increase in column temperature or applied voltage. However, the nature and concentration of cosurfactants and organic modifiers were found to play only minor roles in the separation mechanism. Thus, a separation with baseline resolution was achieved within 14 min by using a microemulsion solution of pH 2.0 containing 3.7% SDS, 0.975% octane, and 5.0% cyclohexanol; and a 50-cm capillary column (effective length of 40-cm) at 26 degrees C. As a result, the developed MEEKC method successfully determined eight impurities of aromatic acids in the mother liquors produced from the oxidation synthesis of TPA. PMID:19167001

  12. Broiler skin color as affected by organic acids: influence of concentration and method of application.

    Science.gov (United States)

    Bilgili, S F; Conner, D E; Pinion, J L; Tamblyn, K C

    1998-05-01

    Color of broiler skin was evaluated after exposure to organic acids under various concentrations and simulated potential plant application conditions. Breast skin from chilled broiler carcasses was treated with acetic (AA), citric (CA), lactic (LA), malic (ML), mandelic (MN), propionic (PA), or tartaric (TA) acids at 0.5, 1, 2, 4, and 6% concentrations. Each acid and concentration was applied in simulated dip (23 C for 15 s), scalder (50 C for 2 min), and immersion chiller (1 C for 60 min) conditions. A tap water control was included with each application method. Objective color values of L* (lightness), a* (redness), and b* (yellowness) were measured before and after the treatments to calculate color differentials under a factorial arrangement of organic acids and concentrations. Skin lightness increased (P dip and scalder applications. Skin redness was reduced significantly in scalder, and yellowness in dip and scalder applications, respectively. In simulated dip application, with the exception of PA, all acids decreased lightness and increased redness and yellowness values. Propionic acid had little affect on lightness and redness values, but decreased yellowness values. In simulated scalder application, with the exception of PA, all acids decreased lightness with increasing concentration. The redness values changed little in scalder application. However, yellowness values were increased with all acids, except for PA, which decreased yellowness values. In simulated chiller conditions, all acids, except for PA, decreased lightness and redness and increased yellowness values. Propionic acid increased lightness and decreased yellowness values significantly in chiller conditions. Alterations in skin color should be taken into account in the selection and application of organic acids as carcass disinfectants. PMID:9603365

  13. Acid Gas Capture Using CO2-Binding Organic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2010-11-10

    Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the CO2 scrubber. The ≤30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

  14. Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge

    International Nuclear Information System (INIS)

    Soil washing using a strong chelating agent is a common practice for restoring contaminated soils, but significant soil fertility degradation and high operation costs are the major disadvantages. Washing soil with a dissolved organic matter (DOM) solution has been identified as a method that can moderate the loss of nutrients in the soil and enhance metal removal. The DOM solutions were extracted from waste sludge obtained from a local whisky distillery. Single chelating washing and chelate-DOM washing were carried out using ethylenediaminetetraacetic acid (EDTA), citric acid, and DOM solutions to remediate highly Cu-contaminated soil. Two-phase washing using 0.34 M citric acid and then 1500 mg L−1 DOM solution (pH 8.5) was found to be most favorable for the soil. With this treatment, 91% Cu was removed from the topsoil; the organic matter, cation exchange capacity, plant-available nitrogen, and available phosphate content increased by 28.1%, 103%, 17.7%, and 422%, respectively. -- Highlights: •We employ dissolved organic matter (DOM) solution to partially substitute EDTA or citric acid for soil washing. •Moderately-contaminated subsoil can be successfully remediated by sequential DOM washing. •Soil fertility deteriorates if soil is washed with EDTA or citric acid alone. •The loss of soil fertility has been reduced by performing two-phase the chelate-DOM washing. -- Washing the soil with the two-phase chelate-DOM method could remove quantities of Cu and reserve most of fertility in soil

  15. Significance of the long-chain organic cation structure in the sorption of the penconazole and metalaxyl fungicides by organo clays

    OpenAIRE

    Rodríguez-Cruz, M. S.; Andrades, M. S.; Sánchez Martín, M. J.

    2008-01-01

    Sorption-desorption of two different hydrophobic fungicides, penconazole and metalaxyl, by a series of clay minerals layered and non-layered (montmorillonite, illite, kaolinite, muscovite, sepiolite and palygorskite) modified with the two-chain cationic surfactant, dihexadecyldimetylammonium (DHDDMA) was studied by first time in this work. DHDDMA-clays showed a good capacity to sorb both fungicides from water. Freundlich sorption constants (Kf) increased 22-268-fold for pencona...

  16. Joint effect of organic acids and inorganic salts on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2010-07-01

    Full Text Available We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid and one inorganic salt (sodium chloride or ammonium sulphate. Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with K

  17. Determination of Five Organic Acids in Radix Isatidis by Column Partition Chromatography and Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    CHAIYi-fen; JISong-gang; ZHANGGuo-qing; LIUChang-hai

    2003-01-01

    Aim To determine five organic acids in Radix lsatidis. Method The extraction method and the column partition chromatographic conditiom were studied. Then a capillary zone dectrophorefic method was set up for the determina-tion. Results The linear ranges of quinazolinone acid, n-anthranilic acid, benzoic acid, salicylic acid, and syringic acid were 5.52 - 92.0μg·mL-1 , 5.12 - 102μg·mL-1 , 2.28 - 84.4μg·mL-1, 4.78 - 159 μg·mL-1, and 1.74- 87.0μg·mL-1 respectively. Conclusion The established method is accurate and simple.

  18. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    Science.gov (United States)

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  19. Nutritional value of organic acid lime juice (Citrus latifolia T., cv. Tahiti

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2011-12-01

    Full Text Available Acid lime can be used as fresh fruit or as juice to increase the flavor of drinks. Therefore, it is necessary to analyze organic acid lime nutritional composition in order to evaluate if there are important differences among those conventionally produced. No significant differences in total titrable acidity, pH, ascorbic acid, sucrose, calcium, and zinc were found between the acid lime juice from organic biodynamic crops and conventional crops. However, the organic biodynamic fruits presented higher peel percentage than the conventional ones leading to lower juice yield. On the other hand, fructose, glucose, total soluble solids contents, potassium, manganese, iron, and copper were higher in the conventional samples. These results indicated few nutritional differences between organic and conventional acid lime juices in some constituents. Nevertheless, fruit juice from biodynamic crops could be a good choice since it is free from pesticides and other agents that cause problems to human health maintaining the levels similar to those of important nutritional compounds.

  20. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps.

    Science.gov (United States)

    Zheng, Huiwen; Zhang, Qiuyun; Quan, Junping; Zheng, Qiao; Xi, Wanpeng

    2016-08-15

    The composition and content of sugars, organic acids, volatiles and carotenoids, in the pulps of six grapefruit cultivars, were examined by HPLC and GC-MS. The results showed that sucrose was the dominant sugar in grapefruit, making up 40.08-59.68% of the total sugars, and the ratio of fructose to glucose was almost 1:1. Citric acid was the major organic acid and represented 39.10-63.55% of the total organic acids, followed by quininic acid. The ratios of individual sugars and organic acids play an important role in grapefruit taste determination. Monoterpenes and sesquiterpenes were the predominant volatiles in grapefruit, in particular d-limonene and caryophyllene. Caryophyllene, α-humulene, humulen-(v1), β-linalool and tert-butyl 2-methylpropanoate are the characteristic aroma compounds of grapefruit. Although β-carotene is the primary carotenoid in grapefruit, the pulp color is mainly determined by the ratios of zeaxanthin, β-cryptoxanthin and lycopene. Our results provide the first complete chemical characterization of the taste, aroma and color of grapefruit. PMID:27006221

  1. Three silver-based complexes constructed from organic carboxylic acid and 4,4‧-bipyridine-like ligands: Syntheses, structures and photocatalytic properties

    Science.gov (United States)

    Wang, Chong-chen; Jing, Huan-ping; Wang, Peng

    2014-09-01

    The reactions of AgNO3 with combinations of 4,4‧-bipyridine (bpy)/1,2-di(4-pyridyl)ethylene (dpe), and 5-aminophthalic acid (H2ap)/2,6-Naphthalenedicarboxylic acid (H2npdc)/4,4‧-stilbenedicarboxylic acid (H2sbdc) in aqueous alcohol/ammonia at room temperature produce crystals of [Ag4(bpy)4](ap)2·11H2O (1), [Ag2(bpy)2](npdc)·2H2O (2) and [Ag2(dpe)1.5(sbdc)0.5](sbdc)0.5·7H2O (3). All complexes 1, 2 and 3 consist of 1D infinite silver-ligand cationic chains, interspersed with organic carboxylate anions that provide charge compensation in the crystal structures. The lattice water molecules are situated among the framework of the crystal structure and show rich hydrogen-bonding interactions, which serve to orientate of the organic carboxylate anions in the crystal packing, while the presence of Ag⋯N and Ag⋯Ag contacts strengthens the frameworks. In addition, complexes 1-3 exhibit good photocatalytic activities for dye decolorization under UV light.

  2. "Stereoscopic" 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition.

    Science.gov (United States)

    Zhang, Shuang; Zhao, Xiaosheng; Li, Bo; Bai, Chiyao; Li, Yang; Wang, Lei; Wen, Rui; Zhang, Meicheng; Ma, Lijian; Li, Shoujian

    2016-08-15

    So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C2-C4, C6 and Td) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new "stereoscopic" 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C3-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0-2.1nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1-2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50mg/g) and selectivity (>60%) were obtained under strong acidic condition (1M HNO3). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect. PMID:27107239

  3. A concrete bio-decontamination process in nuclear substructures: effects of organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, Aurelie [DTN/SMTM/LMTE CEN de Cadarache, Bat. 352, 13108 Saint Paul-lez-Durance (France)]|[Centre des Materiaux de Grande Diffusion, Ecole des Mines d' Ales, 6, avenue de Clavieres, 30319 Ales cedex (France); Thouvenot, Pascal [DTN/STRI/LTCD CEN de Cadarache, Bat. 352, 13108 Saint Paul-lez-Durance (France); Libert, Marie [DTN/SMTM/LMTE CEN de Cadarache, Bat. 352, 13108 Saint Paul-lez-Durance (France); Bournazel, Jean Pierre [Centre des Materiaux de Grande Diffusion, Ecole des Mines d' Ales 6, avenue de Clavieres, 30319 Ales Cedex (France)

    2004-07-01

    In the context of nuclear plants decommissioning, materials of the substructures involve important volumes of radioactive wastes. In this way, some effective and impressive processes of decontamination have to be proposed to reduce the wastes and so to reduce the costs. The phenomenon of biodegradation of concrete was characterized in the 40's, by C.D. Parker as an indirect attack of the material by acids resulting of micro-organism metabolism. Those involved micro-organisms are sulfur oxidizing bacteria producing sulfuric acid (Thiobacillus), nitrifying bacteria producing nitric acid (Nitrosomonas and Nitrobacter) and fungi producing organic acids. Mechanisms of bio-product sulfuric acid attack are well specified. Nevertheless, the presence of fungi have not really been described. The process of bio-decontamination of concrete leans on those mechanisms, it means a surface degradation which is contaminated by radionuclides. Our study concerns the effects of the three bio-product acids on three different concrete (CEM I paste and mortar and CEM V paste). First, the complexation by organic acids of calcium and radionuclides ({sup 137}Cs, Co and natural uranium) included in concrete will be shown. In a second time, the part of the bio-film formation needs to be defined. Preliminary work has concerned filamentous fungi biodegradation of non radioactive materials. Bio-film adhesion to the concrete, organic acids formation and structure (physical and chemical) of the corroded cement were characterised. The results show a thickness of degradation of more than 5 mm in 9 months and a significant penetration of the fungi filaments in the concrete. The initial content of calcium in this layer is totally leached and silica gel formation is observed. Results concerning same experiments conducted with bacteria, in order to compare their efficiency in terms of bio-decontamination, will be discussed. Some assays of modelling are also allowed, to predict the biodegradation of

  4. A concrete bio-decontamination process in nuclear substructures: effects of organic acids

    International Nuclear Information System (INIS)

    In the context of nuclear plants decommissioning, materials of the substructures involve important volumes of radioactive wastes. In this way, some effective and impressive processes of decontamination have to be proposed to reduce the wastes and so to reduce the costs. The phenomenon of biodegradation of concrete was characterized in the 40's, by C.D. Parker as an indirect attack of the material by acids resulting of micro-organism metabolism. Those involved micro-organisms are sulfur oxidizing bacteria producing sulfuric acid (Thiobacillus), nitrifying bacteria producing nitric acid (Nitrosomonas and Nitrobacter) and fungi producing organic acids. Mechanisms of bio-product sulfuric acid attack are well specified. Nevertheless, the presence of fungi have not really been described. The process of bio-decontamination of concrete leans on those mechanisms, it means a surface degradation which is contaminated by radionuclides. Our study concerns the effects of the three bio-product acids on three different concrete (CEM I paste and mortar and CEM V paste). First, the complexation by organic acids of calcium and radionuclides (137Cs, Co and natural uranium) included in concrete will be shown. In a second time, the part of the bio-film formation needs to be defined. Preliminary work has concerned filamentous fungi biodegradation of non radioactive materials. Bio-film adhesion to the concrete, organic acids formation and structure (physical and chemical) of the corroded cement were characterised. The results show a thickness of degradation of more than 5 mm in 9 months and a significant penetration of the fungi filaments in the concrete. The initial content of calcium in this layer is totally leached and silica gel formation is observed. Results concerning same experiments conducted with bacteria, in order to compare their efficiency in terms of bio-decontamination, will be discussed. Some assays of modelling are also allowed, to predict the biodegradation of concrete

  5. Protecting Cell Walls from Binding Aluminum by Organic Acids Contributes to Aluminum Resistance

    Institute of Scientific and Technical Information of China (English)

    Ya-Ying Li; Yue-Jiao Zhang; Yuan Zhou; Jian-Li Yang; Shao-Jian Zheng

    2009-01-01

    Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major AI resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify AI in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the AI activities in the solution were 10, 20, and 50 μM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm2 per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of AI adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding AI. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to AI resistance.

  6. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    Science.gov (United States)

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  7. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the potential feasibility of an anaerobic bioreactor treating low organic matter content in generating hydrogen gas and organic acids. For this purpose, it was used a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater with hydraulic retention time of 0.5 h, using clay-beads as bio-film support material. A microbial bio-film developed during 63 days without previous inoculation. The reactor was fed with three different concentration of buffer agent: 0, 1000 and 2000 mg.l-1 of NaHCO3 and it was observed that 85.8%, 80.5% and 87.3% of glucose was fermented to organic acids and hydrogen production was in average of 2.48, 2.15 and 1.81 mol H2/mol of glucose, respectively. The most common organic acids observed were acetic and butyric. High percentage of acids recovery (93.5%) was obtained using an anion-exchange column. Therefore, the operational regime of the bioreactor, the support material and alkalinity control were effective to select a microbial fermenting bio-film capable of producing free hydrogen and organic acids. (authors)

  8. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    Science.gov (United States)

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  9. Organic acid exudation from the roots of Cunninghamia lanceolata and Pinus massoniana seedlings under low phosphorus stress

    Institute of Scientific and Technical Information of China (English)

    Yuanchun YU; Jian YU; Qihua SHAN; Li FANG; Defeng JIANG

    2008-01-01

    Organic acid exudation from the roots of Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana) seedlings under low phosphorus stress was studied using the solution culture method. The results revealed that organic acid exudation from the roots of Chinese fir and Masson pine seedlings under low phosphorus stress increased. Compared with P3 (KH2PO4, 0.5 mmol/L), the average organic acid exuda-tion from the root of Masson pine seedlings under P0 (KH2PO4, 0 mmol/L), P1 (KH2PO4, 0.03 mmol/L) and P2(KH2PO4, 0.09 mmol/L) increased by 328.6%, 267.9% and 126.4% respectively. Masson pine from Zhejiang Province in China had the highest organic acid exuda-tion. Under low phosphorus stress, the increase in organic acid exudation from the different provinces of Chinese fir and Masson pine varied. Masson pine from Zhejiang Province mainly increased oxalic acid, tartaric acid, citric acid and malic acid exudation, that from Guangxi Province mainly increased oxalic acid and tartaric acid exudation, and that from Guizhou Province, China mainly increased oxalic acid, tartaric acid and malic acid exudation. Chinese fir mainly increased oxalic acid and tartaric acid exudation.

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  11. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  12. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-05-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to

  13. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  14. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation

    Czech Academy of Sciences Publication Activity Database

    Glew, R. H.; Ayaz, F. A.; Sanz, C.; VanderJagt, D. J.; Huang, H. S.; Chuang, L. T.; Strnad, Miroslav

    2003-01-01

    Roč. 83, č. 3 (2003), s. 363-369. ISSN 0308-8146 R&D Projects: GA AV ČR IBS5038351 Grant ostatní: Scientific and Research Council of Turkey(TR) TUBITAK-NATO Institutional research plan: CEZ:AV0Z5038910 Keywords : Medlar (Mespilus germanica L.) * Sugar * Organic acid Subject RIV: EF - Botanics Impact factor: 1.204, year: 2003

  15. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  16. Surface complexation modeling of uranium (Vi) retained onto zirconium diphosphate in presence of organic acids

    International Nuclear Information System (INIS)

    In the field of nuclear waste disposal, predictions regarding radionuclide migration through the geosphere, have to take account the effects of natural organic matter. This work presents an investigation of interaction mechanisms between U (Vi) and zirconium diphosphate (ZrP2O7) in presence of organic acids (citric acid and oxalic acid). The retention reactions were previously examined using a batch equilibrium method. Previous results showed that U (Vi) retention was more efficient when citric acid or oxalic acid was present in solid surface at lower ph values. In order to determine the retention equilibria for both systems studied, a phosphorescence spectroscopy study was carried out. The experimental data were then fitted using the Constant Capacitance Model included in the FITEQL4.0 code. Previous results concerning surface characterization of ZrP2O7 (surface sites density and surface acidity constants) were used to constraint the modeling. The best fit for U (Vi)/citric acid/ZrP2O7 and U (Vi)/oxalic acid/ZrP2O7 systems considered the formation of a ternary surface complex. (Author)

  17. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  18. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    Science.gov (United States)

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands. PMID:15607197

  19. Determination of Organic Acids in Root Exudates by High Performance Liquid Chromatography:Ⅱ.Influence of Several Testing COnditions

    Institute of Scientific and Technical Information of China (English)

    SHENJIANBO; ZHANGFUSUO; 等

    1999-01-01

    Effects of column temperature and flow rate on separation of organic acids were studied by determining nine low-molecular-weight organic acids on reversed-phase C18 column using high performace liquid chromatography(HPLC) with a wavelength of UV(ultraviolet)214 nm and a mobile phase of 18 mmol L-1 KH2PO4 buffer solution (pH2.1).The thermal stabiltiy of organic acids was determined by comparing the recoveries of organic acids in different temperature treatments.The relationships between column temperature,flow rate or solvent pH and retention time were analyzed.At low solvent pH,separatioin efficiency of organic acids was increased by raising the flow rate of the solvent because of lowering the retention time or organic acids.High column temperature was unfavorable for the separation of organic acids.The separating effect can be enhanced through reducing column temperature in organic acid determination due to increasing retention time.High thermal stability of organic acids with low concentrations was observed at temperature of 40℃-45℃,Sensitivity and separation effect of organic acid determination by HPLC were clearly improved by a combination of raising flow rate and lowering column temperature at low solvent pH.

  20. Mechanism of the extraction of nitric acid and water by organic solutions of tertiary alkyl-amines

    International Nuclear Information System (INIS)

    The micellar aggregation of tri-alkyl-ammonium nitrates in low polarity organic solvents has been verified by viscosity, conductivity and sedimentation velocity measurements. The aggregation depends upon the polarity of solvent, the length of the alkyl radicals and the organic concentration of the various constituents (tri-alkyl-ammonium nitrate, tri-alkyl-amine, nitric acid, water). The amine salification law has been established and the excess nitric acid and water solubilities in the organic solutions have been measured. Nitric acid and water are slightly more soluble in micellar organic solutions than in molecular organic solutions. A description of excess nitric acid containing tri-alkyl-ammonium nitrate solutions is proposed. (author)

  1. A contribution to the study of the extraction of mineral acids and of actinide (IV) and (VI) cations by N,N-dialkylamides; Contribution a l'etude de l'extraction d'acides mineraux et de cations actinides aux degres d'oxydation (IV) et (VI) par des N,N-dialkylamides

    Energy Technology Data Exchange (ETDEWEB)

    Condamines, N.

    1990-03-15

    N,N-dialkylamides are alternate extractants to tributylphosphate, TBP, for the actinides separation in nuclear fuel reprocessing. N,N-di (2-ethyl hexyl) butyramide and N,N-di (2 ethyl hexyl) isobutyramide are selected for their sufficient extraction and partition ability towards actinides (IV) and (VI) without coextracting fission products. Mechanisms of HNO{sub 3}, UO{sub 2}{sup 2+}, Pu{sup 4+}, Th{sup 4+} are investigated. Nitric acid extraction is due to the competitive formation of the species (HNO{sub 3})L{sub 2}, (HNO{sub 3})L, (HNO{sub 3}){sub 2}L (L: DOBA or DOiBA). An hydrogen bond is the driving force of the transfer. For low acidity media, amides are neutral extractants. Physical interactions, between free ligand and metallic complex, arise for high amide concentrations. Taking into account the non-ideality of the organic medium by a hard spheres mixture model, we estimate that such interactions are far from negligible and very specific to the amide group. Unlike TBP, when increasing acidity, amides behave as anionic extractants. DOBA and DOiBA appear to be satisfactory extractants for fuel reprocessing.

  2. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    OpenAIRE

    C. Woulds; Middelburg, J. J.; Cowie, G. L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing eith...

  3. Organosulfates and organic acids in Arctic aerosols: Speciation, annual variation and concentration levels

    DEFF Research Database (Denmark)

    Hansen, Anne Maria Kaldal; Kristensen, Kasper; Nguyen, Quynh;

    2014-01-01

    organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean...... concentrations of organosulfates (47 +/- 14 ng m(-3)) and organic acids (11.5 +/- 4 ng m(-3)) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 +/- 3 ng m(3-)) and organic acids (2.2 +/- 1 ng m(-3)) observed during the rest of the year....... At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 +/- 4 ng m(-3) and 3.9 +/- 1 ng m(-3), respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m...

  4. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.

    Science.gov (United States)

    Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli

    2016-05-01

    A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. PMID:26900671

  5. The different roles of a cationic gold(i) complex in catalysing hydroarylation of alkynes and alkenes with a heterocycle.

    Science.gov (United States)

    Mehrabi, Tahmineh; Ariafard, Alireza

    2016-08-01

    The mechanism of twofold hydroarylation of terminal alkynes with pyrrole catalyzed by a cationic gold(i) complex was investigated using DFT. It was found that while both the hydroarylation reactions proceed via a Friedel-Crafts-type mechanism, the first hydroarylation is directly promoted by gold(i) but the second hydroarylation by a proton released through interaction of the alkene product with gold-bound acidic organic species such as acetic acid and terminal alkynes. PMID:27377712

  6. Wheat-Exuded Organic Acids Influence Zinc Release from Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. A. MAQSOOD; S. HUSSAIN; T. AZIZ; M. ASHRAF

    2011-01-01

    Rhizosphere drives plant uptake of sparingly soluble soil zinc (Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes (Sehar-06 and Vatan),Zn fractious in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties; their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-efficient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.

  7. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  8. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  9. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  10. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    OpenAIRE

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixt...

  11. Role of Antioxidant Enzymes in Bacterial Resistance to Organic Acids

    OpenAIRE

    Bruno-Bárcena, Jose M.; Azcárate-Peril, M. Andrea; Hassan, Hosni M.

    2010-01-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well under...

  12. Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronate derivatives

    OpenAIRE

    Heleno, Sandrina A.; Isabel C. F. R. Ferreira; Calhelha, Ricardo C.; Esteves, Ana P.; Martins, Anabela; Queiroz, Maria João R. P.

    2014-01-01

    Coprinopsis atramentaria is a wild edible mushroom whose methanolic extract revealed a marked antioxidant activity; p-hydroxybenzoic (HA), p-coumaric (CoA) and cinnamic (CA) acids were identified in the extract. In the present work, the cytotoxicity of C. atramentaria extract, previously identified organic acids and their synthesized derivatives (methylated compounds and protected glucuronides) was evaluated. Among all the tested cell lines (MCF-7—breast adenocarcinoma, NCI-H460—non-small cel...

  13. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    OpenAIRE

    Liu, S.; D. A. Day; J. E. Shields; L. M. Russell

    2011-01-01

    Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass...

  14. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    OpenAIRE

    Iwao Sugimoto; Shunsaku Maeda; Yoriko Suda; Kenji Makihara; Kazuhiko Takahashi

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl du...

  15. Investigation of the atmospheric behavior of dicarboxylic acids and other polar organic aerosol constituents

    International Nuclear Information System (INIS)

    The objective of the present work was to improve the present knowledge about the atmospheric behavior of polar organic aerosol constituents with special respect to dicarboxylic acids. To enable the simultaneous determination of polar organic compounds in atmospheric samples like aerosol or precipitation samples (atmospheric hydrometeors) a new GCMS method was developed. Almost all classes of oxygenated organic compounds like mono- and dicarboxylic acids, aldehydes, alcohols or polar aromatic compounds like phthalates could be determined with only one sample preparation scheme. The separation into two classes of organic compounds with different polarity was performed using solid phase extraction. After a sample pre-treatment of the derived fractions, including esterification of the acids and extraction with cyclohexane, the samples were analyzed with a GCMS system. The new method was applied for the analysis of simultaneously collected interstitial aerosol and cloud water samples from a continental background site in Central Europe (Sonnblick Observatory, located at 3106-m elevation in the Austrian Alps). In all samples a large variety of mono- and dicarboxylic acids were identified and quantified, together with some aldehydes, alcohols and aromatic compounds. Using the obtained data set, for the first time in-cloud scavenging efficiencies for dicarboxylic acids, monocarboxylic acids, and other polar organic compounds were calculated. The results were compared to sulfate, which exhibited an average scavenging efficiency of 0.94. In the last part of the present work the results from laboratory and field investigations conducted with the intention to yield an improved sampling technique for the correction of the positive sampling artifact (adsorption of gas phase organics onto the filter substrate) were presented. (author)

  16. Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography.

    Science.gov (United States)

    Uckoo, Ram M; Jayaprakasha, Guddadarangavvanahally K; Nelson, Shad D; Patil, Bhimanagouda S

    2011-01-15

    Rapid analytical method for the simultaneous separation and determination of amines and organic acids is a vital interest for quality control of citrus and their products. In the present study, a simultaneous high performance liquid chromatography (HPLC) method for the rapid separation of three amines and two organic acids was developed. Chromatographic separation of compounds was achieved using Xbridge C(18) column at ambient temperature, with an isocratic mobile phase of 3mM phosphoric acid at a flow rate of 1.0 mL min(-1). A photodiode array (PDA) detector was used to monitor the eluent at 223 nm and 254 nm with a total analysis time of 10 min. Extraction of amines and organic acids from citrus juice was optimized. The method was validated by tests of linearity, recovery, precision and ruggedness. The limit of detection (LOD) and limit of quantification (LOQ) for amines and ascorbic acid were determined to be 5 ng and 9.8 ng, respectively. All calibration curves showed good linearity (R(2) ≥ 0.9999) within the test ranges. The recoveries of the amines and organic acids ranged between 84% and 117%. The identity of each peak was confirmed by mass spectral (MS) analysis. The developed method was successfully applied to analyze the content of amines and organic acids in six different species and two varieties of citrus. Results indicate that mandarin and Marrs sweet orange contain high level of amines, while pummelo and Rio Red grapefruit had high content of ascorbic acid (137-251 μg mL(-1)) and citric acid (5-22 mg mL(-1)). Synephrine was the major amine present in Clementine (114 μg mL(-1)) and Marrs sweet orange (85 μg mL(-1)). To the best of our knowledge, this is the first report on simultaneous separation and quantification of amines and organic acids in Marrs sweet orange, Meyer lemon, Nova tangerine, Clementine, Ugli tangelo and Wekiwa tangelo. PMID:21147342

  17. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  18. Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents

    International Nuclear Information System (INIS)

    Highlights: • The solubility of sorbic acid in eight pure organic solvents was experimentally determined. • Several solution thermodynamic properties of sorbic acid in eight pure organic solvents were calculated. • The experimental solubility data were correlated by five models. • The COSMO-RS model was employed to predict the solubility of sorbic acid in eight pure organic solvents. - Abstract: By the gravimetric method, the solubility of sorbic acid in eight solvents including ethanol, 2-propanol, methanol, 1-butanol, ethyl acetate, methyl tert-butyl ether, acetone and acetonitrile was determined over a temperature range from 285.15 to K at atmospheric pressure. For the temperature range investigated, the solubility of sorbic acid in the solvents increased with increasing temperature. The experimental values were correlated with the linear solvation energy relationship, modified Apelblat equation, λh equation, non-random two-liquid (NRTL) model, and Wilson model. On the other hand, the enthalpy, entropy and Gibbs free energy of dissolution were obtained from these solubility values by using the van’t Hoff and Gibbs equations. The excess enthalpy of solution was estimated on the basis of λh equation. Furthermore, the a priori predictive model COSMO-RS was employed to predict the solubility of sorbic acid in selected solvents and reasonable agreement with experimental values is achieved

  19. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam.

    Science.gov (United States)

    Silva, Branca M; Andrade, Paula B; Mendes, Gisela C; Seabra, Rosa M; Ferreira, Margarida A

    2002-04-10

    The organic acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by HPLC. The sample preparation was simple, involving only extraction with methanol (40 degrees C) and filtration through a Sep-pack C18 cartridge. The chromatographic separation was achieved using an ion exclusion column, Nucleogel Ion 300 OA (300 x 7.7 mm), in conjunction with a column heating device at 30 degrees C. An isocratic elution with H(2)SO(4) 0.01 N as the mobile phase, with a flow rate of 0.1 mL/min, and UV detection at 214 nm were used. These analyses showed that all samples presented a similar profile composed of at least six identified organic acids: citric, ascorbic, malic, quinic, shikimic, and fumaric acids. Several samples also contained oxalic acid. This study suggests that the organic acids levels and ratios may be useful for the determination of percent fruit content of quince jams. The citric acid value can also be used in the differentiation of the type of manufacture of the commercial quince jams (homemade or industrially manufactured). PMID:11929290

  20. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    Science.gov (United States)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.