WorldWideScience

Sample records for cationic tetraamino fullerene

  1. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    Science.gov (United States)

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  2. Investigation on the aggregation properties of cationic [60]fullerene derivative

    Institute of Scientific and Technical Information of China (English)

    WANG Guanwu; ZHAO Guoxia; YAN Lifeng

    2004-01-01

    The UV-Vis spectra, HRTEM and AFM images of cationic fullerene derivative 1 with ammonium head group directly connected to C60 skeleton in tetrahydrofuran (THF)-water (H2O) binary mixtures and in pure H2O were investigated. It was found that the UV-Vis spectra of ammonium 1 in the THF-H2O mixtures with THF% ≥ 20% were nearly overlapped, while those with THF% < 20% showed broadened and red-shifted peaks, indicating the formation of aggregates. Corresponding to the UV-Vis spectral changes,the solvatochromism of ammonium 1 in THF-H2O mixtures was observed. Ammonium 1 in binary THF-H2O mixtures existing as the monomer state could aggregate upon prolonged standing. Higher temperature and lower concentration speeded up the aggregation process.

  3. Cation-π interaction of alkali metal ions with C24 fullerene: a DFT study.

    Science.gov (United States)

    Moradi, Morteza; Peyghan, Ali Ahmadi; Bagheri, Zargham; Kamfiroozi, Mohammad

    2012-08-01

    Using first principle calculations, we investigated cation-π interactions between alkali cations (Li(+), Na(+), and K(+)) and pristine C(24) or doped fullerenes of BC(23), and NC(23). The most suitable adsorption site is found to be atop the center of a six-membered ring of the exterior surface of C(24) molecule. Interaction energies of these cations decreased in the order: Li(+) > Na(+) > K(+), with values of -31.82, -22.36, and -15.68 kcal mol(-1), respectively. It was shown that the interaction energies are increased and decreased by impurity doping of B and N atoms in adjacent wall of adsorption site, depending on electron donating or receptivity of the doping atoms.

  4. Fullerenes

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  5. A Cationic [60] Fullerene Derivative Reduces Invasion and Migration of HT-29 CRC Cells in Vitro at Dose Free of Significant Effects on Cell Survival

    Institute of Scientific and Technical Information of China (English)

    Marianna Lucafo; Chiara Pelillo; Marco Carini; Tatiana Da Ros; Maurizio Prato; Gianni Sava

    2014-01-01

    Nanomaterials with unique characteristics exhibit favorable therapeutic and diagnostic properties, implying their enormous potential as biomedical candidates. C60 has been used in gene- and drug-delivery, as imaging agents, and as photosensitizers in cancer therapy. In this study, the influences of a cationic function-alized fullerene on cellular behavior of human colorectal cancer cell line (HT-29) were investigated. Results indicated that HT-29 treated with the studied compound showed a lower sensitivity but a significant impair-ment in migration and invasion by interfering with the activities of matrix metalloproteinases (MMP-2 and 9). The presence of fullerene also altered the capacity of adhesion-related proteins to perform their activity, thereby inducing dramatically adverse effects on the cell physiological functions such as cell adhesion. Thus, our study suggests that this compound is a new potential anti-metastatic effector and a therapeutic component for malignant colorectal cancer.

  6. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    Science.gov (United States)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  7. Program Fullerene

    DEFF Research Database (Denmark)

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph, an......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  8. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  9. Fullerene Nanogears

    Science.gov (United States)

    1997-01-01

    The Numerical Aerospace Simulation Systems Division (NAS) of the NASA Ames Research Center, Moffett Field, California is conducting research into molecular-sized devices known as Nanotechnology. This photograph depicts two 'Fullerene Nano-gears' with multiple teeth. The hope is that one day, products can be constructed made of thousands of tiny machines that could self-repair and adapt to the environment in which they exist. Researchers have simulated attaching benzyne molecules to the outside of a nanotube to form gear teeth. Nanotubes are molecular-sized pipes made of carbon atoms. To 'drive' the gears, the supercomputer simulated a laser that served as a motor. The laser creates an electric field around the nanotube. A positively charged atom is placed on one side of the nanotube, and a negatively charged atom on the other side. The electric field drags the nanotube around like a shaft turning. Jie Han, Al Globus, Richard Jaffe and Glenn Deardorff are the authors of a technical paper detailing this technology which appears in The Journal of Nanotechnology.

  10. Information Entropy of Fullerenes.

    Science.gov (United States)

    Sabirov, Denis Sh; Ōsawa, Eiji

    2015-08-24

    The reasons for the formation of the highly symmetric C60 molecule under nonequilibrium conditions are widely discussed as it dominates over numerous similar fullerene structures. In such conditions, evolution of structure rather than energy defines the processes. We have first studied the diversity of fullerenes in terms of information entropy. Sorting 2079 structures from An Atlas of Fullerenes [ Fowler , P. W. ; Manolopoulos , D. E. An Atlas of Fullerenes ; Oxford : Clarendon , 1995 . ], we have found that the information entropies of only 14 fullerenes (entropy, i.e., an exclusive compound among the other members of the fullerene family. Such an efficient sorting demonstrates possible relevance of information entropy to chemical processes. For this reason, we have introduced an algorithm for calculating changes in information entropy at chemical transformations. The preliminary calculations of changes in information entropy at the selected fullerene reactions show good agreement with thermochemical data.

  11. Polyhydroxy fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, Angelina T., E-mail: angelinageorgieva2009@gmail.com [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States); Pappu, Vijay [University of Florida, Center for Applied Optimization (United States); Krishna, Vijay [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States); Georgiev, Pando G. [University of Florida, Center for Applied Optimization (United States); Ghiviriga, Ion [University of Florida, NMR Facility, Department of Chemistry (United States); Indeglia, Paul [Agency for Sustainable Systems in Science and Technology, Inc. (United States); Xu, Xin; Fan, Z. Hugh [University of Florida, Department of Mechanical and Aerospace Engineering (United States); Koopman, Ben [University of Florida, Department of Environmental Engineering Sciences (United States); Pardalos, Panos M. [University of Florida, Center for Applied Optimization (United States); Moudgil, Brij [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States)

    2013-07-15

    Characterization of C{sub 60} polyhydroxyfullerenes (PHF) prepared in alkaline media, preparation facilitated by phase-transfer catalyst, presents challenges in determining the chemical structure resulting from the possibility of multiple isomers or analogs with greater or fewer hydroxyl groups from a single reaction mixture. This paper presents the utilization of analytical methods employed in tandem, especially X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy for semi-quantitative analysis on the number of hydroxyl groups present in PHF. Capillary Electrophoresis was used for purity estimation of the material. Multiple spectra and electropherograms were analyzed using a new simultaneous curve fitting method. The most accurate estimate of hydroxyl groups for C{sub 60} polyhydroxy fullerenes obtained is between 16 and 18 allylic hydroxyl groups by combining analytical methods' results with 5 % accuracy. High precision (reproducibility) of the experiments is observed. Purity of 98 % is estimated by capillary electrophoresis. The size of PHF nanoparticles or aggregates has been determined by atomic force microscopy to be 7.4-14.2 nm. According to the elemental analysis the average probable empirical formula for the most pure PHF at pH 7.1 is C{sub 60}O{sub 17}H{sub 12}Na{sub 5}(NaHCO{sub 3}){sub 3}(H{sub 2}O){sub 13} and the average formula weight is 1,605.9 g/mol. This is the first thorough characterization of PHF in terms of purity.

  12. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  13. Morphology of nested fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.; Homyonfer, M.; Tenne, R. (Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel))

    1995-03-06

    We introduce a continuum model which shows that dislocations and/or grain boundaries are intrinsic features of nested fullerenes whose thickness exceeds a critical value to relieve the large inherent strains in these structures. The ratio of the thickness to the radius of the nested fullerenes is determined by the ratio of the surface to curvature and dislocation (or grain boundary) energies. Confirming experimental evidence is presented for nested fullerenes with small thicknesses and with spherosymmetric shapes.

  14. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open...

  15. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  16. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2014-07-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  17. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  18. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2014-07-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  19. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  20. On double bonds in fullerenes

    Directory of Open Access Journals (Sweden)

    Stepenshchikov D. G.

    2016-03-01

    Full Text Available Various distributions of double carbon bonds in the fullerenes have been considered in the paper from the point that they are absent in the pentagonal rings. The appropriate classification of the fullerenes has been built. The results may be used when modeling the fullerenes of a given topology and calculating their physical-chemical properties

  1. Geological occurrence of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, P.R.; Tsipursky, S.J.; Wang, S. (Arizona State Univ., Tempe, AZ (United States)); Hettich, R. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    Using HRTEM imaging, the authors found C[sub 60] and C[sub 70] fullerenes in shungite, a Precambrian carbon-rich rock from Karelia, Russia. Compositionally, shungite represents coals of the meta-anthracite rank, characterized by low ash and sulfur contents, low volatile yields, and high carbon contents. The shungite occurs within metamorphosed sediments. The overlying rocks consist of gray dolomitized sandstones and poorly sorted silts and clays; the underlying rocks are not exposed. The shungite consists of masses containing up to 99% carbon. Diabase is interstratified with shungite-bearing rocks, and the shungite concentration increases with proximity to the diabase. Their sample comes from inclusions in the diabase. In the HRTEM images the fullerenes appear round (presumably roughly spherical in three dimensions), with white rims and black centers, almost identical to images of synthetic C[sub 60] molecules. Following the HRTEM observations, the fullerene identities were confirmed, first by time-of-flight mass spectrometry and then by more precise laser ablation, laser desorption, and thermal desorption ionization plus Fourier transform (FT) mass spectrometry. These measurements verified that the fullerenes were not generated by the laser ionization event. HRTEM images show that locally they occur in ordered arrays that resemble crystals of synthetic C[sub 60]. FT mass spectra show that the C-13/C-12 isotopic ratios for C[sub 60] and C[sub 70] fall within the normal range of terrestrial isotopic values.

  2. Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity

    Science.gov (United States)

    Howard, Jack B.; Brooker, John E. (Technical Monitor)

    2002-01-01

    The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found

  3. POLARON DYNAMICS. Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies.

    Science.gov (United States)

    Huber, Rachel C; Ferreira, Amy S; Thompson, Robert; Kilbride, Daniel; Knutson, Nicholas S; Devi, Lekshmi Sudha; Toso, Daniel B; Challa, J Reddy; Zhou, Z Hong; Rubin, Yves; Schwartz, Benjamin J; Tolbert, Sarah H

    2015-06-19

    The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution.

  4. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  5. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution.

    Science.gov (United States)

    Ha, Yeonjeong; Katz, Lynn E; Liljestrand, Howard M

    2015-12-15

    The distribution coefficient (Klipw) of fullerene between solid supported lipid membranes (SSLMs) and water was examined using different lipid membrane compositions. Klipw of fullerene was significantly higher with a cationic lipid membrane compared to that with a zwitterionic or anionic lipid membrane, potentially due to the strong interactions between negative fullerene dispersions and positive lipid head groups. The higher Klipw for fullerene distribution to ternary lipid mixture membranes was attributed to an increase in the interfacial surface area of the lipid membrane resulting from phase separation. These results imply that lipid composition can be a critical factor that affects bioconcentration of fullerene. Distribution of fullerene into zwitterionic unsaturated lipid membranes was dominated by the entropy contribution (ΔS) and the process was endothermic (ΔH > 0). This result contrasts the partitioning thermodynamics of highly and moderately hydrophobic chemicals indicating that the lipid-water distribution mechanism of fullerene may be different from that of molecular level chemicals. Potential mechanisms for the distribution of fullerene that may explain these differences include adsorption on the lipid membrane surfaces and partitioning into the center of lipid membranes (i.e., absorption).

  6. 30 years of cosmic fullerenes

    CERN Document Server

    Berne, O; Mulas, G; Joblin, C

    2015-01-01

    In 1985, "During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells", Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C$_{60}$ "buckminsterfullerene"), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offers the opportunity to study the ...

  7. Applications of Functionalized Fullerenes in Tumor Theranostics

    OpenAIRE

    Chen, Zhiyun; Ma, Lijing; Liu, Ying; Chen, Chunying

    2012-01-01

    Functionalized fullerenes with specific physicochemical properties have been developed for cancer diagnosis and therapy. Notably, metallofullerene is a new class of magnetic resonance imaging (MRI) contrast-enhancing agent, and may have promising applications for clinical diagnosis. Polyhydroxylated and carboxyl fullerenes have been applied to photoacoustic imaging. Moreover, in recent years, functionalized fullerenes have shown potential in tumor therapies, such as photodynamic therapy, phot...

  8. Fullerenes as unique nanopharmaceuticals for disease treatment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As unique nanoparticles,fullerenes have attracted much attention due to their unparalleled physical,chemical and biological properties.Various functionalized fullerenes with OH,NH2,COOH,and peptide modifications were developed.It summarized the biological activities of fullerenes derivatives in cancer therapy with high efficiency and low toxicity,as reactive oxygen species scavenger and lipid peroxidation inhibitor,to inhibit human immunodeficiency virus and to suppress bacteria and microbial at low concentration.In addition,the mechanism for fullerene to enter cells and biodistribution of fullerene in vivo was also discussed.This research focuses on the current understanding of fullerenes-based nanomaterials in the potential clinical application as well as biological mechanism of fullerenes and its derivatives in disease therapy.

  9. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  10. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  11. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use

    Energy Technology Data Exchange (ETDEWEB)

    Troshin, P A; Lyubovskaya, R N [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2008-04-30

    Data on the methods of functionalisation of C{sub 60} and C{sub 70} fullerenes published over the last 15 years are summarised. The general analysis of fullerene reactivity is performed. Nucleophilic and radical addition and cycloaddition reactions are considered in detail. The prospects of using fullerene derivatives as medical drug and photoactive materials for light converting devices are demonstrated.

  12. Fullerene-Related Nanocarbons and Their Applications

    DEFF Research Database (Denmark)

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng;

    2012-01-01

    . From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries......The discovery of fullerene (C60) in 1985 spurred on the subsequent discoveries of a number of fullerene-related novel carbons at the nanometre scale. These nanocarbons are related to one another in structure, providing an interesting spectrum of variants which display an array of unique properties...

  13. Toxicological Effects of Fullerenes on Caenorhabditis elegans

    Science.gov (United States)

    Schomaker, Justin; Snook, Renee; Howell, Carina

    2014-03-01

    The nematode species Caenorhabditis elegans is a useful genetic model organism due to its simplicity and the substantial molecular, genetic, and developmental knowledge about the species. In this study, this species was used to test the toxicological effects of C60 fullerene nanoparticles. In previous studies using rats, a solution of C60 fullerenes in olive oil proved to extend the life of the subjects. The purpose of this experiment was to subject C. elegans to varying concentrations of C60 fullerenes and observe their toxicological effects. Initial findings indicate a link between fullerene exposure and enlargement of the vulva as well as the formation of a small nodule at the base of the tail in some individuals. While the fullerenes are not lethally toxic in C. elegans, results will be presented that pertain to changes in life span and progeny of the nematodes exposed to varying concentrations of fullerenes as well as the mechanisms of toxicity. High magnification imaging via SEM and/or AFM will be used to characterize the fullerene nanoparticles. Testing the toxicity of fullerenes in a wide variety of organisms will lead to a more complete understanding of the effects of fullerenes on living organisms to ultimately understand their effects in humans. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047, DUE-0806660 and Lock Haven FPDC grants.

  14. Photodiodes based on fullerene semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Voz, C. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)], E-mail: cvoz@eel.upc.edu; Puigdollers, J. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO- Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av. del Canal Olimpic s/n, 08860-Castelldefels (Spain); Fonrodona, M.; Stella, M.; Andreu, J. [Solar Energy Group, Departament Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, 08028-Barcelona (Spain); Alcubilla, R. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)

    2007-07-16

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum.

  15. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  16. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  17. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    Science.gov (United States)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  18. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.

    Science.gov (United States)

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.

  19. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  20. Synthesis of [60]Fullerene-Podophyllotoxin Derivative

    Institute of Scientific and Technical Information of China (English)

    GUO,Li-Wei(郭礼伟); GAO,Xiang(高翔); ZHANG,Dan-Wei(张丹维); WU,Shi-Hui(吴世晖); WU,Hou-Ming(吴厚铭)

    2002-01-01

    The [60]fullerene-podophyllotoxin derivative (3) was obtained by the phosphine promeoted[2 + 3]cycloaddition reaction ofpodophyllotoxin buta-2,3-dienoate (2) and [60]fullerene. The structures of starting mateerial (2) and product (3) were confirmed by UV-vis, IR, NMR and MS spectroscopies.

  1. Fullerenes: An introduction and overview of their biological properties

    OpenAIRE

    Thakral Seema; Mehta R

    2006-01-01

    Ever since their experimental discovery in 1985, fullerenes have attracted considerable attention in different fields of sciences. Investigations of chemical, physical and biological properties of fullerenes have yielded promising information. Their unique carbon cage structure coupled with immense scope for derivatization makes fullerenes a potential therapeutic agent. Henceforth various potential therapeutic applications of fullerenes have been reviewed in the present paper. These include a...

  2. Interstellar Fullerene Compounds and Diffuse Interstellar Bands

    CERN Document Server

    Omont, Alain

    2015-01-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed, especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interstellar fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerenes is complex. In addition to formation in shock shattering, fully dehydrogenated PAHs in diffuse interstellar (IS) clouds could perhaps efficiently transform into fullerenes including EEHFs. But it is extremely difficult to assess their expected abundance, composition and size distribution, except for C60+. As often suggested, EEHFs share many properties with C60, as regards stability, formation/destruction, chemical processes and many basic spectral features. We address the importance of various EEHFs as possible DIB carriers. Specifically, we discuss IS properties and the contributions of fullerenes of various sizes and charge su...

  3. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  4. Inhibition of inflammatory arthritis using fullerene nanomaterials.

    Directory of Open Access Journals (Sweden)

    Anthony L Dellinger

    Full Text Available Inflammatory arthritis (e.g. rheumatoid arthritis; RA is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC. Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  5. Inhibition of inflammatory arthritis using fullerene nanomaterials.

    Science.gov (United States)

    Dellinger, Anthony L; Cunin, Pierre; Lee, David; Kung, Andrew L; Brooks, D Bradford; Zhou, Zhiguo; Nigrovic, Peter A; Kepley, Christopher L

    2015-01-01

    Inflammatory arthritis (e.g. rheumatoid arthritis; RA) is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC). Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA) were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA) in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  6. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  7. The Activity of [60]Fullerene Derivatives Bearing Amine and Carboxylic Solubilizing Groups against Escherichia coli: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Dmitry G. Deryabin

    2014-01-01

    Full Text Available We report a comparative investigation of the antibacterial activity of two water-soluble fullerene derivatives bearing protonated amine (AF and deprotonated carboxylic (CF groups appended to the fullerene cage via organic linkers. The negatively charged fullerene derivative CF showed no tendency to bind to the bacterial cells and, consequently, no significant antibacterial activity. In contrast, the compound AF loaded with cationic groups showed strong and partially irreversible binding to the negatively charged Escherichia coli K12 TG1 cells and to human erythrocytes, also possessing negative zeta potential. Adsorption of AF on the bacterial surface was visualized by atomic force microscopy revealing the formation of specific clusters (AF aggregates surrounding the bacterial cell. Incubation of E. coli K12 TG1 with AF led to a dose-dependent bactericidal effect with LD50 = 79.1 µM. The presence of human erythrocytes in the test medium decreased the AF antibacterial activity. Thus we reveal that the water-soluble cationic fullerene derivative AF possesses promising antibacterial activity, which might be utilized in the development of novel types of chemical disinfectants.

  8. Applications of Functionalized Fullerenes in Tumor Theranostics

    Directory of Open Access Journals (Sweden)

    Zhiyun Chen, Lijing Ma, Ying Liu, Chunying Chen

    2012-01-01

    Full Text Available Functionalized fullerenes with specific physicochemical properties have been developed for cancer diagnosis and therapy. Notably, metallofullerene is a new class of magnetic resonance imaging (MRI contrast-enhancing agent, and may have promising applications for clinical diagnosis. Polyhydroxylated and carboxyl fullerenes have been applied to photoacoustic imaging. Moreover, in recent years, functionalized fullerenes have shown potential in tumor therapies, such as photodynamic therapy, photothermal treatment, radiotherapy and chemotherapeutics. Their antitumor effects may be associated with the modulation of oxidative stress, anti-angiogenesis, and immunostimulatory activity. While various types of novel nanoparticle agents have been exploited in tumor theranostics, their distribution, metabolism and toxicity in organisms have also been a source of concern among researchers. The present review summarizes the potential of fullerenes as tumor theranostics agents and their possible underlying mechanisms are discussed.

  9. Recent advances in fullerene science (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Dunk, P. W.; Marshall, A. G. [Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, USA and Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive (United States); Mulet-Gas, M.; Rodriguez-Fortea, A.; Poblet, J. M. [Departament de Química Físicai Inorgànica, Universitat Rovirai Virgili c/Marcellí Domingo s/n, 43007 Tarragona (Spain); Kroto, H. W. [Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306 (United States)

    2014-12-09

    The development of very high resolution FT-ICR mass spectrometers (Marshall et al, 1998) has made a wide range of new measurements possible and by combining this new technology with laser vaporization supersonic beam methods of producing carbon species (chains, rings and fullerenes), new advances in understanding of the fullerene creation mechanisms and their reactivity have been possible. In this overview, new understanding has been developed with regard to: a) closed-network growth of fullerenes (Dunk et al, 2012a); b) small endohedral species such as MαC{sub 28} (Dunk et al., 2012b); c) metallofullerene and fullerene formation under conditions in stellar outflows with relevance to stardust (Dunk et al., 2013a) and d) The formation of heterofullerenes by direct exposure of C{sub 60} toboron vapor (Dunk et al., 2013b)

  10. Water-soluble fullerenes for medical applications

    OpenAIRE

    Rašović, I

    2016-01-01

    Research on fullerenes occupies a unique position in the scientific arena. Synthesis and characterisation of this nanomaterial blur the line between materials science and chemistry; careful tuning of the processing methods gives birth to a whole family of molecules and their functionalised derivatives, whose unusual properties at this nanoscopic scale can be exploited in cutting-edge technological applications. This review focuses on the functionalisation of fullerenes for use in medical appl...

  11. Ferromagnetism in metallocene-doped fullerenes

    CERN Document Server

    Mihailovic, D

    2003-01-01

    Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between pi electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)

  12. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    Directory of Open Access Journals (Sweden)

    Kasra Saeedfar

    2013-12-01

    Full Text Available A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate (PnBA membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor’s sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor’s response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  13. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  14. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  15. Fullerene surfactants and their use in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  16. The role of ionic functionality on charge injection processes in conjugated polymers and fullerenes

    Science.gov (United States)

    Weber, Christopher David

    Understanding the fundamental chemistry of conjugated polymers and fullerenes has been the subject of intense research for the last three decades, with the last ten years seeing increased research toward the application of these materials into functional organic electronic devices such as organic photovoltaic devices (OPVs). This field has seen significant advances is cell efficiency in just the last few years (to >10%), in large part due to the development of new donor and acceptor materials, the fine tuning of fabrication parameters to control material nanostructure, as well as the introduction of new interfacial materials such as ionically functionalized conjugated polymers, also known as conjugated polyelectrolytes (CPEs). This dissertation aims to further understand the fundamental chemistry associated with charge injection processes in CPEs and ionically functionalized fullerenes. The role of ionic functionality on electrochemical, chemical, and interfacial charge injection processes is explored. The results presented demonstrate the use of ionic functionality to control the spatial doping profile of a bilayer structure of anionically and cationically functionalized CPEs to fabricate a p-n junction (Chapter II). The role of ionic functionality on chemical charge injection processes is explored via the reaction of polyacetylene and polythiophene based CPEs with molecular oxygen (Chapters III and IV). The results show the dramatic effect of ionic functionality, as well as the specific role of the counterion, on the photooxidative stability of CPEs. The control of reaction pathway via counterion charge density is also explored (Chapter IV) and shows a continuum of reaction pathways based on the charge density of the counter cation. Finally, the role of ionic functionality on interfacial charge injection processes in a functional OPV is explored using a cationically functionalized fullerene derivative (Chapters V and VI). Cell performance increases due to an

  17. Modified fullerenes for Efficient Electron Transport Layer-Free Perovskite:Fullerene Blend-Based Solar Cells.

    Science.gov (United States)

    Delgado, Juan L; Sandoval-Torrientes, Rafael; Martín, Nazario; Tena-Zaera, Ramón; Collavini, Silvia; Kosta, Ivet; Pascual, Jorge; García-Benito, Inés

    2017-03-15

    A variety of novel chemically modified fullerenes, showing different electron accepting capabilities, has been synthesized and used to prepare electron transport layer(ETL)-free solar cells based on perovskite:fullerene blends. In particular, isoxazolino[60] fullerenes are proven to be a good candidate for processing blend films with CH3NH3PbI3 and obtaining enhanced power conversion efficiency (PCE) ETL-free perovskite solar cells, improving state-of-the-art PCE (i.e. 14.3%) for this simplified device architecture. Beneficial impact for pyrazolino and methano[60]fullerene derivatives versus pristine [60]fullerene is also shown. Furthermore, a clear correlation between the LUMO energy level of the fullerene component and the open circuit voltage of the solar cells is found. Apart from the new knowledge on innovative fullerene derivatives for perovskite solar cells, the universality and versatility of perovskite:fullerene blend films to obtain efficient ETL-free perovskite solar cells is demonstrated.

  18. Production of anti-fullerene C60 polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Science.gov (United States)

    Hendrickson, O. D.; Fedyunina, N. S.; Martianov, A. A.; Zherdev, A. V.; Dzantiev, B. B.

    2011-09-01

    The aim of this study was to produce anti-fullerene C60 antibodies for the development of detection systems for fullerene C60 derivatives. To produce anti-fullerene C60 antibodies, conjugates of the fullerene C60 carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C60) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  19. Transient Spectroscopic Properties of [60]Fullerene-Containing Cyclic Sulphoxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the triplet excited state of [60]fullerene-containing cyclic sulphoxide have been investigated by time-resolved absorption spectroscopy. Transient absorption bands of [60]fullerene-containing cyclic sulphoxide showed two decay-components, which were attributed to triplet excited states of different spin multiplicity. The properties of photoexcited states of [60]fullerene-containing cyclic sulphoxide are also reported.

  20. Relation fullerene-PAH-soot in laser pyrolysis: FTIR investigations

    Science.gov (United States)

    Alexandrescu, Rodica; Armand, Xavier; Dumitrache, Florian V.; Fleaca, Claudiu T.; Herlin-Boime, Nathalie; Marino, Emanuela; Mayne, Martine; Morjan, Ion G.; Reynaud, Cecile; Sandu, Ion C.; Soare, Iuliana; Tenegal, Francois; Voicu, Ion N.

    2004-10-01

    Laser pyrolysis of a hydrocarbon-based mixture is a continuous method for the synthesis of soot-containing fullerene. In this synthesis process, the mechanism of fullerene formation and soot is the radical mechanism of the PAH formation. In the flames producing both fullerenes and soot, exactly forming carbon cages require particular types of reaction sequences. The fullerene concentrations are strongly correlated with those of PAHs in the flame. The equilibrium soot-PAHs-fullerene is dependent on experimental parameters. FTIR spectra of soot extracts and exhaust gases are discussed in the frame of this dependence.

  1. Fullerenes studied by radiochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Sueki, Keisuke; Nakahara, Hiromichi [Tokyo Metropolitan Univ. Hachioji (Japan). Graduate School of Science; Sato, Wataru

    2001-10-01

    Synthesis of radiolabeled fullerenes (C{sub 2n}) and their application for studies of their properties are described. Radiocarbon-labeled C{sub 2n} are synthesized from either {sup 14}C-labeled materials or recoil radiocarbon generated, for example, by the reaction {sup 12}C({gamma}, n) {sup 11}C in electron linear accelerator. Neutron activation reactions like {sup 6}Li(n, {alpha}) {sup 3}H and {sup 40}Ar(n, {gamma}) {sup 41}Ar enable to introduce those elements into C{sub 2n}. In addition, metallofullerenes (M@C{sub 2n}) can be synthesized by recoiled metals of lanthanoids and actinoids, of which optical properties are elucidated. Using the M@C{sub 2n}, there are studies of hot atom effects on those metals in a reactor and of effects of beta-decay to other element. Properties of M@C{sub 2n} are also investigated with uses of Moessbauer effect and time-differential perturbed angular correlation method. Application studies will be continued using their provision of highly sensitive radiometric properties. (K.H.)

  2. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    Energy Technology Data Exchange (ETDEWEB)

    Wysocka-Zolopa, Monika [Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok (Poland); Winkler, Krzysztof, E-mail: winkler@uwb.edu.pl [Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok (Poland); Caballero, Ruben [Instituto de Nanociencia, Nanotecnologia y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071 Toledo (Spain); Langa, Fernando, E-mail: Fernando.lpuente@uclm.es [Instituto de Nanociencia, Nanotecnologia y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071 Toledo (Spain)

    2011-06-30

    Highlights: > Formation of redox active films of ferrocene derivatives of C{sub 60} and palladium. > Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. > Electrochemical activity at both positive and negative potentials. > Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C{sub 60} (Fc-C{sub 60} and bis-Fc-C{sub 60}). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C{sub 60}/Pd and bis-Fc-C{sub 60}/Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C{sub 60} moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  3. Infrared spectroscopy of fullerene C60/anthracene adducts

    CERN Document Server

    Garcia-Hernandez, D A; Manchado, A

    2013-01-01

    Recent Spitzer Space Telescope observations of several astrophysical environments such as Planetary Nebulae, Reflection Nebulae, and R Coronae Borealis stars show the simultaneous presence of mid-infrared features attributed to neutral fullerene molecules (i.e., C60) and polycyclic aromatic hydrocarbons (PAHs). If C60 fullerenes and PAHs coexist in fullerene-rich space environments, then C60 may easily form adducts with a number of different PAH molecules; at least with catacondensed PAHs. Here we present the laboratory infrared spectra (~2-25 um) of C60 fullerene and anthracene Dies-Alder mono- and bis-adducts as produced by sonochemical synthesis. We find that C60/anthracene Diels-Alder adducts display spectral features strikingly similar to those from C60 (and C70) fullerenes and other unidentified infrared emission features. Thus, fullerene-adducts - if formed under astrophysical conditions and stable/abundant enough - may contribute to the infrared emission features observed in fullerene-containing circu...

  4. Fullerene assemblies toward photo-energy conversions.

    Science.gov (United States)

    Shen, Yanfei; Nakanishi, Takashi

    2014-04-28

    Manipulating molecular interaction and assembly for developing various functional nanostructures with controlled dimensionality, morphology and tailored properties is currently a research focus in molecular science and materials chemistry. Particularly, the self-organization of fullerenes (i.e. C60) to form various functional assemblies has received intense interest since it can provide excellent optoelectronic properties for photo-energy conversion-induced applications such as solar cells and field effect transistors (FET). In this perspective, we describe our recent efforts toward the development in the area of fullerene molecular design and assemblies aimed at improving the photoconductivity and photo-energy (electric and thermal) conversion systems.

  5. Supramolecular frameworks based on [60]fullerene hexakisadducts

    Science.gov (United States)

    Kraft, Andreas; Stangl, Johannes; Krause, Ana-Maria; Müller-Buschbaum, Klaus

    2017-01-01

    Summary [60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements.

  6. Applications of Anti/Prooxidant Fullerenes in Nanomedicine along with Fullerenes Influence on the Immune System

    OpenAIRE

    Danijela Petrovic; Mariana Seke; Branislava Srdjenovic; Aleksandar Djordjevic

    2015-01-01

    Fullerenes are molecules that, due to their unique structure, have very specific chemical properties which offer them very wide array of applications in nanomedicine. The most prominent are protection from radiation-induced injury, neuroprotection, drug and gene delivery, anticancer therapy, adjuvant within different treatments, photosensitizing, sonosensitizing, bone reparation, and biosensing. However, it is of crucial importance to be elucidated how fullerenes immunomodulate human system o...

  7. Fluorescence of fullerene derivatives at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.K.; Shiu, L.L.; Chien, K.M.; Luh, T.Y.; Lin, T.I. (National Taiwan Univ., Taipei (Taiwan, Province of China))

    1995-01-05

    The absorption and fluorescence spectral properties of fullerene (C[sub 60]) and its derivatives C[sub 60]C[sub 4]H[sub 6], C[sub 60]C[sub 5]H[sub 6], C[sub 60]CHCO[sub 2]Et, and C[sub 60]NCO[sub 2]Et at room temperature were investigated. Breaking the structural symmetry of C[sub 60] results in enhancing the fluorescence quantum yield 2-3-fold in some derivatives. Thus, the room temperature fluorescence of fullerene compounds could be detected more rapidly. New absorption bands and altered fluorescence spectra were observed in the derivatives. The Stokes' shifts of the derivatives are small, about 4-5 nm, compared to 68 nm for the parent compound. The time-resolved fluorescence decay study indicates that all four fullerene derivatives have a single fluorescence lifetime of ca. 1.2-1.4 as, which is about the same as that for C[sub 60] (ca. 1.3 ns). Aliphatic solvents have little influence on the absorption or fluorescence spectral profile except on the extinction coefficient whereas aromatic and polar solvents strongly interact with the fullerene derivatives, causing a peak broadening effect. 31 refs., 7 figs., 3 tabs.

  8. COANP-fullerenes system for optical modulation

    Science.gov (United States)

    Likhomanova, S. V.; Kamanina, N. V.

    2016-08-01

    The advanced investigations of ϕ-conjugated organic molecule COANP sensitized with fullerenes have been revealed to consider this system as an affective medium for optical limiting and phase modulation. The special accent has been given to influence of the nanostructured relief at the interface on the spectral and photoconductive features.

  9. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the ad

  10. Fullerenes and nanostructured plastic solar cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a bul

  11. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    2005-01-01

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of substrate

  12. Arranging pseudorotaxanes octahedrally around 60 fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Dey, S.K.; Beurle, F.; Olson, M.A.; Stoddart, J. F.

    2010-01-01

    The formation of both [2]- and [7]pseudorotaxanes, which are obtained by mixing of a dibenzylammonium derivative with mono- and hexakis-adducts of [60]fullerene bearing malonato-benzo[25]crown-8 rings, has been monitored in dichloromethane by both 1D and 2D ¹H NMR spectroscopies.

  13. Arranging pseudorotaxanes octahedrally around [60]fullerene.

    Science.gov (United States)

    Dey, Sanjeev K; Beuerle, Florian; Olson, Mark A; Stoddart, J Fraser

    2011-02-07

    The formation of both [2]- and [7]pseudorotaxanes, which are obtained by mixing of a dibenzylammonium derivative with mono- and hexakis-adducts of [60]fullerene bearing malonato-benzo[25]crown-8 rings, has been monitored in dichloromethane by both 1D and 2D (1)H NMR spectroscopies.

  14. An Infrared Study of Fullerene Planetary Nebulae

    CERN Document Server

    Garcia-Hernandez, D A; Garcia-Lario, P; Acosta-Pulido, J A; Manchado, A; Stanghellini, L; Shaw, R A; Cataldo, F

    2012-01-01

    We present a study of 16 PNe where fullerenes have been detected in their Spitzer spectra. This large sample of objects offers an unique opportunity to test conditions of fullerene formation and survival under different metallicity environments as we are analyzing five sources in our own Galaxy, four in the LMC, and seven in the SMC. Among the 16 PNe under study, we present the first detection of C60 (possibly also C70) fullerenes in the PN M 1-60 as well as of the unusual 6.6, 9.8, and 20 um features (possible planar C24) in the PN K 3-54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (5% in the Galaxy, 20% in the LMC, and 44% in the SMC). CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (30,000-45,000 K), suggesting a common evo...

  15. Quenching excited triplet C{sub 60} fullerene by tetracyanoethylene in benzonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochenko, V.A.; Denisov, N.N.; Rubtsov, I.V.; Lobach, A.S.; Moravsky, A.P. [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)

    1994-01-01

    The main photophysical properties of C{sub 60} fullerene: The absorption spectra of excited singlet C{sub 60}, the inter-combinational conversion time, the quantum yield of triplet C{sub 60}, the triplet-triplet absorption spectra, and the channels and rate constants of the deactivation of triplet C{sub 60} have been established. The photochemical properties of C{sub 60} fullerene have been investigated to a lesser degree. C{sub 60} is known to be readily reduced (E{sub 1/2} = {minus}0.4 in relation to Ag/Ag{sup +}), in particular, photochemically. For example, photoexcitation of charge-transfer complexes of C{sub 60} with amines gives the radical anion C{sup {minus}}{sub 60} which is also formed in reactions of photoexcited C{sub 60} fullerene. The formation of the radical cation C{sup +}{sub 60} under the action of light has been detected in the reaction with colloidal TiO{sub 2}. The radical ion C{sup +}{sub 60} has been obtained in a homogeneous photochemical process: the reaction of unexcited C{sub 60} with excited singlet N-methylacridinium hexafluorophosphate or with the biphenyl radical cation generated in the reaction with excited singlet N-methylacridinium hexafluorophosphate. The formation of C{sup +}{sub 60} with an electron acceptor in a homogeneous process has not so far been observed. The purpose of this work has been to study the quenching of triplet {sup 3}C{sub 60} with an electron acceptor, tetracyanoethylene (TCNE), which is known to oxidize unsaturated or aromatic hydrocarbons in photochemical reactions.

  16. Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cells.

    Science.gov (United States)

    Huang, Wenchao; Chandrasekaran, Naresh; Prasad, Shyamal K K; Gann, Eliot; Thomsen, Lars; Kabra, Dinesh; Hodgkiss, Justin M; Cheng, Yi-Bing; McNeill, Christopher R

    2016-11-02

    Here, a comprehensive study of the influence of polymer:fullerene mixing behavior on the performance, thin-film microstructure, photophysics, and device physics of polymer solar cells is presented. In particular, blends of the donor polymer PBDTTT-EFT with the acceptor PC71BM that exhibit power conversion efficiencies over 9% are investigated. Through tuning of the fullerene concentration in PBDTTT-EFT:PC71BM blends, the impact of fullerene mixing behavior is systematically investigated via a combination of synchrotron-based X-ray scattering and spectroscopy techniques. The impact of fullerene loading on photophysics and device physics is further explored with steady-state photoluminescence measurements, ultrafast transient absorption spectroscopy, and transient photovoltage measurements. In the low fullerene concentration regime (70 wt %), large fullerene domains result in incomplete PC71BM exciton harvesting with the presence of fullerene molecules also disrupting the molecular packing of polymer crystallites. The optimum fullerene concentration of ∼60-67 wt % balances the requirements of charge generation and charge collection. These findings demonstrate that controlling the fullerene concentration in the mixed phase and optimizing the balance between pure and mixed phases are critical for maximizing the efficiency of highly mixed polymer/fullerene solar cells.

  17. Polyelectrolyte membranes based on hydrocarbon polymer containing fullerene

    Science.gov (United States)

    Saga, Shota; Matsumoto, Hidetoshi; Saito, Keiichiro; Minagawa, Mie; Tanioka, Akihiko

    In the present study, composite polyelectrolyte membranes were prepared from sulfonated polystyrene and fullerene. The additive effect of the fullerene on the membrane properties - electric resistance, mechanical strength, oxidation resistance, and methanol permeability - were measured. The addition of fullerene improved the oxidation resistance, and reduced the methanol crossover. The mechanical strength of the fullerene-composite membrane, on the other hand, was not improved. The direct methanol fuel cell (DMFC) based on a 1.4 wt% fullerene-composite membrane showed the highest power density of 47 mW cm -2 at the current density of 200 mA cm -2 (this value is 60% of the Nafion-based DMFC). The transmission electron microscopy (TEM) observations suggest that the improved dispersity of the fullerene and the reduced number of micropores in the membranes would improve its performance in the fuel cell.

  18. Structure property relationships for the nonlinear optical response of fullerenes

    Science.gov (United States)

    Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.

    1994-11-01

    We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.

  19. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  20. Surface chemical modification of fullerene by mechanochemical treatment

    Science.gov (United States)

    Todorović Marković, B.; Jokanović, V.; Jovanović, S.; Kleut, D.; Dramićanin, M.; Marković, Z.

    2009-06-01

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C 60 after surface functionalization.

  1. A search for hydrogenated fullerenes in fullerene-containing planetary nebulae

    CERN Document Server

    Díaz-Luis, J J; Manchado, A; Cataldo, F

    2016-01-01

    Detections of C60 and C70 fullerenes in planetary nebulae (PNe) of the Magellanic Clouds and of our own Galaxy have raised the idea that other forms of carbon such as hydrogenated fullerenes (fulleranes like C60H36 and C60H18), buckyonions, and carbon nanotubes, may be widespread in the Universe. Here we present VLT/ISAAC spectra (R ~600) in the 2.9-4.1 microns spectral region for the Galactic PNe Tc 1 and M 1-20, which have been used to search for fullerene-based molecules in their fullerene-rich circumstellar environments. We report the non-detection of the most intense infrared bands of several fulleranes around ~3.4-3.6 microns in both PNe. We conclude that if fulleranes are present in the fullerene-containing circumstellar environments of these PNe, then they seem to be by far less abundant than C60 and C70. Our non-detections together with the (tentative) fulleranes detection in the proto-PN IRAS 01005+7910 suggest that fulleranes may be formed in the short transition phase between AGB stars and PNe but...

  2. Oscillations of spherical fullerenes interacting with graphene sheet

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  3. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  4. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Directory of Open Access Journals (Sweden)

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  5. Polymer:fullerene bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Jenny Nelson

    2011-10-01

    Full Text Available The efficiency of solar cells made from a conjugated polymer blended with a fullerene derivative has risen from around 1 % to over 9 % in the last ten years, making organic photovoltaic technology a viable contender for commercialization. The efficiency increases have resulted from the development of new materials with lower optical gaps, new polymer:fullerene combinations with higher charge separated state energies, and new approaches to control the blend microstructure, all driven by a qualitative understanding of the principles governing organic solar cell operation. In parallel, a device physics framework has been developed that enables the rational design of device structures and materials for improved organic photovoltaic devices. We review developments in both materials science and device physics for organic photovoltaics.

  6. Synthesis of fullerene-acene dyads

    Science.gov (United States)

    Cho, Claire Eunhye

    Organic photovoltaic (OPV) cells present potential for industrial use because of their possible low cost production. However, their relatively low efficiencies render them impractical for implementation. A comprehensive understanding of the photophysical process is necessary for eventual development of high efficiency OPV cells. Studying photophysical processes of well-defined structures such as dyad or triad molecules may give insight into their photophysical processes. In this study, we selected pentacene derivatives as electron donors and fullerenes as electron acceptors for dyad and triad molecules with well-defined structures. Several new types of organothiosubstituted 6,13-dihydropentacenes with terminal functionality including carboxylic acid, alcohol and amine groups were synthesized. A sterically hindered pentacene derivative was also prepared in order to prevent cycloaddition between C60 and pentacene. Functionalized fullerenes were synthesized for use as electron acceptors. Numerous reaction methods were attempted toward the synthesis of a donor/acceptor dyad with pentacene and fullerene derivatives. However, hydroamination of pristine C 60 using a diamino dihydropentacene derivative was the only successful method demonstrated to link C60 and dihydropentacene derivatives.

  7. A liquid-crystalline hexa-adduct of [60]fullerene

    OpenAIRE

    Chuard, Thierry; Deschenaux, Robert; Hirsch, Andreas; Schönberger, Hubert

    2006-01-01

    A hexa-adduct of [60]fullerene was synthesized by addition of a mesomorphic twin cyanobiphenyl malonate derivative to C60; whereas the malonate derivative gave a monotropic nematic phase, the fullerene hexa-adduct showed an enantiotropic smectic A phase.

  8. In vivo biology and toxicology of fullerenes and their derivatives

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme i...

  9. Nanotribological performance of fullerene-like carbon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico); Chiñas-Castillo, Fernando, E-mail: fernandochinas@gmail.com [Department of Mechanical Engineering, Instituto Tecnológico de Oaxaca, Oaxaca, Oax. Calz. Tecnológico No. 125, CP. 68030, Oaxaca, Oax. (Mexico); Espinoza-Beltrán, Francisco Javier [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico)

    2014-09-30

    Highlights: • Fullerene-like CNx samples show an elastic recovery of 92.5% and 94.5% while amorphous CNx samples had only 75% elastic recovery. • Fullerene-like CNx films show an increment of 34.86% and 50.57% in fractions of C 1s and N 1s. • Fullerene-like CNx samples show a lower friction coefficient compared to amorphous CNx samples. • Friction reduction characteristics of fullerene-like CNx films are strongly related to the increase of sp{sup 3} CN bonds. - Abstract: Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009–0.022) that is lower than amorphous CNx films (CoF ∼ 0.028–0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp{sup 3} CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  10. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Science.gov (United States)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C60 fullerene. This was confirmed from fluorescence energy transfer studies. UV Vis studies further supported this observation that it is possible to selectively remove the C60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  11. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, C. N. [M.S. University of Baroda, Applied Chemistry Department, Faculty of Technology and Engineering (India)

    2005-01-15

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C{sub 60} fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C{sub 60} fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C{sub 60} fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C{sub 60} fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  12. Formation of fullerenes in H-containing Planetary Nebulae

    CERN Document Server

    Garcia-Hernandez, D A; Garcia-Lario, P; Stanghellini, L; Villaver, E; Shaw, R A; Szczerba, R; Perea-Calderon, J V

    2010-01-01

    Hydrogen depleted environments are considered an essential requirement for the formation of fullerenes. The recent detection of C60 and C70 fullerenes in what was incorrectly interpreted as a hydrogen-poor Planetary Nebula (PN) seemed to confirm this picture. Here, we present strong evidence that challenges the current paradigm regarding fullerene formation, showing that it can take place in circumstellar environments containing hydrogen. We report the simultaneous detection of Polycyclic Aromatic Hydrocarbons (PAHs) and fullerenes towards C-rich and H-containing PNe belonging to environments with very different chemical histories such as our own Galaxy and the Small Magellanic Cloud. We suggest that PAHs and fullerenes may be formed by the photochemical processing of hydrogenated amorphous carbon. These observations have profound implications on our current understanding of the chemistry of large organic molecules as well as the chemical processing in space.

  13. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands.

    Science.gov (United States)

    Hosseini, Ali; Taylor, Steven; Accorsi, Gianluca; Armaroli, Nicola; Reed, Christopher A; Boyd, Peter D W

    2006-12-13

    A calix[4]arene scaffolding has been used to construct bisporphyrin ("jaws" porphyrin) hosts for supramolecular binding of fullerene guests. Fullerene affinities were optimized by varying the nature of the covalent linkage of the porphyrins to the calixarenes. Binding constants for C60 and C70 in toluene were explored as a function of substituents at the periphery of the porphyrin, and 3,5-di-tert-butylphenyl groups gave rise to the highest fullerene affinities (26,000 M(-1) for C60). The origin of this high fullerene affinity has been traced to differential solvation effects rather than to electronic effects. Studies of binding constants as a function of solvent (toluene solubility, indicating that desolvation of the fullerene is a major factor determining the magnitude of binding constants. The energetics of fullerene binding have been determined in terms of DelatH and DeltaS and are consistent with an enthalpy-driven, solvation-dependent process. A direct relationship between supramolecular binding of a fullerene guest to a bisporphyrin host and the appearance of a broad NIR absorption band have been established. The energy of this band moves in a predictable manner as a function of the electronic structure of the porphyrin, thereby establishing its origin in porphyrin-to-fullerene charge transfer.

  14. Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation.

    Science.gov (United States)

    Wang, Min; Maragani, Satyanarayana; Huang, Liyi; Jeon, Seaho; Canteenwala, Taizoon; Hamblin, Michael R; Chiang, Long Y

    2013-05-01

    We report a novel class of highly water-soluble decacationic methano[60]fullerene decaiodides C60[>M(C3N6(+)C3)2]-(I(-))10 [1-(I(-))10] capable of co-producing singlet oxygen (Type-II) and highly reactive hydroxyl radicals, formed from superoxide radicals in Type-I photosensitizing reactions, upon illumination at both UVA and white light wavelengths. The O2(-)·-production efficiency of 1-(I(-))10 was confirmed by using an O2(-)·-reactive bis(2,4-dinitrobenzenesulfonyl)tetrafluorofluorescein probe and correlated to the photoinduced electron-transfer event going from iodide anions to (3)C60*[>M(C3N6(+)C3)2] leading to C60(-)·[>M(C3N6(+)C3)2]. Incorporation of a defined number (ten) of quaternary ammonium cationic charges per C60 in 1 was aimed to enhance its ability to target pathogenic Gram-positive and Gram-negative bacterial cells. We used the well-characterized malonato[60]fullerene diester monoadduct C60[>M(t-Bu)2] as the starting fullerene derivative to provide a better synthetic route to C60[>M(C3N6(+)C3)2] via transesterification reaction under trifluoroacetic acid catalyzed conditions. These compounds may be used as effective photosensitizers and nano-PDT drugs for photoinactivation of pathogens.

  15. Synthesis and photophysical properties of polyamides containing in-chain porphyrin and [60]fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haiying; Chen Chen; Zhu Yizhou; Shi Mingzhu; Zheng Jianyu, E-mail: jyzheng@nankai.edu.cn [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China)

    2012-03-15

    Conjugated polyamides containing porphyrin and [60]fullerene (C{sub 60}) in the main chain were prepared by a direct polycondensation of the 3 Prime H,3 Double-Prime H-dicyclopropa[1, 9:16, 17; 5, 6]fullerene-C{sub 60}-I{sub h}-3 Prime ,3 Double-Prime -dicarboxylic acid and 5,15-bis(4-aminophenyl)-10,20-bis(3,5-dialkoxyphenyl)porphyrin in the presence of triphenyl phosphite and pyridine. Gel permeation chromatography (GPC) analysis of the polyamides showed the weight-average molecular weight was about 23,626-23,736, and the temperature at 5% weight loss determined by thermogravimetric analysis (TGA) was above 216 Degree-Sign C. The transmission electron microscopy (TEM) images displayed the regular one-dimensional linear arrays of the polyamides with lengths exceeded 200 nm. The photoinduced electron transfer from porphyrin to C{sub 60} in the polyamides was observed in nanosecond laser-flash photolysis experiments at ambient temperature, which produced a charge-separated state (porphyrin radical cation-C{sub 60} radical anion pair) with a lifetime as long as 40 {mu}s. The calculated ratio of k{sub CS}/k{sub CR} was found to be 2.1 Multiplication-Sign 10{sup 4}. They could have potential applications for photoelectronic devices, organic solar cells and so on.

  16. All-boron fullerene exhibits a strong affinity to inorganic anions

    Science.gov (United States)

    Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2017-03-01

    Experimentally observed all-boron fullerene, B-80, inspires systematic investigation of its physical chemical properties and search for possible applications. We hereby report density functional theory calculations to characterize interactions of B-80 with the selected imidazolium room-temperature ionic liquids (RTILs), dimethylimidazolium nitrate and dimethylimidazolium hexafluorophosphate. Whereas the imidazolium cation exhibits a rather poor affinity to B-80, the inorganic anions form polar covalent bonds with the boron atom occupying a central position within a B-6 hexagon. Attachment of the RTIL ion pairs leads to a significant alteration of the electronic spectra, charge density distribution, valence and conduction molecular orbitals. The total binding energies keeping the RTIL@B80 complexes together range 200-250 kcal mol-1, being higher than the energies of many interactions in chemistry. The observed phenomenon predicts an excellent solubility of B-80 in the considered RTILs, but may also reveal a poor stability of B-80 in the polar media. Our results motivate further efforts in studying the behavior of the all-boron fullerene in polar environments.

  17. On the electronic structure of fullerene anions

    Energy Technology Data Exchange (ETDEWEB)

    Bergomi, L.; Jolicoeur, T. (CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1994-02-03

    The authors study the electronic states of isolated fullerene anions C[sub 60][sup n-] (1 [<=] n [<=] 6) taking into account the effective interaction between electrons due to exchange of intramolecular phonons. If the vibronic coupling is strong enough such an effect may overwhelm Hund's rule and lead to an ordering of levels that can be interpreted as on-ball pairing, in a manner similar to the pairing in atomic nuclei. The authors suggest that such effects may be sought in solutions of fulleride ions and discuss recent experimental results.

  18. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  19. Fullerenes: prospects of using in medicine, biology and ecology

    Directory of Open Access Journals (Sweden)

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  20. Continuum simulations of water flow past fullerene molecules

    Science.gov (United States)

    Popadić, A.; Praprotnik, M.; Koumoutsakos, P.; Walther, J. H.

    2015-09-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  1. The planimetric unfold method of fullerene cage structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two kinds of planimetric diagrams, which consist of the boat form F6 and F5, the storm petrel form F6 and F5, respectively, were proposed to express the geometric structure of fullerene cage in this study. There are two chief advantages using the diagrams: (ⅰ) the spatial symmetrical characteristic of fullerene cage is not destroyed; (ⅱ) the coordination forms of F5 and F6 in the structure can be clearly expressed. This work has laid the foundation for studying the structural geometry of fullerene cage and its quantum chemistry and property.

  2. Superconductivity in alkali-doped fullerene nanowhiskers

    Science.gov (United States)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  3. Molecular dynamics study of self-agglomeration of charged fullerenes in solvents.

    Science.gov (United States)

    Banerjee, Soumik

    2013-01-28

    The agglomeration of fullerenes in solvents is an important phenomenon that is relevant to controlled synthesis of fullerene-based nanowires as well as fullerene-based composites. The molecular aggregation in solvents depends on the atomistic interactions of fullerene with the solvent and is made complicated by the fact that fullerenes accrue negative surface charges when present in solvents such as water. In the present work, we simulated fullerenes of varying size and shape (C60, C180, C240, and C540) with and without surface charges in polar protic (water), polar aprotic (acetone), and nonpolar (toluene) solvents using molecular dynamics method. Our results demonstrate that uncharged fullerenes form agglomerates in polar solvents such as water and acetone and remain relatively dispersed in nonpolar toluene. The presence of surface charge significantly reduces agglomerate size in water and acetone. Additionally, the relative influence of surface charge on fullerene agglomeration depends on the size and geometry of the fullerene with larger fullerenes forming relatively smaller agglomerates. We evaluated the diffusion coefficients of solvent molecules within the solvation shell of fullerenes and observed that they are much lower than the bulk solvent and are strongly associated with the fullerenes as seen in the corresponding radial distribution functions. To correlate agglomerate size with the binding energy between fullerenes, we evaluated the potential of mean force between fullerenes in each solvent. Consistent with the solubility of fullerenes, binding energy between fullerenes is the greatest in water followed by acetone and toluene. The presence of charge decreases the binding energy of fullerenes in water and thus results in dispersed fullerenes.

  4. Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cells.

    Science.gov (United States)

    Huang, Wenchao; Gann, Eliot; Thomsen, Lars; Tadich, Anton; Cheng, Yi-Bing; McNeill, Christopher R

    2016-01-27

    Surface-sensitive NEXAFS spectroscopy is used to probe the interaction between low work function metal electrodes and fullerene derivatives in organic solar cells. Evaporation of either Ca or Al electrodes onto films of the fullerene derivatives (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and indene-C60 bisadduct (ICBA) leads to a dramatic change in the observed NEXAFS spectrum. The observed changes cannot be explained only in terms of interfacial electronic doping or charge transfer, but rather point to the formation of new chemical bonds that destroy the extensive electron delocalization on the C60 cage. A combination of ex situ and in situ ultrahigh vacuum measurements indicates that metal evaporation results in a change in the electronic structure of PCBM that then facilitates chemical degradation and oxidation in the presence of oxygen. To investigate the effect of this chemical interaction on device performance, a unique transfer method to laminate the Al electrode to the top of polymer blend is used, in which case, the chemical degradation of the fullerene is not observed. Device performance of P3HT/PCBM blend solar cells in which the top metal electrode has either been thermally evaporated or transferred is then compared. These results highlight that chemical, as well as electronic, interactions between metals and organic semiconductors must be considered.

  5. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  6. The role of fullerene shell upon stuffed atom polarization potential

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Neon and Argon endohedrals polarization potential. As a result, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential.

  7. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination

    Directory of Open Access Journals (Sweden)

    Aoyagi H

    2011-05-01

    Full Text Available Hideki Aoyagi, Charles U UgwuLife Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, JapanAbstract: Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains was inhibited by the adhesion of fullerene fine particles.Keywords: Cryptomeria japonica, Chamaecyparis obtusa, Camellia japonica, autofluorescence, pollen grains, fullerene fine particle

  8. Water clusters confined in icosahedral fullerene cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rojas, J., E-mail: jhrojas@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Monteseguro, V. [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Breton, J., E-mail: jbreton@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Gomez Llorente, J.M., E-mail: jmgomez@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2012-05-03

    Graphical abstract: Black-Square Display Omitted Highlights: Black-Right-Pointing-Pointer We model the interaction energy of water clusters confined in fullerene cavities. Black-Right-Pointing-Pointer C{sub 60} and C{sub 180} are chosen as icosahedral cavities. Black-Right-Pointing-Pointer The rigid TIP4P and flexible q-TIP4P/F water-water potentials are used. Black-Right-Pointing-Pointer While C{sub 60} can confine exothermically only one water molecule, C{sub 180} does up to 17. Black-Right-Pointing-Pointer New global minimum structures are reported for water clusters inside C{sub 180}. - Abstract: Likely candidates for the global energy minima of endohedral (H{sub 2}O){sub N}-C{sub 60} and (H{sub 2}O){sub N}-C{sub 180}, and exohedral (H{sub 2}O){sub N}C{sub 180} water-fullerene clusters with N Less-Than-Or-Slanted-Equal-To 20, are found using basin-hopping global optimization. The potential energy surfaces are constructed using both the rigid TIP4P and the flexible q-TIP4P/F potentials to model the water-water interaction, together with a Lennard-Jones potential for the water-fullerene interaction. In agreement with previous ab initio studies, we find that the small C{sub 60} cavity is able to encapsulate exothermically only one water molecule. On the other hand, the larger C{sub 180} cavity can encapsulate up to 17 water molecules exothermically. This threshold value is higher than that reported in a previous ab initio study (N Less-Than-Or-Slanted-Equal-To 12). New confined water cluster structures are found. One which is particularly interesting is the structure of (H{sub 2}O){sub 14}-C{sub 180}, with the water molecules forming an internal cage in which six oxygen atoms are located at the vertices of an almost regular octahedron and the eight remaining ones lie on top of the octahedron faces. For N Greater-Than-Or-Slanted-Equal-To 15 one water molecule is always present at the center of the water cage, which is distorted to accommodate the extra molecules.

  9. Biomedical applications of functionalized fullerene-based nanomaterials

    OpenAIRE

    Ranga Partha; Conyers, Jodie L.

    2009-01-01

    Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullere...

  10. Hierarchically organized soft-materials based on fullerenes

    Science.gov (United States)

    Nakanishi, Takashi

    2009-04-01

    Simple chemical modifications of fullerene (C60) with long aliphatic chains provide novel type amphiphilic molecules playing in organic solvents due to the two different intermolecular interactions, namely π-π on C60 and van der Waals interactions on aliphatic chain moieties, respectively, and open a door developing supramolecular soft-materials having hierarchically organized architectures, various morphologies and functions based on fullerenes. By tuning the length and number of aliphatic chains on the derivatives as well as experimental conditions such as solvents, temperature, substrates for preparation of the assemblies, the assembled fullerenes showed various faces such as creating of many unique-shaped objects with controlled their dimensionality. For instance, nanowires and thin disks with single bilayer thickness in nanometer size, globular, fibrous, conical objects in mesoscopic (sub-micrometer) scale and flower-shaped and direction-controlled spiral objects in micrometer scale are obtained. As bulk states, thermotropic liquid crystals and room temperature (isotropic) liquid fullerenes are interestingly prepared from this molecular designs and showed not only their fluid natures and comparably high carrier mobility as fullerene-based organic-semiconductor phenomena. In addition, nano-carbon superhydrophobic surface with fractal morphology of the two-tier roughness on a nano- and microscopic scale was created from one of the supramolecular objects. The all of hierarchical supramolecular assemblies describing in this review is derived from fine-tuning intermolecular interactions of fullerene derivatives bearing long aliphatic chains.

  11. Polymer fullerene solution phase behaviour and film formation pathways.

    Science.gov (United States)

    Dattani, Rajeev; Cabral, João T

    2015-04-28

    We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

  12. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Directory of Open Access Journals (Sweden)

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  13. Histopathology of fathead minnow (Pimephales promelas) exposed to hydroxylated fullerenes.

    Science.gov (United States)

    Jovanović, Boris; Whitley, Elizabeth M; Palić, Dušan

    2014-11-01

    Hydroxylated fullerenes are reported to be very strong antioxidants, acting to quench reactive oxygen species, thus having strong potential for important and widespread applications in innovative therapies for a variety of disease processes. However, their potential for toxicological side effects is still largely controversial and unknown. Effects of hydroxylated fullerenes C60(OH)24 on the fathead minnow (Pimephales promelas) were investigated microscopically after a 72-hour (acute) exposure by intraperitoneal injection of 20 ppm of hydroxylated fullerenes per gram of body mass. Cumulative, semi-quantitative histopathologic evaluation of brain, liver, anterior kidney, posterior kidney, skin, coelom, gills and the vestibuloauditory system revealed significant differences between control and hydroxylated fullerene-treated fish. Fullerene-treated fish had much higher cumulative histopathology scores. Histopathologic changes included loss of cellularity in the interstitium of the kidney, a primary site of haematopoiesis in fish, and loss of intracytoplasmic glycogen in liver. In the coelom, variable numbers of leukocytes, including many macrophages and fewer heterophils and rodlet cells, were admixed with the nanomaterial. These findings raise concern about in vivo administration of hydroxylated fullerenes in experimental drugs and procedures in human medicine, and should be investigated in more detail.

  14. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    Science.gov (United States)

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  15. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  16. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  17. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Sabrina Pacor

    2015-01-01

    Full Text Available Two fullerene derivatives (fullerenes 1 and 2, bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  18. Effects of Two Fullerene Derivatives on Monocytes and Macrophages.

    Science.gov (United States)

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Lucafò, Marianna; Da Ros, Tatiana; Prato, Maurizio; Sava, Gianni

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  19. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity.

    Science.gov (United States)

    Johnston, Helinor J; Hutchison, Gary R; Christensen, Frans M; Aschberger, Karin; Stone, Vicki

    2010-04-01

    This review provides a comprehensive critical review of the available literature purporting to assess the toxicity of carbon fullerenes. This is required as prior to the widespread utilization and production of fullerenes, it is necessary to consider the implications of exposure for human health. Traditionally, fullerenes are formed from 60 carbon atoms, arranged in a spherical cage-like structure. However, manipulation of surface chemistry and molecular makeup has created a diverse population of fullerenes, which exhibit drastically different behaviors. The cellular processes that underlie observed fullerene toxicity will be discussed and include oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes (and the attributes responsible for driving these phenomena) have been considered and encourage their utilization within the treatment of oxidant-mediated disease. A number of studies have focused on improving the water solubility of fullerenes in order to enable their exploitation within biological systems. Manipulating fullerene water solubility has included the use of surface modifications, solvents, extended stirring, and mechanical processes. However, the ability of these processes to also impact on fullerene toxicity requires assessment, especially when considering the use of solvents, which particularly appear to enhance fullerene toxicity. A number of the discussed investigations were not conducted to reveal if fullerene behavior was due to their nanoparticle dimensions but instead addressed the biocompatibility and toxicity of fullerenes. The hazards to human health, associated with fullerene exposure, are uncertain at this time, and further investigations are required to decipher such effects before an effective risk assessment can be conducted.

  20. Towards a fullerene-based quantum computer

    CERN Document Server

    Benjamin, S C; Briggs, G A D; Britz, D A; Gunlycke, D; Jefferson, J; Jones, M A G; Khlobystov, A N; Leigh, D F; Lovett, B W; Lyon, S A; Morton, J J L; Porfyrakis, K; Sambrook, M R; Tyryshkin, A M; Ardavan, Arzhang; Benjamin, Simon C; Britz, David A; Gunlycke, Daniel; Jefferson, John; Jones, Mark A G; Khlobystov, Andrei N; Leigh, David F; Lovett, Brendon W; Morton, John J L; Porfyrakis, Kyriakos; Sambrook, Mark R; Tyryshkin, Alexei M

    2005-01-01

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realising such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input / output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.

  1. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh

    2016-07-15

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.

  2. Towards a fullerene-based quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Simon C [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ardavan, Arzhang [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Briggs, G Andrew D [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britz, David A [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Gunlycke, Daniel [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Jefferson, John [QinetiQ, St Andrews Road, Malvern, WR14 3PS (United Kingdom); Jones, Mark A G [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Leigh, David F [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lovett, Brendon W [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Khlobystov, Andrei N [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lyon, S A [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Morton, John J L [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Porfyrakis, Kyriakos [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Sambrook, Mark R [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Tyryshkin, Alexei M [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2006-05-31

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realizing such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input/output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.

  3. Atomically resolved phase transition of fullerene cations solvated in helium droplets

    Science.gov (United States)

    Kuhn, M.; Renzler, M.; Postler, J.; Ralser, S.; Spieler, S.; Simpson, M.; Linnartz, H.; Tielens, A. G. G. M.; Cami, J.; Mauracher, A.; Wang, Y.; Alcamí, M.; Martín, F.; Beyer, M. K.; Wester, R.; Lindinger, A.; Scheier, P.

    2016-11-01

    Helium has a unique phase diagram and below 25 bar it does not form a solid even at the lowest temperatures. Electrostriction leads to the formation of a solid layer of helium around charged impurities at much lower pressures in liquid and superfluid helium. These so-called `Atkins snowballs' have been investigated for several simple ions. Here we form HenC60+ complexes with n exceeding 100 via electron ionization of helium nanodroplets doped with C60. Photofragmentation of these complexes is measured by merging a tunable narrow-bandwidth laser beam with the ions. A switch from red- to blueshift of the absorption frequency of HenC60+ on addition of He atoms at n=32 is associated with a phase transition in the attached helium layer from solid to partly liquid (melting of the Atkins snowball). Elaborate molecular dynamics simulations using a realistic force field and including quantum effects support this interpretation.

  4. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    Energy Technology Data Exchange (ETDEWEB)

    Carboni, Andrea, E-mail: A.carboni@uva.nl [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); Emke, Erik [KWR, Watercycle Research Institute, P.O. Box 1072, 3433 PE Nieuwegein (Netherlands); Parsons, John R.; Kalbitz, Karsten [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); Voogt, Pim de [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); KWR, Watercycle Research Institute, P.O. Box 1072, 3433 PE Nieuwegein (Netherlands)

    2014-01-07

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg{sup −1} and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L{sup −1} and 15–24 μg L{sup −1} respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg{sup −1} and 10 μg kg{sup −1} respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of

  5. Electronic structures of some of C84 fullerene isomers and the structures of their perfluoroalkyl derivatives

    Science.gov (United States)

    Kovalenko, V. I.; Tuktamysheva, R. A.; Khamatgalimov, A. R.

    2014-01-01

    The electronic structures of the pristine fullerene molecules have been shown for the first time to be is the most important factor affecting the distribution of addends in the addition reactions of perfluoroalkyl radicals RF to C84 fullerene, and most likely positions of addends on the fullerene core are hexagons with delocalized π-bonds.

  6. Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells.

    Science.gov (United States)

    Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C

    2009-09-22

    We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.

  7. Fullerene-oxygen-iodine laser (FOIL): physical principles

    Science.gov (United States)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-09-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  8. Fullerene oxidation and clustering in solution induced by light.

    Science.gov (United States)

    Dattani, Rajeev; Gibson, Kirsty F; Few, Sheridan; Borg, Aaron J; DiMaggio, Peter A; Nelson, Jenny; Kazarian, Sergei G; Cabral, João T

    2015-05-15

    We investigate the environmental stability of fullerene solutions by static and dynamic light scattering, FTIR, NMR and mass spectroscopies, and quantum chemical calculations. We find that visible light exposure of fullerene solutions in toluene, a good solvent, under ambient laboratory conditions results in C60 oxidation to form fullerene epoxides, and subsequently causes fullerene clustering in solution. The clusters grow with time, even in absence of further illumination, and can reach dimensions from ≈100 nm to the μm scale over ≈1 day. Static light scattering suggests that resulting aggregates are fractal, with a characteristic power law (d(f)) that increases from approximately 1.3 to 2.0 during light exposure. The clusters are bound by weak Coulombic interactions and are found to be reversible, disintegrating by mechanical agitation and thermal stress, and reforming over time. Our findings are relevant to the solution processing of composites and organic photovoltaics, whose reproducibility and performance requires control of fullerene solution stability under storage conditions.

  9. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  10. New concepts and applications in the macromolecular chemistry of fullerenes.

    Science.gov (United States)

    Giacalone, Francesco; Martín, Nazario

    2010-10-08

    A new classification on the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. Because of their interest and novelty, water-soluble and biodegradable C(60)-polymers are discussed first, followed by polyfullerene-based membranes where unprecedented supramolecular structures are presented. Next are compounds that involve hybrid materials formed from fullerenes and other components such as silica, DNA, and carbon nanotubes (CNTs) where the most recent advances have been achieved. A most relevant topic is still that of C(60)-based donor-acceptor (D-A) polymers. Since their application in photovoltaics D-A polymers are among the most realistic applications of fullerenes in the so-called molecular electronics. The most relevant aspects in these covalently connected fullerene/polymer hybrids as well as new concepts to improve energy conversion efficiencies are presented.The last topics disccused relate to supramolecular aspects that are in involved in C(60)-polymer systems and in the self-assembly of C(60)-macromolecular structures, which open a new scenario for organizing, by means of non-covalent interactions, new supramolecular structures at the nano- and micrometric scale, in which the combination of the hydrofobicity of fullerenes with the versatility of the noncovalent chemistry afford new and spectacular superstructures.

  11. Fullerene data mining using bibliometrics and database tomography

    Science.gov (United States)

    Kostoff; Braun; Schubert; Toothman; Humenik

    2000-01-01

    Database tomography (DT) is a textual database analysis system consisting of two major components: (1) algorithms for extracting multiword phrase frequencies and phrase proximities (physical closeness of the multiword technical phrases) from any type of large textual database, to augment (2) interpretative capabilities of the expert human analyst. DT was used to derive technical intelligence from a fullerenes database derived from the Science Citation Index and the Engineering Compendex. Phrase frequency analysis by the technical domain experts provided the pervasive technical themes of the fullerenes database, and phrase proximity analysis provided the relationships among the pervasive technical themes. Bibliometric analysis of the fullerenes literature supplemented the DT results with author/journal/institution publication and citation data. Comparisons of fullerenes results with past analyses of similarly structured near-earth space, chemistry, hypersonic/supersonic flow, aircraft, and ship hydrodynamics databases are made. One important finding is that many of the normalized bibliometric distribution functions are extremely consistent across these diverse technical domains and could reasonably be expected to apply to broader chemical topics than fullerenes that span multiple structural classes. Finally, lessons learned about integrating the technical domain experts with the data mining tools are presented.

  12. Characterization of naturally-occurring and modified fullerenes by Fourier transform mass spectrometry

    Science.gov (United States)

    Hettich, Robert L.; Jin, Changming; Compton, Robert N.; Buseck, Peter R.; Tsipursky, Semeon J.

    1993-10-01

    Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C60Fx (x=44,46) and C70Fy (y=52,54) were found to be substantially higher than the values for the parent fullerenes.

  13. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  14. Comparative process analysis of fullerene production by the arc and the radio-frequency discharge methods.

    Science.gov (United States)

    Marković, Z; Todorović-Marković, B; Mohai, I; Farkas, Z; Kovats, E; Szepvolgyi, J; Otasević, D; Scheier, P; Feil, S; Romcević, N

    2007-01-01

    In this work, comparative analysis of processes in carbon arc and radio frequency (RF) plasma during fullerene synthesis has been presented. The kinetic model of fullerene formation developed earlier has been verified in both types of plasma reactors. The fullerene yield depended on carbon concentration, velocity of plasma flame and rotational temperature of C2 radicals predominantly. When mean rotational temperature of C2 radicals was 3000 K, the fullerene yield was the highest regardless of the type of used reactor. The zone of fullerene formation is larger significantly in RF plasma reactor compared to arc reactor.

  15. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    CERN Document Server

    Asaji, T; Uchida, T; Minezaki, H; Ishihara, S; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2015-01-01

    A synthesis technology of endohedral fullerenes such as Fe@C60 has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C60 was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  16. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    Science.gov (United States)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  17. Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative

    Institute of Scientific and Technical Information of China (English)

    刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华

    2003-01-01

    Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.

  18. The Formation of Cosmic Fullerenes from Arophatic Clusters

    Science.gov (United States)

    Micelotta, Elisabetta R.; Jones, Anthony P.; Cami, Jan; Peeters, Els; Bernard-Salas, Jeronimo; Fanchini, Giovanni

    2012-12-01

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae, and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nanoparticles and their specific derivative structures, which we name "arophatics," in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  19. The formation of cosmic fullerenes from arophatic clusters

    CERN Document Server

    Micelotta, Elisabetta R; Cami, Jan; Peeters, Els; Bernard-Salas, Jeronimo; Fanchini, Giovanni

    2012-01-01

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae (RNe) and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nano-particles and their specific derivative structures, which we name "arophatics", in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  20. Thermal management technology for hydrogen storage: Fullerene option

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C.; Chen, F.C.; Murphy, R.W. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Fullerenes are selected as the first option for investigating advanced thermal management technologies for hydrogen storage because of their potentially high volumetric and gravimetric densities. Experimental results indicate that about 6 wt% of hydrogen (corresponding to C{sub 60}H{sub 48}) can be added to and taken out of fullerenes. A model assuming thermally activated hydrogenation and dehydrogenation processes was developed to explain the experimental findings. The activation energies were estimated to be 100 and 160 kJ/mole (1.0 and 1.6 eV/H{sub 2}) for the hydrogenation and dehydrogenation processes, respectively. The difference is interpreted as the heat released during hydrogenation. There are indications that the activation energies and the heat of hydrogenation can be modified by the use of catalysts. Preliminary hydrogen storage simulations for a conceptually simple device were performed. A 1-m long hollow metal cylinder with an inner diameter of 0.02 m was assumed to be filled with fullerene powders. The results indicate that the thermal diffusivity of the fullerenes controls the hydrogenation and dehydrogenation rates. The rates can be significantly modified by changing the thermal diffusivity of the material inside the cylinder, e.g., by incorporating a metal mesh. Results from the simulation suggest that thermal management is essential for efficient hydrogen storage devices using fullerenes. While the preliminary models developed in this study explain some of the observation, more controlled experiments, rigorous model development, and physical property determinations are needed for the development of practical hydrogen storage devices. The use of catalysts to optimize the hydrogen storage characteristics of fullerenes also needs to be pursued. Future cooperative work between Oak Ridge National Laboratory (ORNL) and Material & Electrochemical Research Corporation (MER) is planned to address these needs.

  1. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  2. Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R.; Müller, Christian; Olsson, Eva

    2015-04-01

    The formation of fullerene crystals represents a major degradation pathway of polymer/fullerene bulk-heterojunction thin films that inexorably deteriorates their photovoltaic performance. Currently no tools exist that reveal the origin of fullerene crystal formation vertically through the film. Here, we show that electron tomography can be used to study nucleation and growth of fullerene crystals. A model bulk-heterojunction blend based on a thiophene-quinoxaline copolymer and a fullerene derivative is examined after controlled annealing above the glass transition temperature. We image a number of fullerene nanocrystals, ranging in size from 70 to 400 nanometers, and observe that their center is located close to the free-surface of spin-coated films. The results show that the nucleation of fullerene crystals predominately occurs in the upper part of the films. Moreover, electron tomography reveals that the nucleation is preceded by more pronounced phase separation of the blend components.

  3. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  4. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  5. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fullerenes, Organics and the Diffuse Interstellar Bands

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The status of DIB research has strongly advanced since 20 years [1], as well as the quest for fullerenes, PAHs and large organics in space. In 1994 we reported the discovery of two near IR diffuse bands coincident with C60+, confirmed in subsequent years [2-6] and now by latest laboratory experiments. A number of DIB observational studies have been published, dealing with: DIB surveys [1,7-10]; measurements of DIB families, correlations and environment dependences [11-14]; extragalactic DIBs [15, 16]. Resolved substructures were detected [17,18] and compared to predicted rotational contours by large molecules [19]. Polarisation studies provided upper limits constraints [20, 21]. DIBs carriers have been linked with organic molecules observed in the interstellar medium [22-25] such as IR bands (assigned to PAHs), Extended Red Emission or recently detected Anomalous Microwave Emission (AME, assigned to spinning dust) and with spectroscopic IR emission bands measured with ISO or Spitzer. Fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched in DIB spectra [eg 2-6, 26-31]. These could be present in various dehydrogenation and ionisation conditions [32,33]. Experiments in the laboratory and in space [eg 34-36] allow to measure the survival and by-products of these molecules. We review DIB observational results and their interpretation, and discuss the presence of large organics, fullerenes, PAHs, graphenes in space. References [1] Herbig, G. 1995 ARA&A33, 19; [2] Foing, B. & Ehrenfreund, P. 1994 Natur 369, 296; [3] Foing, B. & Ehrenfreund, P. 1997 A&A317, L59; [4] Foing, B. & Ehrenfreund, P. 1995 ASSL202, 65; [5] Ehrenfreund, P., Foing, B. H. 1997 AdSpR19, 1033; [6] Galazutdinov, G. A. et al. 2000 MNRAS317, 750; [7] Jenniskens, P., Desert, F.-X. 1994 A&AS106, 39; [8] Ehrenfreund, P. et al. 1997 A&A318, L28; [9] Tuairisg, S. Ó. et al. 2000 A&AS142, 225; [10] Cox, N. et al. 2005 A&A438, 187; [11] Cami, J. et al. 1997A&A.326, 822

  7. The C60-Fullerene Porphyrin Adducts for Prevention of the Doxorubicin-Induced Acute Cardiotoxicity in Rat Myocardial Cells

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Shetab Boushehri

    2010-10-01

    Full Text Available This is a fullerene-based low toxic nanocationite designed for targeted delivery of the paramagnetic stable isotope of magnesium to the doxorubicin (DXR-induced damaged heart muscle providing a prominent effect close to about 80% recovery of the tissue hypoxia symptoms in less than 24 hrs after a single injection (0.03 - 0.1 LD50. Magnesium magnetic isotope effect selectively stimulates the ATP formation in the oxygen-depleted cells due to a creatine kinase (CK and mitochondrial respiratory chain-focusing "attack" of 25Mg2+ released by nanoparticles. These "smart nanoparticles" with membranotropic properties release the overactivating cations only in response to the intracellular acidosis. The resulting positive changes in the energy metabolism of heart cell may help to prevent local myocardial hypoxic (ischemic disorders and, hence, to protect the heart muscle from a serious damage in a vast variety of the hypoxia-induced clinical situations including DXR side effects.

  8. The C60-Fullerene Porphyrin Adducts for Prevention of the Doxorubicin-Induced Acute Cardiotoxicity in Rat Myocardial Cells

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Shetab Boushehri

    2010-09-01

    Full Text Available "nThis is a fullerene-based low toxic nanocationite designed for targeted delivery of the paramagnetic stable isotope of magnesium to the doxorubicin (DXR-induced damaged heart muscle providing a prominent effect close to about 80% recovery of the tissue hypoxia symptoms in less than 24 hrs after a single injection (0.03 - 0.1 LD50. Magnesium magnetic isotope effect selectively stimulates the ATP formation in the oxygen-depleted cells due to a creatine kinase (CK and mitochondrial respiratory chain-focusing "attack" of 25Mg2+ released by nanoparticles. These "smart nanoparticles" with membranotropic properties release the overactivating cations only in response to the intracellular acidosis. The resulting positive changes in the energy metabolism of heart cell may help to prevent local myocardial hypoxic (ischemic disorders and, hence, to protect the heart muscle from a serious damage in a vast variety of the hypoxia-induced clinical situations including DXR side effects.

  9. Are Biogenic PAHs Precursors for Fullerenes on Earth?

    Science.gov (United States)

    Heymann, D.

    2002-03-01

    C60 fullerene in shungite and in bitumen from the Bohemian Massif could have formed in situ in two steps: 1. Cyclotrimerization of the PAH C20H12. 2. Dehydrogenation of C60H30 to C60. The necessary heat was provided during metamorphism.

  10. Thermochemistry of Pt-Fullerene Complexes: Semiempirical Study

    Science.gov (United States)

    Voityuk, Alexander A.

    2009-07-01

    Modified Neglect of Differential Overlap (MNDO) and MNDO/d based semiempirical methods are widely employed to explore structure and thermochemistry of molecular systems. In this work, the AM1/d method has been parametrized for systems containing platinum. The proposed scheme delivers excellent performance for binding energies of Pt complexes with ethylene and large π conjugated hydrocarbons. The estimated bond energies accurately reproduce the results of MP4(SDQ) calculations and show significant improvement over DFT (B3LYP and M05) data. We apply the AM1/d scheme to explore the structure and thermochemistry of several Pt compounds with C60 and C70. The calculated binding energies of bare Pt atoms and [Pt(PH3)2] units to the fullerenes are 75 and 45 kcal/mol, respectively. We find that coordination of a single metal center to C60 activates the fullerene cage making subsequent coordination of Pt more favorable. The bond energy [C60-PtC60] is calculated to be 65 kcal/mol. The estimated reaction enthalpies are useful for exploring the stability of PtxC60 polymer systems and their interaction with phosphines. AM1/d predicts a very low barrier to rotation of the coordinated fullerenes in [Pt(C60)2]. The AM1/d scheme is computationally very efficient and can be employed to obtain fast quantitative estimates for binding energies and structural parameters of Pt complexes with large π conjugated systems like fullerenes and carbon nanotubes.

  11. Predicting morphologies of solution processed polymer: Fullerene blends

    NARCIS (Netherlands)

    Kouijzer, S.; Michels, J.J.; Berg, M. van den; Gevaerts, V.S.; Turbiez, M.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic

  12. Enhanced efficiency in double junction polymer: Fullerene solar cells

    NARCIS (Netherlands)

    Moet, D.J.D.; Bruyn, P. de; Kotlarski, J.D.; Blom, P.W.M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the photoac

  13. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.;

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as ...

  14. Fullerene-based symmetry in Hibiscus rosa-sinensis pollen.

    Directory of Open Access Journals (Sweden)

    Kleber Andrade

    Full Text Available The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid's "Elements" book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process.

  15. Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.

    Science.gov (United States)

    Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua

    2015-03-28

    Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

  16. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  17. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    Science.gov (United States)

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun’Ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-12-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask.

  18. Enhanced efficiency in double junction polymer : fullerene solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Kotlarski, J. D.; Blom, P. W. M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the photo

  19. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  20. A novel route towards high quality fullerene-pillared graphene

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Kang, Longtian; Diamanti, Eumorfia K.; Gengler, Regis Y.; Gournis, Dimitrios; Prato, Maurizio; Rudolf, Petra

    2013-01-01

    A new approach for the synthesis of graphite intercalation compounds (GICs), by the help of co-intercalant molecules, has been observed. In the present work, we demonstrate the successful incorporation of fullerene (C-60) molecules between the graphene sheets aided by the preceding intercalation of

  1. Anomalous Photofragmentation of Fullerene Doped in Silica Aerogel-Enhanced Formation of Odd-Numbered "Fullerene" Fragments

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬; 王钰

    2001-01-01

    Photofragmentation of fullerene-doped silica aerogels has been investigated by the excimer laser ablation reflectron time-of-flight mass spectrometric technique. Great enhancement in the formation of odd-numbered 'fullerene' fragments has been observed in the negative-ion channel for the chemically doped aerogel sample. Generally, oddnumbered species C57, C55, C53 and C51 appeared in the mass spectra. Under optimM experimental conditions C55 can be even more intense than the neighbouring even-numbered carbon clusters. In contrast, for the physicallydoped sample, just like pristine C6o, only weak odd-numbered fragments were observed. In the positive-ion channel, the behaviour of all these samples is similar, no odd-numbered species was ever detected. A mechanism related to the interaction between the fullerene dopant and the silica aerogel host is suggested for the anomalous enhancement of the odd-numbered duster formation. A preliminary discussion on the structures of the oddnumbered 'fullerene' fragments is given.

  2. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  3. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection UV

    NARCIS (Netherlands)

    Carboni, A.; Emke, E.; Parsons, J.R.; Kalbitz, K.; de Voogt, P.

    2014-01-01

    Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specifi

  4. Influence of organic acids on UV-Vis spectra of pyrrolidino- [60]fullerene derivatives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pyrrolidino[60]fullerene 1 with pyrrolidine group was synthesized and characterized. The UV-Vis spectra showed that the blue shift of absorption peaks was first observed when strong organic acids such as p-toluene sulfonic or trifluoroacetic acid were added to the solution of pyrrolidino[60]fullerene 1 in dichloromethane. The results indicated that the pyrrolidino[60]fullerene derivatives without pyrrolidine group also possess the same phenomenon. Experiments and computation with the MOPAC 7.0 semi-em- pirical PM3 method demonstrated the reason that some energy gaps on [60]fullerene skeleton were increased because electronic charges on [60]fullerene framework transferred to pyrrolidine ring when strong organic acids were added into pyrrolidino[60]fullerene derivatives' solution; as the result, the complexes could be formed and some absorption wave-lengths blue shifted in the UV-Vis spectrum.

  5. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Science.gov (United States)

    Uchida, T.; Rácz, R.; Muramatsu, M.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  6. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  7. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  8. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  9. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy.

    Science.gov (United States)

    Jiang, Guichang; Yin, Fen; Duan, Jihua; Li, Guangtao

    2015-01-01

    Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. They are completely soluble in water, yielding a clear brown solution. The products were characterized by fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV-Vis), (1)H NMR, (13)C NMR, thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The assembly behavior of water-soluble fullerene-glycine derivatives was investigated by SEM. The results show that the fullerene-glycine derivatives create morphology that is sphere-like. The cytotoxicity to cancer cell lines of the fullerene-glycine derivatives was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and flow cytometry. The results show that fullerene-glycine derivatives exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. The cytotoxicity mechanism of fullerene-glycine derivatives was investigated for the first time. Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. The products were characterized by FTIR, UV-Vis, (1)H NMR, (13)C NMR, TGA, and SEM. The bioactivities of fullerene-glycine derivative materials have been tested, and the results show that compared with the fullerene complex, the fullerene-glycine derivative materials exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. SEM images showed the macrostructure of fullerene-glycine derivative materials was spheres.

  10. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallo-fullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  11. Cooperative Tin Oxide Fullerene Electron Selective Layers for High-Performance Planar Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; Wang, Changlei; Cimaroli, Alexander J.; Grice, Corey R.; Yang, Mengjin; Li, Zhen; Jiang, Chun-Sheng; Al-Jassim, Mowafak; Zhu, Kai; Kanatzidis, Mercouri G.; Fang, Guojia; Yan, Yanfa

    2016-10-07

    Both tin oxide (SnO2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO2/perovskite interface and perovskite grain boundaries. With careful device optimization, the best-performing planar perovskite solar cell using a fullerene passivated SnO2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm-2, and a fill factor of 75.8% when measured under reverse voltage scanning. We find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.

  12. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  13. Immobilization of [60]fullerene on silicon surfaces through a calix[8]arene layer

    Energy Technology Data Exchange (ETDEWEB)

    Busolo, Filippo; Silvestrini, Simone; Maggini, Michele [Department of Chemical Sciences, ITM-CNR University of Padova, Via F. Marzolo 1, 35131 Padova (Italy); Armelao, Lidia [Department of Chemical Sciences, IENI-CNR and INSTM, University of Padova, Via F. Marzolo 1, 35131 Padova (Italy)

    2013-10-28

    In this work, we report the functionalization of flat Si(100) surfaces with a calix[8]arene derivative through a thermal hydrosilylation process, followed by docking with [60]fullerene. Chemical grafting of calix[8]arene on silicon substrates was evaluated by X-ray photoelectron spectroscopy, whereas host-guest immobilization of fullerene was demonstrated by atomic force microscopy and sessile drop water contact angle measurements. Surface topographical variations, modelled on the basis of calix[8]arene and [60]fullerene geometrical parameters, are consistent with the observed morphological features relative to surface functionalization and to non-covalent immobilization of [60]fullerene.

  14. Residence time effect on fullerene yield in butadiene-based laser pyrolysis flame

    Science.gov (United States)

    Ténégal, F.; Voicu, I.; Armand, X.; Herlin-Boime, N.; Reynaud, C.

    2003-09-01

    A new route for fullerene synthesis by CO 2-laser pyrolysis of gas phase mixture is proposed. Small hydrocarbon molecules which absorb the laser radiation, such as butadiene, are mixed with nitrous oxide (N 2O) as oxidizer. Such a mixture allows avoiding the use of a photosensitizer as SF 6 which causes contamination of the reaction zone and possibly influences the growth of fullerenic structures. This Letter also confirms the strong influence of the C/O atomic ratio in the mixture on the fullerene yield, and shows that residence time of the reactants in the pyrolysis flame and pressure influence dramatically the fullerene formation.

  15. Fullerenes as potential collectors of noble metals in carbon-bearing geological formations

    Directory of Open Access Journals (Sweden)

    Voytekhovsky Yu.L.

    2015-06-01

    Full Text Available The results of computer modelling of fullerenes in the Bartell's restrictions have been suggested in the paper. The inner volumes of all the possible C60 to C100 fullerenes have been calculated. The numbers of dopping Au, Ag, Pt, and Pd atoms have been found for the most stable (symmetrical with no adjacent pentagons structures. The inner volume has been stated to be mostly dependent from the number of fullerene-forming atoms than from the symmetry point group. The elongated but not spherical fullerenes possess the biggest inner volumes for the given number of carbon atoms

  16. Effect of self-assembly of fullerene nano-particles on lipid membrane.

    Directory of Open Access Journals (Sweden)

    Saiqun Zhang

    Full Text Available Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1 assembly process is completely finished before penetration; 2 assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.

  17. Synthesis of Fullerene by Pyrolysis of Acetylene in Thermal HF-Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanjuan; ZHANG Guofu; ZHANG Wei; LIN Tianjin; XIE Hongbo; LIU Qiuxiang; ZHANG Haiyan

    2007-01-01

    Carbon soot containing fullerene was continuously produced in volume by pyrolyzing acetylene in thermal HF-Plasma. The characteristics of the carbon soot and C60 were analyzed by thtransmission electron microscopy, UV/visible, IR and Raman spectroscopy. The results show that the main ingredients of the carbon soot with size of about 25 nm are amorphous carbon, graphite and fullerene. The fullerene yield in carbon soot is about 2.5 g·h-1. Compared with the graphite arc discharge method, the acetylene thermal plasma method is a preferential one for synthesis of fullerene.

  18. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong

  19. Highly-efficient charge separation and polaron delocalization in polymer-fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study.

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L; Banks, Brian P; Grooms, Gregory M; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G

    2013-06-28

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Upon illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P(+), and negative, P(-), polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of (1)H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40-60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units for PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR

  20. Evaporation of graphite using a solar furnace: production of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Laplaze, D.; Bernier, P.; Journet, C.; Vie, V. [Groupe de Dynamique des Phases Condensees, Univ. de Montpellier II (France); Flamant, G.; Philippot, E.; Lebrun, M. [Inst. de Sciences et de Genie des Materiaux et Procedes, Centre du Four Solaire Felix Trombe, 66 - Font-Romeu (France)

    1997-12-31

    We have previously shown that the high intensity of solar radiation, obtained with the Odeillo (France) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere to produce fullerenes. After a short survey of the possible mechanisms of formation of these molecules, we report some experimental results in agreement with the proposed model and discuss the possibilities of increasing the fullerenes yield which currently reaches 20%. One of these possibilities consists in the use of the 1000 kW solar furnace of the Institute and we report results of simulation for this furnace which show that temperature of the sublimation zone can be greater than the needed 3300 K necessary to have convenient efficiency. (orig.)

  1. On the π Coordination of Organometallic Fullerene Complexes

    Directory of Open Access Journals (Sweden)

    Bertha Molina

    2011-06-01

    Full Text Available Novel organometallic complexes of fullerene C80 and aryl ligands were simulated. The nature and characteristics of this family of complexes involving π coordination between the fullerene and a metal centre have been studied from a theoretical point of view. We are particularly interested in complexes where η6 coordination is present, this being the strangest manifestation of known coordinations, and thus we have studied several known and simulated compounds of this kind in order to understand the lack of examples. The presence of other η6 or η5 ligands on the opposite side seems to be an important element aiding the stabilization of these complexes, also inducing the conductive and semiconductive behaviour of the studied species.

  2. Fullerene thin-film transistors fabricated on polymeric gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Puigdollers, J. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain)], E-mail: jpuigd@eel.upc.edu; Voz, C. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO - Mediterranean Technology Park, Avda del Canal Olimpic s/n, 08860-Castelldefels (Spain); Orpella, A.; Vetter, M.; Alcubilla, R. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain)

    2007-07-16

    Thin-film transistors with fullerene as n-type organic semiconductor have been fabricated. A polymeric gate dielectric, polymethyl methacrylate, has been used as an alternative to usual inorganic dielectrics. No significant differences in the microstructure of fullerene thin-films grown on polymethyl methacrylate were observed. Devices with either gold or aluminium top electrodes have been fabricated. Although the lower work-function of aluminium compared to gold should favour electron injection, similar field-effect mobilities in the range of 10{sup -2} cm{sup 2} V{sup -1} s{sup -1} were achieved in both cases. Actually, the output characteristics indicate that organic thin-film transistors behave more linearly with gold than with aluminium electrodes. These results confirm that not only energy barriers determine carrier injection at metal/organic interfaces, but also chemical interactions.

  3. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo

    2010-11-23

    Wereport a small angle neutron scattering study of the thermodynamics of a polymer mixture in the presence of nanoparticles, both in equilibrium and during phase separation. Neutron cloud point measurements and random phase approximation (RPA) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature jump experiments that, in identical conditions, result in phase separation for the nanocomposite and stability for the neat polymer mixture. At lower C 60 loadings (viz. 0.2-0.5 mass %), stabilization of the mixture is observed. The nonmonotonic variation of the spinodal temperature with fullerene addition suggests a competitive interplay of asymmetric component interactions and nanoparticle dispersion. The stability line shift depends critically on particle dispersion and vanishes upon nanoparticle agglomeration. © 2010 American Chemical Society.

  4. Preparation of Tetraamino-Phthalocyanine Zinc Loaded Silica Nanoparticles and Its Cytotoxicity Study%四氨基酞菁锌负载二氧化硅纳米粒子的合成及其对细胞毒性的研究

    Institute of Scientific and Technical Information of China (English)

    庄欠粉; 王金娥; 朱志军; 李峰; 王振新

    2011-01-01

    Positive charged silica nanoparticles, entrapping hydrophobic photosensitizer 2,9,16,23-tetraamino-phthalocyanine zinc (ZnPc(NH2 )4), have been synthesized in the nonpolar core of micelles by hydrolysis of triethoxyvinylsilane (TEVS) and 3-aminopropyltriethoxysilane (APTES). The water-soluble, stability, surface morphologies and charge were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and UV-visible spectrophotometer. The as-prepared nanoparticles are highly monodispersed spheres with uniform diameter (about 20 nm), and stable in aqueous system. Its average ζ potential value is 28. 8 ± 2. 79 mV and exhibits strong absorption peak at 714 nm. In addition, encapsulation of ZnPc(NH2)4 in the silica nanoparticles prevented ZnPc ( NH2 )4 from leaking and enhanced the anti-photobleaching. The ZnPc ( NH2 )4 entrapped-nanoparticles (SiP2@ZnPc(NH2 )4) can efficiently generat singlet oxygen as measured by chemical probe 1,3-diphenylisobenzofuran (DPBF). The toxicity of silica nanoparticles to cells has been investigated by the incubation of the ZnPc(NH2)4 entrapped-nanoparticles and the nanoparticles without ZnPc(NH2)4(SiO2-NH2) with living cancer cells (HeLa, U251, PC-12). The experimental result reveals that both SiO2@ZnPc(NH2 )4 and SiO2-NH2 particles have no significant toxicity when the concentration of the particles is below 300 mg/L.%通过在无极核微乳液中水解乙烯基三乙氧基硅烷(TEVS)和3-氨丙基三乙氧基硅烷(APTES),制备了疏水性光敏剂-2,9,16,23-四氨基酞菁锌负载的表面带有正电荷的二氧化硅纳米粒子(SiO2@ ZnPc( NH2)4).通过透射电镜(TEM)、Zetasizer Nano-ZS粒度仪(DLS)、紫外-可见分光光度计(UV- Vis)研究和表征了该纳米粒子的表面形貌、表面电荷、水溶性和稳定性.所合成的纳米粒子粒径约20 nm,颗粒为规则的球形,粒径较均一,具有很好的分散性,平均ζ电位值为(28.8±2.79 mV),在714 nm处有强吸收峰.

  5. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Directory of Open Access Journals (Sweden)

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  6. Continuous symmetry of C60 fullerene and its derivatives.

    Science.gov (United States)

    Sheka, E F; Razbirin, B S; Nelson, D K

    2011-04-21

    Conventionally, the I(h) symmetry of fullerene C(60) is accepted, which is supported by numerous calculations. However, this conclusion results from the consideration of the molecule electron system, of its odd electrons in particular, in a closed-shell approximation without taking the electron spin into account. Passing to the open-shell approximation has led to both the energy and the symmetry lowering up to C(i). Seemingly contradicting to a high-symmetry pattern of experimental recording, particularly concerning the molecule electronic spectra, the finding is considered in this Article from the continuous symmetry viewpoint. Exploiting continuous symmetry measure and continuous symmetry level approaches, it was shown that formal C(i) symmetry of the molecule is by 99.99% I(h). A similar continuous symmetry analysis of the fullerene monoderivatives gives a reasonable explanation of a large variety of their optical spectra patterns within the framework of the same C(1) formal symmetry exhibiting a strong stability of the C(60) skeleton. TOC color pictures present chemical portrait of C(60) in terms of atomic chemical susceptibility (Sheka, E. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics; CRC Press: Taylor and Francis Group, Boca Raton, 2011).

  7. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    Pallikara K Sudeep; James P Varkey; K George Thomas; Manappurathu V George; Prashant V Kamat

    2003-10-01

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility of any strong interaction between the two chromophores in the ground state. Both the fullerene derivatives form optically transparent clusters, absorbing in the UV-Vis region; this clustering leads to a significant increase in their molar extinction coefficients. TEM characterization of the C60-PhA showed large spherical clusters, with sizes ranging from 150-350 nm, while an elongated wire-type structure was observed for the bisfullerene derivative (C60-PhA-C60). AFM section analysis studies of isolated nanoclusters of C60-PhA-C60, deposited on mica, indicate that smaller clusters associate to form larger nanostructures.

  8. Predicting morphologies of solution processed polymer:fullerene blends.

    Science.gov (United States)

    Kouijzer, Sandra; Michels, Jasper J; van den Berg, Mauricio; Gevaerts, Veronique S; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J

    2013-08-14

    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.

  9. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  10. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    NARCIS (Netherlands)

    A. Astefanei; O. Núñez; M.T. Galceran; W.Th. Kok; P.J. Schoenmakers

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid (C-60-pyr

  11. Does the Like Dissolves Like Rule Hold for Fullerene and Ionic Liquids?

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Maciel, C.; Fileti, E. E.

    2014-01-01

    Over 150 solvents have been probed to dissolve light fullerenes, but with a quite moderate success. We uncover unusual mutual polarizability of C-60 fullerene and selected room-temperature ionic liquids, which can be applied in numerous applications, e.g. to significantly promote solubility...

  12. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    Science.gov (United States)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  13. Incorporation of Pure Fullerene into Organoclays : Towards C60-Pillared Clay Structures

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Georgakilas, Vasileios; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Rudolf, Petra; Gournis, Dimitrios

    2013-01-01

    In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercala

  14. Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives.

    Science.gov (United States)

    Wang, Jiaobing; Shen, Yanfei; Kessel, Stefanie; Fernandes, Paulo; Yoshida, Kaname; Yagai, Shiki; Kurth, Dirk G; Möhwald, Helmuth; Nakanishi, Takashi

    2009-01-01

    Fullerene flakes: A diacetylene-functionalized fullerene derivative self-organizes into flakelike microparticles (see picture). Both the diacetylene and C(60) moieties can be effectively cross-linked, which leads to supramolecular materials with remarkable resistivity to solvent, heat, and mechanical stress. Moreover, the surface of the cross-linked flakelike objects is highly durable and water-repellent.

  15. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.;

    2015-01-01

    behaving as pseudo-binary mixtures due to alloying of the fullerene components. This finding has vast implications for the understanding of polymer–fullerene mixtures and quite certainly also their application in organic solar cells where performance hinges critically on the blend behaviour which is also...

  17. Bottom-Up Approaches Towards Functional Fullerene-Containing Nanostructured Materials

    NARCIS (Netherlands)

    Hummelen, J.C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    2001-01-01

    Fullerenes can play an important role in functional materials, the most common being that of an electron acceptor and electron transport material. Functional feasibility of fullerene derivatives has been shown in photovoltaic, photo detection, and image scanning devices, for example. In these applic

  18. A new application area for fullerenes: voltage stabilizers for power cable insulation.

    Science.gov (United States)

    Jarvid, Markus; Johansson, Anette; Kroon, Renee; Bjuggren, Jonas M; Wutzel, Harald; Englund, Villgot; Gubanski, Stanislaw; Andersson, Mats R; Müller, Christian

    2015-02-01

    Fullerenes are shown to be efficient voltage-stabilizers for polyethylene, i.e., additives that increase the dielectric strength of the insulation material. Such compounds are highly sought-after because their use in power-cable insulation may considerably enhance the transmission efficiency of tomorrow's power grids. On a molal basis, fullerenes are the most efficient voltage stabilizers reported to date.

  19. A search of diffuse bands in fullerene planetary nebulae: evidence for diffuse circumstellar bands

    CERN Document Server

    Diaz-Luis, J J; Rao, N Kameswara; Manchado, A; Cataldo, F

    2014-01-01

    Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some Planetary Nebulae (PNe) now enable us to study the DIBs towards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428A absorption feature is a common charateristic to fullerene PNe. Similarly to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1 together with its large radial velocity permits us to search for the presence of diffuse bands of circumstellar origin which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 A in the fullerene-rich ci...

  20. Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene

    NARCIS (Netherlands)

    Gocalinska, Agnieszka; Saba, Michele; Quochi, Francesco; Marceddu, Marco; Szendrei, Krisztina; Gao, Jia; Loi, Maria A.; Yarema, Maksym; Seyrkammer, Robert; Heiss, Wolfgang; Mura, Andrea; Bongiovanni, Giovanni; Gocalińska, Agnieszka

    2010-01-01

    We investigate a promising organic/inorganic hybrid composite for solution-processable optoelectronics made by lead sulphide nanoparticles and fullerene derivatives, which combine the sensitivity of PbS to the infrared spectrum with the good electron transport properties of fullerenes. Charge separa

  1. Localization of the valence electron of endohedrally confined hydrogen, lithium and sodium in fullerene cages

    CERN Document Server

    Cuestas, Eloisa

    2016-01-01

    The localization of the valence electron of $H$, $Li$ and $Na$ atoms enclosed by three different fullerene molecules is studied. The structure of the fullerene molecules is used to calculate the equilibrium position of the endohedrally atom as the minimum of the classical $(N+1)$-body Lennard-Jones potential. Once the position of the guest atom is determined, the fullerene cavity is modeled by a short range attractive shell according to molecule symmetry, and the enclosed atom is modeled by an effective one-electron potential. In order to examine whether the endohedral compound is formed by a neutral atom inside a neutral fullerene molecule $X@C_{N}$ or if the valence electron of the encapsulated atom localizes in the fullerene giving rise to a state with the form $X^{+}@C_{N}^{-}$, we analyze the electronic density, the projections onto free atomic states, and the weights of partial angular waves.

  2. Characterization of naturally-occurring and modified fullerenes by Fourier transform mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.L.; Jin, C.; Compton, R.N. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6120 (United States)); Buseck, P.R.; Tsipursky, S.J. (Department of Geology, Arizona State University, Tempe, Arizona 85287 (United States))

    1993-10-10

    Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C[sub 60]F[sub x] (x=44,46) and C[sub 70]F[sub y] (y=52,54) were found to be substantially higher than the values for the parent fullerenes.

  3. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  4. Fabrication and characteristics of fullerene-perylene dyad based organic photovoltaic cell.

    Science.gov (United States)

    So, Byoung Min; Chung, Chan Moon; Oh, Se Young

    2011-05-01

    Fullerene is an acceptor material which is used most usually in organic photovoltaic cell. By the way, the reduction of electron mobility and the phase separation of conducting polymer and fullerene in the actual bulk heterojunction photovoltaic cell limit further improvement of device performance. In order to overcome the problems, fabrication of hybrid planar mixed heterojunction cells and synthesis of donor-acceptor dyad have been studied. In the present work, we have synthesized fullerene-perylene dyad to improve the fullerene based photovoltaic cell. In order to explore the properties of the synthesized material, the measurements of absorption spectrum and energy level were carried out. We have investigated the energy conversion efficiency of organic photovoltaic cell consisting of ITO/PEDOT-PSS/MEH-PPV:fullerene-perylene dyad/Al.

  5. The interactions of high-energy, highly-charged ions with fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, R.; Berry, H.G.; Cheng, S. [and others

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

  6. Photoionization of multishell fullerenes studied by ab initio and model approaches

    CERN Document Server

    Verkhovtsev, Alexey; Solov'yov, Andrey V

    2016-01-01

    Photoionization of two buckyonions, C$_{60}$@C$_{240}$ and C$_{20}$@C$_{60}$, is investigated by means of time-dependent density-functional theory (TDDFT). The TDDFT-based photoabsorption spectrum of C$_{60}$@C$_{240}$, calculated in a broad photon energy range, resembles the sum of spectra of the two isolated fullerenes, thus illustrating the absence of strong plasmonic coupling between the fullerenes which was proposed earlier. The calculated spectrum of the smaller buckyonion, C$_{20}$@C$_{60}$, differs significantly from the sum of the cross sections of the individual fullerenes because of strong geometrical distortion of the system. The contribution of collective electron excitations arising in individual fullerenes is evaluated by means of plasmon resonance approximation (PRA). An extension of the PRA formalism is presented, which allows for the study of collective electron excitations in multishell fullerenes under photon impact. An advanced analysis of photoionization of buckyonions, performed using m...

  7. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals.

    Science.gov (United States)

    Zhang, Xiaoyan; Hsu, Chih-Hao; Ren, Xiangkui; Gu, Yan; Song, Bo; Sun, Hao-Jan; Yang, Shuang; Chen, Erqiang; Tu, Yingfeng; Li, Xiaohong; Yang, Xiaoming; Li, Yaowen; Zhu, Xiulin

    2015-01-02

    Fullerene-based liquid crystalline materials have both the excellent optical and electrical properties of fullerene and the self-organization and external-field-responsive properties of liquid crystals (LCs). Herein, we demonstrate a new family of thermotropic [60]fullerene supramolecular LCs with hierarchical structures. The [60]fullerene dyads undergo self-organization driven by π-π interactions to form triple-layer two-dimensional (2D) fullerene crystals sandwiched between layers of alkyl chains. The lamellar packing of 2D crystals gives rise to the formation of supramolecular LCs. This design strategy should be applicable to other molecules and lead to an enlarged family of 2D crystals and supramolecular liquid crystals.

  8. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  9. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics.

    Science.gov (United States)

    Graham, Kenneth R; Cabanetos, Clement; Jahnke, Justin P; Idso, Matthew N; El Labban, Abdulrahman; Ngongang Ndjawa, Guy O; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F; Amassian, Aram; Beaujuge, Pierre M; McGehee, Michael D

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) (13)C{(1)H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material

  10. Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT:fullerene blend films for organic solar cells.

    Science.gov (United States)

    Guilbert, Anne A Y; Reynolds, Luke X; Bruno, Annalisa; MacLachlan, Andrew; King, Simon P; Faist, Mark A; Pires, Ellis; Macdonald, J Emyr; Stingelin, Natalie; Haque, Saif A; Nelson, Jenny

    2012-05-22

    The bis and tris adducts of [6,6]phenyl-C(61)-butyric acid methyl ester (PCBM) offer lower reduction potentials than PCBM and are therefore expected to offer larger open-circuit voltages and more efficient energy conversion when blended with conjugated polymers in photovoltaic devices in place of PCBM. However, poor photovoltaic device performances are commonly observed when PCBM is replaced with higher-adduct fullerenes. In this work, we use transmission electron microscopy (TEM), steady-state and ultrafast time-resolved photoluminescence spectroscopy (PL), and differential scanning calorimetry (DSC) to probe the microstructural properties of blend films of poly(3-hexylthiophene-2,5-diyl) (P3HT) with the bis and tris adducts of PCBM. TEM and PL indicate that, in as-spun blend films, fullerenes become less soluble in P3HT as the number of adducts increases. PL indicates that upon annealing crystallization leads to phase separation in P3HT:PCBM samples only. DSC studies indicate that the interactions between P3HT and the fullerene become weaker with higher-adduct fullerenes and that all systems exhibit eutectic phase behavior with a eutectic composition being shifted to higher molar fullerene content for higher-adduct fullerenes. We propose two different mechanisms of microstructure development for PCBM and higher-adduct fullerenes. P3HT:PCBM blends, phase segregation is the result of crystallization of either one or both components and is facilitated by thermal treatments. In contrast, for blends containing higher adducts, the phase separation is due to a partial demixing of the amorphous phases. We rationalize the lower photocurrent generation by the higher-adduct fullerene blends in terms of film microstructure.

  11. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  12. Functionalized fullerene (C₆₀) as a potential nanomediator in the fabrication of highly sensitive biosensors.

    Science.gov (United States)

    Afreen, Sadia; Muthoosamy, Kasturi; Manickam, Sivakumar; Hashim, Uda

    2015-01-15

    Designing a biosensor for versatile biomedical applications is a sophisticated task and how dedicatedly functionalized fullerene (C60) can perform on this stage is a challenge for today and tomorrow's nanoscience and nanotechnology. Since the invention of biosensor, many ideas and methods have been invested to upgrade the functionality of biosensors. Due to special physicochemical characteristics, the novel carbon material "fullerene" adds a new dimension to the construction of highly sensitive biosensors. The prominent aspects of fullerene explain its outstanding performance in biosensing devices as a mediator, e.g. fullerene in organic solvents exhibits five stages of reversible oxidation/reduction, and hence fullerene can work either as an electrophile or nucleophile. Fullerene is stable and its spherical structure produces an angle strain which allows it to undergo characteristic reactions of addition to double bonds (hybridization which turns from sp(2) to sp(3)). Research activities are being conducted worldwide to invent a variety of methods of fullerene functionalization with a purpose of incorporating it effectively in biosensor devices. The different types of functionalization methods include modification of fullerene into water soluble derivatives and conjugation with enzymes and/or other biomolecules, e.g. urease, glucose oxidase, hemoglobin, myoglobin (Mb), conjugation with metals e.g. gold (Au), chitosan (CS), ferrocene (Fc), etc. to enhance the sensitivity of biosensors. The state-of-the-art research on fullerene functionalization and its application in sensor devices has proven that fullerene can be implemented successfully in preparing biosensors to detect glucose level in blood serum, urea level in urine solution, hemoglobin, immunoglobulin, glutathione in real sample for pathological purpose, to identify doping abuse, to analyze pharmaceutical preparation and even to detect cancer and tumor cells at an earlier stage. Employing fullerene

  13. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  14. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics.

    Science.gov (United States)

    Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang; Saeki, Akinori; Yoshikawa, Saya; Murari, Nishit M; Subramaniyan, Selvam; Crane, Matthew J; Seki, Shu; Jenekhe, Samson A

    2014-10-15

    New electron-acceptor materials are long sought to overcome the small photovoltage, high-cost, poor photochemical stability, and other limitations of fullerene-based organic photovoltaics. However, all known nonfullerene acceptors have so far shown inferior photovoltaic properties compared to fullerene benchmark [6,6]-phenyl-C60-butyric acid methyl ester (PC60BM), and there are as yet no established design principles for realizing improved materials. Herein we report a design strategy that has produced a novel multichromophoric, large size, nonplanar three-dimensional (3D) organic molecule, DBFI-T, whose π-conjugated framework occupies space comparable to an aggregate of 9 [C60]-fullerene molecules. Comparative studies of DBFI-T with its planar monomeric analogue (BFI-P2) and PC60BM in bulk heterojunction (BHJ) solar cells, by using a common thiazolothiazole-dithienosilole copolymer donor (PSEHTT), showed that DBFI-T has superior charge photogeneration and photovoltaic properties; PSEHTT:DBFI-T solar cells combined a high short-circuit current (10.14 mA/cm(2)) with a high open-circuit voltage (0.86 V) to give a power conversion efficiency of 5.0%. The external quantum efficiency spectrum of PSEHTT:DBFI-T devices had peaks of 60-65% in the 380-620 nm range, demonstrating that both hole transfer from photoexcited DBFI-T to PSEHTT and electron transfer from photoexcited PSEHTT to DBFI-T contribute substantially to charge photogeneration. The superior charge photogeneration and electron-accepting properties of DBFI-T were further confirmed by independent Xenon-flash time-resolved microwave conductivity measurements, which correctly predict the relative magnitudes of the conversion efficiencies of the BHJ solar cells: PSEHTT:DBFI-T > PSEHTT:PC60BM > PSEHTT:BFI-P2. The results demonstrate that the large size, multichromophoric, nonplanar 3D molecular design is a promising approach to more efficient organic photovoltaic materials.

  15. Electronic structure of multi-walled carbon fullerenes

    Science.gov (United States)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  16. Synthesis and characterization of novel fullerenes and carbon nanotubes

    Science.gov (United States)

    Piskoti, Charles Richard

    Since the discovery of Buckminsterfullerene, the soccerball shaped carbon-caged molecule consisting of 60 carbon atoms, there has been much speculation about the stability of other "fullerenes" with less than 60 carbon atoms. Although several fullerenes with greater than 60 carbon atoms have since been isolated in bulk, the only evidence of lower fullerenes has come from minute-quantity gas phase experiments. This thesis presents work on the first ever bulk synthesis, extraction and characterization of a lower fullerene: C36. By exploring the parameter space of the Kratschmer-Huffman graphite arc-discharge method, C36 was produced in milligram quantities. This new material which was extracted with pyridine was found by electron diffraction to form a covalently bonded solid with a d-spacing of 6.68 A. This material is electrically insulating in its pure form but it becomes conducting upon intercalation with alkali metals. The resistance vs temperature behavior of the alkali intercalated samples is consistent with variable range hopping. From microwave-loss measurements and current vs. voltage data, there are preliminary results that may indicate the presence of a very small superconducting fraction in these alkali doped samples. This result would be consistent with predictions by Grossman, Cote, Cohen and Louie that a certain isomer of C 36 with D6h symmetry has an exceptionally strong electron-phonon coupling constant. Other developments described in this thesis include a method of synthesizing multi-walled carbon nanotubes in high yield at an accelerated rate using a low pressure mixture of nitrogen and helium as the buffer gas. Also, a simple technique has been developed for synthesizing magnetic nickel-iron clusters that are coated with both electrical insulators and electrical conductors. These clusters may have a variety of applications in the fields of magnetic recording and biochemistry where magnetic manipulation of cells is important. Finally, a

  17. Ubiquitous diffraction resonances in positronium formation from fullerenes

    CERN Document Server

    Hervieux, Paul-Antoine; Chakraborty, Himadri S

    2016-01-01

    Due to the dominant electron capture by positrons from the molecular wall and the spatial dephasing across the wall-width, a powerful diffraction effect universally underlies the positronium (Ps) formation from fullerenes. This results into trains of resonances in the Ps formation cross section as a function of the positron beam energy, producing uniform structures in recoil momenta in analogy with classical single-slit diffraction fringes in the configuration space. The prediction opens a hitherto unknown avenue of Ps spectroscopy with nanomaterials.

  18. Synthesis of endohedral iron-fullerenes by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), Bem tér 18/C, H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, 1091-1, Komatsu Suou Oshima-city Oshima, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Yoshida, Y. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  19. Multiscale simulation of water flow past a C540 fullerene

    Science.gov (United States)

    Walther, Jens H.; Praprotnik, Matej; Kotsalis, Evangelos M.; Koumoutsakos, Petros

    2012-04-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice-Boltzmann (LB) description for the Navier-Stokes equations. The proposed method links the MD and LB domains using a fully three-dimensional interface and coupling of velocity gradients. The present overlapping domain method implicitly preserves the flux of mass and momentum and bridges flux-based and Schwarz domain decomposition algorithms. We use this method to determine the slip length and hydrodynamic radius for water flow past a buckyball.

  20. Fullerene solar cells with cholesteric liquid crystal doping

    Science.gov (United States)

    Jiang, Lulu; Jiang, Yurong; Zhang, Congcong; Chen, Zezhang; Qin, Ruiping; Ma, Heng

    2016-09-01

    This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative. With a doping ratio of 0.3 wt%, the device achieves an ideal improvement on the shunt resistor and the fill factor. Compared with the reference cell, the power conversion efficiency of the doped cell is improved 24%. The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect. Project supported by the National Natural Science Foundation of China (Grant No. 61540016).

  1. Ubiquitous diffraction resonances in positronium formation from fullerenes

    Science.gov (United States)

    Hervieux, Paul-Antoine; Chakraborty, Anzumaan R.; Chakraborty, Himadri S.

    2017-02-01

    Due to the dominant electron capture by positrons from the molecular shell and the spatial dephasing across the shell width, a powerful diffraction effect universally underlies the positronium (Ps) formation from fullerenes. This results in trains of resonances in the Ps formation cross section as a function of the positron beam energy, producing structures in recoil momenta in analogy with classical single-slit diffraction fringes in the configuration space. This work opens a hitherto unknown avenue of Ps spectroscopy with nanomaterials and motivates level-differential measurements.

  2. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.

    2009-12-09

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  3. Fullerene photoemission time delay explores molecular cavity in attoseconds

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed El-Amine; Chakraborty, Himadri S

    2014-01-01

    Time-resolved photoelectron spectroscopy can probe interference oscillations in C60 valence emissions that produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. These findings provide a way to utilize temporal information to access the fullerene cavity size, that is making the time to "see" the space, and can be generalized to photoemissions from clusters and nanostructures.

  4. Electronic Transport Properties of Doped C28 Fullerene

    Directory of Open Access Journals (Sweden)

    Akshu Pahuja

    2014-01-01

    Full Text Available Endohedral doping of small fullerenes like C28 affects their electronic structure and increases their stability. The transport properties of Li@C28 sandwiched between two gold surfaces have been calculated using first-principles density functional theory and nonequilibrium Green’s function formalism. The transmission curves, IV characteristics, and molecular projected self-consistent Hamiltonian eigenstates of both pristine and doped molecule are computed. The current across the junction is found to decrease upon Li encapsulation, which can be attributed to change in alignment of molecular energy levels with bias voltage.

  5. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jehlicka, J.; Frank, O.; Hamplova, V.; Pokorna, Z.; Juha, L.; Bohacek, Z.; Weishauptova, Z. [Charles University, Prague (Czech Republic). Inst. for Geochemical Mineral & Mineral Resources

    2005-08-01

    Soxhlet extraction, sonication, and ultracritical extraction were tested with respect to their capacity to extract fullerenes from natural carbonaceous materials. Toluene solutions with various contents of synthetic C{sub 60} were added to powdered graphite, shungite, bituminous coal, and quartz, with final C{sub 60} concentration 0.1-100 ppm. The C{sub 60}-doped materials were leached in three kinds of extraction apparatus. High-performance liquid chromatography (HPLC) was used to analyse the fullerene content in the obtained toluene extracts. Surprisingly low yields of the C{sub 60} extraction (most of them well below 5%) were determined for all the carbonaceous matrices and all the extraction techniques employed in the fullerene isolation. This finding has serious consequences for better understanding of the reported fullerene occurrence in the geological environment, because a greatly limited extraction yield can be responsible for some negative results of fullerene analyses in various geological samples. Both fullerene stability in solvents and fullerene interaction with the surfaces of geological carbonaceous matrices are discussed to explain the obtained results.

  6. Sandwich-Like Graphite-Fullerene Composites with Enhanced Electromagnetic Wave Absorption

    Science.gov (United States)

    Zhong, Jiachun; Jia, Kun; Pu, Zejun; Liu, Xiaobo

    2016-11-01

    Sandwich-like graphite-fullerene composites have been prepared via a simple solution mixing/evaporation method. The complex relative permittivity and permeability of the graphite-fullerene composites in the frequency range from 0.5 GHz to 18 GHz were measured using a vector network analyzer with the reflection/transmission technique. Additionally, the microwave reflection loss of the composites was calculated using the obtained complex microwave electromagnetic parameters. It was found that the microwave loss peaks in the Ku band were dependent on the concentration of fullerene nanoparticles in the composites. Maximum reflection loss of -30 dB was observed between 2 GHz and 8 GHz when the graphite composites were doped with 1 wt.% fullerene. This absorption loss dropped (-24 dB) when the composite contained 3 wt.% fullerene. In addition, the electrical properties of the graphite were independent of the presence of fullerene in the composites. The tunable microwave reflection loss indicates that these graphite-fullerene composites show promise as wideband electromagnetic wave absorption materials.

  7. Spectroscopic evidence on improvement in complex formation of O2N2 aza-crown macrocyclic ligands with Cu(II) acetate upon incorporation with [60]Fullerene

    Science.gov (United States)

    Ghanbari, Bahram; Gholamnezhad, Parisa

    2016-12-01

    The present paper reports the spectroscopic investigations on the complexation of Cu(II) with two macrocyclic ligands bonded to [60]Fullerene (L1 and L2) measured in N-methylpyrrolidone (NMP) as solvent. On the basis of UV-vis-NIR spectroscopy applying Jobs method of continuous variation, typical 1:1 stoichiometries were established for the complexes of Cu(II) with L1, and L2. DFT calculations suggested that superior HOMO distributions spread over the nitrogen-donor (as well as somehow oxygen- donor in L2) groups of L1 and L2 macrocycles were the key factor for the observed Kb value enhancement. Thermodynamic stabilities for these complexes have also been determined employing Benesi-Hildebrand equation and the results were compared in terms of their calculated binding constants (Kb). These measurements showed that L1 and L2 bound to these cations stronger than their parent free macrocyclic ligands 1 and 2, respectively. Furthermore, Kb values found for L2 complexes revealed that it could coordinate Cu(II) cation better than L1. Thermodynamic parameters (ΔG, ∆ H, and - ΔS) derived from Van't Hoff equation showed that L1 and L2 coordination of Cu(II) cation were occurred due to both enthalpic and entropic factors while the coordination of Cu(II) with their parent macrocyclic ligands 1 and 2 only enjoyed from only enthalpic advantages.

  8. Occurrence of natural fullerenes in low grade metamorphosed Proterozoic shungite from Karelia, Russia

    Science.gov (United States)

    Parthasarathy, G.; Srinivasan, R.; Vairamani, M.; Ravikumar, K.; Kunwar, A. C.

    1998-11-01

    We report on the occurrence of fullerenes in Proterozoic shungite (˜2 Ga) from the shungite mine, Kondopoga, Karelia, Russia (62.12°N 34.17°E). The presence of fullerenes has been confirmed by mass spectrometry, with peaks at 360 and 720 amu (atomic mass unit), powder X-ray diffraction showing ten diffraction peaks corresponding to the fullerite structure with a = 1.4201(5) nm, and 13C nuclear magnetic resonance (NMR) spectroscopic studies, showing a peak at 143.2 ppm. In the Kondopoga shungite mine, fullerenes occur in silty shales that have experienced greenshist facies metamorphism.

  9. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN YiChi; GUO Liang; ZHU LiQun

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallofullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  10. Perfluoroalkylation of Fullerenes%富勒烯的全氟烷基化

    Institute of Scientific and Technical Information of China (English)

    李祥子; 余锐; 魏先文

    2011-01-01

    Perfluoroalkyl fullerenes have been become a kind of important derivatives in the field of fullerenes due to their high stabilities, high solubilities, increased electron-withdrawing property and decreased susceptibility to nucleophilic substitution.They can be used to synthesize more promising functional materials with unique optic,electronic and magnetic properties, and to explore some unknown fullerenes structures, especially for high fullerenes with poor solubility.Moreover, the research on perfluoroalkyl fullerenes also open a new direction for the derivatizations and functionalizitions of fullerenes.In this paper the progress on the synthesis, structures and properties of perfluoroalkyl fullerenes in recent years, including perfluoroalkylation of C60, C70, and high fullerenes is reviewed.Trifluoromethylation of all kinds of fullerenes is discussed in detailed.Firstly, some synthetic methods, separation strategies and research results are summed up.Secondly, the characteristic information such as infrared spectra data, ultraviolet spectra data, nuclear magnetic resonance spectra (19F NMR) data, high performance liquid chromatography (HPLC) parameters and electrochemistry data etc.for perfluoroalkyl fullerenes are presented.Thirdly, some possible structures of perfluoroalkyl fullerenes computed by density functional theory (DFT) are enumerated, and single crystal structures of all the known perfluoroalkyl fullerenes determined by X-ray crystallography are also given via Schlegel diagrams.In the end, some research and development trends in the field are proposed.%全氟烷基富勒烯具有较高的稳定性和溶解性,已成为富勒烯研究领域中逐步兴起的一类重要衍生物,有望用于合成具有特殊性能的新型富勒烯基功能材料,进而为富勒烯的衍生化和功能化研究指出了一个新方向.本文综述了近年来全氟烷基富勒烯的合成、结构及性能研究等方面取得的最新进展,重点介绍了富勒烯

  11. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    Science.gov (United States)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.; Praprotnik, M.

    2015-11-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  12. Enhanced Fullerene Yield in Plasma-Aerosol Reactor at Cryogenic Boundary Temperature

    CERN Document Server

    Jouravlev, Mikhail

    2011-01-01

    We demonstrate remarkably enhanced yield of C60 fullerenes in an aerosol discharge chamber due to the additional presence of a strong spatial temperature gradient. The role of the temperature gradients in the increased yield of C60 and fullerene-like structures is discussed. The reaction is not fully reversible and carbon soot matter is formed as a secondary product in the form of carbon aerosol particles. The increasing concentration of C60 was easily recognized from the characteristic UV-spectra. The result of this paper will be useful for improvement of fullerene synthesis technology and for application to constructing new types of aerosol-plasma reactors.

  13. Adsorption Mechanism of Hydrogen on Boron-Doped Fullerenes

    Institute of Scientific and Technical Information of China (English)

    YU Liu-Min; SHI Guo-Sheng; WANG Zhi-Gang; JI Guang-Fu; LU Zhi-Peng

    2009-01-01

    The C35BH-H2 complex and two other possible isomers,C34BCαH-H2 and C34BCbH-H2,are investigated using the local-spin-density approximation (LSDA) method.The results indicate that a single hydrogen molecule could be strongly adsorbed on two isomers,C34BCaH and C34BCbH,with binding energies of 0.42 and 0.47eV,respectively,and that these calculated binding energies are suitable for reversible hydrogen adsorption/desorption near room temperature.However,it is difficult for the H2 molecule to be firmly adsorbed on C35BH.We analyze the interaction between C34BCxH (x = a,b) and the H2 molecule using dipole moments and molecular orbitals.The charge analysis showed there was a partial charge (about 0.32e)transfer from H2 to the doped fullerenes.These calculation results should broaden our understanding of the mechanisms of hydrogen storage using borondoped fullerenes.

  14. Fullerene Molecules and Other Clusters of III-V Compounds

    Science.gov (United States)

    Hira, Ajit; Auxier, John, II; Lucero, Melinda

    2010-03-01

    The goal of the our work is to derive geometries of fullerene-like cages and other clusters of atoms from groups III and V of the periodic table. Our previous research focused on Carbon Fullerenes and on GanAsn clusters (n = 1 thru 12). Our research group has made an original discovery about GanAsn clusters. In our work on nanotechnology to date, we used the hybrid ab initio methods of quantum chemistry to derive the different geometries for the clusters of interest. We also calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps, and IR spectra for these geometries. Of particular significance was the magic number for GaAs cluster stability that we found at n = 8. This is important because materials containing controlled III-V nanostructures provide the capability of preparing new classes of materials with enhanced optical, magnetic, chemical sensor and photo-catalytic properties. The second phase of the investigation will examine the effects of confinement on the optical properties the clusters. It will be interesting to observe novel linear as well as nonlinear optical processes in them. The third phase of the investigation will focus on the improved design of solar cells based on the optical properties of the clusters.

  15. Tuning of electronic properties of fullerene-oligothiophene layers

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, Kornelia [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Pilarczyk, Kacper, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Podborska, Agnieszka [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kim, Tae-Dong; Lee, Kwang-Sup [Department of Advanced Materials, Hannam University, 305-811 Daejeon (Korea, Republic of); Szaciłowski, Konrad, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2015-01-26

    Electronic properties of fullerene derivatives containing oligothiophene pendant chain (1–3 thiophene moieties) were investigated using the Kelvin probe technique and quantum chemistry methods. For electrochemical examination of these systems, Langmuir–Blodgett (LB) layers were prepared by the deposition on a gold substrate. The analysis of the experimental data shows that the value of the work function depends strongly on the length of oligothiophene chain. Similar dependence was also found for the surface photovoltage measurements conducted for the layers consisting of multiple LB films of the examined compounds deposited on gold surfaces. The assumption has been made that these changes are associated with the influence of oligothiophene chain on the electrostatic potential distribution near the surface of the sample. The hypothesis was confirmed by the results of DFT calculations, which revealed that the value of Fermi level energy shifts in the opposite direction to the determined work function. The key highlights of this study are as follows: electronic structure tuning by oligothiophene side chain; DFT calculation on fullerene-thiophene system; work function measurements of thin molecular layers.

  16. Improved fullerene nanofiber electrodes used in direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q [Nano Craft Technologies Co., Ltd., Tsukuba (Japan); Zhang, Y [Nationals Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Miyazawa, K; Kato, R; Hotta, K; Wakahara, T [National Institute for Materials Science, Tsukuba (Japan)], E-mail: yi.zhang@aist.go.jp, E-mail: q.wang@aist.go.jp

    2009-04-01

    Platinum supported on fullerene nanofibers as possible electrodes for direct methanol fuel cells (DMFC) were studied. Fullerene nanofiber with 20 wt% Pt loading was mixed with 5 wt% Nafion solution. The mixture paste was coated on Nafion 117 membrane and sandwiched with silicon plates. To increase the surface reaction area of catalyst, nanoimprint was used to fabricate micro-patterns in the Nafion proton exchange membrane. Nanoimprint pattern consisted of dots of 500 nm-in-diameter, 140 nm-in-depth and 1 {mu}m-in-spacing. The nanoimprint of the treated proton exchange membrane (PEM) was carried out in a desktop thermal nanoimprint system (NI273, Nano Craft Tech. Corp., Japan) at the optimized conditions of 130 {sup 0}C and pressure of 3 MPa for 6 min. Then the Pt-coated PEM was sandwiched with micro-channelled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage of 0.34 V and the maximum power density of 0.30 mW/cm{sup 2}. Compared with a fresh cell, the results shows that nanofibers used in nanoimprinted PEM have an improvement on the performance of micro fuel cells.

  17. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    Science.gov (United States)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The molecular structure of fullerene (C60) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electron affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.

  18. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marcaccio, Massimo; Paolucci, Francesco (eds.) [Bologna Univ. (Italy). Dept. of Chemistry G. Ciamician

    2014-11-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene

  19. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  20. Addressing asymmetry of the charge and strain in a two-dimensional fullerene peapod

    Science.gov (United States)

    Valeš, V.; Verhagen, T.; Vejpravová, J.; Frank, O.; Kalbáč, M.

    2015-12-01

    We prepared a two-dimensional C70 fullerene peapod by the sequential assembly of 12C graphene, C70 fullerenes and 13C graphene. The local changes in the strain and doping were correlated with local roughness revealing asymmetry in the strain and doping with respect to the top and bottom graphene layers of the peapod.We prepared a two-dimensional C70 fullerene peapod by the sequential assembly of 12C graphene, C70 fullerenes and 13C graphene. The local changes in the strain and doping were correlated with local roughness revealing asymmetry in the strain and doping with respect to the top and bottom graphene layers of the peapod. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06271c

  1. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.;

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  2. Phase Separation in Bulk Heterojunctions of Semiconducting Polymers and Fullerenes for Photovoltaics

    Science.gov (United States)

    Treat, Neil D.; Chabinyc, Michael L.

    2014-04-01

    Thin-film solar cells are an important source of renewable energy. The most efficient thin-film solar cells made with organic materials are blends of semiconducting polymers and fullerenes called the bulk heterojunction (BHJ). Efficient BHJs have a nanoscale phase-separated morphology that is formed during solution casting. This article reviews recent work to understand the nature of the phase-separation process resulting in the formation of the domains in polymer-fullerene BHJs. The BHJ is now viewed as a mixture of polymer-rich, fullerene-rich, and mixed polymer-fullerene domains. The formation of this structure can be understood through fundamental knowledge of polymer physics. The implications of this structure for charge transport and charge generation are given.

  3. Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers.

    Science.gov (United States)

    Valles-Pelarda, Marta; Hames, Bruno Clasen; García-Benito, Inés; Almora, Osbel; Molina-Ontoria, Agustin; Sánchez, Rafael S; Garcia-Belmonte, Germà; Martín, Nazario; Mora-Sero, Ivan

    2016-11-17

    The use of self-assembled monolayers (SAMs) of fullerene derivatives reduces the hysteresis of perovskite solar cells (PSCs). We have investigated three different fullerene derivatives observing a decrease on hysteresis for all the cases. Several processes can contribute to the hysteresis behavior on PSCs. We have determined that the reduced hysteresis observed for devices with SAMs is produced by a decrease of the capacitive hysteresis. In addition, with an appropriated functionalization, SAMs can increase photocurrent even when no electron selective contact (ESC) is present and a SAM is deposited just on top of the transparent conductive oxide. Appropriated functionalization of the fullerene derivative, as introducing -CN groups, can enhance cell performance and reduce hysteresis. This work paves the way for a future enhancement of PSCs by a tailored design of the fullerene molecules that could actuate as an ESC by themselves.

  4. Geometric modeling of midi-fullerenes growth from C24 to C48

    Directory of Open Access Journals (Sweden)

    Alexander I. Melker

    2016-10-01

    Full Text Available Axonometric projections together with corresponding graphs for fullerenes are constructed in the range from 24 to 48. The growth of fullerenes is studied on the basis of the mechanism, according to which a carbon dimer embeds in a hexagon of an initial fullerene. This leads to stretching and breaking the covalent bonds which are parallel to arising tensile forces. In this case, instead of the hexagon adjoining two pentagons, one obtains two adjacent pentagons adjoining two hexagons. As a result, there arises a new atomic configuration and there is mass increase of two carbon atoms. We considered direct descendants of fullerene C24; namely, C2n, where n=13–24.

  5. Fragmentation Mechanism of Fullerenes in the Positive and Negative Ion Channels

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬

    2001-01-01

    We have performed the photofragmentation studies of pristine C60 and C60/C70 composites on the reflectron time-of-flight mass spectrometer (RTOF MS) in the positive and negative ion channels. The mechanism of the formation of daughter fullerenes in the negative ion channel and the enhancement of fullerene coalescence reactions have been discussed and compared to our previous studies on the linear TOF. The 5 cm free expansion path in the RTOF experiments provides sufficient time and a favourable environment for the electrons to attach to the neutral daughter species, so it is thought to play a key role for the appearance of strong mass peaks of anionic fragmentation and aggregation fullerene products. The appearance of odd-numbered "fullerene" fragments is briefly discussed.

  6. New chemistry of carbon: fullerenes and derivates. Una nueva quimica del carbono: fullerenos y derivados

    Energy Technology Data Exchange (ETDEWEB)

    Manteca-Diego, C.; Moran, E. (Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, Madrid (Spain))

    1994-01-01

    In this paper different aspects of a recently discovered new type of carbon based materials, the so-called ''fullerenes'' which the archetype is C[sub 6]0 and that have attracted a great deal of interest, are surveyed. The discovery, synthesis, characterization and other physicochemical properties of fullerenes and related materials, have been reviewed in order to give a global approach to the field. Specially worth to mention are the alkali-intercalated compounds as some of them show superconductivity. Emphasis is given to the organic chemistry of fullerenes as their reactivity, and consequently the number and variety of derivatives, is quite high. The new tubular fullerenes ''nano tubes'' appear also very interesting. (Author) 186 refs.

  7. Controlled fabrication of fullerene derivative one-dimensional nanostructures via electrophoretic deposition of its clusters

    Institute of Scientific and Technical Information of China (English)

    GUO Yuguo; WAN Lijun; WANG Chunru; BAI Chunli; GAN Liangbing; CHEN Dongmin

    2004-01-01

    Well-defined and controllable one-dimensional (1D) nanostructures of fullerene derivative have been prepared by an electrophoretic template synthesis method. The clusters of fullerene derivative formed in mixed solvents are introduced into the channels of porous alumina templates through a dc electric field. Four types of 1D nanostructures (solid nanowires, solid-wall nanotubes, porous nanowires and porous-wall nanotubes) have been obtained by changing the deposition parameters. This approach opens a new avenue to assemble fullerene derivatives, endohedral fullerenes, as well as other functional organic compounds, which can form clusters in 1D nanostructure arrays for applications in chemical sensors, light energy conversion devices and nanoscale electronic and optoelectronic devices.

  8. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Bryon W. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Reid, Obadiah G. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Coffey, David C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Department of Chemistry and Physics, Warren Wilson College, Swannanoa NC 28778 USA; Avdoshenko, Stanislav M. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Popov, Alexey A. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Boltalina, Olga V. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Strauss, Steven H. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Kopidakis, Nikos [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Rumbles, Garry [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.

  9. Realization of Large Area Flexible Fullerene - Conjugated Polymer Photocells : A Route to Plastic Solar Cells

    NARCIS (Netherlands)

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donor - acceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and fu

  10. Fullerenes for enhanced performance of novel nano-exploited aircraft materials

    OpenAIRE

    Inam, Fawad; Okolo, Chichi

    2016-01-01

    Fullerene is an allotropic form of carbon having a large spheroidal molecule consisting of a hollow case of sixty or more carbon atoms. In the past decade, this family of super carbonaceous materials is subject of significant research interest for their utilization in an increasing number of applications including energy, transportation, defense, automotive, aerospace, sporting goods, and infrastructure sectors. Carbon nanotubes and graphene are some of the common types of fullerenes. This pr...

  11. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  12. The discovery of fullerenes in the 1.85 billion-year-old Sudbury meteorite crater

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L.; Bada, J.L. [Scripps Institution of Oceanography, La Jolla, CA (United States); Winans, R.E.; Hunt, J.E. [Argonne National Lab., IL (United States); Bunch, T.E. [National Aeronautics and Space Administration, Moffett Field, CA (United States). Ames Research Center; French, B.M. [National Aeronautics and Space Administration, Washington, DC (United States)

    1996-02-01

    Fullerenes (C{sub 60}, C{sub 70}) have been identified by laser time-of-flight and electron-ionization mass spectroscopy in rock samples (black tuff in the Onaping formation) from the crater. They were likely synthesized within the impact plume from carbon contained in the meteorite. The isotopic ratios suggest {sup 13}C enrichment. They are associated with sulfur which may have protected them. This is the largest known deposit of naturally occurring fullerenes.

  13. Chemistry of Fullerenes on the Earth and in the Solar System: A 1995 Review

    Science.gov (United States)

    Heymann, D.

    1996-03-01

    Fullerenes C(sub)60 and C(sub)70, the all-carbon molecules with closed-cage structures were discovered in 1990 in shungite from the Kola peninsula. Subsequent discoveries in terrestrial materials include a fulgurite from Colorado, clays and marls from several locations on the Cretaceous-Tertiary boundary, and carbon-rich breccias from the Sudbury impact structure. A search for fullerenes in the carbon-rich materials anthraxolite, shungite, and thucholite, however, failed to find them.

  14. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazuhiro

    2010-03-01

    Full Text Available Abstract Background We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs were examined in rat lungs in both studies. Results In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group. Conclusion These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.

  15. Electric-arc synthesis of soot with high content of higher fullerenes in parallel arc

    Science.gov (United States)

    Dutlov, A. E.; Nekrasov, V. M.; Sergeev, A. G.; Bubnov, V. P.; Kareev, I. E.

    2016-12-01

    Soot with a relatively high content of higher fullerenes (C76, C78, C80, C82, C84, C86, etc.) is synthesized in a parallel arc upon evaporation of pure carbon electrodes. The content of higher fullerenes in soot extract amounts to 13.8 wt % when two electrodes are simultaneously burnt in electric-arc reactor. Such a content is comparable with the content obtained upon evaporation of composite graphite electrodes with potassium carbonate impurity.

  16. Synthesis and Characterization of novel covalent Oligofullerenes and Fullerene-Hexabenzocoronene-Hybrids

    OpenAIRE

    Kratzer, Andreas

    2016-01-01

    The purpose of this thesis was the synthesis and characterization of novel covalent oligofullerenes and fullerene–hexabenzocoronene–hybrids for applications in material science. Both the advancement of synthetic procedures and the extension of the family of clustered fullerene derivatives have been successfully promoted. A new concept was pursued, in which the packing of the fullerenes should be forced by covalent pre–clustering on the one hand and the resulting intermolecular π–π– interactio...

  17. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts.

  18. Predicting Real Optimized Materials: Novel Nitrogen-Containing Fullerenes and Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, M R

    2003-07-15

    We propose to investigate the possible configurations, electronic, conducting and energetic properties of nitrogen-containing carbon fullerenes and single-walled nanotubes with nitrogen contents up to 30% using first principle density functional theoretical calculations. The proposed research allows for a predictive method to control the electronic properties of fullerenes and nanotubes that could pave the way for controlled fabrication of molecular circuits and nanotube networks.

  19. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    Energy Technology Data Exchange (ETDEWEB)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T. [Institute for Metal Physics, Kiev (Ukraine)

    1994-12-31

    The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.

  20. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    Energy Technology Data Exchange (ETDEWEB)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T.

    1995-04-01

    The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the `average-lattice` sites` as well as on the lattice parameter a of an elastically-anysotropic `cubic` C-60 crystal are taken into account.

  1. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    Science.gov (United States)

    Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.

    1995-01-01

    The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.

  2. ‘Horror vacui’ or topological in-out isomerism in perhydrogenated fullerenes: C60H60 and monoalkylated perhydrogenated fullerenes

    Science.gov (United States)

    Dodziuk, Helena; Nowinski, Krzysztof

    1996-02-01

    In endohedral chemistry, one of the exciting prospects offered by the cage-like structure of fullerenes, several aspects of the calculations on in-out isomerism of perhydrogenated fullerene and their consequences went unnoticed, e.g. the topological character of the isomerism, the instability of C 60F 60, which was thought to revolutionize industry as an ideal lubricant, as well as the possibility of in-out isomerism in alkylated fulleranes. Molecular mechanics calculations indicate that for smaller alkyl groups the 'in' isomer is significantly more stable extending the possibility of endohedral fullerene chemistry. C 60H 60 and its derivatives can be considered as examples of a manifestation of the ancient 'horror vacui' concept.

  3. Fullerene-containing phases obtained from aqueous dispersions of carbon nanoparticles

    Science.gov (United States)

    Rozhkov, S. P.; Kovalevskii, V. V.; Rozhkova, N. N.

    2007-06-01

    The hydration of fullerenes and shungite carbon nanoclusters in aqueous dispersions at various carbon concentrations is studied on frozen samples by EPR with spin probes. It is found that, for stable dispersions of both substances (at carbon concentrations of 0.1 mg/ml), the probe rotation frequency versus 1/T dependences exhibit a plateau in the range 243 257 K, which is probably associated with the peculiarities of freezing of water localized near hydrophobic structures of carbon nanoclusters. Solid phases isolated from supersaturated aqueous dispersions of fullerenes and shungites by slow evaporation of water at temperatures higher than 0°C are examines by electron diffraction and electron microscopy. It is established that obtained films of fullerenes contain at least two phases: fullerite with a face-centered cubic lattice and a phase similar in interplanar spacing and radically different in distribution of intensities of diffraction peaks. It is concluded that this phase is formed by the interaction of fullerenes and water (an analogous phase is found in shungite carbon films). It is found that the morphology of the new crystal phase is characterized by globules of size 20 to 70 nm, for fullerenes, and 10 to 400 nm for shungites. It is established that processes of crystallization of fullerites and fullerene-containing phases are very sensitive to temperature: a decrease in the temperature (within the range from 40 to 1°C) is accompanied by an increase in the new phase content.

  4. Recent Advances in Photoinduced Electron Transfer Processes of Fullerene-Based Molecular Assemblies and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Osamu Ito

    2012-05-01

    Full Text Available Photosensitized electron-transfer processes of fullerenes hybridized with electron donating or other electron accepting molecules have been surveyed in this review on the basis of the recent results reported mainly from our laboratories. Fullerenes act as photo-sensitizing electron acceptors with respect to a wide variety of electron donors; in addition, fullerenes in the ground state also act as good electron acceptors in the presence of light-absorbing electron donors such as porphyrins. With single-wall carbon nanotubes (SWCNTs, the photoexcited fullerenes act as electron acceptor. In the case of triple fullerene/porphyrin/SWCNT architectures, the photoexcited porphyrins act as electron donors toward the fullerene and SWCNT. These mechanisms are rationalized with the molecular orbital considerations performed for these huge supramolecules. For the confirmation of the electron transfer processes, transient absorption methods have been used, in addition to time-resolved fluorescence spectral measurements. The kinetic data obtained in solution are found to be quite useful to predict the efficiencies of photovoltaic cells.

  5. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size.

    Science.gov (United States)

    Roehling, John D; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J; Moulé, Adam J

    2016-08-08

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.

  6. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  7. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  8. Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology

    OpenAIRE

    Pycke, Benny F. G.; Benn, Troy M.; Herckes, Pierre; Westerhoff, Paul; Halden, Rolf U.

    2011-01-01

    Fullerenes are sphere-like molecules with unique physico-chemical properties, which render them of particular interest in biomedical research, consumer products and industrial applications. Human and environmental exposure to fullerenes is not a new phenomenon, due to a long history of hydrocarbon-combustion sources, and will only increase in the future, as incorporation of fullerenes into consumer products becomes more widespread for use as anti-aging, anti-bacterial or anti-apoptotic agents.

  9. Ultrafast photoinduced processes in fullerene-metal nanostructures

    Science.gov (United States)

    Chekalin, Sergey; Kompanets, Victor; Starodubtsev, Nickolai

    2006-01-01

    Investigation of photo-induced processes in Sn nanocrystals covered by a submonolayer of C 60 anions was performed with femtosecond pump-probe method. Samples in thin films were excited by 150 fs laser pulse at 400 nm (10 9 W/cm2). Dynamics of difference transmission and reflection has been measured in the spectral range of 1 100-1700 nm. The dynamics of relaxation are quite different for various nanostructures depending on the deposition mode and the ratio of tin and fullerene content. Relaxation, observed in the samples, is explained by electron transfer from excited anions to metal followed by energy transfer from excited C 60 molecules to anions in the ground state.

  10. Calculations of Molar Fractions of the IPR C78 Fullerenes

    Science.gov (United States)

    Uhlík, Filip; Slanina, Zdeněk

    2002-10-01

    There are five isolated-pentagon-rule (IPR) satisfying isomers of C78. In contradiction to theoretical predictions, only three isomers were observed in experiments and the fourth one was not identified until very recently. In this work we calculate structural and energetic data of the five IPR C78 fullerenes, namely we optimized their geometries with the B3LYP density-functional method using the standard 4-31G basis set (B3LYP/4-31G), calculated separation energies at the B3LYP/6-311G* level (B3LYP/6-311G*//B3LYP/4-31G), estimated energies of low lying electronic states with the ZINDO semiempirical method and calculated harmonic vibrational frequencies with the semiempirical SAM1 method. From the obtained data we constructed chirality respecting isomeric partition functions and evaluated molar fractions in the equilibrium isomeric mixture for a wide temperature interval.

  11. Cytoprotective properties of a fullerene derivative against copper

    Energy Technology Data Exchange (ETDEWEB)

    Ratnikova, Tatsiana A; Bebber, Mark J; Larcom, Lyndon L; Ke, Pu Chun [Department of Physics and Astronomy, COMSET, Clemson University, Clemson, SC 29634-0978 (United States); Huang, George, E-mail: pcke11@clemson.edu [Department of Biological Sciences, Clemson University, Clemson, SC 29634-0978 (United States)

    2011-10-07

    To delineate the complexity of the response of cells to nanoparticles we have performed a study on HT-29 human colon carcinoma cells exposed first to a fullerene derivative C{sub 60}(OH){sub 20} and then to physiological copper ions. Our cell viability, proliferation, and intracellular reactive oxygen species (ROS) production assays clearly indicated that C{sub 60}(OH){sub 20} suppressed cell damage as well as ROS production induced by copper, probably through neutralization of the metal ions by C{sub 60}(OH){sub 20} in the extracellular space, as well as by adsorption and uptake of the nanoparticles surface-modified by the biomolecular species in the cell medium. This double-exposure study provides new data on the effects of nanoparticles on cell metabolism and may aid the treatment of oxidant-mediated diseases using nanomedicine.

  12. Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-05-01

    Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.

  13. The Translation of the Word Fullerene and Its Study%Fullerene 中文译名及比较研究

    Institute of Scientific and Technical Information of China (English)

    张文根

    1999-01-01

      This paper has analysed and compared the different chinese translation of the word Fullerene from its origin, development,characteristics, study scope,system nomenclature and translation standard.It suggests that the word should be translated into fuller Molecule or Fuller.%  从 Fullerene 的由来、发展、特点、研究范围以及系统命名法、翻译规范等方面分析比较了各种 Fullerene中文译名,建议译为“富勒分子”或“富勒”比较妥当。

  14. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  15. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  16. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  17. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  18. Influence of Natural Organic Matter on Aggregation, Deposition, and Transport of Fullerene Colloids in Aqueous Systems

    Science.gov (United States)

    Zhang, W.; Rattanaudompol, U.; Powell, T.; Bouchard, D.

    2011-12-01

    Engineered fullerenes are increasingly being used in commercial products (e.g., skin and eye creams, tennis racquets, and lubricants) that may become a significant source for environmental release. A thorough understanding of fullerenes' aggregation in aqueous phase and deposition/transport in porous media is needed for evaluating the environmental persistence of fullerenes and subsequent human or ecological exposure. A number of recent studies have shown that fullerenes form stable colloidal aggregates in aqueous media and that their environmental behaviors largely depend on solution chemistry including ionic strength, solution pH, and the presence of natural organic matter (NOM). Nonetheless, the lack of systematic studies on NOM interaction with fullerene colloids and the coupling of this interaction with ionic strength and solution pH make predicting environmental behaviors of fullerenes a difficult task. In this study, electrophoretic mobility (EM), particle size, and aggregation kinetics of C60 colloidal suspensions were measured under a range of ionic strength (1.5-500.5 mM), solution pH (4, 7.8, and 10), and humic (0-9 mg C/L) or fulvic (0-11 mg C/L) acid concentrations. The EM data could be modeled with Ohshima's soft particle theory to probe thickness, softness, and charge density of adsorbed NOM layers on fullerene colloids. Under select conditions that represent low and high mobility, deposition studies using a quartz crystal microbalance and transport experiments in saturated and unsaturated sand columns will be conducted. It is anticipated that NOM may alter the transport of fullerene C60 differently in unsaturated media compared with saturated media. Our preliminary results showed that humic acid is more effective than fulvic acid in stabilizing fullerene suspensions and the extent of this stabilizing effect is a function of ionic strength when buffered at pH 7.8 with 0.5 mM NaHCO3. The findings of this study will help better assess the fate and

  19. Th(IV Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    Directory of Open Access Journals (Sweden)

    Wangsuo Wu

    2013-09-01

    Full Text Available The adsorption of Th(IV onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs in the absence and presence of hydroxylated fullerene (C60(OHn and carboxylated fullerene (C60(C(COOH2n has been investigated. C60(OHn, C60(C(COOH2n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV on the same oMWCNTs free of C60(OHn or C60(C(COOH2n, the study of a ternary system showed the inhibition effect of C60(OHn at high concentration on the adsorption of Th(IV in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH2n, even at its low concentration, on Th(IV adsorption was observed in acid medium.

  20. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes.

    Science.gov (United States)

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C60). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  1. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States)

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C{sub 60}). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  2. Tailoring buckybowls for fullerene recognition. A dispersion-corrected DFT study.

    Science.gov (United States)

    Josa, Daniela; González-Veloso, Iván; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2015-03-01

    A series of buckybowls with different sizes and structures have been tested as potential receptors of fullerenes C60, C70 and C40. Among these bowls are corannulene (C20H10), sumanene (C21H12), pinakene (C28H14), hemifullerene (C30H12), circumtrindene (C36H12), pentaindenocorannulene (C50H20) and bowl-shaped hexabenzocoronene derivatives. An exhaustive study, taking into account different orientations of fullerenes, was performed in order to obtain the most favourable arrangement for interacting with the bowls. Complexes were optimised at the SCC-DFTB-D level and interaction energies were obtained at the B97-D2/TZVP level including BSSE corrections. Comparison with the full B97-D2/TZVP results (optimisation plus interaction energies) suggests that the B97-D2/TZVP//SCC-DFTB-D approach may be a useful screening tool for designing fullerene receptors. Regarding the "catching" ability of the different buckybowls, it can be concluded that the shape of a buckybowl plays a crucial role in its success. Thus, it seems that the addition of flaps at the bowl rim by benzannelation is an effective strategy for enhancing the interaction with fullerenes, providing enough flexibility to extend the contact surface with the fullerene moiety. Accordingly, a bowl-shaped hexabenzocoronene derivative (C72H24) showed the best ability among the buckybowls evaluated for catching the fullerenes C60, C70 and C40; it is noteworthy that, when interacting with C60, the interaction energy is three times that corresponding to the prototypical buckybowl, corannulene. On the contrary, the more rigid and compact is the structure of a buckybowl, the smaller its ability to interact with fullerenes.

  3. Fullerene films and fullerene-dodecylamine adduct monolayers at air-water interfaces studied by neutron and x-ray reflection

    DEFF Research Database (Denmark)

    Wang, J.Y.; Vaknin, D.; Uphaus, R.A.;

    1994-01-01

    Neutron and X-ray reflection measurements and surface pressure isotherms of spread films of the fullerene-dodecylamine adduct C60-[NH2(CH2)11CH3]x all indicate that this material may form monomolecular layers on water surfaces. The reflection data sets (neutron on both H2O and D2O) can be accounted...

  4. Compact bis-adduct fullerenes and additive-assisted morphological optimization for efficient organic photovoltaics.

    Science.gov (United States)

    Lai, Yun-Yu; Liao, Ming-Hung; Chen, Yen-Ting; Cao, Fong-Yi; Hsu, Chain-Shu; Cheng, Yen-Ju

    2014-11-26

    Bis-adduct fullerenes surrounded by two insulating addends sterically attenuate intermolecular interaction and cause inferior electron transportation. In this research, we have designed and synthesized a new class of bis-adduct fullerene materials, methylphenylmethano-C60 bis-adduct (MPC60BA), methylthienylmethano-C60 bis-adduct (MTC60BA), methylphenylmethano-C70 bis-adduct (MPC70BA), and methylthienylmethano-C70 bis-adduct (MTC70BA), functionalized with two compact phenylmethylmethano and thienylmethylmethano addends via cyclopropyl linkages. These materials with much higher-lying lowest unoccupied molecular orbital (LUMO) energy levels successfully enhanced the Voc values of the P3HT-based solar cell devices. The compact phenylmethylmethano and thienylmethylmethano addends to promote fullerene intermolecular interactions result in aggregation-induced phase separation as observed by the atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of the poly(3-hexylthiophene-2,5-diyl) (P3HT)/bis-adduct fullerene thin films. The device based on the P3HT/MTC60BA blend yielded a Voc of 0.72 V, a Jsc of 5.87 mA/cm(2), and a fill factor (FF) of 65.3%, resulting in a power conversion efficiency (PCE) of 2.76%. The unfavorable morphologies can be optimized by introducing a solvent additive to fine-tune the intermolecular interactions. 1-Chloronaphthalene (CN) having better ability to dissolve the bis-adduct fullerenes can homogeneously disperse the fullerene materials into the P3HT matrix. Consequently, the aggregated fullerene domains can be alleviated to reach a favorable morphology. With the assistance of CN additive, the P3HT/MTC60BA-based device exhibited enhanced characteristics (a Voc of 0.78 V, a Jsc of 9.04 mA/cm(2), and an FF of 69.8%), yielding a much higher PCE of 4.92%. More importantly, the additive-assisted morphological optimization is consistently effective to all four compact bis-adduct fullerenes regardless of the methylphenylmethano

  5. Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.C.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  6. Photoinduced charge carriers in conjugated polymer–fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.; Sariciftci, N.S.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  7. Electrochemistry of (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part III

    Science.gov (United States)

    Igartua-Nieves, Elvin; Ocasio-Delgado, Yessenia; Rivera-Pagan, Jose; Cortes-Figueroa, Jose E.

    2007-01-01

    Cyclic voltammetry experiments on [60]fullerene, (C[subscript 60]), and (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], constitute an educational experiment for the inorganic chemistry laboratory with a primary objective to teach the chemical interpretation of a voltammogram, in…

  8. Insights into the Rational Design of Multi-Functional Fullerene Systems for Application in Blended Heterojunction Organic Solar Cells

    Science.gov (United States)

    Cowart, John S., Jr.

    Elucidating the structure-function relationships of organic semiconductors has been central to the advancement of organic photovoltaics (OPVs). In particular, enhancing the performance of p-type materials in disordered heterojunctions is broadly acknowledged as the principal factor leading to current trends of improved power conversion efficiencies (PCEs). However, two additional factors are crucially important for the next step forward in improving PCEs. First, investigating the influence, design and synthesis of new n-type materials, specifically fullerene acceptors, is of high importance. Second, because fullerene performance is often compromised by the morphological disorder of bulk heterojunctions, developing fullerenes systems that retain fidelity within disordered blends is also of broad interest. In light of these challenges, the field has witnessed a notable shift towards developing a comprehensive understanding of the design rules needed to advance the performance of fullerene acceptors in bulk heterojunctions. This work spotlights two multi-functional fullerene systems designed for blended heterojunctions. First, the synthesis of several novel fullerene-dye adducts with enhanced photon absorption will be presented. The ability of these adducts to absorb visible light in their pure state was evaluated and systematically examined versus their capacity to complement the absorption of low band gap donors and mediate charge transport in bulk heterojunctions. Second, mixed fullerene ternary blends were introduced as a strategy to stabilize the morphology in bulk heterojunctions and prolong operational lifetimes of OPV devices. Combined, these two systems offer unique insight into the rational design of fullerenes for their application in blended systems.

  9. Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells

    Science.gov (United States)

    Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2017-01-01

    Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.

  10. Donor polymer design enables efficient non-fullerene organic solar cells

    Science.gov (United States)

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-10-01

    To achieve efficient organic solar cells, the design of suitable donor-acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells.

  11. USING OF C60 FULLERENE COMPLEXES WITH ANTITUMOR DRUGS IN CHEMOTHERAPY

    Directory of Open Access Journals (Sweden)

    S. V. Prylutska

    2014-06-01

    Full Text Available The literature data and own research results concerning antitumor effect in vitro and in vivo of C60 fullerene and its derivatives, cytostatics, and conjugated systems on their basis, which enable the practical application of C60 in combined chemotherapy for treatment efficacy improving of malignant tumors are generalized. The mechanism of antitumor action of C60 fullerene in combined treatment with cytostatics is based on antioxidant properties of its molecule, thereby reducing toxic side effects of traditional drugs in a body and ability to their transport purposefully into the target cells. The unique structure of C60 enables to modify its surface with chemotherapeutic drugs. Under combined action of the "fullerene C60-chemotherapy drug" conjugate the anti-tumor effects enhancement is observed both in vitro and in vivo, namely quantity reduction of viable tumor cells, tumor reduction etc. Furthermore, protective effects of fullerene C60 and derivatives relatively toxic effects of chemotherapeutic agents in a body were observed. Conjugate auxesis empowers it to be kept longer in a cell and prolong the duration of drug action. Ability of fullerene C60 to selective accumulation provides its using for target drug delivery.

  12. Interaction Mechanism Insights on the Solvation of Fullerene B(80)with Choline-based Ionic Liquids.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-24

    Beyond carbon allotropes, other nanostructures such as fullerene B80 are attracting a growing interest due to their potential applications. The use of new materials based on fullerene B80 is still in a premature stage; however many of these applications would require the use of B80 in solution. This paper reports an unprecedented density functional theory (DFT) analysis on the interaction mechanism between B80 and two choline-based ionic liquids as a first insight for the fullerene B80 solvation by ionic liquids. The analysis of properties such as binding energies, charge distributions or intermolecular interactions shed light on the main features, which should govern interaction between ionic liquids and fullerene B80. In addition, the optimization of systems composed by six ionic pairs around a fullerene B80 has supplied some information about the first solvation shell at the molecular level. As a summary, this paper provides the first insights in the rational design of ionic liquids with suitable properties for the solvation of B80.

  13. Donor polymer design enables efficient non-fullerene organic solar cells.

    Science.gov (United States)

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-10-26

    To achieve efficient organic solar cells, the design of suitable donor-acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells.

  14. Creation and destruction of C{sub 60} and other fullerene solids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.R.

    1996-06-05

    The 1990 announcement of the Huffman-Kratschmer fullerene-production technique set off a world-wide explosion of research into the properties and potential applications of C{sub 60} and C{sub 70}. In the last five years, 4,000+ fullerene articles have appeared in the scientific literature dealing with these fascinating molecules and their condensed phases. They possess a complex chemistry reminiscent of the alkenes, and this has led to the syntheses of numerous new compounds and fullerene-based materials, with suggested applications ranging from medicine to photo-conducting polymers to rocket fuel. The work summarized in this report focused on the creation and destruction of fullerene-based materials, for the purpose of producing new materials of interest. This three year project was supported by a grant from the Advanced Energy Projects Division, Office of Basic Energy Sciences, U.S. Department of Energy (DE-FG03-93ER12133). Following are outlines of the work completed in each of the three years, a section devoted to the professional and educational development of those involved, a brief section on the outlook for fullerene-based materials, and an appendix listing the publications resulting from this project.

  15. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    Science.gov (United States)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-11-01

    In this study, we have synthesized C60 and C70-modified TiO2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C60 and C70 derivatives) can act as sinks for photogenerated electrons in TiO2, while the fullerene/TiO2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO2 NWs, the modified TiO2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO2 which expand the utilization of solar light from UV to visible light. The results reveal that the C70/TiO2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO2, the electron only devices and photoelectrochemical cells based on fullerenes/TiO2 are also fabricated and evaluated.

  16. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  17. The role of electron affinity in determining whether fullerenes catalyze or inhibit photooxidation of polymers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Eric T.; Sachs-Quintana, I.T.; Kauvar, Isaac; Mateker, William R.; Peters, Craig H.; McGehee, Michael D. [Department of Material Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305 (United States); Lloyd, Matthew T.; Nardes, Alexandre M.; Kopidakis, Nikos [National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401 (United States)

    2012-11-15

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend films exposed to ambient conditions for a variety of polymer and fullerene derivative combinations is presented. Despite the wide range in polymer stabilities to photodegradation, the rate of irreversible polymer photobleaching in blend films is found to consistently and dramatically increase with decreasing electron affinity of the fullerene derivative. Furthermore, blends containing fullerenes with the smallest electron affinities photobleached at a faster rate than films of the pure polymer. These observations can be explained by a mechanism where both the polymer and fullerene donate photogenerated electrons to diatomic oxygen to form the superoxide radical anion which degrades the polymer. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells

    KAUST Repository

    Hoke, Eric T.

    2012-05-21

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend fi lms exposed to ambient conditions for a variety of polymer and fullerene derivative combinations is presented. Despite the wide range in polymer stabilities to photodegradation, the rate of irreversible polymer photobleaching in blend fi lms is found to consistently and dramatically increase with decreasing electron affi nity of the fullerene derivative. Furthermore, blends containing fullerenes with the smallest electron affi nities photobleached at a faster rate than fi lms of the pure polymer. These observations can be explained by a mechanism where both the polymer and fullerene donate photogenerated electrons to diatomic oxygen to form the superoxide radical anion which degrades the polymer. © 2012 WILEY-VCH Verlag GmbH & Co.

  19. Extraterrestrial Helium (He@C60) Trapped in Fullerenes in the Sudbury Impact Structure

    Science.gov (United States)

    Becker, L.; Bada, J. L.; Poreda, R. J.; Bunch, T. E.

    1997-01-01

    Fullerenes (C60 and C70) have recently been identified in a shock-produced breccia (Onaping Formation) associated with the 1.85-Ga Sudbury Impact Crater. The presence of parts-per-million levels of fullerenes in this impact structure raises interesting questions about the processes that led to the formation of fullerenes and the potential for delivery of intact organic material to the Earth by a large bolide (e.g., asteroid or comet). Two possible scenarios for the presence of fullerenes in the Sudbury impact deposits are that (1) fullerenes are synthesized within the impact plume from the C contained in the bolide; or (2) fullerenes are already present in the bolide and survived the impact event. The correlation of C and trapped noble gas atoms in meteorites is well established. Primitive meteorites contain several trapped noble gas components that have anomalous isotopic compositions, some of which may have a presolar origin. Several C-bearing phases, including SiC, graphite, and diamond, have been recognized as carriers of trapped noble gases. It has also been suggested that fullerenes (C60 and C70) might be a carrier of noble gas components in carbonaceous chondrites. Recently, fullerenes have been detected in separate samples in the Allende meteorite. Carbon-60 is large enough to enclose the noble gases He, Ne, Ar, Kr, and Xe, but it is too small to contain diatomic gases such as N2 or triatomic gases such as CO2. Recent experimental work has demonstrated that noble gases of a specific isotopic composition can be introduced into synthetic fullerenes at high temperatures and pressures; these encapsulated gases can then be released by the breaking of one or more C bonds during step-heating under vacuum. These thermal-release patterns for He encapsulated within the C60 molecule (He@C60) are similar to the patterns for acid residues of carbonaceous chondrites, suggesting that fullerenes could be an additional carrier of trapped noble gases in acid residues of

  20. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  1. Soil microbial response to photo-degraded C60 fullerenes.

    Science.gov (United States)

    Berry, Timothy D; Clavijo, Andrea P; Zhao, Yingcan; Jafvert, Chad T; Turco, Ronald F; Filley, Timothy R

    2016-04-01

    Recent studies indicate that while unfunctionalized carbon nanomaterials (CNMs) exhibit very low decomposition rates in soils, even minor surface functionalization (e.g., as a result of photochemical weathering) may accelerate microbial decay. We present results from a C60 fullerene-soil incubation study designed to investigate the potential links between photochemical and microbial degradation of photo-irradiated C60. Irradiating aqueous (13)C-labeled C60 with solar-wavelength light resulted in a complex mixture of intermediate products with decreased aromaticity. Although addition of irradiated C60 to soil microcosms had little effect on net soil respiration, excess (13)C in the respired CO2 demonstrates that photo-irradiating C60 enhanced its degradation in soil, with ∼ 0.78% of 60 day photo-irradiated C60 mineralized. Community analysis by DGGE found that soil microbial community structure was altered and depended on the photo-treatment duration. These findings demonstrate how abiotic and biotic transformation processes can couple to influence degradation of CNMs in the natural environment.

  2. Top-down formation of fullerenes in the interstellar medium

    CERN Document Server

    Berne, O; Joblin, C

    2015-01-01

    [Abridged] Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C$_{66}$H$_{20}$ (i.e. circumovalene) can lead to the formation of C$_{60}$ upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation, folding into a floppy closed cage and shrinking of the cage by loss of C$_2$ units until it reaches the symmetric C$_{60}$ molecule. At 10" from the illuminating star and with realistic molecular parameters, the model predicts that 100\\% of C$_{66}$H$_{20}$ is converted into C$_{60}$ in $\\sim$ 10$^5$ years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of th...

  3. Novel applications of functionalized carbon nanotubes and fullerenes

    Science.gov (United States)

    Hu, Shunfu

    Multi-walled carbon nanotubes (MWNTs) with their extraordinary properties are only realized if they are successfully de-bundled and dispersed in common solvents. In this study, a chemical hydrogenation process was developed and optimized to successfully de-bundle MWNTs producing hydrogenated MWNTs (H-MWNTs). Homogeneous dispersion was maintained for H-MWNTs even after 6 months. Amine functionalized MWNTs (NH-MWNTs) were also successfully synthesized and NH-MWNTs with maleic anhydride grafted polyethylene (PE-MAH) polymer composites achieved 33% improvement for tensile strength at 1wt% loading. Fullerenes were introduced to create polyethyleneimine (PEI)-C60 dendrimer structure. Such structure can be coated onto PE-MAH interdigitated tapes via layer by layer technique to generate strong bonding novel fasteners after curing. The novel fasteners can be potentially functionalized with quaternary ammonia as anti-microbial feature tapes. PEI-C60 dendrimer structures were also successfully deposited onto regular aluminum foils to replace traditional thermal evaporated aluminum as cathode for organic light-emitting diode (OLED) and organic photovoltaics (OPV). OLED and OPV devices were fabricated to show the proof of concept and survey experiment was performed to better understand this novel cathode technique. A true high rate manufacturing process could be applied for this novel technique with aluminum foil.

  4. Synthesis of a distinct water dimer inside fullerene C70

    Science.gov (United States)

    Zhang, Rui; Murata, Michihisa; Aharen, Tomoko; Wakamiya, Atsushi; Shimoaka, Takafumi; Hasegawa, Takeshi; Murata, Yasujiro

    2016-05-01

    The water dimer is an ideal chemical species with which to study hydrogen bonds. Owing to the equilibrium between the monomer and oligomer structure, however, selective generation and separation of a genuine water dimer has not yet been achieved. Here, we report a synthetic strategy that leads to the successful encapsulation of one or two water molecules inside fullerene C70. These endohedral C70 compounds offer the opportunity to study the intrinsic properties of a single water molecule without any hydrogen bonding, as well as an isolated water dimer with a single hydrogen bond between the two molecules. The unambiguously determined off-centre position of water in (H2O)2@C70 by X-ray diffraction provides insights into the formation of (H2O)2@C70. Subsequently, the 1H NMR spectroscopic measurements for (H2O)2@C70 confirmed the formation of a single hydrogen bond rapidly interchanging between the encapsulated water dimer. Our theoretical calculations revealed a peculiar cis-linear conformation of the dimer resulting from confinement effects inside C70.

  5. Antitumor effect of sonodynamically activated pyrrolidine tris-acid fullerene

    Science.gov (United States)

    Iwase, Yumiko; Nishi, Koji; Fujimori, Junya; Fukai, Toshio; Yumita, Nagahiko; Ikeda, Toshihiko; Chen, Fu-shin; Momose, Yasunori; Umemura, Shin-ichiro

    2016-07-01

    In this study, the sonodynamically induced antitumor effect of pyrrolidine tris-acid fullerene (PTF) was investigated. Sonodynamically induced antitumor effects of PTF by focused ultrasound were investigated using isolated sarcoma-180 cells and mice bearing ectopically-implanted colon 26 carcinoma. Cell damage induced by ultrasonic exposure was enhanced by 5-fold in the presence of 80 µM PTF. The combined treatment of ultrasound and PTF suppressed the growth of the implanted colon 26 carcinoma. Ultrasonically induced 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (4oxoTEMPO) production in the presence and absence of PTF was assessed, and it was shown that 80 µM PTF enhanced 4oxoTEMPO production as measured by ESR spectroscopy. Histidine, a reactive oxygen scavenger, significantly reduced cell damage and 4oxoTEMPO generation caused by ultrasonic exposure in the presence of PTF. These results suggest that singlet oxygen is likely to be involved in the ultrasonically induced cell damage enhanced by PTF.

  6. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  7. Fullerenes, carbon nanotubes, and graphene for molecular electronics.

    Science.gov (United States)

    Pinzón, Julio R; Villalta-Cerdas, Adrián; Echegoyen, Luis

    2012-01-01

    With the constant growing complexity of electronic devices, the top-down approach used with silicon based technology is facing both technological and physical challenges. Carbon based nanomaterials are good candidates to be used in the construction of electronic circuitry using a bottom-up approach, because they have semiconductor properties and dimensions within the required physical limit to establish electrical connections. The unique electronic properties of fullerenes for example, have allowed the construction of molecular rectifiers and transistors that can operate with more than two logical states. Carbon nanotubes have shown their potential to be used in the construction of molecular wires and FET transistors that can operate in the THz frequency range. On the other hand, graphene is not only the most promising material for replacing ITO in the construction of transparent electrodes but it has also shown quantum Hall effect and conductance properties that depend on the edges or chemical doping. The purpose of this review is to present recent developments on the utilization carbon nanomaterials in molecular electronics.

  8. Analysis of TOF-SIMS spectra from fullerene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kato, N. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)], E-mail: kato-nobuhiko@st.seikei.ac.jp; Yamashita, Y. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, S.; Sanada, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2008-12-15

    We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C{sub 60}, C{sub 70} and C{sub 84}) by using Ga{sup +}, Au{sup +} and Au{sub 3}{sup +} primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C{sub 70} and C{sub 84}, it was found that a fragment ion, identified as C{sub 60}{sup +} (m/z = 720), showed a relatively high intensity compared with that of other fragment ions related to C{sub 2} depletion. It was also found that the Au{sub 3}{sup +} bombardment caused intensity enhancement of intact molecules (C{sub 60}{sup +}, C{sub 70}{sup +} and C{sub 84}{sup +}) and restrained the fragmentation due to C{sub 2} depletion.

  9. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Science.gov (United States)

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  10. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    KAUST Repository

    Tummala, Naga Rajesh

    2015-04-21

    Quantifying cohesion and understanding fracture phenomena in thin-film electronic devices are necessary for improved materials design and processing criteria. For organic photovoltaics (OPVs), the cohesion of the photoactive layer portends its mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono-substituted fullerenes is examined experimentally and through molecular-dynamics simulations. The results detail how, under identical conditions, cohesion significantly changes due to minor variations in the fullerene adduct functionality, an important materials consideration that needs to be taken into account across fields where soluble fullerene derivatives are used.

  11. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms

    Directory of Open Access Journals (Sweden)

    Sanaz Pilehvar

    2015-11-01

    Full Text Available Nanotechnology is becoming increasingly important in the field of (biosensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (biosensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (biosensing.

  12. Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules.

    Science.gov (United States)

    Skamrova, Galyna B; Laponogov, Ivan; Buchelnikov, Anatoly S; Shckorbatov, Yuriy G; Prylutska, Svitlana V; Ritter, Uwe; Prylutskyy, Yuriy I; Evstigneev, Maxim P

    2014-07-01

    C60 fullerenes are spherical molecules composed purely of carbon atoms. They inspire a particularly strong scientific interest because of their specific physico-chemical properties and potential medical and nanotechnological applications. In this work we are focusing on studying the influence of the pristine C60 fullerene on biological activity of some aromatic drug molecules in human buccal epithelial cells. Assessment of the heterochromatin structure in the cell nucleus as well as the barrier function of the cell membrane was performed. The methods of cell microelectrophoresis and atomic force microscopy were also applied. A concentration-dependent restoration of the functional activity of the cellular nucleus after exposure to DNA-binding drugs (doxorubicin, proflavine and ethidium bromide) has been observed in human buccal epithelial cells upon addition of C60 fullerene at a concentration of ~10(-5 )M. The results were shown to follow the framework of interceptor/protector action theory, assuming that non-covalent complexation between C60 fullerene and the drugs (i.e., hetero-association) is the major process responsible for the observed biological effects. An independent confirmation of this hypothesis was obtained via investigation of the cellular response of buccal epithelium to the coadministration of the aromatic drugs and caffeine, and it is based on the well-established role of hetero-association in drug-caffeine systems. The results indicate that C60 fullerene may reverse the effects caused by the aromatic drugs, thereby pointing out the potential possibility of the use of aromatic drugs in combination with C60 fullerene for regulation of their medico-biological action.

  13. Designing a C84 fullerene as a specific voltage-gated sodium channel blocker

    Science.gov (United States)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2013-07-01

    Fullerene derivatives demonstrate considerable potential for numerous biological applications, such as the effective inhibition of HIV protease. Recently, they were identified for their ability to indiscriminately block biological ion channels. A fullerene derivative which specifically blocks a particular ion channel could lead to a new set of drug leads for the treatment of various ion channel-related diseases. Here, we demonstrate their extraordinary potential by designing a fullerene which mimics some of the functions of μ-conotoxin, a peptide derived from cone snail venom which potently binds to the bacterial voltage-gated sodium channel (NavAb). We show, using molecular dynamics simulations, that the C84 fullerene with six lysine derivatives uniformly attached to its surface is selective to NavAb over a voltage-gated potassium channel (Kv1.3). The side chain of one of the lysine residues protrudes into the selectivity filter of the channel, while the methionine residues located just outside of the channel form hydrophobic contacts with the carbon atoms of the fullerene. The modified C84 fullerene strongly binds to the NavAb channel with an affinity of 46 nM but binds weakly to Kv1.3 with an affinity of 3 mM. This potent blocker of NavAb may serve as a structural template from which potent compounds can be designed for the targeting of mammalian Nav channels. There is a genuine need to target mammalian Nav channels as a form of treatment of various diseases which have been linked to their malfunction, such as epilepsy and chronic pain.

  14. Pt/onion-like fullerenes as catalyst for direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    GUO Junjie; YANG Xiaowei; YAO Yanli; WANG Xiaomin; LIU Xuguang; XU Bingshe

    2006-01-01

    Onion-like fullerenes synthesized by arc discharge in water were used as support of Pt nanoparticles as electrocatalytic materials for direct methanol fuel cell. Uniform platinum nanoparticles with the average diameter of about 4.3 nm were well dispersed on the surface of onion-like fullerenes by impregnation-reduction method. The morphologies and microstructures of the as-prepared composites were studied by means of XRD and TEM. Electrochemical analysis shows that this kind of nano material may be an excellent candidate to be used as the support of catalyst for methanol electrochemical oxidation.

  15. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  16. Electronic properties of pentaorgano[60]fullerenes under an external electric field

    Science.gov (United States)

    Furutani, Sho; Okada, Susumu

    2016-11-01

    The electronic properties of pentaorgano[60]fullerene under an external electric field were studied by combining the density functional theory with the effective screening medium method. Pentaorgano[60]fullerene possess a dipole moment because of their asymmetric molecular form owing to their five functionalized groups. When electrons and holes are injected into the molecule, the magnetic states of the molecule change from S = 1/2 to nonmagnetic and S = 1 triplet states for electron and hole doping, respectively. The asymmetric molecular shape causes the unusual distribution of the accumulated carriers depending on their mutual molecular arrangement in the electric field.

  17. Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Tracey M.; Shoaee, Safa; Soon, Ying W.; Durrant, James R. [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Ballantyne, Amy; Nelson, Jenny [Centre for Plastic Electronics, Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Duffy, Warren; Heeney, Martin; McCulloch, Iain [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Merck Chemicals, Chilworth Science Park, Southampton SO16 7QD (United Kingdom)

    2010-12-07

    Charge photogeneration: The correlation between the efficiency of photogeneration of dissociated polarons and photocurrent densities for organic solar cells based on polymer:fullerene blend films is investigated. Optical assays of polaron yield measured in films without electrodes show a remarkably clear correlation with short circuit density and quantum yield measured in complete devices. For the blend films studied herein, the primary determinant of photocurrent generation is the efficiency of dissociation of photogenerated charges away from the polymer/fullerene interface and the primary loss pathway is geminate recombination. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Interaction of C-70 fullerene with the Kv1.2 potassium channel

    DEFF Research Database (Denmark)

    Monticelli, L.; Barnoud, J.; Orlowskid, A.;

    2012-01-01

    Fullerene C-70 is known to partition into lipid membranes and change their physical properties. Together with gallic acid (GA), C-70 induces cell contraction and cell death. How C-70 and GA-induced perturbations of lipid membranes affect cellular function and membrane protein activity is not unde......Fullerene C-70 is known to partition into lipid membranes and change their physical properties. Together with gallic acid (GA), C-70 induces cell contraction and cell death. How C-70 and GA-induced perturbations of lipid membranes affect cellular function and membrane protein activity...

  19. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    CERN Document Server

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  20. Synthesis of Fullerene-Acrylamide Copolymer Nanoball and Its Lubrication Properties

    Institute of Scientific and Technical Information of China (English)

    JIANG,Gui-Chang(江贵长); GUAN,Wen-Chao(官文超); ZHENG,Qi-Xin(郑启新)

    2004-01-01

    A novel fullerene-acrylamide copolymer was synthesized via radical polymerization. It is soluble in polar solvents such as water, dimethyl sulfoxide etc. The product was characterized by FTIR, UV-Vis and GPC. TEM analysis shows that the average particle diameter is about 46 nm. Four-ball tests show that the addition of a certain concentration of the fullerene copolymer to base stock (2 wt% triethanolamine and 0.5 wt% OPZ aqueous solution) can effectively raise the load-carrying capacity (PB value) and the antiwear ability. SEM analysis shows that the addition results in reducing diameter of wear scar and decreasing wear.

  1. Structure of Fullerene Aggregates in Pyridine/Water Solutions by Small-Angle Neutron Scattering

    CERN Document Server

    Aksenov, V L; Belushkin, A V; Mihailovic, D; Mrzel, A; Rosta, L; Serdyuk, I N; Timchenko, A A

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (Co_{60}) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell.

  2. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Nakamura, Shigeo [Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 (Japan); Ono, Toshiya; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8511 (Japan); Yagi, Syota; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Watanabe, Hisami [Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan); Ohe, Tomoyuki; Mashino, Tadahiko [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-08-15

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  3. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  4. Determination of Fullerenes (C60/C70) from the Permian-Triassic Boundary in the Meishan Section of South China

    Institute of Scientific and Technical Information of China (English)

    LI Yanfang; LIANG Handong; YIN Hongfu; SUN Jing; CAI Hou'an; RAO Zhu; RAN Fanlin

    2005-01-01

    Fullerenes (C60/C70), clays and rocks near the Permian-Triassic (P/T) boundary in the Meishan section of South China are explored by means of comprehensive analytical techniques, including ultrasonic extraction with column purification, high-performance liquid chromatography (HPLC) and matrix assisted laser desorption/ionization time-offlight mass spectrometry (MALDI TOF MS). The study confirms the existence of fullerenes toward the P/T event boundary and their absence in clays and limestones beyond the boundary. In particular, the white clay, known as the event boundary, contains fullerenes of 0.33 ppb, while the red material, as the first lamina fill of goethite and gypsum on the base of the white clay, contains fullerenes of 1.23 ppb, and the last lamina of 2.50 ppb. Significantly, distinct enrichment of fullerenes is coincident with the disappearance of fossil records of marine species (94%) just at the base of the white clay,implying that geological fullerenes would be one of temporal remnants led by the P/T catastrophic event. This work strongly supports that fullerenes would be one of significant records of the P/T catastrophic event but their origin remains to be studied further.

  5. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  6. Water adsorption on fullerene-like carbon nitride overcoats

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, E. [Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)], E-mail: broitman@andrew.cmu.edu; Gueorguiev, G.K.; Furlan, A.; Son, N.T. [IFM, Linkoeping University, SE 581-83 Linkoeping (Sweden); Gellman, A.J. [Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Stafstroem, S.; Hultman, L. [IFM, Linkoeping University, SE 581-83 Linkoeping (Sweden)

    2008-12-01

    Humidity influences the tribological performance of the head-disk interface in magnetic data storage devices. In this work we compare the uptake of water of amorphous carbon nitride (a-CN{sub x}) films, widely used as protective overcoats in computer disk drive systems, with fullerene-like carbon nitride (FL-CN{sub x}) and amorphous carbon (a-C) films. Films with thickness in the range 10-300 nm were deposited on quartz crystal substrates by reactive DC magnetron sputtering. A quartz crystal microbalance placed in a vacuum chamber was used to measure the water adsorption. Electron paramagnetic resonance (EPR) has been used to correlate water adsorption with film microstructure and surface defects (dangling bonds). Measurements indicate that the amount of adsorbed water is highest for the pure a-C films and that the FL-CN{sub x} films adsorbed less than a-CN{sub x}. EPR data correlate the lower water adsorption on FL-CN{sub x} films with a possible lack of dangling bonds on the film surface. To provide additional insight into the atomic structure of defects in the FL-CN{sub x}, a-CN{sub x} and a-C compounds, we performed first-principles calculations within the framework of Density Functional Theory. Emphasis was put on the energy cost for formation of vacancy defects and dangling bonds in relaxed systems. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CN{sub x} than for the amorphous films. These simulations thus confirm the experimental results showing that dangling bonds are much less likely in FL-CN{sub x} than in a-CN{sub x} and a-C films.

  7. C60 fullerenes from combustion of common fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  8. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Yaowen; Zhao, Yue; Chen, Qi; Yang, Yang Michael; Liu, Yongsheng; Hong, Ziruo; Liu, Zonghao; Hsieh, Yao-Tsung; Meng, Lei; Li, Yongfang; Yang, Yang

    2015-12-16

    In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells.

  9. Regulation of Glucose Oxidase Activity through Interaction with Fullerene Derivatives%Regulation of Glucose Oxidase Activity through Interaction with Fullerene Derivatives

    Institute of Scientific and Technical Information of China (English)

    Gao, Yunyan; Wang, Zhongli; Ou, Zhize; Li, Yi; Wang, Xuesong; Yang, Guoqiang

    2012-01-01

    The 2-(hydroxymethyl)pyridine modified C60 (PY-C60) and methoxydiglycol modified C60 (MDG-C60) are synthesized using Bingel-Hirsch reaction and characterized by nuclear magnetic resonance (NMR) and mass spectra. PY-C60 and MDG-C60 can bind to glucose oxidase (GOx) and quench the fluorescence of tryptophan (Trp) residue in GOx through static mechanism. The conformation of GOx is disturbed after formation of complex with these fullerene derivatives. Kinetic analysis indicates that PY-C60 and MDG-C60 may affect the catalytic activity of GOx with a partial mixed-type inhibition mechanism. In the plasma glucose concentration range (3.6--5.2 mmol·L-1), PY-C60 may significantly accelerate the catalytic velocity of GOx, however, MDG-C60 exerts almost no obvious change to the initial velocity of GOx, suggesting that elaborate design of molecular structure of fullerene derivative is very important for regulating the biological activity of fullerene-enzyme complex.

  10. Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems.

    Science.gov (United States)

    Lembo, Angelo; Tagliatesta, Pietro; Guldi, Dirk M; Wielopolski, Mateusz; Nuccetelli, Marzia

    2009-03-05

    The synthesis and electrochemical and photophysical studies of new electron donor-acceptor arrays, bearing porphyrins covalently linked to fullerene, are described. In the reported investigation, phenyleneethynylene subunits were chosen as a linking bridge to guarantee a high conjugation degree between the donor (i.e., porphyrin), the molecular bridge (i.e., oligo-phenyleneethynylenes), and the acceptor (i.e., fullerene). To enhance the electronic interactions through the extended pi-system, the molecular bridge has been directly linked to the beta-pyrrole position of the porphyrin ring, generating a new example of donor-bridge-acceptor systems where, for the first time, the meso-phenyl ring of the macrocycle is not used to hold the "bridge" between porphyrin and fullerene moieties. This modification allows altering the chemical and physical properties of the tetrapyrrole ring. Steady-state and time-resolved fluorescence studies together with transient absorption measurements reveal that in nonpolar media (i.e., toluene) transduction of singlet excited-state energy governs the excited-state deactivation, whereas in polar media (i.e., tetrahydrofuran) charge transfer prevails generating a long-lived radical ion pair state. The lifetimes hereof range from 300 to 700 ns. The study also sheds light onto the wirelike behavior of the oligo-phenyleneethynylene bridges, for which a damping factor (beta) of 0.11 +/- 0.05 A(-1) has been determined in the current study.

  11. Electrocatalytic performance of Pt/Ru/Sn/W fullerene electrode for methanol oxidation in direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    Mohammad Karimi; Forouzan Aboufazeli; Hamid Reza Lotfi Zadeh Zhad; Omid Sadeghi; Ezzatollah Najafi

    2013-01-01

    In this work,fullerene was modified by platinum,ruthenium,tin and tungsten nanoparticles.The material was characterized by XRD,ICP-OES and TEM micrograph.The average nanoparticle size on fullerene was 5 ~ 8 nm.The application of this material was investigated as a catalyst for methanol oxidation in direct methanol fuel cell.A glassy carbon electrode was modified by Pt/Ru/Sn/W fullerene and electrocatalytic activity of the electrode toward methanol oxidation in basic medium has been demonstrated and investigated using cyclic voltammetry.The catalyst showed good reactivity for methanol oxidation.

  12. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;

    1997-01-01

    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  13. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  14. Fullerenes as alternative acceptors by transfer doping of diamond surfaces; Fullerene als alternative Akzeptoren bei der Transferdotierung von Diamantoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Paul

    2008-06-06

    The topic of this thesis is the fullerene induced surface conductivity on hydrogen terminated diamond. A systematic investigation of C{sub 60}, C{sub 60}F{sub 18}, C{sub 60}F{sub 36} and C{sub 60}F{sub 48} as transfer dopants on hydrogenated diamond has been performed. For C{sub 60}, the doping mechanism is more accurately described as a charge exchange in an extreme type II heterojunction. On the other hand a molecular surface acceptor model that takes the degeneracy of holes and the electric field caused by charge separation into account has been performed for the case of C{sub 60}F{sub 48} in excellent agreement with experimental results. Using in situ Hall Effect measurements of air, C{sub 60}, and C{sub 60}F{sub 48} induced conductivity the sign of the charge carriers that dominate the transport properties was determined. At ambient temperature the hole mobility {mu} as a function of the induced charge carrier density p between p=5.10{sup 10} cm{sup -2} and p=3.10{sup 13} cm{sup -2} was measured. A maximum of the mobility of 130-150 cm{sup 2}V{sup -1}s{sup -1} occurs for p=2.10{sup 1} cm{sup -2}. Temperature dependent Hall measurements between 77 and 350 K show a non-activated, constant charge carrier density on all examinated samples, independently of the kind of adsorbates. On the other hand, both the conductivity and the mobility exhibit temperature dependence, varying with the charge carrier concentration. An essential part of this thesis addressed the investigation and the improvement of the thermal stability of the fullerene layers. In order to achieve the covalent attachment of C{sub 60}F{sub 48} to a hydrogen terminated diamond surface a process for controlled partially hydrolisation was developed. Functionalization with hydroxyl groups could be achieved by using a remote water vapour plasma at room temperature for a few seconds as demonstrated by photoelectron spectroscopy. Prolonged water plasma exposure, however, as well as annealing at temperatures

  15. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Frederic

    2016-12-20

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  16. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium-Catalyzed Arylation.

    Science.gov (United States)

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González-Cantalapiedra, Esther; Cabello, Noemí; Echavarren, Antonio M

    2016-07-01

    The synthesis of a new C3v -symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium-catalyzed intramolecular arylation of a syn-trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI-MS.

  17. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium‐Catalyzed Arylation

    Science.gov (United States)

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González‐Cantalapiedra, Esther; Cabello, Noemí

    2016-01-01

    The synthesis of a new C 3v‐symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium‐catalyzed intramolecular arylation of a syn‐trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI‐MS. PMID:27774038

  18. SYNTHESIS OF PERFLUORO-1-OCTANESULFONATED FULLERENE AND THE FRICTION PROPERTIES OF ITS THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Lan Huang; Shuang Fan; Fang Wei; Xin-sheng Zhao; Jin-xin Xiao; Bu-yao Zhu

    2002-01-01

    A star-shaped compound of perfluoro-1-octanesulfonated fullerene was synthesized. The measurement of the friction for its spin-coating film by friction force microscopy (FFM) reveals that the films possess lower friction force compared to that of the star-shaped C60-polystyrene films.

  19. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    Degradation studies of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV), fullerenes ((6,6)-phenyl C-61-butyric acid methyl ester (PCBM) and C-60), and mixtures, which are the photoactive components in plastic solar cells, are shown. The degradation processes of the indivi

  20. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-01-01

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. PMID:28336904

  1. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-01-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix. PMID:25822809

  2. Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites

    NARCIS (Netherlands)

    Chirvase, D.; Parisi, J.; Hummelen, J.C.; Dyakonov, V.

    2004-01-01

    Composites of conjugated poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) demonstrate an efficient photogeneration of mobile charge carriers. Thermal annealing of P3HT:PCBM based devices gives rise to a significant increase of the photovolt

  3. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    Science.gov (United States)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  4. Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Doping

    NARCIS (Netherlands)

    Torabi, Solmaz; Liu, Jian; Gordiichuk, Pavlo; Herrmann, Andreas; Qiu, Li; Jahani, Fatemeh; Hummelen, Jan C.; Koster, L. Jan Anton

    2016-01-01

    One of the most commonly used cathode interlayers for increasing the efficiency of electron injection/extraction in organic electronic devices is an ultrathin layer of LiF. Our capacitance measurements and electrical conductivity E analysis show that thin films of fullerene derivatives and their mix

  5. Origin and impact of recombination via charge transfer excitons in polymer/fullerene solar cells

    Science.gov (United States)

    Hallermann, Markus; da Como, Enrico; Feldmann, Jochen

    2010-03-01

    To further advance the performances of organic photovoltaic cells a thorough understanding of loss mechanisms in polymer/fullerene blends is mandatory. Recombination via charge transfer excitons (CTEs) appears to be a fundamental loss, potentially impacting the open circuit voltage (VOC) and the short circuit current (ISC) of cells. We unravel the origin of CTEs forming in polymer/fullerene blends and discuss their importance in recombination processes considering binding energy [1], polymer conformation [2], and energetic position. CTE photoluminescence (PL) is observed in material combinations such as P3HT and PPV blended with fullerene acceptors. By combining electron microscopy and PL spectroscopy, we show that CTE recombination is only slightly influenced by the mesoscopic morphology, whereas strongly by the polymer chain conformation [2]. By shifting the orbital energies of the fullerene, we tune the CTE PL characteristics. High energy CTE emission results in cells with a beneficial increase in VOC. On the other hand, high energy CTE emission leads to a more efficient recombination impacting directly the ISC. The results highlight a fundamental limit in the efficiency of organic solar cells with CTE recombination. [1] Hallermann et al. APL 2008 [2] Hallermann et al. AFM 2009

  6. Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes

    NARCIS (Netherlands)

    Hadjar, O; Hoekstra, R; Morgenstern, R; Schlatholter, T

    2001-01-01

    The delocalized pi electrons of a C-60 cluster can be well described as an electron gas. Electronic friction experienced by a multicharged ion colliding with a fullerene might then be modeled in terms of the electronic stopping power. We investigated such collisions for projectile atomic numbers Z r

  7. Synthesis of a Novel Organic Soluble and Thermal-stable Fullerene-perylene Dyad

    Institute of Scientific and Technical Information of China (English)

    Jian Li HUA; Fang DING; Fan Shun MENG; He TIAN

    2004-01-01

    A novel organic soluble and thermal-stable fullerene-perylene dyad, in which a perylene moietyis attached to C60, has been prepared by 1, 3-dipolar cycloaddition of the azomethine ylides generated in situ from the aldehyde and N-methylglycine and characterized by NMR, FT-IR, TGA, absorption and fluorescent spectra etc.

  8. Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds

    CERN Document Server

    Vrubel, I I; Ivanov, V K

    2015-01-01

    A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.

  9. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography

    Science.gov (United States)

    Li, Juan; Yang, Wenjiang; Cui, Rongli; Wang, Dongliang; Chang, Yanan; Gu, Weihong; Yin, Wenyan; Bai, Xue; Chen, Kui; Xia, Lin; Geng, Huan; Xing, Gengmei

    2016-04-01

    Fullerenes (C60) and metallofullerenes (Gd@C82) have similar chemical structure, but the bio-effects of both fullerene-based materials are distinct in vivo. Tracking organic carbon-based materials such as C60 and Gd@C82 is difficult in vivo due to the high content of carbon element in the living tissues themselves. In this study, the biodistribution and metabolism of fullerenes (C60 and Gd@C82) radiolabeled with 64Cu were observed by positron emission tomography (PET). 64Cu-C60 and 64Cu-Gd@C82 were prepared using 1, 4, 7, 10-tetrakis (carbamoylmethyl)-1, 4, 7, 10-tetra-azacyclodo-decanes grafted on carbon cages as a chelator for 64Cu, and were obtained rapidly with high radiochemical yield (≥90%). The new radio-conjugates were evaluated in vivo in the normal mouse model and tissue distribution by small animal PET/CT imaging and histology was carried out. The PET imaging, the biodistribution and the excretion of C60 and Gd@C82 indicated that C60 samples have higher blood retention and lower renal clearance than the Gd@C82 samples in vivo and suggested that the differences in metabolism and distribution in vivo were caused by the structural differences of the groups on the fullerene cages though there is chemical similarity between C60 and Gd@C82.

  10. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    Directory of Open Access Journals (Sweden)

    Cheng Loong Ngan

    2014-01-01

    Full Text Available Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w and beeswax (1–3%, w/w in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.

  11. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.;

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as ...

  12. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells

    NARCIS (Netherlands)

    Chirvase, D; Chiguvare, Z; Knipper, M; Parisi, J; Dyakonov, [No Value; Hummelen, JC

    2003-01-01

    Electrical and optical properties of poly(3-hexylthiophene-2.5diyl) (P3HT) used as the main component in a polymer/fullerene solar cell were studied. From the study of space-charge limited current behavior of indium-tin-oxide (ITO)/P3HT/Au hole-only devices, the hole mobility and density were estima

  13. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    The fate and transport of colloidal fullerenes (n-C60) in the environment is likely to be guided by electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of n-C60 nanoparticles. Although the ef...

  14. Stability issues of conjugated polymer/fullerene solar cells from a chemical viewpoint

    NARCIS (Netherlands)

    Hummelen, JC; Knol, J; Sanchez, L; Kafafi, ZH

    2000-01-01

    The efficiency of energy conversion and the stability or lifetime of 'plastic' photovoltaic cells, based on conjugated polymer/ fullerene blends, are the two main issues to be improved for this type of devices. The stability of these PV cells depends potentially on a large number of factors. A brief

  15. Understanding the formation process of exceptionally long fullerene-based nanowires

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Geng, Junfeng; Solov'yov, Andrey V.;

    2009-01-01

    In a recent study J. Geng, W. Zhou, P. Skelton, W. Yue, I. Kinloch, A.Windle, and B. Johnson, J. Am. Chem. Soc. 130, 2527 (2008)., it was demonstrated that exceptionally long fullerene nanowires, with a length-to-width aspect ratio as large as $3000-5000, can be grown from 1,2,4-trimethylbenzene ...

  16. Device model for the operation of polymer/fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Smits, ECP; Mihailetchi, VD; Blom, PWM

    2005-01-01

    We have developed a numerical device model that consistently describes the current-voltage characteristics of polymer:fullerene bulk heterojunction solar cells. Bimolecular recombination and a temperature- and field-dependent generation mechanism of free charges are incorporated. It is demonstrated

  17. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels;

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  18. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell.

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-30

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  19. Photodynamics of a constrained parachute-shaped fullerene-porphyrin dyad

    NARCIS (Netherlands)

    D.I. Schuster; P. Cheng; S.R. Wilson; V. Prokhorenko; M. Katterle; A.R. Holzwarth; S.E. Braslavsky; G. Klihm; R.M. Williams

    1999-01-01

    The pronounced ability of fullerene C60 to act as an electron and energy acceptor has led to the synthesis of a large number of compounds in which C60 is covalently linked to photoactivatable groups which can serve as potential donors. Such compounds are of interest as model systems for photosynthet

  20. Preliminary identification of fullerenes in the lowermost Jurassic strata, Queen Charlotte Islands, British Columbia

    Science.gov (United States)

    Perry, Randall S.; Haggart, James W.; Ward, Peter D.

    2004-02-01

    The Triassic-Jurassic (TJ) mass extinction (~200 mya) event is one of the most severe in geologic history. It is also one of the most poorly understood. Few geologic sections containing the TJ boundary interval have been identified globally, and most of those are poorly preserved; the paucity of suitable stratigraphic sections has prevented corroborative geochemical studies of this interval. Recently, fullerene molecules (C60 to C200) have been shown to be present in the mass extinction boundary intervals of the Permian-Triassic (PT) event (~251.4 mya), as well as the well-known "dinosaur" extinction event of the Cretaceous-Tertiary (KT) (~65 mya). The presence of fullerenes in both these extinction intervals has been used to invoke an extraterrestrial impact cause for the extinctions. Preliminary results of laser desorption mass spectrometry (LDMS) of selected samples from the Kennecott Point TJ boundary section, Queen Charlotte Islands, British Columbia, suggest that fullerenes (C60 to ~C200) are present in the section, stratigraphically above the extinction interval (as defined by paleontological and isotopic data), but not actually within the interval itself. The presence of fullerenes may not be diagnostic of an impact event.

  1. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.

    Science.gov (United States)

    Mardis, Kristy L; Webb, Jeremy N; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  2. Pressure induced manifold enhancement of Li-kinetics in FCC fullerene.

    Science.gov (United States)

    Das, Deya; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek K

    2014-10-21

    The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.

  3. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  4. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  5. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)

    1999-12-14

    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  6. Variation of Excited-State Dynamics in Trifluoromethyl Functionalized C60 Fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry

    2016-09-07

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  7. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  8. Structure and dynamics in self-organized C60 fullerenes.

    Science.gov (United States)

    Patnaik, Archita

    2007-01-01

    This manuscript on 'structure and dynamics in self-organized C60 fullerenes' has three sections dealing with: (A) pristine C60 aggregate structure and geometry in solvents of varying dielectric constant. Here, using positronium (Ps) as a fundamental probe which maps changes in the local electron density of the microenvironment, the onset concentration for stable C60 aggregate formation and its phase behavior is deduced from the specific interactions of the Ps atom with the surrounding. (B) A novel methanofullerene dyad, based on a hydrophobic (acceptor C60 moiety)-hydrophilic (bridge with benzene and ester functionalities)-hydrophobic (donor didodecyloxybenzene) network is chosen for investigation of characteristic self-assembly it undergoes leading to supramolecular aggregates. The pi-electronic amphiphile, necessitating a critical dielectric constant epsilon > or = 30 in binary THF-water mixtures, dictated the formation of bilayer vesicles as precursors for spherical fractal aggregates upon complete dyad extraction into a more polar water phase. (C) While the molecular orientation is dependent on the packing density, the ordering of the molecular arrangement, indispensable for self-assembly depends on the balance between the structures demanded by inter-molecular and molecule-substrate interactions. The molecular orientation in a monolayer affects the orientation in a multilayer, formed on the monolayer, suggesting the possibility of the latter to act as a template for controlling the structure of the three dimensionally grown self-assembled molecular aggregation. A systematic study on the electronic structure and orientation associated with C60 functionalized aminothiol self-assembled monolayers on Au(111) surface is presented using surface sensitive Ultra-Violet Photoelectron Spectroscopy (UPS) and C-K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The results revealed drastic modifications to d-band structure of Au(111) and the

  9. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    Science.gov (United States)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-01-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs). PMID:27698410

  10. Synthesis of fullerene nanowhiskers using the liquid-liquid interfacial precipitation method and their mechanical, electrical and superconducting properties

    Science.gov (United States)

    Miyazawa, Kun'ichi

    2015-02-01

    Fullerene nanowhiskers (FNWs) are thin crystalline fibers composed of fullerene molecules, including C60, C70, endohedral, or functionalized fullerenes. FNWs display n-type semiconducting behavior and are used in a diverse range of applications, including field-effect transistors, solar cells, chemical sensors, and photocatalysts. Alkali metal-doped C60 (fullerene) nanowhiskers (C60NWs) exhibit superconducting behavior. Potassium-doped C60NWs have realized the highest superconducting volume fraction of the alkali metal-doped C60 crystals and display a high critical current density (Jc) under a high magnetic field of 50 kOe. The growth control of FNWs is important for their success in practical applications. This paper reviews recent FNWs research focusing on their mechanical, electrical and superconducting properties and growth mechanisms in the liquid-liquid interfacial precipitation method.

  11. Photoinduced FT-IR spectroscopy of conjugated polymer/fullerene composites embedded into conventional host polymer matrices

    NARCIS (Netherlands)

    Johansson, H.; Brabec, C.J.; Neugebauer, H.; Kvarnstrom, C.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    In this work, we report on the investigation of photoexcited states in conjugated polymer (donor) - fullerene (acceptor) interpenetrating networks (polythiophene derivatives - PC61BM) embedded into conventional polymer hosts like polystyrene, polyvinylcarbazole, polycarbonate or polyvinylbenzenechlo

  12. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    Science.gov (United States)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  13. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  14. Electrodynamical Forbiddance of the Strong Quadrupole Light-Molecule Interaction and Its Experimental Manifestation in Fullerene C60

    CERN Document Server

    Chelibanov, V P

    2016-01-01

    It is demonstrated that the forbidden lines, which must be present in the SERS, TERS and SEIRA spectra of molecules with sufficiently high symmetry, associated with a strong quadrupole light-molecule interaction, are absent in the fullerene C60. This result is an experimental manifestation of an electrodynamical forbiddance of the strong quadrupole light-molecule interaction, which must be not only in molecules with cubic symmetry groups, but in the fullerene C60 also.

  15. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    Science.gov (United States)

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  16. Fulleretic Well-Defined Scaffolds: Donor–Fullerene Alignment Through Metal Coordination and Its Effect on Photophysics

    OpenAIRE

    Williams, Derek E.; Dolgopolova, Ekaterina A.; Godfrey, Danielle C.; Ermolaeva, Evgeniya D.; Pellechia, Perry J.; Greytak, Andrew B.; Smith, Mark D.; Avdoshenko, Stanislav M.; Popov, Alexey A; Shustova, Natalia B.

    2016-01-01

    Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross-polarization magic-angle spinning NMR spectroscopy, X-ray diffraction, and time-resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy-transfer (ET) studies of the fulleretic donor–acceptor...

  17. Polymer-fullerene bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, J.K.J.

    2004-03-08

    In 2000 polymer:fullerene bulk-heterojunction solar cells reached power conversion efficiencies of < 1%. Improving the performance, stability, and lifetime of bulk-heterojunction solar cells requires more insight in the preparation, and operation of these devices. This thesis discusses the preparation and the morphological and electrical characterization of devices made from MDMO-PPV (poly 2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene), PCBM (1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-methanofullerene), and their mixtures. The understanding of the influence of morphology on the device performance should aid in obtaining insight in the fundamental issues of the bulk-heterojunction concept. Furthermore, new materials are introduced in an attempt to improve performance. In chapter 2, it is shown that bulk-heterojunction solar cells made from MDMO-PPV and PCBM reach power conversion efficiencies of 2.5% under simulated solar light. It is shown for the first time that replacing the orange MDMO-PPV with a low-bandgap conjugated material results in a more red-shifted spectral response of these solar cells. Additionally, in an attempt to control the nanoscale morphology of the photoactive layer, the first example of a covalently linked donor polymer with pendant fullerenes incorporated in working solar cells is reported. The results indicated that more fundamental questions concerning the operation of the device and the influence of morphology must be addressed, before a rational improvement in device performance can be expected. Chapter 3 discusses the influence of morphology on transport in disordered organic semiconductors. Morphological investigations on films of PCBM and several PPVs are combined with the analysis of charge-carrier-mobility data. The morphological disorder observed in the PCBM films is in agreement with its charge-transport properties. Imaging individual conjugated polymer chains and aggregates on cast films with scanning force

  18. Device Physics and Recombination in Polymer:Fullerene Bulk-Heterojunction Solar Cells

    Science.gov (United States)

    Hawks, Steven Aaron

    My thesis focuses on improving and understanding a relatively new type of solar cell materials system: polymer:fullerene bulk-heterojunction (BHJ) blends. These mixtures have drawn significant interest because they are made from low-cost organic molecules that can be cast from solution, which makes them a potential cheap alternative to traditional solar cell materials like silicon. The drawback, though, is that they are not as efficient at converting sunlight into electricity. My thesis focuses on this issue, and examines the loss processes holding back the efficiency in polymer:fullerene blends as well as investigates new processing methods for overcoming the efficiency limitations. The first chapter introduces the subject of solar cells, and polymer:fullerene solar cells in particular. The second chapter presents a case study on recombination in the high-performance PBDTTT polymer family, wherein we discovered that nongeminate recombination of an anti-Langevin origin was the dominant loss process that ultimately limited the cell efficiency. Electroluminescence measurements revealed that an electron back-transfer process was prevalent in active layers with insufficient PC71BM content. This work ultimately made strong headway in understanding what factors limited the relatively unexplored but highly efficient PBDTTT family of polymers. In the next chapter, I further explore the recombination mechanisms in polymer:fullerene BHJs by examining the dark diode ideality factor as a function of temperature in several polymer:fullerene materials systems. By re-deriving the diode law for a polymer:fullerene device with Shockley-Read-Hall recombination, we were able to confirm that trap-assisted recombination through an exponential band-tail of localized states is the dominant recombination process in many polymer:fullerene active layers. In the third chapter, I present a generalized theoretical framework for understanding current transients in planar semiconductor devices

  19. Rare Earth Oxide-Treated Fullerene and Titania Composites with Enhanced Photocatalytic Activity for the Degradation of Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    MENG Zada; ZHU Lei; CHOI Jong-geun; PARK Chong-yeon; OH Won-chun

    2011-01-01

    Rare earth oxide-treated fullerene and titania composites (Y-fullerene/TiO2) were prepared by the sol-gel method.The products had interesting surface compositions.X-ray diffraction patterns of the composites showed that the Y-fullerene/TiO2 composites contained a single and clear anatase phase.The surface properties were observed by scanning electron microscopy,which gave a characterization of the texture on the Y-fullerene/TiO2 composites and showed a homogenous distribution of titanium particles.The energy-dispersive X-ray spectra showed the presence of C and Ti with strong Y peaks.The composite obtained was also characterized with transmission electron microscopy and UV-Vis spectroscopy.The photocatalytic results showed that the y-fullerene/TiO2 composites had excellent activity for the degradation of methylene blue under visible light irradiation.This was attributed to both the effects on the photocatalysis of the supported TiO2 by charge transfer by the fullerene,and the introduction of yttrium to enhance photo-generated electron transfer.

  20. Synthesis of [60]fullerene-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes.

    Science.gov (United States)

    Hong, Sung Kyu; Lee, Jeong Ho; Ko, Weon Bae

    2011-07-01

    Zinc oxide (ZnO) nanoparticles were synthesized by a reaction between an aqueous-alcoholic solution of zinc nitrate and sodium hydroxide under ultrasonic irradiation at room temperature. The morphology, optical properties of the ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The [60]fullerene and zinc oxide nanocomposite were synthesized in an electric furnace at 700 degrees C for two hours. The [60]fullerene-ZnO nanocomposite was characterized by XRD, SEM and TEM. In addition, the [60]fullerene-ZnO nanocomposite was investigated as a catalyst in the photocatalytic degradation of organic dyes using UV-vis spectroscopy. The photocatalytic activity of the [60]fullerene-ZnO nanocomposite was compared with that of ZnO nanoparticles, heated ZnO nanoparticles after synthesis, pure [60]fullerene, and heated pure [60]fullerene in organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 254 nm.

  1. Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: Structural stability, physicochemistry and drug delivery perspectives

    Science.gov (United States)

    Chigo-Anota, E.; Escobedo-Morales, A.; Hernández-Cocoletzi, H.; López y López, J. G.

    2015-11-01

    The structural stability and physicochemical properties of the N-rich BN fullerene, B24N36, have been analyzed by means of the density functional theory at the level of the generalized gradient approximation. For this purpose, the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional and the 6-31G(d) basis set were used. The results indicate that the B24N36 fullerene is stable and behaves as a semiconductor compound. It has been found that while the polarity of the B24N36 fullerene is comparable with that of C60 fullerene, its chemical reactivity is notoriously higher. The spatial charge distribution of the BN fullerene allows nitric oxide adsorption, without compromising structural stability. Although the interaction between the NO molecule and BN fullerene is through van der Waals forces (dipole-dipole attraction), it has strong influence on the dipole moment, vibrational modes, HOMO-LUMO gap and work function energy; suggesting that this nanostructure could be used as a molecular sensor or drug carrier with enhanced bioavailability.

  2. Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels-Alder reaction

    Science.gov (United States)

    Siadati, Seyyed Amir; Nami, Navabeh

    2016-10-01

    C20 fullerene, this novel species with all its pentagonal faces has displayed some unique operations in making fast pericyclic reactions. As an example, the high dienophile character of the C20 fullerene and the ability of this species in making an ultra-fast Diels-Alder reaction with 1,3-butadiene, has been recently reported. Moreover, new experimental reports claim that the C60 fullerene, one of the fullerene family, could make a Diels-Alder reaction with the central ring of anthracene and make the ring non-aromatic. These reports may encourage researchers to do more studies on the properties of this small carbon cage. To address this question, the present research has discussed all the reaction channels of the Diels-Alder cycloaddition of benzene molecule as a 1,3-diene with the C20 fullerene in order to answer this question: "Is C20fullerene able to make a Diels-Alder reaction with this molecule?".

  3. Dumbbell-type fullerene-steroid hybrids: a join experimental and theoretical investigation for conformational, configurational, and circular dichroism assignments.

    Science.gov (United States)

    Ruíz, Alberto; Morera-Boado, Cercis; Almagro, Luis; Coro, Julieta; Maroto, Enrique E; Herranz, María Ángeles; Filippone, Salvatore; Molero, Dolores; Martínez-Álvarez, Roberto; Garcia de la Vega, José M; Suárez, Margarita; Martín, Nazario

    2014-04-18

    New [60]fullerene-steroid conjugates (4-6) have been synthesized by 1,3-dipolar cycloaddition and Bingel-Hirsch cyclopropanation reactions from suitably functionalized epiandrosterone and [60]fullerene. Since a new stereocenter is created in the formation of the Prato monoaduct, two different diastereomers were isolated by HPLC (4, 5) whose absolute configurations were assigned according to the highly reliable "sector rule" on fullerenes. A further reaction of the malonate-containing diastereomer 5 with a second C60 molecule has afforded dumbbell fullerene 6 in which the two fullerene units are covalently connected through an epiandrosterone moiety. The new compounds have been spectroscopically characterized and their redox potentials, determined by cyclic voltametry, reveal three reversible reduction waves for hybrids 4 and 5, whereas these signals are split in dumbbell 6. Theoretical calculations at semiempirical (AM1) and single point B3LYP/6-31G(d) levels have predicted the most stable conformations for the hybrid compounds (4-6), showing the importance of the chlorine atom on the D ring of the steroid. Furthermore, TDDFT calculations have allowed assignments of the experimentally determined circular dichroism (CD) of the [60]fullerene-steroid hybrids based on the sign and position of the Cotton effects, despite the exceptionally large systems under study.

  4. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  5. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  6. Optical, structural and electrical properties of polyaniline systems doped with C{sub 60} and small gap C{sub 60} fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Politakos, Nikolaos; Zalakain, Iñaki; Fernandez d' Arlas, Borja; Eceiza, Arantxa; Kortaberria, Galder, E-mail: galder.cortaberria@ehu.es

    2013-10-01

    In this work two systems consisting on polyaniline (Pani) doped with simple and small gap C{sub 60} fullerenes have been prepared and characterized. Composites with different doping amounts of 1,2,4 and 8 wt% have been analyzed in order to evaluate their structure together with their optical and electrical properties and the effect of fullerene type and amount on them. The shift and change of shape in Fourier transform infrared spectroscopy (FTIR) bands and solid {sup 13}C NMR spectroscopy signals showed the presence of interactions between matrix and fullerenes by electron density transfer among them. Optical properties have also been analyzed in terms of ultraviolet (UV) spectroscopy. The blue shift of several bands confirmed the charge transfer. Obtained structures have been analyzed by optical microscopy (OM) showing the different way in which both types of fullerenes have been incorporated into the polymer chains. Finally, conductivity has been measured by the four probe technique, relating obtained values with the structure of the composite and the different degree of crystallinity of simple and small gap fullerenes. - Highlights: • Use of small gap fullerenes as doping agent with polyaniline (Pani). • Electrical properties comparison between simple C{sub 60} and small gap fullerenes systems with polyaniline. • Different conductive behavior for small gap fullerenes and simple C{sub 60} depending on their size. • Study of optical and structural properties of different Pani/fullerenes composite systems. • Enhanced electrical properties for both systems in respect to the neat polyaniline (Pani)

  7. Electrostatic properties of fullerenes under an external electric field: First-principles calculations of energetics for all IPR isomers from C60 to C78

    Science.gov (United States)

    Sorimachi, Jun-ya; Okada, Susumu

    2016-08-01

    Based on first-principles total energy calculations, we analyze the energetics of the fullerene isomers from C60 to C78, all of which satisfy the isolated pentagon rule, under a parallel electric field. Our calculations show that the total energy of the fullerene is proportional to the square of the external electric field. On the other hand, the coefficient of the quadratic energy profile is sensitive to the fullerene species and their orientation. Furthermore, fullerenes possessing lower symmetry exhibit asymmetric quadratic energy profiles with respect to the field, indicating that they possess intrinsic polarization along particular molecular orientations.

  8. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  9. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.

    2015-11-09

    A profound understanding of charge transfer (CT) at semiconductor quantum dots (QDs) and nanoclusters (NCs) interfaces is extremely important to optimize the energy conversion efficiency in QDs and NCs-based solar cell devices. Here, we report on the ground- and excited-state interactions at the interface of two different bimolecular non-covalent donor-acceptor (D-A) systems using steady-state and femtosecond transient absorption (fs-TA) spectroscopy with broadband capabilities. We systematically investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum dots (QDs). For comparison purposes, we also monitor the interaction of each donor molecule with the neutral fullerene derivative C60-(malonic acid)n, which has minimal electrostatic interactions. Our steady-state and time-resolved data demonstrate that both QDs and NCs have strong interfacial electrostatic interactions and dramatic fluorescence quenching when the CF derivative is present. In other words, our results reveal that only CF can be in close molecular proximity with the QDs and NCs, allowing ultrafast photoinduced CT to occur. It turned out that the intermolecular distances, electronic coupling and subsequently CT from the excited QDs or NCs to fullerene derivatives can be controlled by the interfacial electrostatic interactions. Our findings highlight some of the key variable components for optimizing CT at QDs and NCs interfaces, which can also be applied to other D-A systems that rely on interfacial CT. © The Royal Society of Chemistry 2016.

  10. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  11. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    Science.gov (United States)

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1).

  12. Ultrafast dynamics in blends of π-conjugated polymers/fullerenes

    Science.gov (United States)

    Singh, Sanjeev; Tong, Minghong; Sheng, Chuanxiang; Vardeny, Zeev

    2008-03-01

    We have studied the ultrafast dynamics of photogenerated charges and excitons in a variety of π-conjugated polymer/fullerene blends using the transient pump-probe photomodulation (PM) spectroscopy with ˜ 100 fs resolution. These composites serve as active layers in organic photovoltaic devices with high power conversion quantum yield, due to the existence of a photoinduced charge transfer (PCT) reaction between the polymer and the fullerene molecules. Our transient PM spectrum spans a broad energy range from 0.1-2.4 eV, and this allows us to monitor the transient behavior of the various photoinduced absorption (PA) bands of polarons and excitons in the PM spectrum; as well as the transient exciton stimulated emission, and photobleaching (PB) of the ground state. The PB dynamics reflect the ground state recovery; hence, it can be used to determine the long-lived polaron photogeneration quantum efficiency in these systems.

  13. Fullerene-based one-dimensional crystalline nanopolymer formed through topochemical transformation of the parent nanowire

    DEFF Research Database (Denmark)

    Geng, Junfeng; Solov'yov, Ilia; Reid, David G.;

    2010-01-01

    Large-scale practical applications of fullerene (C_60) in nanodevices could be significantly facilitated if the commercially available micrometer-scale raw C_60 powder were further processed into a one-dimensional nanowire-related polymer displaying covalent bonding as molecular interlinks...... and resembling traditional important conjugated polymers. However, there has been little study thus far in this area despite the abundant literature on fullerene. Here we report the preparation and characterization of such a C_60-based polymer nanowire, (-C_60.TMB-)_n, where TMB=1,2,4-trimethylbenzene, which...... displays a well-defined crystalline nanostructure, exceptionally large length-to-width ratio and excellent thermal stability. The material is prepared by first growing the corresponding nanowire through a solution phase of C_60 followed by a topochemical polymerization reaction in the solid state. Gas...

  14. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

    Science.gov (United States)

    Kang, Tae Eui; Cho, Han-Hee; Cho, Chul-Hee; Kim, Ki-Hyun; Kang, Hyunbum; Lee, Myounghee; Lee, Sunae; Kim, Bongsoo; Im, Chan; Kim, Bumjoon J

    2013-02-01

    Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in

  15. Organic field effect transistor composed by fullerene C60 and heterojunctions

    Science.gov (United States)

    Vasconcelos, Railson C.; Aleixo, Vicente F. P.; Del Nero, Jordan

    2017-02-01

    We present a study of the complex electronic behavior of a fullerene (C60) molecule attached to six leads (heterojunctions), which works as a three-dimension rectifier. In addition, we confirmed that the fullerene works not only as an electron donor, but also as barrier and transport channel to electrons through the molecule. Moreover, when the phenylpropanodinilla (PPP) lead is orthogonally subjected to bias voltage, the charge distribution and the current displays regions of saturation and resonance similar to semiconductor devices. In order to understand the electronic transport in the molecule, we applied non-equilibrium green function (NEGF) method and performed Fowler-Nordheim (FN) and Millikan-Lauritsen (ML) analyses. The ML curves proved to be sufficient to describe the FN characteristics. In this work, we report the theoretical design for electronic transport of a 3D device (6-terminal).

  16. Synthesis of fullerene-itaconic acid copolymer nanoball and its lubrication properties study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel Fullerene-ltaconic acid copolymer is synthesized via radical polymerization. It issoluble in polar solvents such as water, methanol, acetone and tetrahydrofuran etc.. The molecularstructure is identified and characterized by FTIR, UV-Vis and GPC. TEM analyses shows that itpresents an ideal spherical shape in water with an average diameter of about 48nm. Four-balltests show that the addition of a certain concentration of the Fullerene copolymer to the base stockcan effectively raise the load-carrying capacity (P_B Value) and the antiwear ability. JSM-35C modelscanning electron microscope (SEM) is used to examine the morphologies of the worn surfaces,which show that the additive results in a smaller wear scar diameter and a more shallow weargrooving.

  17. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  18. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  19. Possible formation of one-dimensional chains of C20 fullerenes observed by scanning tunneling microscopy

    Science.gov (United States)

    Kurokawa, Shu; Yamamoto, Daisuke; Hirashige, Kenji; Sakai, Akira

    2016-04-01

    We found one-dimensional chains of carbon particles on Ag(111) and Au(111) surfaces after the deposition of carbon using an arc-plasma gun (APG). The observed periodicity of the chains on Ag(111) was 0.58-0.6 nm. Ex situ Fourier transform infrared (FT-IR) spectroscopy indicated two peaks at 1343 and 1406 cm-1. The simulation of the infrared spectrum for a tetramer of C20 fullerenes showed good agreement with the experimental result. From these findings, we propose the formation of chains of C20 fullerenes as the most probable explanation of the results of both scanning tunneling microscopy (STM) and FT-IR spectroscopy.

  20. Suitability of polyelectrolyte shells modified with fullerene derivate for immunoisolation of cells. Experimental study.

    Science.gov (United States)

    Borkowska, M; Godlewska, E; Antosiak-Iwańska, M; Kinasiewicz, J; Strawski, M; Szklarczyk, M; Granicka, L H

    2012-12-01

    The polymeric permiselective membranes application for immunoisolation of cells separating the transplanted cells from the host immunological system may eliminate immunosuppressive therapy during transplantation. The suitability of polyelectrolyte modified nanocoatings for immunoisolation of cells was assessed. The polymeric shells modified with incorporated fullerene derivate were applied for encapsulation of human T-lymphocyte cell line Jurkat or rat pancreatic islets of Langerhans using layer-by-layer technique. Hydroxylated fullerene was incorporated to the polyelectrolyte shell for hydrophility increase as well as for layer stability improvement. Evaluation with AFM, FTIR, fluorescence microscopy confirmed the nanocoating presence on the encapsulated cells. It was observed that polylysine-polyethyleneimine membrane with incorporated fullerenol allowed for encapsulated cells functioning in vitro. Membrane conformation applied for encapsulation of pancreatic rat islets allowed for glucose level decline during xenotransplantation into mice. The elaborated nanocoating may be recommended as the possible alternative to the space consuming microencapsulation for biomedical purposes.

  1. Geometric and energetic considerations in the cylindrification of graphite planes to form fullerene tubules

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, T.M.

    1992-12-01

    Electronic and mechanical properties of axially extended, hollow, graphitic cylinders grown in static electric field from carbonaceaous vapor may significantly extend the technological importance of fullerenes. Geometric considerations of curvature introduced into the graphitic plane indicate that a variety of different tubular structures are possible which, depending upon length, diameter, helicity, and concentricity, show only modest deviations from idealized sp{sup 2} bonding requirements. Using semiempirical force field analysis, an estimate of the energetics of curvature is obtained, and the resulting physical properties are compared for the various conceivable tubule structures. It is argued that the large number of chemically reasonable structures may afford an opportunity to customize fullerene tubules by proper adjustment of growth conditions.

  2. Unraveling the electrical conduction of C-40 quasi-fullerene molecular junction

    Science.gov (United States)

    Kaur, Rupan Preet; Sawhney, Ravinder Singh; Engles, Derick

    2016-07-01

    In this paper, we present the state of art theoretical calculations of charge transport through quasi-fullerene molecule C40 coupled rigidly between two 3D gold electrodes by applying different electro-chemical potentials. The methodology we adopted has been based on density functional theory approach combined with Keldysh’s non-equilibrium Green’s function (NEGF) framework suggested for mesoscopic systems. The results exhibited by this molecular junction confirmed it to be highly metallic and showed prominent conduction of the order of twice of the quantum conductance, i.e., 2*G0 at zero bias. Our results are consistent with theoretical predictions in ab initiocalculations with some variants of quasi-fullerenes.

  3. Laser ablation synthesis of zinc oxide clusters: a new family of fullerenes?

    CERN Document Server

    Bulgakov, A V; Bulgakov, Alexander V.; Ozerov, Igor; Proxy, Wladimir Marine; ccsd-00000864, ccsd

    2003-01-01

    Positively charged zinc oxide clusters ZnnOm (up to n = 16, m <= n) of various stoichiometry were synthesized in the gas phase by excimer ArF laser ablation of a ZnO target and investigated using time-of-flight mass spectrometry. Depending on ablation conditions, either metal rich or stoichiometric clusters dominate in the mass spectrum. When the irradiated target surface is fairly fresh, the most abundant clusters are metal rich with Zn(n+1)On and Zn(n+3)On being the major series. The stoichiometric clusters are observed with an etched ablated surface. The magic numbers at n = 9, 11 and 15 in mass spectra of (ZnO)n clusters indicate that the clusters have hollow spheroid structures related to fullerenes. A local abundance minimum at n = 13 provides an additional evidence for the presence in the ablation plume of fullerene-like (ZnO)n clusters.

  4. Motion of Fullerenes around Topological Defects on Metals: Implications for the Progress of Molecular Scale Devices.

    Science.gov (United States)

    Nirmalraj, Peter; Daly, Ronan; Martin, Nazario; Thompson, Damien

    2017-03-08

    Research on motion of molecules in the presence of thermal noise is central for progress in two-terminal molecular scale electronic devices. However, it is still unclear what influence imperfections in bottom metal electrode surface can have on molecular motion. Here, we report a two-layer crowding study, detailing the early stages of surface motion of fullerene molecules on Au(111) with nanoscale pores in a n-tetradecane chemical environment. The motion of the fullerenes is directed by crowding of the underlying n-tetradecane molecules around the pore fringes at the liquid-solid interface. We observe in real-space the growth of molecular populations around different pore geometries. Supported by atomic-scale modeling, our findings extend the established picture of molecular crowding by revealing that trapped solvent molecules serve as prime nucleation sites at nanopore fringes.

  5. Microstructural analysis of carbon films obtained from C{sub 60} fullerene ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Huck, H.; Halac, E.B.; Reinoso, M.; Dall' Asen, A.G.; Somoza, A.; Deng, W.; Brusa, R.S.; Karwasz, G.P.; Zecca, A

    2003-04-30

    Carbon films have been produced by accelerating C{sub 60}{sup +} ions on silicon substrates with energies between 100 and 800 eV. Furthermore some samples have been vacuum-annealed at 600 deg. C. The samples have been characterized by Raman and positron annihilation spectroscopies (RS-PAS). The measurements for the as-deposited material show that there is a coexistence of polymerized fullerenes and amorphous-carbon islands and that the structure depends on the energy of the incident ions. At low energies, fullerenes are deposited preserving the molecular identity and some intermolecular covalent bonds begin to insinuate; at higher energies, the amount of these covalent bonds increases and the amorphous islands predominate. After the annealing process, the amorphous phase organizes in graphitic clusters and the unbroken C{sub 60} cages are transformed back to pristine and slightly polymerized C{sub 60}.

  6. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells.

    Science.gov (United States)

    Hedley, Gordon J; Ward, Alexander J; Alekseev, Alexander; Howells, Calvyn T; Martins, Emiliano R; Serrano, Luis A; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D W

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10-50 nm wide and 200-400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells.

  7. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Science.gov (United States)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  8. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  9. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Uchida, Takashi [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Yoshikazu [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan)

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60} ion beam in tandem-type ECRIS for the first time.

  10. Intramolecular Charge Transfer of Carotene-porphyrin-fullerene Triad: Sequential or Superexchange Cechanism

    Institute of Scientific and Technical Information of China (English)

    SUN,Yu; CHEN,Yue-Hui; LI,Yuan-Zuo; LI,Yong-Qing; MA,Feng-Cai

    2008-01-01

    As an excellent artificial photosynthetic reaction center,the carotene (C)-porphyrin (P)-fullerene (F) triad was extensively investigated experimentally.To reveal the mechanism of the intramolecular charge transfer (ICT) on the mimic of photosynthetic solar energy conversion (such as singlet energy transfer between pigments,and photoinduced electron transfer from excited singlet states to give long-lived charge-separated states),the ICT mechanisms of C-P-F triad on the exciton were theoretically studied with quantum chemical methods as well as the 2D and 3D real space analysis approaches.The results of quantum chemical methods reveal that the excited states are the ICT states,since the densities of HOMO are localized in the carotene or porphyrin unit,and the densities of LUMO are localized in the fullerene unit.Furthermore,the excited states should be the intramolecular superexchange charge transfer (ISCT) states for the orbital transition from the HOMO whose densities are localized in the carotene to the LUMO whose densities are localized in the fullerene unit.The 3D charge difference densities can clearly show that some excited states are ISCT excited states,since the electron and hole are resident in the fullerene and carotene units,respectively.From the results of the electron-hole coherence of the 2D transition density matrix,not only 3D results are supported,but also the delocalization size on the exciton can be observed.These phenomena were further interpreted with non-linear optical effect.The large changes of the linear and non-linear polarizabilities on the exciton result in the charge separate states,and if their changes are large enough,the ICT mechanism can become the ISCT on the exciton.

  11. Explosion Production of Fullerenes from Carbonaceous Bullet in Vacuum Using Rail Gun

    Science.gov (United States)

    Mieno, Tetsu; Yamori, Akira

    2006-04-01

    A carbonaceous bullet is accelerated using a rail gun in vacuum and collides with a metal or carbon target at a speed of approximately 6 km/s, at which the bullet explodes and the high-temperature reaction of carbon particles takes place. As a result, C60 and higher fullerenes are produced. Using a carbonaceous bullet containing metal-oxide powder, endohedral metallofullerenes are also produced by this method.

  12. Generalized Sturmians in the time-dependent frame: effect of a fullerene confining potential

    Science.gov (United States)

    Frapiccini, Ana Laura; Gasaneo, Gustavo; Mitnik, Dario M.

    2017-02-01

    In this work we present a novel implementation of the Generalized Sturmian Functions in the time-dependent frame to numerically solve the time-dependent Schrödinger equation. We study the effect of the confinement of H atom in a fullerene cage for the 1s → 2p resonant transition of the atom interacting with a finite laser pulse, calculating the population of bound states and spectral density.

  13. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav...... algorithms. We use this method to determine the slip length and hydrodynamic radius for water flow past a buckyball....

  14. Inhibition of DNA restrictive endonucleases by aqueous nanoparticle suspension of methanophosphonate fullerene derivatives and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aqueous nanoparticle suspension of fullerene and its derivatives are currently attracting much attention. To determine the effects of aqueous nanoparticle suspension of a mono-methanophosphonate fullerene and bis-methanophosphonate fullerene (denoted as n-MMPF and n-BMPF, respectively) on the activities of DNA restrictive endonucleases, plasmid pEGFP-N1 was cleaved at a single but differently restrictive site by EcoR I, BamH I, and isozymes Cfr9 I and Xma I, respectively. Both n-MMPF and n-BMPF inhibited the activity of EcoR I, while n-BMPF exhibited stronger inhibition than n-MMPF. Addition of n-BMPF into reaction mixtures inhibited the activities of all the four enzymes, and IC50 values for EcoR I, BamH I, Cfr9 I and Xma I were 4.3, >30, 11.7 and 8.3 μmol/L, respectively. When EcoR I was completely inhibited by n-BMPF, addition of excess amounts of pEGFP-N1 could not produce the product linear plasmid; however, increase of EcoR I amounts antagonized EcoR I inhibition of n-BMPF. Two scavengers of reactive oxygen species (ROS), mannitol and sodium azide at the concentrations of 2-10 mmol/L, did not reverse inhibition of n-BMPF, implying that this inhibition probably is not correlated to ROS. These results suggested that aqueous nano-fullerenes might act as inhibitors of DNA restrictive endonucleases.

  15. Carbon nano-onions (multi-layer fullerenes): chemistry and applications

    OpenAIRE

    Juergen Bartelmess; Silvia Giordani

    2014-01-01

    This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs). First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible appli...

  16. Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures.

    Science.gov (United States)

    Vergara, Jorge; Barberá, Joaquín; Serrano, José Luis; Ros, M Blanca; Sebastián, Nerea; de la Fuente, Rosario; López, David O; Fernández, Gustavo; Sánchez, Luis; Martín, Nazario

    2011-12-23

    What a core-ker! By the appropriate combination of promesogenic bent-core structures and the C(60)  unit, lamellar polar liquid-crystal phases were induced. The supramolecular organization of the functional fullerene-based assemblies, the temperature range of the soft phase, the stabilization of the mesophase-like order at room temperature, and the molecular switching under an electric field can be tuned, depending on the molecular structure.

  17. Interaction between fullerene-wheeled nanocar and gold substrate: A DFT study

    Science.gov (United States)

    Ahangari, M. Ghorbanzadeh; Ganji, M. Darvish; Jalali, A.

    2016-09-01

    Since the successful synthesis of nanocar and its surprising movement on the gold surface, several theoretical investigations have been devoted to explain the interaction properties as well as its movement mechanism on the substrate. All of them failed, however, to gain a clear theoretical insight into the respected challenges because of the weak computational methods implemented for this complex system including heavy metal atoms and giant size of the whole system. In this work, we have investigated the adsorption of fullerene-wheeled nanocar onto a Au (1 1 1) substrate using the comprehensive first-principles density functional theory (DFT) simulations. The binding energy between the nanocar and Au (1 1 1) surface was determined to be -9.43 eV (-217.45 kcal/mol). The net charge transfer from the nanocar to the gold substrate was calculated to be about 9.56 electrons. Furthermore, the equilibrium distances between the Au surface and the C60 molecule and nanocar chassis were estimated to be 2.20 Å and 2.30 Å, respectively. The BSSE correction was also considered in the binding energy estimation and the result show that the BSSE correction significantly affects the calculated binding energy for such systems. Finally, we have performed ab initio molecular dynamics simulation for a single C60 fullerene on the gold surface at room temperature. Our first-principles result shows that ambient condition affect remarkably on the adsorption property of fullerene on the gold surface. We also observed that the C60 fullerene wheel slips by approximately 3.90 Å within 5 ps of simulation time at 300 K.

  18. Inorganic Nanotubes and Fullerene-Like Nanoparticles:. from the Lab to the Market Place

    Science.gov (United States)

    Tenne, R.

    2013-05-01

    Layered compounds, like MoS2 were shown by the author to be unstable in the nano-regime. Using new chemical strategies, closed-cage hollow nanostructures in the form of inorganic fullerene-like nanoparticles and inorganic nanotubes were synthesized. These nanostructures exhibit numerous interesting physico-chemical properties and are employed as superior solid lubricants, with numerous other applications currently being developed.

  19. From astrophysics to mesoscopic physics: a sightseeing tour in the world of clusters and fullerenes

    Science.gov (United States)

    Rosen, Arne; Ostling, Daniel; Apell, P.; Tomanek, D.

    1996-12-01

    The discovery of the fullerenes in 1985 by Kroto, Heath, O'Brien, Curl and Smalley and the development of a method for production of macroscopic amounts in 1990 by Kraetschmer, Lamb, Fostiropoulos and Huffman opened a new area of carbon research with possible production of new materials with unique properties. The field has developed further later on with discoveries of nanotubes, metal filled nanotubes, carbon onions and more recently metal covered fullerenes. All these new discoveries show how cluster science opens approaches to the area of meososcopic physics. The general trend is here in the direction from small to large contrary to the general trend of modern meososcopic physics or micro-electronics where the movement is from large to small. It is especially fascinating how the whole area of fullerene research was initiated by problems in astrophysics. Originally Kraetschmer and Huffman had the intention to explain an observed strong extinction form interstellar dust and produced in experiments special carbon soot with a characteristics optical absorption known as 'the camel hump smoke'. This paper gives a short overview of some of our more recent theoretical work of the electronic properties of C60, metal covered C60 and nanotubes. In addition some results are also presented of optical properties of metal covered C60 as a function of metal coverage.

  20. Potential Suppressive Effects of Two C60 Fullerene Derivatives on Acquired Immunity

    Science.gov (United States)

    Hirai, Toshiro; Yoshioka, Yasuo; Udaka, Asako; Uemura, Eiichiro; Ohe, Tomoyuki; Aoshima, Hisae; Gao, Jian-Qing; Kokubo, Ken; Oshima, Takumi; Nagano, Kazuya; Higashisaka, Kazuma; Mashino, Tadahiko; Tsutsumi, Yasuo

    2016-10-01

    The therapeutic effects of fullerene derivatives on many models of inflammatory disease have been demonstrated. The anti-inflammatory mechanisms of these nanoparticles remain to be elucidated, though their beneficial roles in allergy and autoimmune diseases suggest their suppressive potential in acquired immunity. Here, we evaluated the effects of C60 pyrrolidine tris-acid (C60-P) and polyhydroxylated fullerene (C60(OH)36) on the acquired immune response in vitro and in vivo. In vitro, both C60 derivatives had dose-dependent suppressive effects on T cell receptor-mediated activation of T cells and antibody production by B cells under anti-CD40/IL-4 stimulation, similar to the actions of the antioxidant N-acetylcysteine. In addition, C60-P suppressed ovalbumin-specific antibody production and ovalbumin-specific T cell responses in vivo, although T cell-independent antibodies responses were not affected by C60-P. Together, our data suggest that fullerene derivatives can suppress acquired immune responses that require T cells.

  1. Polyhydroxy fullerenes (fullerols or fullerenols: beneficial effects on growth and lifespan in diverse biological models.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols, have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF. We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF.

  2. Time-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerene layers.

    Science.gov (United States)

    Clulow, Andrew J; Tao, Chen; Lee, Kwan H; Velusamy, Marappan; McEwan, Jake A; Shaw, Paul E; Yamada, Norifumi L; James, Michael; Burn, Paul L; Gentle, Ian R; Meredith, Paul

    2014-09-30

    We have used steady-state and time-resolved neutron reflectometry to study the diffusion of fullerene derivatives into the narrow optical gap polymer poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) to explore the sequential processing of the donor and acceptor for the preparation of efficient organic solar cells. It was found that when [6,6]-phenyl-C61-butyric-acid-methyl-ester (60-PCBM) was deposited onto a thin film of PCDTBT from dichloromethane (DCM), a three-layer structure was formed that was stable below the glass-transition temperature of the polymer. When good solvents for the polymer were used in conjunction with DCM, both 60-PCBM and [6,6]-phenyl-C71-butyric-acid-methyl-ester (70-PCBM) were seen to form films that had a thick fullerene layer containing little polymer and a PCDTBT-rich layer near the interface with the substrate. Devices composed of films prepared by sequential deposition of the polymer and fullerene had efficiencies of up to 5.3%, with those based on 60-PCBM close to optimized bulk heterojunction (BHJ) cells processed in the conventional manner. Sequential deposition of pure components to form the active layer is attractive for large-area device fabrication, and the results demonstrate that this processing method can give efficient solar cells.

  3. Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Alok Chaurasia

    2015-01-01

    Full Text Available We report a supramolecular process for the synthesis of well-defined fullerene (C60/polymer colloid nanocomposites in an aqueous solution via complex formation. A biocompatible triblock poly(4-vinylpyridine-b-polyethylene-b-poly(4-vinylpyridine, P4VP8-b-PEO105-b-P4VP8, was synthesized by atom transfer radical polymerization. The block copolymer formed complexes with C60 in toluene and resulted in fullerene assembly in cluster form. Nanocomposite dispersion in an aqueous solution could be obtained using an aged solution of the polymer/C60/toluene solution by a solvent evaporation technique. The UV-Vis and FTIR spectroscopy confirmed the complex formation of fullerene with the polymer which plays a significant role in controlling the PDI and size of polymer/C60 micelles in the toluene solution. The particle size and morphology of P4VP8-b-PEO105-b-P4VP8 and P4VP8-b-PEO105-b-P4VP8/C60 mixture were studied by dynamic light scattering (DLS and transmission electron microscopy (TEM. In a cytotoxicity test, both pure polymer and the resulting polymer/C60 composite in water showed more than 90% cell viability at 1 mg/mL concentration.

  4. Non-detection of C60 fullerene at two mass extinction horizons

    Science.gov (United States)

    Carrasquillo, Anthony J.; Cao, Changqun; Erwin, Douglas H.; Summons, Roger E.

    2016-03-01

    Fullerene (C60) have been reported in a number of geologic samples and, in some cases, attributed to carbonaceous materials delivered during bolide impact events. The extraction and detection of C60 poses significant analytical challenges, and some studies have been called into question due to the possibility of C60 forming in situ. Here, we extracted samples taken from the Permian-Triassic boundary section in Meishan, South China and the Cretaceous-Paleogene boundary exposed at Stevns Klint, Denmark, and analyzed the residues using a fast and reliable method for quantifying C60. Extraction of both whole rock and completely demineralized samples were completed under conditions that previously yielded C60 as well as using an optimized approach based on recent literature reports. These extracts were analyzed using mass spectrometry with the soft-ionization techniques, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), which have not been shown to form fullerenes in-situ. In no case were we able to detect C60, nor could we corroborate previous reports of its occurrence in these sediments, thereby challenging the utility of fullerene as a proxy for bolide impacts or mass extinction events.

  5. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.

    Science.gov (United States)

    Fujitani, Yuji; Kobayashi, Takahiro; Arashidani, Keiichi; Kunugita, Naoki; Suemura, Kouji

    2008-06-01

    Assessment of human exposure is important for the elucidation of potential health risks. However, there is little information available on particle number concentrations and number size distributions, including those of nanoparticles, in the working environments of factories producing engineered nanomaterials. The authors used a scanning mobility particle sizer and an optical particle counter to measure the particle number size distributions of particles ranging in diameter (D(p)) from 10 nm to >5000 nm in a fullerene factory and used scanning electron microscopy to examine the morphology of the particles. Comparisons of particle size distributions and morphology during non-work periods, during work periods, during an agitation process, and in the nearby outdoor air were conducted to identify the sources of the particles and to determine their physical properties. A modal diameter of 25 nm was found in the working area during the non-work period; this result was probably influenced by ingress of outdoor air. During the removal of fullerenes from a storage tank for bagging and/or weighing, the particle number concentration at D(p)1000 nm was greater during the non-work period. When a vacuum cleaner was in use, the particle number concentration at D(p)1000 nm was no greater. Scanning electron microscopy revealed that the coarse particles emitted during bagging and/or weighing were aggregates/agglomerates of fullerenes; although origin of particles with D(p)<50 nm is unclear.

  6. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2011-12-01

    Full Text Available The mass and effective density of black carbon (BC particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA in series with an aerosol particle mass analyser (APM or a Couette centrifugal particle mass analyser (CPMA. Consistent and reproducible results were found in this study for different production lots of Aquadag, indicating that the effective density of these particles is a stable quantity and largely unaffected by differences in aerosol generation procedures and suspension treatments. The effective density of fullerene soot particles from one production lot was also found to be stable and independent of suspension treatments. Some differences to previous literature data were observed for both Aquadag and fullerene soot at larger particle diameters. Knowledge of the exact relationship between mobility diameter and particle mass is of great importance, as DMAs are commonly used to size-select particles from BC reference materials for calibration of single particle soot photometers (SP2, which quantitatively detect the BC mass in single particles.

  7. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors

    Science.gov (United States)

    Saleh, Noha A.

    2015-02-01

    The inhibition of HIV-1 protease is considered as one of the most important targets for drug design and the deactivation of HIV-1. In the present work, the fullerene surface (C60) is modified by adding oxygen atoms as well as hydroxymethylcarbonyl (HMC) groups to form 6 investigated fullerene derivative compounds. These compounds have one, two, three, four or five O atoms + HMC groups at different positions on phenyl ring. The effect of the repeating of these groups on the ability of suggested compounds to inhibit the HIV protease is studied by calculating both Quantitative Structure Activity Relationship (QSAR) properties and docking simulation. Based on the QSAR descriptors, the solubility and the hydrophilicity of studied fullerene derivatives increased with increasing the number of oxygen atoms + HMC groups in the compound. While docking calculations indicate that, the compound with two oxygen atoms + HMC groups could interact and binds with HIV-1 protease active site. This is could be attributed to the active site residues of HIV-1 protease are hydrophobic except the two aspartic acids. So that, the increase in the hydrophilicity and polarity of the compound is preventing and/or decreasing the hydrophobic interaction between the compound and HIV-1 protease active site.

  8. Molecular Basis for the Recognition of Higher Fullerenes into Ureidopyrimidinone-Cyclotriveratrylene Self-Assembled Capsules.

    Science.gov (United States)

    Huerta, Elisa; Serapian, Stefano Artin; Santos, Eva; Cequier, Enrique; Bo, Carles; de Mendoza, Javier

    2016-09-12

    Fullerenes C60 , C70 , and C84 may be readily encaged within a hydrogen-bonded dimeric capsule, based on two concave cyclotriveratrylene (CTV) scaffolds, each containing three self-complementary 2-ureido-4-[1H]-pyrimidinone (UPy) subunits. NMR spectroscopy and circular dichroism studies, complemented by dispersion-corrected DFT calculations, are reported with the aim of characterizing such capsule-fullerene complexes both structurally and energetically. Six fullerenes are considered: in agreement with experiments, calculations find that encapsulation is most favorable for C84 (on a par with C90 ), and follows the trend C60

  9. Synthesis, structure, and fullerene-complexing property of azacalix[6]aromatics.

    Science.gov (United States)

    Fa, Shi-Xin; Wang, Li-Xia; Wang, De-Xian; Zhao, Liang; Wang, Mei-Xiang

    2014-04-18

    Synthesis, structure, and fullerene-binding property of azacalix[6]aromatics were systematically studied. By means of [3 + 3] and [2 + 2 + 2] fragment coupling protocols, a number of azacalix[6]aromatics containing different combinations of benzene, pyridine, and pyrimidine rings and various substituents on the bridging nitrogen atoms were synthesized conveniently in moderate to good yields. The resulting macrocycles adopt in the solid state symmetric and heavily distorted 1,3,5-alternate conformations depending on the aromatic building units, whereas, in solution, they exist as a mixture of conformers that undergo rapid interchanges relative to the NMR time scale. All macrocycles were able to form 1:1 complexes with C60 and C70 in toluene with the association constants up to 7.28 × 10(4) M(-1). In the crystalline state, azacalix[6]aromatics form complexes with C60 and C70 with 2:1, 1:1, and 1:2 stoichiometric ratios between host and guest. Azacalix[6]aromatics interact with fullerene by forming mainly the sandwich structure in which C60 or C70 is sandwiched by two macrocycles. X-ray molecular structures revealed that multiple π-π and CH-π interactions between concave azacalix[6]aromatics and convex fullerenes C60 and C70 contribute a joint driving force to the formation of host-guest complexes.

  10. Substituted corannulenes and sumanenes as fullerene receptors. A dispersion-corrected density functional theory study.

    Science.gov (United States)

    Josa, Daniela; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M; Santos, Lucas A; Ramalho, Teodorico C

    2014-10-09

    Stacking interactions between substituted buckybowls (corannulene and sumanene) with fullerenes (C60 and C70) were studied at the B97-D2/TZVP level of theory. Corannulene and sumanene monomers were substituted with five and six Br, Cl, CH3, C2H, or CN units, respectively. A comprehensive study was conducted, analyzing the interaction of corannulenes and sumanenes with several faces of both fullerenes. According to our results, in all cases substitution gave rise to larger interaction energies if compared with those of unsubstituted buckybowls. The increase of dispersion seems to be the main source of the enhanced binding, so an excellent correlation between the increase of interaction energy and the increase of dispersion contribution takes place. One of the noteworthy phenomena that appears is the so-called CH···π interaction, which is responsible for the strong interaction of sumanene complexes (if compared with that of corannulene complexes). This interaction also causes the substitution with CH3 groups (in which one of the H atoms points directly to the π cloud of fullerene) to be the most favorable case. This fact can be easily visualized by noncovalent interaction plots.

  11. Synthesis and Characterization of [60]Fullerene-Glycidyl Azide Polymer and Its Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Ting Huang

    2015-05-01

    Full Text Available A new functionalized [60]fullerene-glycidyl azide polymer (C60-GAP was synthesized for the first time using a modified Bingel reaction of [60]fullerene (C60 and bromomalonic acid glycidyl azide polymer ester (BM-GAP. The product was characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, and nuclear magnetic resonance spectroscopy (NMR analyses. Results confirmed the successful preparation of C60-GAP. Moreover, the thermal decomposition of C60-GAP was analyzed by differential scanning calorimetry (DSC, thermogravimetric analysis coupled with infrared spectroscopy (TGA-IR, and in situ FTIR. C60-GAP decomposition showed a three-step thermal process. The first step was due to the reaction of the azide group and fullerene at approximately 150 °C. The second step was ascribed to the remainder decomposition of the GAP main chain and N-heterocyclic at approximately 240 °C. The final step was attributed to the burning decomposition of amorphous carbon and carbon cage at around 600 °C.

  12. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2011-08-01

    Full Text Available The mass and effective density of black carbon (BC particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA in series with an aerosol particle mass analyser (APM or a Couette centrifugal particle mass analyser (CPMA. Consistent and reproducible results were found in this study for different production lots of Aquadag, indicating that the effective density of these particles is a stable quantity and largely unaffected by differences in aerosol generation procedures and suspension treatments. The effective density of fullerene soot particles from one production lot was also found to be stable and independent of suspension treatments. Some difference to previous literature data was observed for both Aquadag and fullerene soot at larger particle diameters. Knowledge of the exact relationship between mobility diameter and particle mass is of great importance, as DMAs are commonly used to size-select particles from BC reference materials for calibration of single particle soot photometers (SP2, which quantitatively detect the BC mass in single particles.

  13. Thermally induced anchoring of fullerene in copolymers with Si-bridging atom: Spectroscopic evidences

    Science.gov (United States)

    Marchiori, Cleber F. N.; Garcia-Basabe, Yunier; de A. Ribeiro, Fabio; Koehler, Marlus; Roman, Lucimara S.; Rocco, Maria Luiza M.

    2017-01-01

    We use X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), resonant Auger spectroscopy (RAS), Attenuation Total Reflection Infrared (ATR-IR) and Atomic Force Microscopy (AFM) to study the blend between the copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) and the fullerene derivative PC71BM submitted to different annealing temperatures. Those measurements indicate that there is an incidental anchoring of a fullerene derivative to the Si-bridging atoms of a copolymer induced by thermal annealing of the film. Insights about the physical properties of one possible PSiF-DBT/PC71BM anchored structure are obtained using Density Functional Theory calculations. Since the performance of organic photovoltaic based on polymer-fullerene blends depends on the chemical structure of the blend components, the anchoring effect might affect the photovoltaic properties of those devices.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  15. Optical study of pi-conjugated polymers and pi-conjugated polymers/fullerene blends

    Science.gov (United States)

    Drori, Tomer

    In this research, we studied the optical properties of a variety of pi-conjugated polymers and pi-conjugated polymers/fullerene blends, using various continuous wave optical spectroscopies. We found an illumination-induced metastable polaron-supporting phase in films of a soluble derivative of poly-p-phenylene vinylene (MEH-PPV). Pristine, MEH-PPV polymer films in the dark do not show long-lived photogenerated polarons. Prolonged UV illumination, however, is found to induce a reversible, metastable phase characterized by its ability to support abundant long-lived photogenerated polarons. We also discovered a photobleaching band in our photomodulation measurement around 0.9eV that scales with and thus is related to the observed polaron band. In the dark, the illumination-induced metastable phase reverts back to the phase of the original MEH-PPV within about 30 min at room temperature. We also applied our experimental techniques in polymer/fullerene blends for studying the photophysics of bulk heterostructures with below-gap excitation. In contrast to the traditional view, we found that below-gap excitation, which is incapable of generating intrachain excitons, nevertheless efficiently generates polarons on the polymer chains and fullerene molecules. Using frequency dependence photomodulation, we distinguished between the two mechanisms of photoinduced charge transfer using above-gap and below-gap excitations, and found a distinguishable long polaron lifetime when photogenerated with below-gap excitation. The polaron action spectrum extends deep inside the gap as a result of a charge-transfer complex state formed between the polymer chain and fullerene molecule. Using the electroabsorption technique, we were able to detect the optical transition of the charge transfer complex state that lies below the gap of the polymer and the fullerene. With appropriate design engineering the long-lived polarons might be harvested in solar cell devices. Another system studied was

  16. Adsorption of hydrogen on neutral and charged fullerene: experiment and theory.

    Science.gov (United States)

    Kaiser, A; Leidlmair, C; Bartl, P; Zöttl, S; Denifl, S; Mauracher, A; Probst, M; Scheier, P; Echt, O

    2013-02-21

    Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)(n)HC(m)(+) where m = 60 or 70. Another series of even-numbered ions, (H2)(n)C(m)(+), is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)(n)(+) is barely detectable. The ion series (H2)(n)HC(m)(+) and (H2)(n)C(m)(+) exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60(+); the corresponding value for C70(+) is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60(+) and (H2)2C60(+), and slightly above 70 meV for H2HC60(+) and (H2)2HC60(+). The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well.

  17. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

    KAUST Repository

    Miller, Nichole Cates

    2012-08-22

    While recent reports have established signifi cant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and smallmolecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is suffi cient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafl uoro-tetracyanoquinodimethane (F4-TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:nonfullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer-fullerene interactions can exist, and the calculations point to van der Waals interactions as a signifi cant driving force for molecular mixing. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Application of ligand- and receptor-based approaches for prediction of the HIV-RT inhibitory activity of fullerene derivatives

    Science.gov (United States)

    Yilmaz, Hayriye; Ahmed, Lucky; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2016-05-01

    Fullerene and its derivatives have potential to be utilized in many biomedical applications. In the present study, we investigated the role of fullerene derivatives as inhibitors of HIV-RT by combined protein-ligand docking approach and QSAR methods. The study shows the best predictive QSAR model that represents a two-variable model. It has a good ratio of the number of descriptors and predictive ability. The main contributions to the inhibitory activity are provided by signal JhetZ descriptor and μ (dipole moment, as a measure of the polarity of a compound). The developed GA-MLRA-based model demonstrates a good performance, confirmed by statistics ( {R2_{{training}} = 0.867,Q2 = 0.788,R2_{{test}} = 0.902} ). The structure-activity analysis of these fullerene analogues allowed us to design and suggest for synthesis a set of new potentially active fullerenes. Finally, the molecular docking analysis was carried out to understand the details of interactions between HIV-RT and fullerene-C60 derivatives.

  19. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Ravva, Mahesh Kumar

    2016-10-24

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains and fullerenes is still lacking and could help in the design of more efficient photoactive layers. Here, using a combination of long-range corrected density functional theory calculations and molecular dynamic simulations, we report a thorough characterization of the nature of binding between fullerenes (C60 and PC61BM) and poly(benzo[1,2-b:4,5-b′]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) chains. We illustrate the variations in binding strength when the fullerenes dock on the electron-rich vs electron-poor units of the polymer as well as the importance of the role played by the polymer and fullerene side chains and the orientations of the PC61BM molecules with respect to the polymer backbones.

  20. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  1. Cation Effect on Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin

    2009-02-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  2. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  3. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    Science.gov (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  4. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Science.gov (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  5. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  6. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  7. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  8. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  9. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.

    1995-01-01

    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  10. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  11. Enhancement of fill factor in air-processed inverted organic solar cells using self-assembled monolayer of fullerene catechol

    Science.gov (United States)

    Jeon, Il; Ogumi, Keisuke; Nakagawa, Takafumi; Matsuo, Yutaka

    2016-08-01

    [60]Fullerene catechol self-assembled monolayers were prepared and applied to inverted organic solar cells by an immersion method, and their energy conversion properties were measured. By introducing fullerenes at the surface, we improved the hole-blocking capability of electron-transporting metal oxide, as shown by the fill factor enhancement. The fullerene catechol-treated TiO x -containing device gave a power conversion efficiency (PCE) of 2.81% with a fill factor of 0.56 while the non treated device gave a PCE of 2.46% with a fill factor of 0.49. The solar cell efficiency improved by 13% compared with the non treated reference device.

  12. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  13. Stone-Wales defects in nitrogen-doped C$_{20}$ fullerenes: Insight from $\\textit{ab initio}$ calculations

    CERN Document Server

    Katin, Konstantin

    2016-01-01

    Density functional theory is applied to study the mechanism of the Stone-Wales defect formation in pure and nitrogen-doped dodecahedral C$_{20}$ fullerenes. The molecular structures of initial and defected cages as well as transition states dividing them are obtained. Depending on the number of nitrogen atoms and their relative position in the cage, Stone-Wales defect is formed through the single additional intermediate state or directly. The activation energy barrier of the defect formation reduces from 4.93 eV in pure C$_{20}$ to 2.98 eV in single-doped C$_{19}$N, and reaches $\\sim$ 2 eV under further doping. All nitrogen-doped fullerenes considered possess high kinetic stability at room temperature. However, they become much less stable at temperatures of about 750 K that are typical for the fullerene annealing process.

  14. Reflection electron energy-loss spectra of the fullerenes C[sub 60] and C[sub 70

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, Yu.M. (Institute of Chemical Physics, Chernogolovka (Russian Federation)); Rubtsov, V.I. (Institute of Chemical Physics, Chernogolovka (Russian Federation)); Lobach, A.S. (Institute of Chemical Physics, Chernogolovka (Russian Federation))

    1994-02-01

    High purity polycrystalline samples of C[sub 60] and C[sub 70] were obtained and studied by the electron energy-loss spectroscopy in the reflection mode. The spectra were used for determination of the loss functions of fullerenes. Loss functions of the fullerenes were compared with those of graphite. It was established that the relative intensities of the peaks corresponding to ([sigma]+[pi])- and [pi]-plasmons depended on the primary electron energy, while the ([sigma]+[pi])-plasmon energies did not depend on the primary electron energy and were equal to 25.0 eV for C[sub 60] and 24.8 eV for C[sub 70]. The conclusion on the space localization for plasma occilations in fullerenes was made on the base of the study of the energy dependent loss functions. (orig.)

  15. Organic Solar Cells with Controlled Nanostructures Based on Microphase Separation of Fullerene-Attached Thiophene-Selenophene Heteroblock Copolymers.

    Science.gov (United States)

    Chen, Peihong; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Kikitsu, Tomoka; Hashizume, Daisuke; Koganezawa, Tomoyuki; Tajima, Keisuke

    2017-02-08

    Heteroblock copolymers consisting of poly(3-hexylthiophene) and fullerene-attached poly(3-alkylselenophene) (T-b-Se-PCBP) were synthesized for organic photovoltaic applications by quasi-living catalyst transfer polycondensation and subsequent conversion reactions. Characterization of the polymers confirmed the formation of well-defined diblock structures with high loading of the fullerene at the side chain (∼40 wt %). Heteroblock copolymer cast as a thin film showed a clear microphase-separated nanostructure approximately 30 nm in repeating unit after thermal annealing, which is identical to the microphase-separated nanostructure of diblock copolymer consisting of poly(3-hexylthiophene) and fullerene-attached poly(3-alkylthiophene) (T-b-T-PCBP). These heteroblock copolymers provide an ideal platform for investigating the effects of nanostructures and interfacial energetics on the performance of organic photovoltaic devices.

  16. Fulleretic Well-Defined Scaffolds: Donor-Fullerene Alignment Through Metal Coordination and Its Effect on Photophysics.

    Science.gov (United States)

    Williams, Derek E; Dolgopolova, Ekaterina A; Godfrey, Danielle C; Ermolaeva, Evgeniya D; Pellechia, Perry J; Greytak, Andrew B; Smith, Mark D; Avdoshenko, Stanislav M; Popov, Alexey A; Shustova, Natalia B

    2016-07-25

    Herein, we report the first example of a crystalline metal-donor-fullerene framework, in which control of the donor-fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The (13) C cross-polarization magic-angle spinning NMR spectroscopy, X-ray diffraction, and time-resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy-transfer (ET) studies of the fulleretic donor-acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well-defined fulleretic donor-acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.

  17. Electronic structure and electrical transport characteristics of C60, 2C60 and 4C60 fullerene molecules

    Institute of Scientific and Technical Information of China (English)

    SHEN Haijun; MU Xiancai

    2007-01-01

    The extended Hückel method and the Green's function method were used to calculate the electronic struc-ture and electrical transport of Au electrode-C60,2C60 or 4C60 fullerene-Au electrode systems.Furthermore,their electronic structure and electrical transport characteristics were com-pared and analyzed.The results show that (I) owing to the contact with the Au electrodes,the C60,2C60 and 4C60 mole-cules change in their electronic structures ignificantly,and their energy gaps between LUMO and HOMO are narrow;(ii) the bonding between C60,2C60 or 4C60 fullerene and Au electrodes is partially covalent and partially electrovalent;and (iii) the conductance of the three fullerenes conforms to the order of C60>2C60>4C60.

  18. Synthesis and Characterization of Fullerene Nanowhiskers by Liquid-Liquid Interfacial Precipitation: Influence of C60 Solubility

    Directory of Open Access Journals (Sweden)

    Marappan Sathish

    2012-03-01

    Full Text Available Fullerene nanowhiskers (FNWs composed of C60 fullerene molecules were prepared using the liquid–liquid interfacial precipitation (LLIP method in the carbon-disulfide (CS2 and isopropyl alcohol (IPA system. The electron microscopic images reveal the formation of non-tubular FNWs. The X-ray diffraction (XRD pattern studies indicate the presence of fcc crystalline structure and unusual triclinic structure in the FNWs. The selected area electron diffraction pattern (SAED analysis demonstrates the existence of triclinic and electron beam assisted fcc to tetragonal crystalline phase transformation. The formation of triclinic structure might be validated due to the partial polymerization of FNWs at C60 saturated CS2-IPA interface. The high solubility of C60 in CS2 solvent system results in partial polymerization of FNWs. The polymerization of fullerene molecules in the FNWs has been further confirmed using Raman spectroscopy.

  19. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    Science.gov (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  20. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  1. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  2. Synthesis and Preliminary Characterization of a PPE-Type Polymer Containing Substituted Fullerenes and Transition Metal Ligation Sites

    Directory of Open Access Journals (Sweden)

    Corinne A. Basinger

    2015-01-01

    Full Text Available A substituted fullerene was incorporated into a PPE-conjugated polymer repeat unit. This subunit was then polymerized via Sonogashira coupling with other repeat units to create polymeric systems approaching 50 repeat units (based on GPC characterization. Bipyridine ligands were incorporated into some of these repeat units to provide sites for transition metal coordination. Photophysical characterization of the absorption and emission properties of these systems shows excited states located on both the fullerene and aromatic backbone of the polymers that exist in a thermally controlled equilibrium. Future work will explore other substituted polyaromatic systems using similar methodologies.

  3. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren;

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  4. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    Science.gov (United States)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  5. Molecular photovoltaic system based on fullerenes and carotenoids co-assembled in lipid/alkanethiol hybrid bilayers.

    Science.gov (United States)

    Liu, Lixia; Zhan, Wei

    2012-03-13

    A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.

  6. On the photoconductivity of layered molecular complex of fullerene C{sub 60} with saturated amine TMPDA

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Yu.I.; Lopatin, D.V.; Rodaev, V.V. [Tambov State University, 392000 Tambov (Russian Federation); Konarev, D.V.; Litvinov, A.L.; Lyubovskaya, R.N. [Institute of Problems of Chemical Physics, Russian Academy of Science, 142432 Chernogolovka, Moscow (Russian Federation)

    2007-03-15

    It was revealed that the photoconductivity of layered molecular complex of fullerene C{sub 60} with saturated amine TMPDA: TMPDA.C{sub 60} is caused by intermolecular electronic processes in the fullerene layers. The intermediate magneto-sensitive stage of photogenerating free charge carriers was found to be due to the effect of magnetic field on the rate constant of the triplet charge transfer exciton annihilation process. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural organization of C{sub 60} fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents

    Energy Technology Data Exchange (ETDEWEB)

    Prylutskyy, Yu. I. [Taras Shevchenko National University of Kyiv (Ukraine); Evstigneev, M. P., E-mail: max-evstigneev@mail.ru [Belgorod State University, Department of Biology and Chemistry (Russian Federation); Cherepanov, V. V. [Institute of Physics of NAS of Ukraine (Ukraine); Kyzyma, O. A.; Bulavin, L. A.; Davidenko, N. A. [Taras Shevchenko National University of Kyiv (Ukraine); Scharff, P. [Ilmenau University of Technology (Germany)

    2015-01-15

    Specific features of structural self-organization of C{sub 60} fullerene (1 nm size range), antitumor antibiotic doxorubicin (Dox) and their complex in physiological solution (0.9 % NaCl) have been investigated by means of atomic-force microscopy, dynamic light scattering, and small-angle X-ray scattering. Significant ordering of the mixed system, C{sub 60} + Dox, was observed, suggesting the complexation between these drugs, and giving insight into the mechanism of enhancement of Dox antitumor effect on simultaneous administration with C{sub 60} fullerene.

  9. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen

    Science.gov (United States)

    Voevodin, A. A.; Jones, J. G.; Zabinski, J. S.; Czigany, Zs.; Hultman, L.

    2002-11-01

    The growth and structure of fullerene-like CNx films produced by laser ablation of graphite in low pressure nitrogen were investigated. Deposition conditions were selected based on investigations of CN and C2 concentration at the condensation surface, vibrational temperature of CN radicals, and kinetic energies of atomic and molecular species. Films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, nanoindentation, and stress analyses. The nitrogen content in CNx films directly depended on the concentration of CN radicals at the condensation surface. Formation of fullerene-like structures required a high vibrational temperature of these radicals, which was maximized at about 4 eV for depositions at 10 mTorr N2 and laser fluences of approx7 J/cm2. The presence of C2 had only a minor effect on film composition and structure. Optimization of plasma characteristics and a substrate temperature of 300 degC helped to produce about 1-mum-thick solid films of CNx (N/C ratioapproximately0.2-0.3) and pure carbon consisting of fullerene-like fragments and packages. In contrast to carbon films, fullerene-like CNx films exhibited a high elastic recovery of about 80% in using a Berkovich tip at 5 mN load and indentation depths up to 150 nm. Their elastic modulus was about 160 GPa measured from the unloading portion of an indentation curve, and about 250 GPa measured with a 40 Hz tip oscillation during nanoindentation tests. The difference was related to time dependent processes of shape restoration of fullerene-like fragments, and an analogy was made to the behavior of elastomer polymers. However, unlike elastomers, CNx film hardness was as high as 30 GPa, which was twice that of fullerene-like carbon films. The unusual combination of high elasticity and hardness of CNx films was explained by crosslinking of fullerene fragments induced by the incorporated nitrogen and stored compressive stress. The

  10. Continuum modeling investigation of gigahertz oscillators based on a C60 fullerene inside cyclic peptide nanotubes

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-02-01

    Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.

  11. Controlling Electronic Transitions in Fullerene van der Waals Aggregates via Supramolecular Assembly.

    Science.gov (United States)

    Das, Saunak; Herrmann-Westendorf, Felix; Schacher, Felix H; Täuscher, Eric; Ritter, Uwe; Dietzek, Benjamin; Presselt, Martin

    2016-08-24

    Morphologies crucially determine the optoelectronic properties of organic semiconductors. Therefore, hierarchical and supramolecular approaches have been developed for targeted design of supramolecular ensembles of organic semiconducting molecules and performance improvement of, e.g., organic solar cells (OSCs), organic light emitting diodes (OLEDs), and organic field-effect transistors (OFETs). We demonstrate how the photonic properties of fullerenes change with the formation of van der Waals aggregates. We identified supramolecular structures with broadly tunable absorption in the visible spectral range and demonstrated how to form aggregates with targeted visible (vis) absorption. To control supramolecular structure formation, we functionalized the C60-backbone with polar (bis-polyethylene glycol malonate-MPEG) tails, thus yielding an amphiphilic fullerene derivative that self-assembles at interfaces. Aggregates of systematically tuned size were obtained from concentrating MPEGC60 in stearic acid matrices, while different supramolecular geometries were provoked via different thin film preparation methods, namely spin-casting and Langmuir-Blodgett (LB) deposition from an air-water interface. We demonstrated that differences in molecular orientation in LB films (C2v type point group aggregates) and spin-casting (stochastic aggregates) lead to huge changes in electronic absorption spectra due to symmetry and orientation reasons. These differences in the supramolecular structures, causing the different photonic properties of spin-cast and LB films, could be identified by means of quantum chemical calculations. Employing supramolecular assembly, we propounded that molecular symmetry in fullerene aggregates is extremely important in controlling vis absorption to harvest photons efficiently, when mixed with a donor molecule, thus improving active layer design and performance of OSCs.

  12. Fullerene C60 Penetration into Leukemic Cells and Its Photoinduced Cytotoxic Effects

    Science.gov (United States)

    Franskevych, D.; Palyvoda, K.; Petukhov, D.; Prylutska, S.; Grynyuk, I.; Schuetze, C.; Drobot, L.; Matyshevska, O.; Ritter, U.

    2017-01-01

    Fullerene C60 as a representative of carbon nanocompounds is suggested to be promising agent for application in photodynamic therapy due to its unique physicochemical properties. The goal of this study was to estimate the accumulation of fullerene C60 in leukemic cells and to investigate its phototoxic effect on parental and resistant to cisplatin leukemic cells. Stable homogeneous water colloid solution of pristine C60 with average 50-nm diameter of nanoparticles was used in experiments. Fluorescent labeled C60 was synthesized by covalent conjugation of C60 with rhodamine B isothiocyanate. The results of confocal microscopy showed that leukemic Jurkat cells could effectively uptake fullerene C60 from the medium. Light-emitting diode lamp (100 mW cm-2, λ = 420-700 nm) was used for excitation of accumulated C60. A time-dependent decrease of viability was detected when leukemic Jurkat cells were exposed to combined treatment with C60 and visible light. The cytotoxic effect of photoexcited C60 was comparable with that induced by H2O2, as both agents caused 50% decrease of cell viability at 24 h at concentrations about 50 μM. Using immunoblot analysis, protein phosphotyrosine levels in cells were estimated. Combined action of C60 and visible light was followed by decrease of cellular proteins phosphorylation on tyrosine residues though less intensive as compared with that induced by H2O2 or protein tyrosine kinase inhibitor staurosporine. All tested agents reduced phosphorylation of 55, 70, and 90 kDa proteins while total suppression of 26 kDa protein phosphorylation was specific only for photoexcited C60.

  13. Endohedral nitrogen storage in carbon fullerene structures: Physisorption to chemisorption transition with increasing gas pressure

    Science.gov (United States)

    Barajas-Barraza, R. E.; Guirado-López, R. A.

    2009-06-01

    We present extensive pseudopotential density functional theory (DFT) calculations in order to analyze the structural properties and chemical reactivity of nitrogen molecules confined in spheroidal (C82) and tubelike (C110) carbon fullerene structures. For a small number of encapsulated nitrogens, the N2 species exist in a nonbonded state within the cavities and form well defined molecular conformations such as linear chains, zigzag arrays, as well as both spheroidal and tubular configurations. However, with increasing the number of stored molecules, the interaction among the confined nitrogens as well as between the N2 species and the fullerene wall is not always mainly repulsive. Actually, at high densities of the encapsulated gas, we found both adsorption of N2 to the inner carbon surface together with the formation of (N2)m molecular clusters. Total energy DFT calculations reveal that the shape of the interaction potential of a test molecule moving within the carbon cavities strongly varies with the number and proximity of the coadsorbed N2 from being purely repulsive to having short-range attractive contributions close to the inner wall. In particular, the latter are always found when a group of closely spaced nitrogens is located near the carbon cage (a fact that will naturally occur at high densities of the encapsulated gas), inducing the formation of covalent bonds between the N2 and the fullerene network. Interestingly, in some cases, the previous nitrogen adsorption to the inner surface is reversible by reducing the gas pressure. The calculated average density of states of our considered carbon compounds reveals the appearance of well defined features that clearly reflect the occurring structural changes and modifications in the adsorption properties in the systems. Our results clearly underline the crucial role played by confinement effects on the reactivity of our endohedral compounds, define this kind of materials as nonideal nanocontainers for high

  14. Characterization of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate and fullerene

    Directory of Open Access Journals (Sweden)

    Debeljković Aleksandra D.

    2013-01-01

    Full Text Available This work presents comparative research of characteristics of a basic and new nanophotonic material, the latter of which was obtained by incorporation fullerene, C60, in the base material for soft contact lenses. The basic (SL38 and nanophotonic materials (SL38-A for soft contact lenses were obtained by radical polymerization of 2-hydroxyethyl methacrylate and 2-hydroxyethyl methacrylate and fullerene, which were derived by the technology in the production lab of the company Soleko (Milan, Italy. The materials were used for production of soft contact lenses in the company Optix (Belgrade, Serbia for the purposes of this research. Fullerene was used due to its apsorption transmission characteristics in ultraviolet, visible and near infrared spectrum. For the purposes of material characterization for potential application as soft contact lenses, network parameters were calculated and SEM analysis of the materials was performed while the optical properties of the soft contact lenses were measured by a Rotlex device. The values of the diffusion exponent, n, close to 0.5 indicated Fick's kinetics corresponding to diffusion. The investigated hydrogels could be classified as nonporous hydrogels. With Rotlex device, values of optical power and map of defects were showed. The obtained values of optical power and map of defects showed that the optical power of synthesized nanophotonic soft contact lens is identical to the nominal value while this was not the case for the basic lens. Also, the quality of the nanophotonic soft contact lens is better than the basic soft contact lens. Hence, it is possible to synthesize new nanophotonic soft contact lenses of desired optical characteristics, implying possibilities for their application in this field.

  15. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...

  16. THE CATIONIC ADDITIVES USED IN COATED INK-JET PAPER

    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen

    2004-01-01

    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  17. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  18. C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects

    Directory of Open Access Journals (Sweden)

    Carroll David L

    2006-12-01

    Full Text Available Abstract We have developed a new method of application of C60 to cultured cells that does not require water-solubilization techniques. Normal and malignant cells take-up C60 and the inherent photoluminescence of C60 is detected within multiple cell lines. Treatment of cells with up to 200 μg/ml (200 ppm of C60 does not alter morphology, cytoskeletal organization, cell cycle dynamics nor does it inhibit cell proliferation. Our work shows that pristine C60 is non-toxic to the cells, and suggests that fullerene-based nanocarriers may be used for biomedical applications.

  19. Electronic transport in fullerene C20 bridge assisted by molecular vibrations.

    Science.gov (United States)

    Yamamoto, Takahiro; Watanabe, Kazuyuki; Watanabe, Satoshi

    2005-08-01

    The effect of molecular vibrations on electronic transport is investigated with the smallest fullerene C20 bridge, utilizing the Keldysh nonequilibrium Green's function techniques combined with the tight-binding molecular-dynamics method. Large discontinuous steps appear in the differential conductance when the applied bias voltage matches particular vibrational energies. The magnitude of the step is found to vary considerably with the vibrational mode and to depend on the local electronic states besides the strength of electron-vibration coupling. On the basis of this finding, a novel way to control the molecular motion by adjusting the gate voltage is proposed.

  20. Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence.

    Science.gov (United States)

    Ding, Feng; Yakobson, Boris I

    2014-09-04

    Mimicking the conventional barrier-based kinetic Monte Carlo simulation, an energy-driven kinetic Monte Carlo (EDKMC) method was developed to study the structural transformation of carbon nanomaterials. The new method is many orders magnitude faster than standard molecular dynamics or Monte Marlo (MC) simulations and thus allows us to explore rare events within a reasonable computational time. As an example, the temperature dependence of fullerene coalescence was studied. The simulation, for the first time, revealed that short capped single-walled carbon nanotubes (SWNTs) appear as low-energy metastable structures during the structural evolution.

  1. Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

    OpenAIRE

    Pfützner, Steffen

    2012-01-01

    This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to...

  2. Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes.

    Science.gov (United States)

    Becker, L; Poreda, R J; Hunt, A G; Bunch, T E; Rampino, M

    2001-02-23

    The Permian-Triassic boundary (PTB) event, which occurred about 251.4 million years ago, is marked by the most severe mass extinction in the geologic record. Recent studies of some PTB sites indicate that the extinctions occurred very abruptly, consistent with a catastrophic, possibly extraterrestrial, cause. Fullerenes (C60 to C200) from sediments at the PTB contain trapped helium and argon with isotope ratios similar to the planetary component of carbonaceous chondrites. These data imply that an impact event (asteroidal or cometary) accompanied the extinction, as was the case for the Cretaceous-Tertiary extinction event about 65 million years ago.

  3. Conformational Preferences and the Phase Stability of Fullerene Hexa-adducts.

    Science.gov (United States)

    Wu, San-Lien; Hong, Chen-Yang; Wu, Kuan-Yi; Lan, Shih-Ting; Hsieh, Chou-Ting; Chen, Hsin-Lung; Wang, Chien-Lung

    2016-07-20

    Molecular conformation and the assembly structure determine the spatial arrangements of the constituent units and the functions of a molecule. Although, fullerene hexa-adducts (FHAs) have been known as functional materials with great versatility, their conformational preferences and phase stability remain a complicate issue. By choosing bithiophene (T2 ) and dodecyl bithiophene (C12 T2 ) as the peripheral units of FHA, and using microscopic, scattering and diffraction characterizations, our study reveals how the intramolecular interaction and environmental stimulus affects the conformational preferences and phase stability of FHAs.

  4. Fullerene-Benzene purple and yellow clusters: Theoretical and experimental studies

    Science.gov (United States)

    Lundgren, Megan P.; Khan, Sakiba; Baytak, Aysegul K.; Khan, Arshad

    2016-11-01

    Fullerene (FR, C60) gives a purple colored solution almost instantly when benzene is added to it. Interestingly, this purple solution turns yellow in about 7 weeks and remains yellow afterwards. The concentration of the purple complex increases with temperature indicating its formation kinetically favored, which transforms into a more stable yellow complex very slowly with time. The geometry optimization by density functional theory (DFT) followed by spectra (TD-DFT method) calculations suggest that the purple and yellow complexes are due to clusters of six benzene molecules arranged vertically and horizontally respectively around the FR molecule.

  5. Incommensurate superstructure in heavily doped fullerene layer on Bi/Si(111) surface

    Science.gov (United States)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Matetskiy, A. V.; Zotov, A. V.; Saranin, A. A.

    2015-08-01

    Cs adsorption onto the C60-covered Si(111)-β- √{ 3 } × √{ 3 } -Bi reconstruction has been studied by means of scanning tunneling microscopy and photoelectron spectroscopy. Unexpected increase in apparent size of every second C60 molecule has been detected, hereupon the close packed molecular array almost doubles its periodicity. The change affects only the fullerenes that are in direct contact with the metal-induced reconstruction and takes no place already in the second layer. Photoelectron studies have revealed that this incommensurate "2 × 2" superstructure of a heavily doped C60 monolayer remains in an insulating state regardless of doping level.

  6. Carbon nano-onions (multi-layer fullerenes: chemistry and applications

    Directory of Open Access Journals (Sweden)

    Juergen Bartelmess

    2014-11-01

    Full Text Available This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs. First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible applications, such as poor solubility in common solvents. Finally, it gives an overview over the fields of application, in which CNO materials were successfully implemented.

  7. SYNTHESIS AND CATALYTIC BEHAVIOR OF POLYSILOXANE-SUPPORTED FULLERENE PLATINUM OR RHODIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Fang; Yuan-yin Chen; Shu-ling Gong; Lei Guo; Qiu-sheng Lu; Ling Zhu

    1999-01-01

    Two polysiloxanes with pendant fullerene moieties and their platinum or rhodium complexes have been prepared from C60 via amination with ω-decenylamine, followed by hydrosilylation with triethoxysilane and immobilization on fumed silica or by hydrosilylation with methyldichlorosilane and polycondensation with polydimethylsiloxanol, and then by reacting them with potassium chloroplatinite or rhodium chloride in acetone respectively under argon atmosphere. It was found that the four noble metal complexes are effective catalysts for the hydrosilylation of olefins with triethoxysilane. The regioselectivity of platinum complexes for styrene increases remarkably by introducing C60 moiety. Factors influencing catalytic activity and the mechanism have been investigated.

  8. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.

    1982-02-10

    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  9. Cation Permeability in Soybean Aleurone Layer

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1998-01-01

    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  10. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  11. Controlling chemistry with cations: photochemistry within zeolites.

    Science.gov (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  12. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates

    2012-09-05

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nichole Cates; Gysel, Roman; Sweetnam, Sean; McGehee, Michael D. [Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States); Cho, Eunkyung [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Junk, Matthias J.N.; Chmelka, Bradley F. [Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA (United States); Risko, Chad; Kim, Dongwook; Bredas, Jean-Luc [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); Miller, Chad E. [Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Richter, Lee J.; Kline, R. Joseph [National Institute of Standards and Technology, Gaithersburg, MD (United States); Heeney, Martin; McCulloch, Iain [Department of Chemistry, Imperial College London (United Kingdom); Amassian, Aram [King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal (Saudi Arabia); Acevedo-Feliz, Daniel; Knox, Christopher [King Abdullah University of Science and Technology (KAUST), Visualization Core Laboratory, Thuwal (Saudi Arabia); Hansen, Michael Ryan; Dudenko, Dmytro [Max Planck Institute for Polymer Research, Mainz (Germany); Toney, Michael F. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2012-11-27

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Photophysical Properties and Photoinduced Electron Transfer between [60]Fullerene-Containing Cyclic Sulphoxide [ C60-C6H8SO] and Tetrathiafulvalene (TTF) by Laser Flash Photolysis

    Institute of Scientific and Technical Information of China (English)

    ZENG,He-Ping(曾和平)

    2002-01-01

    Photoinduced electron transfer (PET) processes between C60-C6H8SO and Tetrathiafulvalene (TTF) have been studied by nanosecond laser photolysis. Quantum yields (φet) and rate constants of electron transfer (ket) from TTF to excited triplet state of [ 60 ] fullerene-containing cyclic sulphoxide in benzonitrile (BN) have been evaluated by observing the transient absorption bands in the NIR region. With the decay of excited triplet state of [ 60 ] fullerene-containing cyclic sulphoxide, the rise of radical anion of [60]fullerene-containing cyclic sulphoxide is observed.

  15. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

    Science.gov (United States)

    Cheng, Yi-Han; Zhang, Chuan-Yu; Ren, Juan; Tong, Kai-Yu

    2016-10-01

    New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen ( h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN ( n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96-13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10-21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (-80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

  16. Molecular design and control of fullerene-based bi-thermoelectric materials.

    Science.gov (United States)

    Rincón-García, Laura; Ismael, Ali K; Evangeli, Charalambos; Grace, Iain; Rubio-Bollinger, Gabino; Porfyrakis, Kyriakos; Agraït, Nicolás; Lambert, Colin J

    2016-03-01

    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C80 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions.

  17. Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells

    KAUST Repository

    Zhong, Yufei

    2016-10-21

    Electron-transporting layers in today\\'s stateof-the-art n-i-p organohalide perovskite solar cells are almost exclusively made of metal oxides. Here, we demonstrate a novel mesostructured fullerene-based electron-transporting material (ETM) that is crystalline, hydrophobic, and cross-linked, rendering it solvent-and heat resistant for subsequent perovskite solar cell fabrication The fullerene ETM is shown to enhance the structural and electronic properties of the CH3NH3PbI3 layer grown atop, reducing its Urbach energy from similar to 26 to 21 meV, while also increasing crystallite size and improving texture. The resulting mesostructured n-i-p solar cells achieve reduced recombination, improved device-to-device variation, reduced hysteresis, and a power conversion efficiency above 15%, surpassing the performance of similar devices prepared using mesoporous TiO2 and well above the performance of planar heterojunction devices on amorphous or crystalline [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). This work is the first demonstration of a viable, hydrophobic, and high-performance mesostructured electron-accepting contact to work effectively in n-i-p perovskite solar cells.

  18. Bulk heterojunction morphology of polymer:fullerene blends revealed by ultrafast spectroscopy

    Science.gov (United States)

    Serbenta, Almis; Kozlov, Oleg V.; Portale, Giuseppe; van Loosdrecht, Paul H. M.; Pshenichnikov, Maxim S.

    2016-11-01

    Morphology of organic photovoltaic bulk heterojunctions (BHJs) – a nanoscale texture of the donor and acceptor phases – is one of the key factors influencing efficiency of organic solar cells. Detailed knowledge of the morphology is hampered by the fact that it is notoriously difficult to investigate by microscopic methods. Here we all-optically track the exciton harvesting dynamics in the fullerene acceptor phase from which subdivision of the fullerene domain sizes into the mixed phase (2–15 nm) and large (>50 nm) domains is readily obtained via the Monte-Carlo simulations. These results were independently confirmed by a combination of X-ray scattering, electron and atomic-force microscopies, and time-resolved photoluminescence spectroscopy. In the large domains, the excitons are lost due to the high energy disorder while in the ordered materials the excitons are harvested with high efficiency even from the domains as large as 100 nm due to the absence of low-energy traps. Therefore, optimizing of blend nanomorphology together with increasing the material order are deemed as winning strategies in the exciton harvesting optimization.

  19. Calculation of the vibrational frequencies of carbon clusters and fullerenes with empirical potentials.

    Science.gov (United States)

    Do, Hainam; Besley, Nicholas A

    2015-02-07

    Vibrational frequencies for carbon clusters, fullerenes and nanotubes evaluated using empirical carbon-carbon potentials are presented. For linear and cyclic clusters, frequencies evaluated with the reactive empirical bond order (REBO) potential provide the closest agreement with experiment. The mean absolute deviation (MAD) between experiment and the calculated harmonic frequencies is 79 cm(-1) for the bending modes and 76 cm(-1) for the stretching modes. The effects of anharmonicity are included via second order vibrational perturbation theory and tend to increase the frequency of the bending modes while the stretching modes have negative shifts in the region of 20-60 cm(-1), with larger shifts for the higher frequency modes. This results in MADs for the bending and stretching modes of 84 cm(-1) and 58 cm(-1), respectively. For the fullerene molecule C60, the high frequency modes are predicted to have harmonic frequencies that are significantly higher than experiment, and this is not corrected by accounting for anharmonicity. This overestimation of experimental observed frequencies is also evident in the calculated frequencies of the G band in nanotubes. This suggests that the REBO potential is not optimal for these larger systems and it is shown that adjustment of the parameters within the potential leads to closer agreement with experiment, particularly if higher and lower frequency modes are considered separately.

  20. In Silico Study of Spacer Arm Length Influence on Drug Vectorization by Fullerene C60

    Directory of Open Access Journals (Sweden)

    Haifa Khemir

    2015-01-01

    Full Text Available This work studies theoretically the effect of spacer arm lengths on the characteristics of a fullerene C60-based nanovector. The spacer arm is constituted of a carbon chain including a variable number of methylene groups (n = 2–11. To improve the ability of the fullerene carriage, two arms are presented simultaneously through a malonyl bridge. Then the evolution of selected physicochemical parameters is monitored as a function of the spacer arm length and the angle between the two arms. We show here that while the studied characteristics are almost independent of the spacer arm length or vary monotonically with it, the dipole moment and its orientation vary periodically with the parity of the number of carbon atoms. This periodicity is related to both modules and orientations of dipole moments of the spacer arms. In the field of chemical synthesis, these results highlight the importance of theoretical calculations for the optimization of operating conditions. In the field of drug discovery, they show that theoretical calculations of the chemical properties of a drug candidate can help predict its in vivo behaviour, notably its bioavailability and biodistribution, which are known to be tightly dependent of its polarity.