Sample records for cationically polymerizable monomers

  1. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.


    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  2. Cationically polymerizable monomers derived from renewable sources. Annual performance report

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.


    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year`s research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  3. Synthesis and Properties of Novel Cationic Maleic Diester Polymerizable Surfactants

    Institute of Scientific and Technical Information of China (English)


    Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by 1H NMR, IR and elements analysis. The values of CMC and gCMC of these surfactants have been measured. One can obtain nearly monodisperse polystyrene latex by emulsion polymerization using the polymerizable surfactant.

  4. Synthesis of Polymerizable Cyclodextrin Derivatives for Use in Adhesion-Promoting Monomer Formulations

    Directory of Open Access Journals (Sweden)

    Bowen, Rafael L.


    Full Text Available The synthesis of the cyclodextrin derivatives reported herein was assisted by extensive literature research together with structure-property relationships derived from three-dimensional molecular modeling. These studies led to the hypothesis that many of the 21 hydroxyl groups on beta-cyclodextrin molecules could be derivatized to form a closely related family of analogous chemical compounds containing both polymerizable groups and hydrophilic ionizable ligand (substrate-binding groups, each attached via hydrolytically-stable ether-linkages. The vinylbenzylether polymerizable groups should readily homopolymerize and also copolymerize with methacrylates. This could be highly useful for dental applications because substantially all contemporary dental resins and composites are based on methacrylate monomers. Due to hydrophilic ligands and residual hydroxyl groups, these cyclodextrin derivatives should penetrate hydrated layers of dentin and enamel to interact with collagen and tooth mineral. Analyses indicated that the diverse reaction products resulting from the method of synthesis reported herein should comprise a family of copolymerizable molecules that collectively contain about 30 different combinations of vinylbenzyl and hexanoate groups on the various molecules, with up to approximately seven of such groups combined on some of the molecules. Although the hypothesis was supported, and adhesive bonding to dentin is expected to be significantly improved by the use of these polymerizable cyclodextrin derivatives, other efforts are planned for improved synthetic methods to ensure that each of the reaction-product molecules will contain at least one copolymerizable moiety. The long-term objective is to enable stronger and more durable attachments of densely cross-linked polymers to hydrated hydrophilic substrates. Capabilities for bonding of hydrolytically stable polymers to dental and perhaps other hydrous biological tissues could provide

  5. Janus emulsions formed with a polymerizable monomer, silicone oil, and Tween 80 aqueous solution. (United States)

    Ge, Lingling; Lu, Shuhui; Guo, Rong


    Janus emulsions of a polymerizable monomer tripropyleneglycol diacrylate (TP) combined with silicone oil (SO) as inner oil phases and Tween 80 aqueous solution as continuous phase are prepared in a one-step high energy mixing process. The dependence of droplet topology on the concentration of surfactant, TP/SO ratio, and the stirring speed during emulsification is investigated. The result shows that the volume ratio of two oils within an individual droplet changes correspondingly to the total composition of emulsion. Increasing the speed of stirring results in a significant reduction in the droplet size, i.e. a five times increase in the stirring speed produces a droplet size reduction from hundreds to a few microns. What is more important, the topology of Janus drops remains similar for the different preparations. These fundamental investigations illustrate the potential for future Janus particle synthesis in batch scale with a controllable particle topology.

  6. Reconstitution of rhodopsin into polymerizable planar supported lipid bilayers: influence of dienoyl monomer structure on photoactivation. (United States)

    Subramaniam, Varuni; D'Ambruoso, Gemma D; Hall, H K; Wysocki, Ronald J; Brown, Michael F; Saavedra, S Scott


    G-protein-coupled receptors (GPCRs) play key roles in cellular signal transduction and many are pharmacologically important targets for drug discovery. GPCRs can be reconstituted in planar supported lipid bilayers (PSLBs) with retention of activity, which has led to development of GPCR-based biosensors and biochips. However, PSLBs composed of natural lipids lack the high stability desired for many technological applications. One strategy is to use synthetic lipid monomers that can be polymerized to form robust bilayers. A key question is how lipid polymerization affects GPCR structure and activity. Here we have investigated the photochemical activity of bovine rhodopsin (Rho), a model GPCR, reconstituted into PSLBs composed of lipids having one or two polymerizable dienoyl moieties located in different regions of the acyl chains. Plasmon waveguide resonance spectroscopy was used to compare the degree of Rho photoactivation in fluid and poly(lipid) PSLBs. The position of the dienoyl moiety was found to have a significant effect: polymerization near the glycerol backbone significantly attenuates Rho activity whereas polymerization near the acyl chain termini does not. Differences in cross-link density near the acyl chain termini also do not affect Rho activity. In unpolymerized PSLBs, an equimolar mixture of phosphatidylethanolamine and phosphatidylcholine (PC) lipids enhances activity relative to pure PC; however after polymerization, the enhancement is eliminated which is attributed to stabilization of the membrane lamellar phase. These results should provide guidance for the design of robust lipid bilayers functionalized with transmembrane proteins for use in membrane-based biochips and biosensors.

  7. Photorheologically reversible micelle composed of polymerizable cationic surfactant and 4-phenylazo benzoic acid☆

    Institute of Scientific and Technical Information of China (English)

    Jie Chen; Bo Fang; Hao Jin; Licheng Yu; Meng Tian; Kejing Li; Leiping Jin; Mo Yang


    A photorheologically reversible micelle composed of polymerizable cationic surfactant n-cetyl dimethylallyl am-monium chloride (CDAAC) and trans-4-phenylazo benzoic acid (trans-ACA) was prepared. The effects of molar ratio of CDAAC/trans-ACA, time of UV and visible light irradiation and temperature on the rheological properties of micellar system were investigated. The results show that before UV irradiation the system with an optimum CDAAC/trans-ACA molar ratio of 1.4 forms viscoelastic micelles at 45 °C. After 365 nm UV irradiation, the viscos-ities of micel e systems with different concentrations at fixed molar ratio of 1.4 are decreased by 85%–95%. The CDAAC/trans-ACA (14 mmol·L−1/10 mmol·L−1) micel e system exhibits shear thinning property and its viscos-ity is decreased obviously with the increases of UV irradiation time less than 1 h. The rheological process during UV irradiation for CDAAC/trans-ACA (14 mmol·L−1/10 mmol·L−1) micelle proves that viscosity, elastic modulus G′and viscous modulus G″will reduce quickly with the UV light. Furthermore, the micelle system after 1 h UV-irradiation is able to revert to its initial high viscosity with 460 nm visible light irradiation for 4 h, and the micelle can be cycled between low and high viscosity states by repetitive UV and visible light irradiations. The UV–Vis spectra of CDAAC/trans-ACA micelle indicate that its photosensitive rheological properties are related closely to photoisomerization of trans-ACA to cis-ACA.

  8. Effect of cationic monomer on properties of fluorinated acrylate latex

    Institute of Scientific and Technical Information of China (English)

    Li Jun Chen


    Cationic fluorinated acrylate latex was prepared via semi-continuous emulsion copolymerization of cationic monomer and other monomers.The resultant latex and its film were characterized with dynamic light scattering detector and contact angle meter.Influences of amount of DMDAAC on the properties of resultant latex and its film were investigated in detail.Results show that the particle size of the latex has the minimum value and the zeta potential of the latex is increased when the amount of DMDAAC is increased.In addition,the particle size of the latex is unimodal distribution when the amount of DMDAAC is not more than 2.5%.However,the particle size of the latex is bimodal distribution when the amount of DMDAAC is more than 2.5%.The contact angle is varied slightly with the increase of amount of DMDAAC when it is not more than 2.5%.Nevertheless,the contact angle is decreased with the increase of the amount of DMDAAC when it is more than 25%.

  9. Monomer and dimer radical cations of benzene, toluene, and naphthalene. (United States)

    Das, Tomi Nath


    Pulse radiolytic generation of monomeric and dimeric cations of benzene, toluene, and naphthalene in aqueous acid media at room temperature and their spectrophotometric characterization is discussed. Results presented include measurements of each aromatic's solubility in H(2)O-H(2)SO(4) and H(2)O-HClO(4) media over the acidity range pH 1 to H(0) -7.0, facile oxidative generation, and real-time identification of appropriate cationic transients with respective lambda(max) (nm) and epsilon (M(-1) cm(-1)) values measured as follows: C(6)H(6)(*+) (443, 1145 +/- 75), C(6)H(5)CH(3)(*+) (428, 1230 +/- 90), C(10)H(8)(*+) (381, 3650 +/- 225, and 687, 2210 +/- 160), (C(6)H(6))(2)(*+) (860, 2835 +/- 235), (C(6)H(5)CH(3))(2)(*+) (950, 1685 +/- 155), and (C(10)H(8))(2)(*+) (1040, 4170 +/- 320). Kinetic measurements reveal the respective formation rates of monomeric cations to be near-diffusion controlled, while the forward rate values for the dimeric species generation are marginally slower. The proton activity corrected pK(a) values are found to remain between -2.6 and -1.3 for the ArH(*+) species (C(6)H(6)(*+) most acidic, C(10)H(8)(*+) least acidic), while the pK(a) values of (ArH)(2)(*+) species vary from -5.0 to -3.0 ((C(6)H(6))(2)(*+) most acidic, (C(10)H(8))(2)(*+) least acidic). In H(0) -5 in aqueous H(2)SO(4), the respective stabilization energy of (C(6)H(6))(2)(*+), (C(6)H(5)CH(3))(2)(*+), and (C(10)H(8))(2)(*+) is estimated to be 16.6, 15.0, and 13.7 kcal mol(-1). Thus, the aqueous acid solution emerges as an alternative medium for typical radical-cationic studies, while offering compatibility for the deprotonated radical characterization near neutral pH.

  10. Molecularly Imprinted Polymers with Bi-functional Monomers of Polymerizable Cyclodextrin Derivatives and 2-(Diethylamino)-ethyl Methacrylate for Recognition of Norfloxacin in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    Zhi Feng XU; Lan LIU; Qin Ying DENG


    A molecularly imprinted polymer was synthesized using 2-(diethylamino)ethylmethacry -late(DEM) and bismethacryloyl-β-cyclodextrin(BMA-β-CD) as bi-functional monomers and norfloxacin(NOF) as a template. The results of equilibrium binding experiments indicated that the polymer has affinity and specificity for NOF in aqueous media, and that its selective recognition ability for the template was higher than that of the imprinted polymers synthesized with a single functional monomer (BMA-β-CD or DEM).

  11. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    Energy Technology Data Exchange (ETDEWEB)

    Bréchignac, Philippe, E-mail:; Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier [Institut des Sciences Moléculaires d’Orsay, CNRS UMR8214, Univ Paris-Sud, F-91405 Orsay (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony [IRAP, Université de Toulouse 3 - CNRS, 9 Av. Colonel Roche, B.P. 44346, F-31028 Toulouse Cedex 4 (France); Mulas, Giacomo [INAF - Osservatorio Astronomico di Cagliari, via della scienza 5, I-09047 Selargius (Italy)


    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.


    Institute of Scientific and Technical Information of China (English)

    HOU Sijian; HA Runhua


    This investigation deals with the free radical polymerization both of (2-methacryloyloxyethyl) trimethyl ammonium chloride (QACEMA) and of diallyldimethyl ammonium chloride (DADMAC) in inverse emulsion. The influences of some factors, such as the concentration of monomers, initiator and emulsifier are discussed. The polymerization rate equations of above two monomers can be written as follows:Rp = k[M]1.21[I]0.82[E]0.57 (for QACEMA)Rp = k′[M]1.34[I]0.90[E]0.62 (for DADMAC)

  13. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shirani, Hossein, E-mail: [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)


    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  14. Interaction of Refractory Dibenzothiophenes and Polymerizable Structures

    Directory of Open Access Journals (Sweden)

    Jose L. Rivera


    Full Text Available We carried out first principles calculations to show that polymerizable structures containing hydroxyl (alcoholic chain and amino groups are suitable to form stable complexes with dibenzothiophene (DBT and its alkyl derivates. These sulfur pollutants are very difficult to eliminate through traditional catalytic processes. Spontaneous and exothermic interactions at 0 K primarily occur through the formation of stable complexes of organosulfur molecules with monomeric structures by hydrogen bonds. The bonds are formed between the sulfur atom and the hydrogen of the hydroxyl group; additional hydrogen bonds are formed between the hydrogen atoms of the organosulfur molecule and the nitrogen atoms of the monomers. We vary the number of methylene groups in the alcoholic chain containing the hydroxyl group of the monomer and find that the monomeric structure with four methylene groups has the best selectivity towards the interaction with the methyl derivates with reference to the interaction with DBT. Even this study does not consider solvent and competitive adsorption effects; our results show that monomeric structures containing amino and hydroxyl groups can be used to develop adsorbents to eliminate organosulfur pollutants from oil and its derivates.

  15. Influence of pressure on the ferroelectric phase transition in a symmetrical polymerizable diacetylene crystal DNP (United States)

    Even, J.; Bertault, M.; Girard, A.; Délugeard, Y.


    DNP is a symmetrical disubstituted polymerizable diacetylene RCCCCR where R is CH 2O(NO 2) 2. The monomer crystal of DNP undergoes a ferroelectric phase transition at low temperature; it disappears in fully polymerized DNP crystal because polymerization changes the diacetylene backbone conformation. We show that hydrostatic isotropic pressure also stabilizes the ferroelectric phase in the DNP monomer crystal by enhancing van der Waals interactions between side groups.

  16. Development of novel self-healing and antibacterial resin composite containing microcapsules filled with polymerizable healing monomer%含聚合单体微胶囊的牙科新型自修复抗菌复合树脂合成初探

    Institute of Scientific and Technical Information of China (English)

    吴峻岭; 张强; 朱婷; 葛建华; 周传健


    Objective To develop novel self-healing and antibacterial resin composite containing microcapsules filled with polymerizable healing monomer,and to measure its properties for further clinical application.Methods Microcapsules filled with healing monomer of triethylene glycol dimethacrylate were synthesized according to methods introduced in the previous research.Microcapsules were added into novel resin composite containing nano-antibacterial silica fillers grafted with long chain alkyl quaternary ammonium at mass fractions of 0,2.5%,5.0%,7.5% or 10.0%.A commercial resin composite(Tetric N-Ceram) was used as control.Flexural test was used to measure resin composite flexural strength and elastic modulus.The single edge Ⅴ-notched beam method was used to measure fracture toughness and self-healing efficiency.Scanning electron microscope(SEM) was used to examine the fractured surface of selected specimen for investigation of fracture mechanisms.Results The flexural strength and elastic modulus of the resin composite were (96.4 ± 14.3) MPa and (6.2 ± 1.1) GPa respectively after incorporation of microcapsules up to 7.5%,and no significant difference was found between the experimental group and the control group[(99.1±1 1.9) MPa and (6.1±1.1) GPa] (P>0.05).The self-healing efficiency of (66.8±7.0)% and (79.3±9.7)% were achieved for resin composite with microcapsule mass fractions at 7.5% and 10.0%.SEM image showed that irregular films covered the fractured surface.Conclusions This novel self-healing and antibacterial resin composite containing microcapsules filled with polymerizable healing monomer exhibited a promising self-healing ability,which enabled itself well up for combating bulk fracture and secondary caries in clinical application.%目的 合成含聚合单体微胶囊的牙科新型自修复抗菌复合树脂,并探讨相关性能,为其进一步临床应用提供参考.方法 制备含聚合单体三乙二醇二甲基丙


    Institute of Scientific and Technical Information of China (English)

    LIU Yunqi; YAMADA Akira; SHIGEHARA Kiyotaka; HARA Masahiko


    Metallophthalocyanine derivatives with polymerizable vinyl groups were synthesized, characterized and polymerized. Preliminary results on their Langmuir-Blodgett (LB) film formation and the electronic properties of (Indium-Tin Oxide/LB-film/Al) Schottky devices were reported.

  18. Ionic Liquid Epoxy Resin Monomers (United States)

    Paley, Mark S. (Inventor)


    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  19. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations. (United States)

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng


    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  20. The cytotoxicity of methacryloxylethyl cetyl ammonium chloride, a cationic antibacterial monomer, is related to oxidative stress and the intrinsic mitochondrial apoptotic pathway. (United States)

    Ma, Sai; Shan, Le-qun; Xiao, Yu-hong; Li, Fang; Huang, Li; Shen, Lijuan; Chen, Ji-hua


    Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.

  1. Preparation of highly monodisperse fluorescent polymer particles by miniemulsion polymerization of styrene with a polymerizable surfactant. (United States)

    Taniguchi, Tatsuo; Takeuchi, Naoki; Kobaru, Shotaro; Nakahira, Takayuki


    Miniemulsion polymerization of styrene (St) in the presence of a hydrophobe (hexadecane:HD) using a cationic polymerizable surfactant (N,N-dimethyl-N-n-dodecyl-N-2-methacryloyloxyethylammonium bromide:C(12)Br) and a cationic initiator (2,2'-azobis(2-amidinopropane) dihydrochloride:V50), called St/C(12)Br/V50 hereafter, proceeded efficiently compared with that using sodium dodecyl sulfate (SDS) and potassium persulfate (KPS), i.e., St/SDS/KPS, providing monodisperse polystyrene latex particles with a narrower particle size distribution. In St/C(12)Br/AIBN, where an oil-soluble initiator, i.e., 2,2'-azobisisobutyronitrile (AIBN), was used in place of V50, little changes in polymerization kinetics or in particle size distribution were observed, while a significant drop in polymerization rate and a broad particle size distribution were observed with St/SDS/AIBN. A polymerizable pyrene derivative (1-pyrenylmethyl methacrylate: PyMMA) was quantitatively incorporated into monodisperse latex particles in St/PyMMA/C(12)Br/V50 compared to pyrene (Py) in St/Py/C(12)Br/V50. Contrary to our expectation, however, increased excimer emission was observed with St/PyMMA/C(12)Br/V50 particles, indicating less evenly distributed pyrene chromophores in the particles. The fluorescence lifetime of pyrene chromophores in St/Py/C(12)Br/V50 particles was determined to be 286 ns, which was 17 times longer than that of pyrene in THF solution.

  2. Lipase-catalyzed Regioselective Synthesis of Vinyl Ester Derivatives of Thiamphenicol: Novel Thiamphenicol Monomers for Preparation of Macromolecular Antibiotic

    Institute of Scientific and Technical Information of China (English)

    Yu Zhen SHI; Zhi Chun CHEN; Na WANG; Qi WU; Xian Fu LIN


    Three polymerizable vinyl thiamphenicol esters with different acyl donor carbon chain length (C4, C6, C10) were regioselectivly synthesized by Lipozyme(R) (immobilized from mucor miehei) in acetone at 50 ℃ for 12 h to give 73%, 81%, 63% yield, respectively. The products were valuable monomers for preparation of macromolecular antibiotic.

  3. New polymerizable luminescence probe for detection of Chlorfenvinphos and Dichlorvos pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassn A.; Orabi, Adel S.; Abbas, Abbas M., E-mail:


    Luminescence quenching probe ratio Tb(III):(L) in 1:3 stoichiometric has been studied in methanol in the bearing of the pesticides Chlorfenvinphos and Dichlorvos. The luminescence intensity of Tb(III)–(L){sub 3} probe decreases as the concentrations of the pesticide increases. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Tb(III)–(L){sub 3} probe in the solution. The detection limits were 1.9 and 1.96 µM for Chlorfenvinphos and Dichlorvos, respectively. Stern–Volmer studies at different temperatures, indicating that collisional quenching dominates for the pesticides. The binding constants (K) and thermodynamic parameters (∆S°, ∆H° and ∆G°) of the interaction of pesticides with the complex were evaluated. A polymer containing Tb(III)–(L){sub 3} complex and the polymerizable ligand (L; as monomer) was prepared. The polymer was characterized using EDAX, FT-IR and thermal analysis (TGA and DTA). The interaction of the polymer with Chlorfenvinphos and Dichlorvos was investigated, which gave different behavior from Tb(III)–(L){sub 3} complex with limit of detection of 0.43 and 0.32 µM for pesticides Chlorfenvinphos and Dichlorvos, respectively. - Highlights: • Luminescence quenching probe of 1:3 stoichiometric ratio Tb(III)-(L) has been studied in methanol in the presence of the pesticides Chlorfenvinphos and Dichlorvos. The luminescence intensity of Tb(III)-(L)3 probe decreases as the concentration of the pesticide increases. • Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching probe in solution. The detection limits were 1.9 and 1.96 µM for pesticides Chlorfenvinphos and Dichlorvos, respectively. • The binding constants (K) and thermodynamic parameters (∆Sº, ∆Hº and ∆Gº) of the interaction of pesticides with the complex were evaluated. • A polymer containing Tb

  4. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh


    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  5. Nonionic Polymerizable Emulsifier in High-Solids-Content Acrylate Emulsion Polymerization

    Institute of Scientific and Technical Information of China (English)

    LU Deping; HUANG Hongzhi; SHEN Ling; XIE Jin; GUAN Rong


    Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10),and a conventional emulsifier OP-10 as a reference sample.1H NMR proves that the polymerizable emulsifier ANPEO10 has been incorporated into the resulted acrylate polymers.TEM demonstrates that there are some differences in the particle morphologies.AFM proves that the polymerizable emulsifier ANPEO10 migrating to the surface of the emulsion film was much less than the conventional emulsifier OP-10.The polymerizable emulsifier ANPEO10 can enhance the adhesion with glass plate compared to the conventional emulsifier.Furthermore,with increasing amount of emulsifier,the surface free energy of the films first decreased and then increased,and the adhesion with glass plate is initially enhanced and then attenuated.The water-resistance and solvent-resistance of the films prepared by the polymerizable emulsifier ANPEO10 are superior to those prepared by the conventional emulsifier OP-10.

  6. Recovery of olefin monomers (United States)

    Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry


    In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.

  7. Regioselective Synthesis of Polymerizable Vinyl Guaifenesin Esters Catalyzed by an Alkaline Protease of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Qi WU; Jian Ming XU; Xiu Ming JIANG; Xian Fu LIN


    Three polymerizable vinyl guaifenesin esters with different acyl donor carbon chain lengths (C4,C6,C10) were regioselectivly synthesized by an alkaline protease from Bacillus subtilis in pyridine at 50°C for 1, 3, 5 days respectively.

  8. Thermal effects on the network structure of diglycidylether of bisphenol-A polymerized by electron-beam in the presence of an iodonium salt[Cationic polymerization; Epoxy monomers; Glass transition; Network properties; Radiation curing

    Energy Technology Data Exchange (ETDEWEB)

    Degrand, H.; Cazaux, F.; Coqueret, Xavier E-mail:; Defoort, Brigitte; Boursereau, F.; Larnac, Guy


    The cationic polymerization of diglycidylether of bisphenol A (DGEBA) initiated in the presence of a diaryliodonium salt (DAIS) by electron beam irradiation has been studied by FTIR spectroscopy and by dynamic mechanical thermal analysis (DMA). The obtained results show the gradual increase of the temperature for the network thermo-mechanical transition (T{sub {alpha}}, associated with the glass transition temperature T{sub g}) over a broad range of conversion ({pi}) and reveal a peculiar behavior at high conversion. In this domain ({pi}>0.90), the material's T{sub g} is shown to decrease when conversion approaches unity. Moreover, the post-irradiation thermal treatment of the materials, that generally yields effective post-polymerization, appears to induce a decrease of T{sub g}, with an amplitude correlated with the amount of DAIS in the formulation. Owing to the particular nature of the propagating centers in cationic polymerization, the thermal relaxation of ionic clusters trapped in the glassy matrix can be reasonably invoked as a possible cause for this behavior.

  9. Novel 2-(ω-phosphonooxy-2-oxaalkylacrylate monomers for self-etching self-priming one part adhesive

    Directory of Open Access Journals (Sweden)

    Joachim E. Klee


    Full Text Available Novel hydrolysis stable 2-(ω-phosphonooxy-2-oxaalkylacrylate monomers 3 with phosphoric acid moieties were synthesized by a three step synthesis via Baylis–Hillman reaction of ethyl acrylate and formaldehyde, and subsequent etherification of the obtained product with diols and phosphorylation using POCl3. The polymerization enthalpy of 2-(ω-phosphonooxy-2-oxaalkylacrylates 3 as measured by DSC ranges from −29 to −53 kJ·mol−1. The shear bond strength of adhesive compositions 4, comprising of polymerizable acids 3, ranges from 5.8 to 19.3 MPa on enamel and from 8.7 to 16.9 MPa on dentin.

  10. Xylene as a New Polymerizable Additive for Overcharge Protection of Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qianyu; QIU Chenchen; FU Yanbao; MA Xiaohua


    The electrochemical properties and overcharge protection mechanism of xylene as a new polymerizable electrolyte additive for overcharge protection of lithium ion batteries were studied by cyclic voltammetry tests,chargedischarge performance and battery power capacity measurements.It was found that when the battery was overcharged,xylene could electrochemically polymerize at the overcharge potential of 4.3-4.7 V (vs.Li/Li+) to form a thin polymer film on the surface of the cathode,thus preventing voltage runaway.On the other hand,the use of xylene as an overcharge protection electrolyte additive did not influence the normal performance of lithium ion batteries.

  11. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad


    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: ] | View in 

  12. Synthesis of a polymerizable fluorosurfactant for the construction of stable nanostructured proton-conducting membranes. (United States)

    Wadekar, Mohan N; Jager, Wolter F; Sudhölter, Ernst J R; Picken, Stephen J


    The synthesis of the polymerizable fluorinated surfactant sodium 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-(4-vinylphenyl)ethoxy)ethanesulfonate (1) and a number of related fluorocarbon compounds is described. Compound 1 is synthesized using a copper-mediated cross-coupling reaction of 4-bromobenzaldehyde and sodium 5-iodooctafluoro-3-oxapentanesulfonate. The resulting benzaldehyde is converted to a styrene unit using a Wittig reaction with methyltriphenylphosphonium bromide in acetonitrile, using DBU as a base. This strategy for converting an iodo-functionalized fluorosurfactant to a styrene-containing fluorosurfactant is highly efficient because both reactions are performed in polar solvents and are compatible with the sulfonate moiety. In addition, the copper-mediated cross-coupling reaction is most efficient with electron-poor aryl bromides like 4-bromobenzaldehyde. We wish to employ 1 for the construction of nanostructured membranes by polymerization of 1 in a microemulsion or in lyotropic liquid crystalline phases.

  13. Interactions of univalent counterions with headgroups of monomers and dimers of an anionic surfactant. (United States)

    Jakubowska, Anna


    Specific ion effects in solution are related to the hydrated ion size and ion hydration, electrostatic interactions, dispersion forces, ion effects on water structure, and ion modification of surface tension. In this study, we tried to identify which factor determines the ion specificity observed. The preference and energy of metal cations binding with the headgroups of dodecylsulfate (DS) monomers and dimers were determined by mass spectrometry. In the gas phase, cation binding to DS dimer headgroups depends strongly on the cation radius. On the other hand, the interactions between DS monomer headgroups and chaotropic ions depend on the cation polarizability, and the binding of kosmotropic cations to DS monomer headgroups strongly depends on the Gibbs free energies of ion hydration. DS dimers are related to surfactants having doubly charged headgroups, and DS monomers are related to surfactants with singly charged headgroups. Our spectrometric study of the strength of counterion binding to free monomers of a surfactant provides insight into surfactant-counterion interactions at micellar interfaces in bulk solution.

  14. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny


    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  15. Synthesis of Polymerizable Amphiphiles with Systematic Variation of Critical Packing Parameters

    Institute of Scientific and Technical Information of China (English)

    M. H. Li; W. L. Yang; J. Qian; C. C. Wang; S. K. Fu


    @@ 1Introduction An amphiphile is a molecule composed of hydrophilic part and hydrophobic part, which are incompatible and tend to separate from each other. The tendency of separation is often promoted by addition of water and sometimes also oil. Under balanced conditions the mixtures form macroscopically homogeneous phases, including isotropic solution phases and liquid crystalline phases. Correlation of the amphiphile structure with its preferred phases could be understood with a simple geometric model[1], which defines a dimensionless Critical Packing Parameter (CPP) to describe the relative bulkiness of the hydrophobic part and the hydrophilic part in an amphiphile. With CPP increasing from a small value to a high value the amphiphile changes from hydrophilic to hydrophobic, its preferred phase structure from direct structures via lamellar structure to reverse structures. This model provides a basis for the molecular design of amphiphiles. To immobilize the microstructure of the phases formed by amphiphiles is a challenge for current material chemists. Techniques of both inorganic polymerization[2] and organic polymerization[3] have been developed. With organic polymerization the molecular design of polymerizable amphiphiles is critical for the successful immobilization of the vulnerable precursor microstructures.

  16. Synthesis of Thermal Polymerizable Alginate-GMA Hydrogel for Cell Encapsulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang


    Full Text Available Alginate is a negative ionic polysaccharide that is found abundantly in nature. Calcium is usually used as a cross-linker for alginate. However, calcium cross-linked alginate is used only for in vitro culture. In the present work, alginate was modified with glycidyl methacrylate (GMA to produce a thermal polymerizable alginate-GMA (AA-GMA macromonomer. The molecular structure and methacrylation (%DM of the macromonomer were determined by 1H NMR. After mixing with the correct amount of initiator, the AA-GMA aqueous solution can be polymerized at physiological temperature. The AA-GMA hydrogels exhibited a three-dimensional porous structure with an average pore size ranging from 50 to 200 μm, directly depending on the macromonomer concentration. Biocompatibility of the AA-GMA hydrogel was determined by in vivo muscle injection and cell encapsulation. Muscle injection in vivo showed that the AA-GMA solution mixed with initiator could form a hydrogel in situ and had a mild inflammatory effect. Human umbilical vein endothelial cells (HUVECs were encapsulated in the AA-GMA hydrogels in situ at 37°C. Cell viability and proliferation were unaffected by macromonomer concentrations, which suggests that AA-GMA has a potential application in the field of tissue engineering, especially for myocardial repair.

  17. Monomer Migration and Annihilation Processes

    Institute of Scientific and Technical Information of China (English)

    KE Jian-Hong; LIN Zhen-Quan; ZHUANG You-Yi


    We propose a two-species monomer migration-annihilation model, in which monomer migration reactions occur between any two aggregates of the same species and monomer annihilation reactions occur between two different species. Based on the mean-field rate equations, we investigate the evolution behaviors of the processes. For the case with an annihilation rate kernel proportional to the sizes of the reactants, the aggregation size distribution of either species approaches the modified scaling form in the symmetrical initial case, while for the asymmetrical initial case the heavy species with a large initial data scales according to the conventional form and the light one does not scale. Moreover,at most one species can survive finally. For the case with aconstant annihilation rate kernel, both species may scale according to the conventional scaling law in the symmetrical case and survive together at the end.

  18. GENERAL: Cluster Growth Through Monomer Adsorption Processes (United States)

    Ke, Jian-Hong; Lin, Zhen-Quan; Chen, Xiao-Shuang


    We propose a monomer adsorption model, in which only the monomers are allowed to diffuse and adsorb onto other clusters. By means of the generalized rate equation we investigate the kinetic behavior of the system with a special rate kernel. For the system without monomer input, the concentration aj(t) of the Aj clusters (j > 1) asymptotically retains a nonzero quantity, while for the system with monomer input, it decays with time and vanishes finally. We also investigate the kinetics of an interesting model with fixed-rate monomer adsorption. For the case without monomer source, the evolution of the system will halt at a finite time; while the system evolves infinitely in time in the case with monomer source. Finally, we also suggest a connection between the fixed-rate monomer adsorption systems and growing networks.

  19. Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunghoon; Park, Seonghwan; Kwon, Jaebeom; Ha, KiRyong [Keimyung University, Daegu (Korea, Republic of)


    In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-NH{sub 2}. To introduce free radical polymerizable methacrylate groups on the MWCNT-NH{sub 2}, MWCNT-NH{sub 2} was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-NH{sub 2} for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.

  20. On the intrinsic optical absorptions by tetrathiafulvalene radical cations and isomers

    DEFF Research Database (Denmark)

    Kirketerp, Maj-Britt Suhr; Leal, Leonardo Andrés Espinosa; Varsano, Daniele;


    Gas-phase action spectroscopy shows unambiguously that the low-energy absorptions by tetramethylthiotetrathiafulvalene and tetrathianaphthalene cations in solution phase are due to monomers and not π-dimers....

  1. Synthesis, Characterization, and Flocculation Properties of Branched Cationic Polyacrylamide

    Directory of Open Access Journals (Sweden)

    Weimin Sun


    Full Text Available A water soluble branched cationic polyacrylamide (BCPAM was synthesized using solution polymerization. The polymerization was initiated using potassium diperiodatocuprate, K5[Cu(HIO62](Cu(III, initiating the self-condensing vinyl copolymerization of acrylamide and acryloxyethyltrimethyl ammonium chloride (DAC monomer. The resulting copolymer was characterized by the use of Fourier-transform infrared (FTIR spectroscopy and nuclear magnetic resonance (NMR spectroscopy. Its flocculation properties were evaluated with standard jar tests of sewage. The effects of initiator concentration, monomer concentration, reaction temperature, and the mass ratio of monomers on intrinsic viscosity and flocculation properties of the product were determined using single-factor experiments and orthogonal experiment.

  2. Cutin and suberin monomers are membrane perturbants. (United States)

    Douliez, Jean-Paul


    The interaction between cutin and suberin monomers, i.e., omega -hydroxylpalmitic acid, alpha, omega -hexadecanedioic acid, alpha, omega --hexadecanediol, 12-hydroxylstearic acid, and phospholipid vesicles biomimicking the lipid structure of plant cell membranes has been studied by optical and transmission electron microscopy, quasielastic light scattering, differential scanning calorimetry, and (31)P solid-state NMR. Monomers were shown to penetrate model membranes until a molar ratio of 30%, modulating their gel to fluid-phase transition, after which monomer crystals also formed in solution. These monomers induced a decrease of the phospholipid vesicle size from several micrometers to about 300 nm. The biological implications of these findings are discussed.

  3. Visible Light Curable Restorative Composites for Dental Applications Based on Epoxy Monomer

    Directory of Open Access Journals (Sweden)

    Alessandra Vitale


    Full Text Available A cationic photo-curable cycloaliphatic epoxy resin has been investigated as reactive monomer in blue light crosslinking process. We have demonstrated that camphorquinone is able to abstract labile hydrogen from the epoxy monomer, giving rise to the formation of carbon-centered radicals that are oxidized by the onium salt; a complete epoxy group conversion was reached after 50 s of irradiation. The presence of water up to 1 wt% was tolerated without any important detrimental effect on the kinetics of light-curing. The presence of the inorganic filler up to 65 wt% did not significantly influence the curing process.

  4. Controlling monomer-sequence using supramolecular templates


    ten Brummelhuis, Niels


    The transcription and translation of information contained in nucleic acids that has been perfected by nature serves as inspiration for chemists to devise strategies for the creation of polymers with welldefined monomer sequences. In this review the various approaches in which templates (either biopolymers or synthetic ones) are used to influence the monomer-sequence are discussed.

  5. Polyelectrolyte properties of proteoglycan monomers (United States)

    Li, Xiao; Reed, Wayne F.


    Light scattering measurements were made on proteoglycan monomers (PGM) over a wide range of ionic strengths Cs, and proteoglycan concentrations [PG]. At low Cs there were clear peaks in the angular scattering intensity curve I(q), which moved towards higher scattering wave numbers q, as [PG]1/3. This differs from the square root dependence of scattering peaks found by neutron scattering from more concentrated polyelectrolyte solutions. The peaks remained roughly fixed as Cs increased, but diminished in height, and superposed I(q) curves yielded a sort of isosbestic point. Under certain assumptions the static structure factor S(q) could be extracted from the measured I(q), and was found to retain a peak. A simple hypothesis concerning coexisting disordered and liquidlike correlated states is presented, which qualitatively accounts for the most salient features of the peaks. There was evidence of a double component scattering autocorrelation decay at low Cs, which, when resolved into two apparent diffusion coefficients, gave the appearance of simultaneous ``ordinary'' and ``extraordinary'' phases. The extraordinary phase was ``removable,'' however, by filtering. At higher Cs the proteoglycans appear to behave as random nonfree draining polyelectrolyte coils, with a near constant ratio of 0.67 between hydrodynamic radius and radius of gyration. The apparent persistence length varied as roughly the -0.50 power of ionic strength, similar to various linear synthetic and biological polyelectrolytes. Electrostatic excluded volume theory accounted well for the dependence of A2 on Cs.

  6. Synthesis and characterisation of cationically modified phospholipid polymers. (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A


    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  7. Polymerizable Molecular Silsesquioxane Cage Armored Hybrid Microcapsules with In Situ Shell Functionalization. (United States)

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Lin, Weihong; Gao, Shuxi; Ren, Yuanyuan; Gui, Xuefeng; Liang, Shengyuan; Chen, Mingcai


    We prepared core-shell polymer-silsesquioxane hybrid microcapsules from cage-like methacryloxypropyl silsesquioxanes (CMSQs) and styrene (St). The presence of CMSQ can moderately reduce the interfacial tension between St and water and help to emulsify the monomer prior to polymerization. Dynamic light scattering (DLS) and TEM analysis demonstrated that uniform core-shell latex particles were achieved. The polymer latex particles were subsequently transformed into well-defined hollow nanospheres by removing the polystyrene (PS) core with 1:1 ethanol/cyclohexane. High-resolution TEM and nitrogen adsorption-desorption analysis showed that the final nanospheres possessed hollow cavities and had porous shells; the pore size was approximately 2-3 nm. The nanospheres exhibited large surface areas (up to 486 m(2)  g(-1) ) and preferential adsorption, and they demonstrated the highest reported methylene blue adsorption capacity (95.1 mg g(-1) ). Moreover, the uniform distribution of the methacryloyl moiety on the hollow nanospheres endowed them with more potential properties. These results could provide a new benchmark for preparing hollow microspheres by a facile one-step template-free method for various applications.

  8. Cyclic Polymer with Alternating Monomer Sequence. (United States)

    Zhu, Wen; Li, Zi; Zhao, Youliang; Zhang, Ke


    Cyclic polymers with alternating monomer sequence are synthesized for the first time based on the ring-closure strategy. Well-defined telechelic alternating polymers are synthesized by reversible addition-fragmentation chain transfer polymerization by copolymerizing the electron acceptor monomer of N-benzylmaleimide and donor monomer of styrene with a feed ratio of 1 between them. The corresponding cyclic alternating polymers are then produced by the UV-induced Diels-Alder click reaction to ring-close the linear alternating polymer precursors under highly diluted reaction solution.

  9. Local and systemic effects of unpolymerised monomers

    Directory of Open Access Journals (Sweden)

    Sulekha Siddharth Gosavi


    Full Text Available Methyl methacrylate (MMA, a widely used monomer in dentistry and medicine has been reported to cause abnormalities or lesions in several organs. Experimental and clinical studies have documented that monomers may cause a wide range of adverse health effects such as irritation to skin, eyes, and mucous membranes, allergic dermatitis, stomatitis, asthma, neuropathy, disturbances of the central nervous system, liver toxicity, and fertility disturbances.

  10. Preparation and characterization of mono- and multilayer films of polymerizable 1,2-polybutadiene using the Langmuir-Blodgett technique. (United States)

    Hitrik, Maria; Gutkin, Vitaly; Lev, Ovadia; Mandler, Daniel


    The essence of this study is to apply the Langmuir-Blodgett (LB) technique for assembling asymmetric membranes. Accordingly, Langmuir films of a (further) polymerizable polymer, 1,2-polybutadiene (1,2-pbd), were studied and transferred onto different solid supports, such as gold, indium tin oxide (ITO), and silicon. The layers were characterized both at the air/water interface as well as on different substrates using numerous methods including cyclic voltammetry, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, and reflection-absorption Fourier transform infrared spectroscopy. The Langmuir films were stable at the air-water interface as long as they were not exposed to UV irradiation. The LB films formed disorganized layers, which gradually blocked the permeation of different species with increasing the number of deposited layers. The thickness was ca. 4-7 Å per layer. Irradiating the Langmuir films caused their cross-linking at the air-water interface. Furthermore, we took advantage of the reactivity of the double bond of the LB films on the solid supports and graft polymerized acrylic acid on top of the 1,2-pbd layers. This approach is the basis of the formation of an asymmetric membrane that requires different porosity on both of its sides.

  11. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima


    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  12. Polymerizable gemini surfactants at solid/solution interfaces: adsorption and polymerization on melamine formaldehyde particles and capsule fabrication. (United States)

    Sakai, Kenichi; Izumi, Keiko; Sakai, Hideki; Abe, Masahiko


    Organic capsules have been fabricated via three steps, by using the polymerizable gemini surfactant (1,2-bis(dimethyl(11-methacryloyloxy)undecylammonio) hexane dibromide, PC11-6-11) as a single wall component. In the first fabrication step, the surfactant spontaneously adsorbs on acid-dissolvable melamine formaldehyde (MF) particles in aqueous media. The adsorption isotherm data reveal that the adsorbed amount of PC11-6-11 (per chain) is greater than that of the corresponding monomeric surfactant ((11-methacryloyloxy)undecyltrimethylammonium bromide, PC11), resulting from the greater intermolecular association of PC11-6-11 at the solid/solution interface. The closely packed adsorbed layer of PC11-6-11 provides an opportunity to give a polymer thin film, as a result of in situ photo-polymerization on MF particles (in the second fabrication step) and subsequent acid dissolution of the core MF particles (in the third fabrication step). The dynamic light scattering (DLS) measurements have shown that the apparent hydrodynamic diameter of PC11-6-11 capsules is reversibly changed in response to a change in ionic strength: the increased background electrolyte concentration results in deswelling of the capsules, and vice versa. It seems likely that this swelling/deswelling behavior is primarily driven by the electrostatic interaction between quaternary ammonium groups within the polymerized film. We have also studied the capture and release capabilities of glucose into/from the capsule core and found that (i) glucose is encapsulated into the capsule core at high electrolyte concentrations and (ii) the glucose molecules encapsulated into the core are gradually released when the outer electrolyte solution is replaced by pure water. We believe, therefore, that the PC11-6-11 capsules fabricated here are useful as stimulus-responsive smart vehicles.


    Institute of Scientific and Technical Information of China (English)

    Yi-zhang Chen; Zhao-xia Guo; Jian Yu; Mao-sheng Zhan


    Functionalized PS/SiO2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifier α olefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some extent via a two-stage procedure.

  14. Producing monomers and polymers from plant oils (United States)

    The integration of biobased industrial products into existing markets, where petrochemically-derived materials currently dominate, is a worthy objective. This chapter reviews some technologies that have been developed including olefins of various chain lengths, photo-curable polymers, vinyl monomers...

  15. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian;


    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition tempera...

  16. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet


    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  17. 可聚合乳化剂对氟硅拒水剂拒水性能的影响%Effect of polymerizable emulsifier on water repellency of fluorosilicone water repellent agent

    Institute of Scientific and Technical Information of China (English)

    李智斌; 樊增禄; 李庆; 蔡信彬


    以甲基丙烯酸月桂酯(LMA)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸十二氟庚酯(G-04)、乙烯基三乙氧基硅烷(KH-151)为反应单体,采用半连续乳液聚合法合成了氟硅改性丙烯酸酯无皂乳液。探讨了4种可聚合乳化剂(A、B、C、D)对所合成氟硅拒水剂拒水性能的影响,并与采用阴离子型乳化剂制得的拒水剂进行了拒水性能比较。结果表明,与采用阴离子乳化剂合成的拒水剂相比,采用可聚合乳化剂制备的无皂拒水剂的拒水效果更佳;将可聚合乳化剂A、B按质量比2∶1进行复配时,拒水剂的拒水效果最佳;纯棉织物经拒水整理后对水的接触角可达138.6°,静水压可达2.83 kPa,表现出良好的拒水效果。%The fluorosilicone modified acrylate soap- free emulsion was synthesized by semi continuous emulsion polymerization, employing lauryl methacrylate (LMA), methyl methacrylate (MMA), dodecafluorohep⁃tyl methacrylate (G- 04) and triethoxyvinylsilane (KH- 151) as monomers. The influences of four polymerizable emulsifiers (A,B,C,D) on the water repel ency of the fluorosilicone water repel ent agent were discussed, and the water repel ency were compared with another water repel ent agent prepared by anionic emulsifier. The re⁃sults showed that the soap free water repel ent agent performed better water repel ency. The properties of flu⁃orosilicone water repel ent agent were the optimum when A and B were mixed as the mass ratio of 2∶1. The cotton fabric treated by soap free water repel ent agent exhibited good water repel ent properties with 138.6° of contact angle and 2.83 kPa of hydrostatic pressure.

  18. Photokopolimerisasi monomer akrilat degan kulit kras sapi

    Directory of Open Access Journals (Sweden)

    Dwi Wahini Nurhajati


    Full Text Available The research on photocopolymerization of acrylate monomer with cow crust hide had object to observe the resulted copolymer onto cow crust hide. Crust hides, saturated with aqueous emulsions containing 25 wt % of n-butyl acrylate (n-BA or tripropylene glycol diacrylate (TPGDA were irradiated by cobalt – 60 gamma rays with doses ranges from 5 to 25 kGy. The irradiated hides were washed with water, dried in air and extracted in soxhlet apparatus for 48 hours to remove homopolymer. The highest yield of photocopolymerization of n – butyl acrylate monomer with crust hides was found 17,7878% at dose 25 kGy, and for photocopolymerization of tripropylene glycol diacrylate with crust hides was found 39,4245% at dose 20 kGy.

  19. Functionalization of nanodiamond with epoxy monomer

    Institute of Scientific and Technical Information of China (English)

    Huan Huan Zhang; Ya Ting Liu; Rong Wang; Xiao Yan Yu; Xiong Wei Qu; Qing Xin Zhang


    A novel nanodiamond-epoxy derivative (ND-EP) was synthesized by grafting epoxy monomers onto the surface of nanodiamond (ND), and characterized by FTIR and TGA. The ratio of grafted epoxy groups was determined to be 32.5 wt% by TGA. The developed methodology provides an efficient method for the functionalization of nanodiamond material, which enables a variety of advanced engineering and biomedical applications of ND.

  20. Synthesis of methacrylate monomers with antibacterial effects against S. mutans. (United States)

    He, Jingwei; Söderling, Eva; Österblad, Monica; Vallittu, Pekka K; Lassila, Lippo V J


    A series of polymerizable quaternary ammonium compounds were synthesized with the aim of using them as immobilized antibacterial agents in methacrylate dental composites, and their structures were characterized by FT-IR, (1)H-NMR, and (13)C-NMR analysis. Their antibacterial activities against the oral bacterium Streptococcus mutans were evaluated in vitro by a Minimum Inhibitory Concentration test, and the results showed that 2-dimethyl-2-hexadecyl-1-methacryloxyethyl ammonium iodide (C16) had the highest antibacterial activity against S. mutans, and 2-dimethyl-2-pentyl-1-methacryloxyethyl ammonium iodide (C5) and 2-dimethyl-2-octyl-1-methacryloxyethyl ammonium iodide (C8) did not show any inhibition.

  1. 21 CFR 888.4220 - Cement monomer vapor evacuator. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  2. Static and dynamical critical behavior of the monomer-monomer reaction model with desorption (United States)

    da Costa, E. C.; Rusch, Flávio Roberto


    We studied in this work the monomer-monomer reaction model on a linear chain. The model is described by the following reaction: A + B → AB, where A and B are two monomers that arrive at the surface with probabilities yA and yB, respectively, and we have considered desorption of the monomer B with probability α. The model is studied in the adsorption controlled limit where the reaction rate is infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static and dynamical Monte Carlo simulations. We show that the model exhibits a continuous phase transition between an active steady state and an A-absorbing state, when the parameter yA is varied through a critical value, which depends on the value of α. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the static critical exponents β and ν⊥ and the dynamical critical exponents ν∥ and z. The results found for the monomer-monomer reaction model with B desorption, in the linear chain, are different from those found by E. V. Albano (Albano, 1992) and are in accordance with the values obtained by Jun Zhuo and Sidney Redner (Zhuo and Redner, 1993), and endorse the conjecture of Grassberger, which states that any system undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the same critical behavior of the directed percolation universality class.

  3. Guest-responsive covalent frameworks by the cross-linking of liquid-crystalline salts: tuning of lattice flexibility by the design of polymerizable units. (United States)

    Ishida, Yasuhiro; Sakata, Hiroaki; Achalkumar, Ammathnadu S; Yamada, Kuniyo; Matsuoka, Yuki; Iwahashi, Nobutaka; Amano, Sayaka; Saigo, Kazuhiko


    Cross-linked polymers prepared by the in-situ polymerization of liquid-crystalline salts were found to work as solid-state hosts with a flexible framework. As a component of such hosts, four kinds of polymerizable amphiphilic carboxylic acids bearing alkyl chains with acryloyloxy (A), dienyl (D), and/or nonreactive (N) chain ends (monomeric carboxylic acids; M(AAA), M(ANA), M(DDD), and M(DND)) were used. The carboxylic acids were mixed with an equimolar amount of a template unit, (1R,2S)-norephedrine (guest amine; G(RS)), to form the corresponding salts. Every salt exhibited a rectangular columnar LC phase at room temperature, which was successfully polymerized by (60)Co γ-ray-induced polymerization without serious structural disordering to afford the salt of cross-linked carboxylic acid (polymeric carboxylic acid; P(AAA), P(ANA), P(DDD), and P(DND)) with G(RS) . Owing to the noncovalency of the interactions between the polymer framework P and the template G(RS), the cross-linked polymers could reversibly release and capture a meaningful amount of G(RS). In response to the desorption and adsorption of G(RS), the cross-linked polymers dramatically switched their nanoscale structural order. A systematic comparison of the polymers revealed that the choice of polymerizable groups has a significant influence on the properties of the resultant polymer frameworks as solid-state hosts. Among these polymers, P(DDD) was found to be an excellent solid-state host, in terms of guest-releasing/capturing ability, guest-recognition ability, durability to repetitive usage, and unique structural switching mode.

  4. Synthesis and photoactivity of phenylazonaphthalene peptide nucleic acid monomers

    Institute of Scientific and Technical Information of China (English)

    Jin Du Li; Miao Chen; Sheng Liu; Hao Bo Zhang; Zhi Lu Liu


    Phenylazonaphthalene peptide nucleic acid (PNA) monomers were successfully synthesized,and their photoisomerization was examined.The new PNA monomers showed reversible trans-cis isomerization with UV and visible light irradiation,which might be the foundation of photo-regulating the hybridization between PNA containing phenylazonaphthalene unit and DNA.Simultaneously,the fluorescence of the new PNA monomers might make them especially useful as structural probes.

  5. Controlled Release of Benzocaine from Monomer and Copolymer Carriers in Synthetic Gastro-intestinal Media

    Directory of Open Access Journals (Sweden)

    Houaria Merine


    Full Text Available New dosage forms able to control drug release in the gastro-intestinal media have been prepared and investigated in this paper. Two different type of medicinal agent bonding (MA, in our case Benzocaine (Bz, were chosen in order to examine drug release. i MA attached to ethylenic monomer (m,p-vinylbenzaldehyde, condensation reaction. ii The copolymer carrier (Cp is obtained by copolymerizing this monomer. These two carriers were well characterized by microanalysis, FTIR, DSC (Tg and GPC (Ip and the two fraction α and β were calculated from elemental analyses of Cp. The results showed good polydispersity and low average molecular weight. MA linked to an organic product by the azomethine function (C=N, hydrolytically sensitive, allowed controlled release of Bz, from the monomer carrier and from the bending Schiff bases groups. Theoretical and experimental analyses of controlled release of Bz kinetics from monomer and copolymer carriers were conducted for the case of contact with synthetic gastro-intestinal fluids at various pH (1,2; 6,0 and 8,0 at 37°C. The process was found to be controlled by the nature of media (heterogeneous, which involved the preliminary hydrolysis, and the drug (Bz diffusing out of structure of copolymer (Cp to the external aqueous media. The results obtained on the rate of delivery showed a clear difference between pH = 1,2 and pH = 6,0 and 8,0 based on: i The cation of p-aminoniumbenzoic acid (PABAH+ release at pH = 1,2 ii Bz release at pH = 6,0 and 8,0

  6. Can the hydrophilicity of functional monomers affect chemical interaction? (United States)

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S


    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.

  7. Interference of functional monomers with polymerization efficiency of adhesives. (United States)

    Hanabusa, Masao; Yoshihara, Kumiko; Yoshida, Yasuhiro; Okihara, Takumi; Yamamoto, Takatsugu; Momoi, Yasuko; Van Meerbeek, Bart


    The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue.

  8. The practice of using Phenol inhibitors in obtaining monomers

    Energy Technology Data Exchange (ETDEWEB)

    Kurbatov, V.A.; Kirpichnikov, P.A.; Likumovich, A.G.


    Phenol antioxidants are promising stabilizers for the industrial production of monomers. Their potential may be considerably improved by searching for optimum compositions and conditions of application.

  9. Reaction kinetics and modeling of photoinitiated cationic polymerization of an alicyclic based diglycidyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Harikrishna, R., E-mail: [Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008 (India); Ponrathnam, S. [Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008 (India); Tambe, S.S. [Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008 (India)


    Highlights: • Photocationic polymerization of alicyclic based diglycidyl ether was carried out. • Kinetic parameters were influenced by gelation and diffusional restrictions. • Applicability of autocatalytic model was established by nonlinear regression. • System showed higher activation energy than cycloaliphatic and aromatic diepoxides. -- Abstract: Photoinitiated cationic polymerization of cycloaliphatic diepoxides had received tremendous attention, while studies with lesser polymerizable diglycidyl ethers are comparatively less reported. The present work deals with the photoinitiated cationic polymerization of cyclohexane dimethanol diglycidyl ether followed by estimation of kinetic parameters. The effects of concentration of photoinitiator and temperature on curing performance were studied using photo differential scanning calorimeter or photo DSC with polychromatic radiation. It was observed that the rate of polymerization as well as ultimate conversion increased with increasing concentration of photoinitiator and temperature. The influences of gelation as well as diffusional restrictions have remarkable effect on cure performance. The kinetic parameters as per autocatalytic kinetic model were studied by Levenberg–Marquardt nonlinear regression method instead of conventional linear method for obtaining more accurate values of apparent rate constant. It was observed that the model fits with data from initial stages to almost towards the end of the reaction. The activation energy was found to be higher than the values reported for more reactive cycloaliphatic diepoxides. The value of pre-exponential factor increased with increase in activation energy showing influence of gelation at early stages of reaction.

  10. Synthesis of Methacrylate Monomers with Antibacterial Effects Against S. Mutans

    Directory of Open Access Journals (Sweden)

    Jingwei He


    Full Text Available A series of polymerizable quaternary ammonium compounds were synthesized with the aim of using them as immobilized antibacterial agents in methacrylate dental composites, and their structures were characterized by FT-IR, 1H-NMR, and 13C-NMR analysis. Their antibacterial activities against the oral bacterium Streptococcus mutans were evaluated in vitro by a Minimum Inhibitory Concentration test, and the results showed that 2-dimethyl-2-hexadecyl-1-methacryloxyethyl ammonium iodide (C16 had the highest antibacterial activity against S. mutans, and 2-dimethyl-2-pentyl-1-methacryloxyethyl ammonium iodide (C5 and 2-dimethyl-2-octyl-1-methacryloxyethyl ammonium iodide (C8 did not show any inhibition.

  11. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT) Under Microwave Irradiation.


    Rahmouni Abdelkader; Belbachir Mohammed


    In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite) and solution of  H2SO4 (0.25 M), with the system under microwave irradiation (160 ºC) for 4 min. Major factors affecting the polymerization reaction were studied with a view to...

  12. A review of the developments of multi-purpose primers and adhesives comprising novel dithiooctanoate monomers and phosphonic acid monomers. (United States)

    Ikemura, Kunio; Endo, Takeshi; Kadoma, Yoshinori


    This paper reviews the developments of dithiooctanoate monomers and acidic adhesive monomers, and their roles in multi-purpose primers and adhesives in promoting adhesion to multiple substrate materials. Novel dithiooctanoate monomers exhibited excellent bonding to precious metals and alloys when compared against conventional sulfur-containing monomers. Newly developed phosphonic acid monomers, endowed with a water-soluble nature, enabled sufficient demineralization of dental hard tissues and thus improved bonding to both ground enamel and dentin. The optimal combination for bonding to dental hard tissues and precious and non-precious metals and alloys was 5.0 wt% 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) and 1.0 wt% 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA). For bonding to dental porcelain, alumina, zirconia, and gold (Au) alloy, a ternary combination of silane coupling agent, acidic adhesive monomers, and dithiooctanoate monomers seemed promising. The latest development was a single-bottle, multi-purpose, self-etching adhesive which contained only acidic adhesive monomers and dithiooctanoate monomers but which produced strong adhesion to ground enamel and dentin, sandblasted zirconia, and Au alloy.

  13. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers. (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike


    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  14. Plasma-Enhanced Copolymerization of Amino Acid and Synthetic Monomers (United States)


    end cap containing a second inlet for the liquid monomer delivery (Scheme 1). The solid L-tyrosine monomer was placed in a resistively heated tantalum ...microroughness, which is indicative of uniform cross-linking and wetting of the deposits of all components. These films are free of pinhole defects as well

  15. Monomer-dimer tatami tilings of square regions

    CERN Document Server

    Erickson, Alejandro


    We prove that the number of monomer-dimer tilings of an $n\\times n$ square grid, with $mmonomers in which no four tiles meet at any point is $m2^m+(m+1)2^{m+1}$, when $m$ and $n$ have the same parity. In addition, we present a new proof of the result that there are $n2^{n-1}$ such tilings with $n$ monomers, which divides the tilings into $n$ classes of size $2^{n-1}$. The sum of these tilings over all monomer counts has the closed form $2^{n-1}(3n-4)+2$ and, curiously, this is equal to the sum of the squares of all parts in all compositions of $n$. We also describe two algorithms and a Gray code ordering for generating the $n2^{n-1}$ tilings with $n$ monomers, which are both based on our new proof.

  16. Telechelic Poly(2-oxazoline)s with a biocidal and a polymerizable terminal as collagenase inhibiting additive for long-term active antimicrobial dental materials (United States)

    Fik, Christoph P.; Konieczny, Stefan; Pashley, David H.; Waschinski, Christian J.; Ladisch, Reinhild S.; Salz, Ulrich; Bock, Thorsten; Tiller, Joerg C.


    Although modern dental repair materials show excellent mechanical and adhesion properties, they still face two major problems: First, any microbes that remain alive below the composite fillings actively decompose dentin and thus, subsequently cause secondary caries. Second, even if those microbes are killed, the extracellular proteases such as MMP, remain active and can still degrade collagenousdental tissue. In order to address both problems, a poly(2-methyloxazoline) with a biocidal quaternary ammonium and a polymerizable methacrylate terminal was explored as additive for a commercial dental adhesive. It could be demonstrated that the adhesive rendered the adhesive contact-active antimicrobial against S. mutans at a concentration of only 2.5 wt% and even constant washing with water for 101 days did not diminish this effect. Increasing the amount of the additive to 5 wt% allowed killing S. mutans cells in the tubuli of bovinedentin upon application of the adhesive. Further, the additive fully inhibited bacterial collagenase at a concentration of 0.5 wt% and reduced human recombinant collagenase MMP-9 to 13% of its original activity at that concentration. Human MMPs naturally bound to dentin were inhibited by more than 96% in a medium containing 5 wt% of the additive. Moreover, no adverse effect on the enamel/dentine shear bond strength was detected in combination with a dental composite. PMID:25130877

  17. Lack of association between a cationic protein and a cationic fluorosurfactant. (United States)

    Macakova, Lubica; Nordstierna, Lars; Karlsson, Göran; Blomberg, Eva; Furó, István


    Surface tension, 19F and 1H NMR spectroscopy, and cryotransmission electron microscopy are used to characterize the state of association in aqueous solutions of a fluorosurfactant CF3(CF2)nSO2NH(CH2)3-4N(CH3)3+ I- (n = 8, 6) with and without lysozyme added. In the absence of lysozyme, we find monomers, small aggregates, and large vesicles to coexist, with the individual fluorosurfactant molecules exchanging slowly (>1 ms) among those states. When both lysozyme and fluorosurfactant are present in the solution, they have no measurable influence on the physical state of the other. In contrast, a hydrogenated cationic surfactant with the same headgroup, hexadecyltrimethylammonium bromide, is shown to associate to lysozyme.

  18. Study on the preirradiation polymerization of vinyl monomers (United States)

    Yu-Ming, Liu; Yue-Qi, Yang; Zue-Teh, Ma

    This paper presents mainly the polymerization, copolymerization and crosslinking of monomers off-source induced by peroxides which are formed by high energy irradiation of vinyl monomers such as styrene (St), acrylonitrile (AN), methylmethacrylate (MMA), vinyl acetate (VAc) and 2-hydroxyethyl methacrylate (HEMA). The peroxides produced by irradiation of the above-mentioned monomers can not only induce the monomers themselves, but also another non-irradiated monomer to carry out copolymerization efficiently. The activation energy of peroxide formation, the apparent activation energy of polymerization and the activation energy of peroxide initiation by irradiation of vinyl monomers are: Ef(MMA) = 11, Ef(St) = 9.6, Ef(AN) = 8.5, EMMA = EVA = 11.4, Ei(MMA) = Ei(VA) = 13 kcal/mol. The rate of decomposition of monomer peroxides is smoother than that of BPO during the polymerization and so a smooth kinetic progress is obtained. The initiating ability of forming peroxides by irradiation of the vinyl monomers depends mainly on the chemical structure of the monomers. For instance, the main structure of peroxides formed during preirradiation MMA are: alternating peroxy-copolymer ? and random peroxy-copolymer ? Owing to the peroxy-bond which is unstable and in which homolytic breakage easily occurs to yield a pair of radicals, RO . is formed within the above-mentioned structural compounds, so that they possess stronger initiating reactivity. It is quite evident that the initiating reactivity of AN peroxide will be greatly reduced because of the conjugate double bond. In other words, the initiating ability of AN peroxide is lower than MMA peroxide and St peroxide.

  19. Thermodynamics of cationic surfactant sorption onto natural clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E.J.; Bowman, R.S. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States); Carey, J.W. [Los Alamos National Lab., NM (United States)


    Sorption enthalpies of hexadecyltrimethylammonium bromide (HDTMA) as monomers and micelles and tetraethylammonium bromide (TEA) were used with surfactant, counterion, and co-ion sorption isotherms to infer the conformation, sorption mechanism, and relative stability of the sorbed surfactants on natural clinoptilolite. The average value of the sorption enthalpy was {minus}10.38 kJ/mol for monomers, {minus}11.98 kJ/mol for micelles, and +3.03 kJ/mol for TEA. Sorption of monomers produced a lower sorption plateau than equivalent micelle sorption (maxima 145 mmol/kg, 225 mmol/kg). Analysis of the sorption data demonstrated a change in the sorption mechanism at the external cation exchange capacity (ECEC) of clinoptilolite. Sorption data from below and above the ECEC were fit to a simple polynomial model and the Gibbs free energy of sorption ({Delta} G{sub m}{sup 0}) and sorption entropies were calculated. Resultant values of {Delta} G{sub m}{sup 0} were {minus}9.27 and {minus}14.38 kJ/mol for HDTMA monomers and micelles, respectively, for sorption below the ECEC, and {minus}16.11 and {minus}23.10 kJ/mol, respectively, for sorption above the ECEC. The value for TEA was {minus}1.04 kJ/mol, indicating weaker sorption than for HDTMA. Monomer sorption to clinoptilolite exceeded the ECEC, even when the solution concentration was below the critical micelle concentration. Hydrophobic (tail-tail) components of {Delta} G{sub m}{sup 0} were the driving force for sorption of HDTMA, both below and above the ECEC. A significant kinetic effect was observed in the sorption isotherms with a period of rapid sorption followed by slow equilibration requiring 7 days to achieve steady state for HDTMA; TEA equilibration occurred within 24 h.

  20. Highly Efficient Synthesis of Allopurinol Locked Nucleic Acid Monomer by C6 Deamination of 8-Aza-7-bromo-7-deazaadenine Locked Nucleic Acid Monomer

    DEFF Research Database (Denmark)

    Kosbar, Tamer Reda El-Saeed; Sofan, M.; Abou-Zeid, L.;


    An allopurinol locked nucleic acid (LNA) monomer was prepared by a novel strategy through C6 deamination of the corresponding 8-aza-7-bromo-7-deazaadenine LNA monomer with aqueous sodium hydroxide. An 8-aza-7-deazaadenine LNA monomer was also synthesized by a modification of the new synthetic pat...... the required LNA monomers. © Georg Thieme Verlag....


    Institute of Scientific and Technical Information of China (English)

    Tai-jiang Gui; Hao Wei; Ying Zhao; Xiu-lin Wang; Du-jin Wang; Duan-fu Xu


    A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content ofperfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.

  2. 21 CFR 864.7300 - Fibrin monomer paracoagulation test. (United States)


    ... to detect fibrin monomer in the diagnosis of disseminated intravascular coagulation (nonlocalized clotting within a blood vessel) or in the differential diagnosis between disseminated intravascular coagulation and primary fibrinolysis (dissolution of the fibrin in a blood clot). (b) Classification. Class...


    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenfeng; HU Xingzhou; YAN Qing


    Photoinduced grafting of acrylic and allyl monomers on polyethylene surface was generally studied by using benzophenone (BP) as a photoinitiator. The grafting process was carried out either in vapor-phase or in solution of the monomers. In the vapor-phase reaction with a filter used to cut off the short wavelength UV light, allyl amine is the most reactive of the four monomers used and acrylic amide is comparatively more reactive than acrylic acid and allyl alcohol. Acetone, as a solvent and carrier for initiator and monomers, however, shows its reactivity to participate the reaction. The solution grafting with a filter is much faster than the corresponding vapor-phase reaction, and a fully covered surface by the grafted polymer can be achieved in this way.

  4. Synthesis of Functional Polyethylene Copolymers via Reactive Monomer

    Institute of Scientific and Technical Information of China (English)

    Hua-yi Li; Shu-qing Zhang; Ling-zhi Wang; You-liang Hu


    @@ 1Introduction Polyolefins are used widely due to their good performance and low price, but the poor compatibility and adhesion with other materials limits their applications in broader areas. Reactive monomer approach is effective to synthesize functional polyolefins[1]. In this case, olefin is copolymerized with a reactive comonomer to produce reactive intermediary which is then converted to functional group or initiator to initiate graft-from polymerization of polar monomer.

  5. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.


    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  6. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)


    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  7. Dynamics of radical cations of poly(4-hydroxystyrene) in the presence and absence of triphenylsulfonium triflate as determined by pulse radiolysis of its highly concentrated solution (United States)

    Okamoto, Kazumasa; Ishida, Takuya; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo


    Pulse radiolysis of highly concentrated poly(4-hydroxystyrene) (PHS) solutions in cyclohexanone and p-dioxane was performed both with and without an onium-type photoacid generator (PAG). With increasing PHS concentration, the rate constant of deprotonation of PHS radical cations was found to decrease. In the presence of PAG, the yield of the multimer radical cation of PHS was shown to decrease. We found that pairing between the anions produced by the attachment of dissociative electrons of PAGs and the monomer PHS radical cations restrict local molecular motions, leading to the formation of the multimer PHS radical cations.

  8. Sensing of polymeric sensor-based rhodamine B derivative for metal cations in complete aqueous solution

    Indian Academy of Sciences (India)



    The water-soluble polymeric chemosensor poly(AM-GRBD) has been synthesized by precipitation copolymerization with the functional monomer, GRBD, which was made of N$"$-(rhodamine B-yl) diethylenetriamineand glycidyl methacrylate (GMA) and a hydrophilic co-monomer acrylamide (AM). The chemical sensor behaved as a fluorescent and chromogenic sensor towards various heavy metal cations and transition metal cations; particularly,Cr$^{3+}$, Fe$^{3+}$ and Hg$^{2+}$ ions in completely aqueous media. The fluorescence of poly(AM-GRBD) was enhanced by Cr$^{3+}, Fe$^{3+}$ and Hg$^{2+}$ metal ions. Moreover, during titration of Cr$^{3+}$, Hg$^{2+}$ or Fe$^{3+}$ to the aqueous solution of poly(AM-GRBD), the visual colour changed from colourless to pink or brown yellow under visible light.

  9. Photoinitiated Polymerization of Cationic Acrylamide in Aqueous Solution: Synthesis, Characterization, and Sludge Dewatering Performance

    Directory of Open Access Journals (Sweden)

    Huaili Zheng


    Full Text Available A copolymer of acrylamide (AM with acryloyloxyethyl trimethyl ammonium chloride (DAC as the cationic monomer was synthesized under the irradiation of high-pressure mercury lamp with 2,2-azobis(2-amidinopropane dihydrochloride (V-50 as the photoinitiator. The compositions of the photoinduced copolymer were characterized by Fourier transform infrared spectra (FTIR, ultraviolet spectra (UV, and scanning electron microscope (SEM. The effects of 6 important factors, that is, photo-initiators concentration, monomers concentration, CO(NH22 (urea concentrations, pH value, mass ratio of AM to DAC, and irradiation time on the molecular weight and dissolving time, were investigated. The optimal reaction conditions were that the photo-initiators concentration was 0.3%, monomers concentration was 30 wt.%, irradiation time was 60 min, urea concentration was 0.4%, pH value was 5.0, and mass ratio of AM to DAC was 6 : 4. Its flocculation properties were evaluated with activated sludge using jar test. The zeta potential of supernatant at different cationic monomer contents was simultaneously measured. The results demonstrated the superiority of the copolymer over the commercial polyacrylamide as a flocculant.

  10. Removal of monomer delignification products by laccase from Trametes versicolor. (United States)

    Kolb, Michaela; Sieber, Volker; Amann, Manfred; Faulstich, Martin; Schieder, Doris


    The influence of a laccase from Trametes versicolor on the removal of phenolic monomers in liquid hot water pretreated wheat straw supernatants (LHW-S) was examined. Beside the total phenol content derived by Folin-Ciocalteu (FC-) assay, phenolic monomers were measured via headspace-solid phase micro-extraction (HS-SPME)/GC-MS. A notable decrease of the phenols was achieved using 0.2 and 0.5 U/mL laccase whilst higher dosage showed no improvement. Nearly all kind of monomer phenolic compounds identified in the LHW-S were found to be removed after 24h. However, acetophenone and 4-hydroxybenzaldehyde (HBA) were obviously not affected by laccase. Summarizing, three laccase reaction groups (LRG) of phenolic monomers could be classified: immediate removal (LRG-A), degradation after 1 day (LRG-B), no effect of laccase (LRG-C). Additionally, HS-SPME/GC was found to be a powerful tool to study the reaction of laccase and phenolic monomers in complex lignocellulose derived solutions.

  11. Comparative study on adhesive performance of functional monomers. (United States)

    Yoshida, Y; Nagakane, K; Fukuda, R; Nakayama, Y; Okazaki, M; Shintani, H; Inoue, S; Tagawa, Y; Suzuki, K; De Munck, J; Van Meerbeek, B


    Mild self-etch adhesives demineralize dentin only partially, leaving hydroxyapatite around collagen within a submicron hybrid layer. We hypothesized that this residual hydroxyapatite may serve as a receptor for chemical interaction with the functional monomer and, subsequently, contribute to adhesive performance in addition to micro-mechanical hybridization. We therefore chemically characterized the adhesive interaction of 3 functional monomers with synthetic hydroxyapatite, using x-ray photoelectron spectroscopy and atomic absorption spectrophotometry. We further characterized their interaction with dentin ultra-morphologically, using transmission electron microscopy. The monomer 10-methacryloxydecyl dihydrogen phosphate (10-MDP) readily adhered to hydroxyapatite. This bond appeared very stable, as confirmed by the low dissolution rate of its calcium salt in water. The bonding potential of 4-methacryloxyethyl trimellitic acid (4-MET) was substantially lower. The monomer 2-methacryloxyethyl phenyl hydrogen phosphate (phenyl-P) and its bond to hydroxyapatite did not appear to be hydrolytically stable. Besides self-etching dentin, specific functional monomers have additional chemical bonding efficacy that is expected to contribute to their adhesive potential to tooth tissue.

  12. Biosynthesis of Polyhydroxyalkanoates Consisting of Short-chain-length Monomers and Medium-chain-length Monomers by Pseudomonas YS1

    Institute of Scientific and Technical Information of China (English)


    A strain capable of producing polyhydroxyalkanoates (PHAs) consisting of short- and medium-chain-length monomers was identified as Pseudomonas sp.coded as YS1.The strain synthesized PHAs containing monomers of hydroxybutyrate(HB or C4) and/or hydroxyoctanoate (HO or C8) and/or hydroxydecanoate (HD or C10) when grown in various substrates including glucose, raw sugar, molasses and various fatty acids.It was found that growth temperature affected the HB and HO monomer contents in the PHA.HB content in PHA increased from mole fraction 69% at 26℃ to mole fraction 85% at 37℃ while HO content decreased from mole fraction 29% at 26℃ to mole fraction 12% at 37℃.The temperature effect provides a simple and effective way to control the PHA composition and hence control the PHA mechanical and other physical properties.Also, the fermentor experiment indicated that PHB formation was growth associated and HO monomer production was in fact promoted by N-limitation.This conclusion was further supported by the fact that the formation of PHB only polyester was observed only when C/N molar ratio was smaller than 20.Higher C/N ratio led to the formation of HO monomers in the polyesters.

  13. Monomer release from nanofilled and microhybrid dental composites after bleaching.

    Directory of Open Access Journals (Sweden)

    Masumeh Hasani Tabatabaee


    Full Text Available The aim of this study was to assess the effect of bleaching on elution of monomers from nanofilled and microhybrid composites.80 samples (5mm diameter and 3mm thickness of each composite were prepared. After curing, half of them were randomly polished. Each group was divided into 8 subgroups and immersed in water or 10%, 20% and 30% H2O2 for 3 or 8 hours. Eluted Bis-GMA (Bis-phenol A Glycidyl Dimethacrylate, TEGDMA (Triethyleneglycol Dimethacrylate, UDMA (Urethane Dimethacrylate and BisEMA (Bis-phenol A ethoxylate Dimethacrylate were quantified by high performance liquid chromatography and the results were analyzed by univariate ANOVA and t-test (P<0.05.Bleach significantly increased the overall release of monomers (P<0.001; TEGDMA was released more than Bis-GMA (P<0.001. Supreme released more TEGDMA compared to Z250 (P<0.001. Bleaching increased the release of this monomer (P<0.001. Increasing both the concentration of H2O2, and the immersion time, increased the release of TEGDMA (P<0.001. Polishing had no effect on release of this monomer (P=0.952. Supreme released more Bis-GMA than Z250 (P=0.000. The more concentrated H2O2 caused more elution of Bis-GMA (P= 0.003; while the effect of immersion time was not significant (P=0.824. Polishing increased the release of Bis-GMA (P=0.001. Neither the type of composite nor Bleaching had any effect on release of UDMA (P=0.972 and (P=0.811 respectively. Immersion duration increased the release of UDMA (P=0.002, as well as polishing (P=0.024.Bleaching increased the release of monomers. Nanofilled composites released more monomer than the microfilled.

  14. The study on mechanism of holographic recording in photopolymer with dual monomer (United States)

    Zhai, Qianli; Tao, Shiquan; Wang, Dayong


    In this paper we study the dynamics of refractive index modulation in a dual-monomer photopolymer through grating growth under different experiment stages. By using different sets of parameters for vinyl monomers (NVC) and acrylate monomers (POEA) respectively, a composite dual-monomer model, extended from the uniform post-exposure (UPE) model for single monomer photopolymer, is proposed and fitted with the experiment data very well. Further discussions indicate that the dominant contribution to the total index modulation is made by NVC monomers, and a brief explanation of the function of POEA monomers is given.

  15. [Influence Factors on Monomer Conversion of Dental Composite Resin]. (United States)

    Wang, Shuang; Gao, Yan; Wang, Jing; Zhang, Yan; Zhang, Yuntao; Wang, Fanghui; Wang, Qingshan


    Dental composite resin is a kind of material which has been widely used in dental restoration. Research has found that the influence of residual monomer on the material mechanical, chemical and biological properties cannot be ignored. This paper elaborates these harms of residual monomers. The effects of resin matrix, inorganic filler and initiating system, illumination, secondarily treatment on the degree of conversion were also analyzed. The paper also discusses the effective measures to increase the conversion, and offers theoretical basis for the clinical application and development of composite resin.

  16. PMR polyimide composites for aerospace applications. [Polymerization of Monomer Reactants (United States)

    Serafini, T. T.


    A novel class of addition-type polyimides has been developed in response to the need for high temperature polymers with improved processability. The new plastic materials are known as PMR (for in situ polymerization of monomer reactants) polyimides. The highly processable PMR polyimides have made it possible to realize much of the potential of high temperature resistant polymers. Monomer reactant combinations for several PMR polyimides have been identified. The present investigation is concerned with a review of the current status of PMR polyimides. Attention is given to details of PMR polyimide chemistry, the processing of composites and their properties, and aerospace applications of PMR-15 polyimide composites.

  17. Breathing zone concentrations of methylmethacrylate monomer during joint replacement operations

    DEFF Research Database (Denmark)

    Darre, E; Jørgensen, L G; Vedel, P;


    By use of a methylmethacrylate (MMA) Dräger tube and bellow bump, the breathing zone concentrations of MMA monomer were measured for the operating surgeon during cementation of the components of hip and knee joint prostheses. The highest recordings (50-100 p.p.m.) were encountered during cementat......By use of a methylmethacrylate (MMA) Dräger tube and bellow bump, the breathing zone concentrations of MMA monomer were measured for the operating surgeon during cementation of the components of hip and knee joint prostheses. The highest recordings (50-100 p.p.m.) were encountered during...

  18. Synthesis, spectroscopic, and analyte-responsive behavior of a polymerizable naphthalimide-based carboxylate probe and molecularly imprinted polymers prepared thereof. (United States)

    Wagner, Ricarda; Wan, Wei; Biyikal, Mustafa; Benito-Peña, Elena; Moreno-Bondi, María Cruz; Lazraq, Issam; Rurack, Knut; Sellergren, Börje


    A naphthalimide-based fluorescent indicator monomer 1 for the integration into chromo- and fluorogenic molecularly imprinted polymers (MIPs) was synthesized and characterized. The monomer was equipped with a urea binding site to respond to carboxylate-containing guests with absorption and fluorescence changes, namely a bathochromic shift in absorption and fluorescence quenching. Detailed spectroscopic analyses of the title compound and various models revealed the signaling mechanism. Titration studies employing benzoate and Z-L-phenylalanine (Z-L-Phe) suggest that indicator monomers such as the title compound undergo a mixture of deprotonation and complex formation in the presence of benzoate but yield hydrogen-bonded complexes, which are desirable for the molecular imprinting process, with weakly basic guests like Z-l-Phe. Compound 1 could be successfully employed in the synthesis of monolithic and thin-film MIPs against Z-L-Phe, Z-L-glutamic acid, and penicillin G. Chromatographic assessment of the selectivity features of the monoliths revealed enantioselective discrimination and clear imprinting effects. Immobilized on glass coverslips, the thin-film MIPs of 1 displayed a clear signaling behavior with a pronounced enantioselective fluorescence quenching dependence and a promising discrimination against cross-analytes.

  19. Naphthoxy Bounded Ferrocenium Salts as Cationic Photoinitiators for Epoxy Photopolymerization

    Directory of Open Access Journals (Sweden)

    Zh. Q. Li


    Full Text Available To improve the absorption and the bulk of arene ligands, two naphthoxy bounded ferrocenium salts as new cationic photoinitiators, (η6-α-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-1 and (η6-β-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-2, were synthesized, characterized, and studied. NOFC-1 and NOFC-2 were prepared by the reaction of nucleophilic substitution (SNAr with naphthol and chlorobenzene-cyclopentadienyliron salt. Their activity as cationic photoinitiators was studied using real-time infrared spectroscopy. The results obtained showed that NOFC-1 and NOFC-2 are capable of photoinitiating the cationic polymerization of epoxy monomer directly on irradiation with long-wavelength UV light (365 nm. Comparative studies also demonstrated that they exhibited better efficiency than cyclopentadienyl-Fe-cymene hexafluorophosphate (I-261. When NOFC-1 and NOFC-2 were used to efficiently initiate polymerization of epoxide, both rate of polymerization and final conversion increased using benzoyl peroxide (BPO as sensitizer. DSC studies showed that NOFC-1 and NOFC-2 photoinitiators in epoxides possess good thermal stability in the absence of light.

  20. Synthesis of a benzoxazine monomer containing maleimide and allyloxy groups

    Institute of Scientific and Technical Information of China (English)


    A novel benzoxazine monomer 3-(4-allyloxy)phenyl-3,4-dihydro-2H-6-(N-maleimido)-1,3-benzoxazine (AMB) was synthesized and structure was confirmed by FT-IR, 1H NMR. Thermal analysis (DSC) of AMB showed the introduction of allyloxy group decreased melting point and exhibited a narrow and symmetric curing exothermic window.

  1. WH2 domain: a small, versatile adapter for actin monomers. (United States)

    Paunola, Eija; Mattila, Pieta K; Lappalainen, Pekka


    The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.

  2. Influence of the diene monomer on devulcanization of EPDM rubber

    NARCIS (Netherlands)

    Verbruggen, M.; Does, van der L.; Noordermeer, J.W.M.; Duin, van M.


    Ethylene–propylene–diene rubbers (EPDM) with 2-ethylidene-5-norbornene (ENB), dicyclopentadiene (DCPD), and 1,4-hexadiene (HD) as third monomers have been vulcanized with peroxide and with a conventional sulfur vulcanization recipe, and their devulcanization was subsequently investigated for recycli

  3. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)


    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  4. Epoxy resin monomers with reduced skin sensitizing potency. (United States)

    O'Boyle, Niamh M; Niklasson, Ida B; Tehrani-Bagha, Ali R; Delaine, Tamara; Holmberg, Krister; Luthman, Kristina; Karlberg, Ann-Therese


    Epoxy resin monomers (ERMs), especially diglycidyl ethers of bisphenol A and F (DGEBA and DGEBF), are extensively used as building blocks for thermosetting polymers. However, they are known to commonly cause skin allergy. This research describes a number of alternative ERMs, designed with the aim of reducing the skin sensitizing potency while maintaining the ability to form thermosetting polymers. The compounds were designed, synthesized, and assessed for sensitizing potency using the in vivo murine local lymph node assay (LLNA). All six epoxy resin monomers had decreased sensitizing potencies compared to those of DGEBA and DGEBF. With respect to the LLNA EC3 value, the best of the alternative monomers had a value approximately 2.5 times higher than those of DGEBA and DGEBF. The diepoxides were reacted with triethylenetetramine, and the polymers formed were tested for technical applicability using thermogravimetric analysis and differential scanning calorimetry. Four out of the six alternative ERMs gave polymers with a thermal stability comparable to that obtained with DGEBA and DGEBF. The use of improved epoxy resin monomers with less skin sensitizing effects is a direct way to tackle the problem of contact allergy to epoxy resin systems, particularly in occupational settings, resulting in a reduction in the incidence of allergic contact dermatitis.

  5. Aggregation processes with catalysis-driven monomer birth/death

    Institute of Scientific and Technical Information of China (English)

    Chen Yu; Han An-Jia; Ke Jian-Hong; Lin Zhen-Quan


    We propose two solvable cluster growth models, in which an irreversible aggregation spontaneously occurs between any two clusters of the same species; meanwhile, monomer birth or death of species A occurs with the help of species B. The system with the size-dependent monomer birth/death rate kernel K(i,j) = Jijv is then investigated by means of the mean-field rate equation. The results show that the kinetic scaling behaviour of species A depends crucially on the value of the index v. For the model with catalysis-driven monomer birth, the cluster-mass distribution of species A obeys the conventional scaling law in the v ≤ 0 case, while it satisfies a generalized scaling form in the v>0 case; moreover, the total mass of species A is a nonzero value in the v< 0 case while it grows continuously with time in the v>0 case. For the model with catalysis-driven monomer death, the cluster-mass distribution also approaches the conventional scaling form in the v < 0 case, while the conventional scaling description of the system breaks down in the v ≥ 0 case. Additionally, the total mass of species A retains a nonzero quantity in the v <0 case, but it decreases to zero with time in the v ≥ 0 case.

  6. Microstructure Control in the emulsion polymerization of fluorinated monomers

    Energy Technology Data Exchange (ETDEWEB)

    Apostolo, Marco [Ausimont R and D, Bollate (Italy); Morbidelli, Massimo [ETH Zentrum, Zuerich (Switzerland)


    In this paper a mathematical model able to evaluate the microstructure of fluorinated polymers is presented. The model uses the pseudo-homo polymerization approach to describe the kinetic evolution of polymerization reactions involving any number of monomer species. The molecular weight distribution is evaluated combining the classical leading moments method with a recently proposed model based on the numerical fractionation technique.

  7. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper


    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building ...

  8. Binding interactions between suberin monomer components and pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Olivella, M.À., E-mail: [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain); Bazzicalupi, C.; Bianchi, A. [Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Río, J.C. del [Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 1052, 41080 Seville (Spain); Fiol, N.; Villaescusa, I. [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain)


    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  9. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho


    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  10. 连锁聚合机理与单体结构和活性种匹配关系的讨论%Discussing About Matching of Mechanism of Chain Polymerization with Monomer Structure and Reactive Species

    Institute of Scientific and Technical Information of China (English)

    童彬; 徐玲


    The mechanism of chain polymerization may be understood easily by monomer structure and reactive species, which is cleanly the criteria of the choosing monomers. For vinyl monomer, induction effect of electron withdrawing substituent, electron supplying substituent and conjugation effect have the correlation of anionic polymerization, cationic polymerization and radical polymerization. Radical polymerization of vinyl chloride can be in contrast to cationic polymerization of isobutylene, while the anionic polymerization of monomer with electron withdrawing substituent can be in contrast to cationic polymerization of monomer with electron supplying substituent. Monomer with conjugation effect substituent might be easily polymerized by the above three kinds of method. Monomer reactive can be semi-quantitatively characterized by Q value, a value, pKa and polymerization heat, which is summarized, therefore monomers are easily chosen by solving the crossing influence of factors. During chain polymerization monomer has to match initiator.%在连锁聚合中,聚合机理与单体结构和活性种有关,明确选择单体的标准。分析乙烯基单体取代基吸电子、供电子诱导效应和共轭效应与单体阴离子聚合、阳离子聚合和自由基聚合相关性:氯乙烯只能自由基聚合,而异丁烯仅能阳离子聚合;单体具有吸电子效应的基团,容易进行阴离子聚合;单体具有供电子效应的基团易阳离子聚合;单体具有共轭效应的基团,可以进行三种聚合。归纳用Q值、σ值、pKa和聚合热半定量考察单体活性的知识体系,剖析影响选择单体各因素的交叉作用这一难点;理解单体与引发剂的匹配进行连锁聚合。

  11. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong


    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  12. Investigation on the aggregation properties of cationic [60]fullerene derivative

    Institute of Scientific and Technical Information of China (English)

    WANG Guanwu; ZHAO Guoxia; YAN Lifeng


    The UV-Vis spectra, HRTEM and AFM images of cationic fullerene derivative 1 with ammonium head group directly connected to C60 skeleton in tetrahydrofuran (THF)-water (H2O) binary mixtures and in pure H2O were investigated. It was found that the UV-Vis spectra of ammonium 1 in the THF-H2O mixtures with THF% ≥ 20% were nearly overlapped, while those with THF% < 20% showed broadened and red-shifted peaks, indicating the formation of aggregates. Corresponding to the UV-Vis spectral changes,the solvatochromism of ammonium 1 in THF-H2O mixtures was observed. Ammonium 1 in binary THF-H2O mixtures existing as the monomer state could aggregate upon prolonged standing. Higher temperature and lower concentration speeded up the aggregation process.

  13. Polymer as a function of monomer: Analytical quantum modeling

    CERN Document Server

    Nakhaee, Mohammad


    To identify an analytical relation between the properties of polymers and their's monomer a Metal-Molecule-Metal (MMM) junction has been presented as an interesting and widely used object of research in which the molecule is a polymer which is able to conduct charge. The method used in this study is based on the Green's function approach in the tight-binding approximation using basic properties of matrices. For a polymer base MMM system, transmission, density of states (DOS) and local density of states (LDOS) have been calculated as a function of the hamiltonian of the monomer. After that, we have obtained a frequency for LDOS variations in pass from a subunit to the next one which is a function of energy.

  14. Dynamics of Aggregate Growth Through Monomer Birth and Death

    Institute of Scientific and Technical Information of China (English)

    KE Jian-Hong; LIN Zhen-Quan


    @@ We investigate the kinetic behaviour of the growth of aggregates through monomer birth and death and propose a simple model with the rate kernels K(k) ∝ ku and K′(k) ∝ kv at which the aggregate Ak of size k respectively yields and loses a monomer. For the symmetrical system with K(k) = K′(k), the aggregate size distribution approaches the conventional scaling form in the case of u < 2, while the system may undergo a gelation-like transition in the u > 2 case. Moreover, the typical aggregate size S(t) grows as t1/(2-u) in the u < 2 case and increases exponentially with time in the u = 2 case. We also investigate several solvable systems with asymmetrical rate kernels and find that the scaling of the aggregate size distribution may break down in most cases.

  15. Synthesis of a new aromatic dianhydride monomer and related polyimide

    Institute of Scientific and Technical Information of China (English)

    Yun Xia Wei; Ming Guang Ma; Guo Hu Zhao; Sheng Ying Li; Ming Kai Chen


    A novel aromatic dianhydride monomer,3,3'-oxybis[(3,4-dicarboxyphenoxy)phenol]dianhydride,was successfully synthe-sized in three steps using 3,3'-oxybis(phenol)as starting material,which was reacted with 4,4'-oxydianiline(ODA)via a conventional thermal or chemical imidization method to produce a new polyimide.The resulting polyimide exhibited excellent solubility,and film-forming capability.

  16. Development of high performance vinyl acetate monomer (VAM) catalysts



    The focus of this study was to develop high performance catalysts for the synthesis of vinyl acetate monomer (VAM). By systematic variation of different preparation parameters a multitude of shell catalysts consisting of PdAu nanoparticles supported on a bentonite carrier was explored. In order to investigate the influence of these alterations on catalytic performance, a catalyst classification was accomplished in a high-throughput Temkin test unit by comparison with a highly efficient commer...

  17. Syntheses of New Functionalized Monomers for π-Conjugated Polymers

    Institute of Scientific and Technical Information of China (English)



    1 Results Tailored monomers based on the activated esters of 2,5-dibromobenzoic (sulfonic) acid derivatives, the 3-substituted 2,5-dibromothiophenes, the 9-substituted 2,7-dibromocarbazoles, and on the brominated 1,10-phenanthrolines suitable for Suzuki, Yamamoto or Grignard metathesis (GRIM) coupling reactions were synthesized and characterized by melting point, elemental analysis, 1H NMR, FTIR and TLC. The Horner-Wadsworth-Emmons reaction mechanism was utilized for the preparation of the 3-[2-(pyren-1...

  18. Novel fluoro-carbon functional monomer for dental bonding. (United States)

    Yoshihara, K; Yoshida, Y; Hayakawa, S; Nagaoka, N; Kamenoue, S; Okihara, T; Ogawa, T; Nakamura, M; Osaka, A; Van Meerbeek, B


    Among several functional monomers, 10-methacryloxydecyl dihydrogen phosphate (10-MDP) bonded most effectively to hydroxyapatite (HAp). However, more hydrolysis-resistant functional monomers are needed to improve bond durability. Here, we investigated the adhesive potential of the novel fluoro-carbon functional monomer 6-methacryloxy-2,2,3,3,4,4,5,5-octafluorohexyl dihydrogen phosphate (MF8P; Kuraray Noritake Dental Inc., Tokyo, Japan) by studying its molecular interaction with powder HAp using solid-state nuclear magnetic resonance ((1)H MAS NMR) and with dentin using x-ray diffraction (XRD) and by characterizing its interface ultrastructure at dentin using transmission electron microscopy (TEM). We further determined the dissolution rate of the MF8P_Ca salt, the hydrophobicity of MF8P, and the bond strength of an experimental MF8P-based adhesive to dentin. NMR confirmed chemical adsorption of MF8P onto HAp. XRD and TEM revealed MF8P_Ca salt formation and nano-layering at dentin. The MF8P_Ca salt was as stable as that of 10-MDP; MF8P was as hydrophobic as 10-MDP; a significantly higher bond strength was recorded for MF8P than for 10-MDP. In conclusion, MF8P chemically bonded to HAp. Despite its shorter size, MF8P possesses characteristics similar to those of 10-MDP, most likely to be associated with the strong chemical bond between fluorine and carbon. Since favorable bond strength to dentin was recorded, MF8P can be considered a good candidate functional monomer for bonding.

  19. 新型抗菌型丙烯酸单体的合成及在牙科修复树脂中的应用%Synthesis of New Antibacterial Acrylic Monomer and Its Application in Dental Restoration Resin-based

    Institute of Scientific and Technical Information of China (English)

    赵中令; 连彦青


    Two acrylic monomers 2-(methacryloyloxy) ethyl 6-bromohexanoate pyridinium (MEBH-Py) and 2-(methacryloyloxy) ethyl 11-bromoundecanoate pyridinium(MEBU-Py) with antibacterial property were synthesized and copolymerized with the commercial dental restorative resin Single Bond Ⅱ adhesive (3 M ESPE dental products) to prepare modified binding agent with antibacterial activity to prevent second caries. The two monomers had good solubility in common solvents such as water, methanol. They could be dissolved in methyl methacrylate, hydroxyethyl methacrylate and other common dental resin. The results showed the two monomers could be copolymerized with commercial resin based restoratives. The monomers MEBH-Py and MEBU-Py got decomposed at 267. 6 and 247. 9℃ respectively and the minimal inhibitory concentration (MIC) of MEBH-Py and MEBU-Py were 6 and 1 mg/mL for E. coli JM05, respectively. The surface antibacterial efficiency for E. coli JM05 of the modified cured systems containing 1. 49%-5. 58% monomers were all up to 98%. The residual unpolymerized MEBH-Py or MEBU-Py were detected scarcely in the solution dipped out of the modified binder by UV-Vis analysis. The pyridinium salt groups were enriched on the surface of the modified binder by X-ray photoelectron spectroscopy ( XPS) which could be the reason of high antibacterial efficiency while low content of MEBH-Py or MEBU-Py. Thus, the two monomers have good thermal stability, good bactericidal activity and polymerizable property; they may be used in many other fields to achieve antibacterial materials.%制备了2种具有抗菌活性的丙烯酸酯类单体6-溴己酸-2-(2-甲基丙烯酰氧)乙基酯吡啶盐(MEBH-Py)和11-溴十一酸-2-(2-甲基丙烯酰氧)乙基酯吡啶盐(MEBU-Py),分别将其添加到牙科修复树脂Single BondⅡ纳米黏结剂中共聚,得到具有抗菌活性的改性黏结剂.MEBH-Py和MEBU-Py具有较好的热稳定性;以大肠杆菌JM05 (E.coli JM05)为受试菌,MEBH-Py和MEBU-Py

  20. Electron-flux infrared response to varying π-bond topology in charged aromatic monomers (United States)

    Álvaro Galué, Héctor; Oomens, Jos; Buma, Wybren Jan; Redlich, Britta


    The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules.

  1. Electron-flux infrared response to varying π-bond topology in charged aromatic monomers (United States)

    Álvaro Galué, Héctor; Oomens, Jos; Buma, Wybren Jan; Redlich, Britta


    The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules. PMID:27577323

  2. Thermally stable drilling fluid additive comprised of a copolymer of catechol-based monomer

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A.D.


    A water soluble polymer is described having thermal stability and exhibiting utility as an aqueous drilling fluid additive comprising: (a) a major portion of a catechol based monomer; (b) a minor portion of a dicarboxylic acid monomer.

  3. Cationic Polymerization of 1,2-Epoxypropane by an Acid Exchanged Montmorillonite Clay in the Presence of Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Aïcha Hachemaoui


    Full Text Available Abstract: The polymerization of propylene oxide (PO catalysed by maghnite-H+ (mag-H+ in the presence of ethylene glycol was investigated. Mag-H+ is a montmorillonite silicate sheet clay was prepared through a straight forward proton exchange process. It was found that the cationic polymerization of PO was initiated by mag-H+ at 20 °C both in bulk and in solution. The effect of the amount of mag-H+ and solvent was studied. These results indicated the cationic nature of the polymerization A possible initiation pathway, via the transfer of protons from mag-H+ to the monomer, is proposed.


    Institute of Scientific and Technical Information of China (English)

    Jiang-hong Wang; Jian-feng Zhai; Jia-yun Zhou; Yu-xia Zhao; Yu-quan Shen


    A novel monomer,(trans)-7-[4-N,N-(di-β-hydroxyethyl) amino-benzene]-ethenyl-3,5-dinitro-thiophene (HBDT), was synthesized and characterized. The details of synthesizing the monomer and prepolymer, polyurethane with the monomer covalently incorporated are presented. The prepolymer and polyurethane exhibited good solubility in common organic solvents. Molecular nonlinear optical properties of the monomer (HBDT) substituted thiophene based stilbenes is presented.

  5. Spatial structure and dimer--monomer equilibrium of the ErbB3 transmembrane domain in DPC micelles. (United States)

    Mineev, K S; Khabibullina, N F; Lyukmanova, E N; Dolgikh, D A; Kirpichnikov, M P; Arseniev, A S


    In present work the interaction of two TM α-helices of the ErbB3 receptor tyrosine kinase from the ErbB or HER family (residues 639-670) was studied by means of NMR spectroscopy in a membrane-mimicking environment provided by the DPC micelles. The ErbB3 TM segment appeared to form a parallel symmetric dimer in a left-handed orientation. The interaction between TM spans is accomplished via the non-standard motif and is supported by apolar contacts of bulky side chains and by stacking of aromatic rings together with π-cation interactions of Phe and Arg side chains. The investigation of the dimer--monomer equilibrium revealed thermodynamic properties of the assembly and the presence of two distinct regimes of the dimerization at low and at high peptide/detergent ratio. It was found that the detergent in case of ErbB3 behaves not as an ideal solvent, thus affecting the dimer--monomer equilibrium. Such behavior may account for the problems occurring with the refolding and stability of multispan helical membrane proteins in detergent solutions. The example of ErbB3 allows us to conclude that the thermodynamic parameters of dimerization, measured in micelles for two different helical pairs, cannot be compared without the investigation of their dependence on detergent concentration.

  6. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations. (United States)

    Lee, Samuel K; Shanmughapriya, Santhanam; Mok, Mac C Y; Dong, Zhiwei; Tomar, Dhanendra; Carvalho, Edmund; Rajan, Sudarsan; Junop, Murray S; Madesh, Muniswamy; Stathopulos, Peter B


    Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding.

  7. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    Energy Technology Data Exchange (ETDEWEB)

    Supeno [Cenderawasih University, Jayapura, Papua, Indonesia and School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Daik, Rusli, E-mail: [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); El-Sheikh, Said M. [Nano-Structured Materials Division, Advanced Materials Department, Central Metallurgical Research and Development Institute, Cairo (Egypt)


    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40°C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of CC bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred.

  8. [Migration of monomers and primary aromatic amines from nylon products]. (United States)

    Mutsuga, Motoh; Yamaguchi, Miku; Ohno, Hiroyuki; Kawamura, Yoko


    Migration of 2 kinds of monomer and 21 kinds of primary aromatic amines (PAAs) from 21 kinds of nylon products such as turners, ladles and wrap film were determined. Samples were classified as regards materials by mean of pyrolysis-GC/MS. One sample was classified as nylon 6, 15 samples as nylon 66 and three samples as nylon 6/66 copolymers, while two samples were laminate of nylon 6 with polyethylene or polypropylene. All of the nylon 66 samples contained a small amount of ε-caprolactam (CPL), which is the nylon 6 monomer. Migration levels of monomers and PAAs at 60°C for 30 min into 20% ethanol were measured by LC/MS/MS. CPL was detected at the level of 0.015-38 µg/mL from all samples, excluding one wrap film sample, and 1,6-hexamethylenediamine was detected at the level of 0.002-0.013 µg/mL from all nylon 66 samples and one nylon 6/66 sample. In addition, 0.006-4.3 µg/mL of 4,4'-diaminodiphenylmethane from three samples, 0.032-0.23 µg/mL of aniline from four samples, 0.001 µg/mL of 4-chloroaniline from two samples, and 0.002 µg/mL of 2-toluidine and 0.066 mg/mL of 1-naphthylamine from one sample each were detected. The migration levels at 95 or 121°C were about 3 and 10 times the 60°C levels, respectively.

  9. Recovery of Monomer from Nylon waste powder for its Recycling

    Directory of Open Access Journals (Sweden)

    Dilip B.Patil


    Full Text Available Recovery of monomer hexamethylene diamine(HMD in the form of dibenzoyl derivative of hexamethylene diamine (DBHMD from Nylon waste rope powder was carried out by degradation of Nylon waste powder of nylon rope waste.The molecular weight of nylon waste powder was found to be 26582.The minimum amount of nylon waste powder and hydrochloric acid required for maximum recovery of HMD and DBHMD was found to be 5g and 5N,50ml hydrochloric acid respectively. Further it was observed that the maximum time and temperature required for getting maximum yield of DBHMD was 120 minutes and 800C respectively.

  10. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  11. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  12. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers. (United States)

    Wu, Xiangyang; Goswami, Kisholoy; Shimizu, Ken D


    In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.

  13. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste (United States)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.


    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  14. A Mechanistic and Kinetic Study of the Photoinitiated Cationic Double Ring-opening Polymerization of 2-Methylene-7-phenyl-1,4,6,9-tetraoxa-spiro[4.4]nonane



    Efficient photopolymerization of a potentially expandable monomer is of practical importance for a variety of polymeric applications demanding dimensional stability, particularly if the polymerization process is well controlled based on a detailed investigation of the reaction. In the current study, photoinitiated polymerization kinetics of 2-methylene-7-phenyl-1,4,6,9-tetraoxaspiro[4.4]nonane (MPN) either with cationic initiation alone or with combined cationic/free radical initiation was ex...

  15. Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended (United States)

    Alston, William B.; Scheiman, Daniel A.


    PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.

  16. Effects of acrylic resin monomers on porcine coronary artery reactivity. (United States)

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S


    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA.

  17. Induced DNA damage by dental resin monomers in somatic cells. (United States)

    Arossi, Guilherme Anziliero; Lehmann, Mauricio; Dihl, Rafael Rodrigues; Reguly, Maria Luiza; de Andrade, Heloisa Helena Rodrigues


    The present in vivo study investigated the genotoxicity of four dental resin monomers: triethyleneglycoldimethacrylate (TEGDMA), hydroxyethylmethacrylate (HEMA), urethanedimethacrylate (UDMA) and bisphenol A-glycidylmethacrylate (BisGMA). The Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster was applied to analyse their genotoxicity expressed as homologous mitotic recombination, point and chromosomal mutation. SMART detects the loss of heterozygosity of marker genes expressed phenotypically on the fly's wings. This fruit fly has an extensive genetic homology to mammalians, which makes it a suitable model organism for genotoxic investigations. The present findings provide evidence that the mechanistic basis underlying the genotoxicity of UDMA and TEGDMA is related to homologous recombination and gene/chromosomal mutation. A genotoxic pattern can correspondingly be discerned for both UDMA and TEGDMA: their genotoxicity is attributed respectively to 49% and 44% of mitotic recombination, as well as 51% and 56% of mutational events, including point and chromosomal alterations. The monomer UDMA is 1.6 times more active than TEGDMA to induce mutant clones per treatment unit. BisGMA and HEMA had no statistically significant effect on total spot frequencies - suggesting no genotoxic action in the SMART assay. The clinical significance of these observations has to be interpreted for data obtained in other bioassays.

  18. Wet air oxidation of epoxy acrylate monomer industrial wastewater. (United States)

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping


    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater.

  19. The Kinetics of Cellulose Grafting with Vinyl Acetate Monomer

    Directory of Open Access Journals (Sweden)

    Éva Borbély


    Full Text Available Cellulose is a natural raw material recurring in a great quantity. The demand touse it more and more widely is increasing. The production of cellulose derivates started asearly as the 19th century, however the modification of these materials meant the breakingup the fibrous structure, which made their use more difficult in paper industry. Themodified cellulose made by graft copolymerization, however, keeps its fibrous character,which provides a great advantage regarding its use. Grafting of industrial cellulose pulpwith vinyl-acetate allows for the production of grafted wood cellulose fibres that have athermoplastic layer on their surface. The binder fibre (fibrid produced in this way can beexcellently used for producing synthetic papers.In the first part of my experiments I dealt with choosing the parameters of graftcopolymerization which are best suited to various uses and after that I studied thedependence of graft reaction on the composition and properties of industrial celluloseapplied. The selection of the suitable reaction parameters was followed by the study ofreaction speed and activation energy. I have stated that the gross reaction of graftingindustrial cellulose with vinyl-acetate monomer is a second order reaction, which is provenby the fact that the invert of the momentary monomer concentration of the system plottedagainst time is a linear function. The rise of the curves, that is, the reaction speed increaseswhen the temperature in the range of 293–323 K is increasing, while the average activationenergy decreases.

  20. Heavy metal cations permeate the TRPV6 epithelial cation channel. (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A


    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  1. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;


    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  2. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.


    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  3. Water-soluble cationic conjugated polymers: response to electron-rich bioanalytes. (United States)

    Rochat, Sébastien; Swager, Timothy M


    We report the concise synthesis of a symmetrical monomer that provides a head-to-head pyridine building block for the preparation of cationic conjugated polymers. The obtained poly(pyridinium-phenylene) polymers display appealing properties such as high electron affinity, charge-transport upon n-doping, and optical response to electron-donating analytes. A simple assay for the optical detection of low micromolar amounts of a variety of analytes in aqueous solution was developed. In particular, caffeine could be measured at a 25 μM detection limit. The reported polymers are also suitable for layer-by-layer film formation.

  4. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din


    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  5. Polymerization of Polar Monomers from a Theoretical Perspective

    KAUST Repository

    Alghamdi, Miasser


    Density functional theory calculations have been used to investigate catalytic mechanism of polymer formation containing polar groups, from the synthesis of the monomer to the synthesis of the macromolecule. In the spirit of a sustainable and green chemistry, we initially focused attention on the coupling of CO2 as economically convenient and recyclable C1 source with C2H4 to form acrylate and/or butirro-lactone, two important polar monomers. In this process formation of a mettallolactone via oxidative coupling of CO2 and C2H4 is an important intermediate. Given this background, we explored in detail (chapter-3) several Ni based catalysts for CO2 coupling with C2H4 to form acrylate. In this thesis we report on the competitive reaction mechanisms (inner vs outer sphere) for the oxidative coupling of CO2 and ethylene for a set of 11 Ni-based complexes containing bisphosphine ligands. In another effort, considering incorporation of a C=C bond into a metal-oxygen-Functional-Group moiety is a challenging step in several polymerization reactions, we explored the details of this reaction (chapter4) using two different catalysts that are capable to perform this reaction in the synthesis of heterocycles. Specifically, the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-Bis-diphenylphosphino-propane), and the [Pd]/BPh3 intramolecular alkoxyfunctionalizations. Rest of the thesis we worked on understanding the details of the polymerization of polar monomers using organocatalysts based on N-heterocyclic carbenes (NHC) or N-heterocyclic olefins (NHO). In particular (chapter-5) we studied the polymerization of N-methyl N-carboxy- anhydrides, towards cyclic poly(N-substituted glycine)s, promoted by NHC catalysts. In good agreement with the experimental findings, we demonstrated that NHC promoted ring opening polymerization of N-Me N-Carboxyanhydrides may proceed via two different catalytic pathways. In a similar effort we studied polymerization of

  6. Production and monomer composition of exopolysaccharides by yogurt starter cultures. (United States)

    Frengova, G I; Simova, E D; Beshkova, D M; Simov, Z I


    As components of starter cultures for Bulgarian yogurt, Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus revealed extensive exopolysaccharide (EPS) production activity when cultivated in whole cow's milk. The polymer-forming activity of thermophilic streptococci was lower (230-270 mg EPS/L) than that of the lactobacilli (400-540 mg EPS/L). Mixed cultures stimulated EPS production in yogurt manufacture, and a maximum concentration of 720-860 mg EPS/L was recorded after full coagulation of milk. The monomer structure of the exopolysaccharides formed by the yogurt starter cultures principally consists of galactose and glucose (1:1), with small amounts of xylose, arabinose, and/or mannose.

  7. Biosynthesis of monomers for plastics from renewable oils. (United States)

    Lu, Wenhua; Ness, Jon E; Xie, Wenchun; Zhang, Xiaoyan; Minshull, Jeremy; Gross, Richard A


    Omega-hydroxyfatty acids are excellent monomers for synthesizing a unique family of polyethylene-like biobased plastics. However, ω-hydroxyfatty acids are difficult and expensive to prepare by traditional organic synthesis, precluding their use in commodity materials. Here we report the engineering of a strain of the diploid yeast Candida tropicalis to produce commercially viable yields of ω-hydroxyfatty acids. To develop the strain we identified and eliminated 16 genes encoding 6 cytochrome P450s, 4 fatty alcohol oxidases, and 6 alcohol dehydrogenases from the C. tropicalis genome. We also show that fatty acids with different chain lengths and degrees of unsaturation can be more efficiently oxidized by expressing different P450s within this strain background. Biocatalysis using engineered C. tropicalis is thus a potentially attractive biocatalytic platform for producing commodity chemicals from renewable resources.

  8. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes. (United States)

    Park, Jong Hyuk; Han, Man Jae; Song, Dae Seock; Jho, Jae Young


    Two series of ionic polymer-metal composites (IPMCs), one cationic and one anionic, are designed and prepared from radiation-grafted ion-exchange membranes. Through examination of the properties of the membranes synthesized from the two grafting monomers and the two base polymers, acrylic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) and quarternized 4-vinylpyridine-grafted poly(ethylene-co-tetrafluoroethylene) with the appropriate amount of ionic groups are employed for the fabrication of cation and anion IPMCs, respectively. The bending displacement of the cation IPMC is comparable to Nafion-based IPMC under direct- and alternating-current voltage, but back-relaxation is not observed. The actuation performance of the anion IPMC is highly improved over those reported earlier in the literature for the other anion IPMCs.


    Institute of Scientific and Technical Information of China (English)

    Dong Zou; Xiu-fen Li; Xiao-li Zhu; Xiang-zheng Kong


    Cationic latexes were prepared through emulsion copolymerization of styrene (St) and butyl acrylate (BA) with a cationic surfactant,cetyl trimethyl ammonium bromide (CTAB).Latex properties,including particle size,size distribution,ζ potential,surface tension and monomer conversion,were determined for latexes prepared with different CTAB amounts.Evolution of these properties during emulsion polymerization was followed in order to understand the mechanism of the particles formation.Results showed that both particle size and ζpotential were function of polymerization time and latex solids.Parallel emulsion polymerizations with cationic,anionic charged initiator and charge-free initiators were also carried out,the latex properties were determined at different polymerization time.All these results were attentively interpreted based on the mechanisms of emulsion polymerization,surfactant adsorption and latex particle stabilization.

  10. Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water. (United States)

    Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W


    The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers.

  11. Use of Monomer Fraction Data in the Parametrization of Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Tsivintzelis, Ioannis; von Solms, Nicolas;


    “improved” model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression “improved” implies parameters which can represent several pure compound properties as well as monomer fraction data for pure......, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes....

  12. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin


    Ohta, Yukari; Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H.; Koizumi, Toshio; Nishimura,Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji


    Abstract Enzymatic catalysis is an ecofriendly strategy for the production of high‐value low‐molecular‐weight aromatic compounds from lignin. Although well‐definable aromatic monomers have been obtained from synthetic lignin‐model dimers, enzymatic‐selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a casca...

  13. Glassy dynamics of model colloidal polymers: The effect of "monomer" size (United States)

    Li, Jian; Zhang, Bo-kai; Li, Hui-shu; Chen, Kang; Tian, Wen-de; Tong, Pei-qing


    In recent years, attempts have been made to assemble colloidal particles into chains, which are termed "colloidal polymers." An apparent difference between molecular and colloidal polymers is the "monomer" size. Here, we propose a model to represent the variation from molecular polymer to colloidal polymer and study the quantitative differences in their glassy dynamics. For chains, two incompatible local length scales, i.e., monomer size and bond length, are manifested in the radial distribution function and intramolecular correlation function. The mean square displacement of monomers exhibits Rouse-like sub-diffusion at intermediate time/length scale and the corresponding exponent depends on the volume fraction and the monomer size. We find that the threshold volume fraction at which the caging regime emerges can be used as a rescaling unit so that the data of localization length versus volume fraction for different monomer sizes can gather close to an exponential curve. The increase of monomer size effectively increases the hardness of monomers and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between colloidal polymers of different monomer sizes have been discussed. In the case of having the same peak time of the non-Gaussian parameter, the motion of monomers of larger size is much less non-Gaussian. The mode-coupling critical exponents for colloidal polymers are in agreement with that of flexible bead-spring chains.

  14. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.


    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and template...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  15. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.


    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  16. Impact of cationic surfactant on the self-assembly of sodium caseinate. (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija


    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  17. From cation to oxide: hydroxylation and condensation of aqueous complexes; Du cation a l'oxyde: hydroxylation et condensation en solution

    Energy Technology Data Exchange (ETDEWEB)

    Jolivet, J.P. [Universite Pierre et Marie Curie, Chimie de la Matiere Condensee, URA CNRS 1466, 75 - Paris (France)


    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al{sup 3+} ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  18. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)


    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  19. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer). (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and...

  20. Monomers, polymers and articles containing the same from sugar derived compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.


    Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.

  1. A comment on water’s structure using monomer fraction data and theories

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Maribo-Mogensen, Bjørn; Tsivintzelis, Ioannis;


    Monomer fraction data for water (and other compounds) can provide useful information about their structure and can be used in “advanced” equations of state, which account explicitly for association phenomena. Recent findings about the performance of association theories in representing the monome...

  2. Synthesis and ATRP of novel fluorinated aromatic monomer with pendant sulfonate group

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren


    Novel, fluorinated monomer with pendant sulfonate group was synthesized utilizing a two-step derivatization of 2,3,4,5,6-pentafluorostyrene (FS). The first step was a nucleophilic substitution of the fluorine atom in para position by hydroxyl group followed by sulfopropylation. The monomer was po...

  3. The Theaflavin Monomers Inhibit the Cancer Cells Growth in Vitro

    Institute of Scientific and Technical Information of China (English)

    You-Ying TU; An-Bin TANG; Naoharu WATANABE


    The inhibition effects of tea theaflavins complex (TFs), theaflavin-3-3 '-digallate (TFDG),theaflavin-3'-gallate (TF2B), and an unidentified compound (UC) on the growth of human liver cancer BEL-7402 cells, gastric cancer MKN-28 cells and acute promyelocytic leukemia LH-60 cells were investigated.TFs was obtained through the catalysis of catechins with immobilized polyphenols oxidase. TFDG, TF2B and UC were isolated from TFs with high speed countercurrent chromatography (HSCCC). The results showed that TF2B significantly inhibited the growth of all three kinds of cancer cells, TFs, TFDG and UC had some effect on BEL-7402 and MKN-28, but little activity on LH-60. The inhibition effects of TF2B, TFDG, and UC on BEL-7402 and MKN-28 were stronger than TFs. The relationship coefficients between monomer concentration and its inhibition rate against MKN-28 and BEL-7402 were 0.87 and 0.98 for TF2B, 0.96 and 0.98 for UC, respectively. The IC50 values ofTFs, TF2B, and TFDG were 0.18, 0.11, and 0.16 mM on BEL-7402 cells, and 1.11, 0.22, and 0.25 mM on MKN-28 cells respectively.

  4. Conformational study of neutral histamine monomer and their vibrational spectra (United States)

    Mukherjee, V.; Yadav, T.


    Molecular modeling and potential energy scanning of histamine molecule, which is an important neurotransmitter, with respect to the dihedral angle of methylamine side chain have done which prefer three different conformers of histamine monomer. We have calculated molecular structures and vibrational spectra with IR and Raman intensities of these conformers using Density Functional Theory (DFT) with the exchange functional B3LYP incorporated with the basis set 6-31 ++G(d,p) and Hartree-Fock (HF) with the same basis set. We have also employed normal coordinate analysis (NCA) to scale the theoretical frequencies and to calculate potential energy distributions (PEDs) for the conspicuous assignments. Normal modes assignments of some of the vibrational frequencies of all the three conformers are in good agreement with the earlier reported experimental frequencies of histamine whereas others have modified. The standard deviations between the theoretical and experimental frequencies fall in the region 13-20 cm- 1 for the three conformers. NBO analyses of histamine conformers were also performed. The net charge transfers from ethylamine side chain to the imidazole ring. The intensive interactions between bonding and anti-bonding orbitals are found in imidazole ring. The HOMO-LUMO energy gap is nearly 5.50 eV.

  5. Rheological study of polypropylene irradiated with polyfunctional monomers (United States)

    Otaguro, H.; Rogero, S. O.; Yoshiga, A.; Lima, L. F. C. P.; Parra, D. F.; Artel, B. W. H.; Lugão, A. B.


    The aim of this paper is to investigate the rheological properties of polypropylene (PP) modified by ionization radiation (gamma rays) in the presence of two different monomers. The samples were mixed in a twin-screw extruder with ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TMPTMA) with concentration in the range of 0.5-5.0 mmol. After that, they were irradiated with 20 kGy dose of gamma radiation. The structural modification of polypropylene was analyzed in the melt state by measuring melt flow rate (MFR), η* (complex viscosity) and G' (storage modulus) in the angular frequency range of 10 -1 to 3 × 10 2 rad s -1. From the oscillatory rheology data, one could obtain the values of η0 (zero shear viscosity) that would be related to the molar mass. All results were discussed with respect to the crosslinking and degradation process that occur in the post-reactor treatment to produce controlled rheology polypropylene. The resulting polymeric materials were submitted the cytotoxicity in vitro test by neutral red uptake methodology with NCTC L 929 cell line from American Type Culture Collection bank. All modified PP samples presented no cytotoxicity.

  6. Ligustrazine monomer against cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Gao


    Full Text Available Ligustrazine (2,3,5,6-tetramethylpyrazine is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mechanism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administration, and the most effective mode of administration for clinical treatment of cerebral ischemia/reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine administration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyloxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC195 after cerebral ischemia were better than ligustrazine.

  7. Blood compatibility of polyurethane surface grafted copolymerization with sulfobetaine monomer. (United States)

    Jiang, Yuan; Rongbing, Bian; Ling, Tong; Jian, Shen; Sicong, Lin


    Surface modification is an effective way to improve the hemocompatibility and remain bulk properties of biomaterials. Recently, polymer tailed with zwitterions was found having good blood compatibility. In this study, the grafting copolymerization of sulfobetaine onto polyurethane surface was obtained through two steps. In the first step, polyurethane film coupled with vinyl groups was obtained through the reaction between the carboxyl group of acrylic acid (AA) and the NH-urethane group of polyurethane by dicyclohexylcarbodiimide (DCC). In the second step, sulfobetaine was grafted copolymerization on the surface using AIBN as an initiator. The reaction process was monitored with ATR-IR spectra and X-ray photoelectron spectroscopy (XPS) spectra. The wettability of films was investigated by water contact angle measurement. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG). Low platelet adhesion was observed on the grafted films incubated in PRP for 1 and 3 h, respectively. The protein absorption was reduced on the grafted films after incubated in bovine fibrinogen for 2 h. All of these results revealed that the improved blood compatibility was obtained by grafting copolymerization with zwitterionic monomer of sulfobetaine onto polyurethane film. In addition, introducing vinyl groups onto surface through DCC and AA is a novel method to functionalize polyurethane for further modification.

  8. Computational screening of oxetane monomers for novel hydroxy terminated polyethers. (United States)

    Sarangapani, Radhakrishnan; Ghule, Vikas D; Sikder, Arun K


    Energetic hydroxy terminated polyether prepolymers find paramount importance in search of energetic binders for propellant applications. In the present study, density functional theory (DFT) has been employed to screen the various novel energetic oxetane derivatives, which usually construct the backbone for these energetic polymers. Molecular structures were investigated at the B3LYP/6-31G* level, and isodesmic reactions were designed for calculating the gas phase heats of formation. The condensed phase heats of formation for designed compounds were calculated by the Politzer approach using heats of sublimation. Among the designed oxetane derivatives, T4 and T5 possess condensed phase heat of formation above 210 kJ mol(-1). The crystal packing density of the designed oxetane derivatives varied from 1.2 to 1.6 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and HOFCond. It was found that most of the designed oxetane derivatives have detonation performance comparable to the monomers of benchmark energetic polymers viz., NIMMO, AMMO, and BAMO. The strain energy (SE) for the oxetane derivatives were calculated using homodesmotic reactions, while intramolecular group interactions were predicted through the disproportionation energies. The concept of chemical hardness is used to analyze the susceptibility of designed compounds to reactivity and chemical transformations. The heats of formation, density, and predicted performance imply that the designed molecules are expected to be candidates for polymer synthesis and potential molecules for energetic binders.

  9. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick


    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  10. Complexation between polyallylammonium cations and polystyrenesulfonate anions: the effect of ionic strength and the electrolyte type. (United States)

    Požar, Josip; Kovačević, Davor


    Complexation between polyallylammonium cations and polystyrenesulfonate anions was investigated in aqueous solutions of binary 1 : 1 sodium electrolytes (NaX, X = F, Cl, Br, I, NO3, ClO4) by means of microcalorimetry, dynamic light scattering, electrokinetics and spectrophotometry. At lower molar ratios of monomer units charged polyelectrolyte complexes were formed. At molar ratios close to equivalence and at lower salt concentrations (c(NAX)/mol dm(-3) ≤ 0.1) flocculation occurred. The obtained precipitates contained approximately equimolar amounts of oppositely charged monomer units. At c(NAX)/mol dm(-3) ≥ 0.5 (X = NO3, ClO4) and in the case when the polycation was present in excess, the amount of positively charged monomer units in the precipitate was higher than that of negatively charged monomers (asymmetric neutralisation). In addition, the aggregation of positively charged complexes in concentrated solutions of all investigated electrolytes was noticed. The onset of aggregation was strongly anion specific. However, the aggregation of negatively charged complexes did not occur even at c(NaX) = 3 mol dm(-3). The composition of the insoluble products at equimolar ratio of monomer units and higher concentrations of NaNO3 and NaClO4 was dependent on the order of addition, indicating non-equilibrium interpolyelectrolyte neutralisation under all ionic conditions. At 25 °C and c(NaClO4) = 1 mol dm(-3) equilibrium was not reached after two months. In contrast, the supernatants showed no traces of free polyanion chains after being heated for a week at 60 °C. The pairing of monomer units was predominantly entropically driven, irrespective of the type of reaction products formed (polyelectrolyte complexes, precipitates) and the electrolyte type. The results obtained indicate that the overcharging is not an enthalpically demanding process. The calorimetric measurements also suggest that the strong influence of counteranions on the composition of the reaction

  11. Organic-Inorganic Thermoelectrics from Single Monomers to Polymer Devices (United States)

    Chang, William Bee

    Waste heat recovery from the human body provides opportunities to power electronics with a source that is cheap and readily available. Thermoelectrics utilize the Seebeck effect to recover useable electrical energy from this waste heat, but are limited due to material parameters being inversely coupled in the bulk. We investigate the role of novel physics at interfaces in order to develop new fundamental understanding of thermoelectrics. The goal is to discover systems where the Seebeck coefficient and the electrical conductivity are not inversely correlated. We investigate thermoelectric transport in organic-organic systems such as scanning tunneling microscope molecular break junctions on the nanoscale, gold nanocrystal arrays on the mesoscale and polymeric ion and mixed conductors at the macroscale. The STM molecular junctions studied in this work can provide design rules to positively couple the Seebeck coefficient and the electrical conductance. Since STM molecular junctions are one-dimensional systems, by minimizing the gap between the molecular orbital energy level and the electrode Fermi energy, the power factor S2? can be optimized. I built a toolbox of chemical structures by first understanding the role of the interface coupling to alkylthiol binding groups of thiophene-based molecules. With this understanding, I designed small molecules based on the monomer unit of donor-acceptor polymers and other conductive polymers. Molecules with very high HOMO levels or low LUMO levels were studied, and the corresponding energy levels were examined using spectroscopic techniques. I then present our work on scaling these molecular junctions to the macroscale using ligand-exchanged gold nanocrystal arrays. Beginning with a model system of alkanethiols and alkanedithiols, I show that the electrical conductivity scales with ligand length exactly as observed in single molecule junctions, and the Seebeck coefficient follows a similar trend. By showing that gold

  12. Nanolayering of phosphoric acid ester monomer on enamel and dentin. (United States)

    Yoshihara, Kumiko; Yoshida, Yasuhiro; Hayakawa, Satoshi; Nagaoka, Noriyuki; Irie, Masao; Ogawa, Tatsuyuki; Van Landuyt, Kirsten L; Osaka, Akiyoshi; Suzuki, Kazuomi; Minagi, Shogo; Van Meerbeek, Bart


    Following the "adhesion-decalcification" concept, specific functional monomers possess the capacity to primary chemically interact with hydroxyapatite (HAp). Such ionic bonding with synthetic HAp has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), manifest as self-assembled "nanolayering". In continuation of that basic research this study aimed to explore whether nanolayering also occurs on enamel and dentin when a 10-MDP primer is applied following a common clinical application protocol. Therefore, the interaction of an experimental 10-MDP primer and a control, commercially available, 10-MDP-based primer (Clearfil SE Bond primer (C-SE), Kuraray) with enamel and dentin was characterized by X-ray diffraction (XRD), complemented with transmission electron microscopy interfacial ultrastructural data upon their reaction with enamel and dentin. In addition, XRD was used to study the effect of the concentration of 10-MDP on nanolayering on dentin. Finally, the stability of the nanolayers was determined by measuring the bond strength to enamel and dentin when a photoinitiator was added to the experimental primer or when interfacial polymerization depended solely on the photoinitiator supplied with the subsequently applied adhesive resin. XRD confirmed nanolayering on enamel and dentin, which was significantly greater on dentin than on enamel, and also when the surface was actively rubbed with the primer. Nanolayering was also proportional to the concentration of 10-MDP in the primer. Finally, the experimental primer needed the photoinitiator to obtain a tensile bond strength to dentin comparable with that of the control C-SE primer (which also contains a photoinitiator), but not when bonded to enamel. It is concluded that self-assembled nanolayering occurs on enamel and dentin, even when following a clinically used application protocol. The lower bonding effectiveness of mild self-etch adhesives to enamel should be ascribed in part to a lower

  13. Vinyl acetate monomer (VAM) genotoxicity profile: relevance for carcinogenicity. (United States)

    Albertini, Richard J


    Vinyl acetate monomer (VAM) is a site-of-contact carcinogen in rodents. It is also DNA reactive and mutagenic, but only after its carboxylesterase mediated conversion to acetaldehyde (AA), a metabolic reaction that also produces acetic acid and protons. As VAM's mutagenic metabolite, AA is normally produced endogenously; detoxification by aldehyde dehydrogenase (ALDH) is required to maintain intra-cellular AA homeostasis. This review examines VAM's overall genotoxicity, which is due to and limited by AA, and the processes leading to mutation induction. VAM and AA have both been universally negative in mutation studies in bacteria but both have tested positive in several in vitro studies in higher organisms that usually employed high concentrations of test agents. Recently however, in vitro studies evaluating submillimolar concentrations of VAM or AA have shown threshold dose-responses for mutagenicity in human cultured cells. Neither VAM nor AA induced systemic mutagenicity in in vivo studies in metabolically competent mice when tested at non-lethal doses while treatments of animals deficient in aldehyde dehydrogenase (Aldh in animals) did induce both gene and chromosome level mutations. The results of several studies have reinforced the critical role for aldehyde dehydrogenase 2 (ALDH2 in humans) in limiting AA's (and therefore VAM's) mutagenicity. The overall aim of this review of VAM's mutagenic potential through its AA metabolite is to propose a mode of action (MOA) for VAM's site-of-contact carcinogenesis that incorporates the overall process of mutation induction that includes both background mutations due to endogenous AA and those resulting from exogenous exposures.

  14. A peptidoglycan monomer with the glutamine to serine change and basic peptides bind in silico to TLR-2 (403-455). (United States)

    Li, Yufeng; Efferson, Clay L; Ramesh, Rajagopal; Peoples, George E; Hwu, Patrick; Ioannides, Constantin G


    Bacterial cell wall polysaccharides, such as PGN, bind and activate TLR-2, NOD2 and PGRP on monocytes/macrophages and activate inflammation. We found that the peptides containing basic amino acids (cations) at N -terminus and tyrosine at C-terminus interfered with activating ability of PGN. This finding is significant because the ECD of TLR-2 in vivo encounters a large number of proteins or peptides. Some should bind ECD and "pre-form" TLR-2 to respond or not to its activators, although they cannot activate TLR-2 alone. TLR-2 is receptor for a large number of ligands, including lipopeptides and bacterial cell wall glycoproteins. A binding site for lipopeptides has been identified; however, a binding site for soluble or multimeric PGN has not been proposed. To identify the candidate binding sites of peptides and PGN on TLR-2, we modeled docking of peptides and of the PGN monomer (PGN-S-monomer) to extracellular domain (ECD-TLR-2) of the unbound TLR-2. Quantification, in silico, of free energy of binding (DG) identified 2 close sites for peptides and PGN. The PGN-S-monomer binding site is between amino acids TLR-2, 404-430 or more closely TLR-2, 417-428. The peptide-binding site is between amino acids TLR-2, 434-455. Molecular models show PGN-S-monomer inserts its N -acetyl-glucosamine (NAG) deep in the TLR-2 coil, while its terminal lysine interacts with inside (Glu(403)) and outside pocket (Tyr(378)). Peptides insert their two N -terminal arginines or their C-terminal tyrosines in the TLR-2 coil. PGN did not bind the lipopeptide-binding site in the TLR-2. It can bind the C-terminus, 572-586 (DG = 0.026 kcal), of "lipopeptide-bound" TLR-2. An additional, low-affinity PGN-binding site is TLR-2 (227-237). MTP, MDP, and lysine-less PGN bind to TLR-2, 87-113. This is the first report identifying candidate binding sites of monomer PGN and peptides on TLR-2. Experimental verification of our findings is needed to create synthetic adjuvant for vaccines. Such synthetic PGN

  15. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;


    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  16. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  17. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 2. Imidazolium cations. (United States)

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Hatcher, Jasmine L; Wishart, James F


    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual

  18. Monomer-dimer model on a scale-free small-world network (United States)

    Zhang, Zhongzhi; Sheng, Yibin; Jiang, Qiang


    The explicit determination of the number of monomer-dimer arrangements on a network is a theoretical challenge, and exact solutions to monomer-dimer problem are available only for few limiting graphs with a single monomer on the boundary, e.g., rectangular lattice and quartic lattice; however, analytical research (even numerical result) for monomer-dimer problem on scale-free small-world networks is still missing despite the fact that a vast variety of real systems display simultaneously scale-free and small-world structures. In this paper, we address the monomer-dimer problem defined on a scale-free small-world network and obtain the exact formula for the number of all possible monomer-dimer arrangements on the network, based on which we also determine the asymptotic growth constant of the number of monomer-dimer arrangements in the network. We show that the obtained asymptotic growth constant is much less than its counterparts corresponding to two-dimensional lattice and Sierpinski fractal having the same average degree as the studied network, which indicates from another aspect that scale-free networks have a fundamentally distinct architecture as opposed to regular lattices and fractals without power-law behavior.

  19. Influence of the chemical structure of functional monomers on their adhesive performance. (United States)

    Van Landuyt, K L; Yoshida, Y; Hirata, I; Snauwaert, J; De Munck, J; Okazaki, M; Suzuki, K; Lambrechts, P; Van Meerbeek, B


    Functional monomers in adhesive systems can improve bonding by enhancing wetting and demineralization, and by chemical bonding to calcium. This study tested the hypothesis that small changes in the chemical structure of functional monomers may improve their bonding effectiveness. Three experimental phosphonate monomers (HAEPA, EAEPA, and MAEPA), with slightly different chemical structures, and 10-MDP (control) were evaluated. Adhesive performance was determined in terms of microtensile bond strength of 4 cements that differed only for the functional monomer. Based on the Adhesion-Decalcification concept, the chemical bonding potential was assessed by atomic absorption spectrophotometry of the dissolution rate of the calcium salt of the functional monomers. High bond strength of the adhesive cement corresponded to low dissolution rate of the calcium salt of the respective functional monomer. The latter is according to the Adhesion-Decalcification concept, suggestive of a high chemical bonding capacity. We conclude that the adhesive performance of an adhesive material depends on the chemical structure of the functional monomer.

  20. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)


    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  1. Molecular weight recognition in the multiple-stranded helix of a synthetic polymer without specific monomer-monomer interaction. (United States)

    Kumaki, Jiro; Kawauchi, Takehiro; Ute, Koichi; Kitayama, Tatsuki; Yashima, Eiji


    Stereoregular isotactic and syndiotactic poly(methyl methacrylate)s (it- and st-PMMAs) are known to form a multiple-stranded complementary helix, so-called stereocomplex (SC) through van der Waals interactions, which is a rare example of helical supramolecular structures formed by a commodity polymer. In this study, we prepared SCs by using uniform it- and st-PMMAs and those with a narrow molecular weight distribution having different molecular weights and investigated their structures in detail using high-resolution atomic force microscopy as a function of the molecular weight and molecular weight distribution of the component PMMAs. We found that complementary it- and st-PMMAs with the longer molecular length determine the total length of the SC, and molecules of the shorter component associate until they fill up or cover the longer component. These observations support a supramolecular triple-stranded helical structure of the SCs composed of a double-stranded helix of two intertwined it-PMMA chains included in a single helix of st-PMMA, and this triple-stranded helix model of the SCs appears to be applicable to the it- and st-PMMAs having a wide range of molecular weights we employed in this study. In homogeneous double-stranded helices of it-PMMA, it has been found that, in mixtures of two it-PMMAs with different molecular weights, chains of the same molecular weight selectively form a double-stranded it-PMMA helix, or recognize the molecular weights of each other ("molecular sorting"). We thus demonstrate that molecular weight recognition is possible, without any specific interaction between monomer units, through the formation of a topological multiple-stranded helical structure based upon van der Waals interaction.

  2. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. (United States)

    Krifka, Stephanie; Spagnuolo, Gianrico; Schmalz, Gottfried; Schweikl, Helmut


    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. Monomers like triethylene glycol dimethacrylate (TEGDMA) or 2-hydroxylethyl methacrylate (HEMA) are cytotoxic via apoptosis, induce genotoxic effects, and delay the cell cycle. Monomers also influence the response of cells of the innate immune system, inhibit specific odontoblast cell functions, or delay the odontogenic differentiation and mineralization processes in pulp-derived cells including stem cells. These observations indicate that resin monomers act as environmental stressors which inevitably disturb regulatory cellular networks through interference with signal transduction pathways. We hypothesize that an understanding of the cellular mechanisms underlying these phenomena will provide a better estimation of the consequences associated with dental therapy using composite materials, and lead to innovative therapeutic strategies and improved materials being used at tissue interfaces within the oral cavity. Current findings strongly suggest that monomers enhance the formation of reactive oxygen species (ROS), which is most likely the cause of biological reactions activated by dental composites and resin monomers. The aim of the present review manuscript is to discuss adaptive cell responses to oxidative stress caused by monomers. The particular significance of a tightly controlled network of non-enzymatic as well as enzymatic antioxidants for the regulation of cellular redox homeostasis and antioxidant defense in monomer-exposed cells will be addressed. The expression of ROS-metabolizing antioxidant enzymes like superoxide dismutase (SOD1), glutathione peroxidase (GPx1/2), and catalase in cells exposed to monomers will be discussed with particular emphasis on the role

  3. Influence of Monomer Types on the Designability of a Protein-Model Chain

    Institute of Scientific and Technical Information of China (English)

    梁好均; 王元元


    In a three-dimensional off-lattice model, the method of Shakhnovich and Gutin for minimizing the Hamiltonian is applied to the design of a protein-model chain. The effect of the number of hydrophobic and hydrophilic monomer types on the designability ora protein-model chain is investigated. The simulation results reveal that the number of hydrophobic monomer types is a much more important factor than that of the polar monomer types in the design of a protein-model chain.

  4. Investigation of hydrogen atom addition to vinyl monomers by time resolved ESR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beckert, D.; Mehler, K.


    By means of time resolved ESR spectroscopy in the microsecond time scale the H atom addition to different vinyl monomers was investigated. The H atoms produced by pulse radiolysis of aqueous solutions show a strong recombination CIDEP effect which also allows the recombination rate constant of H atoms to be determined. By analysis of ESR time profiles with the modified Bloch equations the relaxation times T/sub 1/, T/sub 2/, the polarization factors and the chemical rate constants with scavengers were obtained. Besides the H atom addition rate constants to different vinyl monomers the structure of the monomer radical was determined for acrylic acid.

  5. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  6. Cationic Bolaamphiphiles for Gene Delivery (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad


    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  7. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films (United States)

    Choi, Seong-Ho; Nho, Young Chang


    Graft copolymerization of acrylonitrile (AN)/acrylic acid (AA), acrylonitrile (AN)/methacrylic acid (MA), and acrylonitrile (AN)/glycidyl methacrylate (GMA) onto pre-irradiated polyethylene (PE) films were studied. The effect of reaction conditions such as solvents, additives, and monomer composition on the grafting yields was investigated. The extent of grafting was found to increase with increasing sulfuric acid concentration when sulfuric acid as an additive was added to the grafting solution. In AN/AA mixture, the proportion of acrylonitrile in the copolymer increased with an increasing AN component in feed monomers. On the other hand, in AN/MA mixture, acrylonitrile component in copolymer was very slight in spite of the increase AN component in feed monomers. In the AN/GMA mixture, the proportion of acrylonitrile in the copolymer increased with increasing acrylonitrile component in AN/GMA feed monomer.

  8. Computational studies of the structural properties of the monomer and dimer of Aβ(1-28) (United States)

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe


    Neurodegenerative diseases are linked with the self-assembly of normally soluble proteins into amyloid fibrils. In this work, in silico characterization of the structures of the monomer and dimer of Aβ(1-28) are studied with the coarse-grained OPEP model using the activation-relaxation technique (ART nouveau). We find a dominant anti-parallel β-sheet structure present for both the monomer and dimer. While the monomer does not adopt a stable conformation, it fluctuates around a well-defined structure: starting from the end point, the monomer wraps a first time around, producing a β-hairpin and returns on the other side of the N-terminal, forming a three-strand β-sheet. The dimer assembles in a similar fashion, but with the two strands interlocking. The thermodynamics of the molecular assemblies and various folding path-ways are further studied using molecular dynamics.

  9. A novel quinoxaline bearing electroactive monomer: Pyrrole as the donor moiety

    Energy Technology Data Exchange (ETDEWEB)

    Taskin, Asli Tuba; Balan, Abidin; Epik, Bugra; Yildiz, Ersin [Middle East Technical University, Department of Chemistry, 06531, Ankara (Turkey); Udum, Yasemin Arslan [Gazi University, Institute of Science and Technology, Department of Advanced Technologies, 06570, Ankara (Turkey); Toppare, Levent [Middle East Technical University, Department of Chemistry, 06531, Ankara (Turkey)], E-mail:


    A novel electroactive monomer 5,8-di(1H-pyrrol-2-yl)-2,3-di(thiophen-2-yl)quinoxaline (PTQ) was successfully synthesized and its electrochromic properties were reported. Nuclear magnetic resonance ({sup 1}H NMR-{sup 13}C NMR) and mass spectroscopy were used to characterize the monomer. The monomer was electrochemically polymerized in the presence of tetrabutylammonium perchlorate (TBAP) as supporting electrolyte in dichloromethane. Monomer reveals relatively low oxidation potential at +0.70 V. Spectroelectrochemical behaviors and switching ability of homopolymer were investigated by UV-vis spectroscopy and cyclic voltammetry. Two {pi}-{pi}* transitions were observed at 400 and 815 nm with a low band gap, 1.0 eV. Polymer possesses 66% optical contrast in the Near IR region, which may be promising in NIR electrochromic device applications.

  10. Facile synthesis of allyl resinate monomer in an aqueous solution under microwave irradiation

    Indian Academy of Sciences (India)

    Yanju Lu; Mixia Wang; Zhendong Zhao; Yuxiang Chen; Shichao Xu; Jing Wang; Liangwu Bi


    We have developed a facile method for production of allyl resinate monomer (allyl rosin ester) via a phase transfer reaction under microwave irradiation. The synthesis of allyl resinate was conducted using allyl chloride and sodium resinate as starting materials in aqueous solution at 50°C for 30 min with a yield of 94.7%, which is 20% higher than conventional heating method. The products precipitated spontaneously from the aqueous phase after reaction, which significantly facilitated the subsequent separation of monomer products. The synthesized monomer product appeared as a viscous liquid, with a viscosity of 460 mPa·s at 25°C and a density of 1.0469 g/cm3. The physical and chemical properties suggested that the synthesized monomer has great potential for free radical polymerization.

  11. Critical behavior in the cubic dimer model at nonzero monomer density (United States)

    Sreejith, G. J.; Powell, Stephen


    We study critical behavior in the classical cubic dimer model (CDM) in the presence of a finite density of monomers. With attractive interactions between parallel dimers, the monomer-free CDM exhibits an unconventional transition from a Coulomb phase to a dimer crystal. Monomers act as charges (or monopoles) in the Coulomb phase and, at nonzero density, lead to a standard Landau-type transition. We use large-scale Monte Carlo simulations to study the system in the neighborhood of the critical point, and find results in agreement with detailed predictions of scaling theory. Going beyond previous studies of the transition in the absence of monomers, we explicitly confirm the distinction between conventional and unconventional criticality, and quantitatively demonstrate the crossover between the two. Our results also provide additional evidence for the theoretical claim that the transition in the CDM belongs in the same universality class as the deconfined quantum critical point in the SU (2) JQ model.

  12. Cation distributions on rapidly solidified cobalt ferrite (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.


    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  13. Qualitative and quantitative analysis of monomers in polyesters for food contact materials. (United States)

    Brenz, Fabrian; Linke, Susanne; Simat, Thomas


    Polyesters (PESs) are gaining more importance on the food contact material (FCM) market and the variety of properties and applications is expected to be wide. In order to acquire the desired properties manufacturers can combine several FCM-approved polyvalent carboxylic acids (PCAs) and polyols as monomers. However, information about the qualitative and quantitative composition of FCM articles is often limited. The method presented here describes the analysis of PESs with the identification and quantification of 25 PES monomers (10 PCA, 15 polyols) by HPLC with diode array detection (HPLC-DAD) and GC-MS after alkaline hydrolysis. Accurate identification and quantification were demonstrated by the analysis of seven different FCM articles made of PESs. The results explained between 97.2% and 103.4% w/w of the polymer composition whilst showing equal molar amounts of PCA and polyols. Quantification proved to be precise and sensitive with coefficients of variation (CVs) below 6.0% for PES samples with monomer concentrations typically ranging from 0.02% to 75% w/w. The analysis of 15 PES samples for the FCM market revealed the presence of five different PCAs and 11 different polyols (main monomers, co-monomers, non-intentionally added substances (NIAS)) showing the wide variety of monomers in modern PESs. The presented method provides a useful tool for commercial, state and research laboratories as well as for producers and distributors facing the task of FCM risk assessment. It can be applied for the identification and quantification of migrating monomers and the prediction of oligomer compositions from the identified monomers, respectively.

  14. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.


    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  15. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. (United States)

    Sarkar, Bidyut; Das, Anand K; Maiti, Sudipta


    Amyloid beta (Aβ) is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer's disease (AD). Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al., 2011). Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of monomers and small oligomers (containing dimers to decamers), providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A) at physiological concentrations (250 nM), while oligomers at the same concentrations show strong binding within 30 min of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T). Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 h of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results (a) provide an explanation for the non-toxic nature of Aβ monomers, (b) suggest that Aβ toxicity emerges at the initial oligomeric phase, and (c) provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  16. Effect of food simulating liquids on release of monomers from two dental resin composites

    Directory of Open Access Journals (Sweden)

    Ghavam M


    Full Text Available "nBackground and Aims: The elution of residual monomers from cured dental composites to oral cavity has a harmful effect on human health and can affect their clinical durability. The purpose of this study was to evaluate the amount of eluted monomers (Bis-GMA, TEGDMA, UDMA from two types of composites (Gradia and P60 after exposure to food simulating liquids such as ethanol (25, 50, 75 % and heptane 50 % for 24 hours and 7 days. "nMaterials and Methods: Forty specimens of each composite were prepared. Equal numbers of each composite were immersed in tubes containing 2cc volumes of 25, 50, 75 % ethanole and 50 % heptane. The amount of eluted monomers in standard condition such as Bis-GMA, TEGDMA and UDMA was measured by GC/MS (Gas Chromatography/Mass Spectroscopy and results were statistically analysed by three way and one way ANOVA. P<0.05 was considered as the level of significancy. "nResults: The results showed that Gradia released more TEGDMA than P60. In assessing the effect of environment, the result showed that ethanol caused releasing monomers more than heptane and the concentration rate of 75 % ethanole resulted in most releasing of monomers. In assessing the effect of time, the observation showed that more monomers were released 7 days compared to 24 hours. Bis-GMA and UDMA were not detected in any solutions in these conditions. "nConclusion: Ethanole caused more release of monomers than heptane and 75 % ethanole released the most amount of monomers. Gradia released more amount of TEGDMA than P60.

  17. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo


    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using triptycene-based ladder polymers, a structure incorporating triptycene-based ladder polymers, a method of gas separation, and the like.

  18. Concomitant sensitization to glutaraldehyde and methacrylic monomers among dentists and their patients


    Maya Grigorievna Lyapina; Maria Dencheva; Assya Krasteva-Panova; Mariana Tzekova-Yaneva; Mariela Deliverska; Angelina Kisselova-Yaneva


    Background: A multitude of methacrylic monomers is used in dentistry. Glutaraldehyde (G) is used in dental practice and consumer products as a broad-spectrum antimicrobial agent. The purpose of our study is to evaluate the frequency and the risk of concomitant sensitization to some methacrylic monomers (methyl methacrylate (MMA), triethyleneglycol dimethacrylate (TEGDMA), ethyleneglycol dimethacrylate (EGDMA), 2,2-bis-[4-(2-hydroxy-3-methacrylo-xypropoxy)phenyl]-propane (Bis-GMA), 2-hydroxy-e...

  19. Tandem ring-opening/ring-closing metathesis polymerization: relationship between monomer structure and reactivity. (United States)

    Park, Hyeon; Lee, Ho-Keun; Choi, Tae-Lim


    Monomers containing either cycloalkenes with low ring strain or 1-alkynes are poor monomers for olefin metathesis polymerization. Ironically, keeping two inactive functional groups in proximity within one molecule can make it an excellent monomer for metathesis polymerization. Recently, we demonstrated that monomer 1 having cyclohexene and propargyl moieties underwent rapid tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization via relay-type mechanism. Furthermore, living polymerization was achieved when a third-generation Grubbs catalyst was used. Here, we present a full account on this tandem polymerization by investigating how various structural modifications of the monomers affected the reactivity of the tandem polymerization. We observed that changing the ring size of the cycloalkene moieties, the length of the alkynes, and linker units influenced not only the polymerization rates but also the reactivities of Diels-Alder reaction, which is a post-modification reaction of the resulting polymers. Also, the mechanism of tandem polymerization was studied by conducting end-group analysis using (1)H NMR analysis, thereby concluding that the polymerization occurred by the alkyne-first pathway. With this mechanistic conclusion, factors responsible for the dramatic structure-reactivity relationship were proposed. Lastly, tandem RO/RCM polymerization of monomers containing sterically challenging trisubstituted cycloalkenes was successfully carried out to give polymer repeat units having tetrasubstituted cycloalkenes.

  20. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin. (United States)

    Ohta, Yukari; Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji


    Enzymatic catalysis is an ecofriendly strategy for the production of high-value low-molecular-weight aromatic compounds from lignin. Although well-definable aromatic monomers have been obtained from synthetic lignin-model dimers, enzymatic-selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β-O-4-cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate-binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio-based industries, we chemically generate value-added GHP derivatives for bio-based polymers. Together with these chemical conversions for the valorization of lignin-derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in "white biotechnology" for sustainable biorefineries.

  1. Impregnation of mortars with monomers and their radiolytic polymerization. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gadalla, A.M.; El-Derini, M.E.


    Mortars were cured for a sufficient period to give sufficient strength and were then dried to remove the free water without dehydrating the compounds formed. Dried specimens were evacuated and impregnated with a mixture of styrene and acrylonitrile monomers which gives high mechanical properties after polymerization. Positive pressure was then applied, and polymerization was done radiolytically. The effect of degree and period of evacuation, the positive pressure and the irradiation dose on monomer loading, tensile and compressive strength were studied, and the optimum operating conditions were established. The achieved strength was correlated with the fraction of open pores impregnated. The composites investigated have the same volume fraction of mortar, and the polymer is added at the expense of the open porosity causing nearly an exponential increase in strength. Only 80% of the open pores were filled with polymers due to the difference in density between the polymer and the monomer, loss of monomer, and the presence of entrapped gas consisting of residual air and residual water vapor and monomer vapor, as well as due to the inability to fill all the micropores with monomer. A compressive strengh four times that of plain mortar and a tensile strength eight times that of plain mortar were achieved. 18 references, 12 figures.

  2. Residual monomer content determination in some acrylic denture base materials and possibilities of its reduction

    Directory of Open Access Journals (Sweden)

    Kostić Milena


    Full Text Available Background/Aim. Polymethyl methacrylate is used for producing a denture basis. It is a material made by the polymerization process of methyl methacrylate. Despite of the polymerization type, there is a certain amount of free methyl methacrylate (residual monomer incorporated in the denture, which can cause irritation of the oral mucosa. The aim of this study was to determine the amount of residual monomer in four different denture base acrylic resins by liquid chromatography and the possibility of its reduction. Methods. After the polymerization, a postpolymerization treatment was performed in three different ways: in boiling water for thirty minutes, with 500 W microwaves for three minutes and in steam bath at 22º C for one to thirty days. Results. The obtained results showed that the amount of residual monomer is significantly higher in cold polymerizing acrylates (9.1-11%. The amount of residual monomer after hot polymerization was in the tolerance range (0.59- 0.86%. Conclusion. The obtained results denote a low content of residual monomer in the samples which have undergone postpolymerization treatment. A lower percent of residual monomer is established in samples undergone a hot polymerization.

  3. Cationic ruthenium alkylidene catalysts bearing phosphine ligands. (United States)

    Endo, Koji; Grubbs, Robert H


    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  4. Cation locations and dislocations in zeolites (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  5. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.


    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  6. Kinetic measurement of esterase-mediated hydrolysis for methacrylate monomers used in dental composite biomaterials (United States)

    Russo, Karen Ann

    Methacrylate-based monomers are routinely used in medical biomaterials. Monomers undergo polymerization reactions to form the solid resin. These polymerization reactions can be incomplete thus making unpolymerized monomer available for possible biodistribution. Understanding the fate of these monomers is essential not only for their toxicological profile but also for development of future biomaterials. Aromatic methacrylate-based monomers included in this study were bisphenol A dimethacrylate and bisphenol A diglycidyl dimethathacrylate; aliphatic methacrylate monomers were 2-hydroxyethyl methacrylate and triethyleneglycol dimethacrylate. These compounds contain ester moieties thought to be susceptible to esterase-mediated hydrolysis. The hypothesis was that the ester bond of the methacrylate monomers can be hydrolyzed by esterases and these reactions would occur in a measurable, time-dependent manner confirmed by specific Michaelis-Menten kinetic relationships. Including aliphatic and aromatic methacrylate monomers in this work allowed for structure-based comparisons. In vitro enzymolysis of the test compounds by acetylcholinesterase and cholesterol esterase was performed in buffered solutions. The hydrolysis reactions were monitored by high performance liquid chromatography with ultraviolet detection. The disappearance of parent compound and appearance of hydrolysis products were quantitated. The aromatic methacrylate monomers, bisphenol A dimethacrylate and bisphenol A diglycidyl dimethacrylate, were resistant to acetylcholine esterase hydrolysis but were converted by cholesterol esterase. The putative xenoestrogen, bisphenol A, was identified as a hydrolysis product from bisphenol A dimethacrylate conversion. Cholesterol esterase induced hydrolysis of bisphenol A diglycidyl dimethacrylate yielded a Km value of 1584 muM and Vmax of 14 muM min-1. Triethyleneglycol was converted by both esterases with calculated Km values of 394 and 1311 muM for acetylcholine

  7. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi


    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  8. Radical cations of aromatic selenium compounds: role of Se···X nonbonding interactions. (United States)

    Singh, Beena G; Thomas, Elizabeth; Sawant, Shilpa N; Takahashi, Kohei; Dedachi, Kenchi; Iwaoka, Michio; Priyadarsini, K Indira


    Selenium centered radical cations in aliphatic selenium compounds are stabilized by formation of two-center-three electron (2c-3e) hemi bonds either with nearby heteroatoms forming monomer radicals or with selenium atoms of the parent molecules forming dimer radicals. Such radicals in aromatic selenium compounds would generally be stabilized as monomers by the delocalization of the spin density along the aromatic ring. To test the assumption if aromatic selenides having Se···X nonbonding interactions can show different types of radical cations, we have performed pulse radiolysis studies of three structurally related aromatic selenium compounds and the results have been substantiated with cyclic voltammetry and quantum chemical calculations. The three aromatic selenium compounds have functional groups like -CH2N(CH3)2 (1), -CH2OH (2), and -CH3 (3) at ortho position to the -SeCH3 moiety. The energy of Se···X nonbonding interactions (E(nb)) for these compounds is in the order 1 (Se···N) > 2 (Se···O) > 3 (Se···H). Radical cations, 1(•+), 2(•+) and 3(•+) were produced by the one-electron oxidation of 1, 2 and 3 by radiolytically generated (•)OH and Br2(•-) radicals. Results on transient spectra, lifetime, and secondary reactions of 1(•+), 2(•+), and 3(•+) indicated that 1(•+) shows a significantly different absorption spectrum, longer lifetime, and less oxidizing power compared to those of 2(•+) or 3(•+). Quantum chemical calculations suggested that 1(•+) is stabilized by the formation of a 2c-3e bond between Se and N atoms, whereas 2(•+) and 3(•+) acquire stability through the delocalization of the spin density on the aromatic ring. These results provide evidence for the first time that stronger nonbonding interactions between Se···N in the ground state, facilitate the formation of stabilized radical cations, which can significantly influence the redox chemistry and the biological activity of aromatic selenium compounds.

  9. Gamma-rays initiated cationic polymerization of epoxy resins and their carbon nanotubes composites (United States)

    Przybytniak, Grażyna; Nowicki, Andrzej; Mirkowski, Krzysztof; Stobiński, Leszek


    Epoxy resins based on diglycidyl ether of bisphenol A (DGEBA) in the presence cationic initiator in the form of iodonium salt were exposed to gamma-rays in order to initiate curing process. The influence of the initiator concentration, dose rate, chemical structure of monomers and the presence of carbon nanotubes were determined on the basis of the recorded on-line thermal effects. The induction time of radiation curing increased with lowering concentration of the initiator and oxirane groups as well as with decreasing dose rates. As was confirmed by SEM images, carbon nanotubes were uniformly distributed over the matrix and closely surrounded by the macromolecules. Such a structure resulted from adsorption of the initiator on the filler surface what allowed to begin polymerization around nanoparticles and facilitated their incorporation into the matrix. As a consequence, the mechanical properties of the nanocomposites were improved.


    Institute of Scientific and Technical Information of China (English)

    Jing Li; Fei-peng Wu; Er-jian Wang


    A novel associating polymer P(AEBA) was synthesized by radical polymerization of the cationic amphiphilic monomer, 4-(2-(acryloyloxy)ethoxy)benzyl tri-ethyl ammonium bromide (AEBA), in aqueous solutions. P(AEBA) displays a strong tendency for self-association in aqueous solutions and is sensitive to the external stimulation such as added salt. The associative properties and morphologies of P(AEBA) were studied by fluorescnece probe technique, viscometry and TEM. In dilute salt-free solutions P(AEBA) behaves as polyelectrolyte, while its behavior is similar to that of the polysoap as salt added. Accompanying increasing polymer concentration, polymer aggregation conformation changes from an extended necklace-like structure to a compact globular aggregate corresponding to the viscosity reduction.

  11. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects (United States)

    Bernini, S.; Leporini, D.


    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t -1/2, becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours.

  12. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar


    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  13. Preparation of Cationic Chitosan-Polyacrylamide Flocculant and Its Properties in Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    WANG Ben; ZHANG Yulian; MIAO Chunbao


    Chitosan derived from crab shells, was used to prepare the graft polymer in aqueous solution with acrylamide (AM) and methacrylatoethyl trimethyl ammonium chloride (DMC) as raw materials and eerie ammonium nitrate (CAN) as initiator. The flocculation ability of the resulting polymer (PCAD) was studied in waste water treatment experiments. Its properties were determined on the basis of the transmittance of waste water after flocculation. The effects of chitosan and DMC content on PCAD's flocculation ability were studied. Flocculation experiments were also undertaken under various pH conditions. According to the experimental data, the flocculation ability could be improved when chitosan content decreased in the raw material, but the monomer conversion would decrease obviously. When the chitosan's content was more than 65%, AM and DMC groups were less on each chitosan molecule. So PCAD's flocculation ability was poor. Similarly, high content of DMC would result in low monomer conversion and high flocculation ability. PCAD molecules with more DMC group had more positive charges. It was favorable to flocculation. However, monomer conversion would decrease with the increase of DMC content. The suitable conditions were that chitosan and DMC contents were 65% and 15-20%, respectively. The experiment data showed that PCAD had good flocculation ability under weak acidic condition. Its ability would be weakened by strong acidic or alkaline condition. The flocculation efficiency was the best at pH of 5.5 when PCAD's dosage was 8mg·L-1. Compared with cationic polymer (the copolymer of AM and DMC, PAD), PCAD showed better flocculation ability under acid and neutral conditions, but worse ability under alkaline condition.

  14. Preparation of cationic chitosan-polyacrylamide flocculant and its properties in wastewater treatment (United States)

    Wang, Ben; Zhang, Yulian; Miao, Chunbao


    Chitosan derived from crab shells, was used to prepare the graft polymer in aqueous solution with acrylamide (AM) and methacrylatoethyl trimethyl ammonium chloride (DMC) as raw materials and ceric ammonium nitrate (CAN) as initiator. The flocculation ability of the resulting polymer (PCAD) was studied in waste water treatment experiments. Its properties were determined on the basis of the transmittance of waste water after flocculation. The effects of chitosan and DMC content on PCAD's flocculation ability were studied. Flocculation experiments were also undertaken under various pH conditions. According to the experimental data, the flocculation ability could be improved when chitosan content decreased in the raw material, but the monomer conversion would decrease obviously. When the chitosan's content was more than 65%, AM and DMC groups were less on each chitosan molecule. So PCAD's flocculation ability was poor. Similarly, high content of DMC would result in low monomer conversion and high flocculation ability. PCAD molecules with more DMC group had more positive charges. It was favorable to flocculation. However, monomer conversion would decrease with the increase of DMC content. The suitable conditions were that chitosan and DMC contents were 65% and 15-20%, respectively. The experiment data showed that PCAD had good flocculation ability under weak acidic condition. Its ability would be weakened by strong acidic or alkaline condition. The flocculation efficiency was the best at pH of 5.5 when PCAD's dosage was 8mg·L-1. Compared with cationic polymer (the copolymer of AM and DMC, PAD), PCAD showed better flocculation ability under acid and neutral conditions, but worse ability under alkaline condition.

  15. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    Energy Technology Data Exchange (ETDEWEB)

    J Shearer; P Callan; T Tran; V Szalai


    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  16. Cationic Ring Opening polymerization of ε-caprolactam by a Montmorillonite Clay Catalyst

    Directory of Open Access Journals (Sweden)

    Djamal Eddine Kherroub


    Full Text Available The ring opening bulk polymerization of ε-caprolactam catalyzed by Maghnite-H+ was reported. Maghnite-H+ is a montmorillonite silicate sheet clay was prepared through a straight forward proton exchange process. The effect of the amount of catalyst, and temperature was studied. Increasing Maghnite-H+ proportion and temperature produced the increase in ε-caprolactam conversion. The kinetics indicated that the polymerization rate is first order with respect to monomer concentration. Mechanism studies showed that monomer inserted into the growing chains with the acyl–oxygen bond scission rather than the break of alkyl–oxygen bond. © 2014 BCREC UNDIP. All rights reservedSubmitted: 3rd October 2013; Revised: 28th February 2014; Accepted: 1st March 2014[How to Cite: Kherroub, D.E., Belbachir, M., Lamouri, S. (2014. Cationic Ring Opening Polymeriza-tion of ε-caprolactam by a Montmorillonite Clay Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 74-79. (doi:10.9767/bcrec.9.1.5555.74-80][Permalink/DOI:

  17. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    Energy Technology Data Exchange (ETDEWEB)

    Melinte, Violeta [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Buruiana, Tinca, E-mail: [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, Iasi (Romania); Matiut, Simona [Praxis Medical Investigations, 33 Independence, 700102 Iasi (Romania); Silion, Mihaela; Buruiana, Emil C. [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania)


    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s{sup −1}) were lower than those determined in the monomer combinations (0.116–0.158 s{sup −1}) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm{sup 3}) and water solubility (3.51–13.38 μg/mm{sup 3}), and the contact angle was dependent on the presence of CO-DAP (θ{sub F1}: 66.67°), TMP-DAP (θ{sub F2}: 55.05°) or AMP-P (θ{sub F3}: 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θ{sub F4}: 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of

  18. Simulations of polymer brushes with charged end monomers under external electric fields (United States)

    Ding, Huanda; Duan, Chao; Tong, Chaohui


    Using Langevin dynamics simulations, the response of neutral polymer brushes with charged terminal monomers to external electric fields has been investigated. The external electric field is equivalent to the field generated by the opposite surface charges on two parallel electrodes. The effects of charge valence of terminal monomers on the structure of double layers and overall charge balance near the two electrodes were examined. Using the charge density distributions obtained from simulations, the total electric field normal to the electrodes was calculated by numerically solving the Poisson equation. Under external electric fields, the total electric field across the two electrodes is highly non-uniform and in certain regions within the brush, the total electric field nearly vanishes. The probability distribution of electric force acting on one charged terminal monomer was obtained from simulations and how it affects the probability density distribution of terminal monomers was analyzed. The response of polymer brushes with charged terminal monomers to a strongly stretching external electric field was compared with that of uniformly charged polymer brushes.

  19. Epigallocatechin-3-Gallate Reduces Cytotoxic Effects Caused by Dental Monomers: A Hypothesis (United States)

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Chen, Jihua


    Resin monomers from dental composite materials leached due to incomplete polymerization or biodegradation may cause contact allergies and damage dental pulp. The cytotoxicity of dental resin monomers is due to a disturbance of intracellular redox equilibrium, characterized by an overproduction of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH). Oxidative stress caused by dental resin monomers leads to the disturbance of vital cell functions and induction of cell apoptosis in affected cells. The nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway plays a key role in the cellular defense system against oxidative and electrophilic stress. Epigallocatechin-3-gallate (EGCG) can activate the Nrf2 pathway and induce expression of a multitude of antioxidants and phase II enzymes that can restore redox homeostasis. Therefore, here, we tested the hypothesis that EGCG-mediated protection against resin monomer cytotoxicity is mediated by activation of the Nrf2 pathway. This study will help to elucidate the mechanism of resin monomer cytotoxicity and provide information that will be helpful in improving the biocompatibility of dental resin materials. PMID:26489899

  20. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. (United States)

    Ortengren, U; Wellendorf, H; Karlsson, S; Ruyter, I E


    Water sorption and solubility of six proprietary composite resin materials were assessed, and monomers eluted from the organic matrix during water storage identified. Water sorption and solubility tests were carried out with the following storage times: 4 h, 24 h and 7, 60 and 180 days. After storage, water sorption and solubility were determined. Eluted monomers were analysed by high performance liquid chromatography (HPLC). Correlation between the retention time of the registered peak and the reference peak was observed, and UV-spectra confirmed the identity. The results showed an increase in water sorption until equilibrium for all materials with one exception. The solubility behaviour of the composite resin materials tested revealed variations, with both mass decrease and increase. The resin composition influences the water sorption and solubility behaviour of composite resin materials. The HPLC analysis of eluted components revealed that triethyleneglycol dimethacrylate (TEGDMA) was the main monomer released. Maximal monomer concentration in the eluate was observed after 7 days. During the test period, quantifiable quantities of urethanedimethacrylate (UEDMA) monomer were observed, whereas 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (Bis-GMA) was only found in detectable quantities. No detectable quantities of bisphenol-A were observed during the test period.

  1. Limit theorems in the imitative monomer-dimer mean-field model via Stein's method (United States)

    Chen, Wei-Kuo


    We consider the imitative monomer-dimer model on the complete graph introduced in the work of Alberici et al. [J. Math. Phys. 55, 063301-1-063301-27 (2014)]. It was shown that this model is described by the monomer density and has a phase transition along certain coexistence curve, where the monomer and dimer phases coexist. More recently, it was understood [D. Alberici et al., Commun. Math. Phys. (published online, 2016)] that the monomer density exhibits the central limit theorem away from the coexistence curve and enjoys a non-normal limit theorem at criticality with normalized exponent 3/4. By reverting the model to a weighted Curie-Weiss model with hard core interaction, we establish the complete description of the fluctuation properties of the monomer density on the full parameter space via Stein's method of exchangeable pairs. Our approach recovers what were established in the work of Alberici et al. [Commun. Math. Phys. (published online, 2016)] and furthermore allows to obtain the conditional central limit theorems along the coexistence curve. In all these results, the Berry-Esseen inequalities for the Kolmogorov-Smirnov distance are given.

  2. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. (United States)

    Guglielmotto, Michela; Monteleone, Debora; Piras, Antonio; Valsecchi, Valeria; Tropiano, Marta; Ariano, Stefania; Fornaro, Michele; Vercelli, Alessandro; Puyal, Julien; Arancio, Ottavio; Tabaton, Massimo; Tamagno, Elena


    The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.

  3. Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism

    Directory of Open Access Journals (Sweden)

    Devin G. Barrett


    Full Text Available Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, α-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.

  4. Synthesis of a resin monomer-soluble polyrotaxane crosslinker containing cleavable end groups. (United States)

    Seo, Ji-Hun; Nakagawa, Shino; Hirata, Koichiro; Yui, Nobuhiko


    A resin monomer-soluble polyrotaxane (PRX) crosslinker with cleavable end groups was synthesized to develop degradable photosetting composite resins. The PRX containing 50 α-cyclodextrins (α-CDs) with disulfide end groups was initially modified with n-butylamine to obtain a resin monomer-soluble PRX. The PRX containing 13 n-butyl groups per α-CD molecule was completely soluble in conventional resin monomers such as 2-hydroxyethyl methacrylate (HEMA) and urethane dimethacrylate (UDMA). The synthesized n-butyl-containing PRX was further modified with 2-aminoethyl methacrylate to provide crosslinkable acrylic groups onto PRX. The prepared resin monomer-soluble PRX crosslinker was successfully polymerized with a mixture of HEMA and UDMA to provide photosetting plastic. It was confirmed that the Vickers hardness of the prepared plastic was greatly decreased after treatment with dithiothreitol. This indicates that the resin monomer-soluble PRX crosslinker can be applied to design degradable photosetting plastics potentially used in the industrial or biomedical field.

  5. Synthesis of a resin monomer-soluble polyrotaxane crosslinker containing cleavable end groups

    Directory of Open Access Journals (Sweden)

    Ji-Hun Seo


    Full Text Available A resin monomer-soluble polyrotaxane (PRX crosslinker with cleavable end groups was synthesized to develop degradable photosetting composite resins. The PRX containing 50 α-cyclodextrins (α-CDs with disulfide end groups was initially modified with n-butylamine to obtain a resin monomer-soluble PRX. The PRX containing 13 n-butyl groups per α-CD molecule was completely soluble in conventional resin monomers such as 2-hydroxyethyl methacrylate (HEMA and urethane dimethacrylate (UDMA. The synthesized n-butyl-containing PRX was further modified with 2-aminoethyl methacrylate to provide crosslinkable acrylic groups onto PRX. The prepared resin monomer-soluble PRX crosslinker was successfully polymerized with a mixture of HEMA and UDMA to provide photosetting plastic. It was confirmed that the Vickers hardness of the prepared plastic was greatly decreased after treatment with dithiothreitol. This indicates that the resin monomer-soluble PRX crosslinker can be applied to design degradable photosetting plastics potentially used in the industrial or biomedical field.

  6. Close-packed polymer crystals from two-monomer-connected precursors (United States)

    Lee, Hong-Joon; Jo, Yong-Ryun; Kumar, Santosh; Yoo, Seung Jo; Kim, Jin-Gyu; Kim, Youn-Joong; Kim, Bong-Joong; Lee, Jae-Suk


    The design of crystalline polymers is intellectually stimulating and synthetically challenging, especially when the polymerization of any monomer occurs in a linear dimension. Such linear growth often leads to entropically driven chain entanglements and thus is detrimental to attempts to realize the full potential of conjugated molecular structures. Here we report the polymerization of two-monomer-connected precursors (TMCPs) in which two pyrrole units are linked through a connector, yielding highly crystalline polymers. The simultaneous growth of the TMCP results in a close-packed crystal in polypyrrole (PPy) at the molecular scale with either a hexagonal close-packed or face-centred cubic structure, as confirmed by high-voltage electron microscopy, and the structure that formed could be controlled by simply changing the connector. The electrical conductivity of the TMCP-based PPy is almost 35 times that of single-monomer-based PPy, demonstrating its promise for application in diverse fields.

  7. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena


    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.

  8. Evaluation of the level of residual monomer in acrylic denture base materials having different polymerization properties. (United States)

    Kalipçilar, B; Karaağaçlioğlu, L; Hasanreisoğlu, U


    The aim of this study was to evaluate the level of residual monomer in acrylic denture base materials having different polymerization properties. The investigation included a conventional-type acrylic cured under heat and pressure, as well as a pour-type resin polymerized by an injection-moulding technique at room temperature and under pressure. It was found that the residual monomer content ranged from 0.22-0.54% in pour-type resin, and from 0.23-0.52% in routinely used resins when the specimens were analysed by high performance liquid chromatography. These findings revealed that there were no significant differences between the two types of acrylic in terms of their residual monomer content.

  9. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications (United States)

    Abdel-Fattah, A. A.; Abdel-Rehim, F.; Soliman, Y. S.


    The dosimetric characteristics of γ-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon γ-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2 σ).

  10. Anchoring Strength of Thin Aligned-Polymer Films Formed by Liquid Crystalline Monomer (United States)

    Murashige, Takeshi; Fujikake, Hideo; Ikehata, Seiichiro; Sato, Fumio


    We have evaluated the polar anchoring strength of a thin molecule-aligned polymer film formed by a liquid crystalline monomer. The polymer film was obtained by photopolymerization of the monomer oriented by a rubbed polyimide alignment layer in a chamber filled with N2 gas. We fabricated a nematic liquid crystal cell using the thin aligned-polymer films as alignment layers, and then evaluated the anchoring strength of the polymer by measuring the optical retardation curve of the cell driven by voltages. The experimental result showed that the anchoring strength was one order of magnitude lower than that of a conventional rubbed polyimide alignment layer, and decreased with increasing the cure temperature of the monomer film.

  11. Theoretical Researches on the Recognizing Characteristics of Atrazine Imprinted Polymers with Different Functional Monomers

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-Bo; SUN Jia-Ni; TANG Shan-Shan; CHEN Kai-Yin; JIN Rui-Fa


    As a widely used herbicide, the threat of atrazine to both environment and health of people has become the focus. Therefore, the research and analysis of atrazine are getting more important. In this work, the MIT was used to detect atrazine theoretically. Atrazine was taken as a template molecule. MAA, MMA and TFMAA were taken as the functional monomers, respectively. The geometry optimization, the nature of hydrogen bonds, the NBO charge, and the binding energies of the imprinted molecule with the functional monomers were investigated at the B3LYP/6-31g(d,p) level. Results indicated that atrazine had the strongest interaction with TFMAA. When the ratio of atrazine and TFMAA was 1:6, the amount of H-bond formed from atrazine and TFMAA was the largest. Moreover, TFMAA owned the largest binding energy with atrazine while MMA owned the smallest. The study is helpful to interpret experiment phenomena of molecular imprinting and select better functional monomers.

  12. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid. (United States)

    Philip, Joseph Y N; Buchweishaija, Joseph; Mkayula, Lupituko L; Ye, Lei


    The objective of this work was to use monomers from cashew ( Anacardium occidentale L.) nut shells to develop molecularly imprinted polymers. Cashew nut shell liquid (CNSL) is a cheap and renewable agro byproduct consisting of versatile monomers. Solvent-extracted CNSL contains over 80% anacardic acid (AnAc) with more than 90% degree of unsaturation in its C 15 side chain. From AnAc monomer, anacardanyl acrylate (AnAcr) and anacardanyl methacrylate (AnMcr) monomers were synthesized and their chemical structures were characterized by Fourier transform IR and NMR. Different imprinted bulk polymers based on AnAc, AnAcr, and AnMcr functional monomers have been prepared. In the present study, each functional monomer was separately copolymerized in toluene with ethylene glycol dimethacrylate and divinylbenzene as cross-linkers, using racemic propranolol as a model template. While the AnAc based polymer revealed a meager rebinding ability, the imprinted polymers made from AnAcr and AnMcr displayed highly specific propranolol binding. At a polymer concentration of 2 mg/mL, AnAcr and AnMcr based imprinted polymers were able to bind over 50% of trace propranolol (initial concentration 1.2 nM). Under the same condition propranolol uptake by the two nonimprinted control polymers was less than 20%. Chiral recognition properties of these polymers were further confirmed using tritium-labeled (S)-propranolol as a tracer in displacement experiments, suggesting that the apparent affinity of the imprinted chiral sites for the correct enantiomer is at least 10 times that of the mismatched (R)-propranolol. Moreover, cross reactivity studies of these polymers showed that the (S)-imprinted sites have higher cross-reactivity toward (R, S)-metoprolol than (R)-propranolol and (R)-timolol.

  13. The influence of water on visible-light initiated free-radical/cationic ring-opening hybrid polymerization of methacrylate/epoxy: Polymerization kinetics, crosslinking structure and dynamic mechanical properties



    The objective of this study was to determine the influence of water on the polymerization kinetics, crosslinking structure and dynamic mechanical properties of methacrylate/epoxy polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid polymerization. Water-containing formulations were prepared by adding ~4–7 wt% D2O depending on the water miscibility of monomer resins. The water-containing adhesives were compared with the adhesives photo-cured in the absence of wat...

  14. Synthesis of Cationic PEM Emulsion and Application in Waste Water Treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; LI Min; FANG Yi; SONG Hong; LUO Juan; XU Cheng-yin; WAN Chang-xiu


    Cationic polymer as a kind of flocculant is widely applied in purification treatment of waste water. Because it has positive charge group, it is able to connect strongly the suspended matters, short cellulose and other microparticles. The research on synthesis of cationic polymer and application in treatment of waste water is very universal abroad. But domestic research on those is not general. The technology of synthesis of PEM is simple, and the production cost is low. It is easy to apply in treatment of waste water.Synthesis of PEM Emulsion FlocculantSome distilled water, PVA(poly(vinyl alcohol)), EA(ethyl acrylate), and K2S2O8(potassium persulfate) were put into reaction vessel. Kept stirring up under nitrogen. When heated the solution to 40℃, dropped the water solution of MTA[(2-methacryloxylethyl)trimethyl ammonium].Maintained the temperature at 70℃, reacted about 7-8 hours. Then got the PEM emulsion. Changed the ratio of EA and MTA. Obtained a series of PEM emulsions.Stability and Convertibility of PEM EmulsionThe test results showed that when the EA/MTA was 85/15, the PEM emulsion was most stable.When the total monomer quantity was 35%, the convertibility of PEM emulsion was the highest,i.e.98.6%.The MTA Copolymerization Ratio and Morphology of PEM EmulsionWhen the monomers EA/MTA=85/15 and total monomer quantity was 35%, the MTA copolymerization ratio of PEM emulsion was 95.15%(the highest), and the PEM emulsion was some microspheres with 100-180nm of diameter.The Test Results of PEM Emulsion in Treatment of Waste Water The PEM emulsion flocculant was applied in treatment of waste water of paper mill, and measured the precipitation time(t) and transmittancy(T). The test results were showed in table 1. The optimum value of PEM which was able to make the waste water of paper mill into clear water was 0.008%.

  15. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol (United States)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.


    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  16. Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

    DEFF Research Database (Denmark)

    Li, Wei; Guo, Xiaoxia; Aili, David;


    . A series of sulfonated copolyimides (SPI) are prepared via random copolymerizatio of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis...... pendant groups significantly improves the hydrolytic stability as well as the radical oxidative stability of the membranes. In addition, the SPI membranes exhibit high proton conductivities of 0.1 S cm(-1) in the fully hydrated state at 60 degrees C and high elastic modulus and tensile strength...

  17. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  18. Cation Effect on Copper Chemical Mechanical Polishing (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  19. One-pot synthesis of cyclic triamides with a triangular cavity from trans-stilbene and diphenylacetylene monomers. (United States)

    Yokoyama, Akihiro; Maruyama, Takurou; Tagami, Kei; Masu, Hyuma; Katagiri, Kosuke; Azumaya, Isao; Yokozawa, Tsutomu


    Base-promoted self-condensation reactions of trans-stilbene and diphenylacetylene monomers bearing 4-alkylamino and 4'-methoxycarbonyl groups were investigated. Reactions of N-propyl monomers under pseudohigh-dilution conditions (a THF solution of monomer was added dropwise to a THF solution of LiHMDS) afforded the corresponding cyclic triamides in good yields. X-ray crystallographic analysis showed that these cyclic triamides possessed an almost equilateral triangle structure with a cavity surrounded by tilted benzene rings.

  20. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery. (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain


    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  1. Surface initiated polymerization of a cationic monomer on inner surfaces of silica capillaries: analyte separation by capillary electrophoresis versus polyelectrolyte behavior. (United States)

    Witos, Joanna; Karesoja, Mikko; Karjalainen, Erno; Tenhu, Heikki; Riekkola, Marja-Liisa


    [2-(Methacryloyl)oxyethyl]trimethylammonium chloride was successfully polymerized by surface-initiated atom transfer radical polymerization method on the inner surface of fused-silica capillaries resulting in a covalently bound poly([2-(methacryloyl)oxyethyl]trimethylammonium chloride) coating. The coated capillaries provided in capillary electrophoresis an excellent run-to-run repeatability, capillary-to-capillary and day-to-day reproducibility. The capillaries worked reliably over 1 month with EOF repeatability below 0.5%. The positively charged coated capillaries were successfully applied to the capillary electrophoretic separation of three standard proteins and five β-blockers with the separation efficiencies ranging from 132,000 to 303,000 plates/m, and from 82,000 to 189,000 plates/m, respectively. In addition, challenging high- and low-density lipoprotein particles could be separated. The hydrodynamic sizes of free polymer chains in buffers used in the capillary electrophoretic experiments were measured for the characterization of the coatings.

  2. Synthesis and Physicochemical Properties of Cationic Microgels Based on Poly(N-isopropylmethacrylamide). (United States)

    Hu, Xiaobo; Tong, Zhen; Lyon, L Andrew


    Surfactant-free, radical precipitation co-polymerization of N-isopropylmethacrylamide (NIPMAm) and the cationic co-monomer N-(3-aminopropyl) methacrylamide hydrochloride (APMH) was carried out to prepare microgels functionalized with primary amines. The morphology and hydrodynamic diameter of the microgels were characterized by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS), with the effect of NaCl concentration and initiator type on the microgel size and yield being investigated. When a V50-initiated reaction was carried out in pure water, relatively small microgels (~160 nm diameter) were obtained in low yield (~20%). However, both the yield and size increased if the reaction was carried out in saline or by using APS as initiator instead of V50. Stable amine-laden microgels in the range from 160 nm to 950 nm in diameter with narrow size distributions were thus produced using reaction media with controlled salinity. Microgel swelling and electrophoretic mobility values as a function of pH, ionic strength and temperature were also studied, illustrating the presence of cationic sidechains and their influence on microgel properties. Finally, the availability of the primary amine groups for post-polymerization modification was confirmed via modification with fluorescein-NHS.

  3. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation. (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo


    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  4. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation.

    Directory of Open Access Journals (Sweden)

    Rahmouni Abdelkader


    Full Text Available In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite and solution of  H2SO4 (0.25 M, with the system under microwave irradiation (160 ºC for 4 min. Major factors affecting the polymerization reaction were studied with a view to discover appropriate conditions for preparation of the composite. The cationic polyacrylamide obtained is the subject of future studies of modification and transformation. The resulting polymer has been characterized by a variety of characterization techniques, such as: Fourier Transform Infrared Spectra and 1H NMR spectra.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th June 2015; Revised: 2nd September 2015; Accepted: 5th January 2016 How to Cite: Abdelkader, R., Mohammed, B. (2016. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically  Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 170-175 (doi:10.9767/bcrec.11.2.543.170-175 Permalink/DOI:

  5. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  6. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.


    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  7. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;


    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  8. Anionic/cationic complexes in hair care. (United States)

    O'Lenick, Tony


    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  9. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.


    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  10. A Mechanistic and Kinetic Study of the Photoinitiated Cationic Double Ring-opening Polymerization of 2-Methylene-7-phenyl-1,4,6,9-tetraoxa-spiro[4.4]nonane. (United States)

    Ge, Junhao; Trujillo-Lemon, Marianela; Stansbury, Jeffrey W


    Efficient photopolymerization of a potentially expandable monomer is of practical importance for a variety of polymeric applications demanding dimensional stability, particularly if the polymerization process is well controlled based on a detailed investigation of the reaction. In the current study, photoinitiated polymerization kinetics of 2-methylene-7-phenyl-1,4,6,9-tetraoxaspiro[4.4]nonane (MPN) either with cationic initiation alone or with combined cationic/free radical initiation was examined using real-time FT-IR. A proposed mechanism based on the simplified propagation steps of the cationic double ring-opening polymerization of MPN was confirmed by both computer modeling and NMR spectroscopic analysis of resulting polymers as well as the experimentally observed apparent activation energy. According to this mechanism, alpha-position attack is the predominant mode for the second ring opening during cationic polymerization of MPN. Further, cationic photopolymerization was performed along with a free radical co-initiator or with exposure to moisture to get an improved understanding of the complex cationic double ring-opening polymerization. As a result, free radical-promoted cationic polymerization helps increase the polymerization rate of MPN while even a trace amount of moisture was found to significantly impact both the reaction kinetics and the polymerization course.

  11. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing. (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana


    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  12. Photoligation of self-assembled DNA constructs containing anthracene-functionalized 2'-amino-LNA monomers

    DEFF Research Database (Denmark)

    Pasternak, Karol; Pasternak, Anna; Gupta, Pankaj


    Efficient synthesis of a novel anthracene-functionalized 2'-amino-LNA phosphoramidite derivative is described together with its incorporation into oligodeoxynucleotides. Two DNA strands with the novel 2'-N-anthracenylmethyl-2'-amino-LNA monomers can be effectively cross-linked by photoligation...

  13. [Discussing of influence mechanism of Chinese herbal monomer on physical stability of cream]. (United States)

    Yin, Hui-Fu; Nie, He-Yun; Wang, Sen; Zhu, Wei-Feng; Li, Rong-Miao


    This study left flavonoids and alkaloids Chinese herbal monomer with common parent nucleus as cream base carriages drug respectively, cream base were prepared with stable span 60-tween 80 emulsification system. The near-infrared stability analysis technology was performed to quantitatively characterize the physical stability of cream. Base on the theory of gel network structure, theory of emulsification, theory of solubility parameter and theory of double layer, the influence mechanism of Chinese herbal monomer on physical stability of cream was discussed. The results showed that tetrahydropalmatine, matrine and naringenin had similar solubility parameter value with cream base material, creams prepared with those Chinese herbal monomer have higher Zeta potential value and stronger physical stability, and that those creams had similar microstructure information with cream base. However, a larger solubility parameter difference exists between baicalin, baicalein, berberine, palmatine and cream base material. Creams prepared with those Chinese herbal monomers had lower Zeta potential value and poorer physical stability, and that those creams had great different microstructure information with cream base.

  14. The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    CERN Document Server

    Vladimirov, Igor G


    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random fie...

  15. Determination of Residual Monomers in Polycarboxylate Superplasticizer Using High Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    GUO Liping; WANG Shaofeng; ZHANG Anfu; LEI Jiaheng; DU Xiaodi


    A procedure was developed for the determination of residual monomers in polycarboxylate superplasticizer (PCs) by reversed-phase high performance liquid chromatography (RP-HPLC). Four kinds of residual monomers were well separated and determined on a SinoChrom ODS-BP (C18) column with mobile phases composed of acetonitrile and phosphate buffer solution. The monomers were detected by UV detector at 205 nm and quantitatively analyzed with an external standard method. For those residual monomers, the linear response ranged from 4.0× 10-6 mol·L-1 to 2.0× 10-3 mol·L-1. The determination limit of acrylic acid, sodium methylallyl sulfonate and 2-Acrylamido-2-methylpropane sulfonic acid was 0.02× 10-5 mol·L-1, while that of methoxy-polyethylene glycol monoacrylate was 0.1 × 10-5 mol· L-1. The relative standard deviation (RSD) of high concentration samples was less than 1%, while that of the low concentration samples was between 1%-4%. The standard (additional) recovery ratio was 97.4% -104.2%.

  16. Determination of acrylamide monomer in polyacrylamide degradation studies by high-performance liquid chromatography. (United States)

    Ver Vers, L M


    A high-performance liquid chromatography method using C18 and ion-exchange columns in series is developed for the determination of acrylamide and acrylic acid monomers in polymeric samples. The C18 column acts as a guard column, trapping surfactants and impurities and retaining the nonionic species. The ion-exchange column then separates the monomers according to their respective ionic strengths. This method has been proven in the laboratory to work successfully for all types of acrylamide/acrylic acid polymers and matrices. Detection limits for both monomers can be achieved in the parts-per-billion range. The method is used to study the possible degradation of polyacrylamide to acrylamide monomer in the presence of glyphosate (a herbicide) and sunlight. Polyacrylamide is used as a spray drift reduction aid in combination with glyphosate. In normal applications, the polymer and herbicide are in contact with each other in the presence of sunlight. The results show that the polymer does not degrade to acrylamide in the presence of glyphosate or sunlight or any combination of the two. It is also observed that glyphosate influences the solubility of polyacrylamide, and care must be used when combining the two.

  17. Development of ionic gels using thiol-based monomers in ionic liquid (United States)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu


    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.


    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui


    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.


    To elucidate the binding mechanism of the herbicide bentazon (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one 2,2-dioxide) with humic monomers in the presence of an oxidative enzyme, the reaction of bentazon with catechol, caffeic acid, protocatechuic...

  20. Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly. (United States)

    Douliez, Jean-Paul; Barrault, Joël; Jerome, François; Heredia, Antonio; Navailles, Laurence; Nallet, Frédéric


    Glycerol derivatives of cutin and suberin monomers were synthesized by acid catalysis. Their dispersion in an aqueous solution was examined by phase contrast microscopy, neutron scattering, and solid state NMR. It is shown that the phase behavior strongly depends on the nature of the derivatives forming either lumps of aggregated membranes or well dispersed membranes.

  1. Dendritic Cells Stimulated by Cationic Liposomes. (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola


    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  2. Synthesis and characterization of nitroaromatic peptoids: fine tuning peptoid secondary structure through monomer position and functionality. (United States)

    Fowler, Sarah A; Luechapanichkul, Rinrada; Blackwell, Helen E


    N-substituted glycine oligomers, or peptoids, have emerged as an important class of foldamers for the study of biomolecular interactions and for potential use as therapeutic agents. However, the design of peptoids with well-defined conformations a priori remains a formidable challenge. New approaches are required to address this problem, and the systematic study of the role of individual monomer units in the global peptoid folding process represents one strategy. Here, we report our efforts toward this approach through the design, synthesis, and characterization of peptoids containing nitroaromatic monomer units. This work required the synthesis of a new chiral amine building block, (S)-1-(2-nitrophenyl)ethanamine (s2ne), which could be readily installed into peptoids using standard solid-phase peptoid synthesis techniques. We designed a series of peptoid nonamers that allowed us to probe the effects of this relatively electron-deficient and sterically encumbered alpha-chiral side chain on peptoid structure, namely, the peptoid threaded loop and helix. Circular dichroism spectroscopy of the peptoids revealed that the nitroaromatic monomer has a significant effect on peptoid secondary structure. Specifically, the threaded loop structure was disrupted in a nonamer containing alternating N-(S)-1-phenylethylglycine (Nspe) and Ns2ne monomers, and the major conformation was helical instead. Indeed, placement of a single Ns2ne at the N-terminal position of (Nspe)(9) resulted in a destabilized form of the threaded loop structure relative to the homononamer (Nspe)(9). Conversely, we observed that incorporation of N-(S)-1-(4-nitrophenyl)ethylglycine (Nsnp, a p-nitro monomer) at the N-terminal position stabilized the threaded loop structure relative to (Nspe)(9). Additional experiments revealed that nitroaromatic side chains can influence peptoid nonamer folding by modulating the strength of key intramolecular hydrogen bonds in the peptoid threaded loop structure. Steric

  3. Efficiency of light-emitting diode and halogen units in reducing residual monomers (United States)

    de Assis Ribeiro Carvalho, Felipe; Almeida, Rhita C.; Almeida, Marco Antonio; Cevidanes, Lucia H. S.; Leite, Marcia C. Amorim M.


    Introduction In this in-vitro study, we aimed to compare the residual monomers in composites beneath brackets bonded to enamel, using a light-emitting diode (LED) or a halogen unit, and to compare the residual monomers in the central to the peripheral areas of the composite. Methods Twenty bovine teeth preserved in 0.1% thymol were used in this study. Ten teeth were used to standardize the thickness of the composite film, since different thicknesses would cause different absorbance of light. Brackets were bonded to 10 bovine incisors, with the halogen light (n = 5) and the LED (n = 5). The brackets were debonded, and the remaining composite on the enamel surface was sectioned in 2 regions: peripheral (0.8 mm) and central, resulting in 2 subgroups per group: central halogen (n = 5), peripheral halogen (n = 5), central LED (n = 5), and peripheral LED (n = 5). The spectrometric analysis in the infrared region was used to measure the free monomers with the attenuated total reflectance method. Results Normal distribution was tested by using the Kolmogorov-Smirnov test. Data were compared by 2-way analysis of variance (ANOVA) at P <0.05. The LED group showed fewer residual monomers than did the halogen group (P = 0.014). No differences were found among the regions (P = 0.354), and there were no interactions between light type and region (P = 0.368). Conclusions LED leaves less residual monomer than does the halogen light, even with half of the irradiation time; there were no differences between the central and peripheral regions, and no interaction between light type and region. PMID:21055603

  4. Monomers of the Neurospora plasma membrane H+-ATPase catalyze efficient proton translocation. (United States)

    Goormaghtigh, E; Chadwick, C; Scarborough, G A


    Liposomes prepared by sonication of asolectin were fractionated by glycerol density gradient centrifugation, and the small liposomes contained in the upper region of the gradients were used for reconstitution of purified, radiolabeled Neurospora plasma membrane H+-ATPase molecules by our previously published procedures. The reconstituted liposomes were then subjected to two additional rounds of glycerol density gradient centrifugation, which separate the H+-ATPase-bearing proteoliposomes from ATPase-free liposomes by virtue of their greater density. The isolated H+-ATPase-bearing proteoliposomes in two such preparations exhibited a specific H+-ATPase activity of about 11 mumol of Pi liberated/mg of protein/min, which was approximately doubled in the presence of nigericin plus K+, indicating that a large percentage of the H+-ATPase molecules in both preparations were capable of generating a transmembrane protonic potential difference sufficient to impede further proton translocation. Importantly, quantitation of the number of 105,000-dalton ATPase monomers and liposomes in the same preparations by radioactivity determination and counting of negatively stained images in the electron microscope indicated ATPase monomer to liposome ratios of 0.97 and 1.06. Because every liposome in the preparations must have had at least one ATPase monomer, these ratios indicate that very few of the liposomes had more than one, and simple calculations show that the great majority of active ATPase molecules in the preparations must have been present as proton-translocating monomers. The results thus clearly demonstrate that 105,000-dalton monomers of the Neurospora plasma membrane H+-ATPase can catalyze efficient ATP hydrolysis-driven proton translocation.

  5. Monomer-dimer equilibrium in glutathione transferases: a critical re-examination. (United States)

    Fabrini, Raffaele; De Luca, Anastasia; Stella, Lorenzo; Mei, Giampiero; Orioni, Barbara; Ciccone, Sarah; Federici, Giorgio; Lo Bello, Mario; Ricci, Giorgio


    Glutathione transferases (GSTs) are dimeric enzymes involved in cell detoxification versus many endogenous toxic compounds and xenobiotics. In addition, single monomers of GSTs appear to be involved in particular protein-protein interactions as in the case of the pi class GST that regulates the apoptotic process by means of a GST-c-Jun N-terminal kinase complex. Thus, the dimer-monomer transition of GSTs may have important physiological relevance, but many studies reached contrasting conclusions both about the modality and extension of this event and about the catalytic competence of a single subunit. This paper re-examines the monomer-dimer question in light of novel experiments and old observations. Recent papers claimed the existence of a predominant monomeric and active species among pi, alpha, and mu class GSTs at 20-40 nM dilution levels, reporting dissociation constants (K(d)) for dimeric GST of 5.1, 0.34, and 0.16 microM, respectively. However, we demonstrate here that only traces of monomers could be found at these concentrations since all these enzymes display K(d) values of <1 nM, values thousands of times lower than those reported previously. Time-resolved and steady-state fluorescence anisotropy experiments, two-photon fluorescence correlation spectroscopy, kinetic studies, and docking simulations have been used to reach such conclusions. Our results also indicate that there is no clear evidence of the existence of a fully active monomer. Conversely, many data strongly support the idea that the monomeric form is scarcely active or fully inactive.

  6. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.


    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...


    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen


    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  8. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo


    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  9. Printing continuously graded interpenetrating polymer networks of acrylate/epoxy by manipulating cationic network formation during stereolithography

    Directory of Open Access Journals (Sweden)

    W. Li


    Full Text Available Ultra-violet (UV laser assisted stereolithography is used to print graded interpenetrating polymer networks (IPNs by controlling network formation. Unlike the traditional process where structural change in IPNs is achieved by varying the feeding ratio of monomers or polymer precursors, in this demonstration property is changed by controlled termination of network formation. A photo-initiated process is used to construct IPNs by a combination of radical and cationic network formation in an acrylate/epoxy system. The extent of the cationic network formation is used to control the final properties of the system. Rapid-Scan Fourier Transformation Infrared Spectroscopy (RS-FTIR is used to track the curing kinetics of the two networks and identify key parameters to control the final properties. Atomic force microscopy (AFM and differential scanning calorimetry (DSC confirm the formation of homogenous IPNs, whereas nano-indentation indicates that properties vary with the extent of cationic network formation. The curing characteristics are used to design and demonstrate printing of graded IPNs that show two orders of magnitude variation in mechanical properties in the millimeter scale.

  10. Synthesis of hydrophobic association cationic starch and its flocculation application on containing algae water of Dianchi Lake

    Institute of Scientific and Technical Information of China (English)


    The hydrophobic formation cationic starch (PSOAMDA) was prepared from starch (St),octadecyl acrylate (OA),acrylamide (AM) and dimethyl diallyl ammonium chloride (DMDAAC) by means of inverse suspension polymerization with redox initiator.Water with algae from Dianchi Lake was tested with PSOAMDA.Results show that when the molar ratio of St:perature is 40℃ with a reaction time of 3 h,the monomer conversion yield,graft percentage and cationic degree is 92.4%,63.8% and 7.3%,respectively,and Mη=3.26 × 106 g/vmol.It had been found from the flocculation of disposed water with algae from Dianchi Lake that the transparency and COD elimination reach to 93.5%and 70.3%,respectively,with 15 mg/L PSOAMDA and at pH 6,vs.91.3% and 69.2% obtained with the commercial cationic polyacrylamide (PAM-C).When PSOAMDA dosage is 10-25 mg/L and the pH of aqueous solution is 6-10,the flocculation performance is well capable of dealing with the water with algae from Dianchi Lake.

  11. Reactivity of vinyl ethers and vinyl ribosides in UV-initiated free radical copolymerization with acceptor monomers. (United States)

    Pichavant, Loic; Guillermain, Céline; Coqueret, Xavier


    The reactivity of various vinyl ethers and vinyloxy derivatives of ribose in the presence of diethyl fumarate or diethyl maleate was investigated for evaluating the potential of donor-acceptor-type copolymerization applied to unsaturated monomers derived from renewable feedstock. The photochemically induced polymerization of model monomer blends in the bulk state was monitored by infrared spectroscopy. The method allowed us to examine the influence of monomer pair structure on the kinetic profiles. The simultaneous consumption of both monomers was observed, supporting an alternating copolymerization mechanism. A lower reactivity of the blends containing maleates compared with fumarates was confirmed. The obtained kinetic data revealed a general correlation between the initial polymerization rate and the Hansen parameter δ(H) associated with the H-bonding aptitude of the donor monomer.

  12. Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group

    KAUST Repository

    Falivene, Laura


    We report on the DFT stability of zwitterion and spirocycle adducts of five polar monomers with nine N-heterocyclic carbenes (NHC), covering the most typical classes of monomers and NHCs used in organopolymerization. Results indicate that the relative stability of the two adducts is dominated by the singlet-triplet energy gap of the free NHC, with low energy gaps favoring the spirocycle adduct, while high energy gaps favor the zwitterionic adduct. This basic structure/property relationship can be tuned by the hindrance of the NHC and the nature of the monomer. In addition to rationalize existing systems, the 45 NHC/monomer combinations we examined can be used as a guideline to predict the behavior of a new NHC/monomer combination.

  13. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.


    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  14. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units. (United States)

    Melinte, Violeta; Buruiana, Tinca; Aldea, Horia; Matiut, Simona; Silion, Mihaela; Buruiana, Emil C


    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063-0.088s(-1)) were lower than those determined in the monomer combinations (0.116-0.158s(-1)) incorporating phosphate diacrylate (11wt.%), BisGMA (33wt.%), TEGDMA (10wt.%), UDMA (10wt.%) and HEMA (15wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65-57.02μg/mm(3)) and water solubility (3.51-13.38μg/mm(3)), and the contact angle was dependent on the presence of CO-DAP (θF1: 66.67°), TMP-DAP (θF2: 55.05°) or AMP-P (θF3: 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θF4: 82.14°). The scanning electron microscopy image of the dentin-resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer.

  15. Cation Permeability in Soybean Aleurone Layer


    Noda, Hiroko; Fukuda, Mitsuru


    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  16. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna


    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  17. Controlling chemistry with cations: photochemistry within zeolites. (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J


    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  18. A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization


    Mohammed Belbachir; Rachid Meghabar; Amine Harrane


    Abstract: “Maghnite†a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite†is an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structure compositions of both “Maghnite†and “H-Maghnite†have been developed. Isobutylene monomer, wich is polymerizable only by cationic process (Odian,G. La Polymerisation :principes et Applications...

  19. An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin


    Ahmed Yahiaoui; Mohammed Belbachir; Aïcha Hachemaoui


    “Maghniteâ€Â, a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite†is an efficient catalyst for cationic polymerisation of many heterocyclic and vinylic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structural compositions of both “Maghnite†and “H-Maghnite†have already been determined. Epichlorhydrin monomer, which is polymerizable by a cationic process (Odian,G. La Polymerisation: Principes et Applicatio...

  20. Cell volume-regulated cation channels. (United States)

    Wehner, Frank


    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  1. [Antioxidant activity of cationic whey protein isolate]. (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A


    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  2. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. (United States)

    Mills, J N; McCrum, I T; Janik, M J


    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  3. Composition and Process for Retarding the Premature Aging of PMR Monomer Solutions and PMR Prepegs (United States)

    Alston, William B. (Inventor); Gahn, Gloria S. (Inventor)


    Polyimides are derived from solutions of at least one low-boiling organic solvent, e.g. isopropanol containing a mixture of polyimide-forming monomers. The monomeric solutions have an extended shelf life at ambient (room) temperatures as high as 80 C, and consist essentially of a mixture of monoalkyl ester-acids, alkyl diester-diacids and aromatic polyamines wherein the alkyl radicals of the esteracids are derived from lower molecular weight aliphatic secondary alcohols having 3 to 5 carbon atoms per molecule such as isopropanol, secondary butanol, 2-methyl-3-butanol, 2 pentanol or 3-pentanol. The solutions of the polyimide-forming monomers have a substantially improved shelf-life and are particularly useful in the aerospace and aeronautical industry for the preparation of polyimide reinforced fiber composites such as the polyimide cured carbon composites used in jet engines, missiles, and for other high temperature applications.

  4. A Mechanistic Investigation of Gelation. The Sol-Gel Polymerization of Bridged Silsesquioxane Monomers

    Energy Technology Data Exchange (ETDEWEB)



    The study of a homologous series of silsesquioxane monomers has uncovered striking discontinuities in gelation behavior. An investigation of the chemistry during the early stages of the polymerization has provided a molecular basis for these observations. Monomers containing from one to four carbon atoms exhibit a pronounced tendency to undergo inter or intramolecular cyclization. The cyclic intermediates have been characterized by {sup 29}Si NMR, chemical ionization mass spectrometry and isolation from the reaction solution. These carbosiloxanes are local thermodynamic sinks that produce kinetic bottlenecks in the production of high molecular weight silsesquioxanes. The formation of cyclics results in slowing down or in some cases completely shutting down gelation. An additional finding is that the cyclic structures are incorporated intact into the final xerogel. Since cyclization alters the structure of the building block that eventually makes up the xerogel network, it is expected that this will contribute importantly to the bulk properties of the xerogel as well.

  5. A cleaner two-step synthesis of high purity diallyldimethylammonium chloride monomers for flocculant preparation

    Institute of Scientific and Technical Information of China (English)

    TIAN Bing-hui; FAN Bin; PENG Xian-jia; LUAN Zhao-kun


    In order to improve the flocculation efficiency of polydiallyldimethylammonium chloride (PDADMAC), high molecular weight PDADMAC should be prepared from high purity diallyldimethylammonium chloride(DADMAC) monomers. In this paper, a cleaner method with microwave irradiation and alkali solidification was proposed for preparing high pure DADMAC by selective heating under low temperature, and the prepared high purity DADMAC is characterized using FTIR and atomic absorption spectrometry. The new method provides a solution to the key technical problem of PDADMAC synthesis. Comparing with the conventional methods, the results showed that the advantages of the novel synthesis include: (a) high purity DADMAC is improved from 57% to 71%; (b) reaction time of tertiary amine preparation is shortened from 6 h to 7 min; (c) water instead of acetone was used as reaction medium; (d) toxic by-products,wastewater and waste gas are eliminated. Flocculant made from the synthesized high purity DADMAC monomers was proved more efficient in flocculation tests.

  6. Investigation on Vibrational Spectra and Structures of 4-Mercaptopyridine Monomer and Its Dihydrate

    Institute of Scientific and Technical Information of China (English)


    The optimized molecular structures and vibrational frequencies of 4-mercaptopyridine(4MPY) monomer and its dihydrate were studied by means of the density functional theory(DFT), viz. B3LYP method with the 6-311++G(d,p) basis set. On the basis of the calculations, the assignments of the vibrational spectra of the monomer and the dihydrate were performed, and so were investigated the changes in the structure and the vibrational spectrum of the dihydrate as well as the intermolecular force resulting in the formation of the dihydrate. The calculated results show that each of the water molecule planes is vertical to the pyridine ring plane in the dihydrate that is formed via the H-bonds between 4MPY and water molecules. Furthermore, the structure and the vibrational spectrum of 4MPY can be consi-derably affected by the water molecules.

  7. Penelitian penggunaan monomer n-butil akrilat untuk peningkatan mutu kulit secara iradiasi

    Directory of Open Access Journals (Sweden)

    Dwi Wahini Nurhajati


    Full Text Available Research on the utilization of n-butyl acrylate monomer for quality improvement leather by irradiation cobalt-60 gamma-rays is carried out as follows: Javanese crust hide was impregnated with water emulsions of n-butyl acrylate monomer for 2 hours, packed in to poly ethylene bags, sealed, then irradiated by cobalt-60 gamma rays (doses : 5 to 25 kGy. The irradiated leather was washed by water, dried and then physical tested. The results of physical test of leather modified with n-butyl acrylate showed the increasing of tensile strength and elongation, decreasing of water absorption, resistance against the flexing test of 20,000 times, and PH was constant. Organoleptic test showed that the softly of the modified leather was no different with unmodified leather.

  8. Cyclosophorohexadecaose and succinoglycan monomers as catalytic carbohydrates for the Strecker reaction. (United States)

    Lee, Sanghoo; Cho, Eunae; Kwon, Chanho; Jung, Seunho


    Some microbial carbohydrates have been used as catalysts for the multicomponent Strecker reaction using trimethylsilyl cyanide (TMSCN). Alpha-Cyclosophorohexadecaose (alpha-C16) derived from Xanthomonas species and succinoglycan monomers derived from Rhizobium species acted as catalytic carbohydrates in the mixture solutions of methanol and water. Malonaldehyde bis(phenylimine) as a substrate was completely converted (yield: 100%) into its product to 100% by both alpha-C16 and the succinoglycan monomer (M2), having acetyl, pyruvyl, and succinyl groups as substituents after 1h. The catalytic abilities of the carbohydrates were dependent on the inherent structures of the substrates used in this study, where substrate 1 having a symmetrical structure rather than the others was favorably reacted with the alpha-C16 and M2. Through this study, we suggest that the microbial carbohydrates used in this study could be expected to be environmentally-benign catalysts for the synthesis of alpha-aminonitriles.

  9. Copolymerization of Propylene and Polar Monomers Using Pd/IzQO Catalysts. (United States)

    Nakano, Ryo; Nozaki, Kyoko


    Palladium catalysts bearing imidazo[1,5-a]quinolin-9-olate-1-ylidene (IzQO) ligands polymerize α-olefins while incorporating polar monomers. The steric environment provided by N-heterocyclic-carbene (NHC) enables regioselective insertion of α-olefins and polar monomers, yielding polypropylene, propylene/allyl carboxylate copolymers, and propylene/methyl acrylate copolymer. Known polymerization catalysts bearing NHC-based ligands decompose rapidly, whereas the present catalyst is durable because of structural confinement, wherein the NHC-plane is coplanar to the metal square plane. The present catalyst system enables facile access to a new class of functionalized polyolefins and helps conceive a new fundamental principle for designing NHC-based ligands.

  10. Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells

    Directory of Open Access Journals (Sweden)

    Andrea Nitti


    Full Text Available π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered at the molecular level in order to tune the optical, electrochemical and solid-state morphology characteristics, and thus to address requirements for the efficient solid state device implementation. The synthetic accessibility of monomers and polymers required for the device is getting increasing attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining importance, bearing clear advantages over traditional carbon-carbon forming methodologies. Although their use in the final polymerization step is already established, there is a need for improving synthetic accessibility to implement them also in the monomer synthesis. In this review, we discuss recent examples highlighting this useful strategy.

  11. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease. (United States)

    Nickolas, Thomas L; Forster, Catherine S; Sise, Meghan E; Barasch, Nicholas; Solá-Del Valle, David; Viltard, Melanie; Buchen, Charles; Kupferman, Shlomo; Carnevali, Maria Luisa; Bennett, Michael; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Mori, Kiyoshi; Erdjument-Bromage, Hediye; Tempst, Paul; Allegri, Landino; Barasch, Jonathan


    The type and the extent of tissue damage inform the prognosis of chronic kidney disease (CKD), but kidney biopsy is not a routine test. Urinary tests that correlate with specific histological findings might serve as surrogates for the kidney biopsy. We used immunoblots and ARCHITECT-NGAL assays to define the immunoreactivity of urinary neutrophil gelatinase-associated lipocalin (NGAL) in CKD, and we used mass spectroscopy to identify associated proteins. We analyzed kidney biopsies to determine whether specific pathological characteristics associated with the monomeric NGAL species. Advanced CKD urine contained the NGAL monomer as well as novel complexes of NGAL. When these species were separated, we found a significant correlation between the NGAL monomer and glomerular filtration rate (r=-0.53, Phistology that typifies progressive, severe CKD.

  12. Structure and Properties of Silk Fibers Grafted with Vinyl Siloxane Monomer

    Institute of Scientific and Technical Information of China (English)


    Silk fibers were grafted with a novel vinyl siloxane monomer. The properties of silk with different grafting yield were discussed. The results showed that the crease recovery of grafted silk fabric is improved significantly, handle of grafted silk is softer, and grafting has no influence on strength of silk. Graft with low grafting yield has no effect on dyeing properties of silk. The results of IR, SEM photographs and amino acid analysis indicate that the monomer combines with silk fiber by physical sediment and chemical bond, the grafting reactions mainly oecurred on Ser., His. and Arg. of silk fibers, and ester crosslinking forms between silanol and Asp., Glu. of silk molecular side chains. X-ray diffraction patterns of silk fibers suggest that the grafting has no effect on the crystalline regions.

  13. Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Afidah A. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia)]. E-mail:; Rocca, E. [Laboratoire de Chimie du Solide Mineral, Universite Henri Poincare, Nancy I BP 239, 54506 Vandoeuvre Les Nancy (France); Steinmetz, J. [Laboratoire de Chimie du Solide Mineral, Universite Henri Poincare, Nancy I BP 239, 54506 Vandoeuvre Les Nancy (France); Kassim, M.J. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia); Adnan, R. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia); Sani Ibrahim, M. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia)


    The inhibitive behaviour on steel of flavanoid monomers that constitute mangrove tannins namely catechin, epicatechin, epigallocatechin and epicatechingallate was investigated in an aerated HCl solution via electrochemical methods. The monomers were found to be mainly cathodic inhibitors and the inhibition efficiency was dependent on concentration. To explain the adsorptive behaviour of the molecules on the steel surface, a semiempirical approach involving quantum chemical calculations using HyperChem 6.0 was undertaken. The HOMO electronic density of the molecule was used to explain the inhibiting mechanism. The most probable adsorption centers were found in the vicinity of the phenolic groups. In a second part, the use of mangrove tannin, extracted from the mangrove barks as steel corrosion inhibitors in acidic media was investigated and its inhibitive efficiency was compared with that of commercial mimosa, quebracho and chestnut tannins. The inhibitive performance of mangrove tannins was comparable to the other tannins investigated, indicating their potential in corrosion protection.

  14. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. (United States)

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej


    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  15. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  16. Cobalt-mediated radical polymerization of vinyl monomers: investigation of cobalt-coordination



    Controlled Radical Polymerization techniques have been developed to obtain well-defined architectures and to control polymer parameters. Among these systems is Cobalt-Mediated Radical Polymerization (CMRP), which is based on the reversible deactivation of the growing radical chains with a cobalt complex, the cobalt (II) bis(acetylacetonate). The interest of this system is not only due to its ability to control the polymerization of very reactive monomers such as vinyl acetate (VAc) and N-viny...

  17. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells (United States)

    Kar, Karunakar; Arduini, Irene; Drombosky, Kenneth W.; van der Wel, Patrick C. A.; Wetzel, Ronald


    Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases like Huntington’s disease (HD). Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either L- or D-polyQ peptides and found that D-fibrils are as cytotoxic as L-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced L-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized D- and L-polyQ in vitro. We found that, as expected, D-polyQ monomers are not recognized by proteins that recognize L-polyQ monomers. However, amyloid fibrils prepared from D-polyQ peptides can efficiently seed the aggregation of L-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment, but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins. PMID:24291210

  18. Ferrocene-Based Monomers, Oligomers and Polymers as Electro-Active Materials


    Al Khalyfeh, Khaled


    The present PhD thesis deals with the synthesis and characterization of functionalized ferrocenes with up to four aldehyde and vinyl groups and their usage as monomers to produce novel ferrocene-based oligomers with conjugated backbones via ADMET (acyclic diene metathesis) and HWE (Horner-Wadsworth-Emmons) reaction protocols. In addition, ferrocene-containing polymers (linear, cross-linked and co-polymers) with aliphatic backbones generated by anionic bulk and solution polymerization routes, ...

  19. Papain-Catalyzed Synthesis of Polyglutamate Containing a Nylon Monomer Unit


    Kenjiro Yazawa; Keiji Numata


    Peptides have the potential to serve as an alternative for petroleum-based polymers to support a sustainable society. However, they lack thermoplasticity, owing to their strong intermolecular interactions. In contrast, nylon is famous for its thermoplasticity and chemical resistance. Here, we synthesized peptides containing a nylon unit to modify their thermal properties by using papain-catalyzed chemoenzymatic polymerization. We used l-glutamic acid alkyl ester as the amino acid monomer and ...

  20. Hemoglobin-imprinted polymer gel prepared using modified glucosamine as functional monomer

    Institute of Scientific and Technical Information of China (English)

    Hai Li Zhao; Tian Ying Guo; Yong Qing Xia; Mou Dao Song


    A new functional glycomonomer was obtained from modified glucosamine.Hemoglobin-imprinted polymer gel was prepared with allyl-bromide modified glucosamine as functional monomer,poly(ethylene-glycol)diaorylate(PEGDA)as cross-linker and ammonium persulfate[(NH4)2S2O8]/sodium hydrogen sulfite(NaHSO3)as initiators in a phosphate buffer.The adsorption capacity and selective adsorption of the molecular imprinting polymer(MIP)were also discussed.

  1. Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells


    Andrea Nitti; Riccardo Po; Gabriele Bianchi; Dario Pasini


    π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered at the molecular level in order to tune the optical, electrochemical and solid-state morphology characteristics, and thus to address requirements for the efficient solid state device implementation. The synthetic accessibility of monomers and polymers required for the device is getting increasing attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining importance,...

  2. Effect of trifluoroethylene monomers on molecular conformation of poly (vinylidene fluoride-trifluoroethylene) copolymer

    Institute of Scientific and Technical Information of China (English)

    Li Ji-Chao; Wang Chun-Lei; Zhong Wei-Lie


    Hartree-Fock and density functional theory (DFT) methods were employed to study poly (vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] molecular chains with different VDF contents. The dependence of dipole moment of P(VDF-TrFE) chains on VDF content obtained from our calculation is in good agreement with the experiment. The TrFE monomer plays an important role in introducing the gauche bond into copolymer chains. A possible mechanism was interpreted.

  3. Chiral separation by (S)-naproxen imprinted monolithic column with mixed functional monomers

    Institute of Scientific and Technical Information of China (English)

    Zhen Ying Li; Zhao Sheng Liu; Qing Wei Zhang; Hong Quan Duan


    Molecularly imprinted polymers (MIPs), using (S)-naproxen as template and the combination of butyl methacrylate (BMA) and column was evaluated in HPLC mode. The result showed that the monolithic MIPs with the combination of two monomers produced better chiral resolution of rac-naproxen (Rs = 1.55) and column efficiencies of imprinted molecules (N = 2860 plates/m)than that with pure MAA.

  4. Chemical analysis of monomers in epoxy resins based on bisphenols F and A. (United States)

    Pontén, A; Zimerson, E; Sörensen, O; Bruze, M


    Diglycidyl ether of bisphenol A (DGEBA) is the monomer and most important contact allergen in epoxy resin(s) based on bisphenol A (DGEBA-R). Both thin-layer chromatography (TLC) and high-pressure liquid chromatography (HPLC) methods are available for the analysis of products containing DGEBA-R. With respect to detection and quantification, epoxy resins of the bisphenol F-type, i.e. epoxy resins containing the isomers of diglycidyl ethers of bisphenol F (DGEBF), are not as well investigated as DGEBA-R. The isomers of DGEBF are p,p'-DGEBF, o,p'-DGEBF and o,o'-DGEBF. Both p,p'-DGEBF and o,p'-DGEBF have been shown to be contact allergens in humans, and all 3 isomers are sensitizers in the guinea pig maximization test. We aimed (i). to develop HPLC methods for separation and purification of the individual DGEBF isomers, (ii). to detect and quantify the DGEBF isomers in epoxy resins of the bisphenol F-type and (iii). to evaluate and develop the TLC as a method for the detection of the DGEBF monomers. We found the total content of the DGEBF isomers in the investigated epoxy resins of the bisphenol F-type to vary from 17.0 to 81.7% w/w. Some of them also contained 0.1-2.4% w/w DGEBA. The HPLC method showed a sensitivity that was 2000-20 000x higher than that obtained with the TLC method for the DGEBF monomers. We concluded that the range of the DGEBF isomer content in epoxy resins of the bisphenol F-type is approximately the same as the monomer content in liquid compared to solid DGEBA-R. The relevance of contact allergy to DGEBA-R can remain unrecognized if the suspected product is an epoxy resin of the bisphenol F-type, which is analysed with the TLC method.

  5. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers. (United States)

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou


    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem.

  6. Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review


    T. P. Schuman; Wang, R.


    Glycidyl esters of epoxidized fatty acids derived from soybean oil (EGS) and linseed oil (EGL) have been synthesized to have higher oxirane content, more reactivity and lower viscosity than epoxidized soybean oil (ESO) or epoxidized linseed oil (ELO). The EGS and ESO, for comparison, were used neat and in blends with diglycidyl ether of bisphenol A (DGEBA). Thermosetting resins were fabricated with the epoxy monomers and either BF3 catalyst or anhydride. The curing behaviors, glass transition...

  7. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions. (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar


    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  8. Wire and extended ladder model predict THz oscillations in DNA monomers, dimers and trimers

    CERN Document Server

    Lambropoulos, K; Morphis, A; Tassi, M; Lopp, R; Georgiadis, G; Theodorakou, M; Chatzieleftheriou, M; Simserides, C


    We call \\textit{monomer} a B-DNA base pair and study, analytically and numerically, electron or hole oscillations in \\textit{monomers}, \\textit{dimers} and \\textit{trimers}. We employ two Tight Binding (TB) approaches: (I) at the base-pair level, using the on-site energies of the base pairs and the hopping parameters between successive base pairs i.e. \\textit{a wire model}, and (II) at the single-base level, using the on-site energies of the bases and the hopping parameters between neighbouring bases, specifically between (a) two successive bases in the same strand, (b) complementary bases that define a base pair, and (c) diagonally located bases of successive base pairs, i.e. \\textit{an extended ladder model} since it also includes the diagonal hoppings (c). For \\textit{monomers}, with TB II, we predict periodic carrier oscillations with frequency $f \\approx$ 50-550 THz. For \\textit{dimers}, with TB I, we predict periodic carrier oscillations with $f \\approx$ 0.25-100 THz. For \\textit{trimers made of identic...

  9. Energy landscapes of the monomer and dimer of the Alzheimer's peptide A β (1 -28 ) (United States)

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe


    The cytoxicity of Alzheimer's disease has been linked to the self-assembly of the 40 /42 amino acid of the amyloid-β (A β ) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of A β (1 -28 ) is α -helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of A β (1 -28 ) . In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible β -strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little β -strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.

  10. Energy landscapes of the monomer and dimer of the Alzheimer's peptide Abeta(1-28). (United States)

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe


    The cytotoxicity of Alzheimer's disease has been linked to the self-assembly of the 4042 amino acid of the amyloid-beta (Abeta) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of Abeta(1-28) is alpha-helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of Abeta(1-28). In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible beta-strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little beta-strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.

  11. Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures (United States)

    Ertem, Gözen; Hazen, Robert M.; Dworkin, Jason P.


    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  12. Synthesis and characterization of copolymers from hindered amines and vinyl monomers

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto


    Full Text Available New copolymers from hindered amines and vinyl monomers were synthesized by radical chain polymerization. To obtain polymeric HALS, acrylamide-(1ATP and acrylate-(4ATP monomers, derivatives from 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidinol were synthesized. The radical chain polymerization of 1ATP with styrene (Sty using 1-butanethiol (BTN resulted in a copolymer with 95 units of Sty and 15 units of 1ATP. The radical chain polymerization of 1ATP and vinyl acetate (VAc has produced only 1ATP homopolymer. In the chain polymerization of 4ATP with Sty or VAc, the hydrogen atom bonded to the nitrogen of 4ATP is labile enough to originate another radical at this site. The steric hindrance imposed by methyl groups on this bonding site hampers its reaction with other propagating species and the formation of a copolymer or network structure will be dependent on the size of the pendent group in the vinyl monomer.

  13. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, A.A.; Abdel-Rehim, F. [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 8029, Nasr City, Cairo (Egypt); Soliman, Y.S., E-mail: [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 8029, Nasr City, Cairo (Egypt)


    The dosimetric characteristics of {gamma}-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon {gamma}-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2{sigma}). - Highlights: > Using 10,12-pentacosa-diynoic acid (PCDA) in preparation of label dosimeter. > PCDA polymerises upon {gamma}-rays exposure producing a blue coloured polymer. > Useful dose range is 15 Gy to 2 kGy depending on concentration of PCDA. > Overall uncertainty of label dosimeter was 6.06 at 2{sigma}.

  14. Permeability of different types of medical protective gloves to acrylic monomers. (United States)

    Lönnroth, Emma-Christin; Wellendorf, Hanne; Ruyter, Eystein


    Dental personnel and orthopedic surgeons are at risk when manually handling products containing methyl methacrylate (MMA). Dental products may also contain cross-linking agents such as ethylene glycol dimethacrylate (EGDMA) or 1,4-butanediol dimethacrylate (1,4-BDMA). Skin contact with monomers can cause hand eczema, and the protection given by gloves manufactured from different types of material is not well known. The aim of this study was to determine the breakthrough time (BTT, min) as a measure of protection (according to the EU standard EN-374-3) for a mixture consisting of MMA, EGDMA and 1,4-BDMA. Fifteen different gloves representing natural rubber latex material, synthetic rubber material (e.g. nitrile rubbers), and synthetic polymer material were tested. The smallest monomer MMA permeated within 3 min through all glove materials. A polyethylene examination glove provided the longest protection period to EGDMA and 1, 4-BDMA (> 120 min and 25.0 min), followed by the surgical glove Tactylon (6.0 min and 8.7 min) and the nitrile glove Nitra Touch (5.0 min and 8.7 min). This study showed that the breakthrough time (based on permeation rate) cannot be regarded as a 'safe limit'. When the permeation rate is low, monomers may have permeated before BTT can be determined. Using double gloves with a synthetic rubber inner glove and a natural rubber outer glove provided longer protection when the inner glove was rinsed in water before placing the outer glove on top.

  15. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer. (United States)

    Dane, Eric L; Grinstaff, Mark W


    Enantiopure poly-amido-saccharides (PASs) with a defined molecular weight and narrow dispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected D-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >120 in high yield. Computational modeling reveals how the monomer's structure and steric bulk affect the thermodynamics and kinetics of polymerization. Protected and deprotected polymers and model compounds are characterized using a variety of methods (NMR, GPC, IR, DLS, etc.). On the basis of circular dichroism, the deprotected polymer possesses a regular secondary structure in aqueous solution, which agrees favorably with the prediction of a helical structure using molecular modeling. Furthermore, we provide evidence suggesting that the polymers bind the lectin concanavalin A at the same site as natural carbohydrates, showing the potential of these polymers to mimic natural polysaccharides. PASs offer the advantages associated with synthetic polymers, such as greater control over structure and derivitization. At the same time, they preserve many of the structural features of natural polysaccharides, such as a stereochemically regular, rigid pyranose backbone, that make natural carbohydrate polymers important materials both for their unique properties and useful applications.

  16. HEMA inhibits interfacial nano-layering of the functional monomer MDP. (United States)

    Yoshida, Y; Yoshihara, K; Hayakawa, S; Nagaoka, N; Okihara, T; Matsumoto, T; Minagi, S; Osaka, A; Van Landuyt, K; Van Meerbeek, B


    Previous research showed that the functional monomer 10-methacryloxydecyl dihydrogen phosphate (MDP) ionically bonds to hydroxyapatite (HAp) and forms a nano-layered structure at the interface with HAp-based substrates. Such hydrophobic nano-layering is considered to contribute to the long-term durability of the bond to tooth tissue. However, dental adhesives are complex mixtures usually containing different monomers. This study investigated the effect of the monomer 2-hydroxyethylmethacrylate (HEMA) on the chemical interaction of MDP with HAp by x-ray diffraction (XRD), nuclear magnetic resonance (NMR), and quartz crystal microbalance (QCM). We examined the chemical interaction of 5 experimental MDP solutions with increasing concentrations of HEMA. XRD revealed that addition of HEMA inhibits nano-layering at the interface, while NMR confirmed that MDP remained adsorbed onto the HAp surface. QCM confirmed this adsorption of MDP to HAp, as well as revealed that the demineralization rate of HAp by MDP was reduced by HEMA. It was concluded that even though the adsorption of MDP to HAp was not hindered, addition of HEMA inhibited interfacial nano-layering. Potential consequences with regard to bond durability necessitate further research.

  17. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion. (United States)

    Yuan, Jiang; Chen, Li; Jiang, Xuefeng; Shen, Jian; Lin, Sicong


    Surface modification is an effective way to improve the hemocompatibility and remain bulk properties of biomaterials. Recently, polymer tailored with zwitterions was found having good blood compatibility. In this study, the zwitterionic monomer of sulfobetaine was graft polymerized onto polyurethane (PU) surface in a three-step heterogenous system through the vinyl bonds of acrylic acid (AA) or hydroxyethyl methacrylate (HEMA), which was immobilized with hexamethylene diisocyanate (HDI) beforehand. First, PU was activated with isocyanate groups using HDI as coupling agent. Second, AA or HEMA was introduced through reaction of AA or HEMA with NCO groups bonded on PU surface. Last, zwitterionic monomer of sulfobetain was graft polymerized with vinyl group of AA or HEMA using AIBN as polymerization initiator. The reaction process was monitored with ATR-IR spectra and XPS spectra. Variation of graft yield with temperature and monomer feed concentration was investigated and feasible conditions were optimized. The wettability of films was investigated by water contact angle measurement and water absorbance. Platelet adhesion experiment was conducted as a preliminary test to confirm the improved blood compatibility of PU. The number of platelets adhering to PU decreased greatly comparing with the originals after 1 and 3 h of contact with human plate-rich plasma (PRP).

  18. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chetan P.; Singh, Krishan K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Manmohan, E-mail: [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Bajaj, Parma N. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)


    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy, X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.

  19. Molecularly imprinted microspheres prepared by precipitation polymerization at high monomer concentrations

    Directory of Open Access Journals (Sweden)

    Renkecz Tibor


    Full Text Available Highly crosslinked polymer microparticles have been prepared by precipitation polymerization using high monomer loadings (≥25 v/v % which generally would lead to bulk monoliths. The microparticle format was achieved by the use of non-solvating diluents either alone or in combination with co-solvents. Two distinct morphologies were observed. Monodisperse smooth microspheres were obtained using a thermodynamically good co-solvent whereas segmented irregular particles were formed with poorer co-solvents. It has been found that during polymerization the forming polymer particles were enriched in the co-solvent and this effect was more pronounced when good co-solvents were used. The type of functional monomer, crosslinker and co-solvent, and the non-solvent/co-solvent ratio were identified as influential parameters on the microparticle morphology. With the proposed methodology molecularly imprinted microparticles have been prepared successfully for three different templates, naproxen, diclofenac and toltrazuril using various functional monomers, crosslinkers and polymerization solvent mixtures.

  20. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    Directory of Open Access Journals (Sweden)

    Chongzhao Ran

    Full Text Available BACKGROUND: Systematic differentiation of amyloid (Aβ species could be important for diagnosis of Alzheimer's disease (AD. In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. PRINCIPAL FINDINGS: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer technique that utilized amyloid beta (Aβ species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. SIGNIFICANCE: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  1. Compound and application of third monomer solution in PET modification%聚酯改性第三单体溶液的配制及其应用

    Institute of Scientific and Technical Information of China (English)



    介绍用1,3-间苯二甲酸二甲醇酯-5磺酸钠与EG进行酯交换合成1,3-间苯二甲酸二乙二醇酯-5磺酸钠,然后加入间歇装置生产阳离子染料可染的聚酯切片的工艺过程。工艺特点:配制时要注意加热速度、反应温度、搅拌情况及醚防剂、催化剂的加入量等;在缩聚时要控制第三单体加入时间、反应时间、抽真空速度、热稳定剂使用量,降低EG与PTA的量比等。%The technological process of using the ester-interchange reaction of and EG to compound ,then adding it into the batch unit to produce cation-dyeable polyester chip were introduced. While compounding,pay attention to the heating speed,reaction temperature, stirring condition and the add-on of ether inhibitor and catalyst; while polycondensation controlling the add time of third monomer solution, evacuation speed,using capacity of heat stabilizer and lower the ratio of EG to PTA.

  2. Interaction between alginates and manganese cations: identification of preferred cation binding sites. (United States)

    Emmerichs, N; Wingender, J; Flemming, H-C; Mayer, C


    Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.

  3. Studies on a Cationically Modified Quaternary Ammonium Salt of Lignin

    Institute of Scientific and Technical Information of China (English)

    YANG Ai-li; JIANG Wen-ju


    A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL),with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Transform Infrared spectroscopy(FTIR). The experimental results indicate that the yield of the monomer was 99.06%, and the conversion of the monomer and the grafting yield of QL were 93.69% and 185.78%, respectively. The feasibility of QL as the fiocculant to be applied in color removal of five artificial dyes, eriochrome black T( dye A), gongo red( dye B), direct fast black G (dye C), cuprofix blue green B (dye D), and acid black ATT (dye E) was examined.Results show that QL exhibits the favorable flocculation performance and high stability.

  4. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex-Peptide Monomers by Flow Cytometry. (United States)

    Chandran, P Anoop; Heidu, Sonja; Zelba, Henning; Schmid-Horch, Barbara; Rammensee, Hans-Georg; Pascolo, Steve; Gouttefangeas, Cécile


    Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage.

  5. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex–Peptide Monomers by Flow Cytometry (United States)

    Chandran, P. Anoop; Heidu, Sonja; Zelba, Henning; Schmid-Horch, Barbara; Rammensee, Hans-Georg; Pascolo, Steve; Gouttefangeas, Cécile


    Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage. PMID:28228758

  6. A multicolor photoinitiator for cationic polymerization and interpenetrated polymer network synthesis: 2,7-di-tert-butyldimethyldihydropyrene. (United States)

    Tehfe, Mohamad-Ali; Dumur, Frédéric; Vilà, Neus; Graff, Bernadette; Mayer, Cédric R; Fouassier, Jean Pierre; Gigmes, Didier; Lalevée, Jacques


    For polymer synthesis upon visible light, actual photoinitiator operates in a restricted part of the spectrum. As a consequence, several photoinitiators are necessary to harvest all of the emitted visible photons. Herein, 2,7-di-tert-butyldimethyldihydropyrene is used for the first time as a multicolor photoinitiator for the cationic polymerization of epoxides. Upon addition of diphenyliodonium hexafluorophosphate and optionally N-vinylcarbazole, the originality of this approach is to allow efficient monomer conversions under various excitation light sources in the 360-650 nm wavelength range: halogen lamps, and light-emitting and laser diodes. The synthesis of an interpenetrated polymer network from an epoxide/acrylate blend using a red light at 635 nm is also feasible. The formed polymer material exhibits a photochromic character.

  7. Synthesis and Characterization of Poly(α-Methylstyrene by Cationic Polymerization Using a New Solid Ecological Catalyst

    Directory of Open Access Journals (Sweden)

    Moulkheir Ayat


    Full Text Available The cationic polymerization of α-methylstyrene (AMS is examined at 0°C in bulk and in solution in heterogenous phase using Maghnite-Na as a new solid ecological and efficient catalyst. Maghnite-Na is Algerian Montmorillonite sheet silicate clay, exchanged with sodium. Poly (α-methylstyrene (PAMS have been successfully prepared and characterized by differents techniques, such as, 1H NMR, 13C NMR, IR and DSC. The structural characteristics and thermal properties of the resulting polymers are elucidated. The influences of reaction temperature, initiator/monomer weight ratio and reaction time on the yields and the molecular weights are investigated. A mechanism for the reaction was proposed.

  8. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen


    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  9. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.


    The cationic technetium-99 complex trans-(99TC(dmpe)2Cl2)+, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH3)2P-CH2-P(CH3)2, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(99mTc(dmpe) 2Cl2)+, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  10. Application of Polymerizable Cationic Fluorosurfactants in the Emulsion Polymerization of Fluorinated Acrylate%可聚合阳离子含氟表面活性剂在含氟丙烯酸酯乳液聚合中的应用

    Institute of Scientific and Technical Information of China (English)

    郝国庆; 李兴建; 邓瑾妮; 殷绿; 郑朝晖; 丁小斌



  11. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair. (United States)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli


    The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  12. Photodissociation of Cerium Oxide Nanocluster Cations. (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A


    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  13. Electronic absorptions of the benzylium cation (United States)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.


    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  14. Transition-Metal Hydride Radical Cations. (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R


    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  15. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro


    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  16. The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor


    Ono, Shoichiro


    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in a...

  17. The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation. (United States)

    Iwase, Shohei; Ono, Shoichiro


    Cyclase-associated protein (CAP) is a conserved actin-regulatory protein that functions together with actin depolymerizing factor (ADF)/cofilin to enhance actin filament dynamics. CAP has multiple functional domains, and the function to regulate actin monomers is carried out by its C-terminal half containing a Wiskott-Aldrich Syndrome protein homology 2 (WH2) domain, a CAP and X-linked retinitis pigmentosa 2 (CARP) domain, and a dimerization motif. WH2 and CARP are implicated in binding to actin monomers and important for enhancing filament turnover. However, the role of the dimerization motif is unknown. Here, we investigated the function of the dimerization motif of CAS-2, a CAP isoform in the nematode Caenorhabditis elegans, in actin monomer regulation. CAS-2 promotes ATP-dependent recycling of ADF/cofilin-bound actin monomers for polymerization by enhancing exchange of actin-bound nucleotides. The C-terminal half of CAS-2 (CAS-2C) has nearly as strong activity as full-length CAS-2. Maltose-binding protein (MBP)-tagged CAS-2C is a dimer. However, MBP-CAS-2C with a truncation of either one or two C-terminal β-strands is monomeric. Truncations of the dimerization motif in MBP-CAS-2C nearly completely abolish its activity to sequester actin monomers from polymerization and enhance nucleotide exchange on actin monomers. As a result, these CAS-2C variants, also in the context of full-length CAS-2, fail to compete with ADF/cofilin to release actin monomers for polymerization. CAS-2C variants lacking the dimerization motif exhibit enhanced binding to actin filaments, which is mediated by WH2. Taken together, these results suggest that the evolutionarily conserved dimerization motif of CAP is essential for its C-terminal region to exert the actin monomer-specific regulatory function.

  18. Updated evaluation of the migration of styrene monomer and oligomers from polystyrene food contact materials to foods and food simulants. (United States)

    Genualdi, Susan; Nyman, Patricia; Begley, Timothy


    Due to the 2011 labelling of styrene monomer as "reasonably anticipated to be a human carcinogen" by the National Institutes of Health's National Toxicology Program (NTP) and the controversy over whether styrene oligomers mimic the physiological effects of estrogen, an updated review of styrene monomer and oligomers in food and food contact materials (FCMs) was performed. The concentrations of styrene monomer and oligomers were determined in 24 polystyrene (PS) products and ranged from 9.3 to 3100 mg kg(-1) for the styrene monomer, 130-2900 mg kg(-1) for the sum of three styrene dimers, and 220-16,000 mg kg(-1) for the sum of six styrene trimers. Foods in contact with PS packaging had styrene monomer concentrations ranging from 2.6 to 163 ng g(-1); dimer concentrations from the limit of quantitation (LOQ) to 4.8 ng g(-1) and trimer concentrations were all below the LOQ (2 ng g(-1)). Diffusion coefficients (Dp) and partition coefficients (K) were also calculated for styrene dimers and trimers. The results presented here indicate that styrene monomer concentrations in foods have not significantly changed since the 1980s and monomer concentrations in food packaging quantified in this study were all below USFDA limits. Although styrene dimers and trimers are present in higher concentrations in PS FCMs than the monomer, their migration to food is limited because of their high K values (4 × 10(2) to 2 × 10(6)) and their low diffusion coefficients in PS products. Additionally, diffusion coefficients calculated using USFDA-recommended food simulants and Arrhenius plots describing the temperature dependence of styrene dimers and trimers can be used in future calculations of dietary intake of the styrene oligomers.

  19. Molecular weight distribution of A2-B2 type condensation polymers in the presence of capping monomer C

    Institute of Scientific and Technical Information of China (English)

    张连来; 廖琦; 顾宜; 江璐霞; 蔡兴贤


    The molecular weight distribution of A2-B2 type condensation polymers in the presence of capping monomer C has been derived with statistical calculation and Monte Carlo simulation methods. The Monte Carlo simulation result agrees with that of statistical calculation. The number distribution function and weight distribution function of seven types of molecules existing in A2-B2-C system have been obtained. The effect of reactivity of capping monomer C on these distributions are discussed.

  20. Nature as a source of inspiration for cationic lipid synthesis. (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno


    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  1. Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid in a Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Yujie Huang


    Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.

  2. A review of our development of dental adhesives--effects of radical polymerization initiators and adhesive monomers on adhesion. (United States)

    Ikemura, Kunio; Endo, Takeshi


    This paper reviews the development of dental adhesives by collating information of related studies from original scientific papers, reviews, and patent literatures. Through our development, novel radical polymerization initiators, adhesive monomers, and microcapsules were synthesized, and their effects on adhesion were investigated. It was found that 5-monosubstituted barbituric acid (5-MSBA)-containing ternary initiators in conjunction with adhesive monomers contributed to effective adhesion with good polymerization reactivity. Several kinds of novel adhesive monomers bearing carboxyl group, phosphonic acid group or sulfur-containing group were synthesized, and investigated their multi-purpose bonding functions. It was suggested that the flexible methylene chain in the structure of adhesive monomers played a pivotal role in their enhanced bonding durability. It was found that the combination of acidic monomers with sulfur-containing monomer markedly improved adhesion to enamel, dentin, porcelain, alumina, zirconia, non-precious metals and precious metals. A new poly(methyl methacrylate) (PMMA)-type adhesive resin comprising microencapsulated polymerization initiators was also found to exhibit both good formulation stability and excellent adhesive property.

  3. High-resolution structure of a retroviral protease folded as a monomer

    Energy Technology Data Exchange (ETDEWEB)

    Gilski, Miroslaw [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland); Kazmierczyk, Maciej; Krzywda, Szymon [A. Mickiewicz University, 60-780 Poznan (Poland); Zábranská, Helena [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Cooper, Seth; Popović, Zoran [University of Washington, Box 352350, Seattle, WA 98195 (United States); Khatib, Firas; DiMaio, Frank; Thompson, James; Baker, David [University of Washington, Box 357350, Seattle, WA 98195 (United States); Pichová, Iva [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Jaskolski, Mariusz, E-mail: [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland)


    The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. Mason–Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C{sup α} deviations are large and the active-site ‘DTG’ loop (here NTG) deviates up to 2.7 Å from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 Å) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections

  4. Glucagon stop-go kinetics supports a monomer-trimer fibrillation model

    CERN Document Server

    Kosmrlj, Andrej; Kyrsting, Anders; Otzen, Daniel E; Oddershede, Lene B; Jensen, Mogens H


    We investigate in vitro fibrillation kinetics of the hormone peptide glucagon at various concentrations using confocal microscopy and determine the glucagon fibril persistence length $60 \\mu\\textrm{m}$. At all concentrations we observe that periods of individual fibril growth are interrupted by periods of stasis. The growth probability is large at high and low concentrations and is reduced for intermediate glucagon concentrations. To explain this behavior we propose a simple model, where fibrils come in two forms, one built entirely from glucagon monomers and one entirely from glucagon trimers. The opposite building blocks act as fibril growth blockers, and this generic model reproduces experimental behavior well.

  5. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic

    DEFF Research Database (Denmark)

    Lund, K.H.; Petersen, J.H.


    Migration of one or both formaldehyde and/or melamine monomers was found in seven of ten tested melamine samples bought on the Danish market. The samples were a bowl, a jug, a mug, a ladle, and different cups and plates. No violation of the European Union-specific migration limits for melamine (30...... mg kg(-1)) and formaldehyde (15 mg kg(-1)) was found after three successive exposures to the food stimulant 3% acetic acid after 2 h at 70 degrees C. To investigate the effects of long-term use, migration tests were performed with two types of cups from a day nursery. Furthermore, medium-term use...

  6. Construction of Multi-Chromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer

    CERN Document Server

    Chenu, Aurélia


    We develop a model that establishes a quantitative link between the physical properties of molecular aggregates and their constituent building blocks. The relation is built on the coherent potential approximation, calibrated against exact results, and proven reliable for a wide range of parameters. It provides a practical method to compute spectra and transfer rates in multi-chromophoric systems from experimentally accessible monomer data. Applications to F\\"orster energy transfer reveal optimal transfer rates as functions of both the system-bath coupling and intra-aggregate coherence.

  7. INS as a probe of inter-monomer angles in polymers

    CERN Document Server

    Eijck, L V; Grozema, F C; Schepper, I M D; Kearley, G J


    The angle between monomers in conjugated polymers plays an important role in their conductivity. The vibrational spectrum is sensitive to this angle and can be used to probe the distribution of angles in poorly crystalline systems. We show that the INS spectrum is correctly calculated for bithiophene and shows the molecule to be planar in the solid - in agreement with crystallographic measurements. Poor agreement between observed and calculated spectra in the 700-cm sup - sup 1 region may be due to dynamic coupling, but this does not detract from the angle-sensitivity of the spectra. (orig.)

  8. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio E-mail:; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu


    Poly({epsilon}-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  9. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers (United States)

    Yoshii, Fumio; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu


    Poly(ɛ-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  10. Construction of Multichromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer (United States)

    Chenu, Aurélia; Cao, Jianshu


    We develop a model that establishes a quantitative link between the physical properties of molecular aggregates and their constituent building blocks. The relation is built on the coherent potential approximation, calibrated against exact results, and proven reliable for a wide range of parameters. It provides a practical method to compute spectra and transfer rates in multichromophoric systems from experimentally accessible monomer data. Applications to Förster energy transfer reveal optimal transfer rates as functions of both the system-bath coupling and intra-aggregate coherence.

  11. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper


    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger...

  12. 1,3-Diphenylethenylcarbazolyl-Based Monomer for Cross-Linked Hole Transporting Layers

    Directory of Open Access Journals (Sweden)

    Maryte Daskeviciene


    Full Text Available A new cross-linkable monomer containing 1,3-diphenylethenylcarbazolyl-based hole-transporting moieties and four reactive epoxy groups, was prepared by a multistep synthesis route from 1,3-bis(2,2-diphenylethenyl-9H-carbazol-2-ol and its application for the in situ formation of cross-linked hole transporting layers was investigated. A high concentration of flexible aliphatic epoxy chains ensures good solubility and makes this compound an attractive cross-linking agent. The synthesized compounds were characterized by various techniques, including differential scanning calorimetry, xerographic time of flight, and electron photoemission in air methods.

  13. Preparation, isolation, and characterization of cutin monomers and oligomers from tomato peels. (United States)

    Osman, S F; Irwin, P; Fett, W F; O'Connor, J V; Parris, N


    Cutin in tomato peels was depolymerized in methanolic base to yield cutin monomers or a mixture of cutin oligomers. These products were isolated by typical solvent extraction methods or by precipitation, and the isolates were characterized by chromatographic and spectroscopic analyses. It was determined that the compositions of the isolates from both isolation procedures were similar, although solvent extraction gave higher yields. However, the precipitation method, which is easy to carry out and avoids the use of undesirable organic solvents, may be preferable in commercial processes for recovering these compounds.

  14. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail:; Ge Xuewu [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail:


    Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 deg. C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by {gamma}-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer (G{sub PU/monomer}) was calculated from {sup 1}H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. G{sub PU/monomer} varied as G{sub PU/styrene}(37%)>G{sub PU/butyl} {sub acrylate} {sub (BA)}(21%)>G{sub PU/methyl} {sub methacrylate} {sub (MMA)}(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

  15. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study (United States)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr


    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  16. Capturing dynamic cation hopping in cubic pyrochlores (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.


    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  17. Retention of Cationic Starch onto Cellulose Fibres (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur


    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  18. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;


    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  19. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E. (Univ. of Cincinnati, Cincinnati, OH); Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.


    The cationic technetium-99 complex trans-(/sup 99/Tc(dmpe)/sub 2/Cl/sub 2/)/sup +/, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH/sub 3/)/sub 2/P-CH/sub 2/CH/sub 2/-P(CH/sub 3/)/sub 2/, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(/sup 99m/Tc (dmpe)/sub 2/Cl/sub 2/)/sup +/, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  20. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.


    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  1. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo


    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  2. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly


    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  3. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D


    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  4. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers

    Energy Technology Data Exchange (ETDEWEB)

    Harman-Ware, Anne E. [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Foster, Cliff [Great Lakes BioEnergy Research Center, Michigan State University, East Lansing MI USA; Happs, Renee M. [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Doeppke, Crissa [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Meunier, Kristoffer [Great Lakes BioEnergy Research Center, Michigan State University, East Lansing MI USA; Gehan, Jackson [Great Lakes BioEnergy Research Center, Michigan State University, East Lansing MI USA; Yue, Fengxia [Wisconsin Bioenergy Initiative, University of Wisconsin, Madison WI USA; Lu, Fachuang [Wisconsin Bioenergy Initiative, University of Wisconsin, Madison WI USA; Davis, Mark F. [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA


    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by SS-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, including standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. The method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.

  5. Preliminary study of acrylamide monomer decomposition during methane fermentation of dairy waste sludge. (United States)

    Mroczek, Ewelina; Konieczny, Piotr; Lewicki, Andrzej; Waśkiewicz, Agnieszka; Dach, Jacek


    Polyacrylamide (PAM) used in sludge dewatering exists widely in high-solid anaerobic digestion. Acrylamide is registered in the list of chemicals demonstrating toxic, carcinogenic and mutagenic properties. Therefore, it is reasonable to ask about the mobility of such residual substances in the environment. The study was carried out to assess the impact of the mesophilic (39±1°C) and thermophilic (54±1°C) fermentation process on the level of acrylamide monomer (AMD) content in the dairy sludge. The material was analysed using high-performance liquid chromatography (HPLC) for quantification of AMD. The results indicate that the process of methane fermentation continues regardless of the temperature effects on the degradation of AMD in dairy sludge. The degree of reduction of acrylamide monomer for thermophilic fermentation is 100%, while for mesophilic fermentation it is 91%. In practice, this means that biogas technology eliminates the risk of AMD migration to plant tissue. Moreover, it should be stressed that 90% of cumulative biogas and methane production was reached one week earlier under thermophilic conditions - the dynamics of the methanisation process were over 20% faster.

  6. Analysis of lignocellulose derived phenolic monomers by headspace solid-phase microextraction and gas chromatography. (United States)

    Kolb, Michaela; Schieder, Doris; Faulstich, Martin; Sieber, Volker


    A headspace solid-phase microextraction method with subsequent GC-MS (HS-SPME/GC-MS) was established for the quantitative analysis of volatile lignin derived phenolic monomers in complex aqueous solutions. Extraction was done using a polyacrylate fiber. The optimization of HS-SPME - parameters was performed using a multi component model solution of six representative phenolic monomers identified in liquid hot water (LHW) supernatants of hydrothermally treated lignocellulosic biomass: p-coumaric acid, guaiacol, vanillin, acetosyringone, 4-hydroxy-3-methoxyphenylacetone, and acetophenone. Plackett-Burman design was applied for pre-evaluation and 2(3) central composite designs with star points for parameter optimization. LOQ (S/N>10) and LOD (S/N>3) were determined for 12 phenols yielding LOQ of <0.005-618nM and LOD of <0.005-412nM. Within-day and between-day tests (n=6) showed different results for the tested phenols. RSD ranged from 2% to 30% and recovery rates from 99% to 160% in LHW matrix. Tests on storage of LHW supernatants for several weeks indicated a considerable influence of temperature on the stability of the solutions which may even have to be taken into account for auto sampler handling. All in all the method allows a fast and solvent free analysis requiring low sample volumes making it a powerful tool for screening or high-throughput analysis of aqueous solutions of lignin derived aromatics.

  7. Short-time dynamics of monomers and dimers in quasi-two-dimensional colloidal mixtures (United States)

    Sarmiento-Gómez, Erick; Villanueva-Valencia, José Ramón; Herrera-Velarde, Salvador; Ruiz-Santoyo, José Arturo; Santana-Solano, Jesús; Arauz-Lara, José Luis; Castañeda-Priego, Ramón


    We report on the short-time dynamics in colloidal mixtures made up of monomers and dimers highly confined between two glass plates. At low concentrations, the experimental measurements of colloidal motion agree well with the solution of the Navier-Stokes equation at low Reynolds numbers; the latter takes into account the increase in the drag force on a colloidal particle due to wall-particle hydrodynamic forces. More importantly, we find that the ratio of the short-time diffusion coefficient of the monomer and that of the center of mass of the dimmer is almost independent of both the dimer molar fraction, xd, and the total packing fraction, ϕ , up to ϕ ≈0.5 . At higher concentrations, this ratio displays a small but systematic increase. A similar physical scenario is observed for the ratio between the parallel and the perpendicular components of the short-time diffusion coefficients of the dimer. This dynamical behavior is corroborated by means of molecular dynamics computer simulations that include explicitly the particle-particle hydrodynamic forces induced by the solvent. Our results suggest that the effects of colloid-colloid hydrodynamic interactions on the short-time diffusion coefficients are almost identical and factorable in both species.

  8. Structural and Vibrational Study on Monomer and Dimer Forms and Water Clusters of Acetazolamide

    Directory of Open Access Journals (Sweden)

    Aysen E. Ozel


    Full Text Available Experimental IR and Raman spectra of solid acetazolamide have been analysed by computing the molecular structures and vibrational spectra of monomer and dimer forms and water clusters of acetazolamide. The possible stable conformers of free acetazolamide molecule in the ground state were obtained by scanning the potential energy surface through the dihedral angles, D1 (1S-2C-6S-9N, D2 (4N-5C-12N-14C, and D3 (5C-12N-14C-16C. The final geometry parameters for the obtained stable conformers were determined by means of geometry optimization, carried out at DFT/B3LYP/6-31G++(d,p theory level. Afterwards the possible dimer forms of the molecule and acetazolamide-H2O clusters were formed and their energetically preferred conformations were investigated using the same method and the same level of theory. The effect of BSSE on the structure and energy of acetazolamide dimer has been investigated. The assignment of the vibrational modes was performed based on the potential energy distribution of the vibrational modes, calculated by using GAR2PED program. The experimental vibrational wavenumbers of solid acetazolamide are found to be in better agreement with the calculated wavenumbers of dimer form of acetazolamide than those of its monomeric form. NBO analysis has been performed on both monomer and dimer geometries.

  9. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. (United States)

    Lim, Hee-Woong; Uhlenhaut, N Henriette; Rauch, Alexander; Weiner, Juliane; Hübner, Sabine; Hübner, Norbert; Won, Kyoung-Jae; Lazar, Mitchell A; Tuckermann, Jan; Steger, David J


    Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR.

  10. Therapeutic TNF Inhibitors can Differentially Stabilize Trimeric TNF by Inhibiting Monomer Exchange (United States)

    van Schie, Karin A.; Ooijevaar-de Heer, Pleuni; Dijk, Lisanne; Kruithof, Simone; Wolbink, Gertjan; Rispens, Theo


    Tumor necrosis factor (TNF) is a homotrimeric cytokine that is a key mediator of inflammation. It is unstable at physiological concentrations and slowly converts into an inactive form. Here, we investigated the mechanism of this process by using a Förster resonance energy transfer (FRET) assay that allowed monitoring of monomeric subunit exchange in time. We observed continuous exchange of monomeric subunits even at concentrations of TNF high enough to maintain its bioactivity. The kinetics of this process closely corresponds with the appearance of monomeric subunits and disappearance of trimeric TNF in time at ng/ml concentrations as monitored by high-performance size-exclusion chromatography (HP-SEC). Furthermore, of the five therapeutic TNF inhibitors that are currently used in the clinic, three (adalimumab, infliximab, etanercept) were found to completely inhibit the monomer exchange reaction and stabilize TNF trimers, whereas golimumab and certolizumab could not prevent monomer exchange, but did slow down the exchange process. These differences were not correlated with the affinities of the TNF inhibitors, measured with both surface plasmon resonance (SPR) and in fluid phase using fluorescence-assisted HP-SEC. The stabilizing effect of these TNF inhibitors might result in prolonged residual TNF bioactivity under conditions of incomplete blocking, as observed in vitro for adalimumab. PMID:27605058

  11. Preparation and characterization of monomers to tetramers of a collagen-like domain from Streptococcus pyogenes. (United States)

    Peng, Yong Y; Stoichevska, Violet; Howell, Linda; Madsen, Soren; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M


    The collagen like domain Scl2 from Streptococcus pyogenes has been proposed as a potential biomedical material. It is non-cytotoxic and non-immunogenic and can be prepared in good yield in fermentation. The Scl2 collagen domain is about a quarter of the length, 234 residues, of the main collagen type, mammalian type I collagen (1014 residues) that is currently used in biomedical devices. In the present study we have made constructs comprising 1 to 4 copies of the Scl2 collagen domain, plus these same constructs with a CysCys sequence at the C-terminal, analogous to that found in mammalian type III collagens. The yields of these constructs were examined from 2 L fermentation studies. The yields of both series declined with increasing size. Circular dichroism showed that the addition of further collagen domains did not lead to a change in the melting temperature compared to the monomer domain. Addition of the CysCys sequence led to a small additional stabilization of about 2-3°C for the monomer construct when the folding (V) domain was present.

  12. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers. (United States)

    Bienert, Gerd P; Cavez, Damien; Besserer, Arnaud; Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François


    AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels.


    Institute of Scientific and Technical Information of China (English)

    M. M. Alam; M. F. Mina; F. Akhtar


    The formation of polymer and hydrogel from aqueous solutions having 20, 30 and 40% concentrations of acrylamide monomer by γ-ray irradiation processing in the dose range 0.06-30 kGy using a Co-60 source and their characterization have been observed. Polymer conversion and gel fraction are found to depend on radiation doses. Polymer conversion increases with the increase of dose, depending on the solution concentration, where maximum conversion is achieved at 0.18, 0.16 and 0.10 kGy for 20%, 30% and 40% concentrations, respectively. On the other hand, gel fraction increases with dose from the gel point (0.12 kGy) for all concentrations, where 100% conversion of gel occurs at doses ≥ 5 kGy. Tensile strength, viscosity and molecular weight (Mw) of polymer samples increase with both the dose and the concentration, showing a high value of Mw up to ≈108. Swelling of hydrogels under water with respect to time varies due to the variation of cross-linking density formed in the gels and the maximum swelling mainly occurs within 24 h. A remarkable change of surface morphology reveals characteristic features of monomer, polymer and hydrogel films.

  14. Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Ak, Metin [Middle East Technical University, Department of Chemistry, 06531 Ankara (Turkey); Pamukkale University, Department of Chemistry, 20020 Denizli (Turkey); Toppare, Levent [Middle East Technical University, Department of Chemistry, 06531 Ankara (Turkey)], E-mail:


    Star-shaped thiophene and pyrrole functionalized monomers namely 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine (TriaPy) and 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine (TriaTh) were synthesized from 2,4,6-trichloro-1,3,5-triazine, thiophen-3-ylmethanol and 4-(1H-pyrrol-1-yl)phenol. Electrochemical copolymerization of monomers with thiophene and pyrrole was achieved in tetrabutylammonium tetrafluoroborate/acetonitrile (TBAFB/AN). Resulting copolymers were characterized by Fourier transform infrared (FTIR) spectrometer, cyclic voltammetry (CV) and conductivity measurements. Spectroelectrochemical analysis reflected that copolymer films have low {lambda}{sub max} for {pi}-{pi}* electronic transitions accompanied with a rather high band gap compared to polythiophene and polypyrrole. Switching abilities of copolymer films were evaluated by a kinetic study via measuring the transmittance (%T) at the maximum contrast.

  15. Characterization of cluster/monomer ratio in pulsed supersonic gas jets (United States)

    Gao, Xiaohui; Shim, Bonggu; Wang, Xiaoming; Downer, Mike


    While Rayleigh scatter and interferometry are standard methods for determining average cluster size and total atomic density, respectively, in cluster gas jets, determination of cluster mass fraction has required additional input from gasdynamic simulations. Here we determine cluster mass fraction experimentally with fs-time-resolved measurement of refractive index using frequency domain interferometery (FDI) after ionization and heating by a pump pulse. The essence of this method is that the negative index contribution of monomer plasma appears immediately after ionization by the pump, whereas the positive contribution of clustered plasma becomes significant only after clusters expand to a Mie resonance condition, enabling separation of monomer and cluster densities in the time domain. This method allows us to investigate various influences (nozzle geometry, temperature, etc.) on cluster fraction, which varies widely in nominally identical gas jets, and is a critical parameter in realizing phase-matched harmonic generation at high laser intensity, which would lead to an efficient table-top soft X-ray source.

  16. Multiple routes and milestones in the folding of HIV-1 protease monomer.

    Directory of Open Access Journals (Sweden)

    Massimiliano Bonomi

    Full Text Available Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV-1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV-1 protease.

  17. The Optimization of Synthesizing Graft Copolymer of Starch with Vinyl Monomers

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiyu; LIU Zuoxin


    The graft copolymerization of acrylamide (AM)/acrylic acid (AA) onto starch (St-g-pAA and St-g-p(AA-co-AM)) was carried out using an orthogonal test method. The combined effects of different reaction conditions on the water absorbency of the graft copolymers were optimized through mathematical statistical methods of range and square variance analysis. The maximum water absorbency was obtained when the ratio of dried starch to distilled water was 1∶8 (w/w), the ratio of starch to monomer 1∶6 (w/w), the initiator concentration 4.40×10-3 mol/L, the crosslinker concentration 10.86×10-2 mol/L, and the basicity to AA 0.70(mol/mol). Both the graft copolymers have an excellent water absorption capacity in distilled water and in 0.9wt% NaCl solution. It was also found that in distilled water the water absorbency of St-g-pAA was higher than that of St-g-p(AA-co-AM), while in 0.9wt% NaCl solution, the situation was just the reverse. The correlation between the water absorbency and the nature of the solution and the properties of the copolymers, which is related to the properties of the monomers, was discussed. The grafting of AA and AM onto starch was confirmed by the IR spectra of St-g-pAA and St-g-p(AA-co-AM).

  18. Monomer composition of polysaccharides of seed cell walls and the taxonomy of the Vochysiaceae. (United States)

    Mayworm, M A; Buckeridge, M S; Salatino, A


    The distribution of polysaccharides from the seed cell walls of 57 samples of Vochysiaceae native to Brazil were studied, comprising 16 species distributed among the genera Callisthene, Qualea, Salvertia and Vochysia. The polysaccharides were extracted with hot water, then hydrolyzed with the resulting monomers analyzed by HPLC. All samples yielded arabinose, galactose, glucose. mannose and rhamnose, the relative amounts of each monomer, however, varying from one sample to another. Arabinose was always the predominant component, which implies that it might possibly be used as a marker of the Vochysiaceae. The quantitative distribution of monosaccharides was similar between the species of Qualea and Callisthene, characterized by the predominance of arabinose and mannose, and between the species of Salvertia and Vochysia, which contained higher amounts of arabinose and galactose. Such results are consistent with affinities inferred from floral morphology, wood anatomy and molecular data. Substantial intraspecific variation was observed for some species. UPGMA analysis based on the distribution of the monosaccharides reveals two main clusters, according to the links commented above. The resultant phenogram is not coherent with the current sectional classification of the Vochysiaceae, but the differences in the monosaccharides distribution between the two clusters are strongly supported by ANOVA.

  19. Synthesis of Molecularly Imprinted Polymers for Amino Acid Derivates by Using Different Functional Monomers

    Directory of Open Access Journals (Sweden)

    Sonia Scorrano


    Full Text Available Fmoc-3-nitrotyrosine (Fmoc-3-NT molecularly imprinted polymers (MIPs were synthesized to understand the influence of several functional monomers on the efficiency of the molecular imprinting process. Acidic, neutral and basic functional monomers, such as acrylic acid (AA, methacrylic acid (MAA, methacrylamide (MAM, 2-vinylpyridine (2-VP, 4-vinylpyridine (4-VP, have been used to synthesize five different polymers. In this study, the MIPs were tested in batch experiments by UV-visible spectroscopy in order to evaluate their binding properties. The MIP prepared with 2-VP exhibited the highest binding affinity for Fmoc-3NT, for which Scatchard analysis the highest association constant (2.49 × 104 M−1 was obtained. Furthermore, titration experiments of Fmoc-3NT into acetonitrile solutions of 2-VP revealed a stronger bond to the template, such that a total interaction is observed. Non-imprinted polymers as control were prepared and showed no binding affinities for Fmoc-3NT. The results are indicative of the importance of ionic bonds formed between the –OH residues of the template molecule and the pyridinyl groups of the polymer matrix. In conclusion, 2-VP assists to create a cavity which allows better access to the analytes.

  20. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)



    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  1. Molecular Design, Graft Polymerization and Performance Evaluation of Radiation Curable Flame Retardant Monomers Derived from Phosphorus-Nitrogen Systems (United States)

    Edwards, Brian Tyndall

    The textile industry is constantly seeking new technologies to make its production more efficient, economical and environmentally friendly. An exciting new strategy to impart value-added functional finishes to textiles is the use of radiation, such as ultraviolet (UV) light, to drive the polymerization of monomers onto the surface of the substrates. These grafted polymeric layers provide the fiber or fabric with interesting new properties, such as antimicrobial behavior, water and oil repellency or flame retardancy. With the aid of a photoinitiator, UV curing can take place very rapidly and the process is waterless and uses less energy than traditional textile wet processing. With these thoughts in mind, this research explores the molecular design, synthesis, UV induced graft polymerization and performance evaluation of nine phosphorus-based flame retardant monomers for cellulosic cotton substrates. All monomers in this work were easily prepared using one-pot reactions procedures. With the assistance of Irgacure 819 photoinitiator, seven of the nine monomers were shown to simultaneously graft and polymerize onto the surface of cotton fabrics under UV radiation. JMPRTM Pro 10 software was used to explore the effect of variables, such as monomer concentration, photoinitiator concentration and UV exposure time, on the yield of the grafted polymeric layer. Burn testing of the treated fabrics in the vertical, 45° and horizontal orientations showed that all nine monomers were effective flame retardants that function via the condensed phase mechanism by encouraging the formation of nonflammable char. These burn test results were validated by thermogravimetric analysis, which demonstrated quantitatively that all nine monomers strongly promote the generation of a protective char. Finally, scanning electron microscopy was used to examine the surface morphology of the treated fabrics and visualize the grafted polymeric layer.

  2. Detection and quantification of monomers in unstimulated whole saliva after treatment with resin-based composite fillings in vivo. (United States)

    Michelsen, Vibeke B; Kopperud, Hilde B M; Lygre, Gunvor B; Björkman, Lars; Jensen, Einar; Kleven, Inger S; Svahn, Johanna; Lygre, Henning


    Resin-based dental restorative materials contain allergenic methacrylate monomers, which may be released into saliva after restorative treatment. Monomers from resin-based composite materials have been demonstrated in saliva in vitro; however, studies analyzing saliva after restorative therapy are scarce. The aim of this study was to quantify methacrylate monomers in saliva after treatment with a resin-based composite filling material. Saliva was collected from 10 patients at four start points--before treatment, and 10 min, 24 h, and 7 d after treatment--and analysed by combined chromatography/mass spectrometry. The monomers bisphenol-A diglycidyl methacrylate (Bis-GMA), 2-hydroxyethyl methacrylate (HEMA), and urethane dimethacrylate (UDMA) were detected and quantified in the samples collected shortly (10 min) after treatment. The amounts detected ranged from 0.028 to 9.65 μg ml(-1) for Bis-GMA, from 0.015 to 0.19 μg ml(-1) for HEMA, and from 0.004 to 1.2 μg ml(-1) for UDMA. Triethyleneglycol dimethacrylate (TEGDMA) was detected in four of the samples. Ethoxylated bisphenol-A dimethacrylate (Bis-EMA) was not detected. Monomers were not detected in saliva samples collected before treatment, or 24 h or 7 d after treatment, with the exception of one sample, 24 h after treatment, in which HEMA was detected. In conclusion, monomers from the investigated resin-based composite and adhesive system were present in saliva shortly after treatment. One week after treatment, no monomers could be detected in patients' saliva samples.

  3. Final report of the safety assessment of methacrylate ester monomers used in nail enhancement products. (United States)


    Methacrylate ester monomers are used in as artificial nail builders in nail enhancement products. They undergo rapid polymerization to form a hard material on the nail that is then shaped. While Ethyl Methacrylate is the primary monomer used in nail enhancement products, other methacrylate esters are also used. This safety assessment addresses 22 other methacrylate esters reported by industry to be present in small percentages as artificial nail builders in cosmetic products. They function to speed up polymerization and/or form cross-links. Only Tetrahydrofurfuryl Methacrylate was reported to the FDA to be in current use. The polymerization rates of these methacrylate esters are within the same range as Ethyl Methacrylate. While data are not available on all of these methacrylate esters, the available data demonstrated little acute oral, dermal, or i.p. toxicity. In a 28-day inhalation study on rats, Butyl Methacrylate caused upper airway irritation; the NOAEL was 1801 mg/m3. In a 28-day oral toxicity study on rats, t-Butyl Methacrylate had a NOAEL of 20 mg/kg/day. Beagle dogs dosed with 0.2 to 2.0 g/kg/day of C12 to C18 methacrylate monomers for 13 weeks exhibited effects only in the highest dose group: weight loss, emesis, diarrhea, mucoid feces, or salivation were observed. Butyl Methacrylate (0.1 M) and Isobutyl Methacrylate (0.1 M) are mildly irritating to the rabbit eye. HEMA is corrosive when instilled in the rabbit eye, while PEG-4 Dimethacrylate and Trimethylolpropane Trimethacrylate are minimally irritating to the eye. Dermal irritation caused by methacrylates is documented in guinea pigs and rabbits. In guinea pigs, HEMA, Isopropylidenediphenyl Bisglycidyl Methacrylate, Lauryl Methacrylate, and Trimethylolpropane Trimethacrylate are strong sensitizers; Butyl Methacrylate, Cyclohexyl Methacrylate, Hexyl Methacrylate, and Urethane Methacrylate are moderate sensitizers; Hydroxypropyl Methacrylate is a weak sensitizer; and PEG-4 Dimethacrylate and

  4. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar


    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  5. How mobile are sorbed cations in clays and clay rocks? (United States)

    Gimmi, T; Kosakowski, G


    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  6. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)



    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  7. Interactions between cationic liposomes and drugs or biomolecules. (United States)

    Carmona-Ribeiro, A M


    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  8. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An


    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  9. Quantitative Analysis of Volatile Impurities in Diallyldimethylammonium Chloride Monomer Solution by Gas Chromatography Coupled with Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Cheng Liu


    Full Text Available The quantitative analysis method for volatile impurities in diallyldimethylammonium chloride (DADMAC monomer solution was established in this paper. The volatile impurities were quantitatively analyzed with trichloromethane as extraction solvent and n-hexane as internal standard by using gas chromatography (GC coupled with solvent extraction, and the chromatographic conditions, quantitative methods, and extraction conditions were systematically investigated in detail. The results showed that excellent linear relationships of 5 volatile impurities (dimethylamine, allyldimethylamine, allyl chloride, allyl alcohol, and allyl aldehyde were obtained in the range of 1–100 mg·L−1. The method also showed good specificity, recovery (95.0%–107.5%, and relative standard deviation (RSD, 1.40%–7.67%. This method could accurately detect the whole volatile impurities in DADMAC monomer solution quantitatively in one time with a low detection limit. Furthermore, this method is conducive to the preparation of highly pure DADMAC monomer and the development of national and international standards of the DADMAC monomer product quality, and the results could provide a strong foundation for the regulation and mechanism research of impurities on monomer reactivity in polymerization.

  10. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: [USEPA, Office of Research and Development, Cincinnati, OH (United States)


    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  11. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.


    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  12. Thermal and Optical Properties of CdS Nanoparticles in Thermotropic Liquid Crystal Monomers

    Directory of Open Access Journals (Sweden)

    Marc Alnot


    Full Text Available Two new mesogenic monomers, namely 3,3’-dimethoxy-4,4’-di(hydroxyhexoxy-N-benzylidene-o-Tolidine (Ia and 4,4’-di(6-hydroxyhexoxy-N-benzylidene-o-Tolidine (IIa, were reacted with cadmium sulfide (CdS via an in situ chemical precipitation method in ethanol to produce CdS nanocomposites. A series of different mass compositions of CdS with Ia and IIa ranging from 0.1:1.0 to 1.0:1.0 (w/w were prepared and characterized using X-ray Diffraction (XRD, Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR, Transmission Electron Microscopy (TEM, Polarizing Optical Microscopy (POM and Differential Scanning Calorimetry (DSC, X-ray Photoelectron Spectroscopy (XPS and Photoluminescence Spectroscopy (PL. XRD showed that the broad peaks are ascribed to the formation of cubic CdS nanoparticles in both Ia and IIa. The average particle size for both nanocomposites was less than 5 nm with a narrower size distribution when compared with pure CdS nanoparticles. The analyses from POM and DSC demonstrated that mass composition from 0.1:1.0 up to 0.5:1.0 of CdS:Ia nanocomposites showed their enantiotropic nematic phase. On the other hand, polarizing optical microscopy (POM for IIa nanocomposites showed that the liquid crystal property vanished completely when the mass composition was at 0.2:1.0. PL emissions for CdS: Ia or IIa nanocomposites indicated deep trap defects occurred in these both samples. The PL results revealed that addition of CdS to Ia monomers suppressed the photoluminescence intensity of Ia. However, the introduction of CdS to IIa monomers increased the photoluminescence and was at a maximum when the mass composition was 0.3:1.0, then decreased in intensity as more CdS was added. The XPS results also showed that the stoichiometric ratios of S/Cd were close to 1.0:1.0 for both types of nanocomposites for a mass composition of 1.0:1.0 (CdS:matrix.

  13. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.


    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.


    Directory of Open Access Journals (Sweden)

    Elina Orblin


    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  15. Cationic Noncovalent Interactions: Energetics and Periodic Trends. (United States)

    Rodgers, M T; Armentrout, P B


    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  16. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard


    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  17. Monomer Basis Representation Method For Calculating The Spectra Of Molecular Clusters I. The Method And Qualitative Models

    CERN Document Server

    Ocak, Mahir E


    Firstly, a sequential symmetry adaptation procedure is derived for semidirect product groups. Then, this sequential symmetry adaptation procedure is used in the development of new method named Monomer Basis Representation (MBR) for calculating the vibration-rotation-tunneling (VRT) spectra of molecular clusters. The method is based on generation of optimized bases for each monomer in the cluster as a linear combination of some primitive basis functions and then using the sequential symmetry adaptation procedure for generating a small symmetry adapted basis for the solution of the full problem. It is seen that given an optimized basis for each monomer the application of the sequential symmetry adaptation procedure leads to a generalized eigenvalue problem instead of a standard eigenvalue problem if the procedure is used as it is. In this paper, MBR method will be developed as a solution of that problem such that it leads to generation of an orthogonal optimized basis for the cluster being studied regardless of...

  18. Molecular alignment enhancement phenomenon of polymer formed from a liquid crystal monomer in a liquid crystal solvent (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kawakita, Masahiro; Kikuchi, Hiroshi


    We report an abnormal alignment enhancement phenomenon of polymer molecules. The alignment order of a rigid-skeleton polymer made from a liquid crystalline monomer in a low-molecular-weight liquid crystal solvent was drastically enhanced with increasing temperature, even though the alignment order of the solution of the liquid crystal and monomer decreased. From polymer molecular alignment observations using polarizing Raman scattering microscopy, it was found that the polymer alignment order was three times greater than that of the original aligned monomer and polymer. This super alignment technique of polymer using a molecular-scaled self-assembly mechanism is applicable to the formation of electrically and/or optically functional nanopolymer wires.

  19. Quantitation of oxidized triglyceride monomers and dimers as an useful measurement for early and advanced stages of oxidation

    Directory of Open Access Journals (Sweden)

    Márquez-Ruiz, G.


    Full Text Available Quantitation of oxidized triglyceride monomers and dimers is reported as a good measurement for early and advanced stages of oxidation. Applicability of this approach to follow-up oxidation was tested in samples of trilinolein and methyl linoleate stored at either room temperature or 60°C for different periods of time. Oxidized monomers, dimers and polymers were determined in 50 mg-samples by adding monostearin as internal standard and applying a combination of adsorption chromatography, using silica cartridges, followed by high-performance size-exclusion chromatography. Additionally, peroxide values and tocopherol contents were measured. Results showed that a significant rise of dimeric compounds denoted the end of the induction period while oxidized monomers were the only group of compounds showing a progressive increase during the early stages of oxidation.

  20. Crosslinking-property relationships in PMR polyimide composites. I. [polymerization of monomer reactants (United States)

    Pater, R. H.; Whitley, K.; Morgan, C.; Chang, A.


    The effect of the crosslink density of the matrix on physical and mechanical properties of a graphite-fiber-reinforced PMR (for polymerization of monomer reactants) polyimide composites during isothermal aging was investigated in experiments where unidirectional composite specimens of Celion 6000/PMR-P1 were isothermally exposed at 288 C in air for various time periods up to 5000 hrs. It was found that, as the crosslink density increased, the glass transition temperature, density, and elevated-temperature interlaminar shear strength of a composite increased, while the initial moisture absorption and the coefficient of thermal expansion decreased. However, after reaching the highest possible matrix crosslink density, several of the composite properties began to deteriorate rapidly.

  1. Progress of Research in Treatment of Hyperlipidemia by Monomer or Compound Recipe of Chinese Herbal Medicine

    Institute of Scientific and Technical Information of China (English)

    DOU Xiao-bing; WO Xing-de; FAN Chun-lei


    Hyperlipidemia (HLP) is the No.1 risk factor for patients with atherosclerosis (AS) and is directly related to the occurrence of coronary artery disease (CAD) and cerebrovascular disease. Therefore, prevention and treatment of AS is of great importance and of practical significance in controlling the incidence and mortality of CAD. With its peculiar syndrome-dependent therapy, traditional Chinese medicine (TCM) has accumulated abundant practical experiences in this field and good clinical effects have been achieved. Chinese herbal medicine, with its particularly unique advantages and high potentials yet to be tapped, displays its huge strength in HLP prevention and treatment. The progress of studies concerning prevention and treatment of HLP by Chinese herbal medicines, in the form of monomers or compound recipes, is reviewed in this paper.

  2. Linear Copolymer of N-Isopropylacrylamide and 2-Hydroxyethylacrylate: Synthesis, Characterization and Monomer Reactivity Ratios

    Directory of Open Access Journals (Sweden)

    Nakan U


    Full Text Available Сopolymerization of N-isopropylacrylamide (NIPAAm with 2-hydroxyethyl acrylate (2-HEA carried out by solvent ethanol solution method, at 600C, using Azoisobutyronitrile (AIBN as an initiator. The hydrophilic copolymers were characterized by elemental analysis, DSC, TGA and turbidimetric method. The results showed thermal stability increase with increase of NIPAAm in the copolymers. It was found that copolymer solutions have lower critical solution temperature (by turbidimetric analysis. The reactivity ratios of monomers were determined using linear methods like Fineman-Ross and Kelen-Tudos. The reactivity ratios of r1 and r2 were found to be 0,86, 0,72 and 1,02, 1,04 respectively.

  3. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers. (United States)

    Dubois, F; Derouiche, Y; Leblond, J M; Maschke, U; Douali, R


    The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009)10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.

  4. Microporous Polymers from a Carbazole-Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake. (United States)

    Zhai, Tian-Long; Tan, Liangxiao; Luo, Yi; Liu, Jun-Min; Tan, Bien; Yang, Xiang-Liang; Xu, Hui-Bi; Zhang, Chun


    Two kinds of novel organic microporous polymers TCPs (TCP-A and TCP-B) were prepared by two cost-effective synthetic strategies from the monomer of tricarbazolyltriptycene (TCT). Their structure and properties were characterized by FT-IR, solid (13) C NMR, powder XRD, SEM, TEM, and gas absorption measurements. TCP-B displayed a high surface area (1469 m(2)  g(-1) ) and excellent H2 storage (1.70 wt % at 1 bar/77 K) and CO2 uptake abilities (16.1 wt % at 1 bar/273 K), which makes it a promising material for potential application in gas storage.

  5. Synthesis of fluorinated dimethacrylate monomer and its application in preparing Bis-GMA free dental resin. (United States)

    Yin, Mei; Guo, Sen; Liu, Fang; He, Jingwei


    With the aim to reduce human exposure to Bis-phenol A derivatives, a novel fluorinated dimethacrylate monomer FUDMA was synthesized and mixed with triethyleneglycol dimethacrylate (TEGDMA) to prepare 2,2-bis[4-(2-hydroxy-3-methacryloy- loxypropyl)phenyl]propane (Bis-GMA) free dental resin system. Physicochemical properties, such as double bond conversion (DC), polymerization shrinkage (VS), water sorption (WS) and solubility (SL), flexural strength (FS) and modulus (FM), and fracture energy of FUDMA/TEGDMA resin system were investigated. Bis-GMA/TEGDMA resin system was used as a control. The results showed that, compared with Bis-GMA/TEGDMA resin system, FUDMA/TEGDMA had advantages like higher DC, lower VS, and higher fracture energy, but had no disadvantages. Therefore, FUDMA/TEGDMA resin system had better comprehensive physicochemical properties than Bis-GMA/TEGDMA resin system, and FUDMA had potential to be used as a substitute for Bis-GMA.

  6. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)


    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  7. Formation of surface relief gratings with homeotropically oriented photopolymer from a photocross-linkable organic monomer. (United States)

    Zhao, Dongyu; Xu, Zeda; Wang, Guojie; Cao, Hui; Li, Wenbo; He, Wanli; Huang, Wei; Yang, Zhou; Yang, Huai


    In this communication, we describe a simple process for the generation of surface relief gratings (SRG). SRG are fabricated from a photocross-linkable organic monomer PDACE (4-propyldiphenylacetylenecarboxylic acid cinnamyl ester) with cinnamyl ester and tolane groups, by using a patterned non-polarized UV light irradiation. The patterns of the surface relief structures can be easily controlled and the modulation depth can reach 130 nm. Moreover, it is interestingly observed that the photopolymer of the SRG exhibits distinctive characteristics including homeotropic orientation and fluorescence properties as a result of the photocross-linking of the dual photoreactive groups of PDACE. Finally, the mechanism of fabrication of SRG from PDACE is discussed with mean-field theory.

  8. Extraction, characterization of components, and potential thermoplastic applications of camelina meal grafted with vinyl monomers. (United States)

    Reddy, Narendra; Jin, Enqi; Chen, Lihong; Jiang, Xue; Yang, Yiqi


    Camelina meal contains oil, proteins, and carbohydrates that can be used to develop value-added bioproducts. In addition to containing valuable polymers, coproducts generated during the production of biofuels are inexpensive and renewable. Camelina is a preferred oilseed crop for biodiesel production because camelina is easier to grow and provides better yields. In this research, the components in camelina meal were extracted and studied for their composition, structure, and properties. The potential of using the camelina meal to develop thermoplastics was also studied by grafting various vinyl monomers. Oil (19%) extracted from camelina meal could be useful for food and fuel applications, and proteins and cellulose in camelina meal could be useful in the development of films, fibers, and thermoplastics. Thermoplastic films developed from grafted camelina meal had excellent wet tensile properties, unlike thermoplastics developed from other biopolymers. Camelina meal grafted with butylmethacrylate (BMA) had high dry and wet tensile strengths of 53.7 and 17.3 MPa, respectively.

  9. Radiation crosslinking of styrene-butadiene rubber containing waste tire rubber and polyfunctional monomers (United States)

    Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama


    The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.

  10. New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix (United States)

    Hiroki, A.; Yamashita, S.; Sato, Y.; Nagasawa, N.; Taguchi, M.


    New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

  11. Enzymatic polymerization of bio-based monomers for applications in hydrogels and coatings

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Nguyen, Hiep Dinh; Storgaard, Thomas

    Enzymatic polymerization has been gradually building up during the last 30 years as an alternative to classical polyesterificaiton processes, which permits preparation of polyesters under more benign conditions with high selectivity1. In particular, the high selectivity is an interesting property...... of the enzymatic catalysts that can provide control over polymer structure in functional polymers. Lipase catalyzed polymerizations (specifically CALB) has been applied to prepare functional polyesters and to evaluate the possibilities of using less stable bio-based monomers such as itaconic acid or its...... on PEG have been prepared and functionalized through aza-michael additions as well as through thiol-ene chemistry2. Thereby the enzymatically prepared polymer backbone can be considered a scaffold for functional water soluble materials. Finally, these polymers have been applied for preparation...

  12. Synergistic Hypergolic Ignition of Amino End Group in Monomers and Polymers

    Directory of Open Access Journals (Sweden)

    S. P. Panda


    Full Text Available A few monomers, oligomers and polymers with amino end groups have been discovered to undergo synergistic ignition with red fuming nitric acid (RFNA when mixed with large quantities of magnesium powder. Aluminium powder under similar conditions does not ignite the mixture while powders of Zn, Co and Cu cause the ignition. Amongst the polymers used in the experiment commercially available nylon 6 is the most important which may be used as a binder for rocket propellant fuel grains, hypergolic with RFNA. Degree of polymerisation or the chain length of the polymers does not drastically affect the synergistic ignition of the polymer mixture with magnesium powder but high molecular weight and fully aromatised polymers like Kevlar and Nomex fail to ignite under similar conditions. Based upon the earlier work of the authors, explanations for the phenomena oberved have been provided in terms of creation of hot spots leading to ignition at the amino end groups.

  13. Water and acrylamide monomer transfer rates from a settling basin to groundwaters. (United States)

    Binet, Stéphane; Bru, Kathy; Klinka, Thomas; Touzé, Solène; Motelica-Heino, Mickael


    The aim of this paper was to estimate the potential leakage of acrylamide monomer, used for flocculation in a settling basin, towards the groundwaters. Surface-groundwater interactions were conceptualized with a groundwater transport model, using a transfer rate to describe the clogged properties of the interface. The change in the transfer rate as a function of the spreading of the clogged layer in the settling basin was characterized with respect to time. It is shown that the water and the Acrylamide transfer rate are not controlled by the spreading of the clogged layer until this layer fully covers the interface. When the clogged layer spreads out, the transfer rate remains in the same order of magnitude until the area covered reaches 80 %. The main flux takes place through bank seepage. In these early stage conditions of a working settling basin, the acrylamide flux towards groundwaters remains constant, at close to 10 g/year (±5).

  14. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers (United States)

    Dubois, F.; Derouiche, Y.; Leblond, J. M.; Maschke, U.; Douali, R.


    The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009), 10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.

  15. Environmental effects on the lignin model monomer, vanillyl alcohol, studied by raman spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Kiki Lyster; Barsberg, Søren Talbro


    units, respectively. Raman spectroscopy gives valuable knowledge on lignin and has a large potential for further developments. Thus in the present work we show how the use of electronic structure theory can support the study of environmental effects on lignin Raman bands. Raman spectra of the lignin...... model monomer, vanillyl alcohol (G type), dissolved in different solvents were compared to investigate such effects on the Raman band shapes and positions. Density functional theory combined with the polarizable continuum model were applied to assign the observed bands and tested for prediction accuracy....... Two ring deformation modes at 1600 cm–1 showed strong dependency on solvent ability to act as hydrogen bond donor, and this has to be considered in addition to substitutional effects on these modes....

  16. Lurgi MegaMethanol technology. Delivering the building blocks for the future fuel and monomer demand

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Lurgi AG, Frankfurt/Main (Germany)


    The paper describes the central role of methanol within a changing environment with respect to feedstock availability as well as steadily growing demand in fuel and monomer demand. The current large-scale production facilities are described with respect to the technological challenges in order to ensure the availability of sufficient methanol for down-stream applications. Different down-stream applications are described which clearly confirm that methanol is the dominant C1-building block due to its chemical flexibility. It is concluded that by means of the implementation of two MTP (Methanol to Propylene) projects in China initiated the era of ''down-stream methanol'' has begun in the industry. (orig.)

  17. The Effect of Tripterygium Wilfordii Monomer T4 on Rat Spermatid Nuclear Protein Transition

    Institute of Scientific and Technical Information of China (English)

    戴文平; 刘平; 陈啸梅; 薛社普


    Rat testis elongating spermatids and epididymal sperms were collected after 7 weeks of treatment with Tripterygium wilfordii monomer T4. Total nuclear basic protein (TNBP) was extracted from the elongating spermatid nuclei and the sperm nuclei isolated by sonication. Polyacrylamide gel electrophoresis has beep used to separate the TNBP and individual proteins were quantified by scanning microdensitometry. It was found that the content of protamine was reduced and the TH (Total Histones) /RP (Rat Protamine) ratios were increased following treatment in the testis elongating spermatids, and same result was found in the epididymal sperms. These results suggest that the interruption of nuclear protein transition of testis spermatids induced by T4 might cause aberrant epididymal sperm nuclear protein and lead to infertility. The relationship between protamine and fertility was discussed.

  18. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene. (United States)

    Kim, Tae Hyun; Park, Jong Ho; Kim, Moon Chul; Cho, Sung Ho


    Treatment with the cutin monomer 16-hydroxypalmitic acid (HPA), a major component of cutin, elicited the synthesis of hydrogen peroxide (H2O2) in rice leaves and induced the expression of the lipid transfer protein gene OsLTP5. Treatment with HPA also induced expression of OsLTP1, OsLTP2, and the pathogen-related PR-10 genes to a lesser extent. The OsLTP5 transcript was expressed prominently in stems and flowers, but was barely detectable in leaves. Expression of OsLTP5 was induced in shoots in response to ABA and salicylic acid. It is proposed that HPA is perceived by rice as a signal, inducing defense reactions.

  19. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Mohamad Irfan Fathurrohman


    Full Text Available The vulcanization kinetics of Ethylene-propylene diene monomer (EPDM rubber thermal insulation was studied by using rheometer under isothermal condition at different temperatures. The rheometry analysis was used to determining the cure kinetic parameters and predicting the cure time of EPDM thermal insulation. The experimental results revealed that the curing curves of EPDM thermal insulation were marching and the optimum curing time decreased with increasing the temperature. The kinetic parameters were determined from the autocatalytic model showed close fitting with the experimental results, indicating suitability of autocatalytic model in characterizing the cure kinetics. The activation energy was determined from the autocatalytic model is 46.3661 kJ mol-1. The cure time were predicted from autocatalytic model and the obtained kinetic parameter by using the relationship among degree of conversion, cure temperature, and cure time. The predictions of cure time provide information for the actual curing characteristic of EPDM thermal insulation. The mechanical properties of EPDM thermal insulation with different vulcanization temperatures showed the same hardness, tensile strength and modulus at 300%, except at temperature 70 °C, while the elongation at breaking point decreased with increasing temperature of vulcanization. © 2015 BCREC UNDIP. All rights reservedReceived: 8th April 2014; Revised: 7th January 2015; Accepted: 16th January 2015How to Cite: Fathurrohman, M.I., Maspanger, D.R., Sutrisno, S. (2015. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation. Bulletin of Chemi-cal Reaction Engineering & Catalysis, 10 (2, 104-110. (doi:10.9767/bcrec.10.2.6682.104-110Permalink/DOI: 

  20. Association of Fibrin Monomer Polymerization Function, Cerebrovascular Risk Factors and Ischemic Cerebrovascular Disease in Old People

    Institute of Scientific and Technical Information of China (English)

    洪梅; 魏文宁; 李红戈; 杨锐; 杨焰


    Summary: In order to investigate the association of fibrin monomer polymerization function (FMPF)with traditional cerebrovascular risk factors and ischemic cerebrovascular disease in old people, 1 : 1paired case-control comparative study was performed for FMPF and traditional cerebrovascular riskfactors on 110 cases of old ischemic cerebrovascular disease and 110 controls matched on age, sex andliving condition. The results showed that cerebrovascular risk factors were more prevalent in casegroup than in control group. In the case group, FMPF was significantly higher than in controlgroup. There was a significant positive correlation between hypertension and fibrin monomer poly-merization velocity (FMPV), hypertension and fibrinogen (Fbg), alcohol consumption and Fbg, butno significant correlation between diabetic mellitus, smoking and FMPF was found. Among the pa-rameters of blood lipids, there were significant positive correlations between total cholesterol (TC)and parameters of FMPF to varying degrees, triglycerides (TG) and FMPV, TG and Fbg. Our re-sults also showed there were significant linear trends between TC and FMPV (P<0. 001), TC andFbg (P=0. 0087), TG and FMPV/Amax (maximum absorbance)(P=0. 0143) respectively. Multi-ple logistic regression analysis revealed that FMPF in case group remained significantly higher thancontrol group after adjustment of all risk factors that were significant in univariate analysis. It wasconcluded that there is a possible pathophysiological link between FMPF and cerebrovascular risk fac-tors. An elevated FMPF is associated with ischemic cerebrovascular disease and an independent riskfactor of this disease. In old people, detection of FMPF might be a useful screening to identify indi-viduals at increased cerebrothrombotic risk.

  1. Identification and quantification of monomers released from dental composites using HPLC

    Directory of Open Access Journals (Sweden)

    Lucí Regina Panka Archegas


    Full Text Available The aim of this study was to detect and quantify the main residual monomers released from composites, using high performance liquid chromatography (HPLC. Discs were made with dental composites (Herculite XRV, Tetric Ceram and Filtek Z250 and immersed in deionized water at 37ºC for 28 days, with water changes in 1, 7, 14 and 21 days. The mean concentration of residual monomers were subject to the Kruskal-Wallis test (pA liberação de monômeros residuais pode afetar o comportamento clínico e a biocompatibilidade dos materiais resinosos. O objetivo deste estudo foi detectar e quantificar os principais monômeros residuais liberados de resinas compostas, usando cromatografia líquida de alta performance (HPLC. Discos foram construídos de resinas compostas de uso odontológico (Herculite XRV, Tetric Ceram and Filtek Z250 e imersos em água deionizada a 37ºC durante 28 dias, com mudanças de água em 24 horas, 7, 14 e 21 dias. As concentrações médias dos monômeros residuais foram submetidas ao teste de Kruskal-Wallis (p<0,05. Tetric Ceram apresentou as maiores concentrações de monômeros lixiviados. Bis-GMA foi o monômero liberado em menores concentrações para todos os materiais. Não houve diferença estatística significante entre TEGDMA e UDMA. A maioria dos monômeros demonstrou máxima concentração no período de 7 dias. A análise por meio de HPLC identificou Bis-GMA, TEGDMA e UDMA em quantidades detectáveis para todas as resinas compostas testadas.

  2. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease. (United States)

    Louis, John M; Tözsér, József; Roche, Julien; Matúz, Krisztina; Aniana, Annie; Sayer, Jane M


    During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.

  3. Structural effect of monomer type on properties of copolyimides and copolyimide-silica hybrid materials

    Directory of Open Access Journals (Sweden)

    Kizilkaya Canan


    Full Text Available In this work, the effect of two different diamine monomers, containing phosphine oxide, on thermal, mechanical and morphological properties of copolyimides and their hybrid materials was investigated. Gas separation properties of the synthesized copolyimides were also analysed. Two different diamine monomers with phosphine oxide were bis(3-aminophenyl phenylphosphine oxide (BAPPO and bis(3-aminophenoxy-4-phenyl phenylphosphine oxide (m-BAPPO. In the synthesis of copolyimides 3,3’-diamino-diphenyl sulfone (DDS was also used as the diamine, as well as 2,2’-bis(3,4-dicarboxyphenylhexafluoropropane dianhydride (6FDA. Copolyimide films were prepared by thermal imidization. Hybrid materials containing 5 % SiO2 were synthesised further by sol-gel technique. The Fourier-transform infrared spectroscopy (FTIR, Nuclear magnetic resonance spectroscopy (NMR confirmed the expected structure. Dynamic mechanical analysis (DMA demonstrated that m-BAPPO based copolyimides had lower glass transition temperatures (Tg than BAPPO based copolyimides. m-BAPPO containing copolyimide without silica shifted the thermal decomposition temperature to a higher value. The moduli and strength values of BAPPO diamine containing copolyimide and its hybrid were higher than those of m-BAPPO containing materials. The contact angle measurements showed the hydrophobicity. Scanning electron microscope (SEM analysis exhibited the silica particles dispersion in the copolyimides. These copolyimides may be used in the coating industry. The CO2 permeability and the permselectivity were the highest among the other values in this study, when m-BAPPO containing copolyimide in the absence of silica was used. The gas permeabilities obtained from this work were in this decreasing order: PCO2 > PO2 > PN2.

  4. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid


    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  5. Effect of microwave postpolymerization treatment on residual monomer content and the flexural strength of autopolymerizing reline resin

    Directory of Open Access Journals (Sweden)

    Patil Padmakar


    Full Text Available Background : Microwave postpolymerization has been suggested as a method to improve the flexural strength of an autopolymerizing denture reline resin. However, the effect of microwave postpolymerization on the residual monomer content and its influence on flexural strength have not been investigated. Objectives : This study analyzed the effect of microwave postpolymerization on the residual monomer content and its influence on the flexural strength of an autopolymerizing reline resin (Denture Liner. Materials and Methods : A total of 70 specimens (64 Χ 10 Χ 3.3 mm were polymerized according to the manufacturer′s instructions and divided into 7 groups (n = 10. Control group specimens were not subjectedto any further processing. Before testing, the specimens were subjected to postpolymerization in a microwave oven using different power (550 and 650 W and time (3, 4, and 5 min settings. Two specimens of each group were then manually ground into fine powder and samples extracted from the specimens using reflux method. The samples were then subjected to gas chromatography for residual monomer determination in area%. Eight specimens were subjected to a three-point bending device with a span of 50 mm and crosshead speed of 5 mm/min, and the flexural strength was determined in MPa. Data analyses included Student′s t-test and one-way analysis of variance. Results : For the Denture Liner reline resin, the residual monomer content decreased and the flexural strength increased significantly with the application of microwave irradiation using different time/power combinations. The specimens with the lowest residual monomer content were the similar specimens which presented with the highest flexural strength. Conclusion : Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of denture liner (at 650 W for 5 min by reducing the residual monomer content by further polymerization at free radical sites.

  6. Cation exchange properties of zeolites in hyper alkaline aqueous media. (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric


    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  7. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation. (United States)

    Uppu, Divakara S S M; Haldar, Jayanta


    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  8. Neutron diffraction investigations of kesterites: cation order and disorder

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, Susan [Free University Berlin, Institute of Geological Sciences (Germany); Tovar, Michael [Helmholtz Zentrum Berlin fuer Materialien und Energie (Germany); Levcenco, Sergej; Napetrov, Alexander; Arushanov, Ernest [Academy of Sciences of Moldova Republic, Institute of Applied Physics, Chisinau (Moldova)


    The quaternary chalcogenides Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} have newly attracted attention as possible absorber materials in thin film solar cells. They crystallize in the kesterite type (space group I anti 4) or stannite type structure (space group I anti 42m), which are described as an ordered distribution of the cations on different structural sites. Cation disorder may cause site defects and hence influences the electronic properties of the material. Thus the degree of cation order/disorder plays a crucial role and was therefor in the focus of the presented investigations. A differentiation between the isoelectronic cations Cu{sup +} and Zn{sup 2+} is not possible using X-ray diffraction due to their similar scattering power. But their neutron scattering lengths are different, thus neutron diffraction opens the possibility to determine the cation distribution in these compounds. A simultaneous Rietveld analysis of neutron and X-ray powder diffraction data revealed that in dependence on the thermal history of the samples cation disorder appears. The correlation trend between cation order/disorder and the sample growth method (solid state synthesis, Bridgman method) are discussed.

  9. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K


    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  10. Atmospheric CO2 enrichment facilitates cation release from soil. (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S


    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  11. Cations bind only weakly to amides in aqueous solutions. (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S


    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  12. Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces. (United States)

    Zhang, Zibin; Yu, Guocan; Han, Chengyou; Liu, Jiyong; Ding, Xia; Yu, Yihua; Huang, Feihe


    Two new copillar[5]arenes were prepared. They are arranged in two completely different motifs, a cyclic dimer containing two monomers with two different conformations that are mirror images of each other and linear supramolecular polymers in the solid state. Not only has it been shown that to form this kind of dimer is a unique feature associated with pillar[5]arene macrocycles but also it was demonstrated that weak van der Waals forces can be used to control the self-organization of monomers during their supramolecular polymerization process.

  13. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.


    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  14. Analysis of Doppler Radar Data about a Super Monomer Hailstorms in the Northeastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)


    [Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine data and radar data,the low vortex shear line type and the super monomer hailstorm around the Zhongchuan Airport in the Lanzhou City on September 6,2010 were expounded.Basic product and secondary product of Doppler radar were used in this process to reflect the characteristics of strong convecti...

  15. Cationic starches on cellulose surfaces. A study of polyelectrolyte adsorption.


    Steeg, van der, P.A.H.


    Cationic starches are used on a large scale in paper industry as wet-end additives. They improve dry strength. retention of fines and fillers, and drainage. Closure of the white water systems in the paper mills hase increased the concentration of detrimental substances. This might be the reason for the poor retention of cationic starches observed in the last few years.The purpose of the research described in this thesis was to obtain a better understanding of the adsorption of cationic starch...

  16. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.


    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  17. Competitive Solvation of the Imidazolium Cation by Water and Methanol

    CERN Document Server

    Chaban, Vitaly


    Imidazolium-based ionic liquids are widely used in conjunction with molecular liquids for various applications. Solvation, miscibility and similar properties are of fundamental importance for successful implementation of theoretical schemes. This work reports competitive solvation of the 1,3-dimethylimidazolium cation by water and methanol. Employing molecular dynamics simulations powered by semiempirical Hamiltonian (electronic structure level of description), the local structure nearly imidazolium cation is described in terms of radial distribution functions. Although water and methanol are chemically similar, water appears systematically more successful in solvating the 1,3-dimethylimidazolium cation. This result fosters construction of future applications of the ternary ion-molecular systems.

  18. Pyridine radical cation and its fluorine substituted derivatives (United States)

    Bondybey, V.E.; English, J.H.; Shiley, R.H.


    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  19. Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl ethers

    KAUST Repository

    Bouchekif, Hassen


    A series of novel, well-defined triblock (PnBVE-b-PCEVE-b-PSiDEGVE) and pentablock (PSiDEGVE-b-PCEVE-b-PnBVE-b-PCEVE-b-PSiDEGVE) terpolymers of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiEGVE) were synthesized by sequential base-assisted living cationic polymerization. The living character of the homopolymerization of the three VE monomers and the crossover reaction resulting in the formation of well-defined block copolymers were investigated in various solvents (toluene, dichloromethane and n-hexane) using either a monofunctional [nBVE-acetic acid adduct (nBEA), CEVE-acetic acid adduct (CEEA) and SiDEGVE-acetic acid adduct (SiDEGEA)] or a difunctional [1,4-cyclohexane-1,4-diyl bis(2-methoxyethyl acetate) (cHDMEA)] initiator. All initiators are structurally equivalent to the dormant species of the corresponding monomers in order to achieve fast initiation. The optimal conditions of polymerization were achieved in n-hexane at -20 °C, in the presence of 1 M AcOEt (base). Good control over the number average molecular weight (Mn) and the polydispersity index (PDI) was obtained only at [Et3Al2Cl3]0 = [Chain-end]0 ≤ 10 mM. 2,6-Di-tert-butylpyridine (DtBP) was used as a non-nucleophilic proton trap to suppress any protonic initiation from moisture (i.e., Et3Al2Cl3·H2O). Well-defined PnBVEn-b-PCEVEp-b-PSiDEGVEq and PSiDEGVEq-b-PCEVEp-b-PnBVEn-b-PCEVEp-b-PSiDEGVEq terpolymers with a high crossover efficiency, no PCEVE-induced physical gelation, and predictable Mn and PDI < 1.15 were synthesized successfully provided that the targeted DPCEVE/DPnBVE ratio (i.e., p/n) did not exceed 2 and 0.2, respectively. The quantitative desilylation of the PSiEGVE by n-Bu4N+F- in THF at 0 °C led to triblock and pentablock terpolymers in which the PCEVE is the central block and the polyalcohol is the outer block. The thermal properties of the synthesized materials were examined by differential scanning

  20. Novel cationic polyelectrolyte coatings for capillary electrophoresis. (United States)

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K


    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.

  1. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation. (United States)

    Yang, Bo; Wu, R R; Polfer, N C; Berden, G; Oomens, J; Rodgers, M T


    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).

  2. Isomerization of propargyl cation to cyclopropenyl cation: Mechanistic elucidations and effects of lone pair donors

    Indian Academy of Sciences (India)

    Zodinpuia Pachuau; Kiew S Kharnaior; R H Duncan Lyngdoh


    This ab initio study examines two pathways (one concerted and the other two-step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites. Fully optimized geometries at the B3LYP/6-31G(d) level were used, along with single point QCISD(T)/6-311+G(d,p) and accurate G3 level calculations upon the DFT optimized geometries. For the unsolvated reaction, the two-step second pathway is energetically favoured over the one-step first pathway. Lone pair donor affinity for the various C3H$^{+}_{3}$ species follows the uniform order NH3 > H2S>H2O>HF. The activation barriers for the solvated isomerizations decrease in the order HF>H2O>H2S>NH3 for both pathways. The number of lone pairs on the donor heteroatom as well as the heteroatom electronegativity are factors related to both these trends. Compared to the unsolvated cases, the solvated reactions have transition states which are usually ‘later’ in position along the reaction coordinate, validating the Hammond postulate.

  3. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V


    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  4. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. (United States)

    Donose, Bogdan C; Vakarelski, Ivan U; Higashitani, Ko


    Adsorption of hydrated cations on hydrophilic surfaces has been related to a variety of phenomena associated with the short-range interaction forces and mechanisms of the adhesive contact between the surfaces. Here we have investigated the effect of the adsorption of cations on the lateral interaction. Using lateral force microscopy (LFM), we have measured the friction force between a silica particle and silica wafer in pure water and in electrolyte solutions of LiCl, NaCl, and CsCl salts. A significant lubrication effect was demonstrated for solutions of high electrolyte concentrations. It was found that the adsorbed layers of smaller and more hydrated cations have a higher lubrication capacity than the layers of larger and less hydrated cations. Additionally, we have demonstrated a characteristic dependence of the friction force on the sliding velocity of surfaces. A mechanism for the observed phenomena based on the microstructures of the adsorbed layers is proposed.

  5. Degradation Mechanism of Cationic Red X-GRL by Ozonation

    Institute of Scientific and Technical Information of China (English)

    Wei Rong ZHAO; Xin Hua XU; Hui Xiang SHI; Da Hui WANG


    The degradation mechanism of Cationic Red X-GRL was investigated when the intermediates, the nitrate ion and the pH were analyzed in the ozonation. The degradation of the Cationic Red X-GRL includes the de-auxochrome stage, the decolour stage, and the decomposition of fragment stage. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one becomes the form of an amine compound, and the rest four are transformed into two molecules of nitrogen. In the course of the ozonation of Cationic Red X-GRL, the direct attack of ozone is the main decolour effect.

  6. DFT study on the cycloreversion of thietane radical cations. (United States)

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A


    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone.

  7. Condensation of nonstochiometric DNA/polycation complexes by divalent cations. (United States)

    Budker, Vladimir; Trubetskoy, Vladimir; Wolff, Jon A


    This study found that divalent cations induced the further condensation of partially condensed DNA within nonstochiometric polycation complexes. The addition of a few mmol of a divalent cation such as calcium reduced by half the inflection point at which DNA became fully condensed by poly-L-lysine (PLL) and a variety of other polycations. The effect on DNA condensation was initially observed using a new method, which is based on the concentration-dependent self-quenching of fluorescent moieties (e.g., rhodamine) covalently linked to the DNA backbone at relatively high densities. Additional analyses, which employed ultracentrifugation, dynamic light scattering, agarose gel electrophoresis, and atomic force microscopy, confirmed the effect of divalent cations. These results provide an additional accounting of the process by which divalent cations induce greater chromatin compaction that is based on the representation of chromatin fibers as a nonstoichiometric polyelectrolyte complex. They also offer a new approach to assemble nonviral vectors for gene therapy.

  8. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz


    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...


    Institute of Scientific and Technical Information of China (English)

    W. Liu; Y. Ni; H. Xiao


    Hydrophilic and cationic montmorillonite is desirable for pitch control in the pulp and paper industry. In this paper, polyaminoamide - epichlorohydrin (PAE)modified montmorillonite was prepared. The modified montmorillonite was characterized using X-ray diffraction, FTIR and thermal gravimetric analysis. The amount of PAE intercalated and cationic charge densities of the modified montmorillonite were determined. Finally, it was found that both the solution and melt-intercalated samples with different charge densities exhibited strong interactions with dispersed colloidal rosin acid.

  10. Competition by meperidine for the organic cation renal excretory system. (United States)

    Acara, M; Gessner, T; Trudnowski, R J


    Renal tubular excretory transport of meperidine was studied using the Sperber preparation in chickens. When urine samples from infused and uninfused kidneys were analyzed for meperidine by gas chromatography, meperidine was always present in greater amounts in the urine from the infused kidney, demonstrating active tubular excretion. Meperidine at an infusion rate of 1 mumole/min, also inhibited the excretion of the organic cations choline and acetylcholine, indicating occupation of the renal organic cation excretory system in the chicken.

  11. Focused fluorescent probe library for metal cations and biological anions. (United States)

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In


    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  12. Novel reactions of quadricyclane: a new route to monomers for low-absorbing polymers in 157-nm photoresists (United States)

    Marsella, John A.; Abdourazak, Atteye H.; Carr, Richard V. C.; Markley, Thomas J.; Robertson, Eric A., III


    Norbornene monomers with fluorinated substituents are often used in copolymers targeted for photoresist applications at 157 nm. Homopolymers of these norbornene monomers typically exhibit an absorption coefficient greater than 1.5 μm-1. Comonomers, which are often perfluoroolefins, are needed to meet the transparency requirement for 157 nm lithography, namely an absorption coefficient less than 1.0 μm-1. Clearly, a norbornene monomer that gives a homopolymer with an optical density less than 1.0 μm-1 would require less, if any, perfluoroolefin comonomer, providing a distinct advantage in the production of the base resin. Research in Air Products and Chemicals" labs has led to the discovery that fluorinated hydroxyalkyl ether derivatives of norbornene ring systems with suitable substitution patterns can give homopolymers with absorption coefficients of less than 1 μm-1. The monomers are produced via a novel reaction pathway involving quadricyclane. This pathway provides a versatile and rich synthetic chemistry, and the potential for eliminating, or at least substantially decreasing, perfluoroolefin incorporation into 157 nm photoresists. Specific examples of these reactions are discussed here, along with VUV-VASE and etch resistance data for a series of polymers derived from quadricyclane reactions.

  13. Approaching two-dimensional copolymers: photoirradiation of anthracene- and diaza-anthracene-bearing monomers in Langmuir monolayers. (United States)

    Payamyar, Payam; Servalli, Marco; Hungerland, Tim; Schütz, Andri P; Zheng, Zhikun; Borgschulte, Andreas; Schlüter, A Dieter


    By using structurally similar amphiphilic monomers, it is shown that compressed monolayers of varying amounts of such monomers at the air/water interface can be converted by photo-irradiation into the corresponding covalently connected monolayer sheets. Since one of the monomers carries three anthracene units and the other three 1,8-diaza-anthracene units, the growth reaction is proposed to take place through photochemically achieved [4+4]-cycloaddition between pairs of these units that are co-facially (face-to-face) arranged, to furnish the corresponding covalent dimers. While evidence for both homodimers is amply available, the existence of the heterodimer needs to be established with the help of a model reaction to support the conceptual aspect of this work, copolymerization in two dimensions. The sheet copolymers exhibit substantial robustness in that they can be spanned over 20 × 20 μm(2)-sized holes without rupturing under their own weight. X-ray photoelectron spectroscopy (XPS) studies reveal that the monomers are incorporated into the sheet copolymers according to feed. These results establish existence of the first covalent sheet copolymer, which is considered a step ahead towards novel 2D materials.

  14. Molecular Dynamics Simulation of a Coarse Grained Model of Tetra-PEG Gel with Monomers of 5 and 9 particles (United States)

    Ogawa, Shizuka; Waide, Sayaka; Takasu, Masako; Miyakawa, Takeshi; Morikawa, Ryota; Sakai, Takamasa; Chung, Ung-il

    We study the early process of gelation using our model of 5 particles and 9 particles in a monomer. We compare our models and obtain slower reaction for model of 9 particles. We also study the effect of random force and obtain slower reaction with random force but more extended structure.

  15. Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers

    NARCIS (Netherlands)

    Bukowski, R.; Szalewicz, K.; Groenenboom, G.C.; Avoird, A. van der


    A new six-dimensional interaction potential for the water dimer has been obtained by fitting interaction energies computed at 2510 geometries using a variant of symmetry-adapted perturbation theory (SAPT) based on density functional theory (DFT) description of monomers, referred to as SAPT(DFT). The

  16. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology. (United States)

    Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk


    In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf.

  17. Toward Spatiotemporally Controlled Synthesis of Photoresponsive Polymers: Computational Design of Azobenzene-Containing Monomers for Light-Mediated ROMP. (United States)

    Zhou, Qunfei; Fursule, Ishan; Berron, Brad J; Beck, Matthew J


    Density functional theory calculations have been used to identify the optimum design for a novel, light-responsive ring monomer expected to allow spatial and temporal control of ring-opening metathesis polymerization (ROMP) via light-mediated changes in ring strain energy. The monomer design leverages ring-shaped molecules composed of 4,4'-diaminoazobenzene (ABn) closed by alkene-α,ω-dioic acid linkers. The atomic geometries, formation enthalpies and ring strain energies of azobenzene (AB)-containing rings with various length linkers have been calculated. The AB(2,2) monomer is identified as having optimal properties for light-mediated ROMP, including high thermodynamic stability, low ring strain energy (RSE) with cis-AB, and high RSE with trans-AB. Time-dependent DFT calculations have been used to explore the photoisomerization mechanism of isolated AB and AB-containing rings, and calculations show that trans-to-cis and cis-to-trans photoisomerization of the optimal AB(2,2) ring molecule can be achieved with monochromatic green and blue light, respectively. The AB(2,2) monomer identified here is expected to allow precise, reversible, spatial and temporal light-mediated control of ROMP through AB photoisomerization, and to have promising potential applications in the fabrication of patterned and/or responsive AB-containing polymer materials.

  18. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes (United States)

    Vatanpour, Vahid; Zoqi, Naser


    In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the highest fouling resistance.

  19. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice. (United States)

    Li, Sazi; Li, Wei; Chen, Ziyu


    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ, we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v-T and μ-T. Moreover, for the noninteracting monomer-dimer model (setting μ=ν=0), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h_{2}) as f=-0.662798972833746 with the dimer density n=0.638123109228547, both of 15 correct digits.

  20. Computer simulation of alkali metal cation-montmorillonite hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fang-Ru Chou [Columbia Univ., Palisades, NY (United States); Skipper, N.T. [Univ. College, London (United Kingdom); Sposito, G. [Lawrence Berkeley National Lab., CA (United States)


    Molecular structure in the interlayers of Li-, Na-, or K-Wyoming montmorillonite with one, two, or three adsorbed water layers was investigated for the first time by concurrent Monte Carlo and molecular dynamics (MD) simulation, based on the Matsouka-Clementi-Yoshimine, (MCY) model of water-water interactions. Calculated layer spacings, as well as interlayer-species self-diffusion coefficients, were in good agreement with available experimental data. Inner-sphere surface complexes of the cations with tetrahedral charge sites were observed for all hydrates, whereas outer-sphere surface complexes of the cations with octahedral charge sites, found also in the one-layer hydrate, tended to dissociate from the clay mineral basal planes into a diffuse layer in the two- and three-layer hydrates. Differences in the interlayer water structure among the hydrates mainly reflected cation solvation, although some water molecules were entrapped within cavities in the montmorillonite surface. All of the interlayer cation and water species exchanged on the time scale (0.2 ns) of the MD simulations. Comparisons with results obtained using, instead of the MCY model, the TIP4P model for water-water, cation-water, and cation-clay interactions indicated that layer spacings and interlayer species mobilities tend to be under-predicted by the TIP4P model.

  1. Complexation Between Cationic Diblock Copolymers and Plasmid DNA (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  2. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. (Northwestern Univ., Evanston, IL (USA)); Gould, I.R.; Farid, S. (Eastman Kodak Co., Rochester, NY (USA))


    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  3. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)


    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  4. Modulatory role of bivalent cations on reward system. (United States)

    Nechifor, M; Chelărescu, D


    Bivalent cations (Ca, Mg, Zn, Mn etc.) modulate activity of reward system (RS). At physiologic levels they may influence all components of RS. There are influenced behavioral reactions at physiological stimuli and all essential elements of drug dependence (compulsive intake of substance, craving, reinforcement, withdrawal syndrom, relapse and reinstatement of intake) The fact that some cations (e.g. calcium) enhance some of the aspects of drug dependence and others (e.g. magnesium, zinc) decrease intensity of this process show that ratio between intra- and extracellular in the brain of these cations is important for the function of RS. Among actions of different cations at the level of RS there are important differences. Their mecahanism of action are common in part and specific in other. It is important the fact that modulatory action appear at physiologic cation concentrations (that could be reached at therapeutic doses). Modulatory action is related to ratio between concetrations of different bivalent cations and is exerted both in normal or pathologic conditions.

  5. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.

    Directory of Open Access Journals (Sweden)

    Bankanidhi Sahoo

    Full Text Available Expansion of the polyglutamine (polyQ track of the Huntingtin (HTT protein above 36 is associated with a sharply enhanced risk of Huntington's disease (HD. Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6-9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the

  6. Effect of Rhizopus oryzae Fermentation on Kenaf-Based Polylactic Acid’s Monomer

    Directory of Open Access Journals (Sweden)

    Nur Aimi Mohd Nasir


    Full Text Available Kenaf biomass is the potential as raw materials used to produce polylactic acid's monomer which is lactic acid via fermentation by Rhizopus oryzae. Kenaf biomass' structure is complex due to its lignin and cellulose content. This matter had encouraged it to undergo pre- treatment process as the initial step before fermentation process can be done. In this paper, kenaf biomass was treated with dilute sulphuric acid (H2SO4 to hydrolyze the cellulose content in it as well as to convert the cellulose into glucose- a carbon source for Rhizopus to grow. Then, the fermentation process was carried out in shake flask for 3 days at pH 6. Several conditions for fermentation process had been chosen which were 25oC at 150 rpm, 25 oC at 200 rpm, 37 oC at 150 rpm and 37oC at 200 rpm. In this fermentation process, 0.471 g/L, 0.428 g/L, 0.444 g/L and 0.38 g/L of lactic acid was produced respectively. Sample at 25oC at 200 rpm produced maximum amount of lactic acid compared to others.ABSTRAK: Biojisim kenaf berpotensi sebagai bahan mentah dalam penghasilan monomer asid polylactic (poliester alifatik termoplastik diterbitkan daripada sumber boleh diperbaharu seperti kanji jagung yang merupakan asid laktik menerusi penapaian oleh Rhizopus oryzae (sejenis fungus yang hidup dalam jirim organik yang telah mati. Struktur biojisim kenaf adalah kompleks disebabkan kandungan lignin dan selulosanya. Hal ini menyebabkan ia perlu melalui proses pra-rawatan sebagai langkah awal sebelum proses penapaian dijalankan. Dalam kertas ini, biojirim kenaf dirawat dengan asid sulfurik (H2SO4 yang dicairkan untuk menghidrolisis kandungan selulosa di dalamnya di samping menukar selulosa menjadi glukosa - sumber karbon bagi tumbesaran Rhizopus. Kemudian, proses penapaian dijalankan di dalam kelalang goncang selama 3 hari pada pH 6. Beberapa ciri proses penapaian telah dipilih iaitu 25 oC pada 150 rpm, 25 oC pada 200 rpm, 37 oC pada 150 rpm dan 37 oC pada 200 rpm. Dalam proses penapaian

  7. Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution (United States)

    Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-


    The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and

  8. ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin. (United States)

    Nomura, Kazumi; Ono, Shoichiro


    CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.

  9. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process. (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B


    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  10. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations. (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard


    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.

  11. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. (United States)

    Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen


    Monodispersed SiO2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO2 samples. The adsorption performance of the functionalized SiO2 (donated as SiO2-PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO2-PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP.

  12. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.


    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  13. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC on this process.Human dental pulp cells (hDPCs were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS and depletion of glutathione (GSH, differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.

  14. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.


    '-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  15. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. (United States)

    Fang, Huagao; Jiang, Feng; Wu, Qianghua; Ding, Yunsheng; Wang, Zhigang


    Supertough biocompatible and biodegradable polylactide materials were fabricated by applying a novel and facile method involving reactive blending of polylactide (PLA) and poly(ethylene glycol) diacylate (PEGDA) monomer with no addition of exogenous radical initiators. Torque analysis and FT-IR spectra confirm that cross-linking reaction of acylate groups occurs in the melt blending process according to the free radical polymerization mechanism. The results from differential scanning calorimetry, phase contrast optical microscopy and transmission electron microscopy indicate that the in situ polymerization of PEGDA leads to a phase separated morphology with cross-linked PEGDA (CPEGDA) as the dispersed particle phase domains and PLA matrix as the continuous phase, which leads to increasing viscosity and elasticity with increasing CPEGDA content and a rheological percolation CPEGDA content of 15 wt %. Mechanical properties of the PLA materials are improved significantly, for example, exhibiting improvements by a factor of 20 in tensile toughness and a factor of 26 in notched Izod impact strength at the optimum CPEGDA content. The improvement of toughness in PLA/CPEGDA blends is ascribed to the jointly contributions of crazing and shear yielding during deformation. The toughening strategy in fabricating supertoughened PLA materials in this work is accomplished using biocompatible PEG-based polymer as the toughening modifier with no toxic radical initiators involved in the processing, which has a potential for biomedical applications.

  16. Response of hydroponically grown head lettuce on residual monomer from polyacrylamide. (United States)

    Mroczek, E; Konieczny, P; Kleiber, T; Waśkiewicz, A


    The aim was to assess acrylamide monomer (AMD) uptake by hydroponically grown lettuce. Lettuce was cultivated by applying plant tissue testing in a recycled system by the use of nutrient solutions prepared with two water-soluble flocculants F3 and F4 containing 176 and 763 mg kg(-1) of AMD, respectively. The effects on growth, fresh weight and plant leaf quality were evaluated by comparing these treatments and one control standard nutrient solution typically recommended for lettuce hydroponic cultivation. To assess the nutritional status of lettuce, samples were collected and lyophilised before determination of the selected micro- and macro-element contents. An HPLC with photodiode array detector method was applied to determine AMD in both selected flocculants and dried plant samples. Results show that lettuces cultivated under the conditions described above absorb AMD from nutrient solutions into their leaves. The AMD presence in recycled nutrient solutions has a negative influence on the growth of lettuce, reducing their average fresh weight and average number of leaves. The study confirmed that the problem of AMD mobility and its accumulation risk in plants should to be an important topic with respect to safe polyacrylamide (PAM) handling in the agro food area.

  17. Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste

    Energy Technology Data Exchange (ETDEWEB)



    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

  18. Synthesis of antibacterial methacrylate monomer derived from thiazole and its application in dental resin. (United States)

    Luo, Weixun; Huang, Qiting; Liu, Fang; Lin, Zhengmei; He, Jingwei


    A non-quaternary ammonium antibacterial methacrylate monomer MEMT derived from thiazole was synthesized and applied into UDMA/TEGDMA dental resin with a series of mass fraction (10 wt%, 20 wt%, and 30 wt%). Double bond conversion, polymerization shrinkage, water sorption, solubility, flexural strength and modulus, and antibacterial activity of MEMT containing resin formulations were investigated with UDMA/TEGDMA as control resin. The results showed that MEMT containing dental resin had higher double bond conversion than control resin. Compared with control polymer, all MEMT containing polymer had comparable or lower polymerization shrinkage, water sorption and solubility, except for the polymer with 30 wt% of MEMT which had higher water sorption and solubility than control polymer. The MEMT had no influence on flexural strength and modulus before water immersion, but all MEMT containing polymers had lower flexural strength and modulus than control polymer after water immersion. The MEMT could endow dental polymer with obvious antibacterial activity by immobilizing MEMT into the polymeric network.

  19. Evaluation of an intramedullary bone stabilization system using a light-curable monomer in sheep. (United States)

    Zani, Brett G; Baird, Rose; Stanley, James R L; Markham, Peter M; Wilke, Markus; Zeiter, Stephan; Beck, Aswin; Nehrbass, Dirk; Kopia, Gregory A; Edelman, Elazer R; Rabiner, Robert


    Percutaneous intramedullary fixation may provide an ideal method for stabilization of bone fractures, while avoiding the need for large tissue dissections. Tibiae in 18 sheep were treated with an intramedullary photodynamic bone stabilization system (PBSS) that comprised a polyethylene terephthalate (Dacron) balloon filled with a monomer, cured with visible light in situ, and then harvested at 30, 90, or 180 days. In additional 40 sheep, a midshaft tibial osteotomy was performed and stabilized with external fixators or external fixators combined with the PBSS and evaluated at 8, 12, and 26 weeks. Healing and biocompatibility were evaluated by radiographic analysis, micro-computed tomography, and histopathology. In nonfractured sheep tibiae, PBSS implants conformably filled the medullary canal, while active cortical bone remodeling and apposition of new periosteal and/or endosteal bone was observed with no significant macroscopic or microscopic observations. Fractured sheep tibiae exhibited increased bone formation inside the osteotomy gap, with no significant difference when fixation was augmented by PBSS implants. Periosteal callus size gradually decreased over time and was similar in both treatment groups. No inhibition of endosteal bone remodeling or vascularization was observed with PBSS implants. Intramedullary application of a light-curable PBSS is a biocompatible, feasible method for fracture fixation.

  20. Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data. (United States)

    Kua, Jeremy; Galloway, Melissa M; Millage, Katherine D; Avila, Joseph E; De Haan, David O


    A computational protocol utilizing density functional theory calculations, including Poisson-Boltzmann implicit solvent and free energy corrections, is applied to study the thermodynamic and kinetic energy landscape of glycolaldehyde in solution. Comparison is made to NMR measurements of dissolved glycolaldehyde, where the initial dimeric ring structure interconverts among several species before reaching equilibrium where the hydrated monomer is dominant. There is good agreement between computation and experiment for the concentrations of all species in solution at equilibrium, that is, the calculated relative free energies represent the system well. There is also relatively good agreement between the calculated activation barriers and the estimated rate constants for the hydration reaction. The computational approach also predicted that two of the trimers would have a small but appreciable equilibrium concentration (>0.005 M), and this was confirmed by NMR measurements. Our results suggest that while our computational protocol is reasonable and may be applied to quickly map the energy landscape of more complex reactions, knowledge of the caveats and potential errors in this approach need to be taken into account.

  1. Papain-Catalyzed Synthesis of Polyglutamate Containing a Nylon Monomer Unit

    Directory of Open Access Journals (Sweden)

    Kenjiro Yazawa


    Full Text Available Peptides have the potential to serve as an alternative for petroleum-based polymers to support a sustainable society. However, they lack thermoplasticity, owing to their strong intermolecular interactions. In contrast, nylon is famous for its thermoplasticity and chemical resistance. Here, we synthesized peptides containing a nylon unit to modify their thermal properties by using papain-catalyzed chemoenzymatic polymerization. We used l-glutamic acid alkyl ester as the amino acid monomer and nylon 1, 3, 4, and 6 alkyl esters as the nylon unit. Papain catalyzed the copolymerization of glutamic acid with nylon 3, 4, and 6 alkyl esters, whereas the nylon 1 unit could not be copolymerized. Other proteases used in this study, namely, bromelain, proteinase K, and Candida antarctica lipase (CALB, were not able to copolymerize with any nylon units. The broad substrate specificity of papain enabled the copolymerization of l-glutamic acid with a nylon unit. The peptides with nylon units demonstrated different thermal profiles from that of oligo(l-glutamic acid. Therefore, the resultant peptides with various nylon units are expected to form fewer intermolecular hydrogen bonds, thus altering their thermal properties. This finding is expected to broaden the applications of peptide materials and chemoenzymatic polymerization.

  2. Synthesis and optical properties of chlorin monomer, dimer and trimer on an amino nitrogen atom. (United States)

    Tamiaki, Hitoshi; Nagai, Tomoaki; Tanaka, Takuya; Tatebe, Tomohiro


    Naturally occurring chlorophyll-a was chemically modified to methyl 3-aminomethyl-pyropheophorbides-a including primary, secondary, and tertiary amines. Reductive amination of methyl pyropheophorbide-d possessing the 3-formyl group with ammonia efficiently gave a chlorin dimer covalently linked with CH2NHCH2 at the 3-position, which was transformed into a trimer through the substitution at the amino group. Conformational analyses by (1)H NMR spectroscopic observation and molecular modeling estimation indicated that the dimer and trimer were apt to form closely packed structures. Chlorin chromophores in the dimer and trimer were weakly interacted in dichloromethane to shift their Qy absorption bands to longer wavelengths by 4-6nm than the maxima of the corresponding monomer. In the red-shifted Qy region, the trimer gave an S-shaped circular dichroism band by exciton coupling of composite chlorin units. All the semi-synthetic chlorophyll derivatives were highly fluorescent and no intramolecular quenching was observed even in the trimer. The behaviors would be ascribable to the formation of compact conformers and suppression of intramolecular motion, which are important to construct light-harvesting antenna complexes in phototrophs and their model systems.

  3. Stability of functionalized C{sub 60} paramagnetic dimers and monomers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael [Armament Research Development and Engineering Center, Picatinny, NJ 07806-5000 (United States); Owens, Frank J., E-mail: [Department of Physics, Hunter College, City University of New York, 695 Park Ave., NY 10065 (United States)


    Highlights: Black-Right-Pointing-Pointer DFT is used to calculate the bond dissociation energy of functionalized C{sub 60} dimers. Black-Right-Pointing-Pointer The results show the dimers would not be stable above room temperature. Black-Right-Pointing-Pointer The calculations indicate the observed magnetism cannot be due to C{sub 60} dimers. Black-Right-Pointing-Pointer Because of their higher stability the ferromagnetism is likely due to X-C{sub 60} monomers. - Abstract: Density functional theory is used to calculate the bond dissociation energy to cleave the C{sub 60}=C{sub 60} bond of the paramagnetic X-C{sub 60}=C{sub 60}-X and X-C{sub 60}=C{sub 60} dimers where X is F, OH, O and H. The results show that these dimers would not be stable much above room temperature and therefore cannot constitute the paramagnetic phase needed to form the observed ferromagnetism which has been shown to be stable up to 800 K. The calculated bond dissociation energies to remove an F, OH or H from a single C{sub 60} are large suggesting that they could be the source of the unpaired spin needed for the high temperature ferromagnetism.

  4. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry (United States)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric


    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  5. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane (United States)

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong


    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.

  6. Photodeposition of amorphous polydiacetylene films from monomer solutions onto transparent substrates (United States)

    Paley, M. S.; Frazier, D. O.; Abdeldeyem, H.; Armstrong, S.; McManus, S. P.


    Polydiacetylenes are a very promising class of polymers for both photonic and electronic applications because of their highly conjugated structures. For these applications, high-quality thin polydiacetylene films are required. We have discovered a novel technique for obtaining such films of a polydiacetylene derivative of 2-methyl-4-nitroaniline using photodeposition from monomer solutions onto UV transparent substrates. This heretofore unreported process yields amorphous polydiacetylene films with thicknesses on the order of I micron that have optical quality superior to that of films grown by standard crystal growth techniques. Furthermore, these films exhibit good third-order nonlinear optical susceptibilities; degenerate four-wave mixing experiments give x(3) values on the order of 10(exp -8) - 10(exp -7) esu. We have conducted masking experiments which demonstrate that photodeposition occurs only where the substrate is directly irradiated, clearly indicating that the reaction occurs at the surface. Additionally, we have also been able to carry out photodeposition using lasers to form thin polymer circuits. In this work, we discuss the photodeposition of polydiacetylene thin films from solution, perform chemical characterization of these films, investigate the role of the substrate, speculate on the mechanism of the reaction, and make a preliminary determination of the third-order optical nonlinearity of the films. This simple, straightforward technique may ultimately make feasible the production of polydiacetylene thin films for technological applications.

  7. Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer. (United States)

    Hajeeth, T; Sudha, P N; Vijayalakshmi, K; Gomathi, T


    Graft copolymerization of acrylonitrile on to cellulosic material derived from sisal fiber can be initiated effectively with ceric ammonium nitrate. The grafting conditions were optimized by changing the concentration of initiator and monomer. The change in crystallinity of the grafted polymeric samples was concluded from the XRD patterns. The prepared cellulose grafted acrylonitrile copolymer was used as an adsorbent to remove Cr (VI) ions from aqueous solutions. The efficiency of the adsorbent was identified from the variation in the percentage of adsorption with contact time, adsorbent dose and pH. From the observed results it was evident that the adsorption of metal ions increases with the increase in contact time and metal ion concentration. An optimum pH was found to be 5.0 for the removal of Cr (VI) from the aqueous solution. The results of the Langmuir, Freundlich, and pseudo first- and second-order studies revealed that the adsorption was found to fit well with Freundlich isotherm and follows pseudo second-order kinetics. From the above results, it was concluded that the cellulose-g-acrylonitrile copolymer was found to be an efficient adsorbent for the removal of Cr (VI) from aqueous waste generated from industries.

  8. Determination of Residual Monomers Released from Soft Lining Materials with the use of HPLC

    Directory of Open Access Journals (Sweden)

    Afrodite Sofou


    Full Text Available A study was carried out to examine the post polymerized leachability of three non phthalic and four phthalic residual monomers, from twelve commercially available soft lining materials, using HPLC. Specimens of equal dimensions were constructed from each brand of material following a standardized procedure and were stored in three different conditions of storage i.e. distilled water, artificial saliva and a binary mixture of ethanol-water, with the resulting liquids providing samples for analysis in the HPLC apparatus. Three different experiments were performed for each brand of material and each condition of storage, in order to examine the parameters time and temperature. The results obtained from this study suggest that a wide spectrum of residues is diffusing out of the twelve examined soft lining materials. The non phthalic compounds were leaching at high concentrations while all the phthalates examined exhibited different degrees of elusion commensurate with the storage condition, brand of material and type of experiment. The main non phthalic component extracted from all the materials was methyl methacrylate, while the mainly extracted phthalic compound was different from each material. The level of elusion seems to be increasing dependent on time, medium of storage, and temperature as well.

  9. Neoglycopolymers based on 4-vinyl-1,2,3-triazole monomers prepared by click chemistry. (United States)

    Hetzer, Martin; Chen, Gaojian; Barner-Kowollik, Christopher; Stenzel, Martina H


    The synthesis of a new glycomonomer based on mannose, prepared via CuAAC, is reported. The resulting 1,2,3-triazole linkage between mannose and the polymer backbone ensures the formation of highly stable glycopolymers, which will not undergo hydrolysis. The monomer 2'-(4-vinyl-[1,2,3]-triazol-1-yl)ethyl-O-alpha-D-mannopyranoside was polymerized in the presence of a RAFT agent - 3-benzylsulfanylthiocarbonylsulfanyl propionic acid - to yield well-defined polymers with molecular weights up to 51,500 g mol(-1) and a PDI of 1.16. The resulting polymer was employed as a macroRAFT agent in the polymerization of NIPAAm in order to generate thermo-responsive block copolymers, which undergo reversible micelle formation at elevated temperatures. The rapid interaction between the polymers prepared and ConA confirms the high affinity of these structures to proteins. While the linear glycopolymers already undergo a fast complexation with ConA, the reported rates have found to be exceeded by the micellar glycopolymer structure presented in the current contribution.

  10. Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments. (United States)

    Beach, Jordan R; Bruun, Kyle S; Shao, Lin; Li, Dong; Swider, Zac; Remmert, Kirsten; Zhang, Yingfan; Conti, Mary A; Adelstein, Robert S; Rusan, Nasser M; Betzig, Eric; Hammer, John A


    The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.

  11. Nonequilibrium critical dynamics of two dimensional interacting monomer-dimer model: non-Ising criticality (United States)

    Nam, Keekwon; Kim, Bongsoo; Jong Lee, Sung


    We investigate the nonequilibrium relaxation dynamics of an interacting monomer-dimer model with nearest neighbor repulsion on a square lattice, which possesses two symmetric absorbing states. The model is known to exhibit two nearby continuous transitions: the Z2 symmetry-breaking order-disorder transition and the absorbing transition with directed percolation criticality. We performed a more detailed analysis of our extensive simulations on bigger lattice systems which reaffirms that the symmetry-breaking transition exhibits a non-Ising critical behavior with β ≃ 0.149(2) and η ≃ 0.30(1) that are distinct from those values of a pure two dimensional Ising model. Finite size scaling of dimer density near the symmetry breaking transition gives logarithmic scaling (α = 0.0) which is consistent with the hyperscaling relation but the corresponding exponent of νB ≃ 1.37(2) exhibits a conspicuous deviation from the pure Ising value of 1. The value of dynamic critical exponent z, however, is found to be close to that of the kinetic Ising model as 1/z ≃ 0.466(5) from the relaxation of staggered magnetization (and also similar but slightly smaller values from coarsening).

  12. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. (United States)

    Wang, Erlei; Yin, Yongguang; Xu, Caina; Liu, Jingbo


    Research on the isolation and preparation of anthocyanins has intensified in recent years because of the requirements of quantitative and bioactive analyses. However, simple and effective methods for the scale purification of pure anthocyanins from natural products are rarely reported. In this study, high-purity anthocyanin mixtures and monomers were successfully isolated from wild blueberries using a combination of column chromatography and semi-preparative HPLC. We established an effective elution system to separate high-purity anthocyanin mixtures with aqueous ethanol containing 0.01% HCl first in an Amberlite XAD-7HP column (ethanol/H2O=35:65) and then in a Sephadex LH-20 column (ethanol/H2O=25:75). Crude anthocyanin extracts were isolated using the Amberlite column, and a purity of 32% was obtained based on UV-vis analysis. Three fractions of anthocyanin mixtures were isolated from the crude extracts using the Sephadex column with purities ranging from 59% to 68%. Three pure monomeric anthocyanins of malvidin-3-O-glucoside, petunidin-3-O-glucoside, and delphinidin-3-O-glucoside were also isolated by semi-preparative HPLC and identified by HPLC-DAD-ESI-MS/MS. The purities of these anthocyanins were determined by analytical HPLC and estimated to be 97.7%, 99.3%, and 95.4%, respectively. The results of this study may help promote the purification of anthocyanins from most blueberry varieties as well as from other plant materials.

  13. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. (United States)

    Klongsiriwet, Chaweewan; Quijada, Jessica; Williams, Andrew R; Mueller-Harvey, Irene; Williamson, Elizabeth M; Hoste, Hervé


    This study investigated the separate and combined anthelmintic (AH) effects of different phenolic compounds, including condensed tannins and flavonoids, all of which are known to occur in willow leaves, a potentially valuable dry season feed. A range of contrasting model tannins, which span the whole range of willow tannins, were isolated from tilia flowers, goat willow leaves, black currant leaves and red currant leaves. All together, the tested compounds represented the major tannin types (procyanidins and prodelphinidins) and flavonoid types (flavonols, flavones and flavanones). The larval exsheathment inhibition assay (LEIA) was used to assess their in vitro effects on Haemonchus contortus third stage larvae. Arbutin, vanillic acid, and taxifolin proved to be ineffective whereas naringenin, quercetin and luteolin were highly effective at 250 μM concentrations. Procyanidin (PC) tannins tended to be less active than prodelphinidin tannins (PD). Experiments with combinations of tannins and quercetin or luteolin revealed for the first time the existence of synergistic AH effects between tannins and flavonoid monomers. They also provided evidence that synergistic effects appear to occur at slightly lower concentrations of PC than PD. This suggests that the AH activity of condensed tannins can be significantly enhanced by the addition of quercetin or luteolin. This information may prove useful for plant breeding or selection and for designing optimal feed mixtures.

  14. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins

    Directory of Open Access Journals (Sweden)

    Chaweewan Klongsiriwet


    Full Text Available This study investigated the separate and combined anthelmintic (AH effects of different phenolic compounds, including condensed tannins and flavonoids, all of which are known to occur in willow leaves, a potentially valuable dry season feed. A range of contrasting model tannins, which span the whole range of willow tannins, were isolated from tilia flowers, goat willow leaves, black currant leaves and red currant leaves. All together, the tested compounds represented the major tannin types (procyanidins and prodelphinidins and flavonoid types (flavonols, flavones and flavanones. The larval exsheathment inhibition assay (LEIA was used to assess their in vitro effects on Haemonchus contortus third stage larvae. Arbutin, vanillic acid, and taxifolin proved to be ineffective whereas naringenin, quercetin and luteolin were highly effective at 250 μM concentrations. Procyanidin (PC tannins tended to be less active than prodelphinidin tannins (PD. Experiments with combinations of tannins and quercetin or luteolin revealed for the first time the existence of synergistic AH effects between tannins and flavonoid monomers. They also provided evidence that synergistic effects appear to occur at slightly lower concentrations of PC than PD. This suggests that the AH activity of condensed tannins can be significantly enhanced by the addition of quercetin or luteolin. This information may prove useful for plant breeding or selection and for designing optimal feed mixtures.

  15. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica


    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  16. Characterization of a Low Shrinkage Dental Composite Containing Bismethylene Spiroorthocarbonate Expanding Monomer

    Directory of Open Access Journals (Sweden)

    Jing Fu


    Full Text Available In this study, a novel dental composite based on the unsaturated bismethylene spiroorthocarbonate expanding monomer 3,9-dimethylene-1,3,5,7-tetraoxa-spiro[5,5]undecane (BMSOC and bisphenol-S-bis(3-meth acrylate-2-hydroxypropylether (BisS-GMA was prepared. CQ (camphorquinone of 1 wt % and DMAEMA (2-(dimethylaminoethyl methacrylate of 2 wt % were used in a photoinitiation system to initiate the copolymerization of the matrix resins. Distilled water contact angle measurements were performed for the wettability measurement. Degree of conversion, volumetric shrinkage, contraction stress and compressive strength were measured using Fourier Transformation Infrared-FTIR spectroscopy, the AccuVol and a universal testing machine, respectively. Within the limitations of this study, it can be concluded that the resin composites modified by bismethylene spiroorthocarbonate and BisS-GMA showed a low volumetric shrinkage at 1.25% and a higher contact angle. The lower contraction stress, higher degree of conversion and compressive strength of the novel dental composites were also observed.

  17. Trends in water monomer adsorption and dissociation on flat insulating surfaces. (United States)

    Hu, Xiao Liang; Carrasco, Javier; Klimeš, Jiří; Michaelides, Angelos


    The interaction of water with solid surfaces is key to a wide variety of industrial and natural processes. However, the basic principles that dictate how stable and in which state (intact or dissociated) water will be on a given surface are not fully understood. Towards this end, we have used density functional theory to examine water monomer adsorption on the (001) surfaces of a broad range of alkaline earth oxides, alkaline earth sulfides, alkali fluorides, and alkali chlorides. Some interesting general conclusions are arrived at: (i) on all the surfaces considered only a few specific adsorption structures are favoured; (ii) water becomes more stable upon descending the oxide and fluoride series but does not vary much upon going down the chloride and sulfide series; (iii) water is stabilised both by an increase in the lattice constant, which facilitates hydrogen bonding to the substrate, and by the flexibility of the substrate. These are also factors that favour water dissociation. We hope that this study is of some value in better understanding the surface science of water in general, and in assisting in the interpretation and design of future experiments.

  18. Curing and toughening of epoxy resins with phosphorus containing monomers and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.R.; Park, I.Y.; Yoon, T.H. [Kwangji Inst. of Science and Technology, Kwangju (Korea, Republic of)] [and others


    Epoxy resins have been utilized in many areas, from house holds to airplanes, for the past several decades due to some exceptional properties such as low cost, good mechanical properties and excellent adhesive properties. However, low fracture toughness and flame resistance of epoxy resins have limited their applicability. Therefore, enhancing those properties have been of great interest to many researchers and scientists. As introduced by McGrath and co-workers in 1980s, the reactive thermoplastic polymers have proven to be an excellent toughener for improving not only fracture toughness but also adhesive properties without sacrificing thermo-mechanical properties and chemical resistance. Flame retardency could be improved by adding flame retardent additives which are divided into two groups; additives and reactives. However, among the additives, halogen compounds are known to be toxic gas generator and ozone depleter. Moreover, additives could be potentially leached out of the material, while reactives are inferior to additives. Recently, a reactive type phosphine oxide containing flame retardants have been introduced by McGrath and co-workers and proven to be an excellent flame retardant. In this paper, phospine oxide containing monomers were prepared and utilized as curing agents for expoxy resins, and starting materials for the polymers.

  19. Graft polymerization of styryl bisphosphonate monomer onto polypropylene films for inhibition of biofilm formation. (United States)

    Steinmetz, Hanna P; Rudnick-Glick, Safra; Natan, Michal; Banin, Ehud; Margel, Shlomo


    There has been increased concern during the past few decades over the role bacterial biofilms play in causing a variety of health problems, especially since they exhibit a high degree of resistance to antibiotics and are able to survive in hostile environments. Biofilms consist of bacterial aggregates enveloped by a self-produced matrix attached to the surface. Ca(2+) ions promote the formation of biofilms, and enhance their stability, viscosity, and strength. Bisphosphonates exhibit a high affinity for Ca(2+) ions, and may inhibit the formation of biofilms by acting as sequestering agents for Ca(2+) ions. Although the antibacterial activity of bisphosphonates is well known, research into their anti-biofilm behavior is still in its early stages. In this study, we describe the synthesis of a new thin coating composed of poly(styryl bisphosphonate) grafted onto oxidized polypropylene films for anti-biofilm applications. This grafting process was performed by graft polymerization of styryl bisphosphonate vinylic monomer onto O2 plasma-treated polypropylene films. The surface modification of the polypropylene films was confirmed using surface measurements, including X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle goniometry. Significant inhibition of biofilm formation was achieved for both Gram-negative and Gram-positive bacteria.

  20. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller


    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.